at v6.0 146 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <gw4pts@gw4pts.ampr.org> 7 * Florian La Roche, <rzsfl@rz.uni-sb.de> 8 */ 9 10#ifndef _LINUX_SKBUFF_H 11#define _LINUX_SKBUFF_H 12 13#include <linux/kernel.h> 14#include <linux/compiler.h> 15#include <linux/time.h> 16#include <linux/bug.h> 17#include <linux/bvec.h> 18#include <linux/cache.h> 19#include <linux/rbtree.h> 20#include <linux/socket.h> 21#include <linux/refcount.h> 22 23#include <linux/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <linux/net.h> 27#include <linux/textsearch.h> 28#include <net/checksum.h> 29#include <linux/rcupdate.h> 30#include <linux/hrtimer.h> 31#include <linux/dma-mapping.h> 32#include <linux/netdev_features.h> 33#include <linux/sched.h> 34#include <linux/sched/clock.h> 35#include <net/flow_dissector.h> 36#include <linux/splice.h> 37#include <linux/in6.h> 38#include <linux/if_packet.h> 39#include <linux/llist.h> 40#include <net/flow.h> 41#include <net/page_pool.h> 42#if IS_ENABLED(CONFIG_NF_CONNTRACK) 43#include <linux/netfilter/nf_conntrack_common.h> 44#endif 45#include <net/net_debug.h> 46#include <net/dropreason.h> 47 48/** 49 * DOC: skb checksums 50 * 51 * The interface for checksum offload between the stack and networking drivers 52 * is as follows... 53 * 54 * IP checksum related features 55 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 56 * 57 * Drivers advertise checksum offload capabilities in the features of a device. 58 * From the stack's point of view these are capabilities offered by the driver. 59 * A driver typically only advertises features that it is capable of offloading 60 * to its device. 61 * 62 * .. flat-table:: Checksum related device features 63 * :widths: 1 10 64 * 65 * * - %NETIF_F_HW_CSUM 66 * - The driver (or its device) is able to compute one 67 * IP (one's complement) checksum for any combination 68 * of protocols or protocol layering. The checksum is 69 * computed and set in a packet per the CHECKSUM_PARTIAL 70 * interface (see below). 71 * 72 * * - %NETIF_F_IP_CSUM 73 * - Driver (device) is only able to checksum plain 74 * TCP or UDP packets over IPv4. These are specifically 75 * unencapsulated packets of the form IPv4|TCP or 76 * IPv4|UDP where the Protocol field in the IPv4 header 77 * is TCP or UDP. The IPv4 header may contain IP options. 78 * This feature cannot be set in features for a device 79 * with NETIF_F_HW_CSUM also set. This feature is being 80 * DEPRECATED (see below). 81 * 82 * * - %NETIF_F_IPV6_CSUM 83 * - Driver (device) is only able to checksum plain 84 * TCP or UDP packets over IPv6. These are specifically 85 * unencapsulated packets of the form IPv6|TCP or 86 * IPv6|UDP where the Next Header field in the IPv6 87 * header is either TCP or UDP. IPv6 extension headers 88 * are not supported with this feature. This feature 89 * cannot be set in features for a device with 90 * NETIF_F_HW_CSUM also set. This feature is being 91 * DEPRECATED (see below). 92 * 93 * * - %NETIF_F_RXCSUM 94 * - Driver (device) performs receive checksum offload. 95 * This flag is only used to disable the RX checksum 96 * feature for a device. The stack will accept receive 97 * checksum indication in packets received on a device 98 * regardless of whether NETIF_F_RXCSUM is set. 99 * 100 * Checksumming of received packets by device 101 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 102 * 103 * Indication of checksum verification is set in &sk_buff.ip_summed. 104 * Possible values are: 105 * 106 * - %CHECKSUM_NONE 107 * 108 * Device did not checksum this packet e.g. due to lack of capabilities. 109 * The packet contains full (though not verified) checksum in packet but 110 * not in skb->csum. Thus, skb->csum is undefined in this case. 111 * 112 * - %CHECKSUM_UNNECESSARY 113 * 114 * The hardware you're dealing with doesn't calculate the full checksum 115 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 116 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 117 * if their checksums are okay. &sk_buff.csum is still undefined in this case 118 * though. A driver or device must never modify the checksum field in the 119 * packet even if checksum is verified. 120 * 121 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 122 * 123 * - TCP: IPv6 and IPv4. 124 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 125 * zero UDP checksum for either IPv4 or IPv6, the networking stack 126 * may perform further validation in this case. 127 * - GRE: only if the checksum is present in the header. 128 * - SCTP: indicates the CRC in SCTP header has been validated. 129 * - FCOE: indicates the CRC in FC frame has been validated. 130 * 131 * &sk_buff.csum_level indicates the number of consecutive checksums found in 132 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 133 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 134 * and a device is able to verify the checksums for UDP (possibly zero), 135 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 136 * two. If the device were only able to verify the UDP checksum and not 137 * GRE, either because it doesn't support GRE checksum or because GRE 138 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 139 * not considered in this case). 140 * 141 * - %CHECKSUM_COMPLETE 142 * 143 * This is the most generic way. The device supplied checksum of the _whole_ 144 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 145 * hardware doesn't need to parse L3/L4 headers to implement this. 146 * 147 * Notes: 148 * 149 * - Even if device supports only some protocols, but is able to produce 150 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 151 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 152 * 153 * - %CHECKSUM_PARTIAL 154 * 155 * A checksum is set up to be offloaded to a device as described in the 156 * output description for CHECKSUM_PARTIAL. This may occur on a packet 157 * received directly from another Linux OS, e.g., a virtualized Linux kernel 158 * on the same host, or it may be set in the input path in GRO or remote 159 * checksum offload. For the purposes of checksum verification, the checksum 160 * referred to by skb->csum_start + skb->csum_offset and any preceding 161 * checksums in the packet are considered verified. Any checksums in the 162 * packet that are after the checksum being offloaded are not considered to 163 * be verified. 