Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/*
3 * Performance events:
4 *
5 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8 *
9 * Data type definitions, declarations, prototypes.
10 *
11 * Started by: Thomas Gleixner and Ingo Molnar
12 *
13 * For licencing details see kernel-base/COPYING
14 */
15#ifndef _UAPI_LINUX_PERF_EVENT_H
16#define _UAPI_LINUX_PERF_EVENT_H
17
18#include <linux/types.h>
19#include <linux/ioctl.h>
20#include <asm/byteorder.h>
21
22/*
23 * User-space ABI bits:
24 */
25
26/*
27 * attr.type
28 */
29enum perf_type_id {
30 PERF_TYPE_HARDWARE = 0,
31 PERF_TYPE_SOFTWARE = 1,
32 PERF_TYPE_TRACEPOINT = 2,
33 PERF_TYPE_HW_CACHE = 3,
34 PERF_TYPE_RAW = 4,
35 PERF_TYPE_BREAKPOINT = 5,
36
37 PERF_TYPE_MAX, /* non-ABI */
38};
39
40/*
41 * attr.config layout for type PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
42 * PERF_TYPE_HARDWARE: 0xEEEEEEEE000000AA
43 * AA: hardware event ID
44 * EEEEEEEE: PMU type ID
45 * PERF_TYPE_HW_CACHE: 0xEEEEEEEE00DDCCBB
46 * BB: hardware cache ID
47 * CC: hardware cache op ID
48 * DD: hardware cache op result ID
49 * EEEEEEEE: PMU type ID
50 * If the PMU type ID is 0, the PERF_TYPE_RAW will be applied.
51 */
52#define PERF_PMU_TYPE_SHIFT 32
53#define PERF_HW_EVENT_MASK 0xffffffff
54
55/*
56 * Generalized performance event event_id types, used by the
57 * attr.event_id parameter of the sys_perf_event_open()
58 * syscall:
59 */
60enum perf_hw_id {
61 /*
62 * Common hardware events, generalized by the kernel:
63 */
64 PERF_COUNT_HW_CPU_CYCLES = 0,
65 PERF_COUNT_HW_INSTRUCTIONS = 1,
66 PERF_COUNT_HW_CACHE_REFERENCES = 2,
67 PERF_COUNT_HW_CACHE_MISSES = 3,
68 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
69 PERF_COUNT_HW_BRANCH_MISSES = 5,
70 PERF_COUNT_HW_BUS_CYCLES = 6,
71 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
72 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
73 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
74
75 PERF_COUNT_HW_MAX, /* non-ABI */
76};
77
78/*
79 * Generalized hardware cache events:
80 *
81 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
82 * { read, write, prefetch } x
83 * { accesses, misses }
84 */
85enum perf_hw_cache_id {
86 PERF_COUNT_HW_CACHE_L1D = 0,
87 PERF_COUNT_HW_CACHE_L1I = 1,
88 PERF_COUNT_HW_CACHE_LL = 2,
89 PERF_COUNT_HW_CACHE_DTLB = 3,
90 PERF_COUNT_HW_CACHE_ITLB = 4,
91 PERF_COUNT_HW_CACHE_BPU = 5,
92 PERF_COUNT_HW_CACHE_NODE = 6,
93
94 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
95};
96
97enum perf_hw_cache_op_id {
98 PERF_COUNT_HW_CACHE_OP_READ = 0,
99 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
100 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
101
102 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
103};
104
105enum perf_hw_cache_op_result_id {
106 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
107 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
108
109 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
110};
111
112/*
113 * Special "software" events provided by the kernel, even if the hardware
114 * does not support performance events. These events measure various
115 * physical and sw events of the kernel (and allow the profiling of them as
116 * well):
117 */
118enum perf_sw_ids {
119 PERF_COUNT_SW_CPU_CLOCK = 0,
120 PERF_COUNT_SW_TASK_CLOCK = 1,
121 PERF_COUNT_SW_PAGE_FAULTS = 2,
122 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
123 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
124 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
125 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
126 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
127 PERF_COUNT_SW_EMULATION_FAULTS = 8,
128 PERF_COUNT_SW_DUMMY = 9,
129 PERF_COUNT_SW_BPF_OUTPUT = 10,
130 PERF_COUNT_SW_CGROUP_SWITCHES = 11,
131
132 PERF_COUNT_SW_MAX, /* non-ABI */
133};
134
135/*
136 * Bits that can be set in attr.sample_type to request information
137 * in the overflow packets.
138 */
139enum perf_event_sample_format {
140 PERF_SAMPLE_IP = 1U << 0,
141 PERF_SAMPLE_TID = 1U << 1,
142 PERF_SAMPLE_TIME = 1U << 2,
143 PERF_SAMPLE_ADDR = 1U << 3,
144 PERF_SAMPLE_READ = 1U << 4,
145 PERF_SAMPLE_CALLCHAIN = 1U << 5,
146 PERF_SAMPLE_ID = 1U << 6,
147 PERF_SAMPLE_CPU = 1U << 7,
148 PERF_SAMPLE_PERIOD = 1U << 8,
149 PERF_SAMPLE_STREAM_ID = 1U << 9,
150 PERF_SAMPLE_RAW = 1U << 10,
151 PERF_SAMPLE_BRANCH_STACK = 1U << 11,
152 PERF_SAMPLE_REGS_USER = 1U << 12,
153 PERF_SAMPLE_STACK_USER = 1U << 13,
154 PERF_SAMPLE_WEIGHT = 1U << 14,
155 PERF_SAMPLE_DATA_SRC = 1U << 15,
156 PERF_SAMPLE_IDENTIFIER = 1U << 16,
157 PERF_SAMPLE_TRANSACTION = 1U << 17,
158 PERF_SAMPLE_REGS_INTR = 1U << 18,
159 PERF_SAMPLE_PHYS_ADDR = 1U << 19,
160 PERF_SAMPLE_AUX = 1U << 20,
161 PERF_SAMPLE_CGROUP = 1U << 21,
162 PERF_SAMPLE_DATA_PAGE_SIZE = 1U << 22,
163 PERF_SAMPLE_CODE_PAGE_SIZE = 1U << 23,
164 PERF_SAMPLE_WEIGHT_STRUCT = 1U << 24,
165
166 PERF_SAMPLE_MAX = 1U << 25, /* non-ABI */
167
168 __PERF_SAMPLE_CALLCHAIN_EARLY = 1ULL << 63, /* non-ABI; internal use */
169};
170
171#define PERF_SAMPLE_WEIGHT_TYPE (PERF_SAMPLE_WEIGHT | PERF_SAMPLE_WEIGHT_STRUCT)
172/*
173 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
174 *
175 * If the user does not pass priv level information via branch_sample_type,
176 * the kernel uses the event's priv level. Branch and event priv levels do
177 * not have to match. Branch priv level is checked for permissions.
