Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <trace/events/qdisc.h>
135#include <linux/inetdevice.h>
136#include <linux/cpu_rmap.h>
137#include <linux/static_key.h>
138#include <linux/hashtable.h>
139#include <linux/vmalloc.h>
140#include <linux/if_macvlan.h>
141#include <linux/errqueue.h>
142#include <linux/hrtimer.h>
143#include <linux/netfilter_netdev.h>
144#include <linux/crash_dump.h>
145#include <linux/sctp.h>
146#include <net/udp_tunnel.h>
147#include <linux/net_namespace.h>
148#include <linux/indirect_call_wrapper.h>
149#include <net/devlink.h>
150#include <linux/pm_runtime.h>
151#include <linux/prandom.h>
152#include <linux/once_lite.h>
153
154#include "dev.h"
155#include "net-sysfs.h"
156
157
158static DEFINE_SPINLOCK(ptype_lock);
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
161
162static int netif_rx_internal(struct sk_buff *skb);
163static int call_netdevice_notifiers_info(unsigned long val,
164 struct netdev_notifier_info *info);
165static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170/*
171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172 * semaphore.
173 *
174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 *
176 * Writers must hold the rtnl semaphore while they loop through the
177 * dev_base_head list, and hold dev_base_lock for writing when they do the
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
180 *
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
184 *
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
187 * semaphore held.
188 */
189DEFINE_RWLOCK(dev_base_lock);
190EXPORT_SYMBOL(dev_base_lock);
191
192static DEFINE_MUTEX(ifalias_mutex);
193
194/* protects napi_hash addition/deletion and napi_gen_id */
195static DEFINE_SPINLOCK(napi_hash_lock);
196
197static unsigned int napi_gen_id = NR_CPUS;
198static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200static DECLARE_RWSEM(devnet_rename_sem);
201
202static inline void dev_base_seq_inc(struct net *net)
203{
204 while (++net->dev_base_seq == 0)
205 ;
206}
207
208static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209{
210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213}
214
215static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216{
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218}
219
220static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
222{
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
227}
228
229static inline void rps_lock_irq_disable(struct softnet_data *sd)
230{
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 local_irq_disable();
235}
236
237static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
239{
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
244}
245
246static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247{
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 local_irq_enable();
252}
253
254static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 const char *name)
256{
257 struct netdev_name_node *name_node;
258
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 if (!name_node)
261 return NULL;
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
265 return name_node;
266}
267
268static struct netdev_name_node *
269netdev_name_node_head_alloc(struct net_device *dev)
270{
271 struct netdev_name_node *name_node;
272
273 name_node = netdev_name_node_alloc(dev, dev->name);
274 if (!name_node)
275 return NULL;
276 INIT_LIST_HEAD(&name_node->list);
277 return name_node;
278}
279
280static void netdev_name_node_free(struct netdev_name_node *name_node)
281{
282 kfree(name_node);
283}
284
285static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
287{
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
290}
291
292static void netdev_name_node_del(struct netdev_name_node *name_node)
293{
294 hlist_del_rcu(&name_node->hlist);
295}
296
297static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 const char *name)
299{
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
302
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
305 return name_node;
306 return NULL;
307}
308
309static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 const char *name)
311{
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
314
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
317 return name_node;
318 return NULL;
319}
320
321bool netdev_name_in_use(struct net *net, const char *name)
322{
323 return netdev_name_node_lookup(net, name);
324}
325EXPORT_SYMBOL(netdev_name_in_use);
326
327int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328{
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (name_node)
334 return -EEXIST;
335 name_node = netdev_name_node_alloc(dev, name);
336 if (!name_node)
337 return -ENOMEM;
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
341
342 return 0;
343}
344
345static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346{
347 list_del(&name_node->list);
348 netdev_name_node_del(name_node);
349 kfree(name_node->name);
350 netdev_name_node_free(name_node);
351}
352
353int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354{
355 struct netdev_name_node *name_node;
356 struct net *net = dev_net(dev);
357
358 name_node = netdev_name_node_lookup(net, name);
359 if (!name_node)
360 return -ENOENT;
361 /* lookup might have found our primary name or a name belonging
362 * to another device.
363 */
364 if (name_node == dev->name_node || name_node->dev != dev)
365 return -EINVAL;
366
367 __netdev_name_node_alt_destroy(name_node);
368
369 return 0;
370}
371
372static void netdev_name_node_alt_flush(struct net_device *dev)
373{
374 struct netdev_name_node *name_node, *tmp;
375
376 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 __netdev_name_node_alt_destroy(name_node);
378}
379
380/* Device list insertion */
381static void list_netdevice(struct net_device *dev)
382{
383 struct net *net = dev_net(dev);
384
385 ASSERT_RTNL();
386
387 write_lock(&dev_base_lock);
388 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 netdev_name_node_add(net, dev->name_node);
390 hlist_add_head_rcu(&dev->index_hlist,
391 dev_index_hash(net, dev->ifindex));
392 write_unlock(&dev_base_lock);
393
394 dev_base_seq_inc(net);
395}
396
397/* Device list removal
398 * caller must respect a RCU grace period before freeing/reusing dev
399 */
400static void unlist_netdevice(struct net_device *dev, bool lock)
401{
402 ASSERT_RTNL();
403
404 /* Unlink dev from the device chain */
405 if (lock)
406 write_lock(&dev_base_lock);
407 list_del_rcu(&dev->dev_list);
408 netdev_name_node_del(dev->name_node);
409 hlist_del_rcu(&dev->index_hlist);
410 if (lock)
411 write_unlock(&dev_base_lock);
412
413 dev_base_seq_inc(dev_net(dev));
414}
415
416/*
417 * Our notifier list
418 */
419
420static RAW_NOTIFIER_HEAD(netdev_chain);
421
422/*
423 * Device drivers call our routines to queue packets here. We empty the
424 * queue in the local softnet handler.
425 */
426
427DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428EXPORT_PER_CPU_SYMBOL(softnet_data);
429
430#ifdef CONFIG_LOCKDEP
431/*
432 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433 * according to dev->type
434 */
435static const unsigned short netdev_lock_type[] = {
436 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451
452static const char *const netdev_lock_name[] = {
453 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468
469static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471
472static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473{
474 int i;
475
476 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477 if (netdev_lock_type[i] == dev_type)
478 return i;
479 /* the last key is used by default */
480 return ARRAY_SIZE(netdev_lock_type) - 1;
481}
482
483static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484 unsigned short dev_type)
485{
486 int i;
487
488 i = netdev_lock_pos(dev_type);
489 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490 netdev_lock_name[i]);
491}
492
493static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494{
495 int i;
496
497 i = netdev_lock_pos(dev->type);
498 lockdep_set_class_and_name(&dev->addr_list_lock,
499 &netdev_addr_lock_key[i],
500 netdev_lock_name[i]);
501}
502#else
503static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504 unsigned short dev_type)
505{
506}
507
508static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509{
510}
511#endif
512
513/*******************************************************************************
514 *
515 * Protocol management and registration routines
516 *
517 *******************************************************************************/
518
519
520/*
521 * Add a protocol ID to the list. Now that the input handler is
522 * smarter we can dispense with all the messy stuff that used to be
523 * here.
524 *
525 * BEWARE!!! Protocol handlers, mangling input packets,
526 * MUST BE last in hash buckets and checking protocol handlers
527 * MUST start from promiscuous ptype_all chain in net_bh.
528 * It is true now, do not change it.
529 * Explanation follows: if protocol handler, mangling packet, will
530 * be the first on list, it is not able to sense, that packet
531 * is cloned and should be copied-on-write, so that it will
532 * change it and subsequent readers will get broken packet.
533 * --ANK (980803)
534 */
535
536static inline struct list_head *ptype_head(const struct packet_type *pt)
537{
538 if (pt->type == htons(ETH_P_ALL))
539 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540 else
541 return pt->dev ? &pt->dev->ptype_specific :
542 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543}
544
545/**
546 * dev_add_pack - add packet handler
547 * @pt: packet type declaration
548 *
549 * Add a protocol handler to the networking stack. The passed &packet_type
550 * is linked into kernel lists and may not be freed until it has been
551 * removed from the kernel lists.
552 *
553 * This call does not sleep therefore it can not
554 * guarantee all CPU's that are in middle of receiving packets
555 * will see the new packet type (until the next received packet).
556 */
557
558void dev_add_pack(struct packet_type *pt)
559{
560 struct list_head *head = ptype_head(pt);
561
562 spin_lock(&ptype_lock);
563 list_add_rcu(&pt->list, head);
564 spin_unlock(&ptype_lock);
565}
566EXPORT_SYMBOL(dev_add_pack);
567
568/**
569 * __dev_remove_pack - remove packet handler
570 * @pt: packet type declaration
571 *
572 * Remove a protocol handler that was previously added to the kernel
573 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
574 * from the kernel lists and can be freed or reused once this function
575 * returns.
576 *
577 * The packet type might still be in use by receivers
578 * and must not be freed until after all the CPU's have gone
579 * through a quiescent state.
580 */
581void __dev_remove_pack(struct packet_type *pt)
582{
583 struct list_head *head = ptype_head(pt);
584 struct packet_type *pt1;
585
586 spin_lock(&ptype_lock);
587
588 list_for_each_entry(pt1, head, list) {
589 if (pt == pt1) {
590 list_del_rcu(&pt->list);
591 goto out;
592 }
593 }
594
595 pr_warn("dev_remove_pack: %p not found\n", pt);
596out:
597 spin_unlock(&ptype_lock);
598}
599EXPORT_SYMBOL(__dev_remove_pack);
600
601/**
602 * dev_remove_pack - remove packet handler
603 * @pt: packet type declaration
604 *
605 * Remove a protocol handler that was previously added to the kernel
606 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
607 * from the kernel lists and can be freed or reused once this function
608 * returns.
609 *
610 * This call sleeps to guarantee that no CPU is looking at the packet
611 * type after return.
612 */
613void dev_remove_pack(struct packet_type *pt)
614{
615 __dev_remove_pack(pt);
616
617 synchronize_net();
618}
619EXPORT_SYMBOL(dev_remove_pack);
620
621
622/*******************************************************************************
623 *
624 * Device Interface Subroutines
625 *
626 *******************************************************************************/
627
628/**
629 * dev_get_iflink - get 'iflink' value of a interface
630 * @dev: targeted interface
631 *
632 * Indicates the ifindex the interface is linked to.
633 * Physical interfaces have the same 'ifindex' and 'iflink' values.
634 */
635
636int dev_get_iflink(const struct net_device *dev)
637{
638 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639 return dev->netdev_ops->ndo_get_iflink(dev);
640
641 return dev->ifindex;
642}
643EXPORT_SYMBOL(dev_get_iflink);
644
645/**
646 * dev_fill_metadata_dst - Retrieve tunnel egress information.
647 * @dev: targeted interface
648 * @skb: The packet.
649 *
650 * For better visibility of tunnel traffic OVS needs to retrieve
651 * egress tunnel information for a packet. Following API allows
652 * user to get this info.
653 */
654int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655{
656 struct ip_tunnel_info *info;
657
658 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
659 return -EINVAL;
660
661 info = skb_tunnel_info_unclone(skb);
662 if (!info)
663 return -ENOMEM;
664 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665 return -EINVAL;
666
667 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668}
669EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670
671static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672{
673 int k = stack->num_paths++;
674
675 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676 return NULL;
677
678 return &stack->path[k];
679}
680
681int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682 struct net_device_path_stack *stack)
683{
684 const struct net_device *last_dev;
685 struct net_device_path_ctx ctx = {
686 .dev = dev,
687 };
688 struct net_device_path *path;
689 int ret = 0;
690
691 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692 stack->num_paths = 0;
693 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694 last_dev = ctx.dev;
695 path = dev_fwd_path(stack);
696 if (!path)
697 return -1;
698
699 memset(path, 0, sizeof(struct net_device_path));
700 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701 if (ret < 0)
702 return -1;
703
704 if (WARN_ON_ONCE(last_dev == ctx.dev))
705 return -1;
706 }
707
708 if (!ctx.dev)
709 return ret;
710
711 path = dev_fwd_path(stack);
712 if (!path)
713 return -1;
714 path->type = DEV_PATH_ETHERNET;
715 path->dev = ctx.dev;
716
717 return ret;
718}
719EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720
721/**
722 * __dev_get_by_name - find a device by its name
723 * @net: the applicable net namespace
724 * @name: name to find
725 *
726 * Find an interface by name. Must be called under RTNL semaphore
727 * or @dev_base_lock. If the name is found a pointer to the device
728 * is returned. If the name is not found then %NULL is returned. The
729 * reference counters are not incremented so the caller must be
730 * careful with locks.
731 */
732
733struct net_device *__dev_get_by_name(struct net *net, const char *name)
734{
735 struct netdev_name_node *node_name;
736
737 node_name = netdev_name_node_lookup(net, name);
738 return node_name ? node_name->dev : NULL;
739}
740EXPORT_SYMBOL(__dev_get_by_name);
741
742/**
743 * dev_get_by_name_rcu - find a device by its name
744 * @net: the applicable net namespace
745 * @name: name to find
746 *
747 * Find an interface by name.
748 * If the name is found a pointer to the device is returned.
749 * If the name is not found then %NULL is returned.
750 * The reference counters are not incremented so the caller must be
751 * careful with locks. The caller must hold RCU lock.
752 */
753
754struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755{
756 struct netdev_name_node *node_name;
757
758 node_name = netdev_name_node_lookup_rcu(net, name);
759 return node_name ? node_name->dev : NULL;
760}
761EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763/**
764 * dev_get_by_name - find a device by its name
765 * @net: the applicable net namespace
766 * @name: name to find
767 *
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
773 */
774
775struct net_device *dev_get_by_name(struct net *net, const char *name)
776{
777 struct net_device *dev;
778
779 rcu_read_lock();
780 dev = dev_get_by_name_rcu(net, name);
781 dev_hold(dev);
782 rcu_read_unlock();
783 return dev;
784}
785EXPORT_SYMBOL(dev_get_by_name);
786
787/**
788 * __dev_get_by_index - find a device by its ifindex
789 * @net: the applicable net namespace
790 * @ifindex: index of device
791 *
792 * Search for an interface by index. Returns %NULL if the device
793 * is not found or a pointer to the device. The device has not
794 * had its reference counter increased so the caller must be careful
795 * about locking. The caller must hold either the RTNL semaphore
796 * or @dev_base_lock.
797 */
798
799struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800{
801 struct net_device *dev;
802 struct hlist_head *head = dev_index_hash(net, ifindex);
803
804 hlist_for_each_entry(dev, head, index_hlist)
805 if (dev->ifindex == ifindex)
806 return dev;
807
808 return NULL;
809}
810EXPORT_SYMBOL(__dev_get_by_index);
811
812/**
813 * dev_get_by_index_rcu - find a device by its ifindex
814 * @net: the applicable net namespace
815 * @ifindex: index of device
816 *
817 * Search for an interface by index. Returns %NULL if the device
818 * is not found or a pointer to the device. The device has not
819 * had its reference counter increased so the caller must be careful
820 * about locking. The caller must hold RCU lock.
821 */
822
823struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824{
825 struct net_device *dev;
826 struct hlist_head *head = dev_index_hash(net, ifindex);
827
828 hlist_for_each_entry_rcu(dev, head, index_hlist)
829 if (dev->ifindex == ifindex)
830 return dev;
831
832 return NULL;
833}
834EXPORT_SYMBOL(dev_get_by_index_rcu);
835
836
837/**
838 * dev_get_by_index - find a device by its ifindex
839 * @net: the applicable net namespace
840 * @ifindex: index of device
841 *
842 * Search for an interface by index. Returns NULL if the device
843 * is not found or a pointer to the device. The device returned has
844 * had a reference added and the pointer is safe until the user calls
845 * dev_put to indicate they have finished with it.
846 */
847
848struct net_device *dev_get_by_index(struct net *net, int ifindex)
849{
850 struct net_device *dev;
851
852 rcu_read_lock();
853 dev = dev_get_by_index_rcu(net, ifindex);
854 dev_hold(dev);
855 rcu_read_unlock();
856 return dev;
857}
858EXPORT_SYMBOL(dev_get_by_index);
859
860/**
861 * dev_get_by_napi_id - find a device by napi_id
862 * @napi_id: ID of the NAPI struct
863 *
864 * Search for an interface by NAPI ID. Returns %NULL if the device
865 * is not found or a pointer to the device. The device has not had
866 * its reference counter increased so the caller must be careful
867 * about locking. The caller must hold RCU lock.
868 */
869
870struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871{
872 struct napi_struct *napi;
873
874 WARN_ON_ONCE(!rcu_read_lock_held());
875
876 if (napi_id < MIN_NAPI_ID)
877 return NULL;
878
879 napi = napi_by_id(napi_id);
880
881 return napi ? napi->dev : NULL;
882}
883EXPORT_SYMBOL(dev_get_by_napi_id);
884
885/**
886 * netdev_get_name - get a netdevice name, knowing its ifindex.
887 * @net: network namespace
888 * @name: a pointer to the buffer where the name will be stored.
889 * @ifindex: the ifindex of the interface to get the name from.
890 */
891int netdev_get_name(struct net *net, char *name, int ifindex)
892{
893 struct net_device *dev;
894 int ret;
895
896 down_read(&devnet_rename_sem);
897 rcu_read_lock();
898
899 dev = dev_get_by_index_rcu(net, ifindex);
900 if (!dev) {
901 ret = -ENODEV;
902 goto out;
903 }
904
905 strcpy(name, dev->name);
906
907 ret = 0;
908out:
909 rcu_read_unlock();
910 up_read(&devnet_rename_sem);
911 return ret;
912}
913
914/**
915 * dev_getbyhwaddr_rcu - find a device by its hardware address
916 * @net: the applicable net namespace
917 * @type: media type of device
918 * @ha: hardware address
919 *
920 * Search for an interface by MAC address. Returns NULL if the device
921 * is not found or a pointer to the device.
922 * The caller must hold RCU or RTNL.
923 * The returned device has not had its ref count increased
924 * and the caller must therefore be careful about locking
925 *
926 */
927
928struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929 const char *ha)
930{
931 struct net_device *dev;
932
933 for_each_netdev_rcu(net, dev)
934 if (dev->type == type &&
935 !memcmp(dev->dev_addr, ha, dev->addr_len))
936 return dev;
937
938 return NULL;
939}
940EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941
942struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943{
944 struct net_device *dev, *ret = NULL;
945
946 rcu_read_lock();
947 for_each_netdev_rcu(net, dev)
948 if (dev->type == type) {
949 dev_hold(dev);
950 ret = dev;
951 break;
952 }
953 rcu_read_unlock();
954 return ret;
955}
956EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958/**
959 * __dev_get_by_flags - find any device with given flags
960 * @net: the applicable net namespace
961 * @if_flags: IFF_* values
962 * @mask: bitmask of bits in if_flags to check
963 *
964 * Search for any interface with the given flags. Returns NULL if a device
965 * is not found or a pointer to the device. Must be called inside
966 * rtnl_lock(), and result refcount is unchanged.
967 */
968
969struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970 unsigned short mask)
971{
972 struct net_device *dev, *ret;
973
974 ASSERT_RTNL();
975
976 ret = NULL;
977 for_each_netdev(net, dev) {
978 if (((dev->flags ^ if_flags) & mask) == 0) {
979 ret = dev;
980 break;
981 }
982 }
983 return ret;
984}
985EXPORT_SYMBOL(__dev_get_by_flags);
986
987/**
988 * dev_valid_name - check if name is okay for network device
989 * @name: name string
990 *
991 * Network device names need to be valid file names to
992 * allow sysfs to work. We also disallow any kind of
993 * whitespace.
994 */
995bool dev_valid_name(const char *name)
996{
997 if (*name == '\0')
998 return false;
999 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000 return false;
1001 if (!strcmp(name, ".") || !strcmp(name, ".."))
1002 return false;
1003
1004 while (*name) {
1005 if (*name == '/' || *name == ':' || isspace(*name))
1006 return false;
1007 name++;
1008 }
1009 return true;
1010}
1011EXPORT_SYMBOL(dev_valid_name);
1012
1013/**
1014 * __dev_alloc_name - allocate a name for a device
1015 * @net: network namespace to allocate the device name in
1016 * @name: name format string
1017 * @buf: scratch buffer and result name string
1018 *
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1023 * duplicates.
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1026 */
1027
1028static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029{
1030 int i = 0;
1031 const char *p;
1032 const int max_netdevices = 8*PAGE_SIZE;
1033 unsigned long *inuse;
1034 struct net_device *d;
1035
1036 if (!dev_valid_name(name))
1037 return -EINVAL;
1038
1039 p = strchr(name, '%');
1040 if (p) {
1041 /*
1042 * Verify the string as this thing may have come from
1043 * the user. There must be either one "%d" and no other "%"
1044 * characters.
1045 */
1046 if (p[1] != 'd' || strchr(p + 2, '%'))
1047 return -EINVAL;
1048
1049 /* Use one page as a bit array of possible slots */
1050 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051 if (!inuse)
1052 return -ENOMEM;
1053
1054 for_each_netdev(net, d) {
1055 struct netdev_name_node *name_node;
1056 list_for_each_entry(name_node, &d->name_node->list, list) {
1057 if (!sscanf(name_node->name, name, &i))
1058 continue;
1059 if (i < 0 || i >= max_netdevices)
1060 continue;
1061
1062 /* avoid cases where sscanf is not exact inverse of printf */
1063 snprintf(buf, IFNAMSIZ, name, i);
1064 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065 __set_bit(i, inuse);
1066 }
1067 if (!sscanf(d->name, name, &i))
1068 continue;
1069 if (i < 0 || i >= max_netdevices)
1070 continue;
1071
1072 /* avoid cases where sscanf is not exact inverse of printf */
1073 snprintf(buf, IFNAMSIZ, name, i);
1074 if (!strncmp(buf, d->name, IFNAMSIZ))
1075 __set_bit(i, inuse);
1076 }
1077
1078 i = find_first_zero_bit(inuse, max_netdevices);
1079 free_page((unsigned long) inuse);
1080 }
1081
1082 snprintf(buf, IFNAMSIZ, name, i);
1083 if (!netdev_name_in_use(net, buf))
1084 return i;
1085
1086 /* It is possible to run out of possible slots
1087 * when the name is long and there isn't enough space left
1088 * for the digits, or if all bits are used.
1089 */
1090 return -ENFILE;
1091}
1092
1093static int dev_alloc_name_ns(struct net *net,
1094 struct net_device *dev,
1095 const char *name)
1096{
1097 char buf[IFNAMSIZ];
1098 int ret;
1099
1100 BUG_ON(!net);
1101 ret = __dev_alloc_name(net, name, buf);
1102 if (ret >= 0)
1103 strscpy(dev->name, buf, IFNAMSIZ);
1104 return ret;
1105}
1106
1107/**
1108 * dev_alloc_name - allocate a name for a device
1109 * @dev: device
1110 * @name: name format string
1111 *
1112 * Passed a format string - eg "lt%d" it will try and find a suitable
1113 * id. It scans list of devices to build up a free map, then chooses
1114 * the first empty slot. The caller must hold the dev_base or rtnl lock
1115 * while allocating the name and adding the device in order to avoid
1116 * duplicates.
1117 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118 * Returns the number of the unit assigned or a negative errno code.
1119 */
1120
1121int dev_alloc_name(struct net_device *dev, const char *name)
1122{
1123 return dev_alloc_name_ns(dev_net(dev), dev, name);
1124}
1125EXPORT_SYMBOL(dev_alloc_name);
1126
1127static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128 const char *name)
1129{
1130 BUG_ON(!net);
1131
1132 if (!dev_valid_name(name))
1133 return -EINVAL;
1134
1135 if (strchr(name, '%'))
1136 return dev_alloc_name_ns(net, dev, name);
1137 else if (netdev_name_in_use(net, name))
1138 return -EEXIST;
1139 else if (dev->name != name)
1140 strscpy(dev->name, name, IFNAMSIZ);
1141
1142 return 0;
1143}
1144
1145/**
1146 * dev_change_name - change name of a device
1147 * @dev: device
1148 * @newname: name (or format string) must be at least IFNAMSIZ
1149 *
1150 * Change name of a device, can pass format strings "eth%d".
1151 * for wildcarding.
1152 */
1153int dev_change_name(struct net_device *dev, const char *newname)
1154{
1155 unsigned char old_assign_type;
1156 char oldname[IFNAMSIZ];
1157 int err = 0;
1158 int ret;
1159 struct net *net;
1160
1161 ASSERT_RTNL();
1162 BUG_ON(!dev_net(dev));
1163
1164 net = dev_net(dev);
1165
1166 /* Some auto-enslaved devices e.g. failover slaves are
1167 * special, as userspace might rename the device after
1168 * the interface had been brought up and running since
1169 * the point kernel initiated auto-enslavement. Allow
1170 * live name change even when these slave devices are
1171 * up and running.
1172 *
1173 * Typically, users of these auto-enslaving devices
1174 * don't actually care about slave name change, as
1175 * they are supposed to operate on master interface
1176 * directly.
1177 */
1178 if (dev->flags & IFF_UP &&
1179 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1180 return -EBUSY;
1181
1182 down_write(&devnet_rename_sem);
1183
1184 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1185 up_write(&devnet_rename_sem);
1186 return 0;
1187 }
1188
1189 memcpy(oldname, dev->name, IFNAMSIZ);
1190
1191 err = dev_get_valid_name(net, dev, newname);
1192 if (err < 0) {
1193 up_write(&devnet_rename_sem);
1194 return err;
1195 }
1196
1197 if (oldname[0] && !strchr(oldname, '%'))
1198 netdev_info(dev, "renamed from %s\n", oldname);
1199
1200 old_assign_type = dev->name_assign_type;
1201 dev->name_assign_type = NET_NAME_RENAMED;
1202
1203rollback:
1204 ret = device_rename(&dev->dev, dev->name);
1205 if (ret) {
1206 memcpy(dev->name, oldname, IFNAMSIZ);
1207 dev->name_assign_type = old_assign_type;
1208 up_write(&devnet_rename_sem);
1209 return ret;
1210 }
1211
1212 up_write(&devnet_rename_sem);
1213
1214 netdev_adjacent_rename_links(dev, oldname);
1215
1216 write_lock(&dev_base_lock);
1217 netdev_name_node_del(dev->name_node);
1218 write_unlock(&dev_base_lock);
1219
1220 synchronize_rcu();
1221
1222 write_lock(&dev_base_lock);
1223 netdev_name_node_add(net, dev->name_node);
1224 write_unlock(&dev_base_lock);
1225
1226 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1227 ret = notifier_to_errno(ret);
1228
1229 if (ret) {
1230 /* err >= 0 after dev_alloc_name() or stores the first errno */
1231 if (err >= 0) {
1232 err = ret;
1233 down_write(&devnet_rename_sem);
1234 memcpy(dev->name, oldname, IFNAMSIZ);
1235 memcpy(oldname, newname, IFNAMSIZ);
1236 dev->name_assign_type = old_assign_type;
1237 old_assign_type = NET_NAME_RENAMED;
1238 goto rollback;
1239 } else {
1240 netdev_err(dev, "name change rollback failed: %d\n",
1241 ret);
1242 }
1243 }
1244
1245 return err;
1246}
1247
1248/**
1249 * dev_set_alias - change ifalias of a device
1250 * @dev: device
1251 * @alias: name up to IFALIASZ
1252 * @len: limit of bytes to copy from info
1253 *
1254 * Set ifalias for a device,
1255 */
1256int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1257{
1258 struct dev_ifalias *new_alias = NULL;
1259
1260 if (len >= IFALIASZ)
1261 return -EINVAL;
1262
1263 if (len) {
1264 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1265 if (!new_alias)
1266 return -ENOMEM;
1267
1268 memcpy(new_alias->ifalias, alias, len);
1269 new_alias->ifalias[len] = 0;
1270 }
1271
1272 mutex_lock(&ifalias_mutex);
1273 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1274 mutex_is_locked(&ifalias_mutex));
1275 mutex_unlock(&ifalias_mutex);
1276
1277 if (new_alias)
1278 kfree_rcu(new_alias, rcuhead);
1279
1280 return len;
1281}
1282EXPORT_SYMBOL(dev_set_alias);
1283
1284/**
1285 * dev_get_alias - get ifalias of a device
1286 * @dev: device
1287 * @name: buffer to store name of ifalias
1288 * @len: size of buffer
1289 *
1290 * get ifalias for a device. Caller must make sure dev cannot go
1291 * away, e.g. rcu read lock or own a reference count to device.
1292 */
1293int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1294{
1295 const struct dev_ifalias *alias;
1296 int ret = 0;
1297
1298 rcu_read_lock();
1299 alias = rcu_dereference(dev->ifalias);
1300 if (alias)
1301 ret = snprintf(name, len, "%s", alias->ifalias);
1302 rcu_read_unlock();
1303
1304 return ret;
1305}
1306
1307/**
1308 * netdev_features_change - device changes features
1309 * @dev: device to cause notification
1310 *
1311 * Called to indicate a device has changed features.
1312 */
1313void netdev_features_change(struct net_device *dev)
1314{
1315 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1316}
1317EXPORT_SYMBOL(netdev_features_change);
1318
1319/**
1320 * netdev_state_change - device changes state
1321 * @dev: device to cause notification
1322 *
1323 * Called to indicate a device has changed state. This function calls
1324 * the notifier chains for netdev_chain and sends a NEWLINK message
1325 * to the routing socket.
1326 */
1327void netdev_state_change(struct net_device *dev)
1328{
1329 if (dev->flags & IFF_UP) {
1330 struct netdev_notifier_change_info change_info = {
1331 .info.dev = dev,
1332 };
1333
1334 call_netdevice_notifiers_info(NETDEV_CHANGE,
1335 &change_info.info);
1336 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1337 }
1338}
1339EXPORT_SYMBOL(netdev_state_change);
1340
1341/**
1342 * __netdev_notify_peers - notify network peers about existence of @dev,
1343 * to be called when rtnl lock is already held.
1344 * @dev: network device
1345 *
1346 * Generate traffic such that interested network peers are aware of
1347 * @dev, such as by generating a gratuitous ARP. This may be used when
1348 * a device wants to inform the rest of the network about some sort of
1349 * reconfiguration such as a failover event or virtual machine
1350 * migration.
1351 */
1352void __netdev_notify_peers(struct net_device *dev)
1353{
1354 ASSERT_RTNL();
1355 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1356 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1357}
1358EXPORT_SYMBOL(__netdev_notify_peers);
1359
1360/**
1361 * netdev_notify_peers - notify network peers about existence of @dev
1362 * @dev: network device
1363 *
1364 * Generate traffic such that interested network peers are aware of
1365 * @dev, such as by generating a gratuitous ARP. This may be used when
1366 * a device wants to inform the rest of the network about some sort of
1367 * reconfiguration such as a failover event or virtual machine
1368 * migration.
1369 */
1370void netdev_notify_peers(struct net_device *dev)
1371{
1372 rtnl_lock();
1373 __netdev_notify_peers(dev);
1374 rtnl_unlock();
1375}
1376EXPORT_SYMBOL(netdev_notify_peers);
1377
1378static int napi_threaded_poll(void *data);
1379
1380static int napi_kthread_create(struct napi_struct *n)
1381{
1382 int err = 0;
1383
1384 /* Create and wake up the kthread once to put it in
1385 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1386 * warning and work with loadavg.
1387 */
1388 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1389 n->dev->name, n->napi_id);
1390 if (IS_ERR(n->thread)) {
1391 err = PTR_ERR(n->thread);
1392 pr_err("kthread_run failed with err %d\n", err);
1393 n->thread = NULL;
1394 }
1395
1396 return err;
1397}
1398
1399static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1400{
1401 const struct net_device_ops *ops = dev->netdev_ops;
1402 int ret;
1403
1404 ASSERT_RTNL();
1405 dev_addr_check(dev);
1406
1407 if (!netif_device_present(dev)) {
1408 /* may be detached because parent is runtime-suspended */
1409 if (dev->dev.parent)
1410 pm_runtime_resume(dev->dev.parent);
1411 if (!netif_device_present(dev))
1412 return -ENODEV;
1413 }
1414
1415 /* Block netpoll from trying to do any rx path servicing.
1416 * If we don't do this there is a chance ndo_poll_controller
1417 * or ndo_poll may be running while we open the device
1418 */
1419 netpoll_poll_disable(dev);
1420
1421 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1422 ret = notifier_to_errno(ret);
1423 if (ret)
1424 return ret;
1425
1426 set_bit(__LINK_STATE_START, &dev->state);
1427
1428 if (ops->ndo_validate_addr)
1429 ret = ops->ndo_validate_addr(dev);
1430
1431 if (!ret && ops->ndo_open)
1432 ret = ops->ndo_open(dev);
1433
1434 netpoll_poll_enable(dev);
1435
1436 if (ret)
1437 clear_bit(__LINK_STATE_START, &dev->state);
1438 else {
1439 dev->flags |= IFF_UP;
1440 dev_set_rx_mode(dev);
1441 dev_activate(dev);
1442 add_device_randomness(dev->dev_addr, dev->addr_len);
1443 }
1444
1445 return ret;
1446}
1447
1448/**
1449 * dev_open - prepare an interface for use.
1450 * @dev: device to open
1451 * @extack: netlink extended ack
1452 *
1453 * Takes a device from down to up state. The device's private open
1454 * function is invoked and then the multicast lists are loaded. Finally
1455 * the device is moved into the up state and a %NETDEV_UP message is
1456 * sent to the netdev notifier chain.
1457 *
1458 * Calling this function on an active interface is a nop. On a failure
1459 * a negative errno code is returned.
1460 */
1461int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1462{
1463 int ret;
1464
1465 if (dev->flags & IFF_UP)
1466 return 0;
1467
1468 ret = __dev_open(dev, extack);
1469 if (ret < 0)
1470 return ret;
1471
1472 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1473 call_netdevice_notifiers(NETDEV_UP, dev);
1474
1475 return ret;
1476}
1477EXPORT_SYMBOL(dev_open);
1478
1479static void __dev_close_many(struct list_head *head)
1480{
1481 struct net_device *dev;
1482
1483 ASSERT_RTNL();
1484 might_sleep();
1485
1486 list_for_each_entry(dev, head, close_list) {
1487 /* Temporarily disable netpoll until the interface is down */
1488 netpoll_poll_disable(dev);
1489
1490 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1491
1492 clear_bit(__LINK_STATE_START, &dev->state);
1493
1494 /* Synchronize to scheduled poll. We cannot touch poll list, it
1495 * can be even on different cpu. So just clear netif_running().
1496 *
1497 * dev->stop() will invoke napi_disable() on all of it's
1498 * napi_struct instances on this device.
1499 */
1500 smp_mb__after_atomic(); /* Commit netif_running(). */
1501 }
1502
1503 dev_deactivate_many(head);
1504
1505 list_for_each_entry(dev, head, close_list) {
1506 const struct net_device_ops *ops = dev->netdev_ops;
1507
1508 /*
1509 * Call the device specific close. This cannot fail.
1510 * Only if device is UP
1511 *
1512 * We allow it to be called even after a DETACH hot-plug
1513 * event.
1514 */
1515 if (ops->ndo_stop)
1516 ops->ndo_stop(dev);
1517
1518 dev->flags &= ~IFF_UP;
1519 netpoll_poll_enable(dev);
1520 }
1521}
1522
1523static void __dev_close(struct net_device *dev)
1524{
1525 LIST_HEAD(single);
1526
1527 list_add(&dev->close_list, &single);
1528 __dev_close_many(&single);
1529 list_del(&single);
1530}
1531
1532void dev_close_many(struct list_head *head, bool unlink)
1533{
1534 struct net_device *dev, *tmp;
1535
1536 /* Remove the devices that don't need to be closed */
1537 list_for_each_entry_safe(dev, tmp, head, close_list)
1538 if (!(dev->flags & IFF_UP))
1539 list_del_init(&dev->close_list);
1540
1541 __dev_close_many(head);
1542
1543 list_for_each_entry_safe(dev, tmp, head, close_list) {
1544 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1545 call_netdevice_notifiers(NETDEV_DOWN, dev);
1546 if (unlink)
1547 list_del_init(&dev->close_list);
1548 }
1549}
1550EXPORT_SYMBOL(dev_close_many);
1551
1552/**
1553 * dev_close - shutdown an interface.
1554 * @dev: device to shutdown
1555 *
1556 * This function moves an active device into down state. A
1557 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1558 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1559 * chain.
1560 */
1561void dev_close(struct net_device *dev)
1562{
1563 if (dev->flags & IFF_UP) {
1564 LIST_HEAD(single);
1565
1566 list_add(&dev->close_list, &single);
1567 dev_close_many(&single, true);
1568 list_del(&single);
1569 }
1570}
1571EXPORT_SYMBOL(dev_close);
1572
1573
1574/**
1575 * dev_disable_lro - disable Large Receive Offload on a device
1576 * @dev: device
1577 *
1578 * Disable Large Receive Offload (LRO) on a net device. Must be
1579 * called under RTNL. This is needed if received packets may be
1580 * forwarded to another interface.
1581 */
1582void dev_disable_lro(struct net_device *dev)
1583{
1584 struct net_device *lower_dev;
1585 struct list_head *iter;
1586
1587 dev->wanted_features &= ~NETIF_F_LRO;
1588 netdev_update_features(dev);
1589
1590 if (unlikely(dev->features & NETIF_F_LRO))
1591 netdev_WARN(dev, "failed to disable LRO!\n");
1592
1593 netdev_for_each_lower_dev(dev, lower_dev, iter)
1594 dev_disable_lro(lower_dev);
1595}
1596EXPORT_SYMBOL(dev_disable_lro);
1597
1598/**
1599 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1600 * @dev: device
1601 *
1602 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1603 * called under RTNL. This is needed if Generic XDP is installed on
1604 * the device.
1605 */
1606static void dev_disable_gro_hw(struct net_device *dev)
1607{
1608 dev->wanted_features &= ~NETIF_F_GRO_HW;
1609 netdev_update_features(dev);
1610
1611 if (unlikely(dev->features & NETIF_F_GRO_HW))
1612 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1613}
1614
1615const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1616{
1617#define N(val) \
1618 case NETDEV_##val: \
1619 return "NETDEV_" __stringify(val);
1620 switch (cmd) {
1621 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1622 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1623 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1624 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1625 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1626 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1627 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1628 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1629 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1630 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1631 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1632 }
1633#undef N
1634 return "UNKNOWN_NETDEV_EVENT";
1635}
1636EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1637
1638static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1639 struct net_device *dev)
1640{
1641 struct netdev_notifier_info info = {
1642 .dev = dev,
1643 };
1644
1645 return nb->notifier_call(nb, val, &info);
1646}
1647
1648static int call_netdevice_register_notifiers(struct notifier_block *nb,
1649 struct net_device *dev)
1650{
1651 int err;
1652
1653 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654 err = notifier_to_errno(err);
1655 if (err)
1656 return err;
1657
1658 if (!(dev->flags & IFF_UP))
1659 return 0;
1660
1661 call_netdevice_notifier(nb, NETDEV_UP, dev);
1662 return 0;
1663}
1664
1665static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1666 struct net_device *dev)
1667{
1668 if (dev->flags & IFF_UP) {
1669 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1670 dev);
1671 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1672 }
1673 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1674}
1675
1676static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1677 struct net *net)
1678{
1679 struct net_device *dev;
1680 int err;
1681
1682 for_each_netdev(net, dev) {
1683 err = call_netdevice_register_notifiers(nb, dev);
1684 if (err)
1685 goto rollback;
1686 }
1687 return 0;
1688
1689rollback:
1690 for_each_netdev_continue_reverse(net, dev)
1691 call_netdevice_unregister_notifiers(nb, dev);
1692 return err;
1693}
1694
1695static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1696 struct net *net)
1697{
1698 struct net_device *dev;
1699
1700 for_each_netdev(net, dev)
1701 call_netdevice_unregister_notifiers(nb, dev);
1702}
1703
1704static int dev_boot_phase = 1;
1705
1706/**
1707 * register_netdevice_notifier - register a network notifier block
1708 * @nb: notifier
1709 *
1710 * Register a notifier to be called when network device events occur.