164 * 165 * Checksumming on transmit for non-GSO 166 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 167 * 168 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 169 * Values are: 170 * 171 * - %CHECKSUM_PARTIAL 172 * 173 * The driver is required to checksum the packet as seen by hard_start_xmit() 174 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 175 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 176 * A driver may verify that the 177 * csum_start and csum_offset values are valid values given the length and 178 * offset of the packet, but it should not attempt to validate that the 179 * checksum refers to a legitimate transport layer checksum -- it is the 180 * purview of the stack to validate that csum_start and csum_offset are set 181 * correctly. 182 * 183 * When the stack requests checksum offload for a packet, the driver MUST 184 * ensure that the checksum is set correctly. A driver can either offload the 185 * checksum calculation to the device, or call skb_checksum_help (in the case 186 * that the device does not support offload for a particular checksum). 187 * 188 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 189 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 190 * checksum offload capability. 191 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 192 * on network device checksumming capabilities: if a packet does not match 193 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 194 * &sk_buff.csum_not_inet, see :ref:`crc`) 195 * is called to resolve the checksum. 196 * 197 * - %CHECKSUM_NONE 198 * 199 * The skb was already checksummed by the protocol, or a checksum is not 200 * required. 201 * 202 * - %CHECKSUM_UNNECESSARY 203 * 204 * This has the same meaning as CHECKSUM_NONE for checksum offload on 205 * output. 206 * 207 * - %CHECKSUM_COMPLETE 208 * 209 * Not used in checksum output. If a driver observes a packet with this value 210 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 211 * 212 * .. _crc: 213 * 214 * Non-IP checksum (CRC) offloads 215 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 216 * 217 * .. flat-table:: 218 * :widths: 1 10 219 * 220 * * - %NETIF_F_SCTP_CRC 221 * - This feature indicates that a device is capable of 222 * offloading the SCTP CRC in a packet. To perform this offload the stack 223 * will set csum_start and csum_offset accordingly, set ip_summed to 224 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 225 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 226 * A driver that supports both IP checksum offload and SCTP CRC32c offload 227 * must verify which offload is configured for a packet by testing the 228 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 229 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 230 * 231 * * - %NETIF_F_FCOE_CRC 232 * - This feature indicates that a device is capable of offloading the FCOE 233 * CRC in a packet. To perform this offload the stack will set ip_summed 234 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 235 * accordingly. Note that there is no indication in the skbuff that the 236 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 237 * both IP checksum offload and FCOE CRC offload must verify which offload 238 * is configured for a packet, presumably by inspecting packet headers. 239 * 240 * Checksumming on output with GSO 241 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 242 * 243 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 244 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 245 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 246 * part of the GSO operation is implied. If a checksum is being offloaded 247 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 248 * csum_offset are set to refer to the outermost checksum being offloaded 249 * (two offloaded checksums are possible with UDP encapsulation). 250 */ 251 252/* Don't change this without changing skb_csum_unnecessary! */ 253#define CHECKSUM_NONE 0 254#define CHECKSUM_UNNECESSARY 1 255#define CHECKSUM_COMPLETE 2 256#define CHECKSUM_PARTIAL 3 257 258/* Maximum value in skb->csum_level */ 259#define SKB_MAX_CSUM_LEVEL 3 260 261#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 262#define SKB_WITH_OVERHEAD(X) \ 263 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 264#define SKB_MAX_ORDER(X, ORDER) \ 265 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 266#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 267#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 268 269/* return minimum truesize of one skb containing X bytes of data */ 270#define SKB_TRUESIZE(X) ((X) + \ 271 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 272 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 273 274struct ahash_request; 275struct net_device; 276struct scatterlist; 277struct pipe_inode_info; 278struct iov_iter; 279struct napi_struct; 280struct bpf_prog; 281union bpf_attr; 282struct skb_ext; 283 284#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 285struct nf_bridge_info { 286 enum { 287 BRNF_PROTO_UNCHANGED, 288 BRNF_PROTO_8021Q, 289 BRNF_PROTO_PPPOE 290 } orig_proto:8; 291 u8 pkt_otherhost:1; 292 u8 in_prerouting:1; 293 u8 bridged_dnat:1; 294 __u16 frag_max_size; 295 struct net_device *physindev; 296 297 /* always valid & non-NULL from FORWARD on, for physdev match */ 298 struct net_device *physoutdev; 299 union { 300 /* prerouting: detect dnat in orig/reply direction */ 301 __be32 ipv4_daddr; 302 struct in6_addr ipv6_daddr; 303 304 /* after prerouting + nat detected: store original source 305 * mac since neigh resolution overwrites it, only used while 306 * skb is out in neigh layer. 307 */ 308 char neigh_header[8]; 309 }; 310}; 311#endif 312 313#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 314/* Chain in tc_skb_ext will be used to share the tc chain with 315 * ovs recirc_id. It will be set to the current chain by tc 316 * and read by ovs to recirc_id. 317 */ 318struct tc_skb_ext { 319 __u32 chain; 320 __u16 mru; 321 __u16 zone; 322 u8 post_ct:1; 323 u8 post_ct_snat:1; 324 u8 post_ct_dnat:1; 325}; 326#endif 327 328struct sk_buff_head { 329 /* These two members must be first to match sk_buff. */ 330 struct_group_tagged(sk_buff_list, list, 331 struct sk_buff *next; 332 struct sk_buff *prev; 333 ); 334 335 __u32 qlen; 336 spinlock_t lock; 337}; 338 339struct sk_buff; 340 341/* To allow 64K frame to be packed as single skb without frag_list we 342 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 343 * buffers which do not start on a page boundary. 