178 *
179 * The branch types can be combined, however BRANCH_ANY covers all types
180 * of branches and therefore it supersedes all the other types.
181 */
182enum perf_branch_sample_type_shift {
183 PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */
184 PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */
185 PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */
186
187 PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */
188 PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */
189 PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */
190 PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */
191 PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */
192 PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */
193 PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */
194 PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */
195
196 PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* call/ret stack */
197 PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT = 12, /* indirect jumps */
198 PERF_SAMPLE_BRANCH_CALL_SHIFT = 13, /* direct call */
199
200 PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT = 14, /* no flags */
201 PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT = 15, /* no cycles */
202
203 PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT = 16, /* save branch type */
204
205 PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT = 17, /* save low level index of raw branch records */
206
207 PERF_SAMPLE_BRANCH_PRIV_SAVE_SHIFT = 18, /* save privilege mode */
208
209 PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */
210};
211
212enum perf_branch_sample_type {
213 PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
214 PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
215 PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
216
217 PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
218 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
219 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
220 PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
221 PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
222 PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
223 PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
224 PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
225
226 PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
227 PERF_SAMPLE_BRANCH_IND_JUMP = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
228 PERF_SAMPLE_BRANCH_CALL = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
229
230 PERF_SAMPLE_BRANCH_NO_FLAGS = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
231 PERF_SAMPLE_BRANCH_NO_CYCLES = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
232
233 PERF_SAMPLE_BRANCH_TYPE_SAVE =
234 1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
235
236 PERF_SAMPLE_BRANCH_HW_INDEX = 1U << PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT,
237
238 PERF_SAMPLE_BRANCH_PRIV_SAVE = 1U << PERF_SAMPLE_BRANCH_PRIV_SAVE_SHIFT,
239
240 PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
241};
242
243/*
244 * Common flow change classification
245 */
246enum {
247 PERF_BR_UNKNOWN = 0, /* unknown */
248 PERF_BR_COND = 1, /* conditional */
249 PERF_BR_UNCOND = 2, /* unconditional */
250 PERF_BR_IND = 3, /* indirect */
251 PERF_BR_CALL = 4, /* function call */
252 PERF_BR_IND_CALL = 5, /* indirect function call */
253 PERF_BR_RET = 6, /* function return */
254 PERF_BR_SYSCALL = 7, /* syscall */
255 PERF_BR_SYSRET = 8, /* syscall return */
256 PERF_BR_COND_CALL = 9, /* conditional function call */
257 PERF_BR_COND_RET = 10, /* conditional function return */
258 PERF_BR_ERET = 11, /* exception return */
259 PERF_BR_IRQ = 12, /* irq */
260 PERF_BR_SERROR = 13, /* system error */
261 PERF_BR_NO_TX = 14, /* not in transaction */
262 PERF_BR_EXTEND_ABI = 15, /* extend ABI */
263 PERF_BR_MAX,
264};
265
266enum {
267 PERF_BR_NEW_FAULT_ALGN = 0, /* Alignment fault */
268 PERF_BR_NEW_FAULT_DATA = 1, /* Data fault */
269 PERF_BR_NEW_FAULT_INST = 2, /* Inst fault */
270 PERF_BR_NEW_ARCH_1 = 3, /* Architecture specific */
271 PERF_BR_NEW_ARCH_2 = 4, /* Architecture specific */
272 PERF_BR_NEW_ARCH_3 = 5, /* Architecture specific */
273 PERF_BR_NEW_ARCH_4 = 6, /* Architecture specific */
274 PERF_BR_NEW_ARCH_5 = 7, /* Architecture specific */
275 PERF_BR_NEW_MAX,
276};
277
278enum {
279 PERF_BR_PRIV_UNKNOWN = 0,
280 PERF_BR_PRIV_USER = 1,
281 PERF_BR_PRIV_KERNEL = 2,
282 PERF_BR_PRIV_HV = 3,
283};
284
285#define PERF_BR_ARM64_FIQ PERF_BR_NEW_ARCH_1
286#define PERF_BR_ARM64_DEBUG_HALT PERF_BR_NEW_ARCH_2
287#define PERF_BR_ARM64_DEBUG_EXIT PERF_BR_NEW_ARCH_3
288#define PERF_BR_ARM64_DEBUG_INST PERF_BR_NEW_ARCH_4
289#define PERF_BR_ARM64_DEBUG_DATA PERF_BR_NEW_ARCH_5
290
291#define PERF_SAMPLE_BRANCH_PLM_ALL \
292 (PERF_SAMPLE_BRANCH_USER|\
293 PERF_SAMPLE_BRANCH_KERNEL|\
294 PERF_SAMPLE_BRANCH_HV)
295
296/*
297 * Values to determine ABI of the registers dump.
298 */
299enum perf_sample_regs_abi {
300 PERF_SAMPLE_REGS_ABI_NONE = 0,
301 PERF_SAMPLE_REGS_ABI_32 = 1,
302 PERF_SAMPLE_REGS_ABI_64 = 2,
303};
304
305/*
306 * Values for the memory transaction event qualifier, mostly for
307 * abort events. Multiple bits can be set.