1711 * The notifier passed is linked into the kernel structures and must
1712 * not be reused until it has been unregistered. A negative errno code
1713 * is returned on a failure.
1714 *
1715 * When registered all registration and up events are replayed
1716 * to the new notifier to allow device to have a race free
1717 * view of the network device list.
1718 */
1719
1720int register_netdevice_notifier(struct notifier_block *nb)
1721{
1722 struct net *net;
1723 int err;
1724
1725 /* Close race with setup_net() and cleanup_net() */
1726 down_write(&pernet_ops_rwsem);
1727 rtnl_lock();
1728 err = raw_notifier_chain_register(&netdev_chain, nb);
1729 if (err)
1730 goto unlock;
1731 if (dev_boot_phase)
1732 goto unlock;
1733 for_each_net(net) {
1734 err = call_netdevice_register_net_notifiers(nb, net);
1735 if (err)
1736 goto rollback;
1737 }
1738
1739unlock:
1740 rtnl_unlock();
1741 up_write(&pernet_ops_rwsem);
1742 return err;
1743
1744rollback:
1745 for_each_net_continue_reverse(net)
1746 call_netdevice_unregister_net_notifiers(nb, net);
1747
1748 raw_notifier_chain_unregister(&netdev_chain, nb);
1749 goto unlock;
1750}
1751EXPORT_SYMBOL(register_netdevice_notifier);
1752
1753/**
1754 * unregister_netdevice_notifier - unregister a network notifier block
1755 * @nb: notifier
1756 *
1757 * Unregister a notifier previously registered by
1758 * register_netdevice_notifier(). The notifier is unlinked into the
1759 * kernel structures and may then be reused. A negative errno code
1760 * is returned on a failure.
1761 *
1762 * After unregistering unregister and down device events are synthesized
1763 * for all devices on the device list to the removed notifier to remove
1764 * the need for special case cleanup code.
1765 */
1766
1767int unregister_netdevice_notifier(struct notifier_block *nb)
1768{
1769 struct net *net;
1770 int err;
1771
1772 /* Close race with setup_net() and cleanup_net() */
1773 down_write(&pernet_ops_rwsem);
1774 rtnl_lock();
1775 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1776 if (err)
1777 goto unlock;
1778
1779 for_each_net(net)
1780 call_netdevice_unregister_net_notifiers(nb, net);
1781
1782unlock:
1783 rtnl_unlock();
1784 up_write(&pernet_ops_rwsem);
1785 return err;
1786}
1787EXPORT_SYMBOL(unregister_netdevice_notifier);
1788
1789static int __register_netdevice_notifier_net(struct net *net,
1790 struct notifier_block *nb,
1791 bool ignore_call_fail)
1792{
1793 int err;
1794
1795 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1796 if (err)
1797 return err;
1798 if (dev_boot_phase)
1799 return 0;
1800
1801 err = call_netdevice_register_net_notifiers(nb, net);
1802 if (err && !ignore_call_fail)
1803 goto chain_unregister;
1804
1805 return 0;
1806
1807chain_unregister:
1808 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1809 return err;
1810}
1811
1812static int __unregister_netdevice_notifier_net(struct net *net,
1813 struct notifier_block *nb)
1814{
1815 int err;
1816
1817 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1818 if (err)
1819 return err;
1820
1821 call_netdevice_unregister_net_notifiers(nb, net);
1822 return 0;
1823}
1824
1825/**
1826 * register_netdevice_notifier_net - register a per-netns network notifier block
1827 * @net: network namespace
1828 * @nb: notifier
1829 *
1830 * Register a notifier to be called when network device events occur.
1831 * The notifier passed is linked into the kernel structures and must
1832 * not be reused until it has been unregistered. A negative errno code
1833 * is returned on a failure.
1834 *
1835 * When registered all registration and up events are replayed
1836 * to the new notifier to allow device to have a race free
1837 * view of the network device list.
1838 */
1839
1840int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1841{
1842 int err;
1843
1844 rtnl_lock();
1845 err = __register_netdevice_notifier_net(net, nb, false);
1846 rtnl_unlock();
1847 return err;
1848}
1849EXPORT_SYMBOL(register_netdevice_notifier_net);
1850
1851/**
1852 * unregister_netdevice_notifier_net - unregister a per-netns
1853 * network notifier block
1854 * @net: network namespace
1855 * @nb: notifier
1856 *
1857 * Unregister a notifier previously registered by
1858 * register_netdevice_notifier(). The notifier is unlinked into the
1859 * kernel structures and may then be reused. A negative errno code
1860 * is returned on a failure.
1861 *
1862 * After unregistering unregister and down device events are synthesized
1863 * for all devices on the device list to the removed notifier to remove
1864 * the need for special case cleanup code.
1865 */
1866
1867int unregister_netdevice_notifier_net(struct net *net,
1868 struct notifier_block *nb)
1869{
1870 int err;
1871
1872 rtnl_lock();
1873 err = __unregister_netdevice_notifier_net(net, nb);
1874 rtnl_unlock();
1875 return err;
1876}
1877EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1878
1879int register_netdevice_notifier_dev_net(struct net_device *dev,
1880 struct notifier_block *nb,
1881 struct netdev_net_notifier *nn)
1882{
1883 int err;
1884
1885 rtnl_lock();
1886 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1887 if (!err) {
1888 nn->nb = nb;
1889 list_add(&nn->list, &dev->net_notifier_list);
1890 }
1891 rtnl_unlock();
1892 return err;
1893}
1894EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1895
1896int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1897 struct notifier_block *nb,
1898 struct netdev_net_notifier *nn)
1899{
1900 int err;
1901
1902 rtnl_lock();
1903 list_del(&nn->list);
1904 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1905 rtnl_unlock();
1906 return err;
1907}
1908EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1909
1910static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1911 struct net *net)
1912{
1913 struct netdev_net_notifier *nn;
1914
1915 list_for_each_entry(nn, &dev->net_notifier_list, list) {
1916 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1917 __register_netdevice_notifier_net(net, nn->nb, true);
1918 }
1919}
1920
1921/**
1922 * call_netdevice_notifiers_info - call all network notifier blocks
1923 * @val: value passed unmodified to notifier function
1924 * @info: notifier information data
1925 *
1926 * Call all network notifier blocks. Parameters and return value
1927 * are as for raw_notifier_call_chain().
1928 */
1929
1930static int call_netdevice_notifiers_info(unsigned long val,
1931 struct netdev_notifier_info *info)
1932{
1933 struct net *net = dev_net(info->dev);
1934 int ret;
1935
1936 ASSERT_RTNL();
1937
1938 /* Run per-netns notifier block chain first, then run the global one.
1939 * Hopefully, one day, the global one is going to be removed after
1940 * all notifier block registrators get converted to be per-netns.
1941 */
1942 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1943 if (ret & NOTIFY_STOP_MASK)
1944 return ret;
1945 return raw_notifier_call_chain(&netdev_chain, val, info);
1946}
1947
1948/**
1949 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1950 * for and rollback on error
1951 * @val_up: value passed unmodified to notifier function
1952 * @val_down: value passed unmodified to the notifier function when
1953 * recovering from an error on @val_up
1954 * @info: notifier information data
1955 *
1956 * Call all per-netns network notifier blocks, but not notifier blocks on
1957 * the global notifier chain. Parameters and return value are as for
1958 * raw_notifier_call_chain_robust().
1959 */
1960
1961static int
1962call_netdevice_notifiers_info_robust(unsigned long val_up,
1963 unsigned long val_down,
1964 struct netdev_notifier_info *info)
1965{
1966 struct net *net = dev_net(info->dev);
1967
1968 ASSERT_RTNL();
1969
1970 return raw_notifier_call_chain_robust(&net->netdev_chain,
1971 val_up, val_down, info);
1972}
1973
1974static int call_netdevice_notifiers_extack(unsigned long val,
1975 struct net_device *dev,
1976 struct netlink_ext_ack *extack)
1977{
1978 struct netdev_notifier_info info = {
1979 .dev = dev,
1980 .extack = extack,
1981 };
1982
1983 return call_netdevice_notifiers_info(val, &info);
1984}
1985
1986/**
1987 * call_netdevice_notifiers - call all network notifier blocks
1988 * @val: value passed unmodified to notifier function
1989 * @dev: net_device pointer passed unmodified to notifier function
1990 *
1991 * Call all network notifier blocks. Parameters and return value
1992 * are as for raw_notifier_call_chain().
1993 */
1994
1995int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1996{
1997 return call_netdevice_notifiers_extack(val, dev, NULL);
1998}
1999EXPORT_SYMBOL(call_netdevice_notifiers);
2000
2001/**
2002 * call_netdevice_notifiers_mtu - call all network notifier blocks
2003 * @val: value passed unmodified to notifier function
2004 * @dev: net_device pointer passed unmodified to notifier function
2005 * @arg: additional u32 argument passed to the notifier function
2006 *
2007 * Call all network notifier blocks. Parameters and return value
2008 * are as for raw_notifier_call_chain().
2009 */
2010static int call_netdevice_notifiers_mtu(unsigned long val,
2011 struct net_device *dev, u32 arg)
2012{
2013 struct netdev_notifier_info_ext info = {
2014 .info.dev = dev,
2015 .ext.mtu = arg,
2016 };
2017
2018 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2019
2020 return call_netdevice_notifiers_info(val, &info.info);
2021}
2022
2023#ifdef CONFIG_NET_INGRESS
2024static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2025
2026void net_inc_ingress_queue(void)
2027{
2028 static_branch_inc(&ingress_needed_key);
2029}
2030EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2031
2032void net_dec_ingress_queue(void)
2033{
2034 static_branch_dec(&ingress_needed_key);
2035}
2036EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2037#endif
2038
2039#ifdef CONFIG_NET_EGRESS
2040static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2041
2042void net_inc_egress_queue(void)
2043{
2044 static_branch_inc(&egress_needed_key);
2045}
2046EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2047
2048void net_dec_egress_queue(void)
2049{
2050 static_branch_dec(&egress_needed_key);
2051}
2052EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2053#endif
2054
2055DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2056EXPORT_SYMBOL(netstamp_needed_key);
2057#ifdef CONFIG_JUMP_LABEL
2058static atomic_t netstamp_needed_deferred;
2059static atomic_t netstamp_wanted;
2060static void netstamp_clear(struct work_struct *work)
2061{
2062 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2063 int wanted;
2064
2065 wanted = atomic_add_return(deferred, &netstamp_wanted);
2066 if (wanted > 0)
2067 static_branch_enable(&netstamp_needed_key);
2068 else
2069 static_branch_disable(&netstamp_needed_key);
2070}
2071static DECLARE_WORK(netstamp_work, netstamp_clear);
2072#endif
2073
2074void net_enable_timestamp(void)
2075{
2076#ifdef CONFIG_JUMP_LABEL
2077 int wanted;
2078
2079 while (1) {
2080 wanted = atomic_read(&netstamp_wanted);
2081 if (wanted <= 0)
2082 break;
2083 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2084 return;
2085 }
2086 atomic_inc(&netstamp_needed_deferred);
2087 schedule_work(&netstamp_work);
2088#else
2089 static_branch_inc(&netstamp_needed_key);
2090#endif
2091}
2092EXPORT_SYMBOL(net_enable_timestamp);
2093
2094void net_disable_timestamp(void)
2095{
2096#ifdef CONFIG_JUMP_LABEL
2097 int wanted;
2098
2099 while (1) {
2100 wanted = atomic_read(&netstamp_wanted);
2101 if (wanted <= 1)
2102 break;
2103 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2104 return;
2105 }
2106 atomic_dec(&netstamp_needed_deferred);
2107 schedule_work(&netstamp_work);
2108#else
2109 static_branch_dec(&netstamp_needed_key);
2110#endif
2111}
2112EXPORT_SYMBOL(net_disable_timestamp);
2113
2114static inline void net_timestamp_set(struct sk_buff *skb)
2115{
2116 skb->tstamp = 0;
2117 skb->mono_delivery_time = 0;
2118 if (static_branch_unlikely(&netstamp_needed_key))
2119 skb->tstamp = ktime_get_real();
2120}
2121
2122#define net_timestamp_check(COND, SKB) \
2123 if (static_branch_unlikely(&netstamp_needed_key)) { \
2124 if ((COND) && !(SKB)->tstamp) \
2125 (SKB)->tstamp = ktime_get_real(); \
2126 } \
2127
2128bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2129{
2130 return __is_skb_forwardable(dev, skb, true);
2131}
2132EXPORT_SYMBOL_GPL(is_skb_forwardable);
2133
2134static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2135 bool check_mtu)
2136{
2137 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2138
2139 if (likely(!ret)) {
2140 skb->protocol = eth_type_trans(skb, dev);
2141 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2142 }
2143
2144 return ret;
2145}
2146
2147int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2148{
2149 return __dev_forward_skb2(dev, skb, true);
2150}
2151EXPORT_SYMBOL_GPL(__dev_forward_skb);
2152
2153/**
2154 * dev_forward_skb - loopback an skb to another netif
2155 *
2156 * @dev: destination network device
2157 * @skb: buffer to forward
2158 *
2159 * return values:
2160 * NET_RX_SUCCESS (no congestion)
2161 * NET_RX_DROP (packet was dropped, but freed)
2162 *
2163 * dev_forward_skb can be used for injecting an skb from the
2164 * start_xmit function of one device into the receive queue
2165 * of another device.
2166 *
2167 * The receiving device may be in another namespace, so
2168 * we have to clear all information in the skb that could
2169 * impact namespace isolation.
2170 */
2171int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2172{
2173 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2174}
2175EXPORT_SYMBOL_GPL(dev_forward_skb);
2176
2177int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2178{
2179 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2180}
2181
2182static inline int deliver_skb(struct sk_buff *skb,
2183 struct packet_type *pt_prev,
2184 struct net_device *orig_dev)
2185{
2186 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2187 return -ENOMEM;
2188 refcount_inc(&skb->users);
2189 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2190}
2191
2192static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2193 struct packet_type **pt,
2194 struct net_device *orig_dev,
2195 __be16 type,
2196 struct list_head *ptype_list)
2197{
2198 struct packet_type *ptype, *pt_prev = *pt;
2199
2200 list_for_each_entry_rcu(ptype, ptype_list, list) {
2201 if (ptype->type != type)
2202 continue;
2203 if (pt_prev)
2204 deliver_skb(skb, pt_prev, orig_dev);
2205 pt_prev = ptype;
2206 }
2207 *pt = pt_prev;
2208}
2209
2210static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2211{
2212 if (!ptype->af_packet_priv || !skb->sk)
2213 return false;
2214
2215 if (ptype->id_match)
2216 return ptype->id_match(ptype, skb->sk);
2217 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2218 return true;
2219
2220 return false;
2221}
2222
2223/**
2224 * dev_nit_active - return true if any network interface taps are in use
2225 *
2226 * @dev: network device to check for the presence of taps
2227 */
2228bool dev_nit_active(struct net_device *dev)
2229{
2230 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2231}
2232EXPORT_SYMBOL_GPL(dev_nit_active);
2233
2234/*
2235 * Support routine. Sends outgoing frames to any network
2236 * taps currently in use.
2237 */
2238
2239void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2240{
2241 struct packet_type *ptype;
2242 struct sk_buff *skb2 = NULL;
2243 struct packet_type *pt_prev = NULL;
2244 struct list_head *ptype_list = &ptype_all;
2245
2246 rcu_read_lock();
2247again:
2248 list_for_each_entry_rcu(ptype, ptype_list, list) {
2249 if (ptype->ignore_outgoing)
2250 continue;
2251
2252 /* Never send packets back to the socket
2253 * they originated from - MvS (miquels@drinkel.ow.org)
2254 */
2255 if (skb_loop_sk(ptype, skb))
2256 continue;
2257
2258 if (pt_prev) {
2259 deliver_skb(skb2, pt_prev, skb->dev);
2260 pt_prev = ptype;
2261 continue;
2262 }
2263
2264 /* need to clone skb, done only once */
2265 skb2 = skb_clone(skb, GFP_ATOMIC);
2266 if (!skb2)
2267 goto out_unlock;
2268
2269 net_timestamp_set(skb2);
2270
2271 /* skb->nh should be correctly
2272 * set by sender, so that the second statement is
2273 * just protection against buggy protocols.
2274 */
2275 skb_reset_mac_header(skb2);
2276
2277 if (skb_network_header(skb2) < skb2->data ||
2278 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2279 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2280 ntohs(skb2->protocol),
2281 dev->name);
2282 skb_reset_network_header(skb2);
2283 }
2284
2285 skb2->transport_header = skb2->network_header;
2286 skb2->pkt_type = PACKET_OUTGOING;
2287 pt_prev = ptype;
2288 }
2289
2290 if (ptype_list == &ptype_all) {
2291 ptype_list = &dev->ptype_all;
2292 goto again;
2293 }
2294out_unlock:
2295 if (pt_prev) {
2296 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2297 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2298 else
2299 kfree_skb(skb2);
2300 }
2301 rcu_read_unlock();
2302}
2303EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2304
2305/**
2306 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2307 * @dev: Network device
2308 * @txq: number of queues available
2309 *
2310 * If real_num_tx_queues is changed the tc mappings may no longer be
2311 * valid. To resolve this verify the tc mapping remains valid and if
2312 * not NULL the mapping. With no priorities mapping to this
2313 * offset/count pair it will no longer be used. In the worst case TC0
2314 * is invalid nothing can be done so disable priority mappings. If is
2315 * expected that drivers will fix this mapping if they can before
2316 * calling netif_set_real_num_tx_queues.
2317 */
2318static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2319{
2320 int i;
2321 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2322
2323 /* If TC0 is invalidated disable TC mapping */
2324 if (tc->offset + tc->count > txq) {
2325 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2326 dev->num_tc = 0;
2327 return;
2328 }
2329
2330 /* Invalidated prio to tc mappings set to TC0 */
2331 for (i = 1; i < TC_BITMASK + 1; i++) {
2332 int q = netdev_get_prio_tc_map(dev, i);
2333
2334 tc = &dev->tc_to_txq[q];
2335 if (tc->offset + tc->count > txq) {
2336 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2337 i, q);
2338 netdev_set_prio_tc_map(dev, i, 0);
2339 }
2340 }
2341}
2342
2343int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2344{
2345 if (dev->num_tc) {
2346 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2347 int i;
2348
2349 /* walk through the TCs and see if it falls into any of them */
2350 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2351 if ((txq - tc->offset) < tc->count)
2352 return i;
2353 }
2354
2355 /* didn't find it, just return -1 to indicate no match */
2356 return -1;
2357 }
2358
2359 return 0;
2360}
2361EXPORT_SYMBOL(netdev_txq_to_tc);
2362
2363#ifdef CONFIG_XPS
2364static struct static_key xps_needed __read_mostly;
2365static struct static_key xps_rxqs_needed __read_mostly;
2366static DEFINE_MUTEX(xps_map_mutex);
2367#define xmap_dereference(P) \
2368 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2369
2370static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2371 struct xps_dev_maps *old_maps, int tci, u16 index)
2372{
2373 struct xps_map *map = NULL;
2374 int pos;
2375
2376 if (dev_maps)
2377 map = xmap_dereference(dev_maps->attr_map[tci]);
2378 if (!map)
2379 return false;
2380
2381 for (pos = map->len; pos--;) {
2382 if (map->queues[pos] != index)
2383 continue;
2384
2385 if (map->len > 1) {
2386 map->queues[pos] = map->queues[--map->len];
2387 break;
2388 }
2389
2390 if (old_maps)
2391 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2392 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2393 kfree_rcu(map, rcu);
2394 return false;
2395 }
2396
2397 return true;
2398}
2399
2400static bool remove_xps_queue_cpu(struct net_device *dev,
2401 struct xps_dev_maps *dev_maps,
2402 int cpu, u16 offset, u16 count)
2403{
2404 int num_tc = dev_maps->num_tc;
2405 bool active = false;
2406 int tci;
2407
2408 for (tci = cpu * num_tc; num_tc--; tci++) {
2409 int i, j;
2410
2411 for (i = count, j = offset; i--; j++) {
2412 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2413 break;
2414 }
2415
2416 active |= i < 0;
2417 }
2418
2419 return active;
2420}
2421
2422static void reset_xps_maps(struct net_device *dev,
2423 struct xps_dev_maps *dev_maps,
2424 enum xps_map_type type)
2425{
2426 static_key_slow_dec_cpuslocked(&xps_needed);
2427 if (type == XPS_RXQS)
2428 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2429
2430 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2431
2432 kfree_rcu(dev_maps, rcu);
2433}
2434
2435static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2436 u16 offset, u16 count)
2437{
2438 struct xps_dev_maps *dev_maps;
2439 bool active = false;
2440 int i, j;
2441
2442 dev_maps = xmap_dereference(dev->xps_maps[type]);
2443 if (!dev_maps)
2444 return;
2445
2446 for (j = 0; j < dev_maps->nr_ids; j++)
2447 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2448 if (!active)
2449 reset_xps_maps(dev, dev_maps, type);
2450
2451 if (type == XPS_CPUS) {
2452 for (i = offset + (count - 1); count--; i--)
2453 netdev_queue_numa_node_write(
2454 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2455 }
2456}
2457
2458static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2459 u16 count)
2460{
2461 if (!static_key_false(&xps_needed))
2462 return;
2463
2464 cpus_read_lock();
2465 mutex_lock(&xps_map_mutex);
2466
2467 if (static_key_false(&xps_rxqs_needed))
2468 clean_xps_maps(dev, XPS_RXQS, offset, count);
2469
2470 clean_xps_maps(dev, XPS_CPUS, offset, count);
2471
2472 mutex_unlock(&xps_map_mutex);
2473 cpus_read_unlock();
2474}
2475
2476static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2477{
2478 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2479}
2480
2481static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2482 u16 index, bool is_rxqs_map)
2483{
2484 struct xps_map *new_map;
2485 int alloc_len = XPS_MIN_MAP_ALLOC;
2486 int i, pos;
2487
2488 for (pos = 0; map && pos < map->len; pos++) {
2489 if (map->queues[pos] != index)
2490 continue;
2491 return map;
2492 }
2493
2494 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2495 if (map) {
2496 if (pos < map->alloc_len)
2497 return map;
2498
2499 alloc_len = map->alloc_len * 2;
2500 }
2501
2502 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2503 * map
2504 */
2505 if (is_rxqs_map)
2506 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2507 else
2508 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2509 cpu_to_node(attr_index));
2510 if (!new_map)
2511 return NULL;
2512
2513 for (i = 0; i < pos; i++)
2514 new_map->queues[i] = map->queues[i];
2515 new_map->alloc_len = alloc_len;
2516 new_map->len = pos;
2517
2518 return new_map;
2519}
2520
2521/* Copy xps maps at a given index */
2522static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2523 struct xps_dev_maps *new_dev_maps, int index,
2524 int tc, bool skip_tc)
2525{
2526 int i, tci = index * dev_maps->num_tc;
2527 struct xps_map *map;
2528
2529 /* copy maps belonging to foreign traffic classes */
2530 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2531 if (i == tc && skip_tc)
2532 continue;
2533
2534 /* fill in the new device map from the old device map */
2535 map = xmap_dereference(dev_maps->attr_map[tci]);
2536 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2537 }
2538}
2539
2540/* Must be called under cpus_read_lock */
2541int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2542 u16 index, enum xps_map_type type)
2543{
2544 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2545 const unsigned long *online_mask = NULL;
2546 bool active = false, copy = false;
2547 int i, j, tci, numa_node_id = -2;
2548 int maps_sz, num_tc = 1, tc = 0;
2549 struct xps_map *map, *new_map;
2550 unsigned int nr_ids;
2551
2552 if (dev->num_tc) {
2553 /* Do not allow XPS on subordinate device directly */
2554 num_tc = dev->num_tc;
2555 if (num_tc < 0)
2556 return -EINVAL;
2557
2558 /* If queue belongs to subordinate dev use its map */
2559 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2560
2561 tc = netdev_txq_to_tc(dev, index);
2562 if (tc < 0)
2563 return -EINVAL;
2564 }
2565
2566 mutex_lock(&xps_map_mutex);
2567
2568 dev_maps = xmap_dereference(dev->xps_maps[type]);
2569 if (type == XPS_RXQS) {
2570 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2571 nr_ids = dev->num_rx_queues;
2572 } else {
2573 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2574 if (num_possible_cpus() > 1)
2575 online_mask = cpumask_bits(cpu_online_mask);
2576 nr_ids = nr_cpu_ids;
2577 }
2578
2579 if (maps_sz < L1_CACHE_BYTES)
2580 maps_sz = L1_CACHE_BYTES;
2581
2582 /* The old dev_maps could be larger or smaller than the one we're
2583 * setting up now, as dev->num_tc or nr_ids could have been updated in
2584 * between. We could try to be smart, but let's be safe instead and only
2585 * copy foreign traffic classes if the two map sizes match.
2586 */
2587 if (dev_maps &&
2588 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2589 copy = true;
2590
2591 /* allocate memory for queue storage */
2592 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2593 j < nr_ids;) {
2594 if (!new_dev_maps) {
2595 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2596 if (!new_dev_maps) {
2597 mutex_unlock(&xps_map_mutex);
2598 return -ENOMEM;
2599 }
2600
2601 new_dev_maps->nr_ids = nr_ids;
2602 new_dev_maps->num_tc = num_tc;
2603 }
2604
2605 tci = j * num_tc + tc;
2606 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2607
2608 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2609 if (!map)
2610 goto error;
2611
2612 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2613 }
2614
2615 if (!new_dev_maps)
2616 goto out_no_new_maps;
2617
2618 if (!dev_maps) {
2619 /* Increment static keys at most once per type */
2620 static_key_slow_inc_cpuslocked(&xps_needed);
2621 if (type == XPS_RXQS)
2622 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2623 }
2624
2625 for (j = 0; j < nr_ids; j++) {
2626 bool skip_tc = false;
2627
2628 tci = j * num_tc + tc;
2629 if (netif_attr_test_mask(j, mask, nr_ids) &&
2630 netif_attr_test_online(j, online_mask, nr_ids)) {
2631 /* add tx-queue to CPU/rx-queue maps */
2632 int pos = 0;
2633
2634 skip_tc = true;
2635
2636 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2637 while ((pos < map->len) && (map->queues[pos] != index))
2638 pos++;
2639
2640 if (pos == map->len)
2641 map->queues[map->len++] = index;
2642#ifdef CONFIG_NUMA
2643 if (type == XPS_CPUS) {
2644 if (numa_node_id == -2)
2645 numa_node_id = cpu_to_node(j);
2646 else if (numa_node_id != cpu_to_node(j))
2647 numa_node_id = -1;
2648 }
2649#endif
2650 }
2651
2652 if (copy)
2653 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2654 skip_tc);
2655 }
2656
2657 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2658
2659 /* Cleanup old maps */
2660 if (!dev_maps)
2661 goto out_no_old_maps;
2662
2663 for (j = 0; j < dev_maps->nr_ids; j++) {
2664 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2665 map = xmap_dereference(dev_maps->attr_map[tci]);
2666 if (!map)
2667 continue;
2668
2669 if (copy) {
2670 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2671 if (map == new_map)
2672 continue;
2673 }
2674
2675 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2676 kfree_rcu(map, rcu);
2677 }
2678 }
2679
2680 old_dev_maps = dev_maps;
2681
2682out_no_old_maps:
2683 dev_maps = new_dev_maps;
2684 active = true;
2685
2686out_no_new_maps:
2687 if (type == XPS_CPUS)
2688 /* update Tx queue numa node */
2689 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2690 (numa_node_id >= 0) ?
2691 numa_node_id : NUMA_NO_NODE);
2692
2693 if (!dev_maps)
2694 goto out_no_maps;
2695
2696 /* removes tx-queue from unused CPUs/rx-queues */
2697 for (j = 0; j < dev_maps->nr_ids; j++) {
2698 tci = j * dev_maps->num_tc;
2699
2700 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2701 if (i == tc &&
2702 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2703 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2704 continue;
2705
2706 active |= remove_xps_queue(dev_maps,
2707 copy ? old_dev_maps : NULL,
2708 tci, index);
2709 }
2710 }
2711
2712 if (old_dev_maps)
2713 kfree_rcu(old_dev_maps, rcu);
2714
2715 /* free map if not active */
2716 if (!active)
2717 reset_xps_maps(dev, dev_maps, type);
2718
2719out_no_maps:
2720 mutex_unlock(&xps_map_mutex);
2721
2722 return 0;
2723error:
2724 /* remove any maps that we added */
2725 for (j = 0; j < nr_ids; j++) {
2726 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2727 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2728 map = copy ?
2729 xmap_dereference(dev_maps->attr_map[tci]) :
2730 NULL;
2731 if (new_map && new_map != map)
2732 kfree(new_map);
2733 }
2734 }
2735
2736 mutex_unlock(&xps_map_mutex);
2737
2738 kfree(new_dev_maps);
2739 return -ENOMEM;
2740}
2741EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2742
2743int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2744 u16 index)
2745{
2746 int ret;
2747
2748 cpus_read_lock();
2749 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2750 cpus_read_unlock();
2751
2752 return ret;
2753}
2754EXPORT_SYMBOL(netif_set_xps_queue);
2755
2756#endif
2757static void netdev_unbind_all_sb_channels(struct net_device *dev)
2758{
2759 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2760
2761 /* Unbind any subordinate channels */
2762 while (txq-- != &dev->_tx[0]) {
2763 if (txq->sb_dev)
2764 netdev_unbind_sb_channel(dev, txq->sb_dev);
2765 }
2766}
2767
2768void netdev_reset_tc(struct net_device *dev)
2769{
2770#ifdef CONFIG_XPS
2771 netif_reset_xps_queues_gt(dev, 0);
2772#endif
2773 netdev_unbind_all_sb_channels(dev);
2774
2775 /* Reset TC configuration of device */
2776 dev->num_tc = 0;
2777 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2778 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2779}
2780EXPORT_SYMBOL(netdev_reset_tc);
2781
2782int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2783{
2784 if (tc >= dev->num_tc)
2785 return -EINVAL;
2786
2787#ifdef CONFIG_XPS
2788 netif_reset_xps_queues(dev, offset, count);
2789#endif
2790 dev->tc_to_txq[tc].count = count;
2791 dev->tc_to_txq[tc].offset = offset;
2792 return 0;
2793}
2794EXPORT_SYMBOL(netdev_set_tc_queue);
2795
2796int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2797{
2798 if (num_tc > TC_MAX_QUEUE)
2799 return -EINVAL;
2800
2801#ifdef CONFIG_XPS
2802 netif_reset_xps_queues_gt(dev, 0);
2803#endif
2804 netdev_unbind_all_sb_channels(dev);
2805
2806 dev->num_tc = num_tc;
2807 return 0;
2808}
2809EXPORT_SYMBOL(netdev_set_num_tc);
2810
2811void netdev_unbind_sb_channel(struct net_device *dev,
2812 struct net_device *sb_dev)
2813{
2814 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815
2816#ifdef CONFIG_XPS
2817 netif_reset_xps_queues_gt(sb_dev, 0);
2818#endif
2819 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2820 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2821
2822 while (txq-- != &dev->_tx[0]) {
2823 if (txq->sb_dev == sb_dev)
2824 txq->sb_dev = NULL;
2825 }
2826}
2827EXPORT_SYMBOL(netdev_unbind_sb_channel);
2828
2829int netdev_bind_sb_channel_queue(struct net_device *dev,
2830 struct net_device *sb_dev,
2831 u8 tc, u16 count, u16 offset)
2832{
2833 /* Make certain the sb_dev and dev are already configured */
2834 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2835 return -EINVAL;
2836
2837 /* We cannot hand out queues we don't have */
2838 if ((offset + count) > dev->real_num_tx_queues)
2839 return -EINVAL;
2840
2841 /* Record the mapping */
2842 sb_dev->tc_to_txq[tc].count = count;
2843 sb_dev->tc_to_txq[tc].offset = offset;
2844
2845 /* Provide a way for Tx queue to find the tc_to_txq map or
2846 * XPS map for itself.
2847 */
2848 while (count--)
2849 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2850
2851 return 0;
2852}
2853EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2854
2855int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2856{
2857 /* Do not use a multiqueue device to represent a subordinate channel */
2858 if (netif_is_multiqueue(dev))
2859 return -ENODEV;
2860
2861 /* We allow channels 1 - 32767 to be used for subordinate channels.
2862 * Channel 0 is meant to be "native" mode and used only to represent
2863 * the main root device. We allow writing 0 to reset the device back
2864 * to normal mode after being used as a subordinate channel.
2865 */
2866 if (channel > S16_MAX)
2867 return -EINVAL;
2868
2869 dev->num_tc = -channel;
2870
2871 return 0;
2872}
2873EXPORT_SYMBOL(netdev_set_sb_channel);
2874
2875/*
2876 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2877 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2878 */
2879int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2880{
2881 bool disabling;
2882 int rc;
2883
2884 disabling = txq < dev->real_num_tx_queues;
2885
2886 if (txq < 1 || txq > dev->num_tx_queues)
2887 return -EINVAL;
2888
2889 if (dev->reg_state == NETREG_REGISTERED ||
2890 dev->reg_state == NETREG_UNREGISTERING) {
2891 ASSERT_RTNL();
2892
2893 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2894 txq);
2895 if (rc)
2896 return rc;
2897
2898 if (dev->num_tc)
2899 netif_setup_tc(dev, txq);
2900
2901 dev_qdisc_change_real_num_tx(dev, txq);
2902
2903 dev->real_num_tx_queues = txq;
2904
2905 if (disabling) {
2906 synchronize_net();
2907 qdisc_reset_all_tx_gt(dev, txq);
2908#ifdef CONFIG_XPS
2909 netif_reset_xps_queues_gt(dev, txq);
2910#endif
2911 }
2912 } else {
2913 dev->real_num_tx_queues = txq;
2914 }
2915
2916 return 0;
2917}
2918EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2919
2920#ifdef CONFIG_SYSFS
2921/**
2922 * netif_set_real_num_rx_queues - set actual number of RX queues used
2923 * @dev: Network device
2924 * @rxq: Actual number of RX queues
2925 *
2926 * This must be called either with the rtnl_lock held or before
2927 * registration of the net device. Returns 0 on success, or a
2928 * negative error code. If called before registration, it always
2929 * succeeds.
2930 */
2931int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2932{
2933 int rc;
2934
2935 if (rxq < 1 || rxq > dev->num_rx_queues)
2936 return -EINVAL;
2937
2938 if (dev->reg_state == NETREG_REGISTERED) {
2939 ASSERT_RTNL();
2940
2941 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2942 rxq);
2943 if (rc)
2944 return rc;
2945 }
2946
2947 dev->real_num_rx_queues = rxq;
2948 return 0;
2949}
2950EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2951#endif
2952
2953/**
2954 * netif_set_real_num_queues - set actual number of RX and TX queues used
2955 * @dev: Network device
2956 * @txq: Actual number of TX queues
2957 * @rxq: Actual number of RX queues
2958 *
2959 * Set the real number of both TX and RX queues.
2960 * Does nothing if the number of queues is already correct.
2961 */
2962int netif_set_real_num_queues(struct net_device *dev,
2963 unsigned int txq, unsigned int rxq)
2964{
2965 unsigned int old_rxq = dev->real_num_rx_queues;
2966 int err;
2967
2968 if (txq < 1 || txq > dev->num_tx_queues ||
2969 rxq < 1 || rxq > dev->num_rx_queues)
2970 return -EINVAL;
2971
2972 /* Start from increases, so the error path only does decreases -
2973 * decreases can't fail.
2974 */
2975 if (rxq > dev->real_num_rx_queues) {
2976 err = netif_set_real_num_rx_queues(dev, rxq);
2977 if (err)
2978 return err;
2979 }
2980 if (txq > dev->real_num_tx_queues) {
2981 err = netif_set_real_num_tx_queues(dev, txq);
2982 if (err)
2983 goto undo_rx;
2984 }
2985 if (rxq < dev->real_num_rx_queues)
2986 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2987 if (txq < dev->real_num_tx_queues)
2988 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2989
2990 return 0;
2991undo_rx:
2992 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2993 return err;
2994}
2995EXPORT_SYMBOL(netif_set_real_num_queues);
2996
2997/**
2998 * netif_set_tso_max_size() - set the max size of TSO frames supported
2999 * @dev: netdev to update
3000 * @size: max skb->len of a TSO frame
3001 *
3002 * Set the limit on the size of TSO super-frames the device can handle.
3003 * Unless explicitly set the stack will assume the value of
3004 * %GSO_LEGACY_MAX_SIZE.
3005 */
3006void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3007{
3008 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3009 if (size < READ_ONCE(dev->gso_max_size))
3010 netif_set_gso_max_size(dev, size);
3011}
3012EXPORT_SYMBOL(netif_set_tso_max_size);
3013
3014/**
3015 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3016 * @dev: netdev to update
3017 * @segs: max number of TCP segments
3018 *
3019 * Set the limit on the number of TCP segments the device can generate from
3020 * a single TSO super-frame.
3021 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3022 */
3023void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3024{
3025 dev->tso_max_segs = segs;
3026 if (segs < READ_ONCE(dev->gso_max_segs))
3027 netif_set_gso_max_segs(dev, segs);
3028}
3029EXPORT_SYMBOL(netif_set_tso_max_segs);
3030
3031/**
3032 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3033 * @to: netdev to update
3034 * @from: netdev from which to copy the limits
3035 */
3036void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3037{
3038 netif_set_tso_max_size(to, from->tso_max_size);
3039 netif_set_tso_max_segs(to, from->tso_max_segs);
3040}
3041EXPORT_SYMBOL(netif_inherit_tso_max);
3042
3043/**
3044 * netif_get_num_default_rss_queues - default number of RSS queues
3045 *
3046 * Default value is the number of physical cores if there are only 1 or 2, or
3047 * divided by 2 if there are more.
3048 */
3049int netif_get_num_default_rss_queues(void)
3050{
3051 cpumask_var_t cpus;
3052 int cpu, count = 0;
3053
3054 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3055 return 1;
3056
3057 cpumask_copy(cpus, cpu_online_mask);
3058 for_each_cpu(cpu, cpus) {
3059 ++count;
3060 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3061 }
3062 free_cpumask_var(cpus);
3063
3064 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3065}
3066EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3067
3068static void __netif_reschedule(struct Qdisc *q)
3069{
3070 struct softnet_data *sd;
3071 unsigned long flags;
3072
3073 local_irq_save(flags);
3074 sd = this_cpu_ptr(&softnet_data);
3075 q->next_sched = NULL;
3076 *sd->output_queue_tailp = q;
3077 sd->output_queue_tailp = &q->next_sched;
3078 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3079 local_irq_restore(flags);
3080}
3081
3082void __netif_schedule(struct Qdisc *q)
3083{
3084 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3085 __netif_reschedule(q);
3086}
3087EXPORT_SYMBOL(__netif_schedule);
3088
3089struct dev_kfree_skb_cb {
3090 enum skb_free_reason reason;
3091};
3092
3093static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3094{
3095 return (struct dev_kfree_skb_cb *)skb->cb;
3096}
3097
3098void netif_schedule_queue(struct netdev_queue *txq)
3099{
3100 rcu_read_lock();
3101 if (!netif_xmit_stopped(txq)) {
3102 struct Qdisc *q = rcu_dereference(txq->qdisc);
3103
3104 __netif_schedule(q);
3105 }
3106 rcu_read_unlock();
3107}
3108EXPORT_SYMBOL(netif_schedule_queue);
3109
3110void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3111{
3112 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3113 struct Qdisc *q;
3114
3115 rcu_read_lock();
3116 q = rcu_dereference(dev_queue->qdisc);
3117 __netif_schedule(q);
3118 rcu_read_unlock();
3119 }
3120}
3121EXPORT_SYMBOL(netif_tx_wake_queue);
3122
3123void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3124{
3125 unsigned long flags;
3126
3127 if (unlikely(!skb))
3128 return;
3129
3130 if (likely(refcount_read(&skb->users) == 1)) {
3131 smp_rmb();
3132 refcount_set(&skb->users, 0);
3133 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3134 return;
3135 }
3136 get_kfree_skb_cb(skb)->reason = reason;
3137 local_irq_save(flags);
3138 skb->next = __this_cpu_read(softnet_data.completion_queue);
3139 __this_cpu_write(softnet_data.completion_queue, skb);
3140 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3141 local_irq_restore(flags);
3142}
3143EXPORT_SYMBOL(__dev_kfree_skb_irq);
3144
3145void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3146{
3147 if (in_hardirq() || irqs_disabled())
3148 __dev_kfree_skb_irq(skb, reason);
3149 else
3150 dev_kfree_skb(skb);
3151}
3152EXPORT_SYMBOL(__dev_kfree_skb_any);
3153
3154
3155/**
3156 * netif_device_detach - mark device as removed
3157 * @dev: network device
3158 *
3159 * Mark device as removed from system and therefore no longer available.