344 * 345 * Since GRO uses frags we allocate at least 16 regardless of page 346 * size. 347 */ 348#if (65536/PAGE_SIZE + 1) < 16 349#define MAX_SKB_FRAGS 16UL 350#else 351#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 352#endif 353extern int sysctl_max_skb_frags; 354 355/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 356 * segment using its current segmentation instead. 357 */ 358#define GSO_BY_FRAGS 0xFFFF 359 360typedef struct bio_vec skb_frag_t; 361 362/** 363 * skb_frag_size() - Returns the size of a skb fragment 364 * @frag: skb fragment 365 */ 366static inline unsigned int skb_frag_size(const skb_frag_t *frag) 367{ 368 return frag->bv_len; 369} 370 371/** 372 * skb_frag_size_set() - Sets the size of a skb fragment 373 * @frag: skb fragment 374 * @size: size of fragment 375 */ 376static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 377{ 378 frag->bv_len = size; 379} 380 381/** 382 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 383 * @frag: skb fragment 384 * @delta: value to add 385 */ 386static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 387{ 388 frag->bv_len += delta; 389} 390 391/** 392 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 393 * @frag: skb fragment 394 * @delta: value to subtract 395 */ 396static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 397{ 398 frag->bv_len -= delta; 399} 400 401/** 402 * skb_frag_must_loop - Test if %p is a high memory page 403 * @p: fragment's page 404 */ 405static inline bool skb_frag_must_loop(struct page *p) 406{ 407#if defined(CONFIG_HIGHMEM) 408 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 409 return true; 410#endif 411 return false; 412} 413 414/** 415 * skb_frag_foreach_page - loop over pages in a fragment 416 * 417 * @f: skb frag to operate on 418 * @f_off: offset from start of f->bv_page 419 * @f_len: length from f_off to loop over 420 * @p: (temp var) current page 421 * @p_off: (temp var) offset from start of current page, 422 * non-zero only on first page. 423 * @p_len: (temp var) length in current page, 424 * < PAGE_SIZE only on first and last page. 425 * @copied: (temp var) length so far, excluding current p_len. 426 * 427 * A fragment can hold a compound page, in which case per-page 428 * operations, notably kmap_atomic, must be called for each 429 * regular page. 430 */ 431#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 432 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 433 p_off = (f_off) & (PAGE_SIZE - 1), \ 434 p_len = skb_frag_must_loop(p) ? \ 435 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 436 copied = 0; \ 437 copied < f_len; \ 438 copied += p_len, p++, p_off = 0, \ 439 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 440 441#define HAVE_HW_TIME_STAMP 442 443/** 444 * struct skb_shared_hwtstamps - hardware time stamps 445 * @hwtstamp: hardware time stamp transformed into duration 446 * since arbitrary point in time 447 * @netdev_data: address/cookie of network device driver used as 448 * reference to actual hardware time stamp 449 * 450 * Software time stamps generated by ktime_get_real() are stored in 451 * skb->tstamp. 452 * 453 * hwtstamps can only be compared against other hwtstamps from 454 * the same device. 455 * 456 * This structure is attached to packets as part of the 457 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 458 */ 459struct skb_shared_hwtstamps { 460 union { 461 ktime_t hwtstamp; 462 void *netdev_data; 463 }; 464}; 465 466/* Definitions for tx_flags in struct skb_shared_info */ 467enum { 468 /* generate hardware time stamp */ 469 SKBTX_HW_TSTAMP = 1 << 0, 470 471 /* generate software time stamp when queueing packet to NIC */ 472 SKBTX_SW_TSTAMP = 1 << 1, 473 474 /* device driver is going to provide hardware time stamp */ 475 SKBTX_IN_PROGRESS = 1 << 2, 476 477 /* generate hardware time stamp based on cycles if supported */ 478 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 479 480 /* generate wifi status information (where possible) */ 481 SKBTX_WIFI_STATUS = 1 << 4, 482 483 /* determine hardware time stamp based on time or cycles */ 484 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 485 486 /* generate software time stamp when entering packet scheduling */ 487 SKBTX_SCHED_TSTAMP = 1 << 6, 488}; 489 490#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 491 SKBTX_SCHED_TSTAMP) 492#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 493 SKBTX_HW_TSTAMP_USE_CYCLES | \ 494 SKBTX_ANY_SW_TSTAMP) 495 496/* Definitions for flags in struct skb_shared_info */ 497enum { 498 /* use zcopy routines */ 499 SKBFL_ZEROCOPY_ENABLE = BIT(0), 500 501 /* This indicates at least one fragment might be overwritten 502 * (as in vmsplice(), sendfile() ...) 503 * If we need to compute a TX checksum, we'll need to copy 504 * all frags to avoid possible bad checksum 505 */ 506 SKBFL_SHARED_FRAG = BIT(1), 507 508 /* segment contains only zerocopy data and should not be 509 * charged to the kernel memory. 510 */ 511 SKBFL_PURE_ZEROCOPY = BIT(2), 512 513 SKBFL_DONT_ORPHAN = BIT(3), 514 515 /* page references are managed by the ubuf_info, so it's safe to 516 * use frags only up until ubuf_info is released 517 */ 518 SKBFL_MANAGED_FRAG_REFS = BIT(4), 519}; 520 521#define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 522#define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 523 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 524 525/* 526 * The callback notifies userspace to release buffers when skb DMA is done in 527 * lower device, the skb last reference should be 0 when calling this. 528 * The zerocopy_success argument is true if zero copy transmit occurred, 529 * false on data copy or out of memory error caused by data copy attempt. 530 * The ctx field is used to track device context. 531 * The desc field is used to track userspace buffer index. 