308 */
309enum {
310 PERF_TXN_ELISION = (1 << 0), /* From elision */
311 PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */
312 PERF_TXN_SYNC = (1 << 2), /* Instruction is related */
313 PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */
314 PERF_TXN_RETRY = (1 << 4), /* Retry possible */
315 PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */
316 PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
317 PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */
318
319 PERF_TXN_MAX = (1 << 8), /* non-ABI */
320
321 /* bits 32..63 are reserved for the abort code */
322
323 PERF_TXN_ABORT_MASK = (0xffffffffULL << 32),
324 PERF_TXN_ABORT_SHIFT = 32,
325};
326
327/*
328 * The format of the data returned by read() on a perf event fd,
329 * as specified by attr.read_format:
330 *
331 * struct read_format {
332 * { u64 value;
333 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
334 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
335 * { u64 id; } && PERF_FORMAT_ID
336 * { u64 lost; } && PERF_FORMAT_LOST
337 * } && !PERF_FORMAT_GROUP
338 *
339 * { u64 nr;
340 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
341 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
342 * { u64 value;
343 * { u64 id; } && PERF_FORMAT_ID
344 * { u64 lost; } && PERF_FORMAT_LOST
345 * } cntr[nr];
346 * } && PERF_FORMAT_GROUP
347 * };
348 */
349enum perf_event_read_format {
350 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
351 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
352 PERF_FORMAT_ID = 1U << 2,
353 PERF_FORMAT_GROUP = 1U << 3,
354 PERF_FORMAT_LOST = 1U << 4,
355
356 PERF_FORMAT_MAX = 1U << 5, /* non-ABI */
357};
358
359#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
360#define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
361#define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
362#define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */
363 /* add: sample_stack_user */
364#define PERF_ATTR_SIZE_VER4 104 /* add: sample_regs_intr */
365#define PERF_ATTR_SIZE_VER5 112 /* add: aux_watermark */
366#define PERF_ATTR_SIZE_VER6 120 /* add: aux_sample_size */
367#define PERF_ATTR_SIZE_VER7 128 /* add: sig_data */
368
369/*
370 * Hardware event_id to monitor via a performance monitoring event:
371 *
372 * @sample_max_stack: Max number of frame pointers in a callchain,
373 * should be < /proc/sys/kernel/perf_event_max_stack
374 */
375struct perf_event_attr {
376
377 /*
378 * Major type: hardware/software/tracepoint/etc.
379 */
380 __u32 type;
381
382 /*
383 * Size of the attr structure, for fwd/bwd compat.
384 */
385 __u32 size;
386
387 /*
388 * Type specific configuration information.
389 */
390 __u64 config;
391
392 union {
393 __u64 sample_period;
394 __u64 sample_freq;
395 };
396
397 __u64 sample_type;
398 __u64 read_format;
399
400 __u64 disabled : 1, /* off by default */
401 inherit : 1, /* children inherit it */
402 pinned : 1, /* must always be on PMU */
403 exclusive : 1, /* only group on PMU */
404 exclude_user : 1, /* don't count user */
405 exclude_kernel : 1, /* ditto kernel */
406 exclude_hv : 1, /* ditto hypervisor */
407 exclude_idle : 1, /* don't count when idle */
408 mmap : 1, /* include mmap data */
409 comm : 1, /* include comm data */
410 freq : 1, /* use freq, not period */
411 inherit_stat : 1, /* per task counts */
412 enable_on_exec : 1, /* next exec enables */
413 task : 1, /* trace fork/exit */
414 watermark : 1, /* wakeup_watermark */
415 /*
416 * precise_ip:
417 *
418 * 0 - SAMPLE_IP can have arbitrary skid
419 * 1 - SAMPLE_IP must have constant skid
420 * 2 - SAMPLE_IP requested to have 0 skid
421 * 3 - SAMPLE_IP must have 0 skid
422 *
423 * See also PERF_RECORD_MISC_EXACT_IP
424 */
425 precise_ip : 2, /* skid constraint */
426 mmap_data : 1, /* non-exec mmap data */
427 sample_id_all : 1, /* sample_type all events */
428
429 exclude_host : 1, /* don't count in host */
430 exclude_guest : 1, /* don't count in guest */
431
432 exclude_callchain_kernel : 1, /* exclude kernel callchains */
433 exclude_callchain_user : 1, /* exclude user callchains */
434 mmap2 : 1, /* include mmap with inode data */
435 comm_exec : 1, /* flag comm events that are due to an exec */
436 use_clockid : 1, /* use @clockid for time fields */
437 context_switch : 1, /* context switch data */
438 write_backward : 1, /* Write ring buffer from end to beginning */
439 namespaces : 1, /* include namespaces data */
440 ksymbol : 1, /* include ksymbol events */
441 bpf_event : 1, /* include bpf events */
442 aux_output : 1, /* generate AUX records instead of events */
443 cgroup : 1, /* include cgroup events */
444 text_poke : 1, /* include text poke events */
445 build_id : 1, /* use build id in mmap2 events */
446 inherit_thread : 1, /* children only inherit if cloned with CLONE_THREAD */
447 remove_on_exec : 1, /* event is removed from task on exec */
448 sigtrap : 1, /* send synchronous SIGTRAP on event */
449 __reserved_1 : 26;
450
451 union {
452 __u32 wakeup_events; /* wakeup every n events */
453 __u32 wakeup_watermark; /* bytes before wakeup */
454 };
455
456 __u32 bp_type;
457 union {
458 __u64 bp_addr;
459 __u64 kprobe_func; /* for perf_kprobe */
460 __u64 uprobe_path; /* for perf_uprobe */
461 __u64 config1; /* extension of config */
462 };
463 union {
464 __u64 bp_len;
465 __u64 kprobe_addr; /* when kprobe_func == NULL */
466 __u64 probe_offset; /* for perf_[k,u]probe */
467 __u64 config2; /* extension of config1 */
468 };
469 __u64 branch_sample_type; /* enum perf_branch_sample_type */
470
471 /*
472 * Defines set of user regs to dump on samples.
473 * See asm/perf_regs.h for details.
474 */
475 __u64 sample_regs_user;
476
477 /*
478 * Defines size of the user stack to dump on samples.
479 */
480 __u32 sample_stack_user;
481
482 __s32 clockid;
483 /*
484 * Defines set of regs to dump for each sample
485 * state captured on:
486 * - precise = 0: PMU interrupt
487 * - precise > 0: sampled instruction
488 *
489 * See asm/perf_regs.h for details.
490 */
491 __u64 sample_regs_intr;
492
493 /*
494 * Wakeup watermark for AUX area
495 */
496 __u32 aux_watermark;
497 __u16 sample_max_stack;
498 __u16 __reserved_2;
499 __u32 aux_sample_size;
500 __u32 __reserved_3;
501
502 /*
503 * User provided data if sigtrap=1, passed back to user via
504 * siginfo_t::si_perf_data, e.g. to permit user to identify the event.
505 * Note, siginfo_t::si_perf_data is long-sized, and sig_data will be
506 * truncated accordingly on 32 bit architectures.
507 */
508 __u64 sig_data;
509};
510
511/*
512 * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
513 * to query bpf programs attached to the same perf tracepoint
514 * as the given perf event.
