Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/regmap.h>
23#include <linux/regulator/of_regulator.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/coupler.h>
26#include <linux/regulator/driver.h>
27#include <linux/regulator/machine.h>
28#include <linux/module.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34#include "internal.h"
35
36static DEFINE_WW_CLASS(regulator_ww_class);
37static DEFINE_MUTEX(regulator_nesting_mutex);
38static DEFINE_MUTEX(regulator_list_mutex);
39static LIST_HEAD(regulator_map_list);
40static LIST_HEAD(regulator_ena_gpio_list);
41static LIST_HEAD(regulator_supply_alias_list);
42static LIST_HEAD(regulator_coupler_list);
43static bool has_full_constraints;
44
45static struct dentry *debugfs_root;
46
47/*
48 * struct regulator_map
49 *
50 * Used to provide symbolic supply names to devices.
51 */
52struct regulator_map {
53 struct list_head list;
54 const char *dev_name; /* The dev_name() for the consumer */
55 const char *supply;
56 struct regulator_dev *regulator;
57};
58
59/*
60 * struct regulator_enable_gpio
61 *
62 * Management for shared enable GPIO pin
63 */
64struct regulator_enable_gpio {
65 struct list_head list;
66 struct gpio_desc *gpiod;
67 u32 enable_count; /* a number of enabled shared GPIO */
68 u32 request_count; /* a number of requested shared GPIO */
69};
70
71/*
72 * struct regulator_supply_alias
73 *
74 * Used to map lookups for a supply onto an alternative device.
75 */
76struct regulator_supply_alias {
77 struct list_head list;
78 struct device *src_dev;
79 const char *src_supply;
80 struct device *alias_dev;
81 const char *alias_supply;
82};
83
84static int _regulator_is_enabled(struct regulator_dev *rdev);
85static int _regulator_disable(struct regulator *regulator);
86static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87static int _regulator_get_current_limit(struct regulator_dev *rdev);
88static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89static int _notifier_call_chain(struct regulator_dev *rdev,
90 unsigned long event, void *data);
91static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 int min_uV, int max_uV);
93static int regulator_balance_voltage(struct regulator_dev *rdev,
94 suspend_state_t state);
95static struct regulator *create_regulator(struct regulator_dev *rdev,
96 struct device *dev,
97 const char *supply_name);
98static void destroy_regulator(struct regulator *regulator);
99static void _regulator_put(struct regulator *regulator);
100
101const char *rdev_get_name(struct regulator_dev *rdev)
102{
103 if (rdev->constraints && rdev->constraints->name)
104 return rdev->constraints->name;
105 else if (rdev->desc->name)
106 return rdev->desc->name;
107 else
108 return "";
109}
110EXPORT_SYMBOL_GPL(rdev_get_name);
111
112static bool have_full_constraints(void)
113{
114 return has_full_constraints || of_have_populated_dt();
115}
116
117static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118{
119 if (!rdev->constraints) {
120 rdev_err(rdev, "no constraints\n");
121 return false;
122 }
123
124 if (rdev->constraints->valid_ops_mask & ops)
125 return true;
126
127 return false;
128}
129
130/**
131 * regulator_lock_nested - lock a single regulator
132 * @rdev: regulator source
133 * @ww_ctx: w/w mutex acquire context
134 *
135 * This function can be called many times by one task on
136 * a single regulator and its mutex will be locked only
137 * once. If a task, which is calling this function is other
138 * than the one, which initially locked the mutex, it will
139 * wait on mutex.
140 */
141static inline int regulator_lock_nested(struct regulator_dev *rdev,
142 struct ww_acquire_ctx *ww_ctx)
143{
144 bool lock = false;
145 int ret = 0;
146
147 mutex_lock(®ulator_nesting_mutex);
148
149 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150 if (rdev->mutex_owner == current)
151 rdev->ref_cnt++;
152 else
153 lock = true;
154
155 if (lock) {
156 mutex_unlock(®ulator_nesting_mutex);
157 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
158 mutex_lock(®ulator_nesting_mutex);
159 }
160 } else {
161 lock = true;
162 }
163
164 if (lock && ret != -EDEADLK) {
165 rdev->ref_cnt++;
166 rdev->mutex_owner = current;
167 }
168
169 mutex_unlock(®ulator_nesting_mutex);
170
171 return ret;
172}
173
174/**
175 * regulator_lock - lock a single regulator
176 * @rdev: regulator source
177 *
178 * This function can be called many times by one task on
179 * a single regulator and its mutex will be locked only
180 * once. If a task, which is calling this function is other
181 * than the one, which initially locked the mutex, it will
182 * wait on mutex.
183 */
184static void regulator_lock(struct regulator_dev *rdev)
185{
186 regulator_lock_nested(rdev, NULL);
187}
188
189/**
190 * regulator_unlock - unlock a single regulator
191 * @rdev: regulator_source
192 *
193 * This function unlocks the mutex when the
194 * reference counter reaches 0.
195 */
196static void regulator_unlock(struct regulator_dev *rdev)
197{
198 mutex_lock(®ulator_nesting_mutex);
199
200 if (--rdev->ref_cnt == 0) {
201 rdev->mutex_owner = NULL;
202 ww_mutex_unlock(&rdev->mutex);
203 }
204
205 WARN_ON_ONCE(rdev->ref_cnt < 0);
206
207 mutex_unlock(®ulator_nesting_mutex);
208}
209
210static bool regulator_supply_is_couple(struct regulator_dev *rdev)
211{
212 struct regulator_dev *c_rdev;
213 int i;
214
215 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
216 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
217
218 if (rdev->supply->rdev == c_rdev)
219 return true;
220 }
221
222 return false;
223}
224
225static void regulator_unlock_recursive(struct regulator_dev *rdev,
226 unsigned int n_coupled)
227{
228 struct regulator_dev *c_rdev, *supply_rdev;
229 int i, supply_n_coupled;
230
231 for (i = n_coupled; i > 0; i--) {
232 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
233
234 if (!c_rdev)
235 continue;
236
237 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
238 supply_rdev = c_rdev->supply->rdev;
239 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
240
241 regulator_unlock_recursive(supply_rdev,
242 supply_n_coupled);
243 }
244
245 regulator_unlock(c_rdev);
246 }
247}
248
249static int regulator_lock_recursive(struct regulator_dev *rdev,
250 struct regulator_dev **new_contended_rdev,
251 struct regulator_dev **old_contended_rdev,
252 struct ww_acquire_ctx *ww_ctx)
253{
254 struct regulator_dev *c_rdev;
255 int i, err;
256
257 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
258 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
259
260 if (!c_rdev)
261 continue;
262
263 if (c_rdev != *old_contended_rdev) {
264 err = regulator_lock_nested(c_rdev, ww_ctx);
265 if (err) {
266 if (err == -EDEADLK) {
267 *new_contended_rdev = c_rdev;
268 goto err_unlock;
269 }
270
271 /* shouldn't happen */
272 WARN_ON_ONCE(err != -EALREADY);
273 }
274 } else {
275 *old_contended_rdev = NULL;
276 }
277
278 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
279 err = regulator_lock_recursive(c_rdev->supply->rdev,
280 new_contended_rdev,
281 old_contended_rdev,
282 ww_ctx);
283 if (err) {
284 regulator_unlock(c_rdev);
285 goto err_unlock;
286 }
287 }
288 }
289
290 return 0;
291
292err_unlock:
293 regulator_unlock_recursive(rdev, i);
294
295 return err;
296}
297
298/**
299 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
300 * regulators
301 * @rdev: regulator source
302 * @ww_ctx: w/w mutex acquire context
303 *
304 * Unlock all regulators related with rdev by coupling or supplying.
305 */
306static void regulator_unlock_dependent(struct regulator_dev *rdev,
307 struct ww_acquire_ctx *ww_ctx)
308{
309 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
310 ww_acquire_fini(ww_ctx);
311}
312
313/**
314 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
315 * @rdev: regulator source
316 * @ww_ctx: w/w mutex acquire context
317 *
318 * This function as a wrapper on regulator_lock_recursive(), which locks
319 * all regulators related with rdev by coupling or supplying.
320 */
321static void regulator_lock_dependent(struct regulator_dev *rdev,
322 struct ww_acquire_ctx *ww_ctx)
323{
324 struct regulator_dev *new_contended_rdev = NULL;
325 struct regulator_dev *old_contended_rdev = NULL;
326 int err;
327
328 mutex_lock(®ulator_list_mutex);
329
330 ww_acquire_init(ww_ctx, ®ulator_ww_class);
331
332 do {
333 if (new_contended_rdev) {
334 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
335 old_contended_rdev = new_contended_rdev;
336 old_contended_rdev->ref_cnt++;
337 }
338
339 err = regulator_lock_recursive(rdev,
340 &new_contended_rdev,
341 &old_contended_rdev,
342 ww_ctx);
343
344 if (old_contended_rdev)
345 regulator_unlock(old_contended_rdev);
346
347 } while (err == -EDEADLK);
348
349 ww_acquire_done(ww_ctx);
350
351 mutex_unlock(®ulator_list_mutex);
352}
353
354/**
355 * of_get_child_regulator - get a child regulator device node
356 * based on supply name
357 * @parent: Parent device node
358 * @prop_name: Combination regulator supply name and "-supply"
359 *
360 * Traverse all child nodes.
361 * Extract the child regulator device node corresponding to the supply name.
362 * returns the device node corresponding to the regulator if found, else
363 * returns NULL.
364 */
365static struct device_node *of_get_child_regulator(struct device_node *parent,
366 const char *prop_name)
367{
368 struct device_node *regnode = NULL;
369 struct device_node *child = NULL;
370
371 for_each_child_of_node(parent, child) {
372 regnode = of_parse_phandle(child, prop_name, 0);
373
374 if (!regnode) {
375 regnode = of_get_child_regulator(child, prop_name);
376 if (regnode)
377 goto err_node_put;
378 } else {
379 goto err_node_put;
380 }
381 }
382 return NULL;
383
384err_node_put:
385 of_node_put(child);
386 return regnode;
387}
388
389/**
390 * of_get_regulator - get a regulator device node based on supply name
391 * @dev: Device pointer for the consumer (of regulator) device
392 * @supply: regulator supply name
393 *
394 * Extract the regulator device node corresponding to the supply name.
395 * returns the device node corresponding to the regulator if found, else
396 * returns NULL.
397 */
398static struct device_node *of_get_regulator(struct device *dev, const char *supply)
399{
400 struct device_node *regnode = NULL;
401 char prop_name[64]; /* 64 is max size of property name */
402
403 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
404
405 snprintf(prop_name, 64, "%s-supply", supply);
406 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
407
408 if (!regnode) {
409 regnode = of_get_child_regulator(dev->of_node, prop_name);
410 if (regnode)
411 return regnode;
412
413 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
414 prop_name, dev->of_node);
415 return NULL;
416 }
417 return regnode;
418}
419
420/* Platform voltage constraint check */
421int regulator_check_voltage(struct regulator_dev *rdev,
422 int *min_uV, int *max_uV)
423{
424 BUG_ON(*min_uV > *max_uV);
425
426 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
427 rdev_err(rdev, "voltage operation not allowed\n");
428 return -EPERM;
429 }
430
431 if (*max_uV > rdev->constraints->max_uV)
432 *max_uV = rdev->constraints->max_uV;
433 if (*min_uV < rdev->constraints->min_uV)
434 *min_uV = rdev->constraints->min_uV;
435
436 if (*min_uV > *max_uV) {
437 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
438 *min_uV, *max_uV);
439 return -EINVAL;
440 }
441
442 return 0;
443}
444
445/* return 0 if the state is valid */
446static int regulator_check_states(suspend_state_t state)
447{
448 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
449}
450
451/* Make sure we select a voltage that suits the needs of all
452 * regulator consumers
453 */
454int regulator_check_consumers(struct regulator_dev *rdev,
455 int *min_uV, int *max_uV,
456 suspend_state_t state)
457{
458 struct regulator *regulator;
459 struct regulator_voltage *voltage;
460
461 list_for_each_entry(regulator, &rdev->consumer_list, list) {
462 voltage = ®ulator->voltage[state];
463 /*
464 * Assume consumers that didn't say anything are OK
465 * with anything in the constraint range.
466 */
467 if (!voltage->min_uV && !voltage->max_uV)
468 continue;
469
470 if (*max_uV > voltage->max_uV)
471 *max_uV = voltage->max_uV;
472 if (*min_uV < voltage->min_uV)
473 *min_uV = voltage->min_uV;
474 }
475
476 if (*min_uV > *max_uV) {
477 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
478 *min_uV, *max_uV);
479 return -EINVAL;
480 }
481
482 return 0;
483}
484
485/* current constraint check */
486static int regulator_check_current_limit(struct regulator_dev *rdev,
487 int *min_uA, int *max_uA)
488{
489 BUG_ON(*min_uA > *max_uA);
490
491 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
492 rdev_err(rdev, "current operation not allowed\n");
493 return -EPERM;
494 }
495
496 if (*max_uA > rdev->constraints->max_uA)
497 *max_uA = rdev->constraints->max_uA;
498 if (*min_uA < rdev->constraints->min_uA)
499 *min_uA = rdev->constraints->min_uA;
500
501 if (*min_uA > *max_uA) {
502 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
503 *min_uA, *max_uA);
504 return -EINVAL;
505 }
506
507 return 0;
508}
509
510/* operating mode constraint check */
511static int regulator_mode_constrain(struct regulator_dev *rdev,
512 unsigned int *mode)
513{
514 switch (*mode) {
515 case REGULATOR_MODE_FAST:
516 case REGULATOR_MODE_NORMAL:
517 case REGULATOR_MODE_IDLE:
518 case REGULATOR_MODE_STANDBY:
519 break;
520 default:
521 rdev_err(rdev, "invalid mode %x specified\n", *mode);
522 return -EINVAL;
523 }
524
525 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
526 rdev_err(rdev, "mode operation not allowed\n");
527 return -EPERM;
528 }
529
530 /* The modes are bitmasks, the most power hungry modes having
531 * the lowest values. If the requested mode isn't supported
532 * try higher modes.
533 */
534 while (*mode) {
535 if (rdev->constraints->valid_modes_mask & *mode)
536 return 0;
537 *mode /= 2;
538 }
539
540 return -EINVAL;
541}
542
543static inline struct regulator_state *
544regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
545{
546 if (rdev->constraints == NULL)
547 return NULL;
548
549 switch (state) {
550 case PM_SUSPEND_STANDBY:
551 return &rdev->constraints->state_standby;
552 case PM_SUSPEND_MEM:
553 return &rdev->constraints->state_mem;
554 case PM_SUSPEND_MAX:
555 return &rdev->constraints->state_disk;
556 default:
557 return NULL;
558 }
559}
560
561static const struct regulator_state *
562regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
563{
564 const struct regulator_state *rstate;
565
566 rstate = regulator_get_suspend_state(rdev, state);
567 if (rstate == NULL)
568 return NULL;
569
570 /* If we have no suspend mode configuration don't set anything;
571 * only warn if the driver implements set_suspend_voltage or
572 * set_suspend_mode callback.
573 */
574 if (rstate->enabled != ENABLE_IN_SUSPEND &&
575 rstate->enabled != DISABLE_IN_SUSPEND) {
576 if (rdev->desc->ops->set_suspend_voltage ||
577 rdev->desc->ops->set_suspend_mode)
578 rdev_warn(rdev, "No configuration\n");
579 return NULL;
580 }
581
582 return rstate;
583}
584
585static ssize_t microvolts_show(struct device *dev,
586 struct device_attribute *attr, char *buf)
587{
588 struct regulator_dev *rdev = dev_get_drvdata(dev);
589 int uV;
590
591 regulator_lock(rdev);
592 uV = regulator_get_voltage_rdev(rdev);
593 regulator_unlock(rdev);
594
595 if (uV < 0)
596 return uV;
597 return sprintf(buf, "%d\n", uV);
598}
599static DEVICE_ATTR_RO(microvolts);
600
601static ssize_t microamps_show(struct device *dev,
602 struct device_attribute *attr, char *buf)
603{
604 struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
607}
608static DEVICE_ATTR_RO(microamps);
609
610static ssize_t name_show(struct device *dev, struct device_attribute *attr,
611 char *buf)
612{
613 struct regulator_dev *rdev = dev_get_drvdata(dev);
614
615 return sprintf(buf, "%s\n", rdev_get_name(rdev));
616}
617static DEVICE_ATTR_RO(name);
618
619static const char *regulator_opmode_to_str(int mode)
620{
621 switch (mode) {
622 case REGULATOR_MODE_FAST:
623 return "fast";
624 case REGULATOR_MODE_NORMAL:
625 return "normal";
626 case REGULATOR_MODE_IDLE:
627 return "idle";
628 case REGULATOR_MODE_STANDBY:
629 return "standby";
630 }
631 return "unknown";
632}
633
634static ssize_t regulator_print_opmode(char *buf, int mode)
635{
636 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
637}
638
639static ssize_t opmode_show(struct device *dev,
640 struct device_attribute *attr, char *buf)
641{
642 struct regulator_dev *rdev = dev_get_drvdata(dev);
643
644 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
645}
646static DEVICE_ATTR_RO(opmode);
647
648static ssize_t regulator_print_state(char *buf, int state)
649{
650 if (state > 0)
651 return sprintf(buf, "enabled\n");
652 else if (state == 0)
653 return sprintf(buf, "disabled\n");
654 else
655 return sprintf(buf, "unknown\n");
656}
657
658static ssize_t state_show(struct device *dev,
659 struct device_attribute *attr, char *buf)
660{
661 struct regulator_dev *rdev = dev_get_drvdata(dev);
662 ssize_t ret;
663
664 regulator_lock(rdev);
665 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
666 regulator_unlock(rdev);
667
668 return ret;
669}
670static DEVICE_ATTR_RO(state);
671
672static ssize_t status_show(struct device *dev,
673 struct device_attribute *attr, char *buf)
674{
675 struct regulator_dev *rdev = dev_get_drvdata(dev);
676 int status;
677 char *label;
678
679 status = rdev->desc->ops->get_status(rdev);
680 if (status < 0)
681 return status;
682
683 switch (status) {
684 case REGULATOR_STATUS_OFF:
685 label = "off";
686 break;
687 case REGULATOR_STATUS_ON:
688 label = "on";
689 break;
690 case REGULATOR_STATUS_ERROR:
691 label = "error";
692 break;
693 case REGULATOR_STATUS_FAST:
694 label = "fast";
695 break;
696 case REGULATOR_STATUS_NORMAL:
697 label = "normal";
698 break;
699 case REGULATOR_STATUS_IDLE:
700 label = "idle";
701 break;
702 case REGULATOR_STATUS_STANDBY:
703 label = "standby";
704 break;
705 case REGULATOR_STATUS_BYPASS:
706 label = "bypass";
707 break;
708 case REGULATOR_STATUS_UNDEFINED:
709 label = "undefined";
710 break;
711 default:
712 return -ERANGE;
713 }
714
715 return sprintf(buf, "%s\n", label);
716}
717static DEVICE_ATTR_RO(status);
718
719static ssize_t min_microamps_show(struct device *dev,
720 struct device_attribute *attr, char *buf)
721{
722 struct regulator_dev *rdev = dev_get_drvdata(dev);
723
724 if (!rdev->constraints)
725 return sprintf(buf, "constraint not defined\n");
726
727 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
728}
729static DEVICE_ATTR_RO(min_microamps);
730
731static ssize_t max_microamps_show(struct device *dev,
732 struct device_attribute *attr, char *buf)
733{
734 struct regulator_dev *rdev = dev_get_drvdata(dev);
735
736 if (!rdev->constraints)
737 return sprintf(buf, "constraint not defined\n");
738
739 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
740}
741static DEVICE_ATTR_RO(max_microamps);
742
743static ssize_t min_microvolts_show(struct device *dev,
744 struct device_attribute *attr, char *buf)
745{
746 struct regulator_dev *rdev = dev_get_drvdata(dev);
747
748 if (!rdev->constraints)
749 return sprintf(buf, "constraint not defined\n");
750
751 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
752}
753static DEVICE_ATTR_RO(min_microvolts);
754
755static ssize_t max_microvolts_show(struct device *dev,
756 struct device_attribute *attr, char *buf)
757{
758 struct regulator_dev *rdev = dev_get_drvdata(dev);
759
760 if (!rdev->constraints)
761 return sprintf(buf, "constraint not defined\n");
762
763 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
764}
765static DEVICE_ATTR_RO(max_microvolts);
766
767static ssize_t requested_microamps_show(struct device *dev,
768 struct device_attribute *attr, char *buf)
769{
770 struct regulator_dev *rdev = dev_get_drvdata(dev);
771 struct regulator *regulator;
772 int uA = 0;
773
774 regulator_lock(rdev);
775 list_for_each_entry(regulator, &rdev->consumer_list, list) {
776 if (regulator->enable_count)
777 uA += regulator->uA_load;
778 }
779 regulator_unlock(rdev);
780 return sprintf(buf, "%d\n", uA);
781}
782static DEVICE_ATTR_RO(requested_microamps);
783
784static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
785 char *buf)
786{
787 struct regulator_dev *rdev = dev_get_drvdata(dev);
788 return sprintf(buf, "%d\n", rdev->use_count);
789}
790static DEVICE_ATTR_RO(num_users);
791
792static ssize_t type_show(struct device *dev, struct device_attribute *attr,
793 char *buf)
794{
795 struct regulator_dev *rdev = dev_get_drvdata(dev);
796
797 switch (rdev->desc->type) {
798 case REGULATOR_VOLTAGE:
799 return sprintf(buf, "voltage\n");
800 case REGULATOR_CURRENT:
801 return sprintf(buf, "current\n");
802 }
803 return sprintf(buf, "unknown\n");
804}
805static DEVICE_ATTR_RO(type);
806
807static ssize_t suspend_mem_microvolts_show(struct device *dev,
808 struct device_attribute *attr, char *buf)
809{
810 struct regulator_dev *rdev = dev_get_drvdata(dev);
811
812 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
813}
814static DEVICE_ATTR_RO(suspend_mem_microvolts);
815
816static ssize_t suspend_disk_microvolts_show(struct device *dev,
817 struct device_attribute *attr, char *buf)
818{
819 struct regulator_dev *rdev = dev_get_drvdata(dev);
820
821 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
822}
823static DEVICE_ATTR_RO(suspend_disk_microvolts);
824
825static ssize_t suspend_standby_microvolts_show(struct device *dev,
826 struct device_attribute *attr, char *buf)
827{
828 struct regulator_dev *rdev = dev_get_drvdata(dev);
829
830 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
831}
832static DEVICE_ATTR_RO(suspend_standby_microvolts);
833
834static ssize_t suspend_mem_mode_show(struct device *dev,
835 struct device_attribute *attr, char *buf)
836{
837 struct regulator_dev *rdev = dev_get_drvdata(dev);
838
839 return regulator_print_opmode(buf,
840 rdev->constraints->state_mem.mode);
841}
842static DEVICE_ATTR_RO(suspend_mem_mode);
843
844static ssize_t suspend_disk_mode_show(struct device *dev,
845 struct device_attribute *attr, char *buf)
846{
847 struct regulator_dev *rdev = dev_get_drvdata(dev);
848
849 return regulator_print_opmode(buf,
850 rdev->constraints->state_disk.mode);
851}
852static DEVICE_ATTR_RO(suspend_disk_mode);
853
854static ssize_t suspend_standby_mode_show(struct device *dev,
855 struct device_attribute *attr, char *buf)
856{
857 struct regulator_dev *rdev = dev_get_drvdata(dev);
858
859 return regulator_print_opmode(buf,
860 rdev->constraints->state_standby.mode);
861}
862static DEVICE_ATTR_RO(suspend_standby_mode);
863
864static ssize_t suspend_mem_state_show(struct device *dev,
865 struct device_attribute *attr, char *buf)
866{
867 struct regulator_dev *rdev = dev_get_drvdata(dev);
868
869 return regulator_print_state(buf,
870 rdev->constraints->state_mem.enabled);
871}
872static DEVICE_ATTR_RO(suspend_mem_state);
873
874static ssize_t suspend_disk_state_show(struct device *dev,
875 struct device_attribute *attr, char *buf)
876{
877 struct regulator_dev *rdev = dev_get_drvdata(dev);
878
879 return regulator_print_state(buf,
880 rdev->constraints->state_disk.enabled);
881}
882static DEVICE_ATTR_RO(suspend_disk_state);
883
884static ssize_t suspend_standby_state_show(struct device *dev,
885 struct device_attribute *attr, char *buf)
886{
887 struct regulator_dev *rdev = dev_get_drvdata(dev);
888
889 return regulator_print_state(buf,
890 rdev->constraints->state_standby.enabled);
891}
892static DEVICE_ATTR_RO(suspend_standby_state);
893
894static ssize_t bypass_show(struct device *dev,
895 struct device_attribute *attr, char *buf)
896{
897 struct regulator_dev *rdev = dev_get_drvdata(dev);
898 const char *report;
899 bool bypass;
900 int ret;
901
902 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
903
904 if (ret != 0)
905 report = "unknown";
906 else if (bypass)
907 report = "enabled";
908 else
909 report = "disabled";
910
911 return sprintf(buf, "%s\n", report);
912}
913static DEVICE_ATTR_RO(bypass);
914
915#define REGULATOR_ERROR_ATTR(name, bit) \
916 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
917 char *buf) \
918 { \
919 int ret; \
920 unsigned int flags; \
921 struct regulator_dev *rdev = dev_get_drvdata(dev); \
922 ret = _regulator_get_error_flags(rdev, &flags); \
923 if (ret) \
924 return ret; \
925 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
926 } \
927 static DEVICE_ATTR_RO(name)
928
929REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
930REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
931REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
932REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
933REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
934REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
935REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
936REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
937REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
938
939/* Calculate the new optimum regulator operating mode based on the new total
940 * consumer load. All locks held by caller
941 */
942static int drms_uA_update(struct regulator_dev *rdev)
943{
944 struct regulator *sibling;
945 int current_uA = 0, output_uV, input_uV, err;
946 unsigned int mode;
947
948 /*
949 * first check to see if we can set modes at all, otherwise just
950 * tell the consumer everything is OK.