532 */ 533struct ubuf_info { 534 void (*callback)(struct sk_buff *, struct ubuf_info *, 535 bool zerocopy_success); 536 union { 537 struct { 538 unsigned long desc; 539 void *ctx; 540 }; 541 struct { 542 u32 id; 543 u16 len; 544 u16 zerocopy:1; 545 u32 bytelen; 546 }; 547 }; 548 refcount_t refcnt; 549 u8 flags; 550 551 struct mmpin { 552 struct user_struct *user; 553 unsigned int num_pg; 554 } mmp; 555}; 556 557#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 558 559int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 560void mm_unaccount_pinned_pages(struct mmpin *mmp); 561 562/* This data is invariant across clones and lives at 563 * the end of the header data, ie. at skb->end. 564 */ 565struct skb_shared_info { 566 __u8 flags; 567 __u8 meta_len; 568 __u8 nr_frags; 569 __u8 tx_flags; 570 unsigned short gso_size; 571 /* Warning: this field is not always filled in (UFO)! */ 572 unsigned short gso_segs; 573 struct sk_buff *frag_list; 574 struct skb_shared_hwtstamps hwtstamps; 575 unsigned int gso_type; 576 u32 tskey; 577 578 /* 579 * Warning : all fields before dataref are cleared in __alloc_skb() 580 */ 581 atomic_t dataref; 582 unsigned int xdp_frags_size; 583 584 /* Intermediate layers must ensure that destructor_arg 585 * remains valid until skb destructor */ 586 void * destructor_arg; 587 588 /* must be last field, see pskb_expand_head() */ 589 skb_frag_t frags[MAX_SKB_FRAGS]; 590}; 591 592/** 593 * DOC: dataref and headerless skbs 594 * 595 * Transport layers send out clones of payload skbs they hold for 596 * retransmissions. To allow lower layers of the stack to prepend their headers 597 * we split &skb_shared_info.dataref into two halves. 598 * The lower 16 bits count the overall number of references. 599 * The higher 16 bits indicate how many of the references are payload-only. 600 * skb_header_cloned() checks if skb is allowed to add / write the headers. 601 * 602 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 603 * (via __skb_header_release()). Any clone created from marked skb will get 604 * &sk_buff.hdr_len populated with the available headroom. 605 * If there's the only clone in existence it's able to modify the headroom 606 * at will. The sequence of calls inside the transport layer is:: 607 * 608 * <alloc skb> 609 * skb_reserve() 610 * __skb_header_release() 611 * skb_clone() 612 * // send the clone down the stack 613 * 614 * This is not a very generic construct and it depends on the transport layers 615 * doing the right thing. In practice there's usually only one payload-only skb. 616 * Having multiple payload-only skbs with different lengths of hdr_len is not 617 * possible. The payload-only skbs should never leave their owner. 618 */ 619#define SKB_DATAREF_SHIFT 16 620#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 621 622 623enum { 624 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 625 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 626 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 627}; 628 629enum { 630 SKB_GSO_TCPV4 = 1 << 0, 631 632 /* This indicates the skb is from an untrusted source. */ 633 SKB_GSO_DODGY = 1 << 1, 634 635 /* This indicates the tcp segment has CWR set. */ 636 SKB_GSO_TCP_ECN = 1 << 2, 637 638 SKB_GSO_TCP_FIXEDID = 1 << 3, 639 640 SKB_GSO_TCPV6 = 1 << 4, 641 642 SKB_GSO_FCOE = 1 << 5, 643 644 SKB_GSO_GRE = 1 << 6, 645 646 SKB_GSO_GRE_CSUM = 1 << 7, 647 648 SKB_GSO_IPXIP4 = 1 << 8, 649 650 SKB_GSO_IPXIP6 = 1 << 9, 651 652 SKB_GSO_UDP_TUNNEL = 1 << 10, 653 654 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 655 656 SKB_GSO_PARTIAL = 1 << 12, 657 658 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 659 660 SKB_GSO_SCTP = 1 << 14, 661 662 SKB_GSO_ESP = 1 << 15, 663 664 SKB_GSO_UDP = 1 << 16, 665 666 SKB_GSO_UDP_L4 = 1 << 17, 667 668 SKB_GSO_FRAGLIST = 1 << 18, 669}; 670 671#if BITS_PER_LONG > 32 672#define NET_SKBUFF_DATA_USES_OFFSET 1 673#endif 674 675#ifdef NET_SKBUFF_DATA_USES_OFFSET 676typedef unsigned int sk_buff_data_t; 677#else 678typedef unsigned char *sk_buff_data_t; 679#endif 680 681/** 682 * DOC: Basic sk_buff geometry 683 * 684 * struct sk_buff itself is a metadata structure and does not hold any packet 685 * data. All the data is held in associated buffers. 686 * 687 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 688 * into two parts: 689 * 690 * - data buffer, containing headers and sometimes payload; 691 * this is the part of the skb operated on by the common helpers 692 * such as skb_put() or skb_pull(); 693 * - shared info (struct skb_shared_info) which holds an array of pointers 694 * to read-only data in the (page, offset, length) format. 695 * 696 * Optionally &skb_shared_info.frag_list may point to another skb. 697 * 698 * Basic diagram may look like this:: 699 * 700 * --------------- 701 * | sk_buff | 702 * --------------- 703 * ,--------------------------- + head 704 * / ,----------------- + data 705 * / / ,----------- + tail 706 * | | | , + end 707 * | | | | 708 * v v v v 709 * ----------------------------------------------- 710 * | headroom | data | tailroom | skb_shared_info | 711 * ----------------------------------------------- 712 * + [page frag] 713 * + [page frag] 714 * + [page frag] 715 * + [page frag] --------- 716 * + frag_list --> | sk_buff | 717 * --------- 718 * 719 */ 720 721/** 722 * struct sk_buff - socket buffer 723 * @next: Next buffer in list 724 * @prev: Previous buffer in list 725 * @tstamp: Time we arrived/left 726 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 727 * for retransmit timer 728 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 729 * @list: queue head 730 * @ll_node: anchor in an llist (eg socket defer_list) 731 * @sk: Socket we are owned by 732 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 733 * fragmentation management 734 * @dev: Device we arrived on/are leaving by 735 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 736 * @cb: Control buffer. Free for use by every layer. Put private vars here 737 * @_skb_refdst: destination entry (with norefcount bit) 738 * @sp: the security path, used for xfrm 739 * @len: Length of actual data 740 * @data_len: Data length 741 * @mac_len: Length of link layer header 742 * @hdr_len: writable header length of cloned skb 743 * @csum: Checksum (must include start/offset pair) 744 * @csum_start: Offset from skb->head where checksumming should start 745 * @csum_offset: Offset from csum_start where checksum should be stored 746 * @priority: Packet queueing priority 747 * @ignore_df: allow local fragmentation 748 * @cloned: Head may be cloned (check refcnt to be sure) 749 * @ip_summed: Driver fed us an IP checksum 750 * @nohdr: Payload reference only, must not modify header 751 * @pkt_type: Packet class 752 * @fclone: skbuff clone status 753 * @ipvs_property: skbuff is owned by ipvs 754 * @inner_protocol_type: whether the inner protocol is 755 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 756 * @remcsum_offload: remote checksum offload is enabled 757 * @offload_fwd_mark: Packet