515 */
516struct perf_event_query_bpf {
517 /*
518 * The below ids array length
519 */
520 __u32 ids_len;
521 /*
522 * Set by the kernel to indicate the number of
523 * available programs
524 */
525 __u32 prog_cnt;
526 /*
527 * User provided buffer to store program ids
528 */
529 __u32 ids[];
530};
531
532/*
533 * Ioctls that can be done on a perf event fd:
534 */
535#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
536#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
537#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
538#define PERF_EVENT_IOC_RESET _IO ('$', 3)
539#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
540#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
541#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
542#define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *)
543#define PERF_EVENT_IOC_SET_BPF _IOW('$', 8, __u32)
544#define PERF_EVENT_IOC_PAUSE_OUTPUT _IOW('$', 9, __u32)
545#define PERF_EVENT_IOC_QUERY_BPF _IOWR('$', 10, struct perf_event_query_bpf *)
546#define PERF_EVENT_IOC_MODIFY_ATTRIBUTES _IOW('$', 11, struct perf_event_attr *)
547
548enum perf_event_ioc_flags {
549 PERF_IOC_FLAG_GROUP = 1U << 0,
550};
551
552/*
553 * Structure of the page that can be mapped via mmap
554 */
555struct perf_event_mmap_page {
556 __u32 version; /* version number of this structure */
557 __u32 compat_version; /* lowest version this is compat with */
558
559 /*
560 * Bits needed to read the hw events in user-space.
561 *
562 * u32 seq, time_mult, time_shift, index, width;
563 * u64 count, enabled, running;
564 * u64 cyc, time_offset;
565 * s64 pmc = 0;
566 *
567 * do {
568 * seq = pc->lock;
569 * barrier()
570 *
571 * enabled = pc->time_enabled;
572 * running = pc->time_running;
573 *
574 * if (pc->cap_usr_time && enabled != running) {
575 * cyc = rdtsc();
576 * time_offset = pc->time_offset;
577 * time_mult = pc->time_mult;
578 * time_shift = pc->time_shift;
579 * }
580 *
581 * index = pc->index;
582 * count = pc->offset;
583 * if (pc->cap_user_rdpmc && index) {
584 * width = pc->pmc_width;
585 * pmc = rdpmc(index - 1);
586 * }
587 *
588 * barrier();
589 * } while (pc->lock != seq);
590 *
591 * NOTE: for obvious reason this only works on self-monitoring
592 * processes.
593 */
594 __u32 lock; /* seqlock for synchronization */
595 __u32 index; /* hardware event identifier */
596 __s64 offset; /* add to hardware event value */
597 __u64 time_enabled; /* time event active */
598 __u64 time_running; /* time event on cpu */
599 union {
600 __u64 capabilities;
601 struct {
602 __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
603 cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */
604
605 cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */
606 cap_user_time : 1, /* The time_{shift,mult,offset} fields are used */
607 cap_user_time_zero : 1, /* The time_zero field is used */
608 cap_user_time_short : 1, /* the time_{cycle,mask} fields are used */
609 cap_____res : 58;
610 };
611 };
612
613 /*
614 * If cap_user_rdpmc this field provides the bit-width of the value
615 * read using the rdpmc() or equivalent instruction. This can be used
616 * to sign extend the result like:
617 *
618 * pmc <<= 64 - width;
619 * pmc >>= 64 - width; // signed shift right
620 * count += pmc;
621 */
622 __u16 pmc_width;
623
624 /*
625 * If cap_usr_time the below fields can be used to compute the time
626 * delta since time_enabled (in ns) using rdtsc or similar.
627 *
628 * u64 quot, rem;
629 * u64 delta;
630 *
631 * quot = (cyc >> time_shift);
632 * rem = cyc & (((u64)1 << time_shift) - 1);
633 * delta = time_offset + quot * time_mult +
634 * ((rem * time_mult) >> time_shift);
635 *
636 * Where time_offset,time_mult,time_shift and cyc are read in the
637 * seqcount loop described above. This delta can then be added to
638 * enabled and possible running (if index), improving the scaling:
639 *
640 * enabled += delta;
641 * if (index)
642 * running += delta;
643 *
644 * quot = count / running;
645 * rem = count % running;
646 * count = quot * enabled + (rem * enabled) / running;
647 */
648 __u16 time_shift;
649 __u32 time_mult;
650 __u64 time_offset;
651 /*
652 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
653 * from sample timestamps.
654 *
655 * time = timestamp - time_zero;
656 * quot = time / time_mult;
657 * rem = time % time_mult;
658 * cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
659 *
660 * And vice versa:
661 *
662 * quot = cyc >> time_shift;
663 * rem = cyc & (((u64)1 << time_shift) - 1);
664 * timestamp = time_zero + quot * time_mult +
665 * ((rem * time_mult) >> time_shift);
666 */
667 __u64 time_zero;
668
669 __u32 size; /* Header size up to __reserved[] fields. */
670 __u32 __reserved_1;
671
672 /*
673 * If cap_usr_time_short, the hardware clock is less than 64bit wide
674 * and we must compute the 'cyc' value, as used by cap_usr_time, as:
675 *
676 * cyc = time_cycles + ((cyc - time_cycles) & time_mask)
677 *
678 * NOTE: this form is explicitly chosen such that cap_usr_time_short
679 * is a correction on top of cap_usr_time, and code that doesn't
680 * know about cap_usr_time_short still works under the assumption
681 * the counter doesn't wrap.
682 */
683 __u64 time_cycles;
684 __u64 time_mask;
685
686 /*
687 * Hole for extension of the self monitor capabilities
688 */
689
690 __u8 __reserved[116*8]; /* align to 1k. */
691
692 /*
693 * Control data for the mmap() data buffer.
694 *
695 * User-space reading the @data_head value should issue an smp_rmb(),
696 * after reading this value.
697 *
698 * When the mapping is PROT_WRITE the @data_tail value should be
699 * written by userspace to reflect the last read data, after issueing
700 * an smp_mb() to separate the data read from the ->data_tail store.
701 * In this case the kernel will not over-write unread data.
702 *
703 * See perf_output_put_handle() for the data ordering.
704 *
705 * data_{offset,size} indicate the location and size of the perf record
706 * buffer within the mmapped area.
707 */
708 __u64 data_head; /* head in the data section */
709 __u64 data_tail; /* user-space written tail */
710 __u64 data_offset; /* where the buffer starts */
711 __u64 data_size; /* data buffer size */
712
713 /*
714 * AUX area is defined by aux_{offset,size} fields that should be set
715 * by the userspace, so that
716 *
717 * aux_offset >= data_offset + data_size
718 *
719 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
720 *
721 * Ring buffer pointers aux_{head,tail} have the same semantics as
722 * data_{head,tail} and same ordering rules apply.