951 */
952 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
953 rdev_dbg(rdev, "DRMS operation not allowed\n");
954 return 0;
955 }
956
957 if (!rdev->desc->ops->get_optimum_mode &&
958 !rdev->desc->ops->set_load)
959 return 0;
960
961 if (!rdev->desc->ops->set_mode &&
962 !rdev->desc->ops->set_load)
963 return -EINVAL;
964
965 /* calc total requested load */
966 list_for_each_entry(sibling, &rdev->consumer_list, list) {
967 if (sibling->enable_count)
968 current_uA += sibling->uA_load;
969 }
970
971 current_uA += rdev->constraints->system_load;
972
973 if (rdev->desc->ops->set_load) {
974 /* set the optimum mode for our new total regulator load */
975 err = rdev->desc->ops->set_load(rdev, current_uA);
976 if (err < 0)
977 rdev_err(rdev, "failed to set load %d: %pe\n",
978 current_uA, ERR_PTR(err));
979 } else {
980 /*
981 * Unfortunately in some cases the constraints->valid_ops has
982 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
983 * That's not really legit but we won't consider it a fatal
984 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
985 * wasn't set.
986 */
987 if (!rdev->constraints->valid_modes_mask) {
988 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
989 return 0;
990 }
991
992 /* get output voltage */
993 output_uV = regulator_get_voltage_rdev(rdev);
994
995 /*
996 * Don't return an error; if regulator driver cares about
997 * output_uV then it's up to the driver to validate.
998 */
999 if (output_uV <= 0)
1000 rdev_dbg(rdev, "invalid output voltage found\n");
1001
1002 /* get input voltage */
1003 input_uV = 0;
1004 if (rdev->supply)
1005 input_uV = regulator_get_voltage(rdev->supply);
1006 if (input_uV <= 0)
1007 input_uV = rdev->constraints->input_uV;
1008
1009 /*
1010 * Don't return an error; if regulator driver cares about
1011 * input_uV then it's up to the driver to validate.
1012 */
1013 if (input_uV <= 0)
1014 rdev_dbg(rdev, "invalid input voltage found\n");
1015
1016 /* now get the optimum mode for our new total regulator load */
1017 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1018 output_uV, current_uA);
1019
1020 /* check the new mode is allowed */
1021 err = regulator_mode_constrain(rdev, &mode);
1022 if (err < 0) {
1023 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1024 current_uA, input_uV, output_uV, ERR_PTR(err));
1025 return err;
1026 }
1027
1028 err = rdev->desc->ops->set_mode(rdev, mode);
1029 if (err < 0)
1030 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1031 mode, ERR_PTR(err));
1032 }
1033
1034 return err;
1035}
1036
1037static int __suspend_set_state(struct regulator_dev *rdev,
1038 const struct regulator_state *rstate)
1039{
1040 int ret = 0;
1041
1042 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1043 rdev->desc->ops->set_suspend_enable)
1044 ret = rdev->desc->ops->set_suspend_enable(rdev);
1045 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1046 rdev->desc->ops->set_suspend_disable)
1047 ret = rdev->desc->ops->set_suspend_disable(rdev);
1048 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1049 ret = 0;
1050
1051 if (ret < 0) {
1052 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1053 return ret;
1054 }
1055
1056 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1057 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1058 if (ret < 0) {
1059 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1060 return ret;
1061 }
1062 }
1063
1064 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1065 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1066 if (ret < 0) {
1067 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1068 return ret;
1069 }
1070 }
1071
1072 return ret;
1073}
1074
1075static int suspend_set_initial_state(struct regulator_dev *rdev)
1076{
1077 const struct regulator_state *rstate;
1078
1079 rstate = regulator_get_suspend_state_check(rdev,
1080 rdev->constraints->initial_state);
1081 if (!rstate)
1082 return 0;
1083
1084 return __suspend_set_state(rdev, rstate);
1085}
1086
1087#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1088static void print_constraints_debug(struct regulator_dev *rdev)
1089{
1090 struct regulation_constraints *constraints = rdev->constraints;
1091 char buf[160] = "";
1092 size_t len = sizeof(buf) - 1;
1093 int count = 0;
1094 int ret;
1095
1096 if (constraints->min_uV && constraints->max_uV) {
1097 if (constraints->min_uV == constraints->max_uV)
1098 count += scnprintf(buf + count, len - count, "%d mV ",
1099 constraints->min_uV / 1000);
1100 else
1101 count += scnprintf(buf + count, len - count,
1102 "%d <--> %d mV ",
1103 constraints->min_uV / 1000,
1104 constraints->max_uV / 1000);
1105 }
1106
1107 if (!constraints->min_uV ||
1108 constraints->min_uV != constraints->max_uV) {
1109 ret = regulator_get_voltage_rdev(rdev);
1110 if (ret > 0)
1111 count += scnprintf(buf + count, len - count,
1112 "at %d mV ", ret / 1000);
1113 }
1114
1115 if (constraints->uV_offset)
1116 count += scnprintf(buf + count, len - count, "%dmV offset ",
1117 constraints->uV_offset / 1000);
1118
1119 if (constraints->min_uA && constraints->max_uA) {
1120 if (constraints->min_uA == constraints->max_uA)
1121 count += scnprintf(buf + count, len - count, "%d mA ",
1122 constraints->min_uA / 1000);
1123 else
1124 count += scnprintf(buf + count, len - count,
1125 "%d <--> %d mA ",
1126 constraints->min_uA / 1000,
1127 constraints->max_uA / 1000);
1128 }
1129
1130 if (!constraints->min_uA ||
1131 constraints->min_uA != constraints->max_uA) {
1132 ret = _regulator_get_current_limit(rdev);
1133 if (ret > 0)
1134 count += scnprintf(buf + count, len - count,
1135 "at %d mA ", ret / 1000);
1136 }
1137
1138 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1139 count += scnprintf(buf + count, len - count, "fast ");
1140 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1141 count += scnprintf(buf + count, len - count, "normal ");
1142 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1143 count += scnprintf(buf + count, len - count, "idle ");
1144 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1145 count += scnprintf(buf + count, len - count, "standby ");
1146
1147 if (!count)
1148 count = scnprintf(buf, len, "no parameters");
1149 else
1150 --count;
1151
1152 count += scnprintf(buf + count, len - count, ", %s",
1153 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1154
1155 rdev_dbg(rdev, "%s\n", buf);
1156}
1157#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1158static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1159#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1160
1161static void print_constraints(struct regulator_dev *rdev)
1162{
1163 struct regulation_constraints *constraints = rdev->constraints;
1164
1165 print_constraints_debug(rdev);
1166
1167 if ((constraints->min_uV != constraints->max_uV) &&
1168 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1169 rdev_warn(rdev,
1170 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1171}
1172
1173static int machine_constraints_voltage(struct regulator_dev *rdev,
1174 struct regulation_constraints *constraints)
1175{
1176 const struct regulator_ops *ops = rdev->desc->ops;
1177 int ret;
1178
1179 /* do we need to apply the constraint voltage */
1180 if (rdev->constraints->apply_uV &&
1181 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1182 int target_min, target_max;
1183 int current_uV = regulator_get_voltage_rdev(rdev);
1184
1185 if (current_uV == -ENOTRECOVERABLE) {
1186 /* This regulator can't be read and must be initialized */
1187 rdev_info(rdev, "Setting %d-%duV\n",
1188 rdev->constraints->min_uV,
1189 rdev->constraints->max_uV);
1190 _regulator_do_set_voltage(rdev,
1191 rdev->constraints->min_uV,
1192 rdev->constraints->max_uV);
1193 current_uV = regulator_get_voltage_rdev(rdev);
1194 }
1195
1196 if (current_uV < 0) {
1197 if (current_uV != -EPROBE_DEFER)
1198 rdev_err(rdev,
1199 "failed to get the current voltage: %pe\n",
1200 ERR_PTR(current_uV));
1201 return current_uV;
1202 }
1203
1204 /*
1205 * If we're below the minimum voltage move up to the
1206 * minimum voltage, if we're above the maximum voltage
1207 * then move down to the maximum.
1208 */
1209 target_min = current_uV;
1210 target_max = current_uV;
1211
1212 if (current_uV < rdev->constraints->min_uV) {
1213 target_min = rdev->constraints->min_uV;
1214 target_max = rdev->constraints->min_uV;
1215 }
1216
1217 if (current_uV > rdev->constraints->max_uV) {
1218 target_min = rdev->constraints->max_uV;
1219 target_max = rdev->constraints->max_uV;
1220 }
1221
1222 if (target_min != current_uV || target_max != current_uV) {
1223 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1224 current_uV, target_min, target_max);
1225 ret = _regulator_do_set_voltage(
1226 rdev, target_min, target_max);
1227 if (ret < 0) {
1228 rdev_err(rdev,
1229 "failed to apply %d-%duV constraint: %pe\n",
1230 target_min, target_max, ERR_PTR(ret));
1231 return ret;
1232 }
1233 }
1234 }
1235
1236 /* constrain machine-level voltage specs to fit
1237 * the actual range supported by this regulator.
1238 */
1239 if (ops->list_voltage && rdev->desc->n_voltages) {
1240 int count = rdev->desc->n_voltages;
1241 int i;
1242 int min_uV = INT_MAX;
1243 int max_uV = INT_MIN;
1244 int cmin = constraints->min_uV;
1245 int cmax = constraints->max_uV;
1246
1247 /* it's safe to autoconfigure fixed-voltage supplies
1248 * and the constraints are used by list_voltage.
1249 */
1250 if (count == 1 && !cmin) {
1251 cmin = 1;
1252 cmax = INT_MAX;
1253 constraints->min_uV = cmin;
1254 constraints->max_uV = cmax;
1255 }
1256
1257 /* voltage constraints are optional */
1258 if ((cmin == 0) && (cmax == 0))
1259 return 0;
1260
1261 /* else require explicit machine-level constraints */
1262 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1263 rdev_err(rdev, "invalid voltage constraints\n");
1264 return -EINVAL;
1265 }
1266
1267 /* no need to loop voltages if range is continuous */
1268 if (rdev->desc->continuous_voltage_range)
1269 return 0;
1270
1271 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1272 for (i = 0; i < count; i++) {
1273 int value;
1274
1275 value = ops->list_voltage(rdev, i);
1276 if (value <= 0)
1277 continue;
1278
1279 /* maybe adjust [min_uV..max_uV] */
1280 if (value >= cmin && value < min_uV)
1281 min_uV = value;
1282 if (value <= cmax && value > max_uV)
1283 max_uV = value;
1284 }
1285
1286 /* final: [min_uV..max_uV] valid iff constraints valid */
1287 if (max_uV < min_uV) {
1288 rdev_err(rdev,
1289 "unsupportable voltage constraints %u-%uuV\n",
1290 min_uV, max_uV);
1291 return -EINVAL;
1292 }
1293
1294 /* use regulator's subset of machine constraints */
1295 if (constraints->min_uV < min_uV) {
1296 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1297 constraints->min_uV, min_uV);
1298 constraints->min_uV = min_uV;
1299 }
1300 if (constraints->max_uV > max_uV) {
1301 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1302 constraints->max_uV, max_uV);
1303 constraints->max_uV = max_uV;
1304 }
1305 }
1306
1307 return 0;
1308}
1309
1310static int machine_constraints_current(struct regulator_dev *rdev,
1311 struct regulation_constraints *constraints)
1312{
1313 const struct regulator_ops *ops = rdev->desc->ops;
1314 int ret;
1315
1316 if (!constraints->min_uA && !constraints->max_uA)
1317 return 0;
1318
1319 if (constraints->min_uA > constraints->max_uA) {
1320 rdev_err(rdev, "Invalid current constraints\n");
1321 return -EINVAL;
1322 }
1323
1324 if (!ops->set_current_limit || !ops->get_current_limit) {
1325 rdev_warn(rdev, "Operation of current configuration missing\n");
1326 return 0;
1327 }
1328
1329 /* Set regulator current in constraints range */
1330 ret = ops->set_current_limit(rdev, constraints->min_uA,
1331 constraints->max_uA);
1332 if (ret < 0) {
1333 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1334 return ret;
1335 }
1336
1337 return 0;
1338}
1339
1340static int _regulator_do_enable(struct regulator_dev *rdev);
1341
1342static int notif_set_limit(struct regulator_dev *rdev,
1343 int (*set)(struct regulator_dev *, int, int, bool),
1344 int limit, int severity)
1345{
1346 bool enable;
1347
1348 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1349 enable = false;
1350 limit = 0;
1351 } else {
1352 enable = true;
1353 }
1354
1355 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1356 limit = 0;
1357
1358 return set(rdev, limit, severity, enable);
1359}
1360
1361static int handle_notify_limits(struct regulator_dev *rdev,
1362 int (*set)(struct regulator_dev *, int, int, bool),
1363 struct notification_limit *limits)
1364{
1365 int ret = 0;
1366
1367 if (!set)
1368 return -EOPNOTSUPP;
1369
1370 if (limits->prot)
1371 ret = notif_set_limit(rdev, set, limits->prot,
1372 REGULATOR_SEVERITY_PROT);
1373 if (ret)
1374 return ret;
1375
1376 if (limits->err)
1377 ret = notif_set_limit(rdev, set, limits->err,
1378 REGULATOR_SEVERITY_ERR);
1379 if (ret)
1380 return ret;
1381
1382 if (limits->warn)
1383 ret = notif_set_limit(rdev, set, limits->warn,
1384 REGULATOR_SEVERITY_WARN);
1385
1386 return ret;
1387}
1388/**
1389 * set_machine_constraints - sets regulator constraints
1390 * @rdev: regulator source
1391 *
1392 * Allows platform initialisation code to define and constrain
1393 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1394 * Constraints *must* be set by platform code in order for some
1395 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1396 * set_mode.
1397 */
1398static int set_machine_constraints(struct regulator_dev *rdev)
1399{
1400 int ret = 0;
1401 const struct regulator_ops *ops = rdev->desc->ops;
1402
1403 ret = machine_constraints_voltage(rdev, rdev->constraints);
1404 if (ret != 0)
1405 return ret;
1406
1407 ret = machine_constraints_current(rdev, rdev->constraints);
1408 if (ret != 0)
1409 return ret;
1410
1411 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1412 ret = ops->set_input_current_limit(rdev,
1413 rdev->constraints->ilim_uA);
1414 if (ret < 0) {
1415 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1416 return ret;
1417 }
1418 }
1419
1420 /* do we need to setup our suspend state */
1421 if (rdev->constraints->initial_state) {
1422 ret = suspend_set_initial_state(rdev);
1423 if (ret < 0) {
1424 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1425 return ret;
1426 }
1427 }
1428
1429 if (rdev->constraints->initial_mode) {
1430 if (!ops->set_mode) {
1431 rdev_err(rdev, "no set_mode operation\n");
1432 return -EINVAL;
1433 }
1434
1435 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1436 if (ret < 0) {
1437 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1438 return ret;
1439 }
1440 } else if (rdev->constraints->system_load) {
1441 /*
1442 * We'll only apply the initial system load if an
1443 * initial mode wasn't specified.
1444 */
1445 drms_uA_update(rdev);
1446 }
1447
1448 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1449 && ops->set_ramp_delay) {
1450 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1451 if (ret < 0) {
1452 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1453 return ret;
1454 }
1455 }
1456
1457 if (rdev->constraints->pull_down && ops->set_pull_down) {
1458 ret = ops->set_pull_down(rdev);
1459 if (ret < 0) {
1460 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1461 return ret;
1462 }
1463 }
1464
1465 if (rdev->constraints->soft_start && ops->set_soft_start) {
1466 ret = ops->set_soft_start(rdev);
1467 if (ret < 0) {
1468 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1469 return ret;
1470 }
1471 }
1472
1473 /*
1474 * Existing logic does not warn if over_current_protection is given as
1475 * a constraint but driver does not support that. I think we should
1476 * warn about this type of issues as it is possible someone changes
1477 * PMIC on board to another type - and the another PMIC's driver does
1478 * not support setting protection. Board composer may happily believe
1479 * the DT limits are respected - especially if the new PMIC HW also
1480 * supports protection but the driver does not. I won't change the logic
1481 * without hearing more experienced opinion on this though.
1482 *
1483 * If warning is seen as a good idea then we can merge handling the
1484 * over-curret protection and detection and get rid of this special
1485 * handling.
1486 */
1487 if (rdev->constraints->over_current_protection
1488 && ops->set_over_current_protection) {
1489 int lim = rdev->constraints->over_curr_limits.prot;
1490
1491 ret = ops->set_over_current_protection(rdev, lim,
1492 REGULATOR_SEVERITY_PROT,
1493 true);
1494 if (ret < 0) {
1495 rdev_err(rdev, "failed to set over current protection: %pe\n",
1496 ERR_PTR(ret));
1497 return ret;
1498 }
1499 }
1500
1501 if (rdev->constraints->over_current_detection)
1502 ret = handle_notify_limits(rdev,
1503 ops->set_over_current_protection,
1504 &rdev->constraints->over_curr_limits);
1505 if (ret) {
1506 if (ret != -EOPNOTSUPP) {
1507 rdev_err(rdev, "failed to set over current limits: %pe\n",
1508 ERR_PTR(ret));
1509 return ret;
1510 }
1511 rdev_warn(rdev,
1512 "IC does not support requested over-current limits\n");
1513 }
1514
1515 if (rdev->constraints->over_voltage_detection)
1516 ret = handle_notify_limits(rdev,
1517 ops->set_over_voltage_protection,
1518 &rdev->constraints->over_voltage_limits);
1519 if (ret) {
1520 if (ret != -EOPNOTSUPP) {
1521 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1522 ERR_PTR(ret));
1523 return ret;
1524 }
1525 rdev_warn(rdev,
1526 "IC does not support requested over voltage limits\n");
1527 }
1528
1529 if (rdev->constraints->under_voltage_detection)
1530 ret = handle_notify_limits(rdev,
1531 ops->set_under_voltage_protection,
1532 &rdev->constraints->under_voltage_limits);
1533 if (ret) {
1534 if (ret != -EOPNOTSUPP) {
1535 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1536 ERR_PTR(ret));
1537 return ret;
1538 }
1539 rdev_warn(rdev,
1540 "IC does not support requested under voltage limits\n");
1541 }
1542
1543 if (rdev->constraints->over_temp_detection)
1544 ret = handle_notify_limits(rdev,
1545 ops->set_thermal_protection,
1546 &rdev->constraints->temp_limits);
1547 if (ret) {
1548 if (ret != -EOPNOTSUPP) {
1549 rdev_err(rdev, "failed to set temperature limits %pe\n",
1550 ERR_PTR(ret));
1551 return ret;
1552 }
1553 rdev_warn(rdev,
1554 "IC does not support requested temperature limits\n");
1555 }
1556
1557 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1558 bool ad_state = (rdev->constraints->active_discharge ==
1559 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1560
1561 ret = ops->set_active_discharge(rdev, ad_state);
1562 if (ret < 0) {
1563 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1564 return ret;
1565 }
1566 }
1567
1568 /*
1569 * If there is no mechanism for controlling the regulator then
1570 * flag it as always_on so we don't end up duplicating checks
1571 * for this so much. Note that we could control the state of
1572 * a supply to control the output on a regulator that has no
1573 * direct control.
1574 */
1575 if (!rdev->ena_pin && !ops->enable) {
1576 if (rdev->supply_name && !rdev->supply)
1577 return -EPROBE_DEFER;
1578
1579 if (rdev->supply)
1580 rdev->constraints->always_on =
1581 rdev->supply->rdev->constraints->always_on;
1582 else
1583 rdev->constraints->always_on = true;
1584 }
1585
1586 if (rdev->desc->off_on_delay)
1587 rdev->last_off = ktime_get();
1588
1589 /* If the constraints say the regulator should be on at this point
1590 * and we have control then make sure it is enabled.
1591 */
1592 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1593 /* If we want to enable this regulator, make sure that we know
1594 * the supplying regulator.