was L2-forwarded in hardware 758 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 759 * @tc_skip_classify: do not classify packet. set by IFB device 760 * @tc_at_ingress: used within tc_classify to distinguish in/egress 761 * @redirected: packet was redirected by packet classifier 762 * @from_ingress: packet was redirected from the ingress path 763 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 764 * @peeked: this packet has been seen already, so stats have been 765 * done for it, don't do them again 766 * @nf_trace: netfilter packet trace flag 767 * @protocol: Packet protocol from driver 768 * @destructor: Destruct function 769 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 770 * @_sk_redir: socket redirection information for skmsg 771 * @_nfct: Associated connection, if any (with nfctinfo bits) 772 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 773 * @skb_iif: ifindex of device we arrived on 774 * @tc_index: Traffic control index 775 * @hash: the packet hash 776 * @queue_mapping: Queue mapping for multiqueue devices 777 * @head_frag: skb was allocated from page fragments, 778 * not allocated by kmalloc() or vmalloc(). 779 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 780 * @pp_recycle: mark the packet for recycling instead of freeing (implies 781 * page_pool support on driver) 782 * @active_extensions: active extensions (skb_ext_id types) 783 * @ndisc_nodetype: router type (from link layer) 784 * @ooo_okay: allow the mapping of a socket to a queue to be changed 785 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 786 * ports. 787 * @sw_hash: indicates hash was computed in software stack 788 * @wifi_acked_valid: wifi_acked was set 789 * @wifi_acked: whether frame was acked on wifi or not 790 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 791 * @encapsulation: indicates the inner headers in the skbuff are valid 792 * @encap_hdr_csum: software checksum is needed 793 * @csum_valid: checksum is already valid 794 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 795 * @csum_complete_sw: checksum was completed by software 796 * @csum_level: indicates the number of consecutive checksums found in 797 * the packet minus one that have been verified as 798 * CHECKSUM_UNNECESSARY (max 3) 799 * @dst_pending_confirm: need to confirm neighbour 800 * @decrypted: Decrypted SKB 801 * @slow_gro: state present at GRO time, slower prepare step required 802 * @mono_delivery_time: When set, skb->tstamp has the 803 * delivery_time in mono clock base (i.e. EDT). Otherwise, the 804 * skb->tstamp has the (rcv) timestamp at ingress and 805 * delivery_time at egress. 806 * @napi_id: id of the NAPI struct this skb came from 807 * @sender_cpu: (aka @napi_id) source CPU in XPS 808 * @alloc_cpu: CPU which did the skb allocation. 809 * @secmark: security marking 810 * @mark: Generic packet mark 811 * @reserved_tailroom: (aka @mark) number of bytes of free space available 812 * at the tail of an sk_buff 813 * @vlan_present: VLAN tag is present 814 * @vlan_proto: vlan encapsulation protocol 815 * @vlan_tci: vlan tag control information 816 * @inner_protocol: Protocol (encapsulation) 817 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 818 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 819 * @inner_transport_header: Inner transport layer header (encapsulation) 820 * @inner_network_header: Network layer header (encapsulation) 821 * @inner_mac_header: Link layer header (encapsulation) 822 * @transport_header: Transport layer header 823 * @network_header: Network layer header 824 * @mac_header: Link layer header 825 * @kcov_handle: KCOV remote handle for remote coverage collection 826 * @tail: Tail pointer 827 * @end: End pointer 828 * @head: Head of buffer 829 * @data: Data head pointer 830 * @truesize: Buffer size 831 * @users: User count - see {datagram,tcp}.c 832 * @extensions: allocated extensions, valid if active_extensions is nonzero 833 */ 834 835struct sk_buff { 836 union { 837 struct { 838 /* These two members must be first to match sk_buff_head. */ 839 struct sk_buff *next; 840 struct sk_buff *prev; 841 842 union { 843 struct net_device *dev; 844 /* Some protocols might use this space to store information, 845 * while device pointer would be NULL. 846 * UDP receive path is one user. 847 */ 848 unsigned long dev_scratch; 849 }; 850 }; 851 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 852 struct list_head list; 853 struct llist_node ll_node; 854 }; 855 856 union { 857 struct sock *sk; 858 int ip_defrag_offset; 859 }; 860 861 union { 862 ktime_t tstamp; 863 u64 skb_mstamp_ns; /* earliest departure time */ 864 }; 865 /* 866 * This is the control buffer. It is free to use for every 867 * layer. Please put your private variables there. If you 868 * want to keep them across layers you have to do a skb_clone() 869 * first. This is owned by whoever has the skb queued ATM. 870 */ 871 char cb[48] __aligned(8); 872 873 union { 874 struct { 875 unsigned long _skb_refdst; 876 void (*destructor)(struct sk_buff *skb); 877 }; 878 struct list_head tcp_tsorted_anchor; 879#ifdef CONFIG_NET_SOCK_MSG 880 unsigned long _sk_redir; 881#endif 882 }; 883 884#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 885 unsigned long _nfct; 886#endif 887 unsigned int len, 888 data_len; 889 __u16 mac_len, 890 hdr_len; 891 892 /* Following fields are _not_ copied in __copy_skb_header() 893 * Note that queue_mapping is here mostly to fill a hole. 894 */ 895 __u16 queue_mapping; 896 897/* if you move cloned around you also must adapt those constants */ 898#ifdef __BIG_ENDIAN_BITFIELD 899#define CLONED_MASK (1 << 7) 900#else 901#define CLONED_MASK 1 902#endif 903#define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 904 905 /* private: */ 906 __u8 __cloned_offset[0]; 907 /* public: */ 908 __u8 cloned:1, 909 nohdr:1, 910 fclone:2, 911 peeked:1, 912 head_frag:1, 913 pfmemalloc:1, 914 pp_recycle:1; /* page_pool recycle indicator */ 915#ifdef CONFIG_SKB_EXTENSIONS 916 __u8 active_extensions; 917#endif 918 919 /* Fields enclosed in headers group are copied 920 * using a single memcpy() in __copy_skb_header() 921 */ 922 struct_group(headers, 923 924 /* private: */ 925 __u8 __pkt_type_offset[0]; 926 /* public: */ 927 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 928 __u8 ignore_df:1; 929 __u8 nf_trace:1; 930 __u8 ip_summed:2; 931 __u8 ooo_okay:1; 932 933 __u8 l4_hash:1; 934 __u8 sw_hash:1; 935 __u8 wifi_acked_valid:1; 