723 */
724 __u64 aux_head;
725 __u64 aux_tail;
726 __u64 aux_offset;
727 __u64 aux_size;
728};
729
730/*
731 * The current state of perf_event_header::misc bits usage:
732 * ('|' used bit, '-' unused bit)
733 *
734 * 012 CDEF
735 * |||---------||||
736 *
737 * Where:
738 * 0-2 CPUMODE_MASK
739 *
740 * C PROC_MAP_PARSE_TIMEOUT
741 * D MMAP_DATA / COMM_EXEC / FORK_EXEC / SWITCH_OUT
742 * E MMAP_BUILD_ID / EXACT_IP / SCHED_OUT_PREEMPT
743 * F (reserved)
744 */
745
746#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
747#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
748#define PERF_RECORD_MISC_KERNEL (1 << 0)
749#define PERF_RECORD_MISC_USER (2 << 0)
750#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
751#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
752#define PERF_RECORD_MISC_GUEST_USER (5 << 0)
753
754/*
755 * Indicates that /proc/PID/maps parsing are truncated by time out.
756 */
757#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12)
758/*
759 * Following PERF_RECORD_MISC_* are used on different
760 * events, so can reuse the same bit position:
761 *
762 * PERF_RECORD_MISC_MMAP_DATA - PERF_RECORD_MMAP* events
763 * PERF_RECORD_MISC_COMM_EXEC - PERF_RECORD_COMM event
764 * PERF_RECORD_MISC_FORK_EXEC - PERF_RECORD_FORK event (perf internal)
765 * PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
766 */
767#define PERF_RECORD_MISC_MMAP_DATA (1 << 13)
768#define PERF_RECORD_MISC_COMM_EXEC (1 << 13)
769#define PERF_RECORD_MISC_FORK_EXEC (1 << 13)
770#define PERF_RECORD_MISC_SWITCH_OUT (1 << 13)
771/*
772 * These PERF_RECORD_MISC_* flags below are safely reused
773 * for the following events:
774 *
775 * PERF_RECORD_MISC_EXACT_IP - PERF_RECORD_SAMPLE of precise events
776 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events
777 * PERF_RECORD_MISC_MMAP_BUILD_ID - PERF_RECORD_MMAP2 event
778 *
779 *
780 * PERF_RECORD_MISC_EXACT_IP:
781 * Indicates that the content of PERF_SAMPLE_IP points to
782 * the actual instruction that triggered the event. See also
783 * perf_event_attr::precise_ip.
784 *
785 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT:
786 * Indicates that thread was preempted in TASK_RUNNING state.
787 *
788 * PERF_RECORD_MISC_MMAP_BUILD_ID:
789 * Indicates that mmap2 event carries build id data.
790 */
791#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
792#define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT (1 << 14)
793#define PERF_RECORD_MISC_MMAP_BUILD_ID (1 << 14)
794/*
795 * Reserve the last bit to indicate some extended misc field
796 */
797#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
798
799struct perf_event_header {
800 __u32 type;
801 __u16 misc;
802 __u16 size;
803};
804
805struct perf_ns_link_info {
806 __u64 dev;
807 __u64 ino;
808};
809
810enum {
811 NET_NS_INDEX = 0,
812 UTS_NS_INDEX = 1,
813 IPC_NS_INDEX = 2,
814 PID_NS_INDEX = 3,
815 USER_NS_INDEX = 4,
816 MNT_NS_INDEX = 5,
817 CGROUP_NS_INDEX = 6,
818
819 NR_NAMESPACES, /* number of available namespaces */
820};
821
822enum perf_event_type {
823
824 /*
825 * If perf_event_attr.sample_id_all is set then all event types will
826 * have the sample_type selected fields related to where/when
827 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
828 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
829 * just after the perf_event_header and the fields already present for
830 * the existing fields, i.e. at the end of the payload. That way a newer
831 * perf.data file will be supported by older perf tools, with these new
832 * optional fields being ignored.
833 *
834 * struct sample_id {
835 * { u32 pid, tid; } && PERF_SAMPLE_TID
836 * { u64 time; } && PERF_SAMPLE_TIME
837 * { u64 id; } && PERF_SAMPLE_ID
838 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
839 * { u32 cpu, res; } && PERF_SAMPLE_CPU
840 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
841 * } && perf_event_attr::sample_id_all
842 *
843 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The
844 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
845 * relative to header.size.
846 */
847
848 /*
849 * The MMAP events record the PROT_EXEC mappings so that we can
850 * correlate userspace IPs to code. They have the following structure:
851 *
852 * struct {
853 * struct perf_event_header header;
854 *
855 * u32 pid, tid;
856 * u64 addr;
857 * u64 len;
858 * u64 pgoff;
859 * char filename[];
860 * struct sample_id sample_id;
861 * };
862 */
863 PERF_RECORD_MMAP = 1,
864
865 /*
866 * struct {
867 * struct perf_event_header header;
868 * u64 id;
869 * u64 lost;
870 * struct sample_id sample_id;
871 * };
872 */
873 PERF_RECORD_LOST = 2,
874
875 /*
876 * struct {
877 * struct perf_event_header header;
878 *
879 * u32 pid, tid;
880 * char comm[];
881 * struct sample_id sample_id;
882 * };
883 */
884 PERF_RECORD_COMM = 3,
885
886 /*
887 * struct {
888 * struct perf_event_header header;
889 * u32 pid, ppid;
890 * u32 tid, ptid;
891 * u64 time;
892 * struct sample_id sample_id;
893 * };
894 */
895 PERF_RECORD_EXIT = 4,
896
897 /*
898 * struct {
899 * struct perf_event_header header;
900 * u64 time;
901 * u64 id;
902 * u64 stream_id;
903 * struct sample_id sample_id;
904 * };
905 */
906 PERF_RECORD_THROTTLE = 5,
907 PERF_RECORD_UNTHROTTLE = 6,
908
909 /*
910 * struct {
911 * struct perf_event_header header;
912 * u32 pid, ppid;
913 * u32 tid, ptid;
914 * u64 time;
915 * struct sample_id sample_id;
916 * };
917 */
918 PERF_RECORD_FORK = 7,
919
920 /*
921 * struct {
922 * struct perf_event_header header;
923 * u32 pid, tid;
924 *
925 * struct read_format values;
926 * struct sample_id sample_id;
927 * };
928 */
929 PERF_RECORD_READ = 8,
930
931 /*
932 * struct {
933 * struct perf_event_header header;
934 *
935 * #
936 * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
937 * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
938 * # is fixed relative to header.