1595 */
1596 if (rdev->supply_name && !rdev->supply)
1597 return -EPROBE_DEFER;
1598
1599 if (rdev->supply) {
1600 ret = regulator_enable(rdev->supply);
1601 if (ret < 0) {
1602 _regulator_put(rdev->supply);
1603 rdev->supply = NULL;
1604 return ret;
1605 }
1606 }
1607
1608 ret = _regulator_do_enable(rdev);
1609 if (ret < 0 && ret != -EINVAL) {
1610 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1611 return ret;
1612 }
1613
1614 if (rdev->constraints->always_on)
1615 rdev->use_count++;
1616 }
1617
1618 print_constraints(rdev);
1619 return 0;
1620}
1621
1622/**
1623 * set_supply - set regulator supply regulator
1624 * @rdev: regulator name
1625 * @supply_rdev: supply regulator name
1626 *
1627 * Called by platform initialisation code to set the supply regulator for this
1628 * regulator. This ensures that a regulators supply will also be enabled by the
1629 * core if it's child is enabled.
1630 */
1631static int set_supply(struct regulator_dev *rdev,
1632 struct regulator_dev *supply_rdev)
1633{
1634 int err;
1635
1636 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1637
1638 if (!try_module_get(supply_rdev->owner))
1639 return -ENODEV;
1640
1641 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1642 if (rdev->supply == NULL) {
1643 err = -ENOMEM;
1644 return err;
1645 }
1646 supply_rdev->open_count++;
1647
1648 return 0;
1649}
1650
1651/**
1652 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1653 * @rdev: regulator source
1654 * @consumer_dev_name: dev_name() string for device supply applies to
1655 * @supply: symbolic name for supply
1656 *
1657 * Allows platform initialisation code to map physical regulator
1658 * sources to symbolic names for supplies for use by devices. Devices
1659 * should use these symbolic names to request regulators, avoiding the
1660 * need to provide board-specific regulator names as platform data.
1661 */
1662static int set_consumer_device_supply(struct regulator_dev *rdev,
1663 const char *consumer_dev_name,
1664 const char *supply)
1665{
1666 struct regulator_map *node, *new_node;
1667 int has_dev;
1668
1669 if (supply == NULL)
1670 return -EINVAL;
1671
1672 if (consumer_dev_name != NULL)
1673 has_dev = 1;
1674 else
1675 has_dev = 0;
1676
1677 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1678 if (new_node == NULL)
1679 return -ENOMEM;
1680
1681 new_node->regulator = rdev;
1682 new_node->supply = supply;
1683
1684 if (has_dev) {
1685 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1686 if (new_node->dev_name == NULL) {
1687 kfree(new_node);
1688 return -ENOMEM;
1689 }
1690 }
1691
1692 mutex_lock(®ulator_list_mutex);
1693 list_for_each_entry(node, ®ulator_map_list, list) {
1694 if (node->dev_name && consumer_dev_name) {
1695 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1696 continue;
1697 } else if (node->dev_name || consumer_dev_name) {
1698 continue;
1699 }
1700
1701 if (strcmp(node->supply, supply) != 0)
1702 continue;
1703
1704 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1705 consumer_dev_name,
1706 dev_name(&node->regulator->dev),
1707 node->regulator->desc->name,
1708 supply,
1709 dev_name(&rdev->dev), rdev_get_name(rdev));
1710 goto fail;
1711 }
1712
1713 list_add(&new_node->list, ®ulator_map_list);
1714 mutex_unlock(®ulator_list_mutex);
1715
1716 return 0;
1717
1718fail:
1719 mutex_unlock(®ulator_list_mutex);
1720 kfree(new_node->dev_name);
1721 kfree(new_node);
1722 return -EBUSY;
1723}
1724
1725static void unset_regulator_supplies(struct regulator_dev *rdev)
1726{
1727 struct regulator_map *node, *n;
1728
1729 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1730 if (rdev == node->regulator) {
1731 list_del(&node->list);
1732 kfree(node->dev_name);
1733 kfree(node);
1734 }
1735 }
1736}
1737
1738#ifdef CONFIG_DEBUG_FS
1739static ssize_t constraint_flags_read_file(struct file *file,
1740 char __user *user_buf,
1741 size_t count, loff_t *ppos)
1742{
1743 const struct regulator *regulator = file->private_data;
1744 const struct regulation_constraints *c = regulator->rdev->constraints;
1745 char *buf;
1746 ssize_t ret;
1747
1748 if (!c)
1749 return 0;
1750
1751 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1752 if (!buf)
1753 return -ENOMEM;
1754
1755 ret = snprintf(buf, PAGE_SIZE,
1756 "always_on: %u\n"
1757 "boot_on: %u\n"
1758 "apply_uV: %u\n"
1759 "ramp_disable: %u\n"
1760 "soft_start: %u\n"
1761 "pull_down: %u\n"
1762 "over_current_protection: %u\n",
1763 c->always_on,
1764 c->boot_on,
1765 c->apply_uV,
1766 c->ramp_disable,
1767 c->soft_start,
1768 c->pull_down,
1769 c->over_current_protection);
1770
1771 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1772 kfree(buf);
1773
1774 return ret;
1775}
1776
1777#endif
1778
1779static const struct file_operations constraint_flags_fops = {
1780#ifdef CONFIG_DEBUG_FS
1781 .open = simple_open,
1782 .read = constraint_flags_read_file,
1783 .llseek = default_llseek,
1784#endif
1785};
1786
1787#define REG_STR_SIZE 64
1788
1789static struct regulator *create_regulator(struct regulator_dev *rdev,
1790 struct device *dev,
1791 const char *supply_name)
1792{
1793 struct regulator *regulator;
1794 int err = 0;
1795
1796 if (dev) {
1797 char buf[REG_STR_SIZE];
1798 int size;
1799
1800 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1801 dev->kobj.name, supply_name);
1802 if (size >= REG_STR_SIZE)
1803 return NULL;
1804
1805 supply_name = kstrdup(buf, GFP_KERNEL);
1806 if (supply_name == NULL)
1807 return NULL;
1808 } else {
1809 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1810 if (supply_name == NULL)
1811 return NULL;
1812 }
1813
1814 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1815 if (regulator == NULL) {
1816 kfree(supply_name);
1817 return NULL;
1818 }
1819
1820 regulator->rdev = rdev;
1821 regulator->supply_name = supply_name;
1822
1823 regulator_lock(rdev);
1824 list_add(®ulator->list, &rdev->consumer_list);
1825 regulator_unlock(rdev);
1826
1827 if (dev) {
1828 regulator->dev = dev;
1829
1830 /* Add a link to the device sysfs entry */
1831 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1832 supply_name);
1833 if (err) {
1834 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1835 dev->kobj.name, ERR_PTR(err));
1836 /* non-fatal */
1837 }
1838 }
1839
1840 if (err != -EEXIST)
1841 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1842 if (!regulator->debugfs) {
1843 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1844 } else {
1845 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1846 ®ulator->uA_load);
1847 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1848 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1849 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1850 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1851 debugfs_create_file("constraint_flags", 0444,
1852 regulator->debugfs, regulator,
1853 &constraint_flags_fops);
1854 }
1855
1856 /*
1857 * Check now if the regulator is an always on regulator - if
1858 * it is then we don't need to do nearly so much work for
1859 * enable/disable calls.
1860 */
1861 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1862 _regulator_is_enabled(rdev))
1863 regulator->always_on = true;
1864
1865 return regulator;
1866}
1867
1868static int _regulator_get_enable_time(struct regulator_dev *rdev)
1869{
1870 if (rdev->constraints && rdev->constraints->enable_time)
1871 return rdev->constraints->enable_time;
1872 if (rdev->desc->ops->enable_time)
1873 return rdev->desc->ops->enable_time(rdev);
1874 return rdev->desc->enable_time;
1875}
1876
1877static struct regulator_supply_alias *regulator_find_supply_alias(
1878 struct device *dev, const char *supply)
1879{
1880 struct regulator_supply_alias *map;
1881
1882 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1883 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1884 return map;
1885
1886 return NULL;
1887}
1888
1889static void regulator_supply_alias(struct device **dev, const char **supply)
1890{
1891 struct regulator_supply_alias *map;
1892
1893 map = regulator_find_supply_alias(*dev, *supply);
1894 if (map) {
1895 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1896 *supply, map->alias_supply,
1897 dev_name(map->alias_dev));
1898 *dev = map->alias_dev;
1899 *supply = map->alias_supply;
1900 }
1901}
1902
1903static int regulator_match(struct device *dev, const void *data)
1904{
1905 struct regulator_dev *r = dev_to_rdev(dev);
1906
1907 return strcmp(rdev_get_name(r), data) == 0;
1908}
1909
1910static struct regulator_dev *regulator_lookup_by_name(const char *name)
1911{
1912 struct device *dev;
1913
1914 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1915
1916 return dev ? dev_to_rdev(dev) : NULL;
1917}
1918
1919/**
1920 * regulator_dev_lookup - lookup a regulator device.
1921 * @dev: device for regulator "consumer".
1922 * @supply: Supply name or regulator ID.
1923 *
1924 * If successful, returns a struct regulator_dev that corresponds to the name
1925 * @supply and with the embedded struct device refcount incremented by one.
1926 * The refcount must be dropped by calling put_device().
1927 * On failure one of the following ERR-PTR-encoded values is returned:
1928 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1929 * in the future.
1930 */
1931static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1932 const char *supply)
1933{
1934 struct regulator_dev *r = NULL;
1935 struct device_node *node;
1936 struct regulator_map *map;
1937 const char *devname = NULL;
1938
1939 regulator_supply_alias(&dev, &supply);
1940
1941 /* first do a dt based lookup */
1942 if (dev && dev->of_node) {
1943 node = of_get_regulator(dev, supply);
1944 if (node) {
1945 r = of_find_regulator_by_node(node);
1946 if (r)
1947 return r;
1948
1949 /*
1950 * We have a node, but there is no device.
1951 * assume it has not registered yet.
1952 */
1953 return ERR_PTR(-EPROBE_DEFER);
1954 }
1955 }
1956
1957 /* if not found, try doing it non-dt way */
1958 if (dev)
1959 devname = dev_name(dev);
1960
1961 mutex_lock(®ulator_list_mutex);
1962 list_for_each_entry(map, ®ulator_map_list, list) {
1963 /* If the mapping has a device set up it must match */
1964 if (map->dev_name &&
1965 (!devname || strcmp(map->dev_name, devname)))
1966 continue;
1967
1968 if (strcmp(map->supply, supply) == 0 &&
1969 get_device(&map->regulator->dev)) {
1970 r = map->regulator;
1971 break;
1972 }
1973 }
1974 mutex_unlock(®ulator_list_mutex);
1975
1976 if (r)
1977 return r;
1978
1979 r = regulator_lookup_by_name(supply);
1980 if (r)
1981 return r;
1982
1983 return ERR_PTR(-ENODEV);
1984}
1985
1986static int regulator_resolve_supply(struct regulator_dev *rdev)
1987{
1988 struct regulator_dev *r;
1989 struct device *dev = rdev->dev.parent;
1990 int ret = 0;
1991
1992 /* No supply to resolve? */
1993 if (!rdev->supply_name)
1994 return 0;
1995
1996 /* Supply already resolved? (fast-path without locking contention) */
1997 if (rdev->supply)
1998 return 0;
1999
2000 r = regulator_dev_lookup(dev, rdev->supply_name);
2001 if (IS_ERR(r)) {
2002 ret = PTR_ERR(r);
2003
2004 /* Did the lookup explicitly defer for us? */
2005 if (ret == -EPROBE_DEFER)
2006 goto out;
2007
2008 if (have_full_constraints()) {
2009 r = dummy_regulator_rdev;
2010 get_device(&r->dev);
2011 } else {
2012 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2013 rdev->supply_name, rdev->desc->name);
2014 ret = -EPROBE_DEFER;
2015 goto out;
2016 }
2017 }
2018
2019 if (r == rdev) {
2020 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2021 rdev->desc->name, rdev->supply_name);
2022 if (!have_full_constraints()) {
2023 ret = -EINVAL;
2024 goto out;
2025 }
2026 r = dummy_regulator_rdev;
2027 get_device(&r->dev);
2028 }
2029
2030 /*
2031 * If the supply's parent device is not the same as the
2032 * regulator's parent device, then ensure the parent device
2033 * is bound before we resolve the supply, in case the parent
2034 * device get probe deferred and unregisters the supply.
2035 */
2036 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2037 if (!device_is_bound(r->dev.parent)) {
2038 put_device(&r->dev);
2039 ret = -EPROBE_DEFER;
2040 goto out;
2041 }
2042 }
2043
2044 /* Recursively resolve the supply of the supply */
2045 ret = regulator_resolve_supply(r);
2046 if (ret < 0) {
2047 put_device(&r->dev);
2048 goto out;
2049 }
2050
2051 /*
2052 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2053 * between rdev->supply null check and setting rdev->supply in
2054 * set_supply() from concurrent tasks.
2055 */
2056 regulator_lock(rdev);
2057
2058 /* Supply just resolved by a concurrent task? */
2059 if (rdev->supply) {
2060 regulator_unlock(rdev);
2061 put_device(&r->dev);
2062 goto out;
2063 }
2064
2065 ret = set_supply(rdev, r);
2066 if (ret < 0) {
2067 regulator_unlock(rdev);
2068 put_device(&r->dev);
2069 goto out;
2070 }
2071
2072 regulator_unlock(rdev);
2073
2074 /*
2075 * In set_machine_constraints() we may have turned this regulator on
2076 * but we couldn't propagate to the supply if it hadn't been resolved
2077 * yet. Do it now.
2078 */
2079 if (rdev->use_count) {
2080 ret = regulator_enable(rdev->supply);
2081 if (ret < 0) {
2082 _regulator_put(rdev->supply);
2083 rdev->supply = NULL;
2084 goto out;
2085 }
2086 }
2087
2088out:
2089 return ret;
2090}
2091
2092/* Internal regulator request function */
2093struct regulator *_regulator_get(struct device *dev, const char *id,
2094 enum regulator_get_type get_type)
2095{
2096 struct regulator_dev *rdev;
2097 struct regulator *regulator;
2098 struct device_link *link;
2099 int ret;
2100
2101 if (get_type >= MAX_GET_TYPE) {
2102 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2103 return ERR_PTR(-EINVAL);
2104 }
2105
2106 if (id == NULL) {
2107 pr_err("get() with no identifier\n");
2108 return ERR_PTR(-EINVAL);
2109 }
2110
2111 rdev = regulator_dev_lookup(dev, id);
2112 if (IS_ERR(rdev)) {
2113 ret = PTR_ERR(rdev);
2114
2115 /*
2116 * If regulator_dev_lookup() fails with error other
2117 * than -ENODEV our job here is done, we simply return it.
2118 */
2119 if (ret != -ENODEV)
2120 return ERR_PTR(ret);
2121
2122 if (!have_full_constraints()) {
2123 dev_warn(dev,
2124 "incomplete constraints, dummy supplies not allowed\n");
2125 return ERR_PTR(-ENODEV);
2126 }
2127
2128 switch (get_type) {
2129 case NORMAL_GET:
2130 /*
2131 * Assume that a regulator is physically present and
2132 * enabled, even if it isn't hooked up, and just
2133 * provide a dummy.
2134 */
2135 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2136 rdev = dummy_regulator_rdev;
2137 get_device(&rdev->dev);
2138 break;
2139
2140 case EXCLUSIVE_GET:
2141 dev_warn(dev,
2142 "dummy supplies not allowed for exclusive requests\n");
2143 fallthrough;
2144
2145 default:
2146 return ERR_PTR(-ENODEV);
2147 }
2148 }
2149
2150 if (rdev->exclusive) {
2151 regulator = ERR_PTR(-EPERM);
2152 put_device(&rdev->dev);
2153 return regulator;
2154 }
2155
2156 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2157 regulator = ERR_PTR(-EBUSY);
2158 put_device(&rdev->dev);
2159 return regulator;
2160 }
2161
2162 mutex_lock(®ulator_list_mutex);
2163 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2164 mutex_unlock(®ulator_list_mutex);
2165
2166 if (ret != 0) {
2167 regulator = ERR_PTR(-EPROBE_DEFER);
2168 put_device(&rdev->dev);
2169 return regulator;
2170 }
2171
2172 ret = regulator_resolve_supply(rdev);
2173 if (ret < 0) {
2174 regulator = ERR_PTR(ret);
2175 put_device(&rdev->dev);
2176 return regulator;
2177 }
2178
2179 if (!try_module_get(rdev->owner)) {
2180 regulator = ERR_PTR(-EPROBE_DEFER);
2181 put_device(&rdev->dev);
2182 return regulator;
2183 }
2184
2185 regulator = create_regulator(rdev, dev, id);
2186 if (regulator == NULL) {
2187 regulator = ERR_PTR(-ENOMEM);
2188 module_put(rdev->owner);
2189 put_device(&rdev->dev);
2190 return regulator;
2191 }
2192
2193 rdev->open_count++;
2194 if (get_type == EXCLUSIVE_GET) {
2195 rdev->exclusive = 1;
2196
2197 ret = _regulator_is_enabled(rdev);
2198 if (ret > 0) {
2199 rdev->use_count = 1;
2200 regulator->enable_count = 1;
2201 } else {
2202 rdev->use_count = 0;
2203 regulator->enable_count = 0;
2204 }
2205 }
2206
2207 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2208 if (!IS_ERR_OR_NULL(link))
2209 regulator->device_link = true;
2210
2211 return regulator;
2212}
2213
2214/**
2215 * regulator_get - lookup and obtain a reference to a regulator.
2216 * @dev: device for regulator "consumer"
2217 * @id: Supply name or regulator ID.
2218 *
2219 * Returns a struct regulator corresponding to the regulator producer,
2220 * or IS_ERR() condition containing errno.
2221 *
2222 * Use of supply names configured via set_consumer_device_supply() is
2223 * strongly encouraged. It is recommended that the supply name used
2224 * should match the name used for the supply and/or the relevant
2225 * device pins in the datasheet.
2226 */
2227struct regulator *regulator_get(struct device *dev, const char *id)
2228{
2229 return _regulator_get(dev, id, NORMAL_GET);
2230}
2231EXPORT_SYMBOL_GPL(regulator_get);
2232
2233/**
2234 * regulator_get_exclusive - obtain exclusive access to a regulator.
2235 * @dev: device for regulator "consumer"
2236 * @id: Supply name or regulator ID.
2237 *
2238 * Returns a struct regulator corresponding to the regulator producer,
2239 * or IS_ERR() condition containing errno. Other consumers will be
2240 * unable to obtain this regulator while this reference is held and the
2241 * use count for the regulator will be initialised to reflect the current
2242 * state of the regulator.
2243 *
2244 * This is intended for use by consumers which cannot tolerate shared
2245 * use of the regulator such as those which need to force the
2246 * regulator off for correct operation of the hardware they are
2247 * controlling.
2248 *
2249 * Use of supply names configured via set_consumer_device_supply() is
2250 * strongly encouraged. It is recommended that the supply name used
2251 * should match the name used for the supply and/or the relevant
2252 * device pins in the datasheet.
2253 */
2254struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2255{
2256 return _regulator_get(dev, id, EXCLUSIVE_GET);
2257}
2258EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2259
2260/**
2261 * regulator_get_optional - obtain optional access to a regulator.
2262 * @dev: device for regulator "consumer"
2263 * @id: Supply name or regulator ID.
2264 *
2265 * Returns a struct regulator corresponding to the regulator producer,
2266 * or IS_ERR() condition containing errno.
2267 *
2268 * This is intended for use by consumers for devices which can have
2269 * some supplies unconnected in normal use, such as some MMC devices.
2270 * It can allow the regulator core to provide stub supplies for other
2271 * supplies requested using normal regulator_get() calls without
2272 * disrupting the operation of drivers that can handle absent
2273 * supplies.
2274 *
2275 * Use of supply names configured via set_consumer_device_supply() is
2276 * strongly encouraged. It is recommended that the supply name used
2277 * should match the name used for the supply and/or the relevant
2278 * device pins in the datasheet.
2279 */
2280struct regulator *regulator_get_optional(struct device *dev, const char *id)
2281{
2282 return _regulator_get(dev, id, OPTIONAL_GET);
2283}
2284EXPORT_SYMBOL_GPL(regulator_get_optional);
2285
2286static void destroy_regulator(struct regulator *regulator)
2287{
2288 struct regulator_dev *rdev = regulator->rdev;
2289
2290 debugfs_remove_recursive(regulator->debugfs);
2291
2292 if (regulator->dev) {
2293 if (regulator->device_link)
2294 device_link_remove(regulator->dev, &rdev->dev);
2295
2296 /* remove any sysfs entries */
2297 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2298 }
2299
2300 regulator_lock(rdev);
2301 list_del(®ulator->list);
2302
2303 rdev->open_count--;
2304 rdev->exclusive = 0;
2305 regulator_unlock(rdev);
2306
2307 kfree_const(regulator->supply_name);
2308 kfree(regulator);
2309}
2310
2311/* regulator_list_mutex lock held by regulator_put() */
2312static void _regulator_put(struct regulator *regulator)
2313{
2314 struct regulator_dev *rdev;
2315
2316 if (IS_ERR_OR_NULL(regulator))
2317 return;
2318
2319 lockdep_assert_held_once(®ulator_list_mutex);
2320
2321 /* Docs say you must disable before calling regulator_put() */
2322 WARN_ON(regulator->enable_count);
2323
2324 rdev = regulator->rdev;
2325
2326 destroy_regulator(regulator);
2327
2328 module_put(rdev->owner);
2329 put_device(&rdev->dev);
2330}
2331
2332/**
2333 * regulator_put - "free" the regulator source
2334 * @regulator: regulator source
2335 *
2336 * Note: drivers must ensure that all regulator_enable calls made on this
2337 * regulator source are balanced by regulator_disable calls prior to calling
2338 * this function.
2339 */
2340void regulator_put(struct regulator *regulator)
2341{
2342 mutex_lock(®ulator_list_mutex);
2343 _regulator_put(regulator);
2344 mutex_unlock(®ulator_list_mutex);
2345}
2346EXPORT_SYMBOL_GPL(regulator_put);
2347
2348/**
2349 * regulator_register_supply_alias - Provide device alias for supply lookup
2350 *
2351 * @dev: device that will be given as the regulator "consumer"
2352 * @id: Supply name or regulator ID
2353 * @alias_dev: device that should be used to lookup the supply
2354 * @alias_id: Supply name or regulator ID that should be used to lookup the
2355 * supply
2356 *
2357 * All lookups for id on dev will instead be conducted for alias_id on
2358 * alias_dev.
2359 */
2360int regulator_register_supply_alias(struct device *dev, const char *id,
2361 struct device *alias_dev,
2362 const char *alias_id)
2363{
2364 struct regulator_supply_alias *map;
2365
2366 map = regulator_find_supply_alias(dev, id);
2367 if (map)
2368 return -EEXIST;
2369
2370 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2371 if (!map)
2372 return -ENOMEM;
2373
2374 map->src_dev = dev;
2375 map->src_supply = id;
2376 map->alias_dev = alias_dev;
2377 map->alias_supply = alias_id;
2378
2379 list_add(&map->list, ®ulator_supply_alias_list);
2380
2381 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2382 id, dev_name(dev), alias_id, dev_name(alias_dev));
2383
2384 return 0;
2385}
2386EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2387
2388/**
2389 * regulator_unregister_supply_alias - Remove device alias
2390 *
2391 * @dev: device that will be given as the regulator "consumer"
2392 * @id: Supply name or regulator ID
2393 *
2394 * Remove a lookup alias if one exists for id on dev.