936 __u8 wifi_acked:1; 937 __u8 no_fcs:1; 938 /* Indicates the inner headers are valid in the skbuff. */ 939 __u8 encapsulation:1; 940 __u8 encap_hdr_csum:1; 941 __u8 csum_valid:1; 942 943 /* private: */ 944 __u8 __pkt_vlan_present_offset[0]; 945 /* public: */ 946 __u8 vlan_present:1; /* See PKT_VLAN_PRESENT_BIT */ 947 __u8 csum_complete_sw:1; 948 __u8 csum_level:2; 949 __u8 dst_pending_confirm:1; 950 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */ 951#ifdef CONFIG_NET_CLS_ACT 952 __u8 tc_skip_classify:1; 953 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 954#endif 955#ifdef CONFIG_IPV6_NDISC_NODETYPE 956 __u8 ndisc_nodetype:2; 957#endif 958 959 __u8 ipvs_property:1; 960 __u8 inner_protocol_type:1; 961 __u8 remcsum_offload:1; 962#ifdef CONFIG_NET_SWITCHDEV 963 __u8 offload_fwd_mark:1; 964 __u8 offload_l3_fwd_mark:1; 965#endif 966 __u8 redirected:1; 967#ifdef CONFIG_NET_REDIRECT 968 __u8 from_ingress:1; 969#endif 970#ifdef CONFIG_NETFILTER_SKIP_EGRESS 971 __u8 nf_skip_egress:1; 972#endif 973#ifdef CONFIG_TLS_DEVICE 974 __u8 decrypted:1; 975#endif 976 __u8 slow_gro:1; 977 __u8 csum_not_inet:1; 978 979#ifdef CONFIG_NET_SCHED 980 __u16 tc_index; /* traffic control index */ 981#endif 982 983 union { 984 __wsum csum; 985 struct { 986 __u16 csum_start; 987 __u16 csum_offset; 988 }; 989 }; 990 __u32 priority; 991 int skb_iif; 992 __u32 hash; 993 __be16 vlan_proto; 994 __u16 vlan_tci; 995#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 996 union { 997 unsigned int napi_id; 998 unsigned int sender_cpu; 999 }; 1000#endif 1001 u16 alloc_cpu; 1002#ifdef CONFIG_NETWORK_SECMARK 1003 __u32 secmark; 1004#endif 1005 1006 union { 1007 __u32 mark; 1008 __u32 reserved_tailroom; 1009 }; 1010 1011 union { 1012 __be16 inner_protocol; 1013 __u8 inner_ipproto; 1014 }; 1015 1016 __u16 inner_transport_header; 1017 __u16 inner_network_header; 1018 __u16 inner_mac_header; 1019 1020 __be16 protocol; 1021 __u16 transport_header; 1022 __u16 network_header; 1023 __u16 mac_header; 1024 1025#ifdef CONFIG_KCOV 1026 u64 kcov_handle; 1027#endif 1028 1029 ); /* end headers group */ 1030 1031 /* These elements must be at the end, see alloc_skb() for details. */ 1032 sk_buff_data_t tail; 1033 sk_buff_data_t end; 1034 unsigned char *head, 1035 *data; 1036 unsigned int truesize; 1037 refcount_t users; 1038 1039#ifdef CONFIG_SKB_EXTENSIONS 1040 /* only useable after checking ->active_extensions != 0 */ 1041 struct skb_ext *extensions; 1042#endif 1043}; 1044 1045/* if you move pkt_type around you also must adapt those constants */ 1046#ifdef __BIG_ENDIAN_BITFIELD 1047#define PKT_TYPE_MAX (7 << 5) 1048#else 1049#define PKT_TYPE_MAX 7 1050#endif 1051#define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1052 1053/* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time 1054 * around, you also must adapt these constants. 1055 */ 1056#ifdef __BIG_ENDIAN_BITFIELD 1057#define PKT_VLAN_PRESENT_BIT 7 1058#define TC_AT_INGRESS_MASK (1 << 0) 1059#define SKB_MONO_DELIVERY_TIME_MASK (1 << 2) 1060#else 1061#define PKT_VLAN_PRESENT_BIT 0 1062#define TC_AT_INGRESS_MASK (1 << 7) 1063#define SKB_MONO_DELIVERY_TIME_MASK (1 << 5) 1064#endif 1065#define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset) 1066 1067#ifdef __KERNEL__ 1068/* 1069 * Handling routines are only of interest to the kernel 1070 */ 1071 1072#define SKB_ALLOC_FCLONE 0x01 1073#define SKB_ALLOC_RX 0x02 1074#define SKB_ALLOC_NAPI 0x04 1075 1076/** 1077 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1078 * @skb: buffer 1079 */ 1080static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1081{ 1082 return unlikely(skb->pfmemalloc); 1083} 1084 1085/* 1086 * skb might have a dst pointer attached, refcounted or not. 1087 * _skb_refdst low order bit is set if refcount was _not_ taken 1088 */ 1089#define SKB_DST_NOREF 1UL 1090#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1091 1092/** 1093 * skb_dst - returns skb dst_entry 1094 * @skb: buffer 1095 * 1096 * Returns skb dst_entry, regardless of reference taken or not. 1097 */ 1098static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1099{ 1100 /* If refdst was not refcounted, check we still are in a 1101 * rcu_read_lock section 1102 */ 1103 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1104 !rcu_read_lock_held() && 1105 !rcu_read_lock_bh_held()); 1106 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1107} 1108 1109/** 1110 * skb_dst_set - sets skb dst 1111 * @skb: buffer 1112 * @dst: dst entry 1113 * 1114 * Sets skb dst, assuming a reference was taken on dst and should 1115 * be released by skb_dst_drop() 1116 */ 1117static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1118{ 1119 skb->slow_gro |= !!dst; 1120 skb->_skb_refdst = (unsigned long)dst; 1121} 1122 1123/** 1124 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1125 * @skb: buffer 1126 * @dst: dst entry 1127 * 1128 * Sets skb dst, assuming a reference was not taken on dst. 1129 * If dst entry is cached, we do not take reference and dst_release 1130 * will be avoided by refdst_drop. If dst entry is not cached, we take 1131 * reference, so that last dst_release can destroy the dst immediately. 1132 */ 1133static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1134{ 1135 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1136 skb->slow_gro |= !!dst; 1137 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1138} 1139 1140/** 1141 * skb_dst_is_noref - Test if skb dst isn't refcounted 1142 * @skb: buffer 1143 */ 1144static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1145{ 1146 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1147} 1148 1149/** 1150 * skb_rtable - Returns the skb &rtable 1151 * @skb: buffer 1152 */ 1153static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1154{ 1155 return (struct rtable *)skb_dst(skb); 1156} 1157 1158/* For mangling skb->pkt_type from user space side from applications 1159 * such as nft, tc, etc, we only allow a conservative subset of 1160 * possible pkt_types to be set. 1161*/ 1162static inline bool skb_pkt_type_ok(u32 ptype) 1163{ 1164 return ptype <= PACKET_OTHERHOST; 1165} 1166 1167/** 1168 * skb_napi_id - Returns the skb's NAPI id 1169 * @skb: buffer 1170 */ 1171static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1172{ 1173#ifdef CONFIG_NET_RX_BUSY_POLL 1174 return skb->napi_id; 1175#else 1176 return 0; 1177#endif 1178} 1179 1180/** 1181 * skb_unref - decrement the skb's