3160 */
3161void netif_device_detach(struct net_device *dev)
3162{
3163 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3164 netif_running(dev)) {
3165 netif_tx_stop_all_queues(dev);
3166 }
3167}
3168EXPORT_SYMBOL(netif_device_detach);
3169
3170/**
3171 * netif_device_attach - mark device as attached
3172 * @dev: network device
3173 *
3174 * Mark device as attached from system and restart if needed.
3175 */
3176void netif_device_attach(struct net_device *dev)
3177{
3178 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3179 netif_running(dev)) {
3180 netif_tx_wake_all_queues(dev);
3181 __netdev_watchdog_up(dev);
3182 }
3183}
3184EXPORT_SYMBOL(netif_device_attach);
3185
3186/*
3187 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3188 * to be used as a distribution range.
3189 */
3190static u16 skb_tx_hash(const struct net_device *dev,
3191 const struct net_device *sb_dev,
3192 struct sk_buff *skb)
3193{
3194 u32 hash;
3195 u16 qoffset = 0;
3196 u16 qcount = dev->real_num_tx_queues;
3197
3198 if (dev->num_tc) {
3199 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3200
3201 qoffset = sb_dev->tc_to_txq[tc].offset;
3202 qcount = sb_dev->tc_to_txq[tc].count;
3203 if (unlikely(!qcount)) {
3204 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3205 sb_dev->name, qoffset, tc);
3206 qoffset = 0;
3207 qcount = dev->real_num_tx_queues;
3208 }
3209 }
3210
3211 if (skb_rx_queue_recorded(skb)) {
3212 hash = skb_get_rx_queue(skb);
3213 if (hash >= qoffset)
3214 hash -= qoffset;
3215 while (unlikely(hash >= qcount))
3216 hash -= qcount;
3217 return hash + qoffset;
3218 }
3219
3220 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3221}
3222
3223static void skb_warn_bad_offload(const struct sk_buff *skb)
3224{
3225 static const netdev_features_t null_features;
3226 struct net_device *dev = skb->dev;
3227 const char *name = "";
3228
3229 if (!net_ratelimit())
3230 return;
3231
3232 if (dev) {
3233 if (dev->dev.parent)
3234 name = dev_driver_string(dev->dev.parent);
3235 else
3236 name = netdev_name(dev);
3237 }
3238 skb_dump(KERN_WARNING, skb, false);
3239 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3240 name, dev ? &dev->features : &null_features,
3241 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3242}
3243
3244/*
3245 * Invalidate hardware checksum when packet is to be mangled, and
3246 * complete checksum manually on outgoing path.
3247 */
3248int skb_checksum_help(struct sk_buff *skb)
3249{
3250 __wsum csum;
3251 int ret = 0, offset;
3252
3253 if (skb->ip_summed == CHECKSUM_COMPLETE)
3254 goto out_set_summed;
3255
3256 if (unlikely(skb_is_gso(skb))) {
3257 skb_warn_bad_offload(skb);
3258 return -EINVAL;
3259 }
3260
3261 /* Before computing a checksum, we should make sure no frag could
3262 * be modified by an external entity : checksum could be wrong.
3263 */
3264 if (skb_has_shared_frag(skb)) {
3265 ret = __skb_linearize(skb);
3266 if (ret)
3267 goto out;
3268 }
3269
3270 offset = skb_checksum_start_offset(skb);
3271 ret = -EINVAL;
3272 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3273 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3274 goto out;
3275 }
3276 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3277
3278 offset += skb->csum_offset;
3279 if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3280 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3281 goto out;
3282 }
3283 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3284 if (ret)
3285 goto out;
3286
3287 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3288out_set_summed:
3289 skb->ip_summed = CHECKSUM_NONE;
3290out:
3291 return ret;
3292}
3293EXPORT_SYMBOL(skb_checksum_help);
3294
3295int skb_crc32c_csum_help(struct sk_buff *skb)
3296{
3297 __le32 crc32c_csum;
3298 int ret = 0, offset, start;
3299
3300 if (skb->ip_summed != CHECKSUM_PARTIAL)
3301 goto out;
3302
3303 if (unlikely(skb_is_gso(skb)))
3304 goto out;
3305
3306 /* Before computing a checksum, we should make sure no frag could
3307 * be modified by an external entity : checksum could be wrong.
3308 */
3309 if (unlikely(skb_has_shared_frag(skb))) {
3310 ret = __skb_linearize(skb);
3311 if (ret)
3312 goto out;
3313 }
3314 start = skb_checksum_start_offset(skb);
3315 offset = start + offsetof(struct sctphdr, checksum);
3316 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3317 ret = -EINVAL;
3318 goto out;
3319 }
3320
3321 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3322 if (ret)
3323 goto out;
3324
3325 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3326 skb->len - start, ~(__u32)0,
3327 crc32c_csum_stub));
3328 *(__le32 *)(skb->data + offset) = crc32c_csum;
3329 skb->ip_summed = CHECKSUM_NONE;
3330 skb->csum_not_inet = 0;
3331out:
3332 return ret;
3333}
3334
3335__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3336{
3337 __be16 type = skb->protocol;
3338
3339 /* Tunnel gso handlers can set protocol to ethernet. */
3340 if (type == htons(ETH_P_TEB)) {
3341 struct ethhdr *eth;
3342
3343 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3344 return 0;
3345
3346 eth = (struct ethhdr *)skb->data;
3347 type = eth->h_proto;
3348 }
3349
3350 return __vlan_get_protocol(skb, type, depth);
3351}
3352
3353/* openvswitch calls this on rx path, so we need a different check.
3354 */
3355static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3356{
3357 if (tx_path)
3358 return skb->ip_summed != CHECKSUM_PARTIAL &&
3359 skb->ip_summed != CHECKSUM_UNNECESSARY;
3360
3361 return skb->ip_summed == CHECKSUM_NONE;
3362}
3363
3364/**
3365 * __skb_gso_segment - Perform segmentation on skb.
3366 * @skb: buffer to segment
3367 * @features: features for the output path (see dev->features)
3368 * @tx_path: whether it is called in TX path
3369 *
3370 * This function segments the given skb and returns a list of segments.
3371 *
3372 * It may return NULL if the skb requires no segmentation. This is
3373 * only possible when GSO is used for verifying header integrity.
3374 *
3375 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3376 */
3377struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3378 netdev_features_t features, bool tx_path)
3379{
3380 struct sk_buff *segs;
3381
3382 if (unlikely(skb_needs_check(skb, tx_path))) {
3383 int err;
3384
3385 /* We're going to init ->check field in TCP or UDP header */
3386 err = skb_cow_head(skb, 0);
3387 if (err < 0)
3388 return ERR_PTR(err);
3389 }
3390
3391 /* Only report GSO partial support if it will enable us to
3392 * support segmentation on this frame without needing additional
3393 * work.
3394 */
3395 if (features & NETIF_F_GSO_PARTIAL) {
3396 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3397 struct net_device *dev = skb->dev;
3398
3399 partial_features |= dev->features & dev->gso_partial_features;
3400 if (!skb_gso_ok(skb, features | partial_features))
3401 features &= ~NETIF_F_GSO_PARTIAL;
3402 }
3403
3404 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3405 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3406
3407 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3408 SKB_GSO_CB(skb)->encap_level = 0;
3409
3410 skb_reset_mac_header(skb);
3411 skb_reset_mac_len(skb);
3412
3413 segs = skb_mac_gso_segment(skb, features);
3414
3415 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3416 skb_warn_bad_offload(skb);
3417
3418 return segs;
3419}
3420EXPORT_SYMBOL(__skb_gso_segment);
3421
3422/* Take action when hardware reception checksum errors are detected. */
3423#ifdef CONFIG_BUG
3424static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3425{
3426 netdev_err(dev, "hw csum failure\n");
3427 skb_dump(KERN_ERR, skb, true);
3428 dump_stack();
3429}
3430
3431void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3432{
3433 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3434}
3435EXPORT_SYMBOL(netdev_rx_csum_fault);
3436#endif
3437
3438/* XXX: check that highmem exists at all on the given machine. */
3439static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3440{
3441#ifdef CONFIG_HIGHMEM
3442 int i;
3443
3444 if (!(dev->features & NETIF_F_HIGHDMA)) {
3445 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3446 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3447
3448 if (PageHighMem(skb_frag_page(frag)))
3449 return 1;
3450 }
3451 }
3452#endif
3453 return 0;
3454}
3455
3456/* If MPLS offload request, verify we are testing hardware MPLS features
3457 * instead of standard features for the netdev.
3458 */
3459#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3460static netdev_features_t net_mpls_features(struct sk_buff *skb,
3461 netdev_features_t features,
3462 __be16 type)
3463{
3464 if (eth_p_mpls(type))
3465 features &= skb->dev->mpls_features;
3466
3467 return features;
3468}
3469#else
3470static netdev_features_t net_mpls_features(struct sk_buff *skb,
3471 netdev_features_t features,
3472 __be16 type)
3473{
3474 return features;
3475}
3476#endif
3477
3478static netdev_features_t harmonize_features(struct sk_buff *skb,
3479 netdev_features_t features)
3480{
3481 __be16 type;
3482
3483 type = skb_network_protocol(skb, NULL);
3484 features = net_mpls_features(skb, features, type);
3485
3486 if (skb->ip_summed != CHECKSUM_NONE &&
3487 !can_checksum_protocol(features, type)) {
3488 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3489 }
3490 if (illegal_highdma(skb->dev, skb))
3491 features &= ~NETIF_F_SG;
3492
3493 return features;
3494}
3495
3496netdev_features_t passthru_features_check(struct sk_buff *skb,
3497 struct net_device *dev,
3498 netdev_features_t features)
3499{
3500 return features;
3501}
3502EXPORT_SYMBOL(passthru_features_check);
3503
3504static netdev_features_t dflt_features_check(struct sk_buff *skb,
3505 struct net_device *dev,
3506 netdev_features_t features)
3507{
3508 return vlan_features_check(skb, features);
3509}
3510
3511static netdev_features_t gso_features_check(const struct sk_buff *skb,
3512 struct net_device *dev,
3513 netdev_features_t features)
3514{
3515 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3516
3517 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3518 return features & ~NETIF_F_GSO_MASK;
3519
3520 if (!skb_shinfo(skb)->gso_type) {
3521 skb_warn_bad_offload(skb);
3522 return features & ~NETIF_F_GSO_MASK;
3523 }
3524
3525 /* Support for GSO partial features requires software
3526 * intervention before we can actually process the packets
3527 * so we need to strip support for any partial features now
3528 * and we can pull them back in after we have partially
3529 * segmented the frame.
3530 */
3531 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3532 features &= ~dev->gso_partial_features;
3533
3534 /* Make sure to clear the IPv4 ID mangling feature if the
3535 * IPv4 header has the potential to be fragmented.
3536 */
3537 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3538 struct iphdr *iph = skb->encapsulation ?
3539 inner_ip_hdr(skb) : ip_hdr(skb);
3540
3541 if (!(iph->frag_off & htons(IP_DF)))
3542 features &= ~NETIF_F_TSO_MANGLEID;
3543 }
3544
3545 return features;
3546}
3547
3548netdev_features_t netif_skb_features(struct sk_buff *skb)
3549{
3550 struct net_device *dev = skb->dev;
3551 netdev_features_t features = dev->features;
3552
3553 if (skb_is_gso(skb))
3554 features = gso_features_check(skb, dev, features);
3555
3556 /* If encapsulation offload request, verify we are testing
3557 * hardware encapsulation features instead of standard
3558 * features for the netdev
3559 */
3560 if (skb->encapsulation)
3561 features &= dev->hw_enc_features;
3562
3563 if (skb_vlan_tagged(skb))
3564 features = netdev_intersect_features(features,
3565 dev->vlan_features |
3566 NETIF_F_HW_VLAN_CTAG_TX |
3567 NETIF_F_HW_VLAN_STAG_TX);
3568
3569 if (dev->netdev_ops->ndo_features_check)
3570 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3571 features);
3572 else
3573 features &= dflt_features_check(skb, dev, features);
3574
3575 return harmonize_features(skb, features);
3576}
3577EXPORT_SYMBOL(netif_skb_features);
3578
3579static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3580 struct netdev_queue *txq, bool more)
3581{
3582 unsigned int len;
3583 int rc;
3584
3585 if (dev_nit_active(dev))
3586 dev_queue_xmit_nit(skb, dev);
3587
3588 len = skb->len;
3589 trace_net_dev_start_xmit(skb, dev);
3590 rc = netdev_start_xmit(skb, dev, txq, more);
3591 trace_net_dev_xmit(skb, rc, dev, len);
3592
3593 return rc;
3594}
3595
3596struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597 struct netdev_queue *txq, int *ret)
3598{
3599 struct sk_buff *skb = first;
3600 int rc = NETDEV_TX_OK;
3601
3602 while (skb) {
3603 struct sk_buff *next = skb->next;
3604
3605 skb_mark_not_on_list(skb);
3606 rc = xmit_one(skb, dev, txq, next != NULL);
3607 if (unlikely(!dev_xmit_complete(rc))) {
3608 skb->next = next;
3609 goto out;
3610 }
3611
3612 skb = next;
3613 if (netif_tx_queue_stopped(txq) && skb) {
3614 rc = NETDEV_TX_BUSY;
3615 break;
3616 }
3617 }
3618
3619out:
3620 *ret = rc;
3621 return skb;
3622}
3623
3624static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625 netdev_features_t features)
3626{
3627 if (skb_vlan_tag_present(skb) &&
3628 !vlan_hw_offload_capable(features, skb->vlan_proto))
3629 skb = __vlan_hwaccel_push_inside(skb);
3630 return skb;
3631}
3632
3633int skb_csum_hwoffload_help(struct sk_buff *skb,
3634 const netdev_features_t features)
3635{
3636 if (unlikely(skb_csum_is_sctp(skb)))
3637 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638 skb_crc32c_csum_help(skb);
3639
3640 if (features & NETIF_F_HW_CSUM)
3641 return 0;
3642
3643 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644 switch (skb->csum_offset) {
3645 case offsetof(struct tcphdr, check):
3646 case offsetof(struct udphdr, check):
3647 return 0;
3648 }
3649 }
3650
3651 return skb_checksum_help(skb);
3652}
3653EXPORT_SYMBOL(skb_csum_hwoffload_help);
3654
3655static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3656{
3657 netdev_features_t features;
3658
3659 features = netif_skb_features(skb);
3660 skb = validate_xmit_vlan(skb, features);
3661 if (unlikely(!skb))
3662 goto out_null;
3663
3664 skb = sk_validate_xmit_skb(skb, dev);
3665 if (unlikely(!skb))
3666 goto out_null;
3667
3668 if (netif_needs_gso(skb, features)) {
3669 struct sk_buff *segs;
3670
3671 segs = skb_gso_segment(skb, features);
3672 if (IS_ERR(segs)) {
3673 goto out_kfree_skb;
3674 } else if (segs) {
3675 consume_skb(skb);
3676 skb = segs;
3677 }
3678 } else {
3679 if (skb_needs_linearize(skb, features) &&
3680 __skb_linearize(skb))
3681 goto out_kfree_skb;
3682
3683 /* If packet is not checksummed and device does not
3684 * support checksumming for this protocol, complete
3685 * checksumming here.
3686 */
3687 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3688 if (skb->encapsulation)
3689 skb_set_inner_transport_header(skb,
3690 skb_checksum_start_offset(skb));
3691 else
3692 skb_set_transport_header(skb,
3693 skb_checksum_start_offset(skb));
3694 if (skb_csum_hwoffload_help(skb, features))
3695 goto out_kfree_skb;
3696 }
3697 }
3698
3699 skb = validate_xmit_xfrm(skb, features, again);
3700
3701 return skb;
3702
3703out_kfree_skb:
3704 kfree_skb(skb);
3705out_null:
3706 dev_core_stats_tx_dropped_inc(dev);
3707 return NULL;
3708}
3709
3710struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3711{
3712 struct sk_buff *next, *head = NULL, *tail;
3713
3714 for (; skb != NULL; skb = next) {
3715 next = skb->next;
3716 skb_mark_not_on_list(skb);
3717
3718 /* in case skb wont be segmented, point to itself */
3719 skb->prev = skb;
3720
3721 skb = validate_xmit_skb(skb, dev, again);
3722 if (!skb)
3723 continue;
3724
3725 if (!head)
3726 head = skb;
3727 else
3728 tail->next = skb;
3729 /* If skb was segmented, skb->prev points to
3730 * the last segment. If not, it still contains skb.
3731 */
3732 tail = skb->prev;
3733 }
3734 return head;
3735}
3736EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3737
3738static void qdisc_pkt_len_init(struct sk_buff *skb)
3739{
3740 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3741
3742 qdisc_skb_cb(skb)->pkt_len = skb->len;
3743
3744 /* To get more precise estimation of bytes sent on wire,
3745 * we add to pkt_len the headers size of all segments
3746 */
3747 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3748 unsigned int hdr_len;
3749 u16 gso_segs = shinfo->gso_segs;
3750
3751 /* mac layer + network layer */
3752 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3753
3754 /* + transport layer */
3755 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3756 const struct tcphdr *th;
3757 struct tcphdr _tcphdr;
3758
3759 th = skb_header_pointer(skb, skb_transport_offset(skb),
3760 sizeof(_tcphdr), &_tcphdr);
3761 if (likely(th))
3762 hdr_len += __tcp_hdrlen(th);
3763 } else {
3764 struct udphdr _udphdr;
3765
3766 if (skb_header_pointer(skb, skb_transport_offset(skb),
3767 sizeof(_udphdr), &_udphdr))
3768 hdr_len += sizeof(struct udphdr);
3769 }
3770
3771 if (shinfo->gso_type & SKB_GSO_DODGY)
3772 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3773 shinfo->gso_size);
3774
3775 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3776 }
3777}
3778
3779static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3780 struct sk_buff **to_free,
3781 struct netdev_queue *txq)
3782{
3783 int rc;
3784
3785 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3786 if (rc == NET_XMIT_SUCCESS)
3787 trace_qdisc_enqueue(q, txq, skb);
3788 return rc;
3789}
3790
3791static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3792 struct net_device *dev,
3793 struct netdev_queue *txq)
3794{
3795 spinlock_t *root_lock = qdisc_lock(q);
3796 struct sk_buff *to_free = NULL;
3797 bool contended;
3798 int rc;
3799
3800 qdisc_calculate_pkt_len(skb, q);
3801
3802 if (q->flags & TCQ_F_NOLOCK) {
3803 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3804 qdisc_run_begin(q)) {
3805 /* Retest nolock_qdisc_is_empty() within the protection
3806 * of q->seqlock to protect from racing with requeuing.
3807 */
3808 if (unlikely(!nolock_qdisc_is_empty(q))) {
3809 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3810 __qdisc_run(q);
3811 qdisc_run_end(q);
3812
3813 goto no_lock_out;
3814 }
3815
3816 qdisc_bstats_cpu_update(q, skb);
3817 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3818 !nolock_qdisc_is_empty(q))
3819 __qdisc_run(q);
3820
3821 qdisc_run_end(q);
3822 return NET_XMIT_SUCCESS;
3823 }
3824
3825 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3826 qdisc_run(q);
3827
3828no_lock_out:
3829 if (unlikely(to_free))
3830 kfree_skb_list_reason(to_free,
3831 SKB_DROP_REASON_QDISC_DROP);
3832 return rc;
3833 }
3834
3835 /*
3836 * Heuristic to force contended enqueues to serialize on a
3837 * separate lock before trying to get qdisc main lock.
3838 * This permits qdisc->running owner to get the lock more
3839 * often and dequeue packets faster.
3840 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3841 * and then other tasks will only enqueue packets. The packets will be
3842 * sent after the qdisc owner is scheduled again. To prevent this
3843 * scenario the task always serialize on the lock.
3844 */
3845 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3846 if (unlikely(contended))
3847 spin_lock(&q->busylock);
3848
3849 spin_lock(root_lock);
3850 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3851 __qdisc_drop(skb, &to_free);
3852 rc = NET_XMIT_DROP;
3853 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3854 qdisc_run_begin(q)) {
3855 /*
3856 * This is a work-conserving queue; there are no old skbs
3857 * waiting to be sent out; and the qdisc is not running -
3858 * xmit the skb directly.
3859 */
3860
3861 qdisc_bstats_update(q, skb);
3862
3863 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3864 if (unlikely(contended)) {
3865 spin_unlock(&q->busylock);
3866 contended = false;
3867 }
3868 __qdisc_run(q);
3869 }
3870
3871 qdisc_run_end(q);
3872 rc = NET_XMIT_SUCCESS;
3873 } else {
3874 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3875 if (qdisc_run_begin(q)) {
3876 if (unlikely(contended)) {
3877 spin_unlock(&q->busylock);
3878 contended = false;
3879 }
3880 __qdisc_run(q);
3881 qdisc_run_end(q);
3882 }
3883 }
3884 spin_unlock(root_lock);
3885 if (unlikely(to_free))
3886 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3887 if (unlikely(contended))
3888 spin_unlock(&q->busylock);
3889 return rc;
3890}
3891
3892#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3893static void skb_update_prio(struct sk_buff *skb)
3894{
3895 const struct netprio_map *map;
3896 const struct sock *sk;
3897 unsigned int prioidx;
3898
3899 if (skb->priority)
3900 return;
3901 map = rcu_dereference_bh(skb->dev->priomap);
3902 if (!map)
3903 return;
3904 sk = skb_to_full_sk(skb);
3905 if (!sk)
3906 return;
3907
3908 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3909
3910 if (prioidx < map->priomap_len)
3911 skb->priority = map->priomap[prioidx];
3912}
3913#else
3914#define skb_update_prio(skb)
3915#endif
3916
3917/**
3918 * dev_loopback_xmit - loop back @skb
3919 * @net: network namespace this loopback is happening in
3920 * @sk: sk needed to be a netfilter okfn
3921 * @skb: buffer to transmit
3922 */
3923int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3924{
3925 skb_reset_mac_header(skb);
3926 __skb_pull(skb, skb_network_offset(skb));
3927 skb->pkt_type = PACKET_LOOPBACK;
3928 if (skb->ip_summed == CHECKSUM_NONE)
3929 skb->ip_summed = CHECKSUM_UNNECESSARY;
3930 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3931 skb_dst_force(skb);
3932 netif_rx(skb);
3933 return 0;
3934}
3935EXPORT_SYMBOL(dev_loopback_xmit);
3936
3937#ifdef CONFIG_NET_EGRESS
3938static struct sk_buff *
3939sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3940{
3941#ifdef CONFIG_NET_CLS_ACT
3942 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3943 struct tcf_result cl_res;
3944
3945 if (!miniq)
3946 return skb;
3947
3948 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3949 tc_skb_cb(skb)->mru = 0;
3950 tc_skb_cb(skb)->post_ct = false;
3951 mini_qdisc_bstats_cpu_update(miniq, skb);
3952
3953 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3954 case TC_ACT_OK:
3955 case TC_ACT_RECLASSIFY:
3956 skb->tc_index = TC_H_MIN(cl_res.classid);
3957 break;
3958 case TC_ACT_SHOT:
3959 mini_qdisc_qstats_cpu_drop(miniq);
3960 *ret = NET_XMIT_DROP;
3961 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3962 return NULL;
3963 case TC_ACT_STOLEN:
3964 case TC_ACT_QUEUED:
3965 case TC_ACT_TRAP:
3966 *ret = NET_XMIT_SUCCESS;
3967 consume_skb(skb);
3968 return NULL;
3969 case TC_ACT_REDIRECT:
3970 /* No need to push/pop skb's mac_header here on egress! */
3971 skb_do_redirect(skb);
3972 *ret = NET_XMIT_SUCCESS;
3973 return NULL;
3974 default:
3975 break;
3976 }
3977#endif /* CONFIG_NET_CLS_ACT */
3978
3979 return skb;
3980}
3981
3982static struct netdev_queue *
3983netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3984{
3985 int qm = skb_get_queue_mapping(skb);
3986
3987 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3988}
3989
3990static bool netdev_xmit_txqueue_skipped(void)
3991{
3992 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3993}
3994
3995void netdev_xmit_skip_txqueue(bool skip)
3996{
3997 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3998}
3999EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4000#endif /* CONFIG_NET_EGRESS */
4001
4002#ifdef CONFIG_XPS
4003static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4004 struct xps_dev_maps *dev_maps, unsigned int tci)
4005{
4006 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4007 struct xps_map *map;
4008 int queue_index = -1;
4009
4010 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4011 return queue_index;
4012
4013 tci *= dev_maps->num_tc;
4014 tci += tc;
4015
4016 map = rcu_dereference(dev_maps->attr_map[tci]);
4017 if (map) {
4018 if (map->len == 1)
4019 queue_index = map->queues[0];
4020 else
4021 queue_index = map->queues[reciprocal_scale(
4022 skb_get_hash(skb), map->len)];
4023 if (unlikely(queue_index >= dev->real_num_tx_queues))
4024 queue_index = -1;
4025 }
4026 return queue_index;
4027}
4028#endif
4029
4030static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4031 struct sk_buff *skb)
4032{
4033#ifdef CONFIG_XPS
4034 struct xps_dev_maps *dev_maps;
4035 struct sock *sk = skb->sk;
4036 int queue_index = -1;
4037
4038 if (!static_key_false(&xps_needed))
4039 return -1;
4040
4041 rcu_read_lock();
4042 if (!static_key_false(&xps_rxqs_needed))
4043 goto get_cpus_map;
4044
4045 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4046 if (dev_maps) {
4047 int tci = sk_rx_queue_get(sk);
4048
4049 if (tci >= 0)
4050 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4051 tci);
4052 }
4053
4054get_cpus_map:
4055 if (queue_index < 0) {
4056 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4057 if (dev_maps) {
4058 unsigned int tci = skb->sender_cpu - 1;
4059
4060 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4061 tci);
4062 }
4063 }
4064 rcu_read_unlock();
4065
4066 return queue_index;
4067#else
4068 return -1;
4069#endif
4070}
4071
4072u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4073 struct net_device *sb_dev)
4074{
4075 return 0;
4076}
4077EXPORT_SYMBOL(dev_pick_tx_zero);
4078
4079u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4080 struct net_device *sb_dev)
4081{
4082 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4083}
4084EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4085
4086u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4087 struct net_device *sb_dev)
4088{
4089 struct sock *sk = skb->sk;
4090 int queue_index = sk_tx_queue_get(sk);
4091
4092 sb_dev = sb_dev ? : dev;
4093
4094 if (queue_index < 0 || skb->ooo_okay ||
4095 queue_index >= dev->real_num_tx_queues) {
4096 int new_index = get_xps_queue(dev, sb_dev, skb);
4097
4098 if (new_index < 0)
4099 new_index = skb_tx_hash(dev, sb_dev, skb);
4100
4101 if (queue_index != new_index && sk &&
4102 sk_fullsock(sk) &&
4103 rcu_access_pointer(sk->sk_dst_cache))
4104 sk_tx_queue_set(sk, new_index);
4105
4106 queue_index = new_index;
4107 }
4108
4109 return queue_index;
4110}
4111EXPORT_SYMBOL(netdev_pick_tx);
4112
4113struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4114 struct sk_buff *skb,
4115 struct net_device *sb_dev)
4116{
4117 int queue_index = 0;
4118
4119#ifdef CONFIG_XPS
4120 u32 sender_cpu = skb->sender_cpu - 1;
4121
4122 if (sender_cpu >= (u32)NR_CPUS)
4123 skb->sender_cpu = raw_smp_processor_id() + 1;
4124#endif
4125
4126 if (dev->real_num_tx_queues != 1) {
4127 const struct net_device_ops *ops = dev->netdev_ops;
4128
4129 if (ops->ndo_select_queue)
4130 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4131 else
4132 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4133
4134 queue_index = netdev_cap_txqueue(dev, queue_index);
4135 }
4136
4137 skb_set_queue_mapping(skb, queue_index);
4138 return netdev_get_tx_queue(dev, queue_index);
4139}
4140
4141/**
4142 * __dev_queue_xmit() - transmit a buffer
4143 * @skb: buffer to transmit
4144 * @sb_dev: suboordinate device used for L2 forwarding offload
4145 *
4146 * Queue a buffer for transmission to a network device. The caller must
4147 * have set the device and priority and built the buffer before calling
4148 * this function. The function can be called from an interrupt.
4149 *
4150 * When calling this method, interrupts MUST be enabled. This is because
4151 * the BH enable code must have IRQs enabled so that it will not deadlock.
4152 *
4153 * Regardless of the return value, the skb is consumed, so it is currently
4154 * difficult to retry a send to this method. (You can bump the ref count
4155 * before sending to hold a reference for retry if you are careful.)
4156 *
4157 * Return:
4158 * * 0 - buffer successfully transmitted
4159 * * positive qdisc return code - NET_XMIT_DROP etc.
4160 * * negative errno - other errors
4161 */
4162int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4163{
4164 struct net_device *dev = skb->dev;
4165 struct netdev_queue *txq = NULL;
4166 struct Qdisc *q;
4167 int rc = -ENOMEM;
4168 bool again = false;
4169
4170 skb_reset_mac_header(skb);
4171 skb_assert_len(skb);
4172
4173 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4174 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4175
4176 /* Disable soft irqs for various locks below. Also
4177 * stops preemption for RCU.
4178 */
4179 rcu_read_lock_bh();
4180
4181 skb_update_prio(skb);
4182
4183 qdisc_pkt_len_init(skb);
4184#ifdef CONFIG_NET_CLS_ACT
4185 skb->tc_at_ingress = 0;
4186#endif
4187#ifdef CONFIG_NET_EGRESS
4188 if (static_branch_unlikely(&egress_needed_key)) {
4189 if (nf_hook_egress_active()) {
4190 skb = nf_hook_egress(skb, &rc, dev);
4191 if (!skb)
4192 goto out;
4193 }
4194
4195 netdev_xmit_skip_txqueue(false);
4196
4197 nf_skip_egress(skb, true);
4198 skb = sch_handle_egress(skb, &rc, dev);
4199 if (!skb)
4200 goto out;
4201 nf_skip_egress(skb, false);
4202
4203 if (netdev_xmit_txqueue_skipped())
4204 txq = netdev_tx_queue_mapping(dev, skb);
4205 }
4206#endif
4207 /* If device/qdisc don't need skb->dst, release it right now while
4208 * its hot in this cpu cache.
4209 */
4210 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4211 skb_dst_drop(skb);
4212 else
4213 skb_dst_force(skb);
4214
4215 if (!txq)
4216 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4217
4218 q = rcu_dereference_bh(txq->qdisc);
4219
4220 trace_net_dev_queue(skb);
4221 if (q->enqueue) {
4222 rc = __dev_xmit_skb(skb, q, dev, txq);
4223 goto out;
4224 }
4225
4226 /* The device has no queue. Common case for software devices:
4227 * loopback, all the sorts of tunnels...
4228
4229 * Really, it is unlikely that netif_tx_lock protection is necessary
4230 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4231 * counters.)
4232 * However, it is possible, that they rely on protection
4233 * made by us here.
4234
4235 * Check this and shot the lock. It is not prone from deadlocks.
4236 *Either shot noqueue qdisc, it is even simpler 8)
4237 */
4238 if (dev->flags & IFF_UP) {
4239 int cpu = smp_processor_id(); /* ok because BHs are off */
4240
4241 /* Other cpus might concurrently change txq->xmit_lock_owner
4242 * to -1 or to their cpu id, but not to our id.
4243 */
4244 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4245 if (dev_xmit_recursion())
4246 goto recursion_alert;
4247
4248 skb = validate_xmit_skb(skb, dev, &again);
4249 if (!skb)
4250 goto out;
4251
4252 HARD_TX_LOCK(dev, txq, cpu);
4253
4254 if (!netif_xmit_stopped(txq)) {
4255 dev_xmit_recursion_inc();
4256 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4257 dev_xmit_recursion_dec();
4258 if (dev_xmit_complete(rc)) {
4259 HARD_TX_UNLOCK(dev, txq);
4260 goto out;
4261 }
4262 }
4263 HARD_TX_UNLOCK(dev, txq);
4264 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4265 dev->name);
4266 } else {
4267 /* Recursion is detected! It is possible,
4268 * unfortunately
4269 */
4270recursion_alert:
4271 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4272 dev->name);
4273 }
4274 }
4275
4276 rc = -ENETDOWN;
4277 rcu_read_unlock_bh();
4278
4279 dev_core_stats_tx_dropped_inc(dev);
4280 kfree_skb_list(skb);
4281 return rc;
4282out:
4283 rcu_read_unlock_bh();
4284 return rc;
4285}
4286EXPORT_SYMBOL(__dev_queue_xmit);
4287
4288int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4289{
4290 struct net_device *dev = skb->dev;
4291 struct sk_buff *orig_skb = skb;
4292 struct netdev_queue *txq;
4293 int ret = NETDEV_TX_BUSY;
4294 bool again = false;
4295
4296 if (unlikely(!netif_running(dev) ||
4297 !netif_carrier_ok(dev)))
4298 goto drop;
4299
4300 skb = validate_xmit_skb_list(skb, dev, &again);
4301 if (skb != orig_skb)
4302 goto drop;
4303
4304 skb_set_queue_mapping(skb, queue_id);
4305 txq = skb_get_tx_queue(dev, skb);
4306
4307 local_bh_disable();
4308
4309 dev_xmit_recursion_inc();
4310 HARD_TX_LOCK(dev, txq, smp_processor_id());
4311 if (!netif_xmit_frozen_or_drv_stopped(txq))
4312 ret = netdev_start_xmit(skb, dev, txq, false);
4313 HARD_TX_UNLOCK(dev, txq);
4314 dev_xmit_recursion_dec();
4315
4316 local_bh_enable();
4317 return ret;
4318drop:
4319 dev_core_stats_tx_dropped_inc(dev);
4320 kfree_skb_list(skb);
4321 return NET_XMIT_DROP;
4322}
4323EXPORT_SYMBOL(__dev_direct_xmit);
4324
4325/*************************************************************************
4326 * Receiver routines
4327 *************************************************************************/
4328
4329int netdev_max_backlog __read_mostly = 1000;
4330EXPORT_SYMBOL(netdev_max_backlog);
4331
4332int netdev_tstamp_prequeue __read_mostly = 1;
4333unsigned int sysctl_skb_defer_max __read_mostly = 64;
4334int netdev_budget __read_mostly = 300;
4335/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4336unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4337int weight_p __read_mostly = 64; /* old backlog weight */
4338int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4339int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4340int dev_rx_weight __read_mostly = 64;
4341int dev_tx_weight __read_mostly = 64;
4342
4343/* Called with irq disabled */
4344static inline void ____napi_schedule(struct softnet_data *sd,
4345 struct napi_struct *napi)
4346{
4347 struct task_struct *thread;
4348
4349 lockdep_assert_irqs_disabled();
4350
4351 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4352 /* Paired with smp_mb__before_atomic() in
4353 * napi_enable()/dev_set_threaded().
4354 * Use READ_ONCE() to guarantee a complete
4355 * read on napi->thread. Only call
4356 * wake_up_process() when it's not NULL.
4357 */
4358 thread = READ_ONCE(napi->thread);
4359 if (thread) {
4360 /* Avoid doing set_bit() if the thread is in
4361 * INTERRUPTIBLE state, cause napi_thread_wait()
4362 * makes sure to proceed with napi polling
4363 * if the thread is explicitly woken from here.
4364 */
4365 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4366 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4367 wake_up_process(thread);
4368 return;
4369 }
4370 }
4371
4372 list_add_tail(&napi->poll_list, &sd->poll_list);
4373 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4374}
4375
4376#ifdef CONFIG_RPS
4377
4378/* One global table that all flow-based protocols share. */
4379struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4380EXPORT_SYMBOL(rps_sock_flow_table);
4381u32 rps_cpu_mask __read_mostly;
4382EXPORT_SYMBOL(rps_cpu_mask);
4383
4384struct static_key_false rps_needed __read_mostly;
4385EXPORT_SYMBOL(rps_needed);
4386struct static_key_false rfs_needed __read_mostly;
4387EXPORT_SYMBOL(rfs_needed);
4388
4389static struct rps_dev_flow *
4390set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4391 struct rps_dev_flow *rflow, u16 next_cpu)
4392{
4393 if (next_cpu < nr_cpu_ids) {
4394#ifdef CONFIG_RFS_ACCEL
4395 struct netdev_rx_queue *rxqueue;
4396 struct rps_dev_flow_table *flow_table;
4397 struct rps_dev_flow *old_rflow;
4398 u32 flow_id;
4399 u16 rxq_index;
4400 int rc;
4401
4402 /* Should we steer this flow to a different hardware queue? */
4403 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4404 !(dev->features & NETIF_F_NTUPLE))
4405 goto out;
4406 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4407 if (rxq_index == skb_get_rx_queue(skb))
4408 goto out;
4409
4410 rxqueue = dev->_rx + rxq_index;
4411 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4412 if (!flow_table)
4413 goto out;
4414 flow_id = skb_get_hash(skb) & flow_table->mask;
4415 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4416 rxq_index, flow_id);
4417 if (rc < 0)
4418 goto out;
4419 old_rflow = rflow;
4420 rflow = &flow_table->flows[flow_id];
4421 rflow->filter = rc;
4422 if (old_rflow->filter == rflow->filter)
4423 old_rflow->filter = RPS_NO_FILTER;
4424 out:
4425#endif
4426 rflow->last_qtail =
4427 per_cpu(softnet_data, next_cpu).input_queue_head;
4428 }
4429
4430 rflow->cpu = next_cpu;
4431 return rflow;
4432}
4433
4434/*
4435 * get_rps_cpu is called from netif_receive_skb and returns the target
4436 * CPU from the RPS map of the receiving queue for a given skb.
4437 * rcu_read_lock must be held on entry.