939 * #
940 *
941 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
942 * { u64 ip; } && PERF_SAMPLE_IP
943 * { u32 pid, tid; } && PERF_SAMPLE_TID
944 * { u64 time; } && PERF_SAMPLE_TIME
945 * { u64 addr; } && PERF_SAMPLE_ADDR
946 * { u64 id; } && PERF_SAMPLE_ID
947 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
948 * { u32 cpu, res; } && PERF_SAMPLE_CPU
949 * { u64 period; } && PERF_SAMPLE_PERIOD
950 *
951 * { struct read_format values; } && PERF_SAMPLE_READ
952 *
953 * { u64 nr,
954 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
955 *
956 * #
957 * # The RAW record below is opaque data wrt the ABI
958 * #
959 * # That is, the ABI doesn't make any promises wrt to
960 * # the stability of its content, it may vary depending
961 * # on event, hardware, kernel version and phase of
962 * # the moon.
963 * #
964 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
965 * #
966 *
967 * { u32 size;
968 * char data[size];}&& PERF_SAMPLE_RAW
969 *
970 * { u64 nr;
971 * { u64 hw_idx; } && PERF_SAMPLE_BRANCH_HW_INDEX
972 * { u64 from, to, flags } lbr[nr];
973 * } && PERF_SAMPLE_BRANCH_STACK
974 *
975 * { u64 abi; # enum perf_sample_regs_abi
976 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
977 *
978 * { u64 size;
979 * char data[size];
980 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER
981 *
982 * { union perf_sample_weight
983 * {
984 * u64 full; && PERF_SAMPLE_WEIGHT
985 * #if defined(__LITTLE_ENDIAN_BITFIELD)
986 * struct {
987 * u32 var1_dw;
988 * u16 var2_w;
989 * u16 var3_w;
990 * } && PERF_SAMPLE_WEIGHT_STRUCT
991 * #elif defined(__BIG_ENDIAN_BITFIELD)
992 * struct {
993 * u16 var3_w;
994 * u16 var2_w;
995 * u32 var1_dw;
996 * } && PERF_SAMPLE_WEIGHT_STRUCT
997 * #endif
998 * }
999 * }
1000 * { u64 data_src; } && PERF_SAMPLE_DATA_SRC
1001 * { u64 transaction; } && PERF_SAMPLE_TRANSACTION
1002 * { u64 abi; # enum perf_sample_regs_abi
1003 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
1004 * { u64 phys_addr;} && PERF_SAMPLE_PHYS_ADDR
1005 * { u64 size;
1006 * char data[size]; } && PERF_SAMPLE_AUX
1007 * { u64 data_page_size;} && PERF_SAMPLE_DATA_PAGE_SIZE
1008 * { u64 code_page_size;} && PERF_SAMPLE_CODE_PAGE_SIZE
1009 * };
1010 */
1011 PERF_RECORD_SAMPLE = 9,
1012
1013 /*
1014 * The MMAP2 records are an augmented version of MMAP, they add
1015 * maj, min, ino numbers to be used to uniquely identify each mapping
1016 *
1017 * struct {
1018 * struct perf_event_header header;
1019 *
1020 * u32 pid, tid;
1021 * u64 addr;
1022 * u64 len;
1023 * u64 pgoff;
1024 * union {
1025 * struct {
1026 * u32 maj;
1027 * u32 min;
1028 * u64 ino;
1029 * u64 ino_generation;
1030 * };
1031 * struct {
1032 * u8 build_id_size;
1033 * u8 __reserved_1;
1034 * u16 __reserved_2;
1035 * u8 build_id[20];
1036 * };
1037 * };
1038 * u32 prot, flags;
1039 * char filename[];
1040 * struct sample_id sample_id;
1041 * };
1042 */
1043 PERF_RECORD_MMAP2 = 10,
1044
1045 /*
1046 * Records that new data landed in the AUX buffer part.
1047 *
1048 * struct {
1049 * struct perf_event_header header;
1050 *
1051 * u64 aux_offset;
1052 * u64 aux_size;
1053 * u64 flags;
1054 * struct sample_id sample_id;
1055 * };
1056 */
1057 PERF_RECORD_AUX = 11,
1058
1059 /*
1060 * Indicates that instruction trace has started
1061 *
1062 * struct {
1063 * struct perf_event_header header;
1064 * u32 pid;
1065 * u32 tid;
1066 * struct sample_id sample_id;
1067 * };
1068 */
1069 PERF_RECORD_ITRACE_START = 12,
1070
1071 /*
1072 * Records the dropped/lost sample number.
1073 *
1074 * struct {
1075 * struct perf_event_header header;
1076 *
1077 * u64 lost;
1078 * struct sample_id sample_id;
1079 * };
1080 */
1081 PERF_RECORD_LOST_SAMPLES = 13,
1082
1083 /*
1084 * Records a context switch in or out (flagged by
1085 * PERF_RECORD_MISC_SWITCH_OUT). See also
1086 * PERF_RECORD_SWITCH_CPU_WIDE.
1087 *
1088 * struct {
1089 * struct perf_event_header header;
1090 * struct sample_id sample_id;
1091 * };
1092 */
1093 PERF_RECORD_SWITCH = 14,
1094
1095 /*
1096 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
1097 * next_prev_tid that are the next (switching out) or previous
1098 * (switching in) pid/tid.