reference count 1182 * @skb: buffer 1183 * 1184 * Returns true if we can free the skb. 1185 */ 1186static inline bool skb_unref(struct sk_buff *skb) 1187{ 1188 if (unlikely(!skb)) 1189 return false; 1190 if (likely(refcount_read(&skb->users) == 1)) 1191 smp_rmb(); 1192 else if (likely(!refcount_dec_and_test(&skb->users))) 1193 return false; 1194 1195 return true; 1196} 1197 1198void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); 1199 1200/** 1201 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1202 * @skb: buffer to free 1203 */ 1204static inline void kfree_skb(struct sk_buff *skb) 1205{ 1206 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1207} 1208 1209void skb_release_head_state(struct sk_buff *skb); 1210void kfree_skb_list_reason(struct sk_buff *segs, 1211 enum skb_drop_reason reason); 1212void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1213void skb_tx_error(struct sk_buff *skb); 1214 1215static inline void kfree_skb_list(struct sk_buff *segs) 1216{ 1217 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1218} 1219 1220#ifdef CONFIG_TRACEPOINTS 1221void consume_skb(struct sk_buff *skb); 1222#else 1223static inline void consume_skb(struct sk_buff *skb) 1224{ 1225 return kfree_skb(skb); 1226} 1227#endif 1228 1229void __consume_stateless_skb(struct sk_buff *skb); 1230void __kfree_skb(struct sk_buff *skb); 1231extern struct kmem_cache *skbuff_head_cache; 1232 1233void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1234bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1235 bool *fragstolen, int *delta_truesize); 1236 1237struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1238 int node); 1239struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1240struct sk_buff *build_skb(void *data, unsigned int frag_size); 1241struct sk_buff *build_skb_around(struct sk_buff *skb, 1242 void *data, unsigned int frag_size); 1243void skb_attempt_defer_free(struct sk_buff *skb); 1244 1245struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1246 1247/** 1248 * alloc_skb - allocate a network buffer 1249 * @size: size to allocate 1250 * @priority: allocation mask 1251 * 1252 * This function is a convenient wrapper around __alloc_skb(). 1253 */ 1254static inline struct sk_buff *alloc_skb(unsigned int size, 1255 gfp_t priority) 1256{ 1257 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1258} 1259 1260struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1261 unsigned long data_len, 1262 int max_page_order, 1263 int *errcode, 1264 gfp_t gfp_mask); 1265struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1266 1267/* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1268struct sk_buff_fclones { 1269 struct sk_buff skb1; 1270 1271 struct sk_buff skb2; 1272 1273 refcount_t fclone_ref; 1274}; 1275 1276/** 1277 * skb_fclone_busy - check if fclone is busy 1278 * @sk: socket 1279 * @skb: buffer 1280 * 1281 * Returns true if skb is a fast clone, and its clone is not freed. 1282 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1283 * so we also check that this didnt happen. 1284 */ 1285static inline bool skb_fclone_busy(const struct sock *sk, 1286 const struct sk_buff *skb) 1287{ 1288 const struct sk_buff_fclones *fclones; 1289 1290 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1291 1292 return skb->fclone == SKB_FCLONE_ORIG && 1293 refcount_read(&fclones->fclone_ref) > 1 && 1294 READ_ONCE(fclones->skb2.sk) == sk; 1295} 1296 1297/** 1298 * alloc_skb_fclone - allocate a network buffer from fclone cache 1299 * @size: size to allocate 1300 * @priority: allocation mask 1301 * 1302 * This function is a convenient wrapper around __alloc_skb(). 1303 */ 1304static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1305 gfp_t priority) 1306{ 1307 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1308} 1309 1310struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1311void skb_headers_offset_update(struct sk_buff *skb, int off); 1312int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1313struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1314void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1315struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1316struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1317 gfp_t gfp_mask, bool fclone); 1318static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1319 gfp_t gfp_mask) 1320{ 1321 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1322} 1323 1324int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1325struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1326 unsigned int headroom); 1327struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1328struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1329 int newtailroom, gfp_t priority); 1330int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1331 int offset, int len); 1332int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1333 int offset, int len); 1334int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1335int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1336 1337/** 1338 * skb_pad - zero pad the tail of an skb 1339 * @skb: buffer to pad 1340 * @pad: space to pad 1341 * 1342 * Ensure that a buffer is followed by a padding area that is zero 1343 * filled. Used by network drivers which may DMA or transfer data 1344 * beyond the buffer end onto the wire. 1345 * 1346 * May return error in out of memory cases. The skb is freed on error. 1347 */ 1348static inline int skb_pad(struct sk_buff *skb, int pad) 1349{ 1350 return __skb_pad(skb, pad, true); 1351} 1352#define dev_kfree_skb(a) consume_skb(a) 1353 1354int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1355 int offset, size_t size); 1356 1357struct skb_seq_state { 1358 __u32 lower_offset; 1359 __u32 upper_offset; 1360 __u32 frag_idx; 1361 __u32 stepped_offset; 1362 struct sk_buff *root_skb; 1363 struct sk_buff *cur_skb; 1364 __u8 *frag_data; 1365 __u32 frag_off; 1366}; 1367 1368void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1369 unsigned int to, struct skb_seq_state *st); 1370unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1371 struct skb_seq_state *st); 1372void skb_abort_seq_read(struct skb_seq_state *st); 1373 1374unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1375 unsigned int to, struct ts_config *config); 1376 1377/* 1378 * Packet hash types specify the type of hash in skb_set_hash. 1379 * 1380 * Hash types refer to the protocol layer addresses which are used to 1381 * construct a packet's hash. The hashes are used to differentiate or identify 1382 * flows of the protocol layer for the hash type. Hash types are either 1383 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1384 * 1385 * Properties of hashes: 1386 * 1387 * 1) Two packets in different flows have different hash values 1388 * 2) Two packets in the same flow should have the same hash value 1389 * 1390 * A hash at a higher layer is considered to be more specific. A driver should 1391 * set the most specific hash possible. 