4438 */
4439static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4440 struct rps_dev_flow **rflowp)
4441{
4442 const struct rps_sock_flow_table *sock_flow_table;
4443 struct netdev_rx_queue *rxqueue = dev->_rx;
4444 struct rps_dev_flow_table *flow_table;
4445 struct rps_map *map;
4446 int cpu = -1;
4447 u32 tcpu;
4448 u32 hash;
4449
4450 if (skb_rx_queue_recorded(skb)) {
4451 u16 index = skb_get_rx_queue(skb);
4452
4453 if (unlikely(index >= dev->real_num_rx_queues)) {
4454 WARN_ONCE(dev->real_num_rx_queues > 1,
4455 "%s received packet on queue %u, but number "
4456 "of RX queues is %u\n",
4457 dev->name, index, dev->real_num_rx_queues);
4458 goto done;
4459 }
4460 rxqueue += index;
4461 }
4462
4463 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4464
4465 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4466 map = rcu_dereference(rxqueue->rps_map);
4467 if (!flow_table && !map)
4468 goto done;
4469
4470 skb_reset_network_header(skb);
4471 hash = skb_get_hash(skb);
4472 if (!hash)
4473 goto done;
4474
4475 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4476 if (flow_table && sock_flow_table) {
4477 struct rps_dev_flow *rflow;
4478 u32 next_cpu;
4479 u32 ident;
4480
4481 /* First check into global flow table if there is a match */
4482 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4483 if ((ident ^ hash) & ~rps_cpu_mask)
4484 goto try_rps;
4485
4486 next_cpu = ident & rps_cpu_mask;
4487
4488 /* OK, now we know there is a match,
4489 * we can look at the local (per receive queue) flow table
4490 */
4491 rflow = &flow_table->flows[hash & flow_table->mask];
4492 tcpu = rflow->cpu;
4493
4494 /*
4495 * If the desired CPU (where last recvmsg was done) is
4496 * different from current CPU (one in the rx-queue flow
4497 * table entry), switch if one of the following holds:
4498 * - Current CPU is unset (>= nr_cpu_ids).
4499 * - Current CPU is offline.
4500 * - The current CPU's queue tail has advanced beyond the
4501 * last packet that was enqueued using this table entry.
4502 * This guarantees that all previous packets for the flow
4503 * have been dequeued, thus preserving in order delivery.
4504 */
4505 if (unlikely(tcpu != next_cpu) &&
4506 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4507 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4508 rflow->last_qtail)) >= 0)) {
4509 tcpu = next_cpu;
4510 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4511 }
4512
4513 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4514 *rflowp = rflow;
4515 cpu = tcpu;
4516 goto done;
4517 }
4518 }
4519
4520try_rps:
4521
4522 if (map) {
4523 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4524 if (cpu_online(tcpu)) {
4525 cpu = tcpu;
4526 goto done;
4527 }
4528 }
4529
4530done:
4531 return cpu;
4532}
4533
4534#ifdef CONFIG_RFS_ACCEL
4535
4536/**
4537 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4538 * @dev: Device on which the filter was set
4539 * @rxq_index: RX queue index
4540 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4541 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4542 *
4543 * Drivers that implement ndo_rx_flow_steer() should periodically call
4544 * this function for each installed filter and remove the filters for
4545 * which it returns %true.
4546 */
4547bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4548 u32 flow_id, u16 filter_id)
4549{
4550 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4551 struct rps_dev_flow_table *flow_table;
4552 struct rps_dev_flow *rflow;
4553 bool expire = true;
4554 unsigned int cpu;
4555
4556 rcu_read_lock();
4557 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4558 if (flow_table && flow_id <= flow_table->mask) {
4559 rflow = &flow_table->flows[flow_id];
4560 cpu = READ_ONCE(rflow->cpu);
4561 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4562 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4563 rflow->last_qtail) <
4564 (int)(10 * flow_table->mask)))
4565 expire = false;
4566 }
4567 rcu_read_unlock();
4568 return expire;
4569}
4570EXPORT_SYMBOL(rps_may_expire_flow);
4571
4572#endif /* CONFIG_RFS_ACCEL */
4573
4574/* Called from hardirq (IPI) context */
4575static void rps_trigger_softirq(void *data)
4576{
4577 struct softnet_data *sd = data;
4578
4579 ____napi_schedule(sd, &sd->backlog);
4580 sd->received_rps++;
4581}
4582
4583#endif /* CONFIG_RPS */
4584
4585/* Called from hardirq (IPI) context */
4586static void trigger_rx_softirq(void *data)
4587{
4588 struct softnet_data *sd = data;
4589
4590 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4591 smp_store_release(&sd->defer_ipi_scheduled, 0);
4592}
4593
4594/*
4595 * Check if this softnet_data structure is another cpu one
4596 * If yes, queue it to our IPI list and return 1
4597 * If no, return 0
4598 */
4599static int napi_schedule_rps(struct softnet_data *sd)
4600{
4601 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4602
4603#ifdef CONFIG_RPS
4604 if (sd != mysd) {
4605 sd->rps_ipi_next = mysd->rps_ipi_list;
4606 mysd->rps_ipi_list = sd;
4607
4608 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4609 return 1;
4610 }
4611#endif /* CONFIG_RPS */
4612 __napi_schedule_irqoff(&mysd->backlog);
4613 return 0;
4614}
4615
4616#ifdef CONFIG_NET_FLOW_LIMIT
4617int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4618#endif
4619
4620static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4621{
4622#ifdef CONFIG_NET_FLOW_LIMIT
4623 struct sd_flow_limit *fl;
4624 struct softnet_data *sd;
4625 unsigned int old_flow, new_flow;
4626
4627 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4628 return false;
4629
4630 sd = this_cpu_ptr(&softnet_data);
4631
4632 rcu_read_lock();
4633 fl = rcu_dereference(sd->flow_limit);
4634 if (fl) {
4635 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4636 old_flow = fl->history[fl->history_head];
4637 fl->history[fl->history_head] = new_flow;
4638
4639 fl->history_head++;
4640 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4641
4642 if (likely(fl->buckets[old_flow]))
4643 fl->buckets[old_flow]--;
4644
4645 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4646 fl->count++;
4647 rcu_read_unlock();
4648 return true;
4649 }
4650 }
4651 rcu_read_unlock();
4652#endif
4653 return false;
4654}
4655
4656/*
4657 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4658 * queue (may be a remote CPU queue).
4659 */
4660static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4661 unsigned int *qtail)
4662{
4663 enum skb_drop_reason reason;
4664 struct softnet_data *sd;
4665 unsigned long flags;
4666 unsigned int qlen;
4667
4668 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4669 sd = &per_cpu(softnet_data, cpu);
4670
4671 rps_lock_irqsave(sd, &flags);
4672 if (!netif_running(skb->dev))
4673 goto drop;
4674 qlen = skb_queue_len(&sd->input_pkt_queue);
4675 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4676 if (qlen) {
4677enqueue:
4678 __skb_queue_tail(&sd->input_pkt_queue, skb);
4679 input_queue_tail_incr_save(sd, qtail);
4680 rps_unlock_irq_restore(sd, &flags);
4681 return NET_RX_SUCCESS;
4682 }
4683
4684 /* Schedule NAPI for backlog device
4685 * We can use non atomic operation since we own the queue lock
4686 */
4687 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4688 napi_schedule_rps(sd);
4689 goto enqueue;
4690 }
4691 reason = SKB_DROP_REASON_CPU_BACKLOG;
4692
4693drop:
4694 sd->dropped++;
4695 rps_unlock_irq_restore(sd, &flags);
4696
4697 dev_core_stats_rx_dropped_inc(skb->dev);
4698 kfree_skb_reason(skb, reason);
4699 return NET_RX_DROP;
4700}
4701
4702static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4703{
4704 struct net_device *dev = skb->dev;
4705 struct netdev_rx_queue *rxqueue;
4706
4707 rxqueue = dev->_rx;
4708
4709 if (skb_rx_queue_recorded(skb)) {
4710 u16 index = skb_get_rx_queue(skb);
4711
4712 if (unlikely(index >= dev->real_num_rx_queues)) {
4713 WARN_ONCE(dev->real_num_rx_queues > 1,
4714 "%s received packet on queue %u, but number "
4715 "of RX queues is %u\n",
4716 dev->name, index, dev->real_num_rx_queues);
4717
4718 return rxqueue; /* Return first rxqueue */
4719 }
4720 rxqueue += index;
4721 }
4722 return rxqueue;
4723}
4724
4725u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4726 struct bpf_prog *xdp_prog)
4727{
4728 void *orig_data, *orig_data_end, *hard_start;
4729 struct netdev_rx_queue *rxqueue;
4730 bool orig_bcast, orig_host;
4731 u32 mac_len, frame_sz;
4732 __be16 orig_eth_type;
4733 struct ethhdr *eth;
4734 u32 metalen, act;
4735 int off;
4736
4737 /* The XDP program wants to see the packet starting at the MAC
4738 * header.
4739 */
4740 mac_len = skb->data - skb_mac_header(skb);
4741 hard_start = skb->data - skb_headroom(skb);
4742
4743 /* SKB "head" area always have tailroom for skb_shared_info */
4744 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4745 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4746
4747 rxqueue = netif_get_rxqueue(skb);
4748 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4749 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4750 skb_headlen(skb) + mac_len, true);
4751
4752 orig_data_end = xdp->data_end;
4753 orig_data = xdp->data;
4754 eth = (struct ethhdr *)xdp->data;
4755 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4756 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4757 orig_eth_type = eth->h_proto;
4758
4759 act = bpf_prog_run_xdp(xdp_prog, xdp);
4760
4761 /* check if bpf_xdp_adjust_head was used */
4762 off = xdp->data - orig_data;
4763 if (off) {
4764 if (off > 0)
4765 __skb_pull(skb, off);
4766 else if (off < 0)
4767 __skb_push(skb, -off);
4768
4769 skb->mac_header += off;
4770 skb_reset_network_header(skb);
4771 }
4772
4773 /* check if bpf_xdp_adjust_tail was used */
4774 off = xdp->data_end - orig_data_end;
4775 if (off != 0) {
4776 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4777 skb->len += off; /* positive on grow, negative on shrink */
4778 }
4779
4780 /* check if XDP changed eth hdr such SKB needs update */
4781 eth = (struct ethhdr *)xdp->data;
4782 if ((orig_eth_type != eth->h_proto) ||
4783 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4784 skb->dev->dev_addr)) ||
4785 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4786 __skb_push(skb, ETH_HLEN);
4787 skb->pkt_type = PACKET_HOST;
4788 skb->protocol = eth_type_trans(skb, skb->dev);
4789 }
4790
4791 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4792 * before calling us again on redirect path. We do not call do_redirect
4793 * as we leave that up to the caller.
4794 *
4795 * Caller is responsible for managing lifetime of skb (i.e. calling
4796 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4797 */
4798 switch (act) {
4799 case XDP_REDIRECT:
4800 case XDP_TX:
4801 __skb_push(skb, mac_len);
4802 break;
4803 case XDP_PASS:
4804 metalen = xdp->data - xdp->data_meta;
4805 if (metalen)
4806 skb_metadata_set(skb, metalen);
4807 break;
4808 }
4809
4810 return act;
4811}
4812
4813static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4814 struct xdp_buff *xdp,
4815 struct bpf_prog *xdp_prog)
4816{
4817 u32 act = XDP_DROP;
4818
4819 /* Reinjected packets coming from act_mirred or similar should
4820 * not get XDP generic processing.
4821 */
4822 if (skb_is_redirected(skb))
4823 return XDP_PASS;
4824
4825 /* XDP packets must be linear and must have sufficient headroom
4826 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4827 * native XDP provides, thus we need to do it here as well.
4828 */
4829 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4830 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4831 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4832 int troom = skb->tail + skb->data_len - skb->end;
4833
4834 /* In case we have to go down the path and also linearize,
4835 * then lets do the pskb_expand_head() work just once here.
4836 */
4837 if (pskb_expand_head(skb,
4838 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4839 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4840 goto do_drop;
4841 if (skb_linearize(skb))
4842 goto do_drop;
4843 }
4844
4845 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4846 switch (act) {
4847 case XDP_REDIRECT:
4848 case XDP_TX:
4849 case XDP_PASS:
4850 break;
4851 default:
4852 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4853 fallthrough;
4854 case XDP_ABORTED:
4855 trace_xdp_exception(skb->dev, xdp_prog, act);
4856 fallthrough;
4857 case XDP_DROP:
4858 do_drop:
4859 kfree_skb(skb);
4860 break;
4861 }
4862
4863 return act;
4864}
4865
4866/* When doing generic XDP we have to bypass the qdisc layer and the
4867 * network taps in order to match in-driver-XDP behavior. This also means
4868 * that XDP packets are able to starve other packets going through a qdisc,
4869 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4870 * queues, so they do not have this starvation issue.
4871 */
4872void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4873{
4874 struct net_device *dev = skb->dev;
4875 struct netdev_queue *txq;
4876 bool free_skb = true;
4877 int cpu, rc;
4878
4879 txq = netdev_core_pick_tx(dev, skb, NULL);
4880 cpu = smp_processor_id();
4881 HARD_TX_LOCK(dev, txq, cpu);
4882 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4883 rc = netdev_start_xmit(skb, dev, txq, 0);
4884 if (dev_xmit_complete(rc))
4885 free_skb = false;
4886 }
4887 HARD_TX_UNLOCK(dev, txq);
4888 if (free_skb) {
4889 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4890 dev_core_stats_tx_dropped_inc(dev);
4891 kfree_skb(skb);
4892 }
4893}
4894
4895static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4896
4897int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4898{
4899 if (xdp_prog) {
4900 struct xdp_buff xdp;
4901 u32 act;
4902 int err;
4903
4904 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4905 if (act != XDP_PASS) {
4906 switch (act) {
4907 case XDP_REDIRECT:
4908 err = xdp_do_generic_redirect(skb->dev, skb,
4909 &xdp, xdp_prog);
4910 if (err)
4911 goto out_redir;
4912 break;
4913 case XDP_TX:
4914 generic_xdp_tx(skb, xdp_prog);
4915 break;
4916 }
4917 return XDP_DROP;
4918 }
4919 }
4920 return XDP_PASS;
4921out_redir:
4922 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4923 return XDP_DROP;
4924}
4925EXPORT_SYMBOL_GPL(do_xdp_generic);
4926
4927static int netif_rx_internal(struct sk_buff *skb)
4928{
4929 int ret;
4930
4931 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4932
4933 trace_netif_rx(skb);
4934
4935#ifdef CONFIG_RPS
4936 if (static_branch_unlikely(&rps_needed)) {
4937 struct rps_dev_flow voidflow, *rflow = &voidflow;
4938 int cpu;
4939
4940 rcu_read_lock();
4941
4942 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4943 if (cpu < 0)
4944 cpu = smp_processor_id();
4945
4946 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4947
4948 rcu_read_unlock();
4949 } else
4950#endif
4951 {
4952 unsigned int qtail;
4953
4954 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4955 }
4956 return ret;
4957}
4958
4959/**
4960 * __netif_rx - Slightly optimized version of netif_rx
4961 * @skb: buffer to post
4962 *
4963 * This behaves as netif_rx except that it does not disable bottom halves.
4964 * As a result this function may only be invoked from the interrupt context
4965 * (either hard or soft interrupt).
4966 */
4967int __netif_rx(struct sk_buff *skb)
4968{
4969 int ret;
4970
4971 lockdep_assert_once(hardirq_count() | softirq_count());
4972
4973 trace_netif_rx_entry(skb);
4974 ret = netif_rx_internal(skb);
4975 trace_netif_rx_exit(ret);
4976 return ret;
4977}
4978EXPORT_SYMBOL(__netif_rx);
4979
4980/**
4981 * netif_rx - post buffer to the network code
4982 * @skb: buffer to post
4983 *
4984 * This function receives a packet from a device driver and queues it for
4985 * the upper (protocol) levels to process via the backlog NAPI device. It
4986 * always succeeds. The buffer may be dropped during processing for
4987 * congestion control or by the protocol layers.
4988 * The network buffer is passed via the backlog NAPI device. Modern NIC
4989 * driver should use NAPI and GRO.
4990 * This function can used from interrupt and from process context. The
4991 * caller from process context must not disable interrupts before invoking
4992 * this function.
4993 *
4994 * return values:
4995 * NET_RX_SUCCESS (no congestion)
4996 * NET_RX_DROP (packet was dropped)
4997 *
4998 */
4999int netif_rx(struct sk_buff *skb)
5000{
5001 bool need_bh_off = !(hardirq_count() | softirq_count());
5002 int ret;
5003
5004 if (need_bh_off)
5005 local_bh_disable();
5006 trace_netif_rx_entry(skb);
5007 ret = netif_rx_internal(skb);
5008 trace_netif_rx_exit(ret);
5009 if (need_bh_off)
5010 local_bh_enable();
5011 return ret;
5012}
5013EXPORT_SYMBOL(netif_rx);
5014
5015static __latent_entropy void net_tx_action(struct softirq_action *h)
5016{
5017 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5018
5019 if (sd->completion_queue) {
5020 struct sk_buff *clist;
5021
5022 local_irq_disable();
5023 clist = sd->completion_queue;
5024 sd->completion_queue = NULL;
5025 local_irq_enable();
5026
5027 while (clist) {
5028 struct sk_buff *skb = clist;
5029
5030 clist = clist->next;
5031
5032 WARN_ON(refcount_read(&skb->users));
5033 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5034 trace_consume_skb(skb);
5035 else
5036 trace_kfree_skb(skb, net_tx_action,
5037 SKB_DROP_REASON_NOT_SPECIFIED);
5038
5039 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5040 __kfree_skb(skb);
5041 else
5042 __kfree_skb_defer(skb);
5043 }
5044 }
5045
5046 if (sd->output_queue) {
5047 struct Qdisc *head;
5048
5049 local_irq_disable();
5050 head = sd->output_queue;
5051 sd->output_queue = NULL;
5052 sd->output_queue_tailp = &sd->output_queue;
5053 local_irq_enable();
5054
5055 rcu_read_lock();
5056
5057 while (head) {
5058 struct Qdisc *q = head;
5059 spinlock_t *root_lock = NULL;
5060
5061 head = head->next_sched;
5062
5063 /* We need to make sure head->next_sched is read
5064 * before clearing __QDISC_STATE_SCHED
5065 */
5066 smp_mb__before_atomic();
5067
5068 if (!(q->flags & TCQ_F_NOLOCK)) {
5069 root_lock = qdisc_lock(q);
5070 spin_lock(root_lock);
5071 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5072 &q->state))) {
5073 /* There is a synchronize_net() between
5074 * STATE_DEACTIVATED flag being set and
5075 * qdisc_reset()/some_qdisc_is_busy() in
5076 * dev_deactivate(), so we can safely bail out
5077 * early here to avoid data race between
5078 * qdisc_deactivate() and some_qdisc_is_busy()
5079 * for lockless qdisc.
5080 */
5081 clear_bit(__QDISC_STATE_SCHED, &q->state);
5082 continue;
5083 }
5084
5085 clear_bit(__QDISC_STATE_SCHED, &q->state);
5086 qdisc_run(q);
5087 if (root_lock)
5088 spin_unlock(root_lock);
5089 }
5090
5091 rcu_read_unlock();
5092 }
5093
5094 xfrm_dev_backlog(sd);
5095}
5096
5097#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5098/* This hook is defined here for ATM LANE */
5099int (*br_fdb_test_addr_hook)(struct net_device *dev,
5100 unsigned char *addr) __read_mostly;
5101EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5102#endif
5103
5104static inline struct sk_buff *
5105sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5106 struct net_device *orig_dev, bool *another)
5107{
5108#ifdef CONFIG_NET_CLS_ACT
5109 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5110 struct tcf_result cl_res;
5111
5112 /* If there's at least one ingress present somewhere (so
5113 * we get here via enabled static key), remaining devices
5114 * that are not configured with an ingress qdisc will bail
5115 * out here.
5116 */
5117 if (!miniq)
5118 return skb;
5119
5120 if (*pt_prev) {
5121 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5122 *pt_prev = NULL;
5123 }
5124
5125 qdisc_skb_cb(skb)->pkt_len = skb->len;
5126 tc_skb_cb(skb)->mru = 0;
5127 tc_skb_cb(skb)->post_ct = false;
5128 skb->tc_at_ingress = 1;
5129 mini_qdisc_bstats_cpu_update(miniq, skb);
5130
5131 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5132 case TC_ACT_OK:
5133 case TC_ACT_RECLASSIFY:
5134 skb->tc_index = TC_H_MIN(cl_res.classid);
5135 break;
5136 case TC_ACT_SHOT:
5137 mini_qdisc_qstats_cpu_drop(miniq);
5138 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5139 return NULL;
5140 case TC_ACT_STOLEN:
5141 case TC_ACT_QUEUED:
5142 case TC_ACT_TRAP:
5143 consume_skb(skb);
5144 return NULL;
5145 case TC_ACT_REDIRECT:
5146 /* skb_mac_header check was done by cls/act_bpf, so
5147 * we can safely push the L2 header back before
5148 * redirecting to another netdev
5149 */
5150 __skb_push(skb, skb->mac_len);
5151 if (skb_do_redirect(skb) == -EAGAIN) {
5152 __skb_pull(skb, skb->mac_len);
5153 *another = true;
5154 break;
5155 }
5156 return NULL;
5157 case TC_ACT_CONSUMED:
5158 return NULL;
5159 default:
5160 break;
5161 }
5162#endif /* CONFIG_NET_CLS_ACT */
5163 return skb;
5164}
5165
5166/**
5167 * netdev_is_rx_handler_busy - check if receive handler is registered
5168 * @dev: device to check
5169 *
5170 * Check if a receive handler is already registered for a given device.
5171 * Return true if there one.
5172 *
5173 * The caller must hold the rtnl_mutex.
5174 */
5175bool netdev_is_rx_handler_busy(struct net_device *dev)
5176{
5177 ASSERT_RTNL();
5178 return dev && rtnl_dereference(dev->rx_handler);
5179}
5180EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5181
5182/**
5183 * netdev_rx_handler_register - register receive handler
5184 * @dev: device to register a handler for
5185 * @rx_handler: receive handler to register
5186 * @rx_handler_data: data pointer that is used by rx handler
5187 *
5188 * Register a receive handler for a device. This handler will then be
5189 * called from __netif_receive_skb. A negative errno code is returned
5190 * on a failure.
5191 *
5192 * The caller must hold the rtnl_mutex.
5193 *
5194 * For a general description of rx_handler, see enum rx_handler_result.
5195 */
5196int netdev_rx_handler_register(struct net_device *dev,
5197 rx_handler_func_t *rx_handler,
5198 void *rx_handler_data)
5199{
5200 if (netdev_is_rx_handler_busy(dev))
5201 return -EBUSY;
5202
5203 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5204 return -EINVAL;
5205
5206 /* Note: rx_handler_data must be set before rx_handler */
5207 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5208 rcu_assign_pointer(dev->rx_handler, rx_handler);
5209
5210 return 0;
5211}
5212EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5213
5214/**
5215 * netdev_rx_handler_unregister - unregister receive handler
5216 * @dev: device to unregister a handler from
5217 *
5218 * Unregister a receive handler from a device.
5219 *
5220 * The caller must hold the rtnl_mutex.
5221 */
5222void netdev_rx_handler_unregister(struct net_device *dev)
5223{
5224
5225 ASSERT_RTNL();
5226 RCU_INIT_POINTER(dev->rx_handler, NULL);
5227 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5228 * section has a guarantee to see a non NULL rx_handler_data
5229 * as well.
5230 */
5231 synchronize_net();
5232 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5233}
5234EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5235
5236/*
5237 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5238 * the special handling of PFMEMALLOC skbs.
5239 */
5240static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5241{
5242 switch (skb->protocol) {
5243 case htons(ETH_P_ARP):
5244 case htons(ETH_P_IP):
5245 case htons(ETH_P_IPV6):
5246 case htons(ETH_P_8021Q):
5247 case htons(ETH_P_8021AD):
5248 return true;
5249 default:
5250 return false;
5251 }
5252}
5253
5254static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5255 int *ret, struct net_device *orig_dev)
5256{
5257 if (nf_hook_ingress_active(skb)) {
5258 int ingress_retval;
5259
5260 if (*pt_prev) {
5261 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5262 *pt_prev = NULL;
5263 }
5264
5265 rcu_read_lock();
5266 ingress_retval = nf_hook_ingress(skb);
5267 rcu_read_unlock();
5268 return ingress_retval;
5269 }
5270 return 0;
5271}
5272
5273static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5274 struct packet_type **ppt_prev)
5275{
5276 struct packet_type *ptype, *pt_prev;
5277 rx_handler_func_t *rx_handler;
5278 struct sk_buff *skb = *pskb;
5279 struct net_device *orig_dev;
5280 bool deliver_exact = false;
5281 int ret = NET_RX_DROP;
5282 __be16 type;
5283
5284 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5285
5286 trace_netif_receive_skb(skb);
5287
5288 orig_dev = skb->dev;
5289
5290 skb_reset_network_header(skb);
5291 if (!skb_transport_header_was_set(skb))
5292 skb_reset_transport_header(skb);
5293 skb_reset_mac_len(skb);
5294
5295 pt_prev = NULL;
5296
5297another_round:
5298 skb->skb_iif = skb->dev->ifindex;
5299
5300 __this_cpu_inc(softnet_data.processed);
5301
5302 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5303 int ret2;
5304
5305 migrate_disable();
5306 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5307 migrate_enable();
5308
5309 if (ret2 != XDP_PASS) {
5310 ret = NET_RX_DROP;
5311 goto out;
5312 }
5313 }
5314
5315 if (eth_type_vlan(skb->protocol)) {
5316 skb = skb_vlan_untag(skb);
5317 if (unlikely(!skb))
5318 goto out;
5319 }
5320
5321 if (skb_skip_tc_classify(skb))
5322 goto skip_classify;
5323
5324 if (pfmemalloc)
5325 goto skip_taps;
5326
5327 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5328 if (pt_prev)
5329 ret = deliver_skb(skb, pt_prev, orig_dev);
5330 pt_prev = ptype;
5331 }
5332
5333 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5334 if (pt_prev)
5335 ret = deliver_skb(skb, pt_prev, orig_dev);
5336 pt_prev = ptype;
5337 }
5338
5339skip_taps:
5340#ifdef CONFIG_NET_INGRESS
5341 if (static_branch_unlikely(&ingress_needed_key)) {
5342 bool another = false;
5343
5344 nf_skip_egress(skb, true);
5345 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5346 &another);
5347 if (another)
5348 goto another_round;
5349 if (!skb)
5350 goto out;
5351
5352 nf_skip_egress(skb, false);
5353 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5354 goto out;
5355 }
5356#endif
5357 skb_reset_redirect(skb);
5358skip_classify:
5359 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5360 goto drop;
5361
5362 if (skb_vlan_tag_present(skb)) {
5363 if (pt_prev) {
5364 ret = deliver_skb(skb, pt_prev, orig_dev);
5365 pt_prev = NULL;
5366 }
5367 if (vlan_do_receive(&skb))
5368 goto another_round;
5369 else if (unlikely(!skb))
5370 goto out;
5371 }
5372
5373 rx_handler = rcu_dereference(skb->dev->rx_handler);
5374 if (rx_handler) {
5375 if (pt_prev) {
5376 ret = deliver_skb(skb, pt_prev, orig_dev);
5377 pt_prev = NULL;
5378 }
5379 switch (rx_handler(&skb)) {
5380 case RX_HANDLER_CONSUMED:
5381 ret = NET_RX_SUCCESS;
5382 goto out;
5383 case RX_HANDLER_ANOTHER:
5384 goto another_round;
5385 case RX_HANDLER_EXACT:
5386 deliver_exact = true;
5387 break;
5388 case RX_HANDLER_PASS:
5389 break;
5390 default:
5391 BUG();
5392 }
5393 }
5394
5395 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5396check_vlan_id:
5397 if (skb_vlan_tag_get_id(skb)) {
5398 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5399 * find vlan device.
5400 */
5401 skb->pkt_type = PACKET_OTHERHOST;
5402 } else if (eth_type_vlan(skb->protocol)) {
5403 /* Outer header is 802.1P with vlan 0, inner header is
5404 * 802.1Q or 802.1AD and vlan_do_receive() above could
5405 * not find vlan dev for vlan id 0.
5406 */
5407 __vlan_hwaccel_clear_tag(skb);
5408 skb = skb_vlan_untag(skb);
5409 if (unlikely(!skb))
5410 goto out;
5411 if (vlan_do_receive(&skb))
5412 /* After stripping off 802.1P header with vlan 0
5413 * vlan dev is found for inner header.
5414 */
5415 goto another_round;
5416 else if (unlikely(!skb))
5417 goto out;
5418 else
5419 /* We have stripped outer 802.1P vlan 0 header.
5420 * But could not find vlan dev.
5421 * check again for vlan id to set OTHERHOST.
5422 */
5423 goto check_vlan_id;
5424 }
5425 /* Note: we might in the future use prio bits
5426 * and set skb->priority like in vlan_do_receive()
5427 * For the time being, just ignore Priority Code Point
5428 */
5429 __vlan_hwaccel_clear_tag(skb);
5430 }
5431
5432 type = skb->protocol;
5433
5434 /* deliver only exact match when indicated */
5435 if (likely(!deliver_exact)) {
5436 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5437 &ptype_base[ntohs(type) &
5438 PTYPE_HASH_MASK]);
5439 }
5440
5441 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5442 &orig_dev->ptype_specific);
5443
5444 if (unlikely(skb->dev != orig_dev)) {
5445 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5446 &skb->dev->ptype_specific);
5447 }
5448
5449 if (pt_prev) {
5450 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5451 goto drop;
5452 *ppt_prev = pt_prev;
5453 } else {
5454drop:
5455 if (!deliver_exact)
5456 dev_core_stats_rx_dropped_inc(skb->dev);
5457 else
5458 dev_core_stats_rx_nohandler_inc(skb->dev);
5459 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5460 /* Jamal, now you will not able to escape explaining
5461 * me how you were going to use this. :-)
5462 */
5463 ret = NET_RX_DROP;
5464 }
5465
5466out:
5467 /* The invariant here is that if *ppt_prev is not NULL
5468 * then skb should also be non-NULL.
5469 *
5470 * Apparently *ppt_prev assignment above holds this invariant due to
5471 * skb dereferencing near it.
5472 */
5473 *pskb = skb;
5474 return ret;
5475}
5476
5477static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5478{
5479 struct net_device *orig_dev = skb->dev;
5480 struct packet_type *pt_prev = NULL;
5481 int ret;
5482
5483 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5484 if (pt_prev)
5485 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5486 skb->dev, pt_prev, orig_dev);
5487 return ret;
5488}
5489
5490/**
5491 * netif_receive_skb_core - special purpose version of netif_receive_skb
5492 * @skb: buffer to process
5493 *
5494 * More direct receive version of netif_receive_skb(). It should
5495 * only be used by callers that have a need to skip RPS and Generic XDP.
5496 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5497 *
5498 * This function may only be called from softirq context and interrupts
5499 * should be enabled.
5500 *
5501 * Return values (usually ignored):
5502 * NET_RX_SUCCESS: no congestion
5503 * NET_RX_DROP: packet was dropped
5504 */
5505int netif_receive_skb_core(struct sk_buff *skb)
5506{
5507 int ret;
5508
5509 rcu_read_lock();
5510 ret = __netif_receive_skb_one_core(skb, false);
5511 rcu_read_unlock();
5512
5513 return ret;
5514}
5515EXPORT_SYMBOL(netif_receive_skb_core);
5516
5517static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5518 struct packet_type *pt_prev,
5519 struct net_device *orig_dev)
5520{
5521 struct sk_buff *skb, *next;
5522
5523 if (!pt_prev)
5524 return;
5525 if (list_empty(head))
5526 return;
5527 if (pt_prev->list_func != NULL)
5528 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5529 ip_list_rcv, head, pt_prev, orig_dev);
5530 else
5531 list_for_each_entry_safe(skb, next, head, list) {
5532 skb_list_del_init(skb);
5533 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5534 }
5535}
5536
5537static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5538{
5539 /* Fast-path assumptions:
5540 * - There is no RX handler.
5541 * - Only one packet_type matches.
5542 * If either of these fails, we will end up doing some per-packet
5543 * processing in-line, then handling the 'last ptype' for the whole
5544 * sublist. This can't cause out-of-order delivery to any single ptype,
5545 * because the 'last ptype' must be constant across the sublist, and all
5546 * other ptypes are handled per-packet.
5547 */
5548 /* Current (common) ptype of sublist */
5549 struct packet_type *pt_curr = NULL;
5550 /* Current (common) orig_dev of sublist */
5551 struct net_device *od_curr = NULL;
5552 struct list_head sublist;
5553 struct sk_buff *skb, *next;
5554
5555 INIT_LIST_HEAD(&sublist);
5556 list_for_each_entry_safe(skb, next, head, list) {
5557 struct net_device *orig_dev = skb->dev;
5558 struct packet_type *pt_prev = NULL;
5559
5560 skb_list_del_init(skb);
5561 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5562 if (!pt_prev)
5563 continue;
5564 if (pt_curr != pt_prev || od_curr != orig_dev) {
5565 /* dispatch old sublist */
5566 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5567 /* start new sublist */
5568 INIT_LIST_HEAD(&sublist);
5569 pt_curr = pt_prev;
5570 od_curr = orig_dev;
5571 }
5572 list_add_tail(&skb->list, &sublist);
5573 }
5574
5575 /* dispatch final sublist */
5576 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5577}
5578
5579static int __netif_receive_skb(struct sk_buff *skb)
5580{
5581 int ret;
5582
5583 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5584 unsigned int noreclaim_flag;
5585
5586 /*
5587 * PFMEMALLOC skbs are special, they should
5588 * - be delivered to SOCK_MEMALLOC sockets only
5589 * - stay away from userspace
5590 * - have bounded memory usage
5591 *
5592 * Use PF_MEMALLOC as this saves us from propagating the allocation
5593 * context down to all allocation sites.
5594 */
5595 noreclaim_flag = memalloc_noreclaim_save();
5596 ret = __netif_receive_skb_one_core(skb, true);
5597 memalloc_noreclaim_restore(noreclaim_flag);
5598 } else
5599 ret = __netif_receive_skb_one_core(skb, false);
5600
5601 return ret;
5602}
5603
5604static void __netif_receive_skb_list(struct list_head *head)
5605{
5606 unsigned long noreclaim_flag = 0;
5607 struct sk_buff *skb, *next;
5608 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5609
5610 list_for_each_entry_safe(skb, next, head, list) {
5611 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5612 struct list_head sublist;
5613
5614 /* Handle the previous sublist */
5615 list_cut_before(&sublist, head, &skb->list);
5616 if (!list_empty(&sublist))
5617 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5618 pfmemalloc = !pfmemalloc;
5619 /* See comments in __netif_receive_skb */
5620 if (pfmemalloc)
5621 noreclaim_flag = memalloc_noreclaim_save();
5622 else
5623 memalloc_noreclaim_restore(noreclaim_flag);
5624 }
5625 }
5626 /* Handle the remaining sublist */
5627 if (!list_empty(head))
5628 __netif_receive_skb_list_core(head, pfmemalloc);
5629 /* Restore pflags */
5630 if (pfmemalloc)
5631 memalloc_noreclaim_restore(noreclaim_flag);
5632}
5633
5634static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5635{
5636 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5637 struct bpf_prog *new = xdp->prog;
5638 int ret = 0;
5639
5640 switch (xdp->command) {
5641 case XDP_SETUP_PROG:
5642 rcu_assign_pointer(dev->xdp_prog, new);
5643 if (old)
5644 bpf_prog_put(old);
5645
5646 if (old && !new) {
5647 static_branch_dec(&generic_xdp_needed_key);
5648 } else if (new && !old) {
5649 static_branch_inc(&generic_xdp_needed_key);
5650 dev_disable_lro(dev);
5651 dev_disable_gro_hw(dev);
5652 }
5653 break;
5654
5655 default:
5656 ret = -EINVAL;
5657 break;
5658 }
5659
5660 return ret;
5661}
5662
5663static int netif_receive_skb_internal(struct sk_buff *skb)
5664{
5665 int ret;
5666
5667 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5668
5669 if (skb_defer_rx_timestamp(skb))
5670 return NET_RX_SUCCESS;
5671
5672 rcu_read_lock();
5673#ifdef CONFIG_RPS
5674 if (static_branch_unlikely(&rps_needed)) {
5675 struct rps_dev_flow voidflow, *rflow = &voidflow;
5676 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5677
5678 if (cpu >= 0) {
5679 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5680 rcu_read_unlock();
5681 return ret;
5682 }
5683 }
5684#endif
5685 ret = __netif_receive_skb(skb);
5686 rcu_read_unlock();
5687 return ret;
5688}
5689
5690void netif_receive_skb_list_internal(struct list_head *head)
5691{
5692 struct sk_buff *skb, *next;
5693 struct list_head sublist;
5694
5695 INIT_LIST_HEAD(&sublist);
5696 list_for_each_entry_safe(skb, next, head, list) {
5697 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5698 skb_list_del_init(skb);
5699 if (!skb_defer_rx_timestamp(skb))
5700 list_add_tail(&skb->list, &sublist);
5701 }
5702 list_splice_init(&sublist, head);
5703
5704 rcu_read_lock();
5705#ifdef CONFIG_RPS
5706 if (static_branch_unlikely(&rps_needed)) {
5707 list_for_each_entry_safe(skb, next, head, list) {
5708 struct rps_dev_flow voidflow, *rflow = &voidflow;
5709 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5710
5711 if (cpu >= 0) {
5712 /* Will be handled, remove from list */
5713 skb_list_del_init(skb);
5714 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5715 }
5716 }
5717 }
5718#endif
5719 __netif_receive_skb_list(head);
5720 rcu_read_unlock();
5721}
5722
5723/**
5724 * netif_receive_skb - process receive buffer from network
5725 * @skb: buffer to process
5726 *
5727 * netif_receive_skb() is the main receive data processing function.
5728 * It always succeeds. The buffer may be dropped during processing
5729 * for congestion control or by the protocol layers.
5730 *
5731 * This function may only be called from softirq context and interrupts
5732 * should be enabled.
5733 *
5734 * Return values (usually ignored):
5735 * NET_RX_SUCCESS: no congestion
5736 * NET_RX_DROP: packet was dropped
5737 */
5738int netif_receive_skb(struct sk_buff *skb)
5739{
5740 int ret;
5741
5742 trace_netif_receive_skb_entry(skb);
5743
5744 ret = netif_receive_skb_internal(skb);
5745 trace_netif_receive_skb_exit(ret);
5746
5747 return ret;
5748}
5749EXPORT_SYMBOL(netif_receive_skb);
5750
5751/**
5752 * netif_receive_skb_list - process many receive buffers from network
5753 * @head: list of skbs to process.
5754 *
5755 * Since return value of netif_receive_skb() is normally ignored, and
5756 * wouldn't be meaningful for a list, this function returns void.
5757 *
5758 * This function may only be called from softirq context and interrupts
5759 * should be enabled.
5760 */
5761void netif_receive_skb_list(struct list_head *head)
5762{
5763 struct sk_buff *skb;
5764
5765 if (list_empty(head))
5766 return;
5767 if (trace_netif_receive_skb_list_entry_enabled()) {
5768 list_for_each_entry(skb, head, list)
5769 trace_netif_receive_skb_list_entry(skb);
5770 }
5771 netif_receive_skb_list_internal(head);
5772 trace_netif_receive_skb_list_exit(0);
5773}
5774EXPORT_SYMBOL(netif_receive_skb_list);
5775
5776static DEFINE_PER_CPU(struct work_struct, flush_works);
5777
5778/* Network device is going away, flush any packets still pending */
5779static void flush_backlog(struct work_struct *work)
5780{
5781 struct sk_buff *skb, *tmp;
5782 struct softnet_data *sd;
5783
5784 local_bh_disable();
5785 sd = this_cpu_ptr(&softnet_data);
5786
5787 rps_lock_irq_disable(sd);
5788 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5789 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5790 __skb_unlink(skb, &sd->input_pkt_queue);
5791 dev_kfree_skb_irq(skb);
5792 input_queue_head_incr(sd);
5793 }
5794 }
5795 rps_unlock_irq_enable(sd);
5796
5797 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5798 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5799 __skb_unlink(skb, &sd->process_queue);
5800 kfree_skb(skb);
5801 input_queue_head_incr(sd);
5802 }
5803 }
5804 local_bh_enable();
5805}
5806
5807static bool flush_required(int cpu)
5808{
5809#if IS_ENABLED(CONFIG_RPS)
5810 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5811 bool do_flush;
5812
5813 rps_lock_irq_disable(sd);
5814
5815 /* as insertion into process_queue happens with the rps lock held,
5816 * process_queue access may race only with dequeue
5817 */
5818 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5819 !skb_queue_empty_lockless(&sd->process_queue);
5820 rps_unlock_irq_enable(sd);
5821
5822 return do_flush;
5823#endif
5824 /* without RPS we can't safely check input_pkt_queue: during a
5825 * concurrent remote skb_queue_splice() we can detect as empty both
5826 * input_pkt_queue and process_queue even if the latter could end-up
5827 * containing a lot of packets.