2395 */
2396void regulator_unregister_supply_alias(struct device *dev, const char *id)
2397{
2398 struct regulator_supply_alias *map;
2399
2400 map = regulator_find_supply_alias(dev, id);
2401 if (map) {
2402 list_del(&map->list);
2403 kfree(map);
2404 }
2405}
2406EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2407
2408/**
2409 * regulator_bulk_register_supply_alias - register multiple aliases
2410 *
2411 * @dev: device that will be given as the regulator "consumer"
2412 * @id: List of supply names or regulator IDs
2413 * @alias_dev: device that should be used to lookup the supply
2414 * @alias_id: List of supply names or regulator IDs that should be used to
2415 * lookup the supply
2416 * @num_id: Number of aliases to register
2417 *
2418 * @return 0 on success, an errno on failure.
2419 *
2420 * This helper function allows drivers to register several supply
2421 * aliases in one operation. If any of the aliases cannot be
2422 * registered any aliases that were registered will be removed
2423 * before returning to the caller.
2424 */
2425int regulator_bulk_register_supply_alias(struct device *dev,
2426 const char *const *id,
2427 struct device *alias_dev,
2428 const char *const *alias_id,
2429 int num_id)
2430{
2431 int i;
2432 int ret;
2433
2434 for (i = 0; i < num_id; ++i) {
2435 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2436 alias_id[i]);
2437 if (ret < 0)
2438 goto err;
2439 }
2440
2441 return 0;
2442
2443err:
2444 dev_err(dev,
2445 "Failed to create supply alias %s,%s -> %s,%s\n",
2446 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2447
2448 while (--i >= 0)
2449 regulator_unregister_supply_alias(dev, id[i]);
2450
2451 return ret;
2452}
2453EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2454
2455/**
2456 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2457 *
2458 * @dev: device that will be given as the regulator "consumer"
2459 * @id: List of supply names or regulator IDs
2460 * @num_id: Number of aliases to unregister
2461 *
2462 * This helper function allows drivers to unregister several supply
2463 * aliases in one operation.
2464 */
2465void regulator_bulk_unregister_supply_alias(struct device *dev,
2466 const char *const *id,
2467 int num_id)
2468{
2469 int i;
2470
2471 for (i = 0; i < num_id; ++i)
2472 regulator_unregister_supply_alias(dev, id[i]);
2473}
2474EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2475
2476
2477/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2478static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2479 const struct regulator_config *config)
2480{
2481 struct regulator_enable_gpio *pin, *new_pin;
2482 struct gpio_desc *gpiod;
2483
2484 gpiod = config->ena_gpiod;
2485 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2486
2487 mutex_lock(®ulator_list_mutex);
2488
2489 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2490 if (pin->gpiod == gpiod) {
2491 rdev_dbg(rdev, "GPIO is already used\n");
2492 goto update_ena_gpio_to_rdev;
2493 }
2494 }
2495
2496 if (new_pin == NULL) {
2497 mutex_unlock(®ulator_list_mutex);
2498 return -ENOMEM;
2499 }
2500
2501 pin = new_pin;
2502 new_pin = NULL;
2503
2504 pin->gpiod = gpiod;
2505 list_add(&pin->list, ®ulator_ena_gpio_list);
2506
2507update_ena_gpio_to_rdev:
2508 pin->request_count++;
2509 rdev->ena_pin = pin;
2510
2511 mutex_unlock(®ulator_list_mutex);
2512 kfree(new_pin);
2513
2514 return 0;
2515}
2516
2517static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2518{
2519 struct regulator_enable_gpio *pin, *n;
2520
2521 if (!rdev->ena_pin)
2522 return;
2523
2524 /* Free the GPIO only in case of no use */
2525 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2526 if (pin != rdev->ena_pin)
2527 continue;
2528
2529 if (--pin->request_count)
2530 break;
2531
2532 gpiod_put(pin->gpiod);
2533 list_del(&pin->list);
2534 kfree(pin);
2535 break;
2536 }
2537
2538 rdev->ena_pin = NULL;
2539}
2540
2541/**
2542 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2543 * @rdev: regulator_dev structure
2544 * @enable: enable GPIO at initial use?
2545 *
2546 * GPIO is enabled in case of initial use. (enable_count is 0)
2547 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2548 */
2549static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2550{
2551 struct regulator_enable_gpio *pin = rdev->ena_pin;
2552
2553 if (!pin)
2554 return -EINVAL;
2555
2556 if (enable) {
2557 /* Enable GPIO at initial use */
2558 if (pin->enable_count == 0)
2559 gpiod_set_value_cansleep(pin->gpiod, 1);
2560
2561 pin->enable_count++;
2562 } else {
2563 if (pin->enable_count > 1) {
2564 pin->enable_count--;
2565 return 0;
2566 }
2567
2568 /* Disable GPIO if not used */
2569 if (pin->enable_count <= 1) {
2570 gpiod_set_value_cansleep(pin->gpiod, 0);
2571 pin->enable_count = 0;
2572 }
2573 }
2574
2575 return 0;
2576}
2577
2578/**
2579 * _regulator_delay_helper - a delay helper function
2580 * @delay: time to delay in microseconds
2581 *
2582 * Delay for the requested amount of time as per the guidelines in:
2583 *
2584 * Documentation/timers/timers-howto.rst
2585 *
2586 * The assumption here is that these regulator operations will never used in
2587 * atomic context and therefore sleeping functions can be used.
2588 */
2589static void _regulator_delay_helper(unsigned int delay)
2590{
2591 unsigned int ms = delay / 1000;
2592 unsigned int us = delay % 1000;
2593
2594 if (ms > 0) {
2595 /*
2596 * For small enough values, handle super-millisecond
2597 * delays in the usleep_range() call below.
2598 */
2599 if (ms < 20)
2600 us += ms * 1000;
2601 else
2602 msleep(ms);
2603 }
2604
2605 /*
2606 * Give the scheduler some room to coalesce with any other
2607 * wakeup sources. For delays shorter than 10 us, don't even
2608 * bother setting up high-resolution timers and just busy-
2609 * loop.
2610 */
2611 if (us >= 10)
2612 usleep_range(us, us + 100);
2613 else
2614 udelay(us);
2615}
2616
2617/**
2618 * _regulator_check_status_enabled
2619 *
2620 * A helper function to check if the regulator status can be interpreted
2621 * as 'regulator is enabled'.
2622 * @rdev: the regulator device to check
2623 *
2624 * Return:
2625 * * 1 - if status shows regulator is in enabled state
2626 * * 0 - if not enabled state
2627 * * Error Value - as received from ops->get_status()
2628 */
2629static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2630{
2631 int ret = rdev->desc->ops->get_status(rdev);
2632
2633 if (ret < 0) {
2634 rdev_info(rdev, "get_status returned error: %d\n", ret);
2635 return ret;
2636 }
2637
2638 switch (ret) {
2639 case REGULATOR_STATUS_OFF:
2640 case REGULATOR_STATUS_ERROR:
2641 case REGULATOR_STATUS_UNDEFINED:
2642 return 0;
2643 default:
2644 return 1;
2645 }
2646}
2647
2648static int _regulator_do_enable(struct regulator_dev *rdev)
2649{
2650 int ret, delay;
2651
2652 /* Query before enabling in case configuration dependent. */
2653 ret = _regulator_get_enable_time(rdev);
2654 if (ret >= 0) {
2655 delay = ret;
2656 } else {
2657 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2658 delay = 0;
2659 }
2660
2661 trace_regulator_enable(rdev_get_name(rdev));
2662
2663 if (rdev->desc->off_on_delay && rdev->last_off) {
2664 /* if needed, keep a distance of off_on_delay from last time
2665 * this regulator was disabled.
2666 */
2667 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2668 s64 remaining = ktime_us_delta(end, ktime_get());
2669
2670 if (remaining > 0)
2671 _regulator_delay_helper(remaining);
2672 }
2673
2674 if (rdev->ena_pin) {
2675 if (!rdev->ena_gpio_state) {
2676 ret = regulator_ena_gpio_ctrl(rdev, true);
2677 if (ret < 0)
2678 return ret;
2679 rdev->ena_gpio_state = 1;
2680 }
2681 } else if (rdev->desc->ops->enable) {
2682 ret = rdev->desc->ops->enable(rdev);
2683 if (ret < 0)
2684 return ret;
2685 } else {
2686 return -EINVAL;
2687 }
2688
2689 /* Allow the regulator to ramp; it would be useful to extend
2690 * this for bulk operations so that the regulators can ramp
2691 * together.
2692 */
2693 trace_regulator_enable_delay(rdev_get_name(rdev));
2694
2695 /* If poll_enabled_time is set, poll upto the delay calculated
2696 * above, delaying poll_enabled_time uS to check if the regulator
2697 * actually got enabled.
2698 * If the regulator isn't enabled after our delay helper has expired,
2699 * return -ETIMEDOUT.
2700 */
2701 if (rdev->desc->poll_enabled_time) {
2702 int time_remaining = delay;
2703
2704 while (time_remaining > 0) {
2705 _regulator_delay_helper(rdev->desc->poll_enabled_time);
2706
2707 if (rdev->desc->ops->get_status) {
2708 ret = _regulator_check_status_enabled(rdev);
2709 if (ret < 0)
2710 return ret;
2711 else if (ret)
2712 break;
2713 } else if (rdev->desc->ops->is_enabled(rdev))
2714 break;
2715
2716 time_remaining -= rdev->desc->poll_enabled_time;
2717 }
2718
2719 if (time_remaining <= 0) {
2720 rdev_err(rdev, "Enabled check timed out\n");
2721 return -ETIMEDOUT;
2722 }
2723 } else {
2724 _regulator_delay_helper(delay);
2725 }
2726
2727 trace_regulator_enable_complete(rdev_get_name(rdev));
2728
2729 return 0;
2730}
2731
2732/**
2733 * _regulator_handle_consumer_enable - handle that a consumer enabled
2734 * @regulator: regulator source
2735 *
2736 * Some things on a regulator consumer (like the contribution towards total
2737 * load on the regulator) only have an effect when the consumer wants the
2738 * regulator enabled. Explained in example with two consumers of the same
2739 * regulator:
2740 * consumer A: set_load(100); => total load = 0
2741 * consumer A: regulator_enable(); => total load = 100
2742 * consumer B: set_load(1000); => total load = 100
2743 * consumer B: regulator_enable(); => total load = 1100
2744 * consumer A: regulator_disable(); => total_load = 1000
2745 *
2746 * This function (together with _regulator_handle_consumer_disable) is
2747 * responsible for keeping track of the refcount for a given regulator consumer
2748 * and applying / unapplying these things.
2749 *
2750 * Returns 0 upon no error; -error upon error.
2751 */
2752static int _regulator_handle_consumer_enable(struct regulator *regulator)
2753{
2754 int ret;
2755 struct regulator_dev *rdev = regulator->rdev;
2756
2757 lockdep_assert_held_once(&rdev->mutex.base);
2758
2759 regulator->enable_count++;
2760 if (regulator->uA_load && regulator->enable_count == 1) {
2761 ret = drms_uA_update(rdev);
2762 if (ret)
2763 regulator->enable_count--;
2764 return ret;
2765 }
2766
2767 return 0;
2768}
2769
2770/**
2771 * _regulator_handle_consumer_disable - handle that a consumer disabled
2772 * @regulator: regulator source
2773 *
2774 * The opposite of _regulator_handle_consumer_enable().
2775 *
2776 * Returns 0 upon no error; -error upon error.
2777 */
2778static int _regulator_handle_consumer_disable(struct regulator *regulator)
2779{
2780 struct regulator_dev *rdev = regulator->rdev;
2781
2782 lockdep_assert_held_once(&rdev->mutex.base);
2783
2784 if (!regulator->enable_count) {
2785 rdev_err(rdev, "Underflow of regulator enable count\n");
2786 return -EINVAL;
2787 }
2788
2789 regulator->enable_count--;
2790 if (regulator->uA_load && regulator->enable_count == 0)
2791 return drms_uA_update(rdev);
2792
2793 return 0;
2794}
2795
2796/* locks held by regulator_enable() */
2797static int _regulator_enable(struct regulator *regulator)
2798{
2799 struct regulator_dev *rdev = regulator->rdev;
2800 int ret;
2801
2802 lockdep_assert_held_once(&rdev->mutex.base);
2803
2804 if (rdev->use_count == 0 && rdev->supply) {
2805 ret = _regulator_enable(rdev->supply);
2806 if (ret < 0)
2807 return ret;
2808 }
2809
2810 /* balance only if there are regulators coupled */
2811 if (rdev->coupling_desc.n_coupled > 1) {
2812 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2813 if (ret < 0)
2814 goto err_disable_supply;
2815 }
2816
2817 ret = _regulator_handle_consumer_enable(regulator);
2818 if (ret < 0)
2819 goto err_disable_supply;
2820
2821 if (rdev->use_count == 0) {
2822 /*
2823 * The regulator may already be enabled if it's not switchable
2824 * or was left on
2825 */
2826 ret = _regulator_is_enabled(rdev);
2827 if (ret == -EINVAL || ret == 0) {
2828 if (!regulator_ops_is_valid(rdev,
2829 REGULATOR_CHANGE_STATUS)) {
2830 ret = -EPERM;
2831 goto err_consumer_disable;
2832 }
2833
2834 ret = _regulator_do_enable(rdev);
2835 if (ret < 0)
2836 goto err_consumer_disable;
2837
2838 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2839 NULL);
2840 } else if (ret < 0) {
2841 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2842 goto err_consumer_disable;
2843 }
2844 /* Fallthrough on positive return values - already enabled */
2845 }
2846
2847 rdev->use_count++;
2848
2849 return 0;
2850
2851err_consumer_disable:
2852 _regulator_handle_consumer_disable(regulator);
2853
2854err_disable_supply:
2855 if (rdev->use_count == 0 && rdev->supply)
2856 _regulator_disable(rdev->supply);
2857
2858 return ret;
2859}
2860
2861/**
2862 * regulator_enable - enable regulator output
2863 * @regulator: regulator source
2864 *
2865 * Request that the regulator be enabled with the regulator output at
2866 * the predefined voltage or current value. Calls to regulator_enable()
2867 * must be balanced with calls to regulator_disable().
2868 *
2869 * NOTE: the output value can be set by other drivers, boot loader or may be
2870 * hardwired in the regulator.
2871 */
2872int regulator_enable(struct regulator *regulator)
2873{
2874 struct regulator_dev *rdev = regulator->rdev;
2875 struct ww_acquire_ctx ww_ctx;
2876 int ret;
2877
2878 regulator_lock_dependent(rdev, &ww_ctx);
2879 ret = _regulator_enable(regulator);
2880 regulator_unlock_dependent(rdev, &ww_ctx);
2881
2882 return ret;
2883}
2884EXPORT_SYMBOL_GPL(regulator_enable);
2885
2886static int _regulator_do_disable(struct regulator_dev *rdev)
2887{
2888 int ret;
2889
2890 trace_regulator_disable(rdev_get_name(rdev));
2891
2892 if (rdev->ena_pin) {
2893 if (rdev->ena_gpio_state) {
2894 ret = regulator_ena_gpio_ctrl(rdev, false);
2895 if (ret < 0)
2896 return ret;
2897 rdev->ena_gpio_state = 0;
2898 }
2899
2900 } else if (rdev->desc->ops->disable) {
2901 ret = rdev->desc->ops->disable(rdev);
2902 if (ret != 0)
2903 return ret;
2904 }
2905
2906 if (rdev->desc->off_on_delay)
2907 rdev->last_off = ktime_get();
2908
2909 trace_regulator_disable_complete(rdev_get_name(rdev));
2910
2911 return 0;
2912}
2913
2914/* locks held by regulator_disable() */
2915static int _regulator_disable(struct regulator *regulator)
2916{
2917 struct regulator_dev *rdev = regulator->rdev;
2918 int ret = 0;
2919
2920 lockdep_assert_held_once(&rdev->mutex.base);
2921
2922 if (WARN(rdev->use_count <= 0,
2923 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2924 return -EIO;
2925
2926 /* are we the last user and permitted to disable ? */
2927 if (rdev->use_count == 1 &&
2928 (rdev->constraints && !rdev->constraints->always_on)) {
2929
2930 /* we are last user */
2931 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2932 ret = _notifier_call_chain(rdev,
2933 REGULATOR_EVENT_PRE_DISABLE,
2934 NULL);
2935 if (ret & NOTIFY_STOP_MASK)
2936 return -EINVAL;
2937
2938 ret = _regulator_do_disable(rdev);
2939 if (ret < 0) {
2940 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2941 _notifier_call_chain(rdev,
2942 REGULATOR_EVENT_ABORT_DISABLE,
2943 NULL);
2944 return ret;
2945 }
2946 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2947 NULL);
2948 }
2949
2950 rdev->use_count = 0;
2951 } else if (rdev->use_count > 1) {
2952 rdev->use_count--;
2953 }
2954
2955 if (ret == 0)
2956 ret = _regulator_handle_consumer_disable(regulator);
2957
2958 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2959 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2960
2961 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2962 ret = _regulator_disable(rdev->supply);
2963
2964 return ret;
2965}
2966
2967/**
2968 * regulator_disable - disable regulator output
2969 * @regulator: regulator source
2970 *
2971 * Disable the regulator output voltage or current. Calls to
2972 * regulator_enable() must be balanced with calls to
2973 * regulator_disable().
2974 *
2975 * NOTE: this will only disable the regulator output if no other consumer
2976 * devices have it enabled, the regulator device supports disabling and
2977 * machine constraints permit this operation.
2978 */
2979int regulator_disable(struct regulator *regulator)
2980{
2981 struct regulator_dev *rdev = regulator->rdev;
2982 struct ww_acquire_ctx ww_ctx;
2983 int ret;
2984
2985 regulator_lock_dependent(rdev, &ww_ctx);
2986 ret = _regulator_disable(regulator);
2987 regulator_unlock_dependent(rdev, &ww_ctx);
2988
2989 return ret;
2990}
2991EXPORT_SYMBOL_GPL(regulator_disable);
2992
2993/* locks held by regulator_force_disable() */
2994static int _regulator_force_disable(struct regulator_dev *rdev)
2995{
2996 int ret = 0;
2997
2998 lockdep_assert_held_once(&rdev->mutex.base);
2999
3000 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3001 REGULATOR_EVENT_PRE_DISABLE, NULL);
3002 if (ret & NOTIFY_STOP_MASK)
3003 return -EINVAL;
3004
3005 ret = _regulator_do_disable(rdev);
3006 if (ret < 0) {
3007 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3008 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3009 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3010 return ret;
3011 }
3012
3013 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3014 REGULATOR_EVENT_DISABLE, NULL);
3015
3016 return 0;
3017}
3018
3019/**
3020 * regulator_force_disable - force disable regulator output
3021 * @regulator: regulator source
3022 *
3023 * Forcibly disable the regulator output voltage or current.
3024 * NOTE: this *will* disable the regulator output even if other consumer
3025 * devices have it enabled. This should be used for situations when device
3026 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3027 */
3028int regulator_force_disable(struct regulator *regulator)
3029{
3030 struct regulator_dev *rdev = regulator->rdev;
3031 struct ww_acquire_ctx ww_ctx;
3032 int ret;
3033
3034 regulator_lock_dependent(rdev, &ww_ctx);
3035
3036 ret = _regulator_force_disable(regulator->rdev);
3037
3038 if (rdev->coupling_desc.n_coupled > 1)
3039 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3040
3041 if (regulator->uA_load) {
3042 regulator->uA_load = 0;
3043 ret = drms_uA_update(rdev);
3044 }
3045
3046 if (rdev->use_count != 0 && rdev->supply)
3047 _regulator_disable(rdev->supply);
3048
3049 regulator_unlock_dependent(rdev, &ww_ctx);
3050
3051 return ret;
3052}
3053EXPORT_SYMBOL_GPL(regulator_force_disable);
3054
3055static void regulator_disable_work(struct work_struct *work)
3056{
3057 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3058 disable_work.work);
3059 struct ww_acquire_ctx ww_ctx;
3060 int count, i, ret;
3061 struct regulator *regulator;
3062 int total_count = 0;
3063
3064 regulator_lock_dependent(rdev, &ww_ctx);
3065
3066 /*
3067 * Workqueue functions queue the new work instance while the previous
3068 * work instance is being processed. Cancel the queued work instance
3069 * as the work instance under processing does the job of the queued
3070 * work instance.
3071 */
3072 cancel_delayed_work(&rdev->disable_work);
3073
3074 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3075 count = regulator->deferred_disables;
3076
3077 if (!count)
3078 continue;
3079
3080 total_count += count;
3081 regulator->deferred_disables = 0;
3082
3083 for (i = 0; i < count; i++) {
3084 ret = _regulator_disable(regulator);
3085 if (ret != 0)
3086 rdev_err(rdev, "Deferred disable failed: %pe\n",
3087 ERR_PTR(ret));
3088 }
3089 }
3090 WARN_ON(!total_count);
3091
3092 if (rdev->coupling_desc.n_coupled > 1)
3093 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3094
3095 regulator_unlock_dependent(rdev, &ww_ctx);
3096}
3097
3098/**
3099 * regulator_disable_deferred - disable regulator output with delay
3100 * @regulator: regulator source
3101 * @ms: milliseconds until the regulator is disabled
3102 *
3103 * Execute regulator_disable() on the regulator after a delay. This
3104 * is intended for use with devices that require some time to quiesce.
3105 *
3106 * NOTE: this will only disable the regulator output if no other consumer
3107 * devices have it enabled, the regulator device supports disabling and
3108 * machine constraints permit this operation.
3109 */
3110int regulator_disable_deferred(struct regulator *regulator, int ms)
3111{
3112 struct regulator_dev *rdev = regulator->rdev;
3113
3114 if (!ms)
3115 return regulator_disable(regulator);
3116
3117 regulator_lock(rdev);
3118 regulator->deferred_disables++;
3119 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3120 msecs_to_jiffies(ms));
3121 regulator_unlock(rdev);
3122
3123 return 0;
3124}
3125EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3126
3127static int _regulator_is_enabled(struct regulator_dev *rdev)
3128{
3129 /* A GPIO control always takes precedence */
3130 if (rdev->ena_pin)
3131 return rdev->ena_gpio_state;
3132
3133 /* If we don't know then assume that the regulator is always on */
3134 if (!rdev->desc->ops->is_enabled)
3135 return 1;
3136
3137 return rdev->desc->ops->is_enabled(rdev);
3138}
3139
3140static int _regulator_list_voltage(struct regulator_dev *rdev,
3141 unsigned selector, int lock)
3142{
3143 const struct regulator_ops *ops = rdev->desc->ops;
3144 int ret;
3145
3146 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3147 return rdev->desc->fixed_uV;
3148
3149 if (ops->list_voltage) {
3150 if (selector >= rdev->desc->n_voltages)
3151 return -EINVAL;
3152 if (selector < rdev->desc->linear_min_sel)
3153 return 0;
3154 if (lock)
3155 regulator_lock(rdev);
3156 ret = ops->list_voltage(rdev, selector);
3157 if (lock)
3158 regulator_unlock(rdev);
3159 } else if (rdev->is_switch && rdev->supply) {
3160 ret = _regulator_list_voltage(rdev->supply->rdev,
3161 selector, lock);
3162 } else {
3163 return -EINVAL;
3164 }
3165
3166 if (ret > 0) {
3167 if (ret < rdev->constraints->min_uV)
3168 ret = 0;
3169 else if (ret > rdev->constraints->max_uV)
3170 ret = 0;
3171 }
3172
3173 return ret;
3174}
3175
3176/**
3177 * regulator_is_enabled - is the regulator output enabled
3178 * @regulator: regulator source
3179 *
3180 * Returns positive if the regulator driver backing the source/client
3181 * has requested that the device be enabled, zero if it hasn't, else a
3182 * negative errno code.