1099 *
1100 * struct {
1101 * struct perf_event_header header;
1102 * u32 next_prev_pid;
1103 * u32 next_prev_tid;
1104 * struct sample_id sample_id;
1105 * };
1106 */
1107 PERF_RECORD_SWITCH_CPU_WIDE = 15,
1108
1109 /*
1110 * struct {
1111 * struct perf_event_header header;
1112 * u32 pid;
1113 * u32 tid;
1114 * u64 nr_namespaces;
1115 * { u64 dev, inode; } [nr_namespaces];
1116 * struct sample_id sample_id;
1117 * };
1118 */
1119 PERF_RECORD_NAMESPACES = 16,
1120
1121 /*
1122 * Record ksymbol register/unregister events:
1123 *
1124 * struct {
1125 * struct perf_event_header header;
1126 * u64 addr;
1127 * u32 len;
1128 * u16 ksym_type;
1129 * u16 flags;
1130 * char name[];
1131 * struct sample_id sample_id;
1132 * };
1133 */
1134 PERF_RECORD_KSYMBOL = 17,
1135
1136 /*
1137 * Record bpf events:
1138 * enum perf_bpf_event_type {
1139 * PERF_BPF_EVENT_UNKNOWN = 0,
1140 * PERF_BPF_EVENT_PROG_LOAD = 1,
1141 * PERF_BPF_EVENT_PROG_UNLOAD = 2,
1142 * };
1143 *
1144 * struct {
1145 * struct perf_event_header header;
1146 * u16 type;
1147 * u16 flags;
1148 * u32 id;
1149 * u8 tag[BPF_TAG_SIZE];
1150 * struct sample_id sample_id;
1151 * };
1152 */
1153 PERF_RECORD_BPF_EVENT = 18,
1154
1155 /*
1156 * struct {
1157 * struct perf_event_header header;
1158 * u64 id;
1159 * char path[];
1160 * struct sample_id sample_id;
1161 * };
1162 */
1163 PERF_RECORD_CGROUP = 19,
1164
1165 /*
1166 * Records changes to kernel text i.e. self-modified code. 'old_len' is
1167 * the number of old bytes, 'new_len' is the number of new bytes. Either
1168 * 'old_len' or 'new_len' may be zero to indicate, for example, the
1169 * addition or removal of a trampoline. 'bytes' contains the old bytes
1170 * followed immediately by the new bytes.
1171 *
1172 * struct {
1173 * struct perf_event_header header;
1174 * u64 addr;
1175 * u16 old_len;
1176 * u16 new_len;
1177 * u8 bytes[];
1178 * struct sample_id sample_id;
1179 * };
1180 */
1181 PERF_RECORD_TEXT_POKE = 20,
1182
1183 /*
1184 * Data written to the AUX area by hardware due to aux_output, may need
1185 * to be matched to the event by an architecture-specific hardware ID.
1186 * This records the hardware ID, but requires sample_id to provide the
1187 * event ID. e.g. Intel PT uses this record to disambiguate PEBS-via-PT
1188 * records from multiple events.
1189 *
1190 * struct {
1191 * struct perf_event_header header;
1192 * u64 hw_id;
1193 * struct sample_id sample_id;
1194 * };
1195 */
1196 PERF_RECORD_AUX_OUTPUT_HW_ID = 21,
1197
1198 PERF_RECORD_MAX, /* non-ABI */
1199};
1200
1201enum perf_record_ksymbol_type {
1202 PERF_RECORD_KSYMBOL_TYPE_UNKNOWN = 0,
1203 PERF_RECORD_KSYMBOL_TYPE_BPF = 1,
1204 /*
1205 * Out of line code such as kprobe-replaced instructions or optimized
1206 * kprobes or ftrace trampolines.
1207 */
1208 PERF_RECORD_KSYMBOL_TYPE_OOL = 2,
1209 PERF_RECORD_KSYMBOL_TYPE_MAX /* non-ABI */
1210};
1211
1212#define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER (1 << 0)
1213
1214enum perf_bpf_event_type {
1215 PERF_BPF_EVENT_UNKNOWN = 0,
1216 PERF_BPF_EVENT_PROG_LOAD = 1,
1217 PERF_BPF_EVENT_PROG_UNLOAD = 2,
1218 PERF_BPF_EVENT_MAX, /* non-ABI */
1219};
1220
1221#define PERF_MAX_STACK_DEPTH 127
1222#define PERF_MAX_CONTEXTS_PER_STACK 8
1223
1224enum perf_callchain_context {
1225 PERF_CONTEXT_HV = (__u64)-32,
1226 PERF_CONTEXT_KERNEL = (__u64)-128,
1227 PERF_CONTEXT_USER = (__u64)-512,
1228
1229 PERF_CONTEXT_GUEST = (__u64)-2048,
1230 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
1231 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
1232
1233 PERF_CONTEXT_MAX = (__u64)-4095,
1234};
1235
1236/**
1237 * PERF_RECORD_AUX::flags bits
1238 */
1239#define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */
1240#define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */
1241#define PERF_AUX_FLAG_PARTIAL 0x04 /* record contains gaps */
1242#define PERF_AUX_FLAG_COLLISION 0x08 /* sample collided with another */
1243#define PERF_AUX_FLAG_PMU_FORMAT_TYPE_MASK 0xff00 /* PMU specific trace format type */
1244
1245/* CoreSight PMU AUX buffer formats */
1246#define PERF_AUX_FLAG_CORESIGHT_FORMAT_CORESIGHT 0x0000 /* Default for backward compatibility */
1247#define PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW 0x0100 /* Raw format of the source */
1248
1249#define PERF_FLAG_FD_NO_GROUP (1UL << 0)
1250#define PERF_FLAG_FD_OUTPUT (1UL << 1)
1251#define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */
1252#define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */
1253
1254#if defined(__LITTLE_ENDIAN_BITFIELD)
1255union perf_mem_data_src {
1256 __u64 val;
1257 struct {
1258 __u64 mem_op:5, /* type of opcode */
1259 mem_lvl:14, /* memory hierarchy level */
1260 mem_snoop:5, /* snoop mode */
1261 mem_lock:2, /* lock instr */
1262 mem_dtlb:7, /* tlb access */
1263 mem_lvl_num:4, /* memory hierarchy level number */
1264 mem_remote:1, /* remote */
1265 mem_snoopx:2, /* snoop mode, ext */
1266 mem_blk:3, /* access blocked */
1267 mem_hops:3, /* hop level */
1268 mem_rsvd:18;
1269 };
1270};
1271#elif defined(__BIG_ENDIAN_BITFIELD)
1272union perf_mem_data_src {
1273 __u64 val;
1274 struct {
1275 __u64 mem_rsvd:18,
1276 mem_hops:3, /* hop level */
1277 mem_blk:3, /* access blocked */
1278 mem_snoopx:2, /* snoop mode, ext */
1279 mem_remote:1, /* remote */
1280 mem_lvl_num:4, /* memory hierarchy level number */
1281 mem_dtlb:7, /* tlb access */
1282 mem_lock:2, /* lock instr */
1283 mem_snoop:5, /* snoop mode */
1284 mem_lvl:14, /* memory hierarchy level */
1285 mem_op:5; /* type of opcode */
1286 };
1287};
1288#else
1289#error "Unknown endianness"
1290#endif
1291
1292/* type of opcode (load/store/prefetch,code) */
1293#define PERF_MEM_OP_NA 0x01 /* not available */
1294#define PERF_MEM_OP_LOAD 0x02 /* load instruction */
1295#define PERF_MEM_OP_STORE 0x04 /* store instruction */
1296#define PERF_MEM_OP_PFETCH 0x08 /* prefetch */
1297#define PERF_MEM_OP_EXEC 0x10 /* code (execution) */
1298#define PERF_MEM_OP_SHIFT 0
1299
1300/*
1301 * PERF_MEM_LVL_* namespace being depricated to some extent in the
1302 * favour of newer composite PERF_MEM_{LVLNUM_,REMOTE_,SNOOPX_} fields.