5828 */
5829 return true;
5830}
5831
5832static void flush_all_backlogs(void)
5833{
5834 static cpumask_t flush_cpus;
5835 unsigned int cpu;
5836
5837 /* since we are under rtnl lock protection we can use static data
5838 * for the cpumask and avoid allocating on stack the possibly
5839 * large mask
5840 */
5841 ASSERT_RTNL();
5842
5843 cpus_read_lock();
5844
5845 cpumask_clear(&flush_cpus);
5846 for_each_online_cpu(cpu) {
5847 if (flush_required(cpu)) {
5848 queue_work_on(cpu, system_highpri_wq,
5849 per_cpu_ptr(&flush_works, cpu));
5850 cpumask_set_cpu(cpu, &flush_cpus);
5851 }
5852 }
5853
5854 /* we can have in flight packet[s] on the cpus we are not flushing,
5855 * synchronize_net() in unregister_netdevice_many() will take care of
5856 * them
5857 */
5858 for_each_cpu(cpu, &flush_cpus)
5859 flush_work(per_cpu_ptr(&flush_works, cpu));
5860
5861 cpus_read_unlock();
5862}
5863
5864static void net_rps_send_ipi(struct softnet_data *remsd)
5865{
5866#ifdef CONFIG_RPS
5867 while (remsd) {
5868 struct softnet_data *next = remsd->rps_ipi_next;
5869
5870 if (cpu_online(remsd->cpu))
5871 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5872 remsd = next;
5873 }
5874#endif
5875}
5876
5877/*
5878 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5879 * Note: called with local irq disabled, but exits with local irq enabled.
5880 */
5881static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5882{
5883#ifdef CONFIG_RPS
5884 struct softnet_data *remsd = sd->rps_ipi_list;
5885
5886 if (remsd) {
5887 sd->rps_ipi_list = NULL;
5888
5889 local_irq_enable();
5890
5891 /* Send pending IPI's to kick RPS processing on remote cpus. */
5892 net_rps_send_ipi(remsd);
5893 } else
5894#endif
5895 local_irq_enable();
5896}
5897
5898static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5899{
5900#ifdef CONFIG_RPS
5901 return sd->rps_ipi_list != NULL;
5902#else
5903 return false;
5904#endif
5905}
5906
5907static int process_backlog(struct napi_struct *napi, int quota)
5908{
5909 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5910 bool again = true;
5911 int work = 0;
5912
5913 /* Check if we have pending ipi, its better to send them now,
5914 * not waiting net_rx_action() end.
5915 */
5916 if (sd_has_rps_ipi_waiting(sd)) {
5917 local_irq_disable();
5918 net_rps_action_and_irq_enable(sd);
5919 }
5920
5921 napi->weight = READ_ONCE(dev_rx_weight);
5922 while (again) {
5923 struct sk_buff *skb;
5924
5925 while ((skb = __skb_dequeue(&sd->process_queue))) {
5926 rcu_read_lock();
5927 __netif_receive_skb(skb);
5928 rcu_read_unlock();
5929 input_queue_head_incr(sd);
5930 if (++work >= quota)
5931 return work;
5932
5933 }
5934
5935 rps_lock_irq_disable(sd);
5936 if (skb_queue_empty(&sd->input_pkt_queue)) {
5937 /*
5938 * Inline a custom version of __napi_complete().
5939 * only current cpu owns and manipulates this napi,
5940 * and NAPI_STATE_SCHED is the only possible flag set
5941 * on backlog.
5942 * We can use a plain write instead of clear_bit(),
5943 * and we dont need an smp_mb() memory barrier.
5944 */
5945 napi->state = 0;
5946 again = false;
5947 } else {
5948 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5949 &sd->process_queue);
5950 }
5951 rps_unlock_irq_enable(sd);
5952 }
5953
5954 return work;
5955}
5956
5957/**
5958 * __napi_schedule - schedule for receive
5959 * @n: entry to schedule
5960 *
5961 * The entry's receive function will be scheduled to run.
5962 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5963 */
5964void __napi_schedule(struct napi_struct *n)
5965{
5966 unsigned long flags;
5967
5968 local_irq_save(flags);
5969 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5970 local_irq_restore(flags);
5971}
5972EXPORT_SYMBOL(__napi_schedule);
5973
5974/**
5975 * napi_schedule_prep - check if napi can be scheduled
5976 * @n: napi context
5977 *
5978 * Test if NAPI routine is already running, and if not mark
5979 * it as running. This is used as a condition variable to
5980 * insure only one NAPI poll instance runs. We also make
5981 * sure there is no pending NAPI disable.
5982 */
5983bool napi_schedule_prep(struct napi_struct *n)
5984{
5985 unsigned long val, new;
5986
5987 do {
5988 val = READ_ONCE(n->state);
5989 if (unlikely(val & NAPIF_STATE_DISABLE))
5990 return false;
5991 new = val | NAPIF_STATE_SCHED;
5992
5993 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5994 * This was suggested by Alexander Duyck, as compiler
5995 * emits better code than :
5996 * if (val & NAPIF_STATE_SCHED)
5997 * new |= NAPIF_STATE_MISSED;
5998 */
5999 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6000 NAPIF_STATE_MISSED;
6001 } while (cmpxchg(&n->state, val, new) != val);
6002
6003 return !(val & NAPIF_STATE_SCHED);
6004}
6005EXPORT_SYMBOL(napi_schedule_prep);
6006
6007/**
6008 * __napi_schedule_irqoff - schedule for receive
6009 * @n: entry to schedule
6010 *
6011 * Variant of __napi_schedule() assuming hard irqs are masked.
6012 *
6013 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6014 * because the interrupt disabled assumption might not be true
6015 * due to force-threaded interrupts and spinlock substitution.
6016 */
6017void __napi_schedule_irqoff(struct napi_struct *n)
6018{
6019 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6020 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6021 else
6022 __napi_schedule(n);
6023}
6024EXPORT_SYMBOL(__napi_schedule_irqoff);
6025
6026bool napi_complete_done(struct napi_struct *n, int work_done)
6027{
6028 unsigned long flags, val, new, timeout = 0;
6029 bool ret = true;
6030
6031 /*
6032 * 1) Don't let napi dequeue from the cpu poll list
6033 * just in case its running on a different cpu.
6034 * 2) If we are busy polling, do nothing here, we have
6035 * the guarantee we will be called later.
6036 */
6037 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6038 NAPIF_STATE_IN_BUSY_POLL)))
6039 return false;
6040
6041 if (work_done) {
6042 if (n->gro_bitmask)
6043 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6044 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6045 }
6046 if (n->defer_hard_irqs_count > 0) {
6047 n->defer_hard_irqs_count--;
6048 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6049 if (timeout)
6050 ret = false;
6051 }
6052 if (n->gro_bitmask) {
6053 /* When the NAPI instance uses a timeout and keeps postponing
6054 * it, we need to bound somehow the time packets are kept in
6055 * the GRO layer
6056 */
6057 napi_gro_flush(n, !!timeout);
6058 }
6059
6060 gro_normal_list(n);
6061
6062 if (unlikely(!list_empty(&n->poll_list))) {
6063 /* If n->poll_list is not empty, we need to mask irqs */
6064 local_irq_save(flags);
6065 list_del_init(&n->poll_list);
6066 local_irq_restore(flags);
6067 }
6068
6069 do {
6070 val = READ_ONCE(n->state);
6071
6072 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6073
6074 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6075 NAPIF_STATE_SCHED_THREADED |
6076 NAPIF_STATE_PREFER_BUSY_POLL);
6077
6078 /* If STATE_MISSED was set, leave STATE_SCHED set,
6079 * because we will call napi->poll() one more time.
6080 * This C code was suggested by Alexander Duyck to help gcc.
6081 */
6082 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6083 NAPIF_STATE_SCHED;
6084 } while (cmpxchg(&n->state, val, new) != val);
6085
6086 if (unlikely(val & NAPIF_STATE_MISSED)) {
6087 __napi_schedule(n);
6088 return false;
6089 }
6090
6091 if (timeout)
6092 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6093 HRTIMER_MODE_REL_PINNED);
6094 return ret;
6095}
6096EXPORT_SYMBOL(napi_complete_done);
6097
6098/* must be called under rcu_read_lock(), as we dont take a reference */
6099static struct napi_struct *napi_by_id(unsigned int napi_id)
6100{
6101 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6102 struct napi_struct *napi;
6103
6104 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6105 if (napi->napi_id == napi_id)
6106 return napi;
6107
6108 return NULL;
6109}
6110
6111#if defined(CONFIG_NET_RX_BUSY_POLL)
6112
6113static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6114{
6115 if (!skip_schedule) {
6116 gro_normal_list(napi);
6117 __napi_schedule(napi);
6118 return;
6119 }
6120
6121 if (napi->gro_bitmask) {
6122 /* flush too old packets
6123 * If HZ < 1000, flush all packets.
6124 */
6125 napi_gro_flush(napi, HZ >= 1000);
6126 }
6127
6128 gro_normal_list(napi);
6129 clear_bit(NAPI_STATE_SCHED, &napi->state);
6130}
6131
6132static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6133 u16 budget)
6134{
6135 bool skip_schedule = false;
6136 unsigned long timeout;
6137 int rc;
6138
6139 /* Busy polling means there is a high chance device driver hard irq
6140 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6141 * set in napi_schedule_prep().
6142 * Since we are about to call napi->poll() once more, we can safely
6143 * clear NAPI_STATE_MISSED.
6144 *
6145 * Note: x86 could use a single "lock and ..." instruction
6146 * to perform these two clear_bit()
6147 */
6148 clear_bit(NAPI_STATE_MISSED, &napi->state);
6149 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6150
6151 local_bh_disable();
6152
6153 if (prefer_busy_poll) {
6154 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6155 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6156 if (napi->defer_hard_irqs_count && timeout) {
6157 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6158 skip_schedule = true;
6159 }
6160 }
6161
6162 /* All we really want here is to re-enable device interrupts.
6163 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6164 */
6165 rc = napi->poll(napi, budget);
6166 /* We can't gro_normal_list() here, because napi->poll() might have
6167 * rearmed the napi (napi_complete_done()) in which case it could
6168 * already be running on another CPU.
6169 */
6170 trace_napi_poll(napi, rc, budget);
6171 netpoll_poll_unlock(have_poll_lock);
6172 if (rc == budget)
6173 __busy_poll_stop(napi, skip_schedule);
6174 local_bh_enable();
6175}
6176
6177void napi_busy_loop(unsigned int napi_id,
6178 bool (*loop_end)(void *, unsigned long),
6179 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6180{
6181 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6182 int (*napi_poll)(struct napi_struct *napi, int budget);
6183 void *have_poll_lock = NULL;
6184 struct napi_struct *napi;
6185
6186restart:
6187 napi_poll = NULL;
6188
6189 rcu_read_lock();
6190
6191 napi = napi_by_id(napi_id);
6192 if (!napi)
6193 goto out;
6194
6195 preempt_disable();
6196 for (;;) {
6197 int work = 0;
6198
6199 local_bh_disable();
6200 if (!napi_poll) {
6201 unsigned long val = READ_ONCE(napi->state);
6202
6203 /* If multiple threads are competing for this napi,
6204 * we avoid dirtying napi->state as much as we can.
6205 */
6206 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6207 NAPIF_STATE_IN_BUSY_POLL)) {
6208 if (prefer_busy_poll)
6209 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6210 goto count;
6211 }
6212 if (cmpxchg(&napi->state, val,
6213 val | NAPIF_STATE_IN_BUSY_POLL |
6214 NAPIF_STATE_SCHED) != val) {
6215 if (prefer_busy_poll)
6216 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6217 goto count;
6218 }
6219 have_poll_lock = netpoll_poll_lock(napi);
6220 napi_poll = napi->poll;
6221 }
6222 work = napi_poll(napi, budget);
6223 trace_napi_poll(napi, work, budget);
6224 gro_normal_list(napi);
6225count:
6226 if (work > 0)
6227 __NET_ADD_STATS(dev_net(napi->dev),
6228 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6229 local_bh_enable();
6230
6231 if (!loop_end || loop_end(loop_end_arg, start_time))
6232 break;
6233
6234 if (unlikely(need_resched())) {
6235 if (napi_poll)
6236 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6237 preempt_enable();
6238 rcu_read_unlock();
6239 cond_resched();
6240 if (loop_end(loop_end_arg, start_time))
6241 return;
6242 goto restart;
6243 }
6244 cpu_relax();
6245 }
6246 if (napi_poll)
6247 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6248 preempt_enable();
6249out:
6250 rcu_read_unlock();
6251}
6252EXPORT_SYMBOL(napi_busy_loop);
6253
6254#endif /* CONFIG_NET_RX_BUSY_POLL */
6255
6256static void napi_hash_add(struct napi_struct *napi)
6257{
6258 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6259 return;
6260
6261 spin_lock(&napi_hash_lock);
6262
6263 /* 0..NR_CPUS range is reserved for sender_cpu use */
6264 do {
6265 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6266 napi_gen_id = MIN_NAPI_ID;
6267 } while (napi_by_id(napi_gen_id));
6268 napi->napi_id = napi_gen_id;
6269
6270 hlist_add_head_rcu(&napi->napi_hash_node,
6271 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6272
6273 spin_unlock(&napi_hash_lock);
6274}
6275
6276/* Warning : caller is responsible to make sure rcu grace period
6277 * is respected before freeing memory containing @napi
6278 */
6279static void napi_hash_del(struct napi_struct *napi)
6280{
6281 spin_lock(&napi_hash_lock);
6282
6283 hlist_del_init_rcu(&napi->napi_hash_node);
6284
6285 spin_unlock(&napi_hash_lock);
6286}
6287
6288static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6289{
6290 struct napi_struct *napi;
6291
6292 napi = container_of(timer, struct napi_struct, timer);
6293
6294 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6295 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6296 */
6297 if (!napi_disable_pending(napi) &&
6298 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6299 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6300 __napi_schedule_irqoff(napi);
6301 }
6302
6303 return HRTIMER_NORESTART;
6304}
6305
6306static void init_gro_hash(struct napi_struct *napi)
6307{
6308 int i;
6309
6310 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6311 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6312 napi->gro_hash[i].count = 0;
6313 }
6314 napi->gro_bitmask = 0;
6315}
6316
6317int dev_set_threaded(struct net_device *dev, bool threaded)
6318{
6319 struct napi_struct *napi;
6320 int err = 0;
6321
6322 if (dev->threaded == threaded)
6323 return 0;
6324
6325 if (threaded) {
6326 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6327 if (!napi->thread) {
6328 err = napi_kthread_create(napi);
6329 if (err) {
6330 threaded = false;
6331 break;
6332 }
6333 }
6334 }
6335 }
6336
6337 dev->threaded = threaded;
6338
6339 /* Make sure kthread is created before THREADED bit
6340 * is set.
6341 */
6342 smp_mb__before_atomic();
6343
6344 /* Setting/unsetting threaded mode on a napi might not immediately
6345 * take effect, if the current napi instance is actively being
6346 * polled. In this case, the switch between threaded mode and
6347 * softirq mode will happen in the next round of napi_schedule().
6348 * This should not cause hiccups/stalls to the live traffic.
6349 */
6350 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6351 if (threaded)
6352 set_bit(NAPI_STATE_THREADED, &napi->state);
6353 else
6354 clear_bit(NAPI_STATE_THREADED, &napi->state);
6355 }
6356
6357 return err;
6358}
6359EXPORT_SYMBOL(dev_set_threaded);
6360
6361void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6362 int (*poll)(struct napi_struct *, int), int weight)
6363{
6364 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6365 return;
6366
6367 INIT_LIST_HEAD(&napi->poll_list);
6368 INIT_HLIST_NODE(&napi->napi_hash_node);
6369 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6370 napi->timer.function = napi_watchdog;
6371 init_gro_hash(napi);
6372 napi->skb = NULL;
6373 INIT_LIST_HEAD(&napi->rx_list);
6374 napi->rx_count = 0;
6375 napi->poll = poll;
6376 if (weight > NAPI_POLL_WEIGHT)
6377 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6378 weight);
6379 napi->weight = weight;
6380 napi->dev = dev;
6381#ifdef CONFIG_NETPOLL
6382 napi->poll_owner = -1;
6383#endif
6384 set_bit(NAPI_STATE_SCHED, &napi->state);
6385 set_bit(NAPI_STATE_NPSVC, &napi->state);
6386 list_add_rcu(&napi->dev_list, &dev->napi_list);
6387 napi_hash_add(napi);
6388 napi_get_frags_check(napi);
6389 /* Create kthread for this napi if dev->threaded is set.
6390 * Clear dev->threaded if kthread creation failed so that
6391 * threaded mode will not be enabled in napi_enable().
6392 */
6393 if (dev->threaded && napi_kthread_create(napi))
6394 dev->threaded = 0;
6395}
6396EXPORT_SYMBOL(netif_napi_add_weight);
6397
6398void napi_disable(struct napi_struct *n)
6399{
6400 unsigned long val, new;
6401
6402 might_sleep();
6403 set_bit(NAPI_STATE_DISABLE, &n->state);
6404
6405 for ( ; ; ) {
6406 val = READ_ONCE(n->state);
6407 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6408 usleep_range(20, 200);
6409 continue;
6410 }
6411
6412 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6413 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6414
6415 if (cmpxchg(&n->state, val, new) == val)
6416 break;
6417 }
6418
6419 hrtimer_cancel(&n->timer);
6420
6421 clear_bit(NAPI_STATE_DISABLE, &n->state);
6422}
6423EXPORT_SYMBOL(napi_disable);
6424
6425/**
6426 * napi_enable - enable NAPI scheduling
6427 * @n: NAPI context
6428 *
6429 * Resume NAPI from being scheduled on this context.
6430 * Must be paired with napi_disable.
6431 */
6432void napi_enable(struct napi_struct *n)
6433{
6434 unsigned long val, new;
6435
6436 do {
6437 val = READ_ONCE(n->state);
6438 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6439
6440 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6441 if (n->dev->threaded && n->thread)
6442 new |= NAPIF_STATE_THREADED;
6443 } while (cmpxchg(&n->state, val, new) != val);
6444}
6445EXPORT_SYMBOL(napi_enable);
6446
6447static void flush_gro_hash(struct napi_struct *napi)
6448{
6449 int i;
6450
6451 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6452 struct sk_buff *skb, *n;
6453
6454 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6455 kfree_skb(skb);
6456 napi->gro_hash[i].count = 0;
6457 }
6458}
6459
6460/* Must be called in process context */
6461void __netif_napi_del(struct napi_struct *napi)
6462{
6463 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6464 return;
6465
6466 napi_hash_del(napi);
6467 list_del_rcu(&napi->dev_list);
6468 napi_free_frags(napi);
6469
6470 flush_gro_hash(napi);
6471 napi->gro_bitmask = 0;
6472
6473 if (napi->thread) {
6474 kthread_stop(napi->thread);
6475 napi->thread = NULL;
6476 }
6477}
6478EXPORT_SYMBOL(__netif_napi_del);
6479
6480static int __napi_poll(struct napi_struct *n, bool *repoll)
6481{
6482 int work, weight;
6483
6484 weight = n->weight;
6485
6486 /* This NAPI_STATE_SCHED test is for avoiding a race
6487 * with netpoll's poll_napi(). Only the entity which
6488 * obtains the lock and sees NAPI_STATE_SCHED set will
6489 * actually make the ->poll() call. Therefore we avoid
6490 * accidentally calling ->poll() when NAPI is not scheduled.
6491 */
6492 work = 0;
6493 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6494 work = n->poll(n, weight);
6495 trace_napi_poll(n, work, weight);
6496 }
6497
6498 if (unlikely(work > weight))
6499 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6500 n->poll, work, weight);
6501
6502 if (likely(work < weight))
6503 return work;
6504
6505 /* Drivers must not modify the NAPI state if they
6506 * consume the entire weight. In such cases this code
6507 * still "owns" the NAPI instance and therefore can
6508 * move the instance around on the list at-will.
6509 */
6510 if (unlikely(napi_disable_pending(n))) {
6511 napi_complete(n);
6512 return work;
6513 }
6514
6515 /* The NAPI context has more processing work, but busy-polling
6516 * is preferred. Exit early.
6517 */
6518 if (napi_prefer_busy_poll(n)) {
6519 if (napi_complete_done(n, work)) {
6520 /* If timeout is not set, we need to make sure
6521 * that the NAPI is re-scheduled.
6522 */
6523 napi_schedule(n);
6524 }
6525 return work;
6526 }
6527
6528 if (n->gro_bitmask) {
6529 /* flush too old packets
6530 * If HZ < 1000, flush all packets.
6531 */
6532 napi_gro_flush(n, HZ >= 1000);
6533 }
6534
6535 gro_normal_list(n);
6536
6537 /* Some drivers may have called napi_schedule
6538 * prior to exhausting their budget.
6539 */
6540 if (unlikely(!list_empty(&n->poll_list))) {
6541 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6542 n->dev ? n->dev->name : "backlog");
6543 return work;
6544 }
6545
6546 *repoll = true;
6547
6548 return work;
6549}
6550
6551static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6552{
6553 bool do_repoll = false;
6554 void *have;
6555 int work;
6556
6557 list_del_init(&n->poll_list);
6558
6559 have = netpoll_poll_lock(n);
6560
6561 work = __napi_poll(n, &do_repoll);
6562
6563 if (do_repoll)
6564 list_add_tail(&n->poll_list, repoll);
6565
6566 netpoll_poll_unlock(have);
6567
6568 return work;
6569}
6570
6571static int napi_thread_wait(struct napi_struct *napi)
6572{
6573 bool woken = false;
6574
6575 set_current_state(TASK_INTERRUPTIBLE);
6576
6577 while (!kthread_should_stop()) {
6578 /* Testing SCHED_THREADED bit here to make sure the current
6579 * kthread owns this napi and could poll on this napi.
6580 * Testing SCHED bit is not enough because SCHED bit might be
6581 * set by some other busy poll thread or by napi_disable().
6582 */
6583 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6584 WARN_ON(!list_empty(&napi->poll_list));
6585 __set_current_state(TASK_RUNNING);
6586 return 0;
6587 }
6588
6589 schedule();
6590 /* woken being true indicates this thread owns this napi. */
6591 woken = true;
6592 set_current_state(TASK_INTERRUPTIBLE);
6593 }
6594 __set_current_state(TASK_RUNNING);
6595
6596 return -1;
6597}
6598
6599static int napi_threaded_poll(void *data)
6600{
6601 struct napi_struct *napi = data;
6602 void *have;
6603
6604 while (!napi_thread_wait(napi)) {
6605 for (;;) {
6606 bool repoll = false;
6607
6608 local_bh_disable();
6609
6610 have = netpoll_poll_lock(napi);
6611 __napi_poll(napi, &repoll);
6612 netpoll_poll_unlock(have);
6613
6614 local_bh_enable();
6615
6616 if (!repoll)
6617 break;
6618
6619 cond_resched();
6620 }
6621 }
6622 return 0;
6623}
6624
6625static void skb_defer_free_flush(struct softnet_data *sd)
6626{
6627 struct sk_buff *skb, *next;
6628 unsigned long flags;
6629
6630 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6631 if (!READ_ONCE(sd->defer_list))
6632 return;
6633
6634 spin_lock_irqsave(&sd->defer_lock, flags);
6635 skb = sd->defer_list;
6636 sd->defer_list = NULL;
6637 sd->defer_count = 0;
6638 spin_unlock_irqrestore(&sd->defer_lock, flags);
6639
6640 while (skb != NULL) {
6641 next = skb->next;
6642 napi_consume_skb(skb, 1);
6643 skb = next;
6644 }
6645}
6646
6647static __latent_entropy void net_rx_action(struct softirq_action *h)
6648{
6649 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6650 unsigned long time_limit = jiffies +
6651 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6652 int budget = READ_ONCE(netdev_budget);
6653 LIST_HEAD(list);
6654 LIST_HEAD(repoll);
6655
6656 local_irq_disable();
6657 list_splice_init(&sd->poll_list, &list);
6658 local_irq_enable();
6659
6660 for (;;) {
6661 struct napi_struct *n;
6662
6663 skb_defer_free_flush(sd);
6664
6665 if (list_empty(&list)) {
6666 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6667 goto end;
6668 break;
6669 }
6670
6671 n = list_first_entry(&list, struct napi_struct, poll_list);
6672 budget -= napi_poll(n, &repoll);
6673
6674 /* If softirq window is exhausted then punt.
6675 * Allow this to run for 2 jiffies since which will allow
6676 * an average latency of 1.5/HZ.
6677 */
6678 if (unlikely(budget <= 0 ||
6679 time_after_eq(jiffies, time_limit))) {
6680 sd->time_squeeze++;
6681 break;
6682 }
6683 }
6684
6685 local_irq_disable();
6686
6687 list_splice_tail_init(&sd->poll_list, &list);
6688 list_splice_tail(&repoll, &list);
6689 list_splice(&list, &sd->poll_list);
6690 if (!list_empty(&sd->poll_list))
6691 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6692
6693 net_rps_action_and_irq_enable(sd);
6694end:;
6695}
6696
6697struct netdev_adjacent {
6698 struct net_device *dev;
6699 netdevice_tracker dev_tracker;
6700
6701 /* upper master flag, there can only be one master device per list */
6702 bool master;
6703
6704 /* lookup ignore flag */
6705 bool ignore;
6706
6707 /* counter for the number of times this device was added to us */
6708 u16 ref_nr;
6709
6710 /* private field for the users */
6711 void *private;
6712
6713 struct list_head list;
6714 struct rcu_head rcu;
6715};
6716
6717static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6718 struct list_head *adj_list)
6719{
6720 struct netdev_adjacent *adj;
6721
6722 list_for_each_entry(adj, adj_list, list) {
6723 if (adj->dev == adj_dev)
6724 return adj;
6725 }
6726 return NULL;
6727}
6728
6729static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6730 struct netdev_nested_priv *priv)
6731{
6732 struct net_device *dev = (struct net_device *)priv->data;
6733
6734 return upper_dev == dev;
6735}
6736
6737/**
6738 * netdev_has_upper_dev - Check if device is linked to an upper device
6739 * @dev: device
6740 * @upper_dev: upper device to check
6741 *
6742 * Find out if a device is linked to specified upper device and return true
6743 * in case it is. Note that this checks only immediate upper device,
6744 * not through a complete stack of devices. The caller must hold the RTNL lock.
6745 */
6746bool netdev_has_upper_dev(struct net_device *dev,
6747 struct net_device *upper_dev)
6748{
6749 struct netdev_nested_priv priv = {
6750 .data = (void *)upper_dev,
6751 };
6752
6753 ASSERT_RTNL();
6754
6755 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6756 &priv);
6757}
6758EXPORT_SYMBOL(netdev_has_upper_dev);
6759
6760/**
6761 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6762 * @dev: device
6763 * @upper_dev: upper device to check
6764 *
6765 * Find out if a device is linked to specified upper device and return true
6766 * in case it is. Note that this checks the entire upper device chain.
6767 * The caller must hold rcu lock.
6768 */
6769
6770bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6771 struct net_device *upper_dev)
6772{
6773 struct netdev_nested_priv priv = {
6774 .data = (void *)upper_dev,
6775 };
6776
6777 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6778 &priv);
6779}
6780EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6781
6782/**
6783 * netdev_has_any_upper_dev - Check if device is linked to some device
6784 * @dev: device
6785 *
6786 * Find out if a device is linked to an upper device and return true in case
6787 * it is. The caller must hold the RTNL lock.
6788 */
6789bool netdev_has_any_upper_dev(struct net_device *dev)
6790{
6791 ASSERT_RTNL();
6792
6793 return !list_empty(&dev->adj_list.upper);
6794}
6795EXPORT_SYMBOL(netdev_has_any_upper_dev);
6796
6797/**
6798 * netdev_master_upper_dev_get - Get master upper device
6799 * @dev: device
6800 *
6801 * Find a master upper device and return pointer to it or NULL in case
6802 * it's not there. The caller must hold the RTNL lock.
6803 */
6804struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6805{
6806 struct netdev_adjacent *upper;
6807
6808 ASSERT_RTNL();
6809
6810 if (list_empty(&dev->adj_list.upper))
6811 return NULL;
6812
6813 upper = list_first_entry(&dev->adj_list.upper,
6814 struct netdev_adjacent, list);
6815 if (likely(upper->master))
6816 return upper->dev;
6817 return NULL;
6818}
6819EXPORT_SYMBOL(netdev_master_upper_dev_get);
6820
6821static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6822{
6823 struct netdev_adjacent *upper;
6824
6825 ASSERT_RTNL();
6826
6827 if (list_empty(&dev->adj_list.upper))
6828 return NULL;
6829
6830 upper = list_first_entry(&dev->adj_list.upper,
6831 struct netdev_adjacent, list);
6832 if (likely(upper->master) && !upper->ignore)
6833 return upper->dev;
6834 return NULL;
6835}
6836
6837/**
6838 * netdev_has_any_lower_dev - Check if device is linked to some device
6839 * @dev: device
6840 *
6841 * Find out if a device is linked to a lower device and return true in case
6842 * it is. The caller must hold the RTNL lock.
6843 */
6844static bool netdev_has_any_lower_dev(struct net_device *dev)
6845{
6846 ASSERT_RTNL();
6847
6848 return !list_empty(&dev->adj_list.lower);
6849}
6850
6851void *netdev_adjacent_get_private(struct list_head *adj_list)
6852{
6853 struct netdev_adjacent *adj;
6854
6855 adj = list_entry(adj_list, struct netdev_adjacent, list);
6856
6857 return adj->private;
6858}
6859EXPORT_SYMBOL(netdev_adjacent_get_private);
6860
6861/**
6862 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6863 * @dev: device
6864 * @iter: list_head ** of the current position
6865 *
6866 * Gets the next device from the dev's upper list, starting from iter
6867 * position. The caller must hold RCU read lock.
6868 */
6869struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6870 struct list_head **iter)
6871{
6872 struct netdev_adjacent *upper;
6873
6874 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6875
6876 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6877
6878 if (&upper->list == &dev->adj_list.upper)
6879 return NULL;
6880
6881 *iter = &upper->list;
6882
6883 return upper->dev;
6884}
6885EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6886
6887static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6888 struct list_head **iter,
6889 bool *ignore)
6890{
6891 struct netdev_adjacent *upper;
6892
6893 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6894
6895 if (&upper->list == &dev->adj_list.upper)
6896 return NULL;
6897
6898 *iter = &upper->list;
6899 *ignore = upper->ignore;
6900
6901 return upper->dev;
6902}
6903
6904static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6905 struct list_head **iter)
6906{
6907 struct netdev_adjacent *upper;
6908
6909 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6910
6911 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6912
6913 if (&upper->list == &dev->adj_list.upper)
6914 return NULL;
6915
6916 *iter = &upper->list;
6917
6918 return upper->dev;
6919}
6920
6921static int __netdev_walk_all_upper_dev(struct net_device *dev,
6922 int (*fn)(struct net_device *dev,
6923 struct netdev_nested_priv *priv),
6924 struct netdev_nested_priv *priv)
6925{
6926 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6927 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6928 int ret, cur = 0;
6929 bool ignore;
6930
6931 now = dev;
6932 iter = &dev->adj_list.upper;
6933
6934 while (1) {
6935 if (now != dev) {
6936 ret = fn(now, priv);
6937 if (ret)
6938 return ret;
6939 }
6940
6941 next = NULL;
6942 while (1) {
6943 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6944 if (!udev)
6945 break;
6946 if (ignore)
6947 continue;
6948
6949 next = udev;
6950 niter = &udev->adj_list.upper;
6951 dev_stack[cur] = now;
6952 iter_stack[cur++] = iter;
6953 break;
6954 }
6955
6956 if (!next) {
6957 if (!cur)
6958 return 0;
6959 next = dev_stack[--cur];
6960 niter = iter_stack[cur];
6961 }
6962
6963 now = next;
6964 iter = niter;
6965 }
6966
6967 return 0;
6968}
6969
6970int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6971 int (*fn)(struct net_device *dev,
6972 struct netdev_nested_priv *priv),
6973 struct netdev_nested_priv *priv)
6974{
6975 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6976 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6977 int ret, cur = 0;
6978
6979 now = dev;
6980 iter = &dev->adj_list.upper;
6981
6982 while (1) {
6983 if (now != dev) {
6984 ret = fn(now, priv);
6985 if (ret)
6986 return ret;
6987 }
6988
6989 next = NULL;
6990 while (1) {
6991 udev = netdev_next_upper_dev_rcu(now, &iter);
6992 if (!udev)
6993 break;
6994
6995 next = udev;
6996 niter = &udev->adj_list.upper;
6997 dev_stack[cur] = now;
6998 iter_stack[cur++] = iter;
6999 break;
7000 }
7001
7002 if (!next) {
7003 if (!cur)
7004 return 0;
7005 next = dev_stack[--cur];
7006 niter = iter_stack[cur];
7007 }
7008
7009 now = next;
7010 iter = niter;
7011 }
7012
7013 return 0;
7014}
7015EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7016
7017static bool __netdev_has_upper_dev(struct net_device *dev,
7018 struct net_device *upper_dev)
7019{
7020 struct netdev_nested_priv priv = {
7021 .flags = 0,
7022 .data = (void *)upper_dev,
7023 };
7024
7025 ASSERT_RTNL();
7026
7027 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7028 &priv);
7029}
7030
7031/**
7032 * netdev_lower_get_next_private - Get the next ->private from the
7033 * lower neighbour list
7034 * @dev: device
7035 * @iter: list_head ** of the current position
7036 *
7037 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7038 * list, starting from iter position. The caller must hold either hold the
7039 * RTNL lock or its own locking that guarantees that the neighbour lower
7040 * list will remain unchanged.
7041 */
7042void *netdev_lower_get_next_private(struct net_device *dev,
7043 struct list_head **iter)
7044{
7045 struct netdev_adjacent *lower;
7046
7047 lower = list_entry(*iter, struct netdev_adjacent, list);
7048
7049 if (&lower->list == &dev->adj_list.lower)
7050 return NULL;
7051
7052 *iter = lower->list.next;
7053
7054 return lower->private;
7055}
7056EXPORT_SYMBOL(netdev_lower_get_next_private);
7057
7058/**
7059 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7060 * lower neighbour list, RCU
7061 * variant
7062 * @dev: device
7063 * @iter: list_head ** of the current position
7064 *
7065 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7066 * list, starting from iter position. The caller must hold RCU read lock.
7067 */
7068void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7069 struct list_head **iter)
7070{
7071 struct netdev_adjacent *lower;
7072
7073 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7074
7075 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7076
7077 if (&lower->list == &dev->adj_list.lower)
7078 return NULL;
7079
7080 *iter = &lower->list;
7081
7082 return lower->private;
7083}
7084EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7085
7086/**
7087 * netdev_lower_get_next - Get the next device from the lower neighbour
7088 * list
7089 * @dev: device
7090 * @iter: list_head ** of the current position
7091 *
7092 * Gets the next netdev_adjacent from the dev's lower neighbour
7093 * list, starting from iter position. The caller must hold RTNL lock or
7094 * its own locking that guarantees that the neighbour lower
7095 * list will remain unchanged.
7096 */
7097void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7098{
7099 struct netdev_adjacent *lower;
7100
7101 lower = list_entry(*iter, struct netdev_adjacent, list);
7102
7103 if (&lower->list == &dev->adj_list.lower)
7104 return NULL;
7105
7106 *iter = lower->list.next;
7107
7108 return lower->dev;
7109}
7110EXPORT_SYMBOL(netdev_lower_get_next);
7111
7112static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7113 struct list_head **iter)
7114{
7115 struct netdev_adjacent *lower;
7116
7117 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7118
7119 if (&lower->list == &dev->adj_list.lower)
7120 return NULL;
7121
7122 *iter = &lower->list;
7123
7124 return lower->dev;
7125}
7126
7127static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7128 struct list_head **iter,
7129 bool *ignore)
7130{
7131 struct netdev_adjacent *lower;
7132
7133 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7134
7135 if (&lower->list == &dev->adj_list.lower)
7136 return NULL;
7137
7138 *iter = &lower->list;
7139 *ignore = lower->ignore;
7140
7141 return lower->dev;
7142}
7143
7144int netdev_walk_all_lower_dev(struct net_device *dev,
7145 int (*fn)(struct net_device *dev,
7146 struct netdev_nested_priv *priv),
7147 struct netdev_nested_priv *priv)
7148{
7149 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7150 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7151 int ret, cur = 0;
7152
7153 now = dev;
7154 iter = &dev->adj_list.lower;
7155
7156 while (1) {
7157 if (now != dev) {
7158 ret = fn(now, priv);
7159 if (ret)
7160 return ret;
7161 }
7162
7163 next = NULL;
7164 while (1) {
7165 ldev = netdev_next_lower_dev(now, &iter);
7166 if (!ldev)
7167 break;
7168
7169 next = ldev;
7170 niter = &ldev->adj_list.lower;
7171 dev_stack[cur] = now;
7172 iter_stack[cur++] = iter;
7173 break;
7174 }
7175
7176 if (!next) {
7177 if (!cur)
7178 return 0;
7179 next = dev_stack[--cur];
7180 niter = iter_stack[cur];
7181 }
7182
7183 now = next;
7184 iter = niter;
7185 }
7186
7187 return 0;
7188}
7189EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7190
7191static int __netdev_walk_all_lower_dev(struct net_device *dev,
7192 int (*fn)(struct net_device *dev,
7193 struct netdev_nested_priv *priv),
7194 struct netdev_nested_priv *priv)
7195{
7196 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7197 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7198 int ret, cur = 0;
7199 bool ignore;
7200
7201 now = dev;
7202 iter = &dev->adj_list.lower;
7203
7204 while (1) {
7205 if (now != dev) {
7206 ret = fn(now, priv);
7207 if (ret)
7208 return ret;
7209 }
7210
7211 next = NULL;
7212 while (1) {
7213 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7214 if (!ldev)
7215 break;
7216 if (ignore)
7217 continue;
7218
7219 next = ldev;
7220 niter = &ldev->adj_list.lower;
7221 dev_stack[cur] = now;
7222 iter_stack[cur++] = iter;
7223 break;
7224 }
7225
7226 if (!next) {
7227 if (!cur)
7228 return 0;
7229 next = dev_stack[--cur];
7230 niter = iter_stack[cur];
7231 }
7232
7233 now = next;
7234 iter = niter;
7235 }
7236
7237 return 0;
7238}
7239
7240struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7241 struct list_head **iter)
7242{
7243 struct netdev_adjacent *lower;
7244
7245 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7246 if (&lower->list == &dev->adj_list.lower)
7247 return NULL;
7248
7249 *iter = &lower->list;
7250
7251 return lower->dev;
7252}
7253EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7254
7255static u8 __netdev_upper_depth(struct net_device *dev)
7256{
7257 struct net_device *udev;
7258 struct list_head *iter;
7259 u8 max_depth = 0;
7260 bool ignore;
7261
7262 for (iter = &dev->adj_list.upper,
7263 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7264 udev;
7265 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7266 if (ignore)
7267 continue;
7268 if (max_depth < udev->upper_level)
7269 max_depth = udev->upper_level;
7270 }
7271
7272 return max_depth;
7273}
7274
7275static u8 __netdev_lower_depth(struct net_device *dev)
7276{
7277 struct net_device *ldev;
7278 struct list_head *iter;
7279 u8 max_depth = 0;
7280 bool ignore;
7281
7282 for (iter = &dev->adj_list.lower,
7283 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7284 ldev;
7285 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7286 if (ignore)
7287 continue;
7288 if (max_depth < ldev->lower_level)
7289 max_depth = ldev->lower_level;
7290 }
7291
7292 return max_depth;
7293}
7294
7295static int __netdev_update_upper_level(struct net_device *dev,
7296 struct netdev_nested_priv *__unused)
7297{
7298 dev->upper_level = __netdev_upper_depth(dev) + 1;
7299 return 0;
7300}
7301
7302#ifdef CONFIG_LOCKDEP
7303static LIST_HEAD(net_unlink_list);
7304
7305static void net_unlink_todo(struct net_device *dev)
7306{
7307 if (list_empty(&dev->unlink_list))
7308 list_add_tail(&dev->unlink_list, &net_unlink_list);
7309}
7310#endif
7311
7312static int __netdev_update_lower_level(struct net_device *dev,
7313 struct netdev_nested_priv *priv)
7314{
7315 dev->lower_level = __netdev_lower_depth(dev) + 1;
7316
7317#ifdef CONFIG_LOCKDEP
7318 if (!priv)
7319 return 0;
7320
7321 if (priv->flags & NESTED_SYNC_IMM)
7322 dev->nested_level = dev->lower_level - 1;
7323 if (priv->flags & NESTED_SYNC_TODO)
7324 net_unlink_todo(dev);
7325#endif
7326 return 0;
7327}
7328
7329int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7330 int (*fn)(struct net_device *dev,
7331 struct netdev_nested_priv *priv),
7332 struct netdev_nested_priv *priv)
7333{
7334 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7335 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7336 int ret, cur = 0;
7337
7338 now = dev;
7339 iter = &dev->adj_list.lower;
7340
7341 while (1) {
7342 if (now != dev) {
7343 ret = fn(now, priv);
7344 if (ret)
7345 return ret;
7346 }
7347
7348 next = NULL;
7349 while (1) {
7350 ldev = netdev_next_lower_dev_rcu(now, &iter);
7351 if (!ldev)
7352 break;
7353
7354 next = ldev;
7355 niter = &ldev->adj_list.lower;
7356 dev_stack[cur] = now;
7357 iter_stack[cur++] = iter;
7358 break;
7359 }
7360
7361 if (!next) {
7362 if (!cur)
7363 return 0;
7364 next = dev_stack[--cur];
7365 niter = iter_stack[cur];
7366 }
7367
7368 now = next;
7369 iter = niter;
7370 }
7371
7372 return 0;
7373}
7374EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7375
7376/**
7377 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7378 * lower neighbour list, RCU
7379 * variant
7380 * @dev: device
7381 *
7382 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7383 * list. The caller must hold RCU read lock.