3183 *
3184 * Note that the device backing this regulator handle can have multiple
3185 * users, so it might be enabled even if regulator_enable() was never
3186 * called for this particular source.
3187 */
3188int regulator_is_enabled(struct regulator *regulator)
3189{
3190 int ret;
3191
3192 if (regulator->always_on)
3193 return 1;
3194
3195 regulator_lock(regulator->rdev);
3196 ret = _regulator_is_enabled(regulator->rdev);
3197 regulator_unlock(regulator->rdev);
3198
3199 return ret;
3200}
3201EXPORT_SYMBOL_GPL(regulator_is_enabled);
3202
3203/**
3204 * regulator_count_voltages - count regulator_list_voltage() selectors
3205 * @regulator: regulator source
3206 *
3207 * Returns number of selectors, or negative errno. Selectors are
3208 * numbered starting at zero, and typically correspond to bitfields
3209 * in hardware registers.
3210 */
3211int regulator_count_voltages(struct regulator *regulator)
3212{
3213 struct regulator_dev *rdev = regulator->rdev;
3214
3215 if (rdev->desc->n_voltages)
3216 return rdev->desc->n_voltages;
3217
3218 if (!rdev->is_switch || !rdev->supply)
3219 return -EINVAL;
3220
3221 return regulator_count_voltages(rdev->supply);
3222}
3223EXPORT_SYMBOL_GPL(regulator_count_voltages);
3224
3225/**
3226 * regulator_list_voltage - enumerate supported voltages
3227 * @regulator: regulator source
3228 * @selector: identify voltage to list
3229 * Context: can sleep
3230 *
3231 * Returns a voltage that can be passed to @regulator_set_voltage(),
3232 * zero if this selector code can't be used on this system, or a
3233 * negative errno.
3234 */
3235int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3236{
3237 return _regulator_list_voltage(regulator->rdev, selector, 1);
3238}
3239EXPORT_SYMBOL_GPL(regulator_list_voltage);
3240
3241/**
3242 * regulator_get_regmap - get the regulator's register map
3243 * @regulator: regulator source
3244 *
3245 * Returns the register map for the given regulator, or an ERR_PTR value
3246 * if the regulator doesn't use regmap.
3247 */
3248struct regmap *regulator_get_regmap(struct regulator *regulator)
3249{
3250 struct regmap *map = regulator->rdev->regmap;
3251
3252 return map ? map : ERR_PTR(-EOPNOTSUPP);
3253}
3254
3255/**
3256 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3257 * @regulator: regulator source
3258 * @vsel_reg: voltage selector register, output parameter
3259 * @vsel_mask: mask for voltage selector bitfield, output parameter
3260 *
3261 * Returns the hardware register offset and bitmask used for setting the
3262 * regulator voltage. This might be useful when configuring voltage-scaling
3263 * hardware or firmware that can make I2C requests behind the kernel's back,
3264 * for example.
3265 *
3266 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3267 * and 0 is returned, otherwise a negative errno is returned.
3268 */
3269int regulator_get_hardware_vsel_register(struct regulator *regulator,
3270 unsigned *vsel_reg,
3271 unsigned *vsel_mask)
3272{
3273 struct regulator_dev *rdev = regulator->rdev;
3274 const struct regulator_ops *ops = rdev->desc->ops;
3275
3276 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3277 return -EOPNOTSUPP;
3278
3279 *vsel_reg = rdev->desc->vsel_reg;
3280 *vsel_mask = rdev->desc->vsel_mask;
3281
3282 return 0;
3283}
3284EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3285
3286/**
3287 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3288 * @regulator: regulator source
3289 * @selector: identify voltage to list
3290 *
3291 * Converts the selector to a hardware-specific voltage selector that can be
3292 * directly written to the regulator registers. The address of the voltage
3293 * register can be determined by calling @regulator_get_hardware_vsel_register.
3294 *
3295 * On error a negative errno is returned.
3296 */
3297int regulator_list_hardware_vsel(struct regulator *regulator,
3298 unsigned selector)
3299{
3300 struct regulator_dev *rdev = regulator->rdev;
3301 const struct regulator_ops *ops = rdev->desc->ops;
3302
3303 if (selector >= rdev->desc->n_voltages)
3304 return -EINVAL;
3305 if (selector < rdev->desc->linear_min_sel)
3306 return 0;
3307 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3308 return -EOPNOTSUPP;
3309
3310 return selector;
3311}
3312EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3313
3314/**
3315 * regulator_get_linear_step - return the voltage step size between VSEL values
3316 * @regulator: regulator source
3317 *
3318 * Returns the voltage step size between VSEL values for linear
3319 * regulators, or return 0 if the regulator isn't a linear regulator.
3320 */
3321unsigned int regulator_get_linear_step(struct regulator *regulator)
3322{
3323 struct regulator_dev *rdev = regulator->rdev;
3324
3325 return rdev->desc->uV_step;
3326}
3327EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3328
3329/**
3330 * regulator_is_supported_voltage - check if a voltage range can be supported
3331 *
3332 * @regulator: Regulator to check.
3333 * @min_uV: Minimum required voltage in uV.
3334 * @max_uV: Maximum required voltage in uV.
3335 *
3336 * Returns a boolean.
3337 */
3338int regulator_is_supported_voltage(struct regulator *regulator,
3339 int min_uV, int max_uV)
3340{
3341 struct regulator_dev *rdev = regulator->rdev;
3342 int i, voltages, ret;
3343
3344 /* If we can't change voltage check the current voltage */
3345 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3346 ret = regulator_get_voltage(regulator);
3347 if (ret >= 0)
3348 return min_uV <= ret && ret <= max_uV;
3349 else
3350 return ret;
3351 }
3352
3353 /* Any voltage within constrains range is fine? */
3354 if (rdev->desc->continuous_voltage_range)
3355 return min_uV >= rdev->constraints->min_uV &&
3356 max_uV <= rdev->constraints->max_uV;
3357
3358 ret = regulator_count_voltages(regulator);
3359 if (ret < 0)
3360 return 0;
3361 voltages = ret;
3362
3363 for (i = 0; i < voltages; i++) {
3364 ret = regulator_list_voltage(regulator, i);
3365
3366 if (ret >= min_uV && ret <= max_uV)
3367 return 1;
3368 }
3369
3370 return 0;
3371}
3372EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3373
3374static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3375 int max_uV)
3376{
3377 const struct regulator_desc *desc = rdev->desc;
3378
3379 if (desc->ops->map_voltage)
3380 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3381
3382 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3383 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3384
3385 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3386 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3387
3388 if (desc->ops->list_voltage ==
3389 regulator_list_voltage_pickable_linear_range)
3390 return regulator_map_voltage_pickable_linear_range(rdev,
3391 min_uV, max_uV);
3392
3393 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3394}
3395
3396static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3397 int min_uV, int max_uV,
3398 unsigned *selector)
3399{
3400 struct pre_voltage_change_data data;
3401 int ret;
3402
3403 data.old_uV = regulator_get_voltage_rdev(rdev);
3404 data.min_uV = min_uV;
3405 data.max_uV = max_uV;
3406 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3407 &data);
3408 if (ret & NOTIFY_STOP_MASK)
3409 return -EINVAL;
3410
3411 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3412 if (ret >= 0)
3413 return ret;
3414
3415 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3416 (void *)data.old_uV);
3417
3418 return ret;
3419}
3420
3421static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3422 int uV, unsigned selector)
3423{
3424 struct pre_voltage_change_data data;
3425 int ret;
3426
3427 data.old_uV = regulator_get_voltage_rdev(rdev);
3428 data.min_uV = uV;
3429 data.max_uV = uV;
3430 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3431 &data);
3432 if (ret & NOTIFY_STOP_MASK)
3433 return -EINVAL;
3434
3435 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3436 if (ret >= 0)
3437 return ret;
3438
3439 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3440 (void *)data.old_uV);
3441
3442 return ret;
3443}
3444
3445static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3446 int uV, int new_selector)
3447{
3448 const struct regulator_ops *ops = rdev->desc->ops;
3449 int diff, old_sel, curr_sel, ret;
3450
3451 /* Stepping is only needed if the regulator is enabled. */
3452 if (!_regulator_is_enabled(rdev))
3453 goto final_set;
3454
3455 if (!ops->get_voltage_sel)
3456 return -EINVAL;
3457
3458 old_sel = ops->get_voltage_sel(rdev);
3459 if (old_sel < 0)
3460 return old_sel;
3461
3462 diff = new_selector - old_sel;
3463 if (diff == 0)
3464 return 0; /* No change needed. */
3465
3466 if (diff > 0) {
3467 /* Stepping up. */
3468 for (curr_sel = old_sel + rdev->desc->vsel_step;
3469 curr_sel < new_selector;
3470 curr_sel += rdev->desc->vsel_step) {
3471 /*
3472 * Call the callback directly instead of using
3473 * _regulator_call_set_voltage_sel() as we don't
3474 * want to notify anyone yet. Same in the branch
3475 * below.
3476 */
3477 ret = ops->set_voltage_sel(rdev, curr_sel);
3478 if (ret)
3479 goto try_revert;
3480 }
3481 } else {
3482 /* Stepping down. */
3483 for (curr_sel = old_sel - rdev->desc->vsel_step;
3484 curr_sel > new_selector;
3485 curr_sel -= rdev->desc->vsel_step) {
3486 ret = ops->set_voltage_sel(rdev, curr_sel);
3487 if (ret)
3488 goto try_revert;
3489 }
3490 }
3491
3492final_set:
3493 /* The final selector will trigger the notifiers. */
3494 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3495
3496try_revert:
3497 /*
3498 * At least try to return to the previous voltage if setting a new
3499 * one failed.
3500 */
3501 (void)ops->set_voltage_sel(rdev, old_sel);
3502 return ret;
3503}
3504
3505static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3506 int old_uV, int new_uV)
3507{
3508 unsigned int ramp_delay = 0;
3509
3510 if (rdev->constraints->ramp_delay)
3511 ramp_delay = rdev->constraints->ramp_delay;
3512 else if (rdev->desc->ramp_delay)
3513 ramp_delay = rdev->desc->ramp_delay;
3514 else if (rdev->constraints->settling_time)
3515 return rdev->constraints->settling_time;
3516 else if (rdev->constraints->settling_time_up &&
3517 (new_uV > old_uV))
3518 return rdev->constraints->settling_time_up;
3519 else if (rdev->constraints->settling_time_down &&
3520 (new_uV < old_uV))
3521 return rdev->constraints->settling_time_down;
3522
3523 if (ramp_delay == 0)
3524 return 0;
3525
3526 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3527}
3528
3529static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3530 int min_uV, int max_uV)
3531{
3532 int ret;
3533 int delay = 0;
3534 int best_val = 0;
3535 unsigned int selector;
3536 int old_selector = -1;
3537 const struct regulator_ops *ops = rdev->desc->ops;
3538 int old_uV = regulator_get_voltage_rdev(rdev);
3539
3540 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3541
3542 min_uV += rdev->constraints->uV_offset;
3543 max_uV += rdev->constraints->uV_offset;
3544
3545 /*
3546 * If we can't obtain the old selector there is not enough
3547 * info to call set_voltage_time_sel().
3548 */
3549 if (_regulator_is_enabled(rdev) &&
3550 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3551 old_selector = ops->get_voltage_sel(rdev);
3552 if (old_selector < 0)
3553 return old_selector;
3554 }
3555
3556 if (ops->set_voltage) {
3557 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3558 &selector);
3559
3560 if (ret >= 0) {
3561 if (ops->list_voltage)
3562 best_val = ops->list_voltage(rdev,
3563 selector);
3564 else
3565 best_val = regulator_get_voltage_rdev(rdev);
3566 }
3567
3568 } else if (ops->set_voltage_sel) {
3569 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3570 if (ret >= 0) {
3571 best_val = ops->list_voltage(rdev, ret);
3572 if (min_uV <= best_val && max_uV >= best_val) {
3573 selector = ret;
3574 if (old_selector == selector)
3575 ret = 0;
3576 else if (rdev->desc->vsel_step)
3577 ret = _regulator_set_voltage_sel_step(
3578 rdev, best_val, selector);
3579 else
3580 ret = _regulator_call_set_voltage_sel(
3581 rdev, best_val, selector);
3582 } else {
3583 ret = -EINVAL;
3584 }
3585 }
3586 } else {
3587 ret = -EINVAL;
3588 }
3589
3590 if (ret)
3591 goto out;
3592
3593 if (ops->set_voltage_time_sel) {
3594 /*
3595 * Call set_voltage_time_sel if successfully obtained
3596 * old_selector
3597 */
3598 if (old_selector >= 0 && old_selector != selector)
3599 delay = ops->set_voltage_time_sel(rdev, old_selector,
3600 selector);
3601 } else {
3602 if (old_uV != best_val) {
3603 if (ops->set_voltage_time)
3604 delay = ops->set_voltage_time(rdev, old_uV,
3605 best_val);
3606 else
3607 delay = _regulator_set_voltage_time(rdev,
3608 old_uV,
3609 best_val);
3610 }
3611 }
3612
3613 if (delay < 0) {
3614 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3615 delay = 0;
3616 }
3617
3618 /* Insert any necessary delays */
3619 _regulator_delay_helper(delay);
3620
3621 if (best_val >= 0) {
3622 unsigned long data = best_val;
3623
3624 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3625 (void *)data);
3626 }
3627
3628out:
3629 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3630
3631 return ret;
3632}
3633
3634static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3635 int min_uV, int max_uV, suspend_state_t state)
3636{
3637 struct regulator_state *rstate;
3638 int uV, sel;
3639
3640 rstate = regulator_get_suspend_state(rdev, state);
3641 if (rstate == NULL)
3642 return -EINVAL;
3643
3644 if (min_uV < rstate->min_uV)
3645 min_uV = rstate->min_uV;
3646 if (max_uV > rstate->max_uV)
3647 max_uV = rstate->max_uV;
3648
3649 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3650 if (sel < 0)
3651 return sel;
3652
3653 uV = rdev->desc->ops->list_voltage(rdev, sel);
3654 if (uV >= min_uV && uV <= max_uV)
3655 rstate->uV = uV;
3656
3657 return 0;
3658}
3659
3660static int regulator_set_voltage_unlocked(struct regulator *regulator,
3661 int min_uV, int max_uV,
3662 suspend_state_t state)
3663{
3664 struct regulator_dev *rdev = regulator->rdev;
3665 struct regulator_voltage *voltage = ®ulator->voltage[state];
3666 int ret = 0;
3667 int old_min_uV, old_max_uV;
3668 int current_uV;
3669
3670 /* If we're setting the same range as last time the change
3671 * should be a noop (some cpufreq implementations use the same
3672 * voltage for multiple frequencies, for example).
3673 */
3674 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3675 goto out;
3676
3677 /* If we're trying to set a range that overlaps the current voltage,
3678 * return successfully even though the regulator does not support
3679 * changing the voltage.
3680 */
3681 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3682 current_uV = regulator_get_voltage_rdev(rdev);
3683 if (min_uV <= current_uV && current_uV <= max_uV) {
3684 voltage->min_uV = min_uV;
3685 voltage->max_uV = max_uV;
3686 goto out;
3687 }
3688 }
3689
3690 /* sanity check */
3691 if (!rdev->desc->ops->set_voltage &&
3692 !rdev->desc->ops->set_voltage_sel) {
3693 ret = -EINVAL;
3694 goto out;
3695 }
3696
3697 /* constraints check */
3698 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3699 if (ret < 0)
3700 goto out;
3701
3702 /* restore original values in case of error */
3703 old_min_uV = voltage->min_uV;
3704 old_max_uV = voltage->max_uV;
3705 voltage->min_uV = min_uV;
3706 voltage->max_uV = max_uV;
3707
3708 /* for not coupled regulators this will just set the voltage */
3709 ret = regulator_balance_voltage(rdev, state);
3710 if (ret < 0) {
3711 voltage->min_uV = old_min_uV;
3712 voltage->max_uV = old_max_uV;
3713 }
3714
3715out:
3716 return ret;
3717}
3718
3719int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3720 int max_uV, suspend_state_t state)
3721{
3722 int best_supply_uV = 0;
3723 int supply_change_uV = 0;
3724 int ret;
3725
3726 if (rdev->supply &&
3727 regulator_ops_is_valid(rdev->supply->rdev,
3728 REGULATOR_CHANGE_VOLTAGE) &&
3729 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3730 rdev->desc->ops->get_voltage_sel))) {
3731 int current_supply_uV;
3732 int selector;
3733
3734 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3735 if (selector < 0) {
3736 ret = selector;
3737 goto out;
3738 }
3739
3740 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3741 if (best_supply_uV < 0) {
3742 ret = best_supply_uV;
3743 goto out;
3744 }
3745
3746 best_supply_uV += rdev->desc->min_dropout_uV;
3747
3748 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3749 if (current_supply_uV < 0) {
3750 ret = current_supply_uV;
3751 goto out;
3752 }
3753
3754 supply_change_uV = best_supply_uV - current_supply_uV;
3755 }
3756
3757 if (supply_change_uV > 0) {
3758 ret = regulator_set_voltage_unlocked(rdev->supply,
3759 best_supply_uV, INT_MAX, state);
3760 if (ret) {
3761 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3762 ERR_PTR(ret));
3763 goto out;
3764 }
3765 }
3766
3767 if (state == PM_SUSPEND_ON)
3768 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3769 else
3770 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3771 max_uV, state);
3772 if (ret < 0)
3773 goto out;
3774
3775 if (supply_change_uV < 0) {
3776 ret = regulator_set_voltage_unlocked(rdev->supply,
3777 best_supply_uV, INT_MAX, state);
3778 if (ret)
3779 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3780 ERR_PTR(ret));
3781 /* No need to fail here */
3782 ret = 0;
3783 }
3784
3785out:
3786 return ret;
3787}
3788EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3789
3790static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3791 int *current_uV, int *min_uV)
3792{
3793 struct regulation_constraints *constraints = rdev->constraints;
3794
3795 /* Limit voltage change only if necessary */
3796 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3797 return 1;
3798
3799 if (*current_uV < 0) {
3800 *current_uV = regulator_get_voltage_rdev(rdev);
3801
3802 if (*current_uV < 0)
3803 return *current_uV;
3804 }
3805
3806 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3807 return 1;
3808
3809 /* Clamp target voltage within the given step */
3810 if (*current_uV < *min_uV)
3811 *min_uV = min(*current_uV + constraints->max_uV_step,
3812 *min_uV);
3813 else
3814 *min_uV = max(*current_uV - constraints->max_uV_step,
3815 *min_uV);
3816
3817 return 0;
3818}
3819
3820static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3821 int *current_uV,
3822 int *min_uV, int *max_uV,
3823 suspend_state_t state,
3824 int n_coupled)
3825{
3826 struct coupling_desc *c_desc = &rdev->coupling_desc;
3827 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3828 struct regulation_constraints *constraints = rdev->constraints;
3829 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3830 int max_current_uV = 0, min_current_uV = INT_MAX;
3831 int highest_min_uV = 0, target_uV, possible_uV;
3832 int i, ret, max_spread;
3833 bool done;
3834
3835 *current_uV = -1;
3836
3837 /*
3838 * If there are no coupled regulators, simply set the voltage
3839 * demanded by consumers.
3840 */
3841 if (n_coupled == 1) {
3842 /*
3843 * If consumers don't provide any demands, set voltage
3844 * to min_uV
3845 */
3846 desired_min_uV = constraints->min_uV;
3847 desired_max_uV = constraints->max_uV;
3848
3849 ret = regulator_check_consumers(rdev,
3850 &desired_min_uV,
3851 &desired_max_uV, state);
3852 if (ret < 0)
3853 return ret;
3854
3855 possible_uV = desired_min_uV;
3856 done = true;
3857
3858 goto finish;
3859 }
3860
3861 /* Find highest min desired voltage */
3862 for (i = 0; i < n_coupled; i++) {
3863 int tmp_min = 0;
3864 int tmp_max = INT_MAX;
3865
3866 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3867
3868 ret = regulator_check_consumers(c_rdevs[i],
3869 &tmp_min,
3870 &tmp_max, state);
3871 if (ret < 0)
3872 return ret;
3873
3874 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3875 if (ret < 0)
3876 return ret;
3877
3878 highest_min_uV = max(highest_min_uV, tmp_min);
3879
3880 if (i == 0) {
3881 desired_min_uV = tmp_min;
3882 desired_max_uV = tmp_max;
3883 }
3884 }
3885
3886 max_spread = constraints->max_spread[0];
3887
3888 /*
3889 * Let target_uV be equal to the desired one if possible.
3890 * If not, set it to minimum voltage, allowed by other coupled
3891 * regulators.
3892 */
3893 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3894
3895 /*
3896 * Find min and max voltages, which currently aren't violating
3897 * max_spread.
3898 */
3899 for (i = 1; i < n_coupled; i++) {
3900 int tmp_act;
3901
3902 if (!_regulator_is_enabled(c_rdevs[i]))
3903 continue;
3904
3905 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3906 if (tmp_act < 0)
3907 return tmp_act;
3908
3909 min_current_uV = min(tmp_act, min_current_uV);
3910 max_current_uV = max(tmp_act, max_current_uV);
3911 }
3912
3913 /* There aren't any other regulators enabled */
3914 if (max_current_uV == 0) {
3915 possible_uV = target_uV;
3916 } else {
3917 /*
3918 * Correct target voltage, so as it currently isn't
3919 * violating max_spread
3920 */
3921 possible_uV = max(target_uV, max_current_uV - max_spread);
3922 possible_uV = min(possible_uV, min_current_uV + max_spread);
3923 }
3924
3925 if (possible_uV > desired_max_uV)
3926 return -EINVAL;
3927
3928 done = (possible_uV == target_uV);
3929 desired_min_uV = possible_uV;
3930
3931finish:
3932 /* Apply max_uV_step constraint if necessary */
3933 if (state == PM_SUSPEND_ON) {
3934 ret = regulator_limit_voltage_step(rdev, current_uV,
3935 &desired_min_uV);
3936 if (ret < 0)
3937 return ret;
3938
3939 if (ret == 0)
3940 done = false;
3941 }
3942
3943 /* Set current_uV if wasn't done earlier in the code and if necessary */
3944 if (n_coupled > 1 && *current_uV == -1) {
3945
3946 if (_regulator_is_enabled(rdev)) {
3947 ret = regulator_get_voltage_rdev(rdev);
3948 if (ret < 0)
3949 return ret;
3950
3951 *current_uV = ret;
3952 } else {
3953 *current_uV = desired_min_uV;
3954 }
3955 }
3956
3957 *min_uV = desired_min_uV;
3958 *max_uV = desired_max_uV;
3959
3960 return done;
3961}
3962
3963int regulator_do_balance_voltage(struct regulator_dev *rdev,
3964 suspend_state_t state, bool skip_coupled)
3965{
3966 struct regulator_dev **c_rdevs;
3967 struct regulator_dev *best_rdev;
3968 struct coupling_desc *c_desc = &rdev->coupling_desc;
3969 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3970 unsigned int delta, best_delta;
3971 unsigned long c_rdev_done = 0;
3972 bool best_c_rdev_done;
3973
3974 c_rdevs = c_desc->coupled_rdevs;
3975 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3976
3977 /*
3978 * Find the best possible voltage change on each loop. Leave the loop
3979 * if there isn't any possible change.