1303 * Supporting this namespace inorder to not break defined ABIs.
1304 *
1305 * memory hierarchy (memory level, hit or miss)
1306 */
1307#define PERF_MEM_LVL_NA 0x01 /* not available */
1308#define PERF_MEM_LVL_HIT 0x02 /* hit level */
1309#define PERF_MEM_LVL_MISS 0x04 /* miss level */
1310#define PERF_MEM_LVL_L1 0x08 /* L1 */
1311#define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */
1312#define PERF_MEM_LVL_L2 0x20 /* L2 */
1313#define PERF_MEM_LVL_L3 0x40 /* L3 */
1314#define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */
1315#define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */
1316#define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */
1317#define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */
1318#define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */
1319#define PERF_MEM_LVL_IO 0x1000 /* I/O memory */
1320#define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */
1321#define PERF_MEM_LVL_SHIFT 5
1322
1323#define PERF_MEM_REMOTE_REMOTE 0x01 /* Remote */
1324#define PERF_MEM_REMOTE_SHIFT 37
1325
1326#define PERF_MEM_LVLNUM_L1 0x01 /* L1 */
1327#define PERF_MEM_LVLNUM_L2 0x02 /* L2 */
1328#define PERF_MEM_LVLNUM_L3 0x03 /* L3 */
1329#define PERF_MEM_LVLNUM_L4 0x04 /* L4 */
1330/* 5-0x8 available */
1331#define PERF_MEM_LVLNUM_CXL 0x09 /* CXL */
1332#define PERF_MEM_LVLNUM_IO 0x0a /* I/O */
1333#define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */
1334#define PERF_MEM_LVLNUM_LFB 0x0c /* LFB */
1335#define PERF_MEM_LVLNUM_RAM 0x0d /* RAM */
1336#define PERF_MEM_LVLNUM_PMEM 0x0e /* PMEM */
1337#define PERF_MEM_LVLNUM_NA 0x0f /* N/A */
1338
1339#define PERF_MEM_LVLNUM_SHIFT 33
1340
1341/* snoop mode */
1342#define PERF_MEM_SNOOP_NA 0x01 /* not available */
1343#define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */
1344#define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */
1345#define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */
1346#define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */
1347#define PERF_MEM_SNOOP_SHIFT 19
1348
1349#define PERF_MEM_SNOOPX_FWD 0x01 /* forward */
1350#define PERF_MEM_SNOOPX_PEER 0x02 /* xfer from peer */
1351#define PERF_MEM_SNOOPX_SHIFT 38
1352
1353/* locked instruction */
1354#define PERF_MEM_LOCK_NA 0x01 /* not available */
1355#define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */
1356#define PERF_MEM_LOCK_SHIFT 24
1357
1358/* TLB access */
1359#define PERF_MEM_TLB_NA 0x01 /* not available */
1360#define PERF_MEM_TLB_HIT 0x02 /* hit level */
1361#define PERF_MEM_TLB_MISS 0x04 /* miss level */
1362#define PERF_MEM_TLB_L1 0x08 /* L1 */
1363#define PERF_MEM_TLB_L2 0x10 /* L2 */
1364#define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/
1365#define PERF_MEM_TLB_OS 0x40 /* OS fault handler */
1366#define PERF_MEM_TLB_SHIFT 26
1367
1368/* Access blocked */
1369#define PERF_MEM_BLK_NA 0x01 /* not available */
1370#define PERF_MEM_BLK_DATA 0x02 /* data could not be forwarded */
1371#define PERF_MEM_BLK_ADDR 0x04 /* address conflict */
1372#define PERF_MEM_BLK_SHIFT 40
1373
1374/* hop level */
1375#define PERF_MEM_HOPS_0 0x01 /* remote core, same node */
1376#define PERF_MEM_HOPS_1 0x02 /* remote node, same socket */
1377#define PERF_MEM_HOPS_2 0x03 /* remote socket, same board */
1378#define PERF_MEM_HOPS_3 0x04 /* remote board */
1379/* 5-7 available */
1380#define PERF_MEM_HOPS_SHIFT 43
1381
1382#define PERF_MEM_S(a, s) \
1383 (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
1384
1385/*
1386 * single taken branch record layout:
1387 *
1388 * from: source instruction (may not always be a branch insn)
1389 * to: branch target
1390 * mispred: branch target was mispredicted
1391 * predicted: branch target was predicted
1392 *
1393 * support for mispred, predicted is optional. In case it
1394 * is not supported mispred = predicted = 0.
1395 *
1396 * in_tx: running in a hardware transaction
1397 * abort: aborting a hardware transaction
1398 * cycles: cycles from last branch (or 0 if not supported)
1399 * type: branch type
1400 */
1401struct perf_branch_entry {
1402 __u64 from;
1403 __u64 to;
1404 __u64 mispred:1, /* target mispredicted */
1405 predicted:1,/* target predicted */
1406 in_tx:1, /* in transaction */
1407 abort:1, /* transaction abort */
1408 cycles:16, /* cycle count to last branch */
1409 type:4, /* branch type */
1410 new_type:4, /* additional branch type */
1411 priv:3, /* privilege level */
1412 reserved:33;
1413};
1414
1415union perf_sample_weight {
1416 __u64 full;
1417#if defined(__LITTLE_ENDIAN_BITFIELD)
1418 struct {
1419 __u32 var1_dw;
1420 __u16 var2_w;
1421 __u16 var3_w;
1422 };
1423#elif defined(__BIG_ENDIAN_BITFIELD)
1424 struct {
1425 __u16 var3_w;
1426 __u16 var2_w;
1427 __u32 var1_dw;
1428 };
1429#else
1430#error "Unknown endianness"
1431#endif
1432};
1433
1434#endif /* _UAPI_LINUX_PERF_EVENT_H */