7384 */
7385void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7386{
7387 struct netdev_adjacent *lower;
7388
7389 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7390 struct netdev_adjacent, list);
7391 if (lower)
7392 return lower->private;
7393 return NULL;
7394}
7395EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7396
7397/**
7398 * netdev_master_upper_dev_get_rcu - Get master upper device
7399 * @dev: device
7400 *
7401 * Find a master upper device and return pointer to it or NULL in case
7402 * it's not there. The caller must hold the RCU read lock.
7403 */
7404struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7405{
7406 struct netdev_adjacent *upper;
7407
7408 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7409 struct netdev_adjacent, list);
7410 if (upper && likely(upper->master))
7411 return upper->dev;
7412 return NULL;
7413}
7414EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7415
7416static int netdev_adjacent_sysfs_add(struct net_device *dev,
7417 struct net_device *adj_dev,
7418 struct list_head *dev_list)
7419{
7420 char linkname[IFNAMSIZ+7];
7421
7422 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7423 "upper_%s" : "lower_%s", adj_dev->name);
7424 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7425 linkname);
7426}
7427static void netdev_adjacent_sysfs_del(struct net_device *dev,
7428 char *name,
7429 struct list_head *dev_list)
7430{
7431 char linkname[IFNAMSIZ+7];
7432
7433 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7434 "upper_%s" : "lower_%s", name);
7435 sysfs_remove_link(&(dev->dev.kobj), linkname);
7436}
7437
7438static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7439 struct net_device *adj_dev,
7440 struct list_head *dev_list)
7441{
7442 return (dev_list == &dev->adj_list.upper ||
7443 dev_list == &dev->adj_list.lower) &&
7444 net_eq(dev_net(dev), dev_net(adj_dev));
7445}
7446
7447static int __netdev_adjacent_dev_insert(struct net_device *dev,
7448 struct net_device *adj_dev,
7449 struct list_head *dev_list,
7450 void *private, bool master)
7451{
7452 struct netdev_adjacent *adj;
7453 int ret;
7454
7455 adj = __netdev_find_adj(adj_dev, dev_list);
7456
7457 if (adj) {
7458 adj->ref_nr += 1;
7459 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7460 dev->name, adj_dev->name, adj->ref_nr);
7461
7462 return 0;
7463 }
7464
7465 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7466 if (!adj)
7467 return -ENOMEM;
7468
7469 adj->dev = adj_dev;
7470 adj->master = master;
7471 adj->ref_nr = 1;
7472 adj->private = private;
7473 adj->ignore = false;
7474 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7475
7476 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7477 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7478
7479 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7480 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7481 if (ret)
7482 goto free_adj;
7483 }
7484
7485 /* Ensure that master link is always the first item in list. */
7486 if (master) {
7487 ret = sysfs_create_link(&(dev->dev.kobj),
7488 &(adj_dev->dev.kobj), "master");
7489 if (ret)
7490 goto remove_symlinks;
7491
7492 list_add_rcu(&adj->list, dev_list);
7493 } else {
7494 list_add_tail_rcu(&adj->list, dev_list);
7495 }
7496
7497 return 0;
7498
7499remove_symlinks:
7500 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7501 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7502free_adj:
7503 netdev_put(adj_dev, &adj->dev_tracker);
7504 kfree(adj);
7505
7506 return ret;
7507}
7508
7509static void __netdev_adjacent_dev_remove(struct net_device *dev,
7510 struct net_device *adj_dev,
7511 u16 ref_nr,
7512 struct list_head *dev_list)
7513{
7514 struct netdev_adjacent *adj;
7515
7516 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7517 dev->name, adj_dev->name, ref_nr);
7518
7519 adj = __netdev_find_adj(adj_dev, dev_list);
7520
7521 if (!adj) {
7522 pr_err("Adjacency does not exist for device %s from %s\n",
7523 dev->name, adj_dev->name);
7524 WARN_ON(1);
7525 return;
7526 }
7527
7528 if (adj->ref_nr > ref_nr) {
7529 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7530 dev->name, adj_dev->name, ref_nr,
7531 adj->ref_nr - ref_nr);
7532 adj->ref_nr -= ref_nr;
7533 return;
7534 }
7535
7536 if (adj->master)
7537 sysfs_remove_link(&(dev->dev.kobj), "master");
7538
7539 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7540 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7541
7542 list_del_rcu(&adj->list);
7543 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7544 adj_dev->name, dev->name, adj_dev->name);
7545 netdev_put(adj_dev, &adj->dev_tracker);
7546 kfree_rcu(adj, rcu);
7547}
7548
7549static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7550 struct net_device *upper_dev,
7551 struct list_head *up_list,
7552 struct list_head *down_list,
7553 void *private, bool master)
7554{
7555 int ret;
7556
7557 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7558 private, master);
7559 if (ret)
7560 return ret;
7561
7562 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7563 private, false);
7564 if (ret) {
7565 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7566 return ret;
7567 }
7568
7569 return 0;
7570}
7571
7572static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7573 struct net_device *upper_dev,
7574 u16 ref_nr,
7575 struct list_head *up_list,
7576 struct list_head *down_list)
7577{
7578 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7579 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7580}
7581
7582static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7583 struct net_device *upper_dev,
7584 void *private, bool master)
7585{
7586 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7587 &dev->adj_list.upper,
7588 &upper_dev->adj_list.lower,
7589 private, master);
7590}
7591
7592static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7593 struct net_device *upper_dev)
7594{
7595 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7596 &dev->adj_list.upper,
7597 &upper_dev->adj_list.lower);
7598}
7599
7600static int __netdev_upper_dev_link(struct net_device *dev,
7601 struct net_device *upper_dev, bool master,
7602 void *upper_priv, void *upper_info,
7603 struct netdev_nested_priv *priv,
7604 struct netlink_ext_ack *extack)
7605{
7606 struct netdev_notifier_changeupper_info changeupper_info = {
7607 .info = {
7608 .dev = dev,
7609 .extack = extack,
7610 },
7611 .upper_dev = upper_dev,
7612 .master = master,
7613 .linking = true,
7614 .upper_info = upper_info,
7615 };
7616 struct net_device *master_dev;
7617 int ret = 0;
7618
7619 ASSERT_RTNL();
7620
7621 if (dev == upper_dev)
7622 return -EBUSY;
7623
7624 /* To prevent loops, check if dev is not upper device to upper_dev. */
7625 if (__netdev_has_upper_dev(upper_dev, dev))
7626 return -EBUSY;
7627
7628 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7629 return -EMLINK;
7630
7631 if (!master) {
7632 if (__netdev_has_upper_dev(dev, upper_dev))
7633 return -EEXIST;
7634 } else {
7635 master_dev = __netdev_master_upper_dev_get(dev);
7636 if (master_dev)
7637 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7638 }
7639
7640 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7641 &changeupper_info.info);
7642 ret = notifier_to_errno(ret);
7643 if (ret)
7644 return ret;
7645
7646 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7647 master);
7648 if (ret)
7649 return ret;
7650
7651 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7652 &changeupper_info.info);
7653 ret = notifier_to_errno(ret);
7654 if (ret)
7655 goto rollback;
7656
7657 __netdev_update_upper_level(dev, NULL);
7658 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7659
7660 __netdev_update_lower_level(upper_dev, priv);
7661 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7662 priv);
7663
7664 return 0;
7665
7666rollback:
7667 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7668
7669 return ret;
7670}
7671
7672/**
7673 * netdev_upper_dev_link - Add a link to the upper device
7674 * @dev: device
7675 * @upper_dev: new upper device
7676 * @extack: netlink extended ack
7677 *
7678 * Adds a link to device which is upper to this one. The caller must hold
7679 * the RTNL lock. On a failure a negative errno code is returned.
7680 * On success the reference counts are adjusted and the function
7681 * returns zero.
7682 */
7683int netdev_upper_dev_link(struct net_device *dev,
7684 struct net_device *upper_dev,
7685 struct netlink_ext_ack *extack)
7686{
7687 struct netdev_nested_priv priv = {
7688 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7689 .data = NULL,
7690 };
7691
7692 return __netdev_upper_dev_link(dev, upper_dev, false,
7693 NULL, NULL, &priv, extack);
7694}
7695EXPORT_SYMBOL(netdev_upper_dev_link);
7696
7697/**
7698 * netdev_master_upper_dev_link - Add a master link to the upper device
7699 * @dev: device
7700 * @upper_dev: new upper device
7701 * @upper_priv: upper device private
7702 * @upper_info: upper info to be passed down via notifier
7703 * @extack: netlink extended ack
7704 *
7705 * Adds a link to device which is upper to this one. In this case, only
7706 * one master upper device can be linked, although other non-master devices
7707 * might be linked as well. The caller must hold the RTNL lock.
7708 * On a failure a negative errno code is returned. On success the reference
7709 * counts are adjusted and the function returns zero.
7710 */
7711int netdev_master_upper_dev_link(struct net_device *dev,
7712 struct net_device *upper_dev,
7713 void *upper_priv, void *upper_info,
7714 struct netlink_ext_ack *extack)
7715{
7716 struct netdev_nested_priv priv = {
7717 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7718 .data = NULL,
7719 };
7720
7721 return __netdev_upper_dev_link(dev, upper_dev, true,
7722 upper_priv, upper_info, &priv, extack);
7723}
7724EXPORT_SYMBOL(netdev_master_upper_dev_link);
7725
7726static void __netdev_upper_dev_unlink(struct net_device *dev,
7727 struct net_device *upper_dev,
7728 struct netdev_nested_priv *priv)
7729{
7730 struct netdev_notifier_changeupper_info changeupper_info = {
7731 .info = {
7732 .dev = dev,
7733 },
7734 .upper_dev = upper_dev,
7735 .linking = false,
7736 };
7737
7738 ASSERT_RTNL();
7739
7740 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7741
7742 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7743 &changeupper_info.info);
7744
7745 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7746
7747 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7748 &changeupper_info.info);
7749
7750 __netdev_update_upper_level(dev, NULL);
7751 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7752
7753 __netdev_update_lower_level(upper_dev, priv);
7754 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7755 priv);
7756}
7757
7758/**
7759 * netdev_upper_dev_unlink - Removes a link to upper device
7760 * @dev: device
7761 * @upper_dev: new upper device
7762 *
7763 * Removes a link to device which is upper to this one. The caller must hold
7764 * the RTNL lock.
7765 */
7766void netdev_upper_dev_unlink(struct net_device *dev,
7767 struct net_device *upper_dev)
7768{
7769 struct netdev_nested_priv priv = {
7770 .flags = NESTED_SYNC_TODO,
7771 .data = NULL,
7772 };
7773
7774 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7775}
7776EXPORT_SYMBOL(netdev_upper_dev_unlink);
7777
7778static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7779 struct net_device *lower_dev,
7780 bool val)
7781{
7782 struct netdev_adjacent *adj;
7783
7784 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7785 if (adj)
7786 adj->ignore = val;
7787
7788 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7789 if (adj)
7790 adj->ignore = val;
7791}
7792
7793static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7794 struct net_device *lower_dev)
7795{
7796 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7797}
7798
7799static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7800 struct net_device *lower_dev)
7801{
7802 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7803}
7804
7805int netdev_adjacent_change_prepare(struct net_device *old_dev,
7806 struct net_device *new_dev,
7807 struct net_device *dev,
7808 struct netlink_ext_ack *extack)
7809{
7810 struct netdev_nested_priv priv = {
7811 .flags = 0,
7812 .data = NULL,
7813 };
7814 int err;
7815
7816 if (!new_dev)
7817 return 0;
7818
7819 if (old_dev && new_dev != old_dev)
7820 netdev_adjacent_dev_disable(dev, old_dev);
7821 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7822 extack);
7823 if (err) {
7824 if (old_dev && new_dev != old_dev)
7825 netdev_adjacent_dev_enable(dev, old_dev);
7826 return err;
7827 }
7828
7829 return 0;
7830}
7831EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7832
7833void netdev_adjacent_change_commit(struct net_device *old_dev,
7834 struct net_device *new_dev,
7835 struct net_device *dev)
7836{
7837 struct netdev_nested_priv priv = {
7838 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7839 .data = NULL,
7840 };
7841
7842 if (!new_dev || !old_dev)
7843 return;
7844
7845 if (new_dev == old_dev)
7846 return;
7847
7848 netdev_adjacent_dev_enable(dev, old_dev);
7849 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7850}
7851EXPORT_SYMBOL(netdev_adjacent_change_commit);
7852
7853void netdev_adjacent_change_abort(struct net_device *old_dev,
7854 struct net_device *new_dev,
7855 struct net_device *dev)
7856{
7857 struct netdev_nested_priv priv = {
7858 .flags = 0,
7859 .data = NULL,
7860 };
7861
7862 if (!new_dev)
7863 return;
7864
7865 if (old_dev && new_dev != old_dev)
7866 netdev_adjacent_dev_enable(dev, old_dev);
7867
7868 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7869}
7870EXPORT_SYMBOL(netdev_adjacent_change_abort);
7871
7872/**
7873 * netdev_bonding_info_change - Dispatch event about slave change
7874 * @dev: device
7875 * @bonding_info: info to dispatch
7876 *
7877 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7878 * The caller must hold the RTNL lock.
7879 */
7880void netdev_bonding_info_change(struct net_device *dev,
7881 struct netdev_bonding_info *bonding_info)
7882{
7883 struct netdev_notifier_bonding_info info = {
7884 .info.dev = dev,
7885 };
7886
7887 memcpy(&info.bonding_info, bonding_info,
7888 sizeof(struct netdev_bonding_info));
7889 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7890 &info.info);
7891}
7892EXPORT_SYMBOL(netdev_bonding_info_change);
7893
7894static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7895 struct netlink_ext_ack *extack)
7896{
7897 struct netdev_notifier_offload_xstats_info info = {
7898 .info.dev = dev,
7899 .info.extack = extack,
7900 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7901 };
7902 int err;
7903 int rc;
7904
7905 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7906 GFP_KERNEL);
7907 if (!dev->offload_xstats_l3)
7908 return -ENOMEM;
7909
7910 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7911 NETDEV_OFFLOAD_XSTATS_DISABLE,
7912 &info.info);
7913 err = notifier_to_errno(rc);
7914 if (err)
7915 goto free_stats;
7916
7917 return 0;
7918
7919free_stats:
7920 kfree(dev->offload_xstats_l3);
7921 dev->offload_xstats_l3 = NULL;
7922 return err;
7923}
7924
7925int netdev_offload_xstats_enable(struct net_device *dev,
7926 enum netdev_offload_xstats_type type,
7927 struct netlink_ext_ack *extack)
7928{
7929 ASSERT_RTNL();
7930
7931 if (netdev_offload_xstats_enabled(dev, type))
7932 return -EALREADY;
7933
7934 switch (type) {
7935 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7936 return netdev_offload_xstats_enable_l3(dev, extack);
7937 }
7938
7939 WARN_ON(1);
7940 return -EINVAL;
7941}
7942EXPORT_SYMBOL(netdev_offload_xstats_enable);
7943
7944static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7945{
7946 struct netdev_notifier_offload_xstats_info info = {
7947 .info.dev = dev,
7948 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7949 };
7950
7951 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7952 &info.info);
7953 kfree(dev->offload_xstats_l3);
7954 dev->offload_xstats_l3 = NULL;
7955}
7956
7957int netdev_offload_xstats_disable(struct net_device *dev,
7958 enum netdev_offload_xstats_type type)
7959{
7960 ASSERT_RTNL();
7961
7962 if (!netdev_offload_xstats_enabled(dev, type))
7963 return -EALREADY;
7964
7965 switch (type) {
7966 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7967 netdev_offload_xstats_disable_l3(dev);
7968 return 0;
7969 }
7970
7971 WARN_ON(1);
7972 return -EINVAL;
7973}
7974EXPORT_SYMBOL(netdev_offload_xstats_disable);
7975
7976static void netdev_offload_xstats_disable_all(struct net_device *dev)
7977{
7978 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7979}
7980
7981static struct rtnl_hw_stats64 *
7982netdev_offload_xstats_get_ptr(const struct net_device *dev,
7983 enum netdev_offload_xstats_type type)
7984{
7985 switch (type) {
7986 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7987 return dev->offload_xstats_l3;
7988 }
7989
7990 WARN_ON(1);
7991 return NULL;
7992}
7993
7994bool netdev_offload_xstats_enabled(const struct net_device *dev,
7995 enum netdev_offload_xstats_type type)
7996{
7997 ASSERT_RTNL();
7998
7999 return netdev_offload_xstats_get_ptr(dev, type);
8000}
8001EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8002
8003struct netdev_notifier_offload_xstats_ru {
8004 bool used;
8005};
8006
8007struct netdev_notifier_offload_xstats_rd {
8008 struct rtnl_hw_stats64 stats;
8009 bool used;
8010};
8011
8012static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8013 const struct rtnl_hw_stats64 *src)
8014{
8015 dest->rx_packets += src->rx_packets;
8016 dest->tx_packets += src->tx_packets;
8017 dest->rx_bytes += src->rx_bytes;
8018 dest->tx_bytes += src->tx_bytes;
8019 dest->rx_errors += src->rx_errors;
8020 dest->tx_errors += src->tx_errors;
8021 dest->rx_dropped += src->rx_dropped;
8022 dest->tx_dropped += src->tx_dropped;
8023 dest->multicast += src->multicast;
8024}
8025
8026static int netdev_offload_xstats_get_used(struct net_device *dev,
8027 enum netdev_offload_xstats_type type,
8028 bool *p_used,
8029 struct netlink_ext_ack *extack)
8030{
8031 struct netdev_notifier_offload_xstats_ru report_used = {};
8032 struct netdev_notifier_offload_xstats_info info = {
8033 .info.dev = dev,
8034 .info.extack = extack,
8035 .type = type,
8036 .report_used = &report_used,
8037 };
8038 int rc;
8039
8040 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8041 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8042 &info.info);
8043 *p_used = report_used.used;
8044 return notifier_to_errno(rc);
8045}
8046
8047static int netdev_offload_xstats_get_stats(struct net_device *dev,
8048 enum netdev_offload_xstats_type type,
8049 struct rtnl_hw_stats64 *p_stats,
8050 bool *p_used,
8051 struct netlink_ext_ack *extack)
8052{
8053 struct netdev_notifier_offload_xstats_rd report_delta = {};
8054 struct netdev_notifier_offload_xstats_info info = {
8055 .info.dev = dev,
8056 .info.extack = extack,
8057 .type = type,
8058 .report_delta = &report_delta,
8059 };
8060 struct rtnl_hw_stats64 *stats;
8061 int rc;
8062
8063 stats = netdev_offload_xstats_get_ptr(dev, type);
8064 if (WARN_ON(!stats))
8065 return -EINVAL;
8066
8067 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8068 &info.info);
8069
8070 /* Cache whatever we got, even if there was an error, otherwise the
8071 * successful stats retrievals would get lost.
8072 */
8073 netdev_hw_stats64_add(stats, &report_delta.stats);
8074
8075 if (p_stats)
8076 *p_stats = *stats;
8077 *p_used = report_delta.used;
8078
8079 return notifier_to_errno(rc);
8080}
8081
8082int netdev_offload_xstats_get(struct net_device *dev,
8083 enum netdev_offload_xstats_type type,
8084 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8085 struct netlink_ext_ack *extack)
8086{
8087 ASSERT_RTNL();
8088
8089 if (p_stats)
8090 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8091 p_used, extack);
8092 else
8093 return netdev_offload_xstats_get_used(dev, type, p_used,
8094 extack);
8095}
8096EXPORT_SYMBOL(netdev_offload_xstats_get);
8097
8098void
8099netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8100 const struct rtnl_hw_stats64 *stats)
8101{
8102 report_delta->used = true;
8103 netdev_hw_stats64_add(&report_delta->stats, stats);
8104}
8105EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8106
8107void
8108netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8109{
8110 report_used->used = true;
8111}
8112EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8113
8114void netdev_offload_xstats_push_delta(struct net_device *dev,
8115 enum netdev_offload_xstats_type type,
8116 const struct rtnl_hw_stats64 *p_stats)
8117{
8118 struct rtnl_hw_stats64 *stats;
8119
8120 ASSERT_RTNL();
8121
8122 stats = netdev_offload_xstats_get_ptr(dev, type);
8123 if (WARN_ON(!stats))
8124 return;
8125
8126 netdev_hw_stats64_add(stats, p_stats);
8127}
8128EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8129
8130/**
8131 * netdev_get_xmit_slave - Get the xmit slave of master device
8132 * @dev: device
8133 * @skb: The packet
8134 * @all_slaves: assume all the slaves are active
8135 *
8136 * The reference counters are not incremented so the caller must be
8137 * careful with locks. The caller must hold RCU lock.
8138 * %NULL is returned if no slave is found.
8139 */
8140
8141struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8142 struct sk_buff *skb,
8143 bool all_slaves)
8144{
8145 const struct net_device_ops *ops = dev->netdev_ops;
8146
8147 if (!ops->ndo_get_xmit_slave)
8148 return NULL;
8149 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8150}
8151EXPORT_SYMBOL(netdev_get_xmit_slave);
8152
8153static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8154 struct sock *sk)
8155{
8156 const struct net_device_ops *ops = dev->netdev_ops;
8157
8158 if (!ops->ndo_sk_get_lower_dev)
8159 return NULL;
8160 return ops->ndo_sk_get_lower_dev(dev, sk);
8161}
8162
8163/**
8164 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8165 * @dev: device
8166 * @sk: the socket
8167 *
8168 * %NULL is returned if no lower device is found.
8169 */
8170
8171struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8172 struct sock *sk)
8173{
8174 struct net_device *lower;
8175
8176 lower = netdev_sk_get_lower_dev(dev, sk);
8177 while (lower) {
8178 dev = lower;
8179 lower = netdev_sk_get_lower_dev(dev, sk);
8180 }
8181
8182 return dev;
8183}
8184EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8185
8186static void netdev_adjacent_add_links(struct net_device *dev)
8187{
8188 struct netdev_adjacent *iter;
8189
8190 struct net *net = dev_net(dev);
8191
8192 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8193 if (!net_eq(net, dev_net(iter->dev)))
8194 continue;
8195 netdev_adjacent_sysfs_add(iter->dev, dev,
8196 &iter->dev->adj_list.lower);
8197 netdev_adjacent_sysfs_add(dev, iter->dev,
8198 &dev->adj_list.upper);
8199 }
8200
8201 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8202 if (!net_eq(net, dev_net(iter->dev)))
8203 continue;
8204 netdev_adjacent_sysfs_add(iter->dev, dev,
8205 &iter->dev->adj_list.upper);
8206 netdev_adjacent_sysfs_add(dev, iter->dev,
8207 &dev->adj_list.lower);
8208 }
8209}
8210
8211static void netdev_adjacent_del_links(struct net_device *dev)
8212{
8213 struct netdev_adjacent *iter;
8214
8215 struct net *net = dev_net(dev);
8216
8217 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8218 if (!net_eq(net, dev_net(iter->dev)))
8219 continue;
8220 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8221 &iter->dev->adj_list.lower);
8222 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8223 &dev->adj_list.upper);
8224 }
8225
8226 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8227 if (!net_eq(net, dev_net(iter->dev)))
8228 continue;
8229 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8230 &iter->dev->adj_list.upper);
8231 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8232 &dev->adj_list.lower);
8233 }
8234}
8235
8236void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8237{
8238 struct netdev_adjacent *iter;
8239
8240 struct net *net = dev_net(dev);
8241
8242 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8243 if (!net_eq(net, dev_net(iter->dev)))
8244 continue;
8245 netdev_adjacent_sysfs_del(iter->dev, oldname,
8246 &iter->dev->adj_list.lower);
8247 netdev_adjacent_sysfs_add(iter->dev, dev,
8248 &iter->dev->adj_list.lower);
8249 }
8250
8251 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8252 if (!net_eq(net, dev_net(iter->dev)))
8253 continue;
8254 netdev_adjacent_sysfs_del(iter->dev, oldname,
8255 &iter->dev->adj_list.upper);
8256 netdev_adjacent_sysfs_add(iter->dev, dev,
8257 &iter->dev->adj_list.upper);
8258 }
8259}
8260
8261void *netdev_lower_dev_get_private(struct net_device *dev,
8262 struct net_device *lower_dev)
8263{
8264 struct netdev_adjacent *lower;
8265
8266 if (!lower_dev)
8267 return NULL;
8268 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8269 if (!lower)
8270 return NULL;
8271
8272 return lower->private;
8273}
8274EXPORT_SYMBOL(netdev_lower_dev_get_private);
8275
8276
8277/**
8278 * netdev_lower_state_changed - Dispatch event about lower device state change
8279 * @lower_dev: device
8280 * @lower_state_info: state to dispatch
8281 *
8282 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8283 * The caller must hold the RTNL lock.
8284 */
8285void netdev_lower_state_changed(struct net_device *lower_dev,
8286 void *lower_state_info)
8287{
8288 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8289 .info.dev = lower_dev,
8290 };
8291
8292 ASSERT_RTNL();
8293 changelowerstate_info.lower_state_info = lower_state_info;
8294 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8295 &changelowerstate_info.info);
8296}
8297EXPORT_SYMBOL(netdev_lower_state_changed);
8298
8299static void dev_change_rx_flags(struct net_device *dev, int flags)
8300{
8301 const struct net_device_ops *ops = dev->netdev_ops;
8302
8303 if (ops->ndo_change_rx_flags)
8304 ops->ndo_change_rx_flags(dev, flags);
8305}
8306
8307static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8308{
8309 unsigned int old_flags = dev->flags;
8310 kuid_t uid;
8311 kgid_t gid;
8312
8313 ASSERT_RTNL();
8314
8315 dev->flags |= IFF_PROMISC;
8316 dev->promiscuity += inc;
8317 if (dev->promiscuity == 0) {
8318 /*
8319 * Avoid overflow.
8320 * If inc causes overflow, untouch promisc and return error.
8321 */
8322 if (inc < 0)
8323 dev->flags &= ~IFF_PROMISC;
8324 else {
8325 dev->promiscuity -= inc;
8326 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8327 return -EOVERFLOW;
8328 }
8329 }
8330 if (dev->flags != old_flags) {
8331 pr_info("device %s %s promiscuous mode\n",
8332 dev->name,
8333 dev->flags & IFF_PROMISC ? "entered" : "left");
8334 if (audit_enabled) {
8335 current_uid_gid(&uid, &gid);
8336 audit_log(audit_context(), GFP_ATOMIC,
8337 AUDIT_ANOM_PROMISCUOUS,
8338 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8339 dev->name, (dev->flags & IFF_PROMISC),
8340 (old_flags & IFF_PROMISC),
8341 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8342 from_kuid(&init_user_ns, uid),
8343 from_kgid(&init_user_ns, gid),
8344 audit_get_sessionid(current));
8345 }
8346
8347 dev_change_rx_flags(dev, IFF_PROMISC);
8348 }
8349 if (notify)
8350 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8351 return 0;
8352}
8353
8354/**
8355 * dev_set_promiscuity - update promiscuity count on a device
8356 * @dev: device
8357 * @inc: modifier
8358 *
8359 * Add or remove promiscuity from a device. While the count in the device
8360 * remains above zero the interface remains promiscuous. Once it hits zero
8361 * the device reverts back to normal filtering operation. A negative inc
8362 * value is used to drop promiscuity on the device.
8363 * Return 0 if successful or a negative errno code on error.
8364 */
8365int dev_set_promiscuity(struct net_device *dev, int inc)
8366{
8367 unsigned int old_flags = dev->flags;
8368 int err;
8369
8370 err = __dev_set_promiscuity(dev, inc, true);
8371 if (err < 0)
8372 return err;
8373 if (dev->flags != old_flags)
8374 dev_set_rx_mode(dev);
8375 return err;
8376}
8377EXPORT_SYMBOL(dev_set_promiscuity);
8378
8379static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8380{
8381 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8382
8383 ASSERT_RTNL();
8384
8385 dev->flags |= IFF_ALLMULTI;
8386 dev->allmulti += inc;
8387 if (dev->allmulti == 0) {
8388 /*
8389 * Avoid overflow.
8390 * If inc causes overflow, untouch allmulti and return error.
8391 */
8392 if (inc < 0)
8393 dev->flags &= ~IFF_ALLMULTI;
8394 else {
8395 dev->allmulti -= inc;
8396 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8397 return -EOVERFLOW;
8398 }
8399 }
8400 if (dev->flags ^ old_flags) {
8401 dev_change_rx_flags(dev, IFF_ALLMULTI);
8402 dev_set_rx_mode(dev);
8403 if (notify)
8404 __dev_notify_flags(dev, old_flags,
8405 dev->gflags ^ old_gflags);
8406 }
8407 return 0;
8408}
8409
8410/**
8411 * dev_set_allmulti - update allmulti count on a device
8412 * @dev: device
8413 * @inc: modifier
8414 *
8415 * Add or remove reception of all multicast frames to a device. While the
8416 * count in the device remains above zero the interface remains listening
8417 * to all interfaces. Once it hits zero the device reverts back to normal
8418 * filtering operation. A negative @inc value is used to drop the counter
8419 * when releasing a resource needing all multicasts.
8420 * Return 0 if successful or a negative errno code on error.
8421 */
8422
8423int dev_set_allmulti(struct net_device *dev, int inc)
8424{
8425 return __dev_set_allmulti(dev, inc, true);
8426}
8427EXPORT_SYMBOL(dev_set_allmulti);
8428
8429/*
8430 * Upload unicast and multicast address lists to device and
8431 * configure RX filtering. When the device doesn't support unicast
8432 * filtering it is put in promiscuous mode while unicast addresses
8433 * are present.
8434 */
8435void __dev_set_rx_mode(struct net_device *dev)
8436{
8437 const struct net_device_ops *ops = dev->netdev_ops;
8438
8439 /* dev_open will call this function so the list will stay sane. */
8440 if (!(dev->flags&IFF_UP))
8441 return;
8442
8443 if (!netif_device_present(dev))
8444 return;
8445
8446 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8447 /* Unicast addresses changes may only happen under the rtnl,
8448 * therefore calling __dev_set_promiscuity here is safe.
8449 */
8450 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8451 __dev_set_promiscuity(dev, 1, false);
8452 dev->uc_promisc = true;
8453 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8454 __dev_set_promiscuity(dev, -1, false);
8455 dev->uc_promisc = false;
8456 }
8457 }
8458
8459 if (ops->ndo_set_rx_mode)
8460 ops->ndo_set_rx_mode(dev);
8461}
8462
8463void dev_set_rx_mode(struct net_device *dev)
8464{
8465 netif_addr_lock_bh(dev);
8466 __dev_set_rx_mode(dev);
8467 netif_addr_unlock_bh(dev);
8468}
8469
8470/**
8471 * dev_get_flags - get flags reported to userspace
8472 * @dev: device
8473 *
8474 * Get the combination of flag bits exported through APIs to userspace.
8475 */
8476unsigned int dev_get_flags(const struct net_device *dev)
8477{
8478 unsigned int flags;
8479
8480 flags = (dev->flags & ~(IFF_PROMISC |
8481 IFF_ALLMULTI |
8482 IFF_RUNNING |
8483 IFF_LOWER_UP |
8484 IFF_DORMANT)) |
8485 (dev->gflags & (IFF_PROMISC |
8486 IFF_ALLMULTI));
8487
8488 if (netif_running(dev)) {
8489 if (netif_oper_up(dev))
8490 flags |= IFF_RUNNING;
8491 if (netif_carrier_ok(dev))
8492 flags |= IFF_LOWER_UP;
8493 if (netif_dormant(dev))
8494 flags |= IFF_DORMANT;
8495 }
8496
8497 return flags;
8498}
8499EXPORT_SYMBOL(dev_get_flags);
8500
8501int __dev_change_flags(struct net_device *dev, unsigned int flags,
8502 struct netlink_ext_ack *extack)
8503{
8504 unsigned int old_flags = dev->flags;
8505 int ret;
8506
8507 ASSERT_RTNL();
8508
8509 /*
8510 * Set the flags on our device.
8511 */
8512
8513 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8514 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8515 IFF_AUTOMEDIA)) |
8516 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8517 IFF_ALLMULTI));
8518
8519 /*
8520 * Load in the correct multicast list now the flags have changed.
8521 */
8522
8523 if ((old_flags ^ flags) & IFF_MULTICAST)
8524 dev_change_rx_flags(dev, IFF_MULTICAST);
8525
8526 dev_set_rx_mode(dev);
8527
8528 /*
8529 * Have we downed the interface. We handle IFF_UP ourselves
8530 * according to user attempts to set it, rather than blindly
8531 * setting it.
8532 */
8533
8534 ret = 0;
8535 if ((old_flags ^ flags) & IFF_UP) {
8536 if (old_flags & IFF_UP)
8537 __dev_close(dev);
8538 else
8539 ret = __dev_open(dev, extack);
8540 }
8541
8542 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8543 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8544 unsigned int old_flags = dev->flags;
8545
8546 dev->gflags ^= IFF_PROMISC;
8547
8548 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8549 if (dev->flags != old_flags)
8550 dev_set_rx_mode(dev);
8551 }
8552
8553 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8554 * is important. Some (broken) drivers set IFF_PROMISC, when
8555 * IFF_ALLMULTI is requested not asking us and not reporting.
8556 */
8557 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8558 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8559
8560 dev->gflags ^= IFF_ALLMULTI;
8561 __dev_set_allmulti(dev, inc, false);
8562 }
8563
8564 return ret;
8565}
8566
8567void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8568 unsigned int gchanges)
8569{
8570 unsigned int changes = dev->flags ^ old_flags;
8571
8572 if (gchanges)
8573 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8574
8575 if (changes & IFF_UP) {
8576 if (dev->flags & IFF_UP)
8577 call_netdevice_notifiers(NETDEV_UP, dev);
8578 else
8579 call_netdevice_notifiers(NETDEV_DOWN, dev);
8580 }
8581
8582 if (dev->flags & IFF_UP &&
8583 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8584 struct netdev_notifier_change_info change_info = {
8585 .info = {
8586 .dev = dev,
8587 },
8588 .flags_changed = changes,
8589 };
8590
8591 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8592 }
8593}
8594
8595/**
8596 * dev_change_flags - change device settings
8597 * @dev: device
8598 * @flags: device state flags
8599 * @extack: netlink extended ack
8600 *
8601 * Change settings on device based state flags. The flags are
8602 * in the userspace exported format.
8603 */
8604int dev_change_flags(struct net_device *dev, unsigned int flags,
8605 struct netlink_ext_ack *extack)
8606{
8607 int ret;
8608 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8609
8610 ret = __dev_change_flags(dev, flags, extack);
8611 if (ret < 0)
8612 return ret;
8613
8614 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8615 __dev_notify_flags(dev, old_flags, changes);
8616 return ret;
8617}
8618EXPORT_SYMBOL(dev_change_flags);
8619
8620int __dev_set_mtu(struct net_device *dev, int new_mtu)
8621{
8622 const struct net_device_ops *ops = dev->netdev_ops;
8623
8624 if (ops->ndo_change_mtu)
8625 return ops->ndo_change_mtu(dev, new_mtu);
8626
8627 /* Pairs with all the lockless reads of dev->mtu in the stack */
8628 WRITE_ONCE(dev->mtu, new_mtu);
8629 return 0;
8630}
8631EXPORT_SYMBOL(__dev_set_mtu);
8632
8633int dev_validate_mtu(struct net_device *dev, int new_mtu,
8634 struct netlink_ext_ack *extack)
8635{
8636 /* MTU must be positive, and in range */
8637 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8638 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8639 return -EINVAL;
8640 }
8641
8642 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8643 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8644 return -EINVAL;
8645 }
8646 return 0;
8647}
8648
8649/**
8650 * dev_set_mtu_ext - Change maximum transfer unit
8651 * @dev: device
8652 * @new_mtu: new transfer unit
8653 * @extack: netlink extended ack
8654 *
8655 * Change the maximum transfer size of the network device.
8656 */
8657int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8658 struct netlink_ext_ack *extack)
8659{
8660 int err, orig_mtu;
8661
8662 if (new_mtu == dev->mtu)
8663 return 0;
8664
8665 err = dev_validate_mtu(dev, new_mtu, extack);
8666 if (err)
8667 return err;
8668
8669 if (!netif_device_present(dev))
8670 return -ENODEV;
8671
8672 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8673 err = notifier_to_errno(err);
8674 if (err)
8675 return err;
8676
8677 orig_mtu = dev->mtu;
8678 err = __dev_set_mtu(dev, new_mtu);
8679
8680 if (!err) {
8681 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8682 orig_mtu);
8683 err = notifier_to_errno(err);
8684 if (err) {
8685 /* setting mtu back and notifying everyone again,
8686 * so that they have a chance to revert changes.