3980 */
3981 do {
3982 best_c_rdev_done = false;
3983 best_delta = 0;
3984 best_min_uV = 0;
3985 best_max_uV = 0;
3986 best_c_rdev = 0;
3987 best_rdev = NULL;
3988
3989 /*
3990 * Find highest difference between optimal voltage
3991 * and current voltage.
3992 */
3993 for (i = 0; i < n_coupled; i++) {
3994 /*
3995 * optimal_uV is the best voltage that can be set for
3996 * i-th regulator at the moment without violating
3997 * max_spread constraint in order to balance
3998 * the coupled voltages.
3999 */
4000 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4001
4002 if (test_bit(i, &c_rdev_done))
4003 continue;
4004
4005 ret = regulator_get_optimal_voltage(c_rdevs[i],
4006 ¤t_uV,
4007 &optimal_uV,
4008 &optimal_max_uV,
4009 state, n_coupled);
4010 if (ret < 0)
4011 goto out;
4012
4013 delta = abs(optimal_uV - current_uV);
4014
4015 if (delta && best_delta <= delta) {
4016 best_c_rdev_done = ret;
4017 best_delta = delta;
4018 best_rdev = c_rdevs[i];
4019 best_min_uV = optimal_uV;
4020 best_max_uV = optimal_max_uV;
4021 best_c_rdev = i;
4022 }
4023 }
4024
4025 /* Nothing to change, return successfully */
4026 if (!best_rdev) {
4027 ret = 0;
4028 goto out;
4029 }
4030
4031 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4032 best_max_uV, state);
4033
4034 if (ret < 0)
4035 goto out;
4036
4037 if (best_c_rdev_done)
4038 set_bit(best_c_rdev, &c_rdev_done);
4039
4040 } while (n_coupled > 1);
4041
4042out:
4043 return ret;
4044}
4045
4046static int regulator_balance_voltage(struct regulator_dev *rdev,
4047 suspend_state_t state)
4048{
4049 struct coupling_desc *c_desc = &rdev->coupling_desc;
4050 struct regulator_coupler *coupler = c_desc->coupler;
4051 bool skip_coupled = false;
4052
4053 /*
4054 * If system is in a state other than PM_SUSPEND_ON, don't check
4055 * other coupled regulators.
4056 */
4057 if (state != PM_SUSPEND_ON)
4058 skip_coupled = true;
4059
4060 if (c_desc->n_resolved < c_desc->n_coupled) {
4061 rdev_err(rdev, "Not all coupled regulators registered\n");
4062 return -EPERM;
4063 }
4064
4065 /* Invoke custom balancer for customized couplers */
4066 if (coupler && coupler->balance_voltage)
4067 return coupler->balance_voltage(coupler, rdev, state);
4068
4069 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4070}
4071
4072/**
4073 * regulator_set_voltage - set regulator output voltage
4074 * @regulator: regulator source
4075 * @min_uV: Minimum required voltage in uV
4076 * @max_uV: Maximum acceptable voltage in uV
4077 *
4078 * Sets a voltage regulator to the desired output voltage. This can be set
4079 * during any regulator state. IOW, regulator can be disabled or enabled.
4080 *
4081 * If the regulator is enabled then the voltage will change to the new value
4082 * immediately otherwise if the regulator is disabled the regulator will
4083 * output at the new voltage when enabled.
4084 *
4085 * NOTE: If the regulator is shared between several devices then the lowest
4086 * request voltage that meets the system constraints will be used.
4087 * Regulator system constraints must be set for this regulator before
4088 * calling this function otherwise this call will fail.
4089 */
4090int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4091{
4092 struct ww_acquire_ctx ww_ctx;
4093 int ret;
4094
4095 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4096
4097 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4098 PM_SUSPEND_ON);
4099
4100 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4101
4102 return ret;
4103}
4104EXPORT_SYMBOL_GPL(regulator_set_voltage);
4105
4106static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4107 suspend_state_t state, bool en)
4108{
4109 struct regulator_state *rstate;
4110
4111 rstate = regulator_get_suspend_state(rdev, state);
4112 if (rstate == NULL)
4113 return -EINVAL;
4114
4115 if (!rstate->changeable)
4116 return -EPERM;
4117
4118 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4119
4120 return 0;
4121}
4122
4123int regulator_suspend_enable(struct regulator_dev *rdev,
4124 suspend_state_t state)
4125{
4126 return regulator_suspend_toggle(rdev, state, true);
4127}
4128EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4129
4130int regulator_suspend_disable(struct regulator_dev *rdev,
4131 suspend_state_t state)
4132{
4133 struct regulator *regulator;
4134 struct regulator_voltage *voltage;
4135
4136 /*
4137 * if any consumer wants this regulator device keeping on in
4138 * suspend states, don't set it as disabled.
4139 */
4140 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4141 voltage = ®ulator->voltage[state];
4142 if (voltage->min_uV || voltage->max_uV)
4143 return 0;
4144 }
4145
4146 return regulator_suspend_toggle(rdev, state, false);
4147}
4148EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4149
4150static int _regulator_set_suspend_voltage(struct regulator *regulator,
4151 int min_uV, int max_uV,
4152 suspend_state_t state)
4153{
4154 struct regulator_dev *rdev = regulator->rdev;
4155 struct regulator_state *rstate;
4156
4157 rstate = regulator_get_suspend_state(rdev, state);
4158 if (rstate == NULL)
4159 return -EINVAL;
4160
4161 if (rstate->min_uV == rstate->max_uV) {
4162 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4163 return -EPERM;
4164 }
4165
4166 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4167}
4168
4169int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4170 int max_uV, suspend_state_t state)
4171{
4172 struct ww_acquire_ctx ww_ctx;
4173 int ret;
4174
4175 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4176 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4177 return -EINVAL;
4178
4179 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4180
4181 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4182 max_uV, state);
4183
4184 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4185
4186 return ret;
4187}
4188EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4189
4190/**
4191 * regulator_set_voltage_time - get raise/fall time
4192 * @regulator: regulator source
4193 * @old_uV: starting voltage in microvolts
4194 * @new_uV: target voltage in microvolts
4195 *
4196 * Provided with the starting and ending voltage, this function attempts to
4197 * calculate the time in microseconds required to rise or fall to this new
4198 * voltage.
4199 */
4200int regulator_set_voltage_time(struct regulator *regulator,
4201 int old_uV, int new_uV)
4202{
4203 struct regulator_dev *rdev = regulator->rdev;
4204 const struct regulator_ops *ops = rdev->desc->ops;
4205 int old_sel = -1;
4206 int new_sel = -1;
4207 int voltage;
4208 int i;
4209
4210 if (ops->set_voltage_time)
4211 return ops->set_voltage_time(rdev, old_uV, new_uV);
4212 else if (!ops->set_voltage_time_sel)
4213 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4214
4215 /* Currently requires operations to do this */
4216 if (!ops->list_voltage || !rdev->desc->n_voltages)
4217 return -EINVAL;
4218
4219 for (i = 0; i < rdev->desc->n_voltages; i++) {
4220 /* We only look for exact voltage matches here */
4221 if (i < rdev->desc->linear_min_sel)
4222 continue;
4223
4224 if (old_sel >= 0 && new_sel >= 0)
4225 break;
4226
4227 voltage = regulator_list_voltage(regulator, i);
4228 if (voltage < 0)
4229 return -EINVAL;
4230 if (voltage == 0)
4231 continue;
4232 if (voltage == old_uV)
4233 old_sel = i;
4234 if (voltage == new_uV)
4235 new_sel = i;
4236 }
4237
4238 if (old_sel < 0 || new_sel < 0)
4239 return -EINVAL;
4240
4241 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4242}
4243EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4244
4245/**
4246 * regulator_set_voltage_time_sel - get raise/fall time
4247 * @rdev: regulator source device
4248 * @old_selector: selector for starting voltage
4249 * @new_selector: selector for target voltage
4250 *
4251 * Provided with the starting and target voltage selectors, this function
4252 * returns time in microseconds required to rise or fall to this new voltage
4253 *
4254 * Drivers providing ramp_delay in regulation_constraints can use this as their
4255 * set_voltage_time_sel() operation.
4256 */
4257int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4258 unsigned int old_selector,
4259 unsigned int new_selector)
4260{
4261 int old_volt, new_volt;
4262
4263 /* sanity check */
4264 if (!rdev->desc->ops->list_voltage)
4265 return -EINVAL;
4266
4267 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4268 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4269
4270 if (rdev->desc->ops->set_voltage_time)
4271 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4272 new_volt);
4273 else
4274 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4275}
4276EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4277
4278int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4279{
4280 int ret;
4281
4282 regulator_lock(rdev);
4283
4284 if (!rdev->desc->ops->set_voltage &&
4285 !rdev->desc->ops->set_voltage_sel) {
4286 ret = -EINVAL;
4287 goto out;
4288 }
4289
4290 /* balance only, if regulator is coupled */
4291 if (rdev->coupling_desc.n_coupled > 1)
4292 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4293 else
4294 ret = -EOPNOTSUPP;
4295
4296out:
4297 regulator_unlock(rdev);
4298 return ret;
4299}
4300
4301/**
4302 * regulator_sync_voltage - re-apply last regulator output voltage
4303 * @regulator: regulator source
4304 *
4305 * Re-apply the last configured voltage. This is intended to be used
4306 * where some external control source the consumer is cooperating with
4307 * has caused the configured voltage to change.
4308 */
4309int regulator_sync_voltage(struct regulator *regulator)
4310{
4311 struct regulator_dev *rdev = regulator->rdev;
4312 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4313 int ret, min_uV, max_uV;
4314
4315 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4316 return 0;
4317
4318 regulator_lock(rdev);
4319
4320 if (!rdev->desc->ops->set_voltage &&
4321 !rdev->desc->ops->set_voltage_sel) {
4322 ret = -EINVAL;
4323 goto out;
4324 }
4325
4326 /* This is only going to work if we've had a voltage configured. */
4327 if (!voltage->min_uV && !voltage->max_uV) {
4328 ret = -EINVAL;
4329 goto out;
4330 }
4331
4332 min_uV = voltage->min_uV;
4333 max_uV = voltage->max_uV;
4334
4335 /* This should be a paranoia check... */
4336 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4337 if (ret < 0)
4338 goto out;
4339
4340 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4341 if (ret < 0)
4342 goto out;
4343
4344 /* balance only, if regulator is coupled */
4345 if (rdev->coupling_desc.n_coupled > 1)
4346 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4347 else
4348 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4349
4350out:
4351 regulator_unlock(rdev);
4352 return ret;
4353}
4354EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4355
4356int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4357{
4358 int sel, ret;
4359 bool bypassed;
4360
4361 if (rdev->desc->ops->get_bypass) {
4362 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4363 if (ret < 0)
4364 return ret;
4365 if (bypassed) {
4366 /* if bypassed the regulator must have a supply */
4367 if (!rdev->supply) {
4368 rdev_err(rdev,
4369 "bypassed regulator has no supply!\n");
4370 return -EPROBE_DEFER;
4371 }
4372
4373 return regulator_get_voltage_rdev(rdev->supply->rdev);
4374 }
4375 }
4376
4377 if (rdev->desc->ops->get_voltage_sel) {
4378 sel = rdev->desc->ops->get_voltage_sel(rdev);
4379 if (sel < 0)
4380 return sel;
4381 ret = rdev->desc->ops->list_voltage(rdev, sel);
4382 } else if (rdev->desc->ops->get_voltage) {
4383 ret = rdev->desc->ops->get_voltage(rdev);
4384 } else if (rdev->desc->ops->list_voltage) {
4385 ret = rdev->desc->ops->list_voltage(rdev, 0);
4386 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4387 ret = rdev->desc->fixed_uV;
4388 } else if (rdev->supply) {
4389 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4390 } else if (rdev->supply_name) {
4391 return -EPROBE_DEFER;
4392 } else {
4393 return -EINVAL;
4394 }
4395
4396 if (ret < 0)
4397 return ret;
4398 return ret - rdev->constraints->uV_offset;
4399}
4400EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4401
4402/**
4403 * regulator_get_voltage - get regulator output voltage
4404 * @regulator: regulator source
4405 *
4406 * This returns the current regulator voltage in uV.
4407 *
4408 * NOTE: If the regulator is disabled it will return the voltage value. This
4409 * function should not be used to determine regulator state.
4410 */
4411int regulator_get_voltage(struct regulator *regulator)
4412{
4413 struct ww_acquire_ctx ww_ctx;
4414 int ret;
4415
4416 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4417 ret = regulator_get_voltage_rdev(regulator->rdev);
4418 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4419
4420 return ret;
4421}
4422EXPORT_SYMBOL_GPL(regulator_get_voltage);
4423
4424/**
4425 * regulator_set_current_limit - set regulator output current limit
4426 * @regulator: regulator source
4427 * @min_uA: Minimum supported current in uA
4428 * @max_uA: Maximum supported current in uA
4429 *
4430 * Sets current sink to the desired output current. This can be set during
4431 * any regulator state. IOW, regulator can be disabled or enabled.
4432 *
4433 * If the regulator is enabled then the current will change to the new value
4434 * immediately otherwise if the regulator is disabled the regulator will
4435 * output at the new current when enabled.
4436 *
4437 * NOTE: Regulator system constraints must be set for this regulator before
4438 * calling this function otherwise this call will fail.
4439 */
4440int regulator_set_current_limit(struct regulator *regulator,
4441 int min_uA, int max_uA)
4442{
4443 struct regulator_dev *rdev = regulator->rdev;
4444 int ret;
4445
4446 regulator_lock(rdev);
4447
4448 /* sanity check */
4449 if (!rdev->desc->ops->set_current_limit) {
4450 ret = -EINVAL;
4451 goto out;
4452 }
4453
4454 /* constraints check */
4455 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4456 if (ret < 0)
4457 goto out;
4458
4459 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4460out:
4461 regulator_unlock(rdev);
4462 return ret;
4463}
4464EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4465
4466static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4467{
4468 /* sanity check */
4469 if (!rdev->desc->ops->get_current_limit)
4470 return -EINVAL;
4471
4472 return rdev->desc->ops->get_current_limit(rdev);
4473}
4474
4475static int _regulator_get_current_limit(struct regulator_dev *rdev)
4476{
4477 int ret;
4478
4479 regulator_lock(rdev);
4480 ret = _regulator_get_current_limit_unlocked(rdev);
4481 regulator_unlock(rdev);
4482
4483 return ret;
4484}
4485
4486/**
4487 * regulator_get_current_limit - get regulator output current
4488 * @regulator: regulator source
4489 *
4490 * This returns the current supplied by the specified current sink in uA.
4491 *
4492 * NOTE: If the regulator is disabled it will return the current value. This
4493 * function should not be used to determine regulator state.
4494 */
4495int regulator_get_current_limit(struct regulator *regulator)
4496{
4497 return _regulator_get_current_limit(regulator->rdev);
4498}
4499EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4500
4501/**
4502 * regulator_set_mode - set regulator operating mode
4503 * @regulator: regulator source
4504 * @mode: operating mode - one of the REGULATOR_MODE constants
4505 *
4506 * Set regulator operating mode to increase regulator efficiency or improve
4507 * regulation performance.
4508 *
4509 * NOTE: Regulator system constraints must be set for this regulator before
4510 * calling this function otherwise this call will fail.
4511 */
4512int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4513{
4514 struct regulator_dev *rdev = regulator->rdev;
4515 int ret;
4516 int regulator_curr_mode;
4517
4518 regulator_lock(rdev);
4519
4520 /* sanity check */
4521 if (!rdev->desc->ops->set_mode) {
4522 ret = -EINVAL;
4523 goto out;
4524 }
4525
4526 /* return if the same mode is requested */
4527 if (rdev->desc->ops->get_mode) {
4528 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4529 if (regulator_curr_mode == mode) {
4530 ret = 0;
4531 goto out;
4532 }
4533 }
4534
4535 /* constraints check */
4536 ret = regulator_mode_constrain(rdev, &mode);
4537 if (ret < 0)
4538 goto out;
4539
4540 ret = rdev->desc->ops->set_mode(rdev, mode);
4541out:
4542 regulator_unlock(rdev);
4543 return ret;
4544}
4545EXPORT_SYMBOL_GPL(regulator_set_mode);
4546
4547static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4548{
4549 /* sanity check */
4550 if (!rdev->desc->ops->get_mode)
4551 return -EINVAL;
4552
4553 return rdev->desc->ops->get_mode(rdev);
4554}
4555
4556static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4557{
4558 int ret;
4559
4560 regulator_lock(rdev);
4561 ret = _regulator_get_mode_unlocked(rdev);
4562 regulator_unlock(rdev);
4563
4564 return ret;
4565}
4566
4567/**
4568 * regulator_get_mode - get regulator operating mode
4569 * @regulator: regulator source
4570 *
4571 * Get the current regulator operating mode.
4572 */
4573unsigned int regulator_get_mode(struct regulator *regulator)
4574{
4575 return _regulator_get_mode(regulator->rdev);
4576}
4577EXPORT_SYMBOL_GPL(regulator_get_mode);
4578
4579static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4580{
4581 int ret = 0;
4582
4583 if (rdev->use_cached_err) {
4584 spin_lock(&rdev->err_lock);
4585 ret = rdev->cached_err;
4586 spin_unlock(&rdev->err_lock);
4587 }
4588 return ret;
4589}
4590
4591static int _regulator_get_error_flags(struct regulator_dev *rdev,
4592 unsigned int *flags)
4593{
4594 int cached_flags, ret = 0;
4595
4596 regulator_lock(rdev);
4597
4598 cached_flags = rdev_get_cached_err_flags(rdev);
4599
4600 if (rdev->desc->ops->get_error_flags)
4601 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4602 else if (!rdev->use_cached_err)
4603 ret = -EINVAL;
4604
4605 *flags |= cached_flags;
4606
4607 regulator_unlock(rdev);
4608
4609 return ret;
4610}
4611
4612/**
4613 * regulator_get_error_flags - get regulator error information
4614 * @regulator: regulator source
4615 * @flags: pointer to store error flags
4616 *
4617 * Get the current regulator error information.
4618 */
4619int regulator_get_error_flags(struct regulator *regulator,
4620 unsigned int *flags)
4621{
4622 return _regulator_get_error_flags(regulator->rdev, flags);
4623}
4624EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4625
4626/**
4627 * regulator_set_load - set regulator load
4628 * @regulator: regulator source
4629 * @uA_load: load current
4630 *
4631 * Notifies the regulator core of a new device load. This is then used by
4632 * DRMS (if enabled by constraints) to set the most efficient regulator
4633 * operating mode for the new regulator loading.
4634 *
4635 * Consumer devices notify their supply regulator of the maximum power
4636 * they will require (can be taken from device datasheet in the power
4637 * consumption tables) when they change operational status and hence power
4638 * state. Examples of operational state changes that can affect power
4639 * consumption are :-
4640 *
4641 * o Device is opened / closed.
4642 * o Device I/O is about to begin or has just finished.
4643 * o Device is idling in between work.
4644 *
4645 * This information is also exported via sysfs to userspace.
4646 *
4647 * DRMS will sum the total requested load on the regulator and change
4648 * to the most efficient operating mode if platform constraints allow.
4649 *
4650 * NOTE: when a regulator consumer requests to have a regulator
4651 * disabled then any load that consumer requested no longer counts
4652 * toward the total requested load. If the regulator is re-enabled
4653 * then the previously requested load will start counting again.
4654 *
4655 * If a regulator is an always-on regulator then an individual consumer's
4656 * load will still be removed if that consumer is fully disabled.
4657 *
4658 * On error a negative errno is returned.
4659 */
4660int regulator_set_load(struct regulator *regulator, int uA_load)
4661{
4662 struct regulator_dev *rdev = regulator->rdev;
4663 int old_uA_load;
4664 int ret = 0;
4665
4666 regulator_lock(rdev);
4667 old_uA_load = regulator->uA_load;
4668 regulator->uA_load = uA_load;
4669 if (regulator->enable_count && old_uA_load != uA_load) {
4670 ret = drms_uA_update(rdev);
4671 if (ret < 0)
4672 regulator->uA_load = old_uA_load;
4673 }
4674 regulator_unlock(rdev);
4675
4676 return ret;
4677}
4678EXPORT_SYMBOL_GPL(regulator_set_load);
4679
4680/**
4681 * regulator_allow_bypass - allow the regulator to go into bypass mode
4682 *
4683 * @regulator: Regulator to configure
4684 * @enable: enable or disable bypass mode
4685 *
4686 * Allow the regulator to go into bypass mode if all other consumers
4687 * for the regulator also enable bypass mode and the machine
4688 * constraints allow this. Bypass mode means that the regulator is
4689 * simply passing the input directly to the output with no regulation.
4690 */
4691int regulator_allow_bypass(struct regulator *regulator, bool enable)
4692{
4693 struct regulator_dev *rdev = regulator->rdev;
4694 const char *name = rdev_get_name(rdev);
4695 int ret = 0;
4696
4697 if (!rdev->desc->ops->set_bypass)
4698 return 0;
4699
4700 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4701 return 0;
4702
4703 regulator_lock(rdev);
4704
4705 if (enable && !regulator->bypass) {
4706 rdev->bypass_count++;
4707
4708 if (rdev->bypass_count == rdev->open_count) {
4709 trace_regulator_bypass_enable(name);
4710
4711 ret = rdev->desc->ops->set_bypass(rdev, enable);
4712 if (ret != 0)
4713 rdev->bypass_count--;
4714 else
4715 trace_regulator_bypass_enable_complete(name);
4716 }
4717
4718 } else if (!enable && regulator->bypass) {
4719 rdev->bypass_count--;
4720
4721 if (rdev->bypass_count != rdev->open_count) {
4722 trace_regulator_bypass_disable(name);
4723
4724 ret = rdev->desc->ops->set_bypass(rdev, enable);
4725 if (ret != 0)
4726 rdev->bypass_count++;
4727 else
4728 trace_regulator_bypass_disable_complete(name);
4729 }
4730 }
4731
4732 if (ret == 0)
4733 regulator->bypass = enable;
4734
4735 regulator_unlock(rdev);
4736
4737 return ret;
4738}
4739EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4740
4741/**
4742 * regulator_register_notifier - register regulator event notifier
4743 * @regulator: regulator source
4744 * @nb: notifier block
4745 *
4746 * Register notifier block to receive regulator events.