8687 */
8688 __dev_set_mtu(dev, orig_mtu);
8689 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8690 new_mtu);
8691 }
8692 }
8693 return err;
8694}
8695
8696int dev_set_mtu(struct net_device *dev, int new_mtu)
8697{
8698 struct netlink_ext_ack extack;
8699 int err;
8700
8701 memset(&extack, 0, sizeof(extack));
8702 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8703 if (err && extack._msg)
8704 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8705 return err;
8706}
8707EXPORT_SYMBOL(dev_set_mtu);
8708
8709/**
8710 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8711 * @dev: device
8712 * @new_len: new tx queue length
8713 */
8714int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8715{
8716 unsigned int orig_len = dev->tx_queue_len;
8717 int res;
8718
8719 if (new_len != (unsigned int)new_len)
8720 return -ERANGE;
8721
8722 if (new_len != orig_len) {
8723 dev->tx_queue_len = new_len;
8724 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8725 res = notifier_to_errno(res);
8726 if (res)
8727 goto err_rollback;
8728 res = dev_qdisc_change_tx_queue_len(dev);
8729 if (res)
8730 goto err_rollback;
8731 }
8732
8733 return 0;
8734
8735err_rollback:
8736 netdev_err(dev, "refused to change device tx_queue_len\n");
8737 dev->tx_queue_len = orig_len;
8738 return res;
8739}
8740
8741/**
8742 * dev_set_group - Change group this device belongs to
8743 * @dev: device
8744 * @new_group: group this device should belong to
8745 */
8746void dev_set_group(struct net_device *dev, int new_group)
8747{
8748 dev->group = new_group;
8749}
8750
8751/**
8752 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8753 * @dev: device
8754 * @addr: new address
8755 * @extack: netlink extended ack
8756 */
8757int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8758 struct netlink_ext_ack *extack)
8759{
8760 struct netdev_notifier_pre_changeaddr_info info = {
8761 .info.dev = dev,
8762 .info.extack = extack,
8763 .dev_addr = addr,
8764 };
8765 int rc;
8766
8767 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8768 return notifier_to_errno(rc);
8769}
8770EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8771
8772/**
8773 * dev_set_mac_address - Change Media Access Control Address
8774 * @dev: device
8775 * @sa: new address
8776 * @extack: netlink extended ack
8777 *
8778 * Change the hardware (MAC) address of the device
8779 */
8780int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8781 struct netlink_ext_ack *extack)
8782{
8783 const struct net_device_ops *ops = dev->netdev_ops;
8784 int err;
8785
8786 if (!ops->ndo_set_mac_address)
8787 return -EOPNOTSUPP;
8788 if (sa->sa_family != dev->type)
8789 return -EINVAL;
8790 if (!netif_device_present(dev))
8791 return -ENODEV;
8792 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8793 if (err)
8794 return err;
8795 err = ops->ndo_set_mac_address(dev, sa);
8796 if (err)
8797 return err;
8798 dev->addr_assign_type = NET_ADDR_SET;
8799 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8800 add_device_randomness(dev->dev_addr, dev->addr_len);
8801 return 0;
8802}
8803EXPORT_SYMBOL(dev_set_mac_address);
8804
8805static DECLARE_RWSEM(dev_addr_sem);
8806
8807int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8808 struct netlink_ext_ack *extack)
8809{
8810 int ret;
8811
8812 down_write(&dev_addr_sem);
8813 ret = dev_set_mac_address(dev, sa, extack);
8814 up_write(&dev_addr_sem);
8815 return ret;
8816}
8817EXPORT_SYMBOL(dev_set_mac_address_user);
8818
8819int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8820{
8821 size_t size = sizeof(sa->sa_data);
8822 struct net_device *dev;
8823 int ret = 0;
8824
8825 down_read(&dev_addr_sem);
8826 rcu_read_lock();
8827
8828 dev = dev_get_by_name_rcu(net, dev_name);
8829 if (!dev) {
8830 ret = -ENODEV;
8831 goto unlock;
8832 }
8833 if (!dev->addr_len)
8834 memset(sa->sa_data, 0, size);
8835 else
8836 memcpy(sa->sa_data, dev->dev_addr,
8837 min_t(size_t, size, dev->addr_len));
8838 sa->sa_family = dev->type;
8839
8840unlock:
8841 rcu_read_unlock();
8842 up_read(&dev_addr_sem);
8843 return ret;
8844}
8845EXPORT_SYMBOL(dev_get_mac_address);
8846
8847/**
8848 * dev_change_carrier - Change device carrier
8849 * @dev: device
8850 * @new_carrier: new value
8851 *
8852 * Change device carrier
8853 */
8854int dev_change_carrier(struct net_device *dev, bool new_carrier)
8855{
8856 const struct net_device_ops *ops = dev->netdev_ops;
8857
8858 if (!ops->ndo_change_carrier)
8859 return -EOPNOTSUPP;
8860 if (!netif_device_present(dev))
8861 return -ENODEV;
8862 return ops->ndo_change_carrier(dev, new_carrier);
8863}
8864
8865/**
8866 * dev_get_phys_port_id - Get device physical port ID
8867 * @dev: device
8868 * @ppid: port ID
8869 *
8870 * Get device physical port ID
8871 */
8872int dev_get_phys_port_id(struct net_device *dev,
8873 struct netdev_phys_item_id *ppid)
8874{
8875 const struct net_device_ops *ops = dev->netdev_ops;
8876
8877 if (!ops->ndo_get_phys_port_id)
8878 return -EOPNOTSUPP;
8879 return ops->ndo_get_phys_port_id(dev, ppid);
8880}
8881
8882/**
8883 * dev_get_phys_port_name - Get device physical port name
8884 * @dev: device
8885 * @name: port name
8886 * @len: limit of bytes to copy to name
8887 *
8888 * Get device physical port name
8889 */
8890int dev_get_phys_port_name(struct net_device *dev,
8891 char *name, size_t len)
8892{
8893 const struct net_device_ops *ops = dev->netdev_ops;
8894 int err;
8895
8896 if (ops->ndo_get_phys_port_name) {
8897 err = ops->ndo_get_phys_port_name(dev, name, len);
8898 if (err != -EOPNOTSUPP)
8899 return err;
8900 }
8901 return devlink_compat_phys_port_name_get(dev, name, len);
8902}
8903
8904/**
8905 * dev_get_port_parent_id - Get the device's port parent identifier
8906 * @dev: network device
8907 * @ppid: pointer to a storage for the port's parent identifier
8908 * @recurse: allow/disallow recursion to lower devices
8909 *
8910 * Get the devices's port parent identifier
8911 */
8912int dev_get_port_parent_id(struct net_device *dev,
8913 struct netdev_phys_item_id *ppid,
8914 bool recurse)
8915{
8916 const struct net_device_ops *ops = dev->netdev_ops;
8917 struct netdev_phys_item_id first = { };
8918 struct net_device *lower_dev;
8919 struct list_head *iter;
8920 int err;
8921
8922 if (ops->ndo_get_port_parent_id) {
8923 err = ops->ndo_get_port_parent_id(dev, ppid);
8924 if (err != -EOPNOTSUPP)
8925 return err;
8926 }
8927
8928 err = devlink_compat_switch_id_get(dev, ppid);
8929 if (!recurse || err != -EOPNOTSUPP)
8930 return err;
8931
8932 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8933 err = dev_get_port_parent_id(lower_dev, ppid, true);
8934 if (err)
8935 break;
8936 if (!first.id_len)
8937 first = *ppid;
8938 else if (memcmp(&first, ppid, sizeof(*ppid)))
8939 return -EOPNOTSUPP;
8940 }
8941
8942 return err;
8943}
8944EXPORT_SYMBOL(dev_get_port_parent_id);
8945
8946/**
8947 * netdev_port_same_parent_id - Indicate if two network devices have
8948 * the same port parent identifier
8949 * @a: first network device
8950 * @b: second network device
8951 */
8952bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8953{
8954 struct netdev_phys_item_id a_id = { };
8955 struct netdev_phys_item_id b_id = { };
8956
8957 if (dev_get_port_parent_id(a, &a_id, true) ||
8958 dev_get_port_parent_id(b, &b_id, true))
8959 return false;
8960
8961 return netdev_phys_item_id_same(&a_id, &b_id);
8962}
8963EXPORT_SYMBOL(netdev_port_same_parent_id);
8964
8965/**
8966 * dev_change_proto_down - set carrier according to proto_down.
8967 *
8968 * @dev: device
8969 * @proto_down: new value
8970 */
8971int dev_change_proto_down(struct net_device *dev, bool proto_down)
8972{
8973 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8974 return -EOPNOTSUPP;
8975 if (!netif_device_present(dev))
8976 return -ENODEV;
8977 if (proto_down)
8978 netif_carrier_off(dev);
8979 else
8980 netif_carrier_on(dev);
8981 dev->proto_down = proto_down;
8982 return 0;
8983}
8984
8985/**
8986 * dev_change_proto_down_reason - proto down reason
8987 *
8988 * @dev: device
8989 * @mask: proto down mask
8990 * @value: proto down value
8991 */
8992void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8993 u32 value)
8994{
8995 int b;
8996
8997 if (!mask) {
8998 dev->proto_down_reason = value;
8999 } else {
9000 for_each_set_bit(b, &mask, 32) {
9001 if (value & (1 << b))
9002 dev->proto_down_reason |= BIT(b);
9003 else
9004 dev->proto_down_reason &= ~BIT(b);
9005 }
9006 }
9007}
9008
9009struct bpf_xdp_link {
9010 struct bpf_link link;
9011 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9012 int flags;
9013};
9014
9015static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9016{
9017 if (flags & XDP_FLAGS_HW_MODE)
9018 return XDP_MODE_HW;
9019 if (flags & XDP_FLAGS_DRV_MODE)
9020 return XDP_MODE_DRV;
9021 if (flags & XDP_FLAGS_SKB_MODE)
9022 return XDP_MODE_SKB;
9023 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9024}
9025
9026static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9027{
9028 switch (mode) {
9029 case XDP_MODE_SKB:
9030 return generic_xdp_install;
9031 case XDP_MODE_DRV:
9032 case XDP_MODE_HW:
9033 return dev->netdev_ops->ndo_bpf;
9034 default:
9035 return NULL;
9036 }
9037}
9038
9039static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9040 enum bpf_xdp_mode mode)
9041{
9042 return dev->xdp_state[mode].link;
9043}
9044
9045static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9046 enum bpf_xdp_mode mode)
9047{
9048 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9049
9050 if (link)
9051 return link->link.prog;
9052 return dev->xdp_state[mode].prog;
9053}
9054
9055u8 dev_xdp_prog_count(struct net_device *dev)
9056{
9057 u8 count = 0;
9058 int i;
9059
9060 for (i = 0; i < __MAX_XDP_MODE; i++)
9061 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9062 count++;
9063 return count;
9064}
9065EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9066
9067u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9068{
9069 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9070
9071 return prog ? prog->aux->id : 0;
9072}
9073
9074static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9075 struct bpf_xdp_link *link)
9076{
9077 dev->xdp_state[mode].link = link;
9078 dev->xdp_state[mode].prog = NULL;
9079}
9080
9081static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9082 struct bpf_prog *prog)
9083{
9084 dev->xdp_state[mode].link = NULL;
9085 dev->xdp_state[mode].prog = prog;
9086}
9087
9088static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9089 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9090 u32 flags, struct bpf_prog *prog)
9091{
9092 struct netdev_bpf xdp;
9093 int err;
9094
9095 memset(&xdp, 0, sizeof(xdp));
9096 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9097 xdp.extack = extack;
9098 xdp.flags = flags;
9099 xdp.prog = prog;
9100
9101 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9102 * "moved" into driver), so they don't increment it on their own, but
9103 * they do decrement refcnt when program is detached or replaced.
9104 * Given net_device also owns link/prog, we need to bump refcnt here
9105 * to prevent drivers from underflowing it.
9106 */
9107 if (prog)
9108 bpf_prog_inc(prog);
9109 err = bpf_op(dev, &xdp);
9110 if (err) {
9111 if (prog)
9112 bpf_prog_put(prog);
9113 return err;
9114 }
9115
9116 if (mode != XDP_MODE_HW)
9117 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9118
9119 return 0;
9120}
9121
9122static void dev_xdp_uninstall(struct net_device *dev)
9123{
9124 struct bpf_xdp_link *link;
9125 struct bpf_prog *prog;
9126 enum bpf_xdp_mode mode;
9127 bpf_op_t bpf_op;
9128
9129 ASSERT_RTNL();
9130
9131 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9132 prog = dev_xdp_prog(dev, mode);
9133 if (!prog)
9134 continue;
9135
9136 bpf_op = dev_xdp_bpf_op(dev, mode);
9137 if (!bpf_op)
9138 continue;
9139
9140 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9141
9142 /* auto-detach link from net device */
9143 link = dev_xdp_link(dev, mode);
9144 if (link)
9145 link->dev = NULL;
9146 else
9147 bpf_prog_put(prog);
9148
9149 dev_xdp_set_link(dev, mode, NULL);
9150 }
9151}
9152
9153static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9154 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9155 struct bpf_prog *old_prog, u32 flags)
9156{
9157 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9158 struct bpf_prog *cur_prog;
9159 struct net_device *upper;
9160 struct list_head *iter;
9161 enum bpf_xdp_mode mode;
9162 bpf_op_t bpf_op;
9163 int err;
9164
9165 ASSERT_RTNL();
9166
9167 /* either link or prog attachment, never both */
9168 if (link && (new_prog || old_prog))
9169 return -EINVAL;
9170 /* link supports only XDP mode flags */
9171 if (link && (flags & ~XDP_FLAGS_MODES)) {
9172 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9173 return -EINVAL;
9174 }
9175 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9176 if (num_modes > 1) {
9177 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9178 return -EINVAL;
9179 }
9180 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9181 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9182 NL_SET_ERR_MSG(extack,
9183 "More than one program loaded, unset mode is ambiguous");
9184 return -EINVAL;
9185 }
9186 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9187 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9188 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9189 return -EINVAL;
9190 }
9191
9192 mode = dev_xdp_mode(dev, flags);
9193 /* can't replace attached link */
9194 if (dev_xdp_link(dev, mode)) {
9195 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9196 return -EBUSY;
9197 }
9198
9199 /* don't allow if an upper device already has a program */
9200 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9201 if (dev_xdp_prog_count(upper) > 0) {
9202 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9203 return -EEXIST;
9204 }
9205 }
9206
9207 cur_prog = dev_xdp_prog(dev, mode);
9208 /* can't replace attached prog with link */
9209 if (link && cur_prog) {
9210 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9211 return -EBUSY;
9212 }
9213 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9214 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9215 return -EEXIST;
9216 }
9217
9218 /* put effective new program into new_prog */
9219 if (link)
9220 new_prog = link->link.prog;
9221
9222 if (new_prog) {
9223 bool offload = mode == XDP_MODE_HW;
9224 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9225 ? XDP_MODE_DRV : XDP_MODE_SKB;
9226
9227 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9228 NL_SET_ERR_MSG(extack, "XDP program already attached");
9229 return -EBUSY;
9230 }
9231 if (!offload && dev_xdp_prog(dev, other_mode)) {
9232 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9233 return -EEXIST;
9234 }
9235 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9236 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9237 return -EINVAL;
9238 }
9239 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9240 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9241 return -EINVAL;
9242 }
9243 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9244 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9245 return -EINVAL;
9246 }
9247 }
9248
9249 /* don't call drivers if the effective program didn't change */
9250 if (new_prog != cur_prog) {
9251 bpf_op = dev_xdp_bpf_op(dev, mode);
9252 if (!bpf_op) {
9253 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9254 return -EOPNOTSUPP;
9255 }
9256
9257 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9258 if (err)
9259 return err;
9260 }
9261
9262 if (link)
9263 dev_xdp_set_link(dev, mode, link);
9264 else
9265 dev_xdp_set_prog(dev, mode, new_prog);
9266 if (cur_prog)
9267 bpf_prog_put(cur_prog);
9268
9269 return 0;
9270}
9271
9272static int dev_xdp_attach_link(struct net_device *dev,
9273 struct netlink_ext_ack *extack,
9274 struct bpf_xdp_link *link)
9275{
9276 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9277}
9278
9279static int dev_xdp_detach_link(struct net_device *dev,
9280 struct netlink_ext_ack *extack,
9281 struct bpf_xdp_link *link)
9282{
9283 enum bpf_xdp_mode mode;
9284 bpf_op_t bpf_op;
9285
9286 ASSERT_RTNL();
9287
9288 mode = dev_xdp_mode(dev, link->flags);
9289 if (dev_xdp_link(dev, mode) != link)
9290 return -EINVAL;
9291
9292 bpf_op = dev_xdp_bpf_op(dev, mode);
9293 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9294 dev_xdp_set_link(dev, mode, NULL);
9295 return 0;
9296}
9297
9298static void bpf_xdp_link_release(struct bpf_link *link)
9299{
9300 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9301
9302 rtnl_lock();
9303
9304 /* if racing with net_device's tear down, xdp_link->dev might be
9305 * already NULL, in which case link was already auto-detached
9306 */
9307 if (xdp_link->dev) {
9308 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9309 xdp_link->dev = NULL;
9310 }
9311
9312 rtnl_unlock();
9313}
9314
9315static int bpf_xdp_link_detach(struct bpf_link *link)
9316{
9317 bpf_xdp_link_release(link);
9318 return 0;
9319}
9320
9321static void bpf_xdp_link_dealloc(struct bpf_link *link)
9322{
9323 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9324
9325 kfree(xdp_link);
9326}
9327
9328static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9329 struct seq_file *seq)
9330{
9331 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9332 u32 ifindex = 0;
9333
9334 rtnl_lock();
9335 if (xdp_link->dev)
9336 ifindex = xdp_link->dev->ifindex;
9337 rtnl_unlock();
9338
9339 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9340}
9341
9342static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9343 struct bpf_link_info *info)
9344{
9345 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9346 u32 ifindex = 0;
9347
9348 rtnl_lock();
9349 if (xdp_link->dev)
9350 ifindex = xdp_link->dev->ifindex;
9351 rtnl_unlock();
9352
9353 info->xdp.ifindex = ifindex;
9354 return 0;
9355}
9356
9357static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9358 struct bpf_prog *old_prog)
9359{
9360 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9361 enum bpf_xdp_mode mode;
9362 bpf_op_t bpf_op;
9363 int err = 0;
9364
9365 rtnl_lock();
9366
9367 /* link might have been auto-released already, so fail */
9368 if (!xdp_link->dev) {
9369 err = -ENOLINK;
9370 goto out_unlock;
9371 }
9372
9373 if (old_prog && link->prog != old_prog) {
9374 err = -EPERM;
9375 goto out_unlock;
9376 }
9377 old_prog = link->prog;
9378 if (old_prog->type != new_prog->type ||
9379 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9380 err = -EINVAL;
9381 goto out_unlock;
9382 }
9383
9384 if (old_prog == new_prog) {
9385 /* no-op, don't disturb drivers */
9386 bpf_prog_put(new_prog);
9387 goto out_unlock;
9388 }
9389
9390 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9391 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9392 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9393 xdp_link->flags, new_prog);
9394 if (err)
9395 goto out_unlock;
9396
9397 old_prog = xchg(&link->prog, new_prog);
9398 bpf_prog_put(old_prog);
9399
9400out_unlock:
9401 rtnl_unlock();
9402 return err;
9403}
9404
9405static const struct bpf_link_ops bpf_xdp_link_lops = {
9406 .release = bpf_xdp_link_release,
9407 .dealloc = bpf_xdp_link_dealloc,
9408 .detach = bpf_xdp_link_detach,
9409 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9410 .fill_link_info = bpf_xdp_link_fill_link_info,
9411 .update_prog = bpf_xdp_link_update,
9412};
9413
9414int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9415{
9416 struct net *net = current->nsproxy->net_ns;
9417 struct bpf_link_primer link_primer;
9418 struct bpf_xdp_link *link;
9419 struct net_device *dev;
9420 int err, fd;
9421
9422 rtnl_lock();
9423 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9424 if (!dev) {
9425 rtnl_unlock();
9426 return -EINVAL;
9427 }
9428
9429 link = kzalloc(sizeof(*link), GFP_USER);
9430 if (!link) {
9431 err = -ENOMEM;
9432 goto unlock;
9433 }
9434
9435 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9436 link->dev = dev;
9437 link->flags = attr->link_create.flags;
9438
9439 err = bpf_link_prime(&link->link, &link_primer);
9440 if (err) {
9441 kfree(link);
9442 goto unlock;
9443 }
9444
9445 err = dev_xdp_attach_link(dev, NULL, link);
9446 rtnl_unlock();
9447
9448 if (err) {
9449 link->dev = NULL;
9450 bpf_link_cleanup(&link_primer);
9451 goto out_put_dev;
9452 }
9453
9454 fd = bpf_link_settle(&link_primer);
9455 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9456 dev_put(dev);
9457 return fd;
9458
9459unlock:
9460 rtnl_unlock();
9461
9462out_put_dev:
9463 dev_put(dev);
9464 return err;
9465}
9466
9467/**
9468 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9469 * @dev: device
9470 * @extack: netlink extended ack
9471 * @fd: new program fd or negative value to clear
9472 * @expected_fd: old program fd that userspace expects to replace or clear
9473 * @flags: xdp-related flags
9474 *
9475 * Set or clear a bpf program for a device
9476 */
9477int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9478 int fd, int expected_fd, u32 flags)
9479{
9480 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9481 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9482 int err;
9483
9484 ASSERT_RTNL();
9485
9486 if (fd >= 0) {
9487 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9488 mode != XDP_MODE_SKB);
9489 if (IS_ERR(new_prog))
9490 return PTR_ERR(new_prog);
9491 }
9492
9493 if (expected_fd >= 0) {
9494 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9495 mode != XDP_MODE_SKB);
9496 if (IS_ERR(old_prog)) {
9497 err = PTR_ERR(old_prog);
9498 old_prog = NULL;
9499 goto err_out;
9500 }
9501 }
9502
9503 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9504
9505err_out:
9506 if (err && new_prog)
9507 bpf_prog_put(new_prog);
9508 if (old_prog)
9509 bpf_prog_put(old_prog);
9510 return err;
9511}
9512
9513/**
9514 * dev_new_index - allocate an ifindex
9515 * @net: the applicable net namespace
9516 *
9517 * Returns a suitable unique value for a new device interface
9518 * number. The caller must hold the rtnl semaphore or the
9519 * dev_base_lock to be sure it remains unique.
9520 */
9521static int dev_new_index(struct net *net)
9522{
9523 int ifindex = net->ifindex;
9524
9525 for (;;) {
9526 if (++ifindex <= 0)
9527 ifindex = 1;
9528 if (!__dev_get_by_index(net, ifindex))
9529 return net->ifindex = ifindex;
9530 }
9531}
9532
9533/* Delayed registration/unregisteration */
9534LIST_HEAD(net_todo_list);
9535DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9536
9537static void net_set_todo(struct net_device *dev)
9538{
9539 list_add_tail(&dev->todo_list, &net_todo_list);
9540 atomic_inc(&dev_net(dev)->dev_unreg_count);
9541}
9542
9543static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9544 struct net_device *upper, netdev_features_t features)
9545{
9546 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9547 netdev_features_t feature;
9548 int feature_bit;
9549
9550 for_each_netdev_feature(upper_disables, feature_bit) {
9551 feature = __NETIF_F_BIT(feature_bit);
9552 if (!(upper->wanted_features & feature)
9553 && (features & feature)) {
9554 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9555 &feature, upper->name);
9556 features &= ~feature;
9557 }
9558 }
9559
9560 return features;
9561}
9562
9563static void netdev_sync_lower_features(struct net_device *upper,
9564 struct net_device *lower, netdev_features_t features)
9565{
9566 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9567 netdev_features_t feature;
9568 int feature_bit;
9569
9570 for_each_netdev_feature(upper_disables, feature_bit) {
9571 feature = __NETIF_F_BIT(feature_bit);
9572 if (!(features & feature) && (lower->features & feature)) {
9573 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9574 &feature, lower->name);
9575 lower->wanted_features &= ~feature;
9576 __netdev_update_features(lower);
9577
9578 if (unlikely(lower->features & feature))
9579 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9580 &feature, lower->name);
9581 else
9582 netdev_features_change(lower);
9583 }
9584 }
9585}
9586
9587static netdev_features_t netdev_fix_features(struct net_device *dev,
9588 netdev_features_t features)
9589{
9590 /* Fix illegal checksum combinations */
9591 if ((features & NETIF_F_HW_CSUM) &&
9592 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9593 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9594 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9595 }
9596
9597 /* TSO requires that SG is present as well. */
9598 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9599 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9600 features &= ~NETIF_F_ALL_TSO;
9601 }
9602
9603 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9604 !(features & NETIF_F_IP_CSUM)) {
9605 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9606 features &= ~NETIF_F_TSO;
9607 features &= ~NETIF_F_TSO_ECN;
9608 }
9609
9610 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9611 !(features & NETIF_F_IPV6_CSUM)) {
9612 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9613 features &= ~NETIF_F_TSO6;
9614 }
9615
9616 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9617 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9618 features &= ~NETIF_F_TSO_MANGLEID;
9619
9620 /* TSO ECN requires that TSO is present as well. */
9621 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9622 features &= ~NETIF_F_TSO_ECN;
9623
9624 /* Software GSO depends on SG. */
9625 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9626 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9627 features &= ~NETIF_F_GSO;
9628 }
9629
9630 /* GSO partial features require GSO partial be set */
9631 if ((features & dev->gso_partial_features) &&
9632 !(features & NETIF_F_GSO_PARTIAL)) {
9633 netdev_dbg(dev,
9634 "Dropping partially supported GSO features since no GSO partial.\n");
9635 features &= ~dev->gso_partial_features;
9636 }
9637
9638 if (!(features & NETIF_F_RXCSUM)) {
9639 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9640 * successfully merged by hardware must also have the
9641 * checksum verified by hardware. If the user does not
9642 * want to enable RXCSUM, logically, we should disable GRO_HW.
9643 */
9644 if (features & NETIF_F_GRO_HW) {
9645 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9646 features &= ~NETIF_F_GRO_HW;
9647 }
9648 }
9649
9650 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9651 if (features & NETIF_F_RXFCS) {
9652 if (features & NETIF_F_LRO) {
9653 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9654 features &= ~NETIF_F_LRO;
9655 }
9656
9657 if (features & NETIF_F_GRO_HW) {
9658 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9659 features &= ~NETIF_F_GRO_HW;
9660 }
9661 }
9662
9663 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9664 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9665 features &= ~NETIF_F_LRO;
9666 }
9667
9668 if (features & NETIF_F_HW_TLS_TX) {
9669 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9670 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9671 bool hw_csum = features & NETIF_F_HW_CSUM;
9672
9673 if (!ip_csum && !hw_csum) {
9674 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9675 features &= ~NETIF_F_HW_TLS_TX;
9676 }
9677 }
9678
9679 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9680 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9681 features &= ~NETIF_F_HW_TLS_RX;
9682 }
9683
9684 return features;
9685}
9686
9687int __netdev_update_features(struct net_device *dev)
9688{
9689 struct net_device *upper, *lower;
9690 netdev_features_t features;
9691 struct list_head *iter;
9692 int err = -1;
9693
9694 ASSERT_RTNL();
9695
9696 features = netdev_get_wanted_features(dev);
9697
9698 if (dev->netdev_ops->ndo_fix_features)
9699 features = dev->netdev_ops->ndo_fix_features(dev, features);
9700
9701 /* driver might be less strict about feature dependencies */
9702 features = netdev_fix_features(dev, features);
9703
9704 /* some features can't be enabled if they're off on an upper device */
9705 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9706 features = netdev_sync_upper_features(dev, upper, features);
9707
9708 if (dev->features == features)
9709 goto sync_lower;
9710
9711 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9712 &dev->features, &features);
9713
9714 if (dev->netdev_ops->ndo_set_features)
9715 err = dev->netdev_ops->ndo_set_features(dev, features);
9716 else
9717 err = 0;
9718
9719 if (unlikely(err < 0)) {
9720 netdev_err(dev,
9721 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9722 err, &features, &dev->features);
9723 /* return non-0 since some features might have changed and
9724 * it's better to fire a spurious notification than miss it
9725 */
9726 return -1;
9727 }
9728
9729sync_lower:
9730 /* some features must be disabled on lower devices when disabled
9731 * on an upper device (think: bonding master or bridge)
9732 */
9733 netdev_for_each_lower_dev(dev, lower, iter)
9734 netdev_sync_lower_features(dev, lower, features);
9735
9736 if (!err) {
9737 netdev_features_t diff = features ^ dev->features;
9738
9739 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9740 /* udp_tunnel_{get,drop}_rx_info both need
9741 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9742 * device, or they won't do anything.
9743 * Thus we need to update dev->features
9744 * *before* calling udp_tunnel_get_rx_info,
9745 * but *after* calling udp_tunnel_drop_rx_info.
9746 */
9747 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9748 dev->features = features;
9749 udp_tunnel_get_rx_info(dev);
9750 } else {
9751 udp_tunnel_drop_rx_info(dev);
9752 }
9753 }
9754
9755 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9756 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9757 dev->features = features;
9758 err |= vlan_get_rx_ctag_filter_info(dev);
9759 } else {
9760 vlan_drop_rx_ctag_filter_info(dev);
9761 }
9762 }
9763
9764 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9765 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9766 dev->features = features;
9767 err |= vlan_get_rx_stag_filter_info(dev);
9768 } else {
9769 vlan_drop_rx_stag_filter_info(dev);
9770 }
9771 }
9772
9773 dev->features = features;
9774 }
9775
9776 return err < 0 ? 0 : 1;
9777}
9778
9779/**
9780 * netdev_update_features - recalculate device features
9781 * @dev: the device to check
9782 *
9783 * Recalculate dev->features set and send notifications if it
9784 * has changed. Should be called after driver or hardware dependent
9785 * conditions might have changed that influence the features.
9786 */
9787void netdev_update_features(struct net_device *dev)
9788{
9789 if (__netdev_update_features(dev))
9790 netdev_features_change(dev);
9791}
9792EXPORT_SYMBOL(netdev_update_features);
9793
9794/**
9795 * netdev_change_features - recalculate device features
9796 * @dev: the device to check
9797 *
9798 * Recalculate dev->features set and send notifications even
9799 * if they have not changed. Should be called instead of
9800 * netdev_update_features() if also dev->vlan_features might
9801 * have changed to allow the changes to be propagated to stacked
9802 * VLAN devices.
9803 */
9804void netdev_change_features(struct net_device *dev)
9805{
9806 __netdev_update_features(dev);
9807 netdev_features_change(dev);
9808}
9809EXPORT_SYMBOL(netdev_change_features);
9810
9811/**
9812 * netif_stacked_transfer_operstate - transfer operstate
9813 * @rootdev: the root or lower level device to transfer state from
9814 * @dev: the device to transfer operstate to
9815 *
9816 * Transfer operational state from root to device. This is normally
9817 * called when a stacking relationship exists between the root
9818 * device and the device(a leaf device).
9819 */
9820void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9821 struct net_device *dev)
9822{
9823 if (rootdev->operstate == IF_OPER_DORMANT)
9824 netif_dormant_on(dev);
9825 else
9826 netif_dormant_off(dev);
9827
9828 if (rootdev->operstate == IF_OPER_TESTING)
9829 netif_testing_on(dev);
9830 else
9831 netif_testing_off(dev);
9832
9833 if (netif_carrier_ok(rootdev))
9834 netif_carrier_on(dev);
9835 else
9836 netif_carrier_off(dev);
9837}
9838EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9839
9840static int netif_alloc_rx_queues(struct net_device *dev)
9841{
9842 unsigned int i, count = dev->num_rx_queues;
9843 struct netdev_rx_queue *rx;
9844 size_t sz = count * sizeof(*rx);
9845 int err = 0;
9846
9847 BUG_ON(count < 1);
9848
9849 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9850 if (!rx)
9851 return -ENOMEM;
9852
9853 dev->_rx = rx;
9854
9855 for (i = 0; i < count; i++) {
9856 rx[i].dev = dev;
9857
9858 /* XDP RX-queue setup */
9859 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9860 if (err < 0)
9861 goto err_rxq_info;
9862 }
9863 return 0;
9864
9865err_rxq_info:
9866 /* Rollback successful reg's and free other resources */
9867 while (i--)
9868 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9869 kvfree(dev->_rx);
9870 dev->_rx = NULL;
9871 return err;
9872}
9873
9874static void netif_free_rx_queues(struct net_device *dev)
9875{
9876 unsigned int i, count = dev->num_rx_queues;
9877
9878 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9879 if (!dev->_rx)
9880 return;
9881
9882 for (i = 0; i < count; i++)
9883 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9884
9885 kvfree(dev->_rx);
9886}
9887
9888static void netdev_init_one_queue(struct net_device *dev,
9889 struct netdev_queue *queue, void *_unused)
9890{
9891 /* Initialize queue lock */
9892 spin_lock_init(&queue->_xmit_lock);
9893 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9894 queue->xmit_lock_owner = -1;
9895 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9896 queue->dev = dev;
9897#ifdef CONFIG_BQL
9898 dql_init(&queue->dql, HZ);
9899#endif
9900}
9901
9902static void netif_free_tx_queues(struct net_device *dev)
9903{
9904 kvfree(dev->_tx);
9905}
9906
9907static int netif_alloc_netdev_queues(struct net_device *dev)
9908{
9909 unsigned int count = dev->num_tx_queues;
9910 struct netdev_queue *tx;
9911 size_t sz = count * sizeof(*tx);
9912
9913 if (count < 1 || count > 0xffff)
9914 return -EINVAL;
9915
9916 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9917 if (!tx)
9918 return -ENOMEM;
9919
9920 dev->_tx = tx;
9921
9922 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9923 spin_lock_init(&dev->tx_global_lock);
9924
9925 return 0;
9926}
9927
9928void netif_tx_stop_all_queues(struct net_device *dev)
9929{
9930 unsigned int i;
9931
9932 for (i = 0; i < dev->num_tx_queues; i++) {
9933 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9934
9935 netif_tx_stop_queue(txq);
9936 }
9937}
9938EXPORT_SYMBOL(netif_tx_stop_all_queues);
9939
9940/**
9941 * register_netdevice() - register a network device
9942 * @dev: device to register
9943 *
9944 * Take a prepared network device structure and make it externally accessible.
9945 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9946 * Callers must hold the rtnl lock - you may want register_netdev()
9947 * instead of this.
9948 */
9949int register_netdevice(struct net_device *dev)
9950{
9951 int ret;
9952 struct net *net = dev_net(dev);
9953
9954 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9955 NETDEV_FEATURE_COUNT);
9956 BUG_ON(dev_boot_phase);
9957 ASSERT_RTNL();
9958
9959 might_sleep();
9960
9961 /* When net_device's are persistent, this will be fatal. */
9962 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9963 BUG_ON(!net);
9964
9965 ret = ethtool_check_ops(dev->ethtool_ops);
9966 if (ret)
9967 return ret;
9968
9969 spin_lock_init(&dev->addr_list_lock);
9970 netdev_set_addr_lockdep_class(dev);
9971
9972 ret = dev_get_valid_name(net, dev, dev->name);
9973 if (ret < 0)
9974 goto out;
9975
9976 ret = -ENOMEM;
9977 dev->name_node = netdev_name_node_head_alloc(dev);
9978 if (!dev->name_node)
9979 goto out;
9980
9981 /* Init, if this function is available */
9982 if (dev->netdev_ops->ndo_init) {
9983 ret = dev->netdev_ops->ndo_init(dev);
9984 if (ret) {
9985 if (ret > 0)
9986 ret = -EIO;
9987 goto err_free_name;
9988 }
9989 }
9990
9991 if (((dev->hw_features | dev->features) &
9992 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9993 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9994 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9995 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9996 ret = -EINVAL;
9997 goto err_uninit;
9998 }
9999
10000 ret = -EBUSY;
10001 if (!dev->ifindex)
10002 dev->ifindex = dev_new_index(net);
10003 else if (__dev_get_by_index(net, dev->ifindex))
10004 goto err_uninit;
10005
10006 /* Transfer changeable features to wanted_features and enable
10007 * software offloads (GSO and GRO).
10008 */
10009 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10010 dev->features |= NETIF_F_SOFT_FEATURES;
10011
10012 if (dev->udp_tunnel_nic_info) {
10013 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10014 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10015 }
10016
10017 dev->wanted_features = dev->features & dev->hw_features;
10018
10019 if (!(dev->flags & IFF_LOOPBACK))
10020 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10021
10022 /* If IPv4 TCP segmentation offload is supported we should also
10023 * allow the device to enable segmenting the frame with the option
10024 * of ignoring a static IP ID value. This doesn't enable the
10025 * feature itself but allows the user to enable it later.
10026 */
10027 if (dev->hw_features & NETIF_F_TSO)
10028 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10029 if (dev->vlan_features & NETIF_F_TSO)
10030 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10031 if (dev->mpls_features & NETIF_F_TSO)
10032 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10033 if (dev->hw_enc_features & NETIF_F_TSO)
10034 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10035
10036 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10037 */
10038 dev->vlan_features |= NETIF_F_HIGHDMA;
10039
10040 /* Make NETIF_F_SG inheritable to tunnel devices.
10041 */
10042 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10043
10044 /* Make NETIF_F_SG inheritable to MPLS.
10045 */
10046 dev->mpls_features |= NETIF_F_SG;
10047
10048 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10049 ret = notifier_to_errno(ret);
10050 if (ret)
10051 goto err_uninit;
10052
10053 ret = netdev_register_kobject(dev);
10054 write_lock(&dev_base_lock);
10055 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10056 write_unlock(&dev_base_lock);
10057 if (ret)
10058 goto err_uninit;
10059
10060 __netdev_update_features(dev);
10061
10062 /*
10063 * Default initial state at registry is that the
10064 * device is present.
10065 */
10066
10067 set_bit(__LINK_STATE_PRESENT, &dev->state);
10068
10069 linkwatch_init_dev(dev);
10070
10071 dev_init_scheduler(dev);
10072
10073 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10074 list_netdevice(dev);
10075
10076 add_device_randomness(dev->dev_addr, dev->addr_len);
10077
10078 /* If the device has permanent device address, driver should
10079 * set dev_addr and also addr_assign_type should be set to
10080 * NET_ADDR_PERM (default value).
10081 */
10082 if (dev->addr_assign_type == NET_ADDR_PERM)
10083 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10084
10085 /* Notify protocols, that a new device appeared. */
10086 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10087 ret = notifier_to_errno(ret);
10088 if (ret) {
10089 /* Expect explicit free_netdev() on failure */
10090 dev->needs_free_netdev = false;
10091 unregister_netdevice_queue(dev, NULL);
10092 goto out;
10093 }
10094 /*
10095 * Prevent userspace races by waiting until the network
10096 * device is fully setup before sending notifications.
10097 */
10098 if (!dev->rtnl_link_ops ||
10099 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10100 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10101
10102out:
10103 return ret;
10104
10105err_uninit:
10106 if (dev->netdev_ops->ndo_uninit)
10107 dev->netdev_ops->ndo_uninit(dev);
10108 if (dev->priv_destructor)
10109 dev->priv_destructor(dev);
10110err_free_name:
10111 netdev_name_node_free(dev->name_node);
10112 goto out;
10113}
10114EXPORT_SYMBOL(register_netdevice);
10115
10116/**
10117 * init_dummy_netdev - init a dummy network device for NAPI
10118 * @dev: device to init
10119 *
10120 * This takes a network device structure and initialize the minimum
10121 * amount of fields so it can be used to schedule NAPI polls without
10122 * registering a full blown interface. This is to be used by drivers
10123 * that need to tie several hardware interfaces to a single NAPI
10124 * poll scheduler due to HW limitations.