4747 */
4748int regulator_register_notifier(struct regulator *regulator,
4749 struct notifier_block *nb)
4750{
4751 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4752 nb);
4753}
4754EXPORT_SYMBOL_GPL(regulator_register_notifier);
4755
4756/**
4757 * regulator_unregister_notifier - unregister regulator event notifier
4758 * @regulator: regulator source
4759 * @nb: notifier block
4760 *
4761 * Unregister regulator event notifier block.
4762 */
4763int regulator_unregister_notifier(struct regulator *regulator,
4764 struct notifier_block *nb)
4765{
4766 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4767 nb);
4768}
4769EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4770
4771/* notify regulator consumers and downstream regulator consumers.
4772 * Note mutex must be held by caller.
4773 */
4774static int _notifier_call_chain(struct regulator_dev *rdev,
4775 unsigned long event, void *data)
4776{
4777 /* call rdev chain first */
4778 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4779}
4780
4781/**
4782 * regulator_bulk_get - get multiple regulator consumers
4783 *
4784 * @dev: Device to supply
4785 * @num_consumers: Number of consumers to register
4786 * @consumers: Configuration of consumers; clients are stored here.
4787 *
4788 * @return 0 on success, an errno on failure.
4789 *
4790 * This helper function allows drivers to get several regulator
4791 * consumers in one operation. If any of the regulators cannot be
4792 * acquired then any regulators that were allocated will be freed
4793 * before returning to the caller.
4794 */
4795int regulator_bulk_get(struct device *dev, int num_consumers,
4796 struct regulator_bulk_data *consumers)
4797{
4798 int i;
4799 int ret;
4800
4801 for (i = 0; i < num_consumers; i++)
4802 consumers[i].consumer = NULL;
4803
4804 for (i = 0; i < num_consumers; i++) {
4805 consumers[i].consumer = regulator_get(dev,
4806 consumers[i].supply);
4807 if (IS_ERR(consumers[i].consumer)) {
4808 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4809 "Failed to get supply '%s'",
4810 consumers[i].supply);
4811 consumers[i].consumer = NULL;
4812 goto err;
4813 }
4814
4815 if (consumers[i].init_load_uA > 0) {
4816 ret = regulator_set_load(consumers[i].consumer,
4817 consumers[i].init_load_uA);
4818 if (ret) {
4819 i++;
4820 goto err;
4821 }
4822 }
4823 }
4824
4825 return 0;
4826
4827err:
4828 while (--i >= 0)
4829 regulator_put(consumers[i].consumer);
4830
4831 return ret;
4832}
4833EXPORT_SYMBOL_GPL(regulator_bulk_get);
4834
4835static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4836{
4837 struct regulator_bulk_data *bulk = data;
4838
4839 bulk->ret = regulator_enable(bulk->consumer);
4840}
4841
4842/**
4843 * regulator_bulk_enable - enable multiple regulator consumers
4844 *
4845 * @num_consumers: Number of consumers
4846 * @consumers: Consumer data; clients are stored here.
4847 * @return 0 on success, an errno on failure
4848 *
4849 * This convenience API allows consumers to enable multiple regulator
4850 * clients in a single API call. If any consumers cannot be enabled
4851 * then any others that were enabled will be disabled again prior to
4852 * return.
4853 */
4854int regulator_bulk_enable(int num_consumers,
4855 struct regulator_bulk_data *consumers)
4856{
4857 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4858 int i;
4859 int ret = 0;
4860
4861 for (i = 0; i < num_consumers; i++) {
4862 async_schedule_domain(regulator_bulk_enable_async,
4863 &consumers[i], &async_domain);
4864 }
4865
4866 async_synchronize_full_domain(&async_domain);
4867
4868 /* If any consumer failed we need to unwind any that succeeded */
4869 for (i = 0; i < num_consumers; i++) {
4870 if (consumers[i].ret != 0) {
4871 ret = consumers[i].ret;
4872 goto err;
4873 }
4874 }
4875
4876 return 0;
4877
4878err:
4879 for (i = 0; i < num_consumers; i++) {
4880 if (consumers[i].ret < 0)
4881 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4882 ERR_PTR(consumers[i].ret));
4883 else
4884 regulator_disable(consumers[i].consumer);
4885 }
4886
4887 return ret;
4888}
4889EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4890
4891/**
4892 * regulator_bulk_disable - disable multiple regulator consumers
4893 *
4894 * @num_consumers: Number of consumers
4895 * @consumers: Consumer data; clients are stored here.
4896 * @return 0 on success, an errno on failure
4897 *
4898 * This convenience API allows consumers to disable multiple regulator
4899 * clients in a single API call. If any consumers cannot be disabled
4900 * then any others that were disabled will be enabled again prior to
4901 * return.
4902 */
4903int regulator_bulk_disable(int num_consumers,
4904 struct regulator_bulk_data *consumers)
4905{
4906 int i;
4907 int ret, r;
4908
4909 for (i = num_consumers - 1; i >= 0; --i) {
4910 ret = regulator_disable(consumers[i].consumer);
4911 if (ret != 0)
4912 goto err;
4913 }
4914
4915 return 0;
4916
4917err:
4918 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4919 for (++i; i < num_consumers; ++i) {
4920 r = regulator_enable(consumers[i].consumer);
4921 if (r != 0)
4922 pr_err("Failed to re-enable %s: %pe\n",
4923 consumers[i].supply, ERR_PTR(r));
4924 }
4925
4926 return ret;
4927}
4928EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4929
4930/**
4931 * regulator_bulk_force_disable - force disable multiple regulator consumers
4932 *
4933 * @num_consumers: Number of consumers
4934 * @consumers: Consumer data; clients are stored here.
4935 * @return 0 on success, an errno on failure
4936 *
4937 * This convenience API allows consumers to forcibly disable multiple regulator
4938 * clients in a single API call.
4939 * NOTE: This should be used for situations when device damage will
4940 * likely occur if the regulators are not disabled (e.g. over temp).
4941 * Although regulator_force_disable function call for some consumers can
4942 * return error numbers, the function is called for all consumers.
4943 */
4944int regulator_bulk_force_disable(int num_consumers,
4945 struct regulator_bulk_data *consumers)
4946{
4947 int i;
4948 int ret = 0;
4949
4950 for (i = 0; i < num_consumers; i++) {
4951 consumers[i].ret =
4952 regulator_force_disable(consumers[i].consumer);
4953
4954 /* Store first error for reporting */
4955 if (consumers[i].ret && !ret)
4956 ret = consumers[i].ret;
4957 }
4958
4959 return ret;
4960}
4961EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4962
4963/**
4964 * regulator_bulk_free - free multiple regulator consumers
4965 *
4966 * @num_consumers: Number of consumers
4967 * @consumers: Consumer data; clients are stored here.
4968 *
4969 * This convenience API allows consumers to free multiple regulator
4970 * clients in a single API call.
4971 */
4972void regulator_bulk_free(int num_consumers,
4973 struct regulator_bulk_data *consumers)
4974{
4975 int i;
4976
4977 for (i = 0; i < num_consumers; i++) {
4978 regulator_put(consumers[i].consumer);
4979 consumers[i].consumer = NULL;
4980 }
4981}
4982EXPORT_SYMBOL_GPL(regulator_bulk_free);
4983
4984/**
4985 * regulator_notifier_call_chain - call regulator event notifier
4986 * @rdev: regulator source
4987 * @event: notifier block
4988 * @data: callback-specific data.
4989 *
4990 * Called by regulator drivers to notify clients a regulator event has
4991 * occurred.
4992 */
4993int regulator_notifier_call_chain(struct regulator_dev *rdev,
4994 unsigned long event, void *data)
4995{
4996 _notifier_call_chain(rdev, event, data);
4997 return NOTIFY_DONE;
4998
4999}
5000EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5001
5002/**
5003 * regulator_mode_to_status - convert a regulator mode into a status
5004 *
5005 * @mode: Mode to convert
5006 *
5007 * Convert a regulator mode into a status.
5008 */
5009int regulator_mode_to_status(unsigned int mode)
5010{
5011 switch (mode) {
5012 case REGULATOR_MODE_FAST:
5013 return REGULATOR_STATUS_FAST;
5014 case REGULATOR_MODE_NORMAL:
5015 return REGULATOR_STATUS_NORMAL;
5016 case REGULATOR_MODE_IDLE:
5017 return REGULATOR_STATUS_IDLE;
5018 case REGULATOR_MODE_STANDBY:
5019 return REGULATOR_STATUS_STANDBY;
5020 default:
5021 return REGULATOR_STATUS_UNDEFINED;
5022 }
5023}
5024EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5025
5026static struct attribute *regulator_dev_attrs[] = {
5027 &dev_attr_name.attr,
5028 &dev_attr_num_users.attr,
5029 &dev_attr_type.attr,
5030 &dev_attr_microvolts.attr,
5031 &dev_attr_microamps.attr,
5032 &dev_attr_opmode.attr,
5033 &dev_attr_state.attr,
5034 &dev_attr_status.attr,
5035 &dev_attr_bypass.attr,
5036 &dev_attr_requested_microamps.attr,
5037 &dev_attr_min_microvolts.attr,
5038 &dev_attr_max_microvolts.attr,
5039 &dev_attr_min_microamps.attr,
5040 &dev_attr_max_microamps.attr,
5041 &dev_attr_under_voltage.attr,
5042 &dev_attr_over_current.attr,
5043 &dev_attr_regulation_out.attr,
5044 &dev_attr_fail.attr,
5045 &dev_attr_over_temp.attr,
5046 &dev_attr_under_voltage_warn.attr,
5047 &dev_attr_over_current_warn.attr,
5048 &dev_attr_over_voltage_warn.attr,
5049 &dev_attr_over_temp_warn.attr,
5050 &dev_attr_suspend_standby_state.attr,
5051 &dev_attr_suspend_mem_state.attr,
5052 &dev_attr_suspend_disk_state.attr,
5053 &dev_attr_suspend_standby_microvolts.attr,
5054 &dev_attr_suspend_mem_microvolts.attr,
5055 &dev_attr_suspend_disk_microvolts.attr,
5056 &dev_attr_suspend_standby_mode.attr,
5057 &dev_attr_suspend_mem_mode.attr,
5058 &dev_attr_suspend_disk_mode.attr,
5059 NULL
5060};
5061
5062/*
5063 * To avoid cluttering sysfs (and memory) with useless state, only
5064 * create attributes that can be meaningfully displayed.
5065 */
5066static umode_t regulator_attr_is_visible(struct kobject *kobj,
5067 struct attribute *attr, int idx)
5068{
5069 struct device *dev = kobj_to_dev(kobj);
5070 struct regulator_dev *rdev = dev_to_rdev(dev);
5071 const struct regulator_ops *ops = rdev->desc->ops;
5072 umode_t mode = attr->mode;
5073
5074 /* these three are always present */
5075 if (attr == &dev_attr_name.attr ||
5076 attr == &dev_attr_num_users.attr ||
5077 attr == &dev_attr_type.attr)
5078 return mode;
5079
5080 /* some attributes need specific methods to be displayed */
5081 if (attr == &dev_attr_microvolts.attr) {
5082 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5083 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5084 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5085 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5086 return mode;
5087 return 0;
5088 }
5089
5090 if (attr == &dev_attr_microamps.attr)
5091 return ops->get_current_limit ? mode : 0;
5092
5093 if (attr == &dev_attr_opmode.attr)
5094 return ops->get_mode ? mode : 0;
5095
5096 if (attr == &dev_attr_state.attr)
5097 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5098
5099 if (attr == &dev_attr_status.attr)
5100 return ops->get_status ? mode : 0;
5101
5102 if (attr == &dev_attr_bypass.attr)
5103 return ops->get_bypass ? mode : 0;
5104
5105 if (attr == &dev_attr_under_voltage.attr ||
5106 attr == &dev_attr_over_current.attr ||
5107 attr == &dev_attr_regulation_out.attr ||
5108 attr == &dev_attr_fail.attr ||
5109 attr == &dev_attr_over_temp.attr ||
5110 attr == &dev_attr_under_voltage_warn.attr ||
5111 attr == &dev_attr_over_current_warn.attr ||
5112 attr == &dev_attr_over_voltage_warn.attr ||
5113 attr == &dev_attr_over_temp_warn.attr)
5114 return ops->get_error_flags ? mode : 0;
5115
5116 /* constraints need specific supporting methods */
5117 if (attr == &dev_attr_min_microvolts.attr ||
5118 attr == &dev_attr_max_microvolts.attr)
5119 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5120
5121 if (attr == &dev_attr_min_microamps.attr ||
5122 attr == &dev_attr_max_microamps.attr)
5123 return ops->set_current_limit ? mode : 0;
5124
5125 if (attr == &dev_attr_suspend_standby_state.attr ||
5126 attr == &dev_attr_suspend_mem_state.attr ||
5127 attr == &dev_attr_suspend_disk_state.attr)
5128 return mode;
5129
5130 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5131 attr == &dev_attr_suspend_mem_microvolts.attr ||
5132 attr == &dev_attr_suspend_disk_microvolts.attr)
5133 return ops->set_suspend_voltage ? mode : 0;
5134
5135 if (attr == &dev_attr_suspend_standby_mode.attr ||
5136 attr == &dev_attr_suspend_mem_mode.attr ||
5137 attr == &dev_attr_suspend_disk_mode.attr)
5138 return ops->set_suspend_mode ? mode : 0;
5139
5140 return mode;
5141}
5142
5143static const struct attribute_group regulator_dev_group = {
5144 .attrs = regulator_dev_attrs,
5145 .is_visible = regulator_attr_is_visible,
5146};
5147
5148static const struct attribute_group *regulator_dev_groups[] = {
5149 ®ulator_dev_group,
5150 NULL
5151};
5152
5153static void regulator_dev_release(struct device *dev)
5154{
5155 struct regulator_dev *rdev = dev_get_drvdata(dev);
5156
5157 kfree(rdev->constraints);
5158 of_node_put(rdev->dev.of_node);
5159 kfree(rdev);
5160}
5161
5162static void rdev_init_debugfs(struct regulator_dev *rdev)
5163{
5164 struct device *parent = rdev->dev.parent;
5165 const char *rname = rdev_get_name(rdev);
5166 char name[NAME_MAX];
5167
5168 /* Avoid duplicate debugfs directory names */
5169 if (parent && rname == rdev->desc->name) {
5170 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5171 rname);
5172 rname = name;
5173 }
5174
5175 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5176 if (!rdev->debugfs) {
5177 rdev_warn(rdev, "Failed to create debugfs directory\n");
5178 return;
5179 }
5180
5181 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5182 &rdev->use_count);
5183 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5184 &rdev->open_count);
5185 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5186 &rdev->bypass_count);
5187}
5188
5189static int regulator_register_resolve_supply(struct device *dev, void *data)
5190{
5191 struct regulator_dev *rdev = dev_to_rdev(dev);
5192
5193 if (regulator_resolve_supply(rdev))
5194 rdev_dbg(rdev, "unable to resolve supply\n");
5195
5196 return 0;
5197}
5198
5199int regulator_coupler_register(struct regulator_coupler *coupler)
5200{
5201 mutex_lock(®ulator_list_mutex);
5202 list_add_tail(&coupler->list, ®ulator_coupler_list);
5203 mutex_unlock(®ulator_list_mutex);
5204
5205 return 0;
5206}
5207
5208static struct regulator_coupler *
5209regulator_find_coupler(struct regulator_dev *rdev)
5210{
5211 struct regulator_coupler *coupler;
5212 int err;
5213
5214 /*
5215 * Note that regulators are appended to the list and the generic
5216 * coupler is registered first, hence it will be attached at last
5217 * if nobody cared.
5218 */
5219 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5220 err = coupler->attach_regulator(coupler, rdev);
5221 if (!err) {
5222 if (!coupler->balance_voltage &&
5223 rdev->coupling_desc.n_coupled > 2)
5224 goto err_unsupported;
5225
5226 return coupler;
5227 }
5228
5229 if (err < 0)
5230 return ERR_PTR(err);
5231
5232 if (err == 1)
5233 continue;
5234
5235 break;
5236 }
5237
5238 return ERR_PTR(-EINVAL);
5239
5240err_unsupported:
5241 if (coupler->detach_regulator)
5242 coupler->detach_regulator(coupler, rdev);
5243
5244 rdev_err(rdev,
5245 "Voltage balancing for multiple regulator couples is unimplemented\n");
5246
5247 return ERR_PTR(-EPERM);
5248}
5249
5250static void regulator_resolve_coupling(struct regulator_dev *rdev)
5251{
5252 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5253 struct coupling_desc *c_desc = &rdev->coupling_desc;
5254 int n_coupled = c_desc->n_coupled;
5255 struct regulator_dev *c_rdev;
5256 int i;
5257
5258 for (i = 1; i < n_coupled; i++) {
5259 /* already resolved */
5260 if (c_desc->coupled_rdevs[i])
5261 continue;
5262
5263 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5264
5265 if (!c_rdev)
5266 continue;
5267
5268 if (c_rdev->coupling_desc.coupler != coupler) {
5269 rdev_err(rdev, "coupler mismatch with %s\n",
5270 rdev_get_name(c_rdev));
5271 return;
5272 }
5273
5274 c_desc->coupled_rdevs[i] = c_rdev;
5275 c_desc->n_resolved++;
5276
5277 regulator_resolve_coupling(c_rdev);
5278 }
5279}
5280
5281static void regulator_remove_coupling(struct regulator_dev *rdev)
5282{
5283 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5284 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5285 struct regulator_dev *__c_rdev, *c_rdev;
5286 unsigned int __n_coupled, n_coupled;
5287 int i, k;
5288 int err;
5289
5290 n_coupled = c_desc->n_coupled;
5291
5292 for (i = 1; i < n_coupled; i++) {
5293 c_rdev = c_desc->coupled_rdevs[i];
5294
5295 if (!c_rdev)
5296 continue;
5297
5298 regulator_lock(c_rdev);
5299
5300 __c_desc = &c_rdev->coupling_desc;
5301 __n_coupled = __c_desc->n_coupled;
5302
5303 for (k = 1; k < __n_coupled; k++) {
5304 __c_rdev = __c_desc->coupled_rdevs[k];
5305
5306 if (__c_rdev == rdev) {
5307 __c_desc->coupled_rdevs[k] = NULL;
5308 __c_desc->n_resolved--;
5309 break;
5310 }
5311 }
5312
5313 regulator_unlock(c_rdev);
5314
5315 c_desc->coupled_rdevs[i] = NULL;
5316 c_desc->n_resolved--;
5317 }
5318
5319 if (coupler && coupler->detach_regulator) {
5320 err = coupler->detach_regulator(coupler, rdev);
5321 if (err)
5322 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5323 ERR_PTR(err));
5324 }
5325
5326 kfree(rdev->coupling_desc.coupled_rdevs);
5327 rdev->coupling_desc.coupled_rdevs = NULL;
5328}
5329
5330static int regulator_init_coupling(struct regulator_dev *rdev)
5331{
5332 struct regulator_dev **coupled;
5333 int err, n_phandles;
5334
5335 if (!IS_ENABLED(CONFIG_OF))
5336 n_phandles = 0;
5337 else
5338 n_phandles = of_get_n_coupled(rdev);
5339
5340 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5341 if (!coupled)
5342 return -ENOMEM;
5343
5344 rdev->coupling_desc.coupled_rdevs = coupled;
5345
5346 /*
5347 * Every regulator should always have coupling descriptor filled with
5348 * at least pointer to itself.
5349 */
5350 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5351 rdev->coupling_desc.n_coupled = n_phandles + 1;
5352 rdev->coupling_desc.n_resolved++;
5353
5354 /* regulator isn't coupled */
5355 if (n_phandles == 0)
5356 return 0;
5357
5358 if (!of_check_coupling_data(rdev))
5359 return -EPERM;
5360
5361 mutex_lock(®ulator_list_mutex);
5362 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5363 mutex_unlock(®ulator_list_mutex);
5364
5365 if (IS_ERR(rdev->coupling_desc.coupler)) {
5366 err = PTR_ERR(rdev->coupling_desc.coupler);
5367 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5368 return err;
5369 }
5370
5371 return 0;
5372}
5373
5374static int generic_coupler_attach(struct regulator_coupler *coupler,
5375 struct regulator_dev *rdev)
5376{
5377 if (rdev->coupling_desc.n_coupled > 2) {
5378 rdev_err(rdev,
5379 "Voltage balancing for multiple regulator couples is unimplemented\n");
5380 return -EPERM;
5381 }
5382
5383 if (!rdev->constraints->always_on) {
5384 rdev_err(rdev,
5385 "Coupling of a non always-on regulator is unimplemented\n");
5386 return -ENOTSUPP;
5387 }
5388
5389 return 0;
5390}
5391
5392static struct regulator_coupler generic_regulator_coupler = {
5393 .attach_regulator = generic_coupler_attach,
5394};
5395
5396/**
5397 * regulator_register - register regulator
5398 * @regulator_desc: regulator to register
5399 * @cfg: runtime configuration for regulator
5400 *
5401 * Called by regulator drivers to register a regulator.
5402 * Returns a valid pointer to struct regulator_dev on success
5403 * or an ERR_PTR() on error.
5404 */
5405struct regulator_dev *
5406regulator_register(const struct regulator_desc *regulator_desc,
5407 const struct regulator_config *cfg)
5408{
5409 const struct regulator_init_data *init_data;
5410 struct regulator_config *config = NULL;
5411 static atomic_t regulator_no = ATOMIC_INIT(-1);
5412 struct regulator_dev *rdev;
5413 bool dangling_cfg_gpiod = false;
5414 bool dangling_of_gpiod = false;
5415 struct device *dev;
5416 int ret, i;
5417 bool resolved_early = false;
5418
5419 if (cfg == NULL)
5420 return ERR_PTR(-EINVAL);
5421 if (cfg->ena_gpiod)
5422 dangling_cfg_gpiod = true;
5423 if (regulator_desc == NULL) {
5424 ret = -EINVAL;
5425 goto rinse;
5426 }
5427
5428 dev = cfg->dev;
5429 WARN_ON(!dev);
5430
5431 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5432 ret = -EINVAL;
5433 goto rinse;
5434 }
5435
5436 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5437 regulator_desc->type != REGULATOR_CURRENT) {
5438 ret = -EINVAL;
5439 goto rinse;
5440 }
5441
5442 /* Only one of each should be implemented */
5443 WARN_ON(regulator_desc->ops->get_voltage &&
5444 regulator_desc->ops->get_voltage_sel);
5445 WARN_ON(regulator_desc->ops->set_voltage &&
5446 regulator_desc->ops->set_voltage_sel);
5447
5448 /* If we're using selectors we must implement list_voltage. */
5449 if (regulator_desc->ops->get_voltage_sel &&
5450 !regulator_desc->ops->list_voltage) {
5451 ret = -EINVAL;
5452 goto rinse;
5453 }
5454 if (regulator_desc->ops->set_voltage_sel &&
5455 !regulator_desc->ops->list_voltage) {
5456 ret = -EINVAL;
5457 goto rinse;
5458 }
5459
5460 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5461 if (rdev == NULL) {
5462 ret = -ENOMEM;
5463 goto rinse;
5464 }
5465 device_initialize(&rdev->dev);
5466 spin_lock_init(&rdev->err_lock);
5467
5468 /*
5469 * Duplicate the config so the driver could override it after
5470 * parsing init data.
5471 */
5472 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5473 if (config == NULL) {
5474 ret = -ENOMEM;
5475 goto clean;
5476 }
5477
5478 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5479 &rdev->dev.of_node);
5480
5481 /*
5482 * Sometimes not all resources are probed already so we need to take
5483 * that into account. This happens most the time if the ena_gpiod comes
5484 * from a gpio extender or something else.
5485 */
5486 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5487 ret = -EPROBE_DEFER;
5488 goto clean;
5489 }
5490
5491 /*
5492 * We need to keep track of any GPIO descriptor coming from the
5493 * device tree until we have handled it over to the core. If the
5494 * config that was passed in to this function DOES NOT contain
5495 * a descriptor, and the config after this call DOES contain
5496 * a descriptor, we definitely got one from parsing the device
5497 * tree.
5498 */
5499 if (!cfg->ena_gpiod && config->ena_gpiod)
5500 dangling_of_gpiod = true;
5501 if (!init_data) {
5502 init_data = config->init_data;
5503 rdev->dev.of_node = of_node_get(config->of_node);
5504 }
5505
5506 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5507 rdev->reg_data = config->driver_data;
5508 rdev->owner = regulator_desc->owner;
5509 rdev->desc = regulator_desc;
5510 if (config->regmap)
5511 rdev->regmap = config->regmap;
5512 else if (dev_get_regmap(dev, NULL))
5513 rdev->regmap = dev_get_regmap(dev, NULL);
5514 else if (dev->parent)
5515 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5516 INIT_LIST_HEAD(&rdev->consumer_list);
5517 INIT_LIST_HEAD(&rdev->list);
5518 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5519 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5520
5521 if (init_data && init_data->supply_regulator)
5522 rdev->supply_name = init_data->supply_regulator;
5523 else if (regulator_desc->supply_name)
5524 rdev->supply_name = regulator_desc->supply_name;
5525
5526 /* register with sysfs */
5527 rdev->dev.class = ®ulator_class;
5528 rdev->dev.parent = dev;
5529 dev_set_name(&rdev->dev, "regulator.%lu",
5530 (unsigned long) atomic_inc_return(®ulator_no));
5531 dev_set_drvdata(&rdev->dev, rdev);
5532
5533 /* set regulator constraints */
5534 if (init_data)
5535 rdev->constraints = kmemdup(&init_data->constraints,
5536 sizeof(*rdev->constraints),
5537 GFP_KERNEL);
5538 else
5539 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5540 GFP_KERNEL);
5541 if (!rdev->constraints) {
5542 ret = -ENOMEM;
5543 goto wash;
5544 }
5545
5546 if ((rdev->supply_name && !rdev->supply) &&
5547 (rdev->constraints->always_on ||
5548 rdev->constraints->boot_on)) {
5549 ret = regulator_resolve_supply(rdev);
5550 if (ret)
5551 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5552 ERR_PTR(ret));
5553
5554 resolved_early = true;
5555 }
5556
5557 /* perform any regulator specific init */
5558 if (init_data && init_data->regulator_init) {
5559 ret = init_data->regulator_init(rdev->reg_data);
5560 if (ret < 0)
5561 goto wash;
5562 }
5563
5564 if (config->ena_gpiod) {
5565 ret = regulator_ena_gpio_request(rdev, config);
5566 if (ret != 0) {
5567 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5568 ERR_PTR(ret));
5569 goto wash;
5570 }
5571 /* The regulator core took over the GPIO descriptor */
5572 dangling_cfg_gpiod = false;
5573 dangling_of_gpiod = false;
5574 }
5575
5576 ret = set_machine_constraints(rdev);
5577 if (ret == -EPROBE_DEFER && !resolved_early) {
5578 /* Regulator might be in bypass mode and so needs its supply
5579 * to set the constraints
5580 */
5581 /* FIXME: this currently triggers a chicken-and-egg problem
5582 * when creating -SUPPLY symlink in sysfs to a regulator
5583 * that is just being created
5584 */
5585 rdev_dbg(rdev, "will resolve supply early: %s\n",
5586 rdev->supply_name);
5587 ret = regulator_resolve_supply(rdev);
5588 if (!ret)
5589 ret = set_machine_constraints(rdev);
5590 else
5591 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5592 ERR_PTR(ret));
5593 }
5594 if (ret < 0)
5595 goto wash;
5596
5597 ret = regulator_init_coupling(rdev);
5598 if (ret < 0)
5599 goto wash;
5600
5601 /* add consumers devices */
5602 if (init_data) {
5603 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5604 ret = set_consumer_device_supply(rdev,
5605 init_data->consumer_supplies[i].dev_name,
5606 init_data->consumer_supplies[i].supply);
5607 if (ret < 0) {
5608 dev_err(dev, "Failed to set supply %s\n",
5609 init_data->consumer_supplies[i].supply);
5610 goto unset_supplies;
5611 }
5612 }
5613 }
5614
5615 if (!rdev->desc->ops->get_voltage &&
5616 !rdev->desc->ops->list_voltage &&
5617 !rdev->desc->fixed_uV)
5618 rdev->is_switch = true;
5619
5620 ret = device_add(&rdev->dev);
5621 if (ret != 0)
5622 goto unset_supplies;
5623
5624 rdev_init_debugfs(rdev);
5625
5626 /* try to resolve regulators coupling since a new one was registered */
5627 mutex_lock(®ulator_list_mutex);
5628 regulator_resolve_coupling(rdev);
5629 mutex_unlock(®ulator_list_mutex);
5630
5631 /* try to resolve regulators supply since a new one was registered */
5632 class_for_each_device(®ulator_class, NULL, NULL,
5633 regulator_register_resolve_supply);
5634 kfree(config);
5635 return rdev;
5636
5637unset_supplies:
5638 mutex_lock(®ulator_list_mutex);
5639 unset_regulator_supplies(rdev);
5640 regulator_remove_coupling(rdev);
5641 mutex_unlock(®ulator_list_mutex);
5642wash:
5643 kfree(rdev->coupling_desc.coupled_rdevs);
5644 mutex_lock(®ulator_list_mutex);
5645 regulator_ena_gpio_free(rdev);
5646 mutex_unlock(®ulator_list_mutex);
5647clean:
5648 if (dangling_of_gpiod)
5649 gpiod_put(config->ena_gpiod);
5650 kfree(config);
5651 put_device(&rdev->dev);
5652rinse:
5653 if (dangling_cfg_gpiod)
5654 gpiod_put(cfg->ena_gpiod);
5655 return ERR_PTR(ret);
5656}
5657EXPORT_SYMBOL_GPL(regulator_register);
5658
5659/**
5660 * regulator_unregister - unregister regulator
5661 * @rdev: regulator to unregister
5662 *
5663 * Called by regulator drivers to unregister a regulator.
5664 */
5665void regulator_unregister(struct regulator_dev *rdev)
5666{
5667 if (rdev == NULL)
5668 return;
5669
5670 if (rdev->supply) {
5671 while (rdev->use_count--)
5672 regulator_disable(rdev->supply);
5673 regulator_put(rdev->supply);
5674 }
5675
5676 flush_work(&rdev->disable_work.work);
5677
5678 mutex_lock(®ulator_list_mutex);
5679
5680 debugfs_remove_recursive(rdev->debugfs);
5681 WARN_ON(rdev->open_count);
5682 regulator_remove_coupling(rdev);
5683 unset_regulator_supplies(rdev);
5684 list_del(&rdev->list);
5685 regulator_ena_gpio_free(rdev);
5686 device_unregister(&rdev->dev);
5687
5688 mutex_unlock(®ulator_list_mutex);
5689}
5690EXPORT_SYMBOL_GPL(regulator_unregister);
5691
5692#ifdef CONFIG_SUSPEND
5693/**
5694 * regulator_suspend - prepare regulators for system wide suspend
5695 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5696 *
5697 * Configure each regulator with it's suspend operating parameters for state.
5698 */
5699static int regulator_suspend(struct device *dev)
5700{
5701 struct regulator_dev *rdev = dev_to_rdev(dev);
5702 suspend_state_t state = pm_suspend_target_state;
5703 int ret;
5704 const struct regulator_state *rstate;
5705
5706 rstate = regulator_get_suspend_state_check(rdev, state);
5707 if (!rstate)
5708 return 0;
5709
5710 regulator_lock(rdev);
5711 ret = __suspend_set_state(rdev, rstate);
5712 regulator_unlock(rdev);
5713
5714 return ret;
5715}
5716
5717static int regulator_resume(struct device *dev)
5718{
5719 suspend_state_t state = pm_suspend_target_state;
5720 struct regulator_dev *rdev = dev_to_rdev(dev);
5721 struct regulator_state *rstate;
5722 int ret = 0;
5723
5724 rstate = regulator_get_suspend_state(rdev, state);
5725 if (rstate == NULL)
5726 return 0;
5727
5728 /* Avoid grabbing the lock if we don't need to */
5729 if (!rdev->desc->ops->resume)
5730 return 0;
5731
5732 regulator_lock(rdev);
5733
5734 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5735 rstate->enabled == DISABLE_IN_SUSPEND)
5736 ret = rdev->desc->ops->resume(rdev);
5737
5738 regulator_unlock(rdev);
5739
5740 return ret;
5741}
5742#else /* !CONFIG_SUSPEND */
5743
5744#define regulator_suspend NULL
5745#define regulator_resume NULL
5746
5747#endif /* !CONFIG_SUSPEND */
5748
5749#ifdef CONFIG_PM
5750static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5751 .suspend = regulator_suspend,
5752 .resume = regulator_resume,
5753};
5754#endif
5755
5756struct class regulator_class = {
5757 .name = "regulator",
5758 .dev_release = regulator_dev_release,
5759 .dev_groups = regulator_dev_groups,
5760#ifdef CONFIG_PM
5761 .pm = ®ulator_pm_ops,
5762#endif
5763};
5764/**
5765 * regulator_has_full_constraints - the system has fully specified constraints
5766 *
5767 * Calling this function will cause the regulator API to disable all
5768 * regulators which have a zero use count and don't have an always_on
5769 * constraint in a late_initcall.
5770 *
5771 * The intention is that this will become the default behaviour in a
5772 * future kernel release so users are encouraged to use this facility
5773 * now.
5774 */
5775void regulator_has_full_constraints(void)
5776{
5777 has_full_constraints = 1;
5778}
5779EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5780
5781/**
5782 * rdev_get_drvdata - get rdev regulator driver data
5783 * @rdev: regulator
5784 *
5785 * Get rdev regulator driver private data. This call can be used in the
5786 * regulator driver context.
5787 */
5788void *rdev_get_drvdata(struct regulator_dev *rdev)
5789{
5790 return rdev->reg_data;
5791}
5792EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5793
5794/**
5795 * regulator_get_drvdata - get regulator driver data
5796 * @regulator: regulator
5797 *
5798 * Get regulator driver private data. This call can be used in the consumer
5799 * driver context when non API regulator specific functions need to be called.
5800 */
5801void *regulator_get_drvdata(struct regulator *regulator)
5802{
5803 return regulator->rdev->reg_data;
5804}
5805EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5806
5807/**
5808 * regulator_set_drvdata - set regulator driver data
5809 * @regulator: regulator
5810 * @data: data
5811 */
5812void regulator_set_drvdata(struct regulator *regulator, void *data)
5813{
5814 regulator->rdev->reg_data = data;
5815}
5816EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5817
5818/**
5819 * rdev_get_id - get regulator ID
5820 * @rdev: regulator
5821 */
5822int rdev_get_id(struct regulator_dev *rdev)
5823{
5824 return rdev->desc->id;
5825}
5826EXPORT_SYMBOL_GPL(rdev_get_id);
5827
5828struct device *rdev_get_dev(struct regulator_dev *rdev)
5829{
5830 return &rdev->dev;
5831}
5832EXPORT_SYMBOL_GPL(rdev_get_dev);
5833
5834struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5835{
5836 return rdev->regmap;
5837}
5838EXPORT_SYMBOL_GPL(rdev_get_regmap);
5839
5840void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5841{
5842 return reg_init_data->driver_data;
5843}
5844EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5845
5846#ifdef CONFIG_DEBUG_FS
5847static int supply_map_show(struct seq_file *sf, void *data)
5848{
5849 struct regulator_map *map;
5850
5851 list_for_each_entry(map, ®ulator_map_list, list) {
5852 seq_printf(sf, "%s -> %s.%s\n",
5853 rdev_get_name(map->regulator), map->dev_name,
5854 map->supply);
5855 }
5856
5857 return 0;
5858}
5859DEFINE_SHOW_ATTRIBUTE(supply_map);
5860
5861struct summary_data {
5862 struct seq_file *s;
5863 struct regulator_dev *parent;
5864 int level;
5865};
5866
5867static void regulator_summary_show_subtree(struct seq_file *s,
5868 struct regulator_dev *rdev,
5869 int level);
5870
5871static int regulator_summary_show_children(struct device *dev, void *data)
5872{
5873 struct regulator_dev *rdev = dev_to_rdev(dev);
5874 struct summary_data *summary_data = data;
5875
5876 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5877 regulator_summary_show_subtree(summary_data->s, rdev,
5878 summary_data->level + 1);
5879
5880 return 0;
5881}
5882
5883static void regulator_summary_show_subtree(struct seq_file *s,
5884 struct regulator_dev *rdev,
5885 int level)
5886{
5887 struct regulation_constraints *c;
5888 struct regulator *consumer;
5889 struct summary_data summary_data;
5890 unsigned int opmode;
5891
5892 if (!rdev)
5893 return;
5894
5895 opmode = _regulator_get_mode_unlocked(rdev);
5896 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5897 level * 3 + 1, "",
5898 30 - level * 3, rdev_get_name(rdev),
5899 rdev->use_count, rdev->open_count, rdev->bypass_count,
5900 regulator_opmode_to_str(opmode));
5901
5902 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5903 seq_printf(s, "%5dmA ",
5904 _regulator_get_current_limit_unlocked(rdev) / 1000);
5905
5906 c = rdev->constraints;
5907 if (c) {
5908 switch (rdev->desc->type) {
5909 case REGULATOR_VOLTAGE:
5910 seq_printf(s, "%5dmV %5dmV ",
5911 c->min_uV / 1000, c->max_uV / 1000);
5912 break;
5913 case REGULATOR_CURRENT:
5914 seq_printf(s, "%5dmA %5dmA ",
5915 c->min_uA / 1000, c->max_uA / 1000);
5916 break;
5917 }
5918 }
5919
5920 seq_puts(s, "\n");
5921
5922 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5923 if (consumer->dev && consumer->dev->class == ®ulator_class)
5924 continue;
5925
5926 seq_printf(s, "%*s%-*s ",
5927 (level + 1) * 3 + 1, "",
5928 30 - (level + 1) * 3,
5929 consumer->supply_name ? consumer->supply_name :
5930 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5931
5932 switch (rdev->desc->type) {
5933 case REGULATOR_VOLTAGE:
5934 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5935 consumer->enable_count,
5936 consumer->uA_load / 1000,
5937 consumer->uA_load && !consumer->enable_count ?
5938 '*' : ' ',
5939 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5940 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5941 break;
5942 case REGULATOR_CURRENT:
5943 break;
5944 }
5945
5946 seq_puts(s, "\n");
5947 }
5948
5949 summary_data.s = s;
5950 summary_data.level = level;
5951 summary_data.parent = rdev;
5952
5953 class_for_each_device(®ulator_class, NULL, &summary_data,
5954 regulator_summary_show_children);
5955}
5956
5957struct summary_lock_data {
5958 struct ww_acquire_ctx *ww_ctx;
5959 struct regulator_dev **new_contended_rdev;
5960 struct regulator_dev **old_contended_rdev;
5961};
5962
5963static int regulator_summary_lock_one(struct device *dev, void *data)
5964{
5965 struct regulator_dev *rdev = dev_to_rdev(dev);
5966 struct summary_lock_data *lock_data = data;
5967 int ret = 0;
5968
5969 if (rdev != *lock_data->old_contended_rdev) {
5970 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5971
5972 if (ret == -EDEADLK)
5973 *lock_data->new_contended_rdev = rdev;
5974 else
5975 WARN_ON_ONCE(ret);
5976 } else {
5977 *lock_data->old_contended_rdev = NULL;
5978 }
5979
5980 return ret;
5981}
5982
5983static int regulator_summary_unlock_one(struct device *dev, void *data)
5984{
5985 struct regulator_dev *rdev = dev_to_rdev(dev);
5986 struct summary_lock_data *lock_data = data;
5987
5988 if (lock_data) {
5989 if (rdev == *lock_data->new_contended_rdev)
5990 return -EDEADLK;
5991 }
5992
5993 regulator_unlock(rdev);
5994
5995 return 0;
5996}
5997
5998static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5999 struct regulator_dev **new_contended_rdev,
6000 struct regulator_dev **old_contended_rdev)
6001{
6002 struct summary_lock_data lock_data;
6003 int ret;
6004
6005 lock_data.ww_ctx = ww_ctx;
6006 lock_data.new_contended_rdev = new_contended_rdev;
6007 lock_data.old_contended_rdev = old_contended_rdev;
6008
6009 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6010 regulator_summary_lock_one);
6011 if (ret)
6012 class_for_each_device(®ulator_class, NULL, &lock_data,
6013 regulator_summary_unlock_one);
6014
6015 return ret;
6016}
6017
6018static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6019{
6020 struct regulator_dev *new_contended_rdev = NULL;
6021 struct regulator_dev *old_contended_rdev = NULL;
6022 int err;
6023
6024 mutex_lock(®ulator_list_mutex);
6025
6026 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6027
6028 do {
6029 if (new_contended_rdev) {
6030 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6031 old_contended_rdev = new_contended_rdev;
6032 old_contended_rdev->ref_cnt++;
6033 }
6034
6035 err = regulator_summary_lock_all(ww_ctx,
6036 &new_contended_rdev,
6037 &old_contended_rdev);
6038
6039 if (old_contended_rdev)
6040 regulator_unlock(old_contended_rdev);
6041
6042 } while (err == -EDEADLK);
6043
6044 ww_acquire_done(ww_ctx);
6045}
6046
6047static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6048{
6049 class_for_each_device(®ulator_class, NULL, NULL,
6050 regulator_summary_unlock_one);
6051 ww_acquire_fini(ww_ctx);
6052
6053 mutex_unlock(®ulator_list_mutex);
6054}
6055
6056static int regulator_summary_show_roots(struct device *dev, void *data)
6057{
6058 struct regulator_dev *rdev = dev_to_rdev(dev);
6059 struct seq_file *s = data;
6060
6061 if (!rdev->supply)
6062 regulator_summary_show_subtree(s, rdev, 0);
6063
6064 return 0;
6065}
6066
6067static int regulator_summary_show(struct seq_file *s, void *data)
6068{
6069 struct ww_acquire_ctx ww_ctx;
6070
6071 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6072 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6073
6074 regulator_summary_lock(&ww_ctx);
6075
6076 class_for_each_device(®ulator_class, NULL, s,
6077 regulator_summary_show_roots);
6078
6079 regulator_summary_unlock(&ww_ctx);
6080
6081 return 0;
6082}
6083DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6084#endif /* CONFIG_DEBUG_FS */
6085
6086static int __init regulator_init(void)
6087{
6088 int ret;
6089
6090 ret = class_register(®ulator_class);
6091
6092 debugfs_root = debugfs_create_dir("regulator", NULL);
6093 if (!debugfs_root)
6094 pr_warn("regulator: Failed to create debugfs directory\n");
6095
6096#ifdef CONFIG_DEBUG_FS
6097 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6098 &supply_map_fops);
6099
6100 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6101 NULL, ®ulator_summary_fops);
6102#endif
6103 regulator_dummy_init();
6104
6105 regulator_coupler_register(&generic_regulator_coupler);
6106
6107 return ret;
6108}
6109
6110/* init early to allow our consumers to complete system booting */
6111core_initcall(regulator_init);
6112
6113static int regulator_late_cleanup(struct device *dev, void *data)
6114{
6115 struct regulator_dev *rdev = dev_to_rdev(dev);
6116 struct regulation_constraints *c = rdev->constraints;
6117 int ret;
6118
6119 if (c && c->always_on)
6120 return 0;
6121
6122 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6123 return 0;
6124
6125 regulator_lock(rdev);
6126
6127 if (rdev->use_count)
6128 goto unlock;
6129
6130 /* If reading the status failed, assume that it's off. */
6131 if (_regulator_is_enabled(rdev) <= 0)
6132 goto unlock;
6133
6134 if (have_full_constraints()) {
6135 /* We log since this may kill the system if it goes
6136 * wrong.
6137 */
6138 rdev_info(rdev, "disabling\n");
6139 ret = _regulator_do_disable(rdev);
6140 if (ret != 0)
6141 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6142 } else {
6143 /* The intention is that in future we will
6144 * assume that full constraints are provided
6145 * so warn even if we aren't going to do
6146 * anything here.
6147 */
6148 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6149 }
6150
6151unlock:
6152 regulator_unlock(rdev);
6153
6154 return 0;
6155}
6156
6157static void regulator_init_complete_work_function(struct work_struct *work)
6158{
6159 /*
6160 * Regulators may had failed to resolve their input supplies
6161 * when were registered, either because the input supply was
6162 * not registered yet or because its parent device was not
6163 * bound yet. So attempt to resolve the input supplies for
6164 * pending regulators before trying to disable unused ones.
6165 */
6166 class_for_each_device(®ulator_class, NULL, NULL,
6167 regulator_register_resolve_supply);
6168
6169 /* If we have a full configuration then disable any regulators
6170 * we have permission to change the status for and which are
6171 * not in use or always_on. This is effectively the default
6172 * for DT and ACPI as they have full constraints.
6173 */
6174 class_for_each_device(®ulator_class, NULL, NULL,
6175 regulator_late_cleanup);
6176}
6177
6178static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6179 regulator_init_complete_work_function);
6180
6181static int __init regulator_init_complete(void)
6182{
6183 /*
6184 * Since DT doesn't provide an idiomatic mechanism for
6185 * enabling full constraints and since it's much more natural
6186 * with DT to provide them just assume that a DT enabled
6187 * system has full constraints.
6188 */
6189 if (of_have_populated_dt())
6190 has_full_constraints = true;
6191
6192 /*
6193 * We punt completion for an arbitrary amount of time since
6194 * systems like distros will load many drivers from userspace
6195 * so consumers might not always be ready yet, this is
6196 * particularly an issue with laptops where this might bounce
6197 * the display off then on. Ideally we'd get a notification
6198 * from userspace when this happens but we don't so just wait
6199 * a bit and hope we waited long enough. It'd be better if
6200 * we'd only do this on systems that need it, and a kernel
6201 * command line option might be useful.
6202 */
6203 schedule_delayed_work(®ulator_init_complete_work,
6204 msecs_to_jiffies(30000));
6205
6206 return 0;
6207}
6208late_initcall_sync(regulator_init_complete);