10125 */
10126int init_dummy_netdev(struct net_device *dev)
10127{
10128 /* Clear everything. Note we don't initialize spinlocks
10129 * are they aren't supposed to be taken by any of the
10130 * NAPI code and this dummy netdev is supposed to be
10131 * only ever used for NAPI polls
10132 */
10133 memset(dev, 0, sizeof(struct net_device));
10134
10135 /* make sure we BUG if trying to hit standard
10136 * register/unregister code path
10137 */
10138 dev->reg_state = NETREG_DUMMY;
10139
10140 /* NAPI wants this */
10141 INIT_LIST_HEAD(&dev->napi_list);
10142
10143 /* a dummy interface is started by default */
10144 set_bit(__LINK_STATE_PRESENT, &dev->state);
10145 set_bit(__LINK_STATE_START, &dev->state);
10146
10147 /* napi_busy_loop stats accounting wants this */
10148 dev_net_set(dev, &init_net);
10149
10150 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10151 * because users of this 'device' dont need to change
10152 * its refcount.
10153 */
10154
10155 return 0;
10156}
10157EXPORT_SYMBOL_GPL(init_dummy_netdev);
10158
10159
10160/**
10161 * register_netdev - register a network device
10162 * @dev: device to register
10163 *
10164 * Take a completed network device structure and add it to the kernel
10165 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10166 * chain. 0 is returned on success. A negative errno code is returned
10167 * on a failure to set up the device, or if the name is a duplicate.
10168 *
10169 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10170 * and expands the device name if you passed a format string to
10171 * alloc_netdev.
10172 */
10173int register_netdev(struct net_device *dev)
10174{
10175 int err;
10176
10177 if (rtnl_lock_killable())
10178 return -EINTR;
10179 err = register_netdevice(dev);
10180 rtnl_unlock();
10181 return err;
10182}
10183EXPORT_SYMBOL(register_netdev);
10184
10185int netdev_refcnt_read(const struct net_device *dev)
10186{
10187#ifdef CONFIG_PCPU_DEV_REFCNT
10188 int i, refcnt = 0;
10189
10190 for_each_possible_cpu(i)
10191 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10192 return refcnt;
10193#else
10194 return refcount_read(&dev->dev_refcnt);
10195#endif
10196}
10197EXPORT_SYMBOL(netdev_refcnt_read);
10198
10199int netdev_unregister_timeout_secs __read_mostly = 10;
10200
10201#define WAIT_REFS_MIN_MSECS 1
10202#define WAIT_REFS_MAX_MSECS 250
10203/**
10204 * netdev_wait_allrefs_any - wait until all references are gone.
10205 * @list: list of net_devices to wait on
10206 *
10207 * This is called when unregistering network devices.
10208 *
10209 * Any protocol or device that holds a reference should register
10210 * for netdevice notification, and cleanup and put back the
10211 * reference if they receive an UNREGISTER event.
10212 * We can get stuck here if buggy protocols don't correctly
10213 * call dev_put.
10214 */
10215static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10216{
10217 unsigned long rebroadcast_time, warning_time;
10218 struct net_device *dev;
10219 int wait = 0;
10220
10221 rebroadcast_time = warning_time = jiffies;
10222
10223 list_for_each_entry(dev, list, todo_list)
10224 if (netdev_refcnt_read(dev) == 1)
10225 return dev;
10226
10227 while (true) {
10228 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10229 rtnl_lock();
10230
10231 /* Rebroadcast unregister notification */
10232 list_for_each_entry(dev, list, todo_list)
10233 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10234
10235 __rtnl_unlock();
10236 rcu_barrier();
10237 rtnl_lock();
10238
10239 list_for_each_entry(dev, list, todo_list)
10240 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10241 &dev->state)) {
10242 /* We must not have linkwatch events
10243 * pending on unregister. If this
10244 * happens, we simply run the queue
10245 * unscheduled, resulting in a noop
10246 * for this device.
10247 */
10248 linkwatch_run_queue();
10249 break;
10250 }
10251
10252 __rtnl_unlock();
10253
10254 rebroadcast_time = jiffies;
10255 }
10256
10257 if (!wait) {
10258 rcu_barrier();
10259 wait = WAIT_REFS_MIN_MSECS;
10260 } else {
10261 msleep(wait);
10262 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10263 }
10264
10265 list_for_each_entry(dev, list, todo_list)
10266 if (netdev_refcnt_read(dev) == 1)
10267 return dev;
10268
10269 if (time_after(jiffies, warning_time +
10270 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10271 list_for_each_entry(dev, list, todo_list) {
10272 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10273 dev->name, netdev_refcnt_read(dev));
10274 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10275 }
10276
10277 warning_time = jiffies;
10278 }
10279 }
10280}
10281
10282/* The sequence is:
10283 *
10284 * rtnl_lock();
10285 * ...
10286 * register_netdevice(x1);
10287 * register_netdevice(x2);
10288 * ...
10289 * unregister_netdevice(y1);
10290 * unregister_netdevice(y2);
10291 * ...
10292 * rtnl_unlock();
10293 * free_netdev(y1);
10294 * free_netdev(y2);
10295 *
10296 * We are invoked by rtnl_unlock().
10297 * This allows us to deal with problems:
10298 * 1) We can delete sysfs objects which invoke hotplug
10299 * without deadlocking with linkwatch via keventd.
10300 * 2) Since we run with the RTNL semaphore not held, we can sleep
10301 * safely in order to wait for the netdev refcnt to drop to zero.
10302 *
10303 * We must not return until all unregister events added during
10304 * the interval the lock was held have been completed.
10305 */
10306void netdev_run_todo(void)
10307{
10308 struct net_device *dev, *tmp;
10309 struct list_head list;
10310#ifdef CONFIG_LOCKDEP
10311 struct list_head unlink_list;
10312
10313 list_replace_init(&net_unlink_list, &unlink_list);
10314
10315 while (!list_empty(&unlink_list)) {
10316 struct net_device *dev = list_first_entry(&unlink_list,
10317 struct net_device,
10318 unlink_list);
10319 list_del_init(&dev->unlink_list);
10320 dev->nested_level = dev->lower_level - 1;
10321 }
10322#endif
10323
10324 /* Snapshot list, allow later requests */
10325 list_replace_init(&net_todo_list, &list);
10326
10327 __rtnl_unlock();
10328
10329 /* Wait for rcu callbacks to finish before next phase */
10330 if (!list_empty(&list))
10331 rcu_barrier();
10332
10333 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10334 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10335 netdev_WARN(dev, "run_todo but not unregistering\n");
10336 list_del(&dev->todo_list);
10337 continue;
10338 }
10339
10340 write_lock(&dev_base_lock);
10341 dev->reg_state = NETREG_UNREGISTERED;
10342 write_unlock(&dev_base_lock);
10343 linkwatch_forget_dev(dev);
10344 }
10345
10346 while (!list_empty(&list)) {
10347 dev = netdev_wait_allrefs_any(&list);
10348 list_del(&dev->todo_list);
10349
10350 /* paranoia */
10351 BUG_ON(netdev_refcnt_read(dev) != 1);
10352 BUG_ON(!list_empty(&dev->ptype_all));
10353 BUG_ON(!list_empty(&dev->ptype_specific));
10354 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10355 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10356
10357 if (dev->priv_destructor)
10358 dev->priv_destructor(dev);
10359 if (dev->needs_free_netdev)
10360 free_netdev(dev);
10361
10362 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10363 wake_up(&netdev_unregistering_wq);
10364
10365 /* Free network device */
10366 kobject_put(&dev->dev.kobj);
10367 }
10368}
10369
10370/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10371 * all the same fields in the same order as net_device_stats, with only
10372 * the type differing, but rtnl_link_stats64 may have additional fields
10373 * at the end for newer counters.
10374 */
10375void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10376 const struct net_device_stats *netdev_stats)
10377{
10378#if BITS_PER_LONG == 64
10379 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10380 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10381 /* zero out counters that only exist in rtnl_link_stats64 */
10382 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10383 sizeof(*stats64) - sizeof(*netdev_stats));
10384#else
10385 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10386 const unsigned long *src = (const unsigned long *)netdev_stats;
10387 u64 *dst = (u64 *)stats64;
10388
10389 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10390 for (i = 0; i < n; i++)
10391 dst[i] = src[i];
10392 /* zero out counters that only exist in rtnl_link_stats64 */
10393 memset((char *)stats64 + n * sizeof(u64), 0,
10394 sizeof(*stats64) - n * sizeof(u64));
10395#endif
10396}
10397EXPORT_SYMBOL(netdev_stats_to_stats64);
10398
10399struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10400{
10401 struct net_device_core_stats __percpu *p;
10402
10403 p = alloc_percpu_gfp(struct net_device_core_stats,
10404 GFP_ATOMIC | __GFP_NOWARN);
10405
10406 if (p && cmpxchg(&dev->core_stats, NULL, p))
10407 free_percpu(p);
10408
10409 /* This READ_ONCE() pairs with the cmpxchg() above */
10410 return READ_ONCE(dev->core_stats);
10411}
10412EXPORT_SYMBOL(netdev_core_stats_alloc);
10413
10414/**
10415 * dev_get_stats - get network device statistics
10416 * @dev: device to get statistics from
10417 * @storage: place to store stats
10418 *
10419 * Get network statistics from device. Return @storage.
10420 * The device driver may provide its own method by setting
10421 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10422 * otherwise the internal statistics structure is used.
10423 */
10424struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10425 struct rtnl_link_stats64 *storage)
10426{
10427 const struct net_device_ops *ops = dev->netdev_ops;
10428 const struct net_device_core_stats __percpu *p;
10429
10430 if (ops->ndo_get_stats64) {
10431 memset(storage, 0, sizeof(*storage));
10432 ops->ndo_get_stats64(dev, storage);
10433 } else if (ops->ndo_get_stats) {
10434 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10435 } else {
10436 netdev_stats_to_stats64(storage, &dev->stats);
10437 }
10438
10439 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10440 p = READ_ONCE(dev->core_stats);
10441 if (p) {
10442 const struct net_device_core_stats *core_stats;
10443 int i;
10444
10445 for_each_possible_cpu(i) {
10446 core_stats = per_cpu_ptr(p, i);
10447 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10448 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10449 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10450 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10451 }
10452 }
10453 return storage;
10454}
10455EXPORT_SYMBOL(dev_get_stats);
10456
10457/**
10458 * dev_fetch_sw_netstats - get per-cpu network device statistics
10459 * @s: place to store stats
10460 * @netstats: per-cpu network stats to read from
10461 *
10462 * Read per-cpu network statistics and populate the related fields in @s.
10463 */
10464void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10465 const struct pcpu_sw_netstats __percpu *netstats)
10466{
10467 int cpu;
10468
10469 for_each_possible_cpu(cpu) {
10470 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10471 const struct pcpu_sw_netstats *stats;
10472 unsigned int start;
10473
10474 stats = per_cpu_ptr(netstats, cpu);
10475 do {
10476 start = u64_stats_fetch_begin_irq(&stats->syncp);
10477 rx_packets = u64_stats_read(&stats->rx_packets);
10478 rx_bytes = u64_stats_read(&stats->rx_bytes);
10479 tx_packets = u64_stats_read(&stats->tx_packets);
10480 tx_bytes = u64_stats_read(&stats->tx_bytes);
10481 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10482
10483 s->rx_packets += rx_packets;
10484 s->rx_bytes += rx_bytes;
10485 s->tx_packets += tx_packets;
10486 s->tx_bytes += tx_bytes;
10487 }
10488}
10489EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10490
10491/**
10492 * dev_get_tstats64 - ndo_get_stats64 implementation
10493 * @dev: device to get statistics from
10494 * @s: place to store stats
10495 *
10496 * Populate @s from dev->stats and dev->tstats. Can be used as
10497 * ndo_get_stats64() callback.
10498 */
10499void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10500{
10501 netdev_stats_to_stats64(s, &dev->stats);
10502 dev_fetch_sw_netstats(s, dev->tstats);
10503}
10504EXPORT_SYMBOL_GPL(dev_get_tstats64);
10505
10506struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10507{
10508 struct netdev_queue *queue = dev_ingress_queue(dev);
10509
10510#ifdef CONFIG_NET_CLS_ACT
10511 if (queue)
10512 return queue;
10513 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10514 if (!queue)
10515 return NULL;
10516 netdev_init_one_queue(dev, queue, NULL);
10517 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10518 queue->qdisc_sleeping = &noop_qdisc;
10519 rcu_assign_pointer(dev->ingress_queue, queue);
10520#endif
10521 return queue;
10522}
10523
10524static const struct ethtool_ops default_ethtool_ops;
10525
10526void netdev_set_default_ethtool_ops(struct net_device *dev,
10527 const struct ethtool_ops *ops)
10528{
10529 if (dev->ethtool_ops == &default_ethtool_ops)
10530 dev->ethtool_ops = ops;
10531}
10532EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10533
10534void netdev_freemem(struct net_device *dev)
10535{
10536 char *addr = (char *)dev - dev->padded;
10537
10538 kvfree(addr);
10539}
10540
10541/**
10542 * alloc_netdev_mqs - allocate network device
10543 * @sizeof_priv: size of private data to allocate space for
10544 * @name: device name format string
10545 * @name_assign_type: origin of device name
10546 * @setup: callback to initialize device
10547 * @txqs: the number of TX subqueues to allocate
10548 * @rxqs: the number of RX subqueues to allocate
10549 *
10550 * Allocates a struct net_device with private data area for driver use
10551 * and performs basic initialization. Also allocates subqueue structs
10552 * for each queue on the device.
10553 */
10554struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10555 unsigned char name_assign_type,
10556 void (*setup)(struct net_device *),
10557 unsigned int txqs, unsigned int rxqs)
10558{
10559 struct net_device *dev;
10560 unsigned int alloc_size;
10561 struct net_device *p;
10562
10563 BUG_ON(strlen(name) >= sizeof(dev->name));
10564
10565 if (txqs < 1) {
10566 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10567 return NULL;
10568 }
10569
10570 if (rxqs < 1) {
10571 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10572 return NULL;
10573 }
10574
10575 alloc_size = sizeof(struct net_device);
10576 if (sizeof_priv) {
10577 /* ensure 32-byte alignment of private area */
10578 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10579 alloc_size += sizeof_priv;
10580 }
10581 /* ensure 32-byte alignment of whole construct */
10582 alloc_size += NETDEV_ALIGN - 1;
10583
10584 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10585 if (!p)
10586 return NULL;
10587
10588 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10589 dev->padded = (char *)dev - (char *)p;
10590
10591 ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10592#ifdef CONFIG_PCPU_DEV_REFCNT
10593 dev->pcpu_refcnt = alloc_percpu(int);
10594 if (!dev->pcpu_refcnt)
10595 goto free_dev;
10596 __dev_hold(dev);
10597#else
10598 refcount_set(&dev->dev_refcnt, 1);
10599#endif
10600
10601 if (dev_addr_init(dev))
10602 goto free_pcpu;
10603
10604 dev_mc_init(dev);
10605 dev_uc_init(dev);
10606
10607 dev_net_set(dev, &init_net);
10608
10609 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10610 dev->gso_max_segs = GSO_MAX_SEGS;
10611 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10612 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10613 dev->tso_max_segs = TSO_MAX_SEGS;
10614 dev->upper_level = 1;
10615 dev->lower_level = 1;
10616#ifdef CONFIG_LOCKDEP
10617 dev->nested_level = 0;
10618 INIT_LIST_HEAD(&dev->unlink_list);
10619#endif
10620
10621 INIT_LIST_HEAD(&dev->napi_list);
10622 INIT_LIST_HEAD(&dev->unreg_list);
10623 INIT_LIST_HEAD(&dev->close_list);
10624 INIT_LIST_HEAD(&dev->link_watch_list);
10625 INIT_LIST_HEAD(&dev->adj_list.upper);
10626 INIT_LIST_HEAD(&dev->adj_list.lower);
10627 INIT_LIST_HEAD(&dev->ptype_all);
10628 INIT_LIST_HEAD(&dev->ptype_specific);
10629 INIT_LIST_HEAD(&dev->net_notifier_list);
10630#ifdef CONFIG_NET_SCHED
10631 hash_init(dev->qdisc_hash);
10632#endif
10633 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10634 setup(dev);
10635
10636 if (!dev->tx_queue_len) {
10637 dev->priv_flags |= IFF_NO_QUEUE;
10638 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10639 }
10640
10641 dev->num_tx_queues = txqs;
10642 dev->real_num_tx_queues = txqs;
10643 if (netif_alloc_netdev_queues(dev))
10644 goto free_all;
10645
10646 dev->num_rx_queues = rxqs;
10647 dev->real_num_rx_queues = rxqs;
10648 if (netif_alloc_rx_queues(dev))
10649 goto free_all;
10650
10651 strcpy(dev->name, name);
10652 dev->name_assign_type = name_assign_type;
10653 dev->group = INIT_NETDEV_GROUP;
10654 if (!dev->ethtool_ops)
10655 dev->ethtool_ops = &default_ethtool_ops;
10656
10657 nf_hook_netdev_init(dev);
10658
10659 return dev;
10660
10661free_all:
10662 free_netdev(dev);
10663 return NULL;
10664
10665free_pcpu:
10666#ifdef CONFIG_PCPU_DEV_REFCNT
10667 free_percpu(dev->pcpu_refcnt);
10668free_dev:
10669#endif
10670 netdev_freemem(dev);
10671 return NULL;
10672}
10673EXPORT_SYMBOL(alloc_netdev_mqs);
10674
10675/**
10676 * free_netdev - free network device
10677 * @dev: device
10678 *
10679 * This function does the last stage of destroying an allocated device
10680 * interface. The reference to the device object is released. If this
10681 * is the last reference then it will be freed.Must be called in process
10682 * context.
10683 */
10684void free_netdev(struct net_device *dev)
10685{
10686 struct napi_struct *p, *n;
10687
10688 might_sleep();
10689
10690 /* When called immediately after register_netdevice() failed the unwind
10691 * handling may still be dismantling the device. Handle that case by
10692 * deferring the free.
10693 */
10694 if (dev->reg_state == NETREG_UNREGISTERING) {
10695 ASSERT_RTNL();
10696 dev->needs_free_netdev = true;
10697 return;
10698 }
10699
10700 netif_free_tx_queues(dev);
10701 netif_free_rx_queues(dev);
10702
10703 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10704
10705 /* Flush device addresses */
10706 dev_addr_flush(dev);
10707
10708 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10709 netif_napi_del(p);
10710
10711 ref_tracker_dir_exit(&dev->refcnt_tracker);
10712#ifdef CONFIG_PCPU_DEV_REFCNT
10713 free_percpu(dev->pcpu_refcnt);
10714 dev->pcpu_refcnt = NULL;
10715#endif
10716 free_percpu(dev->core_stats);
10717 dev->core_stats = NULL;
10718 free_percpu(dev->xdp_bulkq);
10719 dev->xdp_bulkq = NULL;
10720
10721 /* Compatibility with error handling in drivers */
10722 if (dev->reg_state == NETREG_UNINITIALIZED) {
10723 netdev_freemem(dev);
10724 return;
10725 }
10726
10727 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10728 dev->reg_state = NETREG_RELEASED;
10729
10730 /* will free via device release */
10731 put_device(&dev->dev);
10732}
10733EXPORT_SYMBOL(free_netdev);
10734
10735/**
10736 * synchronize_net - Synchronize with packet receive processing
10737 *
10738 * Wait for packets currently being received to be done.
10739 * Does not block later packets from starting.
10740 */
10741void synchronize_net(void)
10742{
10743 might_sleep();
10744 if (rtnl_is_locked())
10745 synchronize_rcu_expedited();
10746 else
10747 synchronize_rcu();
10748}
10749EXPORT_SYMBOL(synchronize_net);
10750
10751/**
10752 * unregister_netdevice_queue - remove device from the kernel
10753 * @dev: device
10754 * @head: list
10755 *
10756 * This function shuts down a device interface and removes it
10757 * from the kernel tables.
10758 * If head not NULL, device is queued to be unregistered later.
10759 *
10760 * Callers must hold the rtnl semaphore. You may want
10761 * unregister_netdev() instead of this.
10762 */
10763
10764void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10765{
10766 ASSERT_RTNL();
10767
10768 if (head) {
10769 list_move_tail(&dev->unreg_list, head);
10770 } else {
10771 LIST_HEAD(single);
10772
10773 list_add(&dev->unreg_list, &single);
10774 unregister_netdevice_many(&single);
10775 }
10776}
10777EXPORT_SYMBOL(unregister_netdevice_queue);
10778
10779/**
10780 * unregister_netdevice_many - unregister many devices
10781 * @head: list of devices
10782 *
10783 * Note: As most callers use a stack allocated list_head,
10784 * we force a list_del() to make sure stack wont be corrupted later.
10785 */
10786void unregister_netdevice_many(struct list_head *head)
10787{
10788 struct net_device *dev, *tmp;
10789 LIST_HEAD(close_head);
10790
10791 BUG_ON(dev_boot_phase);
10792 ASSERT_RTNL();
10793
10794 if (list_empty(head))
10795 return;
10796
10797 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10798 /* Some devices call without registering
10799 * for initialization unwind. Remove those
10800 * devices and proceed with the remaining.
10801 */
10802 if (dev->reg_state == NETREG_UNINITIALIZED) {
10803 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10804 dev->name, dev);
10805
10806 WARN_ON(1);
10807 list_del(&dev->unreg_list);
10808 continue;
10809 }
10810 dev->dismantle = true;
10811 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10812 }
10813
10814 /* If device is running, close it first. */
10815 list_for_each_entry(dev, head, unreg_list)
10816 list_add_tail(&dev->close_list, &close_head);
10817 dev_close_many(&close_head, true);
10818
10819 list_for_each_entry(dev, head, unreg_list) {
10820 /* And unlink it from device chain. */
10821 write_lock(&dev_base_lock);
10822 unlist_netdevice(dev, false);
10823 dev->reg_state = NETREG_UNREGISTERING;
10824 write_unlock(&dev_base_lock);
10825 }
10826 flush_all_backlogs();
10827
10828 synchronize_net();
10829
10830 list_for_each_entry(dev, head, unreg_list) {
10831 struct sk_buff *skb = NULL;
10832
10833 /* Shutdown queueing discipline. */
10834 dev_shutdown(dev);
10835
10836 dev_xdp_uninstall(dev);
10837
10838 netdev_offload_xstats_disable_all(dev);
10839
10840 /* Notify protocols, that we are about to destroy
10841 * this device. They should clean all the things.
10842 */
10843 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10844
10845 if (!dev->rtnl_link_ops ||
10846 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10847 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10848 GFP_KERNEL, NULL, 0);
10849
10850 /*
10851 * Flush the unicast and multicast chains
10852 */
10853 dev_uc_flush(dev);
10854 dev_mc_flush(dev);
10855
10856 netdev_name_node_alt_flush(dev);
10857 netdev_name_node_free(dev->name_node);
10858
10859 if (dev->netdev_ops->ndo_uninit)
10860 dev->netdev_ops->ndo_uninit(dev);
10861
10862 if (skb)
10863 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10864
10865 /* Notifier chain MUST detach us all upper devices. */
10866 WARN_ON(netdev_has_any_upper_dev(dev));
10867 WARN_ON(netdev_has_any_lower_dev(dev));
10868
10869 /* Remove entries from kobject tree */
10870 netdev_unregister_kobject(dev);
10871#ifdef CONFIG_XPS
10872 /* Remove XPS queueing entries */
10873 netif_reset_xps_queues_gt(dev, 0);
10874#endif
10875 }
10876
10877 synchronize_net();
10878
10879 list_for_each_entry(dev, head, unreg_list) {
10880 netdev_put(dev, &dev->dev_registered_tracker);
10881 net_set_todo(dev);
10882 }
10883
10884 list_del(head);
10885}
10886EXPORT_SYMBOL(unregister_netdevice_many);
10887
10888/**
10889 * unregister_netdev - remove device from the kernel
10890 * @dev: device
10891 *
10892 * This function shuts down a device interface and removes it
10893 * from the kernel tables.
10894 *
10895 * This is just a wrapper for unregister_netdevice that takes
10896 * the rtnl semaphore. In general you want to use this and not
10897 * unregister_netdevice.
10898 */
10899void unregister_netdev(struct net_device *dev)
10900{
10901 rtnl_lock();
10902 unregister_netdevice(dev);
10903 rtnl_unlock();
10904}
10905EXPORT_SYMBOL(unregister_netdev);
10906
10907/**
10908 * __dev_change_net_namespace - move device to different nethost namespace
10909 * @dev: device
10910 * @net: network namespace
10911 * @pat: If not NULL name pattern to try if the current device name
10912 * is already taken in the destination network namespace.
10913 * @new_ifindex: If not zero, specifies device index in the target
10914 * namespace.
10915 *
10916 * This function shuts down a device interface and moves it
10917 * to a new network namespace. On success 0 is returned, on
10918 * a failure a netagive errno code is returned.
10919 *
10920 * Callers must hold the rtnl semaphore.
10921 */
10922
10923int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10924 const char *pat, int new_ifindex)
10925{
10926 struct net *net_old = dev_net(dev);
10927 int err, new_nsid;
10928
10929 ASSERT_RTNL();
10930
10931 /* Don't allow namespace local devices to be moved. */
10932 err = -EINVAL;
10933 if (dev->features & NETIF_F_NETNS_LOCAL)
10934 goto out;
10935
10936 /* Ensure the device has been registrered */
10937 if (dev->reg_state != NETREG_REGISTERED)
10938 goto out;
10939
10940 /* Get out if there is nothing todo */
10941 err = 0;
10942 if (net_eq(net_old, net))
10943 goto out;
10944
10945 /* Pick the destination device name, and ensure
10946 * we can use it in the destination network namespace.
10947 */
10948 err = -EEXIST;
10949 if (netdev_name_in_use(net, dev->name)) {
10950 /* We get here if we can't use the current device name */
10951 if (!pat)
10952 goto out;
10953 err = dev_get_valid_name(net, dev, pat);
10954 if (err < 0)
10955 goto out;
10956 }
10957
10958 /* Check that new_ifindex isn't used yet. */
10959 err = -EBUSY;
10960 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10961 goto out;
10962
10963 /*
10964 * And now a mini version of register_netdevice unregister_netdevice.
10965 */
10966
10967 /* If device is running close it first. */
10968 dev_close(dev);
10969
10970 /* And unlink it from device chain */
10971 unlist_netdevice(dev, true);
10972
10973 synchronize_net();
10974
10975 /* Shutdown queueing discipline. */
10976 dev_shutdown(dev);
10977
10978 /* Notify protocols, that we are about to destroy
10979 * this device. They should clean all the things.
10980 *
10981 * Note that dev->reg_state stays at NETREG_REGISTERED.
10982 * This is wanted because this way 8021q and macvlan know
10983 * the device is just moving and can keep their slaves up.
10984 */
10985 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10986 rcu_barrier();
10987
10988 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10989 /* If there is an ifindex conflict assign a new one */
10990 if (!new_ifindex) {
10991 if (__dev_get_by_index(net, dev->ifindex))
10992 new_ifindex = dev_new_index(net);
10993 else
10994 new_ifindex = dev->ifindex;
10995 }
10996
10997 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10998 new_ifindex);
10999
11000 /*
11001 * Flush the unicast and multicast chains
11002 */
11003 dev_uc_flush(dev);
11004 dev_mc_flush(dev);
11005
11006 /* Send a netdev-removed uevent to the old namespace */
11007 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11008 netdev_adjacent_del_links(dev);
11009
11010 /* Move per-net netdevice notifiers that are following the netdevice */
11011 move_netdevice_notifiers_dev_net(dev, net);
11012
11013 /* Actually switch the network namespace */
11014 dev_net_set(dev, net);
11015 dev->ifindex = new_ifindex;
11016
11017 /* Send a netdev-add uevent to the new namespace */
11018 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11019 netdev_adjacent_add_links(dev);
11020
11021 /* Fixup kobjects */
11022 err = device_rename(&dev->dev, dev->name);
11023 WARN_ON(err);
11024
11025 /* Adapt owner in case owning user namespace of target network
11026 * namespace is different from the original one.
11027 */
11028 err = netdev_change_owner(dev, net_old, net);
11029 WARN_ON(err);
11030
11031 /* Add the device back in the hashes */
11032 list_netdevice(dev);
11033
11034 /* Notify protocols, that a new device appeared. */
11035 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11036
11037 /*
11038 * Prevent userspace races by waiting until the network
11039 * device is fully setup before sending notifications.
11040 */
11041 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11042
11043 synchronize_net();
11044 err = 0;
11045out:
11046 return err;
11047}
11048EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11049
11050static int dev_cpu_dead(unsigned int oldcpu)
11051{
11052 struct sk_buff **list_skb;
11053 struct sk_buff *skb;
11054 unsigned int cpu;
11055 struct softnet_data *sd, *oldsd, *remsd = NULL;
11056
11057 local_irq_disable();
11058 cpu = smp_processor_id();
11059 sd = &per_cpu(softnet_data, cpu);
11060 oldsd = &per_cpu(softnet_data, oldcpu);
11061
11062 /* Find end of our completion_queue. */
11063 list_skb = &sd->completion_queue;
11064 while (*list_skb)
11065 list_skb = &(*list_skb)->next;
11066 /* Append completion queue from offline CPU. */
11067 *list_skb = oldsd->completion_queue;
11068 oldsd->completion_queue = NULL;
11069
11070 /* Append output queue from offline CPU. */
11071 if (oldsd->output_queue) {
11072 *sd->output_queue_tailp = oldsd->output_queue;
11073 sd->output_queue_tailp = oldsd->output_queue_tailp;
11074 oldsd->output_queue = NULL;
11075 oldsd->output_queue_tailp = &oldsd->output_queue;
11076 }
11077 /* Append NAPI poll list from offline CPU, with one exception :
11078 * process_backlog() must be called by cpu owning percpu backlog.
11079 * We properly handle process_queue & input_pkt_queue later.
11080 */
11081 while (!list_empty(&oldsd->poll_list)) {
11082 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11083 struct napi_struct,
11084 poll_list);
11085
11086 list_del_init(&napi->poll_list);
11087 if (napi->poll == process_backlog)
11088 napi->state = 0;
11089 else
11090 ____napi_schedule(sd, napi);
11091 }
11092
11093 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11094 local_irq_enable();
11095
11096#ifdef CONFIG_RPS
11097 remsd = oldsd->rps_ipi_list;
11098 oldsd->rps_ipi_list = NULL;
11099#endif
11100 /* send out pending IPI's on offline CPU */
11101 net_rps_send_ipi(remsd);
11102
11103 /* Process offline CPU's input_pkt_queue */
11104 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11105 netif_rx(skb);
11106 input_queue_head_incr(oldsd);
11107 }
11108 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11109 netif_rx(skb);
11110 input_queue_head_incr(oldsd);
11111 }
11112
11113 return 0;
11114}
11115
11116/**
11117 * netdev_increment_features - increment feature set by one
11118 * @all: current feature set
11119 * @one: new feature set
11120 * @mask: mask feature set
11121 *
11122 * Computes a new feature set after adding a device with feature set
11123 * @one to the master device with current feature set @all. Will not
11124 * enable anything that is off in @mask. Returns the new feature set.
11125 */
11126netdev_features_t netdev_increment_features(netdev_features_t all,
11127 netdev_features_t one, netdev_features_t mask)
11128{
11129 if (mask & NETIF_F_HW_CSUM)
11130 mask |= NETIF_F_CSUM_MASK;
11131 mask |= NETIF_F_VLAN_CHALLENGED;
11132
11133 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11134 all &= one | ~NETIF_F_ALL_FOR_ALL;
11135
11136 /* If one device supports hw checksumming, set for all. */
11137 if (all & NETIF_F_HW_CSUM)
11138 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11139
11140 return all;
11141}
11142EXPORT_SYMBOL(netdev_increment_features);
11143
11144static struct hlist_head * __net_init netdev_create_hash(void)
11145{
11146 int i;
11147 struct hlist_head *hash;
11148
11149 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11150 if (hash != NULL)
11151 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11152 INIT_HLIST_HEAD(&hash[i]);
11153
11154 return hash;
11155}
11156
11157/* Initialize per network namespace state */
11158static int __net_init netdev_init(struct net *net)
11159{
11160 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11161 8 * sizeof_field(struct napi_struct, gro_bitmask));
11162
11163 INIT_LIST_HEAD(&net->dev_base_head);
11164
11165 net->dev_name_head = netdev_create_hash();
11166 if (net->dev_name_head == NULL)
11167 goto err_name;
11168
11169 net->dev_index_head = netdev_create_hash();
11170 if (net->dev_index_head == NULL)
11171 goto err_idx;
11172
11173 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11174
11175 return 0;
11176
11177err_idx:
11178 kfree(net->dev_name_head);
11179err_name:
11180 return -ENOMEM;
11181}
11182
11183/**
11184 * netdev_drivername - network driver for the device
11185 * @dev: network device
11186 *
11187 * Determine network driver for device.
11188 */
11189const char *netdev_drivername(const struct net_device *dev)
11190{
11191 const struct device_driver *driver;
11192 const struct device *parent;
11193 const char *empty = "";
11194
11195 parent = dev->dev.parent;
11196 if (!parent)
11197 return empty;
11198
11199 driver = parent->driver;
11200 if (driver && driver->name)
11201 return driver->name;
11202 return empty;
11203}
11204
11205static void __netdev_printk(const char *level, const struct net_device *dev,
11206 struct va_format *vaf)
11207{
11208 if (dev && dev->dev.parent) {
11209 dev_printk_emit(level[1] - '0',
11210 dev->dev.parent,
11211 "%s %s %s%s: %pV",
11212 dev_driver_string(dev->dev.parent),
11213 dev_name(dev->dev.parent),
11214 netdev_name(dev), netdev_reg_state(dev),
11215 vaf);
11216 } else if (dev) {
11217 printk("%s%s%s: %pV",
11218 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11219 } else {
11220 printk("%s(NULL net_device): %pV", level, vaf);
11221 }
11222}
11223
11224void netdev_printk(const char *level, const struct net_device *dev,
11225 const char *format, ...)
11226{
11227 struct va_format vaf;
11228 va_list args;
11229
11230 va_start(args, format);
11231
11232 vaf.fmt = format;
11233 vaf.va = &args;
11234
11235 __netdev_printk(level, dev, &vaf);
11236
11237 va_end(args);
11238}
11239EXPORT_SYMBOL(netdev_printk);
11240
11241#define define_netdev_printk_level(func, level) \
11242void func(const struct net_device *dev, const char *fmt, ...) \
11243{ \
11244 struct va_format vaf; \
11245 va_list args; \
11246 \
11247 va_start(args, fmt); \
11248 \
11249 vaf.fmt = fmt; \
11250 vaf.va = &args; \
11251 \
11252 __netdev_printk(level, dev, &vaf); \
11253 \
11254 va_end(args); \
11255} \
11256EXPORT_SYMBOL(func);
11257
11258define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11259define_netdev_printk_level(netdev_alert, KERN_ALERT);
11260define_netdev_printk_level(netdev_crit, KERN_CRIT);
11261define_netdev_printk_level(netdev_err, KERN_ERR);
11262define_netdev_printk_level(netdev_warn, KERN_WARNING);
11263define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11264define_netdev_printk_level(netdev_info, KERN_INFO);
11265
11266static void __net_exit netdev_exit(struct net *net)
11267{
11268 kfree(net->dev_name_head);
11269 kfree(net->dev_index_head);
11270 if (net != &init_net)
11271 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11272}
11273
11274static struct pernet_operations __net_initdata netdev_net_ops = {
11275 .init = netdev_init,
11276 .exit = netdev_exit,
11277};
11278
11279static void __net_exit default_device_exit_net(struct net *net)
11280{
11281 struct net_device *dev, *aux;
11282 /*
11283 * Push all migratable network devices back to the
11284 * initial network namespace
11285 */
11286 ASSERT_RTNL();
11287 for_each_netdev_safe(net, dev, aux) {
11288 int err;
11289 char fb_name[IFNAMSIZ];
11290
11291 /* Ignore unmoveable devices (i.e. loopback) */
11292 if (dev->features & NETIF_F_NETNS_LOCAL)
11293 continue;
11294
11295 /* Leave virtual devices for the generic cleanup */
11296 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11297 continue;
11298
11299 /* Push remaining network devices to init_net */
11300 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11301 if (netdev_name_in_use(&init_net, fb_name))
11302 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11303 err = dev_change_net_namespace(dev, &init_net, fb_name);
11304 if (err) {
11305 pr_emerg("%s: failed to move %s to init_net: %d\n",
11306 __func__, dev->name, err);
11307 BUG();
11308 }
11309 }
11310}
11311
11312static void __net_exit default_device_exit_batch(struct list_head *net_list)
11313{
11314 /* At exit all network devices most be removed from a network
11315 * namespace. Do this in the reverse order of registration.
11316 * Do this across as many network namespaces as possible to
11317 * improve batching efficiency.
11318 */
11319 struct net_device *dev;
11320 struct net *net;
11321 LIST_HEAD(dev_kill_list);
11322
11323 rtnl_lock();
11324 list_for_each_entry(net, net_list, exit_list) {
11325 default_device_exit_net(net);
11326 cond_resched();
11327 }
11328
11329 list_for_each_entry(net, net_list, exit_list) {
11330 for_each_netdev_reverse(net, dev) {
11331 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11332 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11333 else
11334 unregister_netdevice_queue(dev, &dev_kill_list);
11335 }
11336 }
11337 unregister_netdevice_many(&dev_kill_list);
11338 rtnl_unlock();
11339}
11340
11341static struct pernet_operations __net_initdata default_device_ops = {
11342 .exit_batch = default_device_exit_batch,
11343};
11344
11345/*
11346 * Initialize the DEV module. At boot time this walks the device list and
11347 * unhooks any devices that fail to initialise (normally hardware not
11348 * present) and leaves us with a valid list of present and active devices.
11349 *
11350 */
11351
11352/*
11353 * This is called single threaded during boot, so no need
11354 * to take the rtnl semaphore.
11355 */
11356static int __init net_dev_init(void)
11357{
11358 int i, rc = -ENOMEM;
11359
11360 BUG_ON(!dev_boot_phase);
11361
11362 if (dev_proc_init())
11363 goto out;
11364
11365 if (netdev_kobject_init())
11366 goto out;
11367
11368 INIT_LIST_HEAD(&ptype_all);
11369 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11370 INIT_LIST_HEAD(&ptype_base[i]);
11371
11372 if (register_pernet_subsys(&netdev_net_ops))
11373 goto out;
11374
11375 /*
11376 * Initialise the packet receive queues.
11377 */
11378
11379 for_each_possible_cpu(i) {
11380 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11381 struct softnet_data *sd = &per_cpu(softnet_data, i);
11382
11383 INIT_WORK(flush, flush_backlog);
11384
11385 skb_queue_head_init(&sd->input_pkt_queue);
11386 skb_queue_head_init(&sd->process_queue);
11387#ifdef CONFIG_XFRM_OFFLOAD
11388 skb_queue_head_init(&sd->xfrm_backlog);
11389#endif
11390 INIT_LIST_HEAD(&sd->poll_list);
11391 sd->output_queue_tailp = &sd->output_queue;
11392#ifdef CONFIG_RPS
11393 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11394 sd->cpu = i;
11395#endif
11396 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11397 spin_lock_init(&sd->defer_lock);
11398
11399 init_gro_hash(&sd->backlog);
11400 sd->backlog.poll = process_backlog;
11401 sd->backlog.weight = weight_p;
11402 }
11403
11404 dev_boot_phase = 0;
11405
11406 /* The loopback device is special if any other network devices
11407 * is present in a network namespace the loopback device must
11408 * be present. Since we now dynamically allocate and free the
11409 * loopback device ensure this invariant is maintained by
11410 * keeping the loopback device as the first device on the
11411 * list of network devices. Ensuring the loopback devices
11412 * is the first device that appears and the last network device
11413 * that disappears.
11414 */
11415 if (register_pernet_device(&loopback_net_ops))
11416 goto out;
11417
11418 if (register_pernet_device(&default_device_ops))
11419 goto out;
11420
11421 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11422 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11423
11424 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11425 NULL, dev_cpu_dead);
11426 WARN_ON(rc < 0);
11427 rc = 0;
11428out:
11429 return rc;
11430}
11431
11432subsys_initcall(net_dev_init);