1392 * 1393 * A driver cannot indicate a more specific hash than the layer at which a hash 1394 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1395 * 1396 * A driver may indicate a hash level which is less specific than the 1397 * actual layer the hash was computed on. For instance, a hash computed 1398 * at L4 may be considered an L3 hash. This should only be done if the 1399 * driver can't unambiguously determine that the HW computed the hash at 1400 * the higher layer. Note that the "should" in the second property above 1401 * permits this. 1402 */ 1403enum pkt_hash_types { 1404 PKT_HASH_TYPE_NONE, /* Undefined type */ 1405 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1406 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1407 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1408}; 1409 1410static inline void skb_clear_hash(struct sk_buff *skb) 1411{ 1412 skb->hash = 0; 1413 skb->sw_hash = 0; 1414 skb->l4_hash = 0; 1415} 1416 1417static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1418{ 1419 if (!skb->l4_hash) 1420 skb_clear_hash(skb); 1421} 1422 1423static inline void 1424__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1425{ 1426 skb->l4_hash = is_l4; 1427 skb->sw_hash = is_sw; 1428 skb->hash = hash; 1429} 1430 1431static inline void 1432skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1433{ 1434 /* Used by drivers to set hash from HW */ 1435 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1436} 1437 1438static inline void 1439__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1440{ 1441 __skb_set_hash(skb, hash, true, is_l4); 1442} 1443 1444void __skb_get_hash(struct sk_buff *skb); 1445u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1446u32 skb_get_poff(const struct sk_buff *skb); 1447u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1448 const struct flow_keys_basic *keys, int hlen); 1449__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1450 const void *data, int hlen_proto); 1451 1452static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1453 int thoff, u8 ip_proto) 1454{ 1455 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1456} 1457 1458void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1459 const struct flow_dissector_key *key, 1460 unsigned int key_count); 1461 1462struct bpf_flow_dissector; 1463bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1464 __be16 proto, int nhoff, int hlen, unsigned int flags); 1465 1466bool __skb_flow_dissect(const struct net *net, 1467 const struct sk_buff *skb, 1468 struct flow_dissector *flow_dissector, 1469 void *target_container, const void *data, 1470 __be16 proto, int nhoff, int hlen, unsigned int flags); 1471 1472static inline bool skb_flow_dissect(const struct sk_buff *skb, 1473 struct flow_dissector *flow_dissector, 1474 void *target_container, unsigned int flags) 1475{ 1476 return __skb_flow_dissect(NULL, skb, flow_dissector, 1477 target_container, NULL, 0, 0, 0, flags); 1478} 1479 1480static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1481 struct flow_keys *flow, 1482 unsigned int flags) 1483{ 1484 memset(flow, 0, sizeof(*flow)); 1485 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1486 flow, NULL, 0, 0, 0, flags); 1487} 1488 1489static inline bool 1490skb_flow_dissect_flow_keys_basic(const struct net *net, 1491 const struct sk_buff *skb, 1492 struct flow_keys_basic *flow, 1493 const void *data, __be16 proto, 1494 int nhoff, int hlen, unsigned int flags) 1495{ 1496 memset(flow, 0, sizeof(*flow)); 1497 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1498 data, proto, nhoff, hlen, flags); 1499} 1500 1501void skb_flow_dissect_meta(const struct sk_buff *skb, 1502 struct flow_dissector *flow_dissector, 1503 void *target_container); 1504 1505/* Gets a skb connection tracking info, ctinfo map should be a 1506 * map of mapsize to translate enum ip_conntrack_info states 1507 * to user states. 1508 */ 1509void 1510skb_flow_dissect_ct(const struct sk_buff *skb, 1511 struct flow_dissector *flow_dissector, 1512 void *target_container, 1513 u16 *ctinfo_map, size_t mapsize, 1514 bool post_ct, u16 zone); 1515void 1516skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1517 struct flow_dissector *flow_dissector, 1518 void *target_container); 1519 1520void skb_flow_dissect_hash(const struct sk_buff *skb, 1521 struct flow_dissector *flow_dissector, 1522 void *target_container); 1523 1524static inline __u32 skb_get_hash(struct sk_buff *skb) 1525{ 1526 if (!skb->l4_hash && !skb->sw_hash) 1527 __skb_get_hash(skb); 1528 1529 return skb->hash; 1530} 1531 1532static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1533{ 1534 if (!skb->l4_hash && !skb->sw_hash) { 1535 struct flow_keys keys; 1536 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1537 1538 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1539 } 1540 1541 return skb->hash; 1542} 1543 1544__u32 skb_get_hash_perturb(const struct sk_buff *skb, 1545 const siphash_key_t *perturb); 1546 1547static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1548{ 1549 return skb->hash; 1550} 1551 1552static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1553{ 1554 to->hash = from->hash; 1555 to->sw_hash = from->sw_hash; 1556 to->l4_hash = from->l4_hash; 1557}; 1558 1559static inline void skb_copy_decrypted(struct sk_buff *to, 1560 const struct sk_buff *from) 1561{ 1562#ifdef CONFIG_TLS_DEVICE 1563 to->decrypted = from->decrypted; 1564#endif 1565} 1566 1567#ifdef NET_SKBUFF_DATA_USES_OFFSET 1568static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1569{ 1570 return skb->head + skb->end; 1571} 1572 1573static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1574{ 1575 return skb->end; 1576} 1577 1578static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1579{ 1580 skb->end = offset; 1581} 1582#else 1583static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1584{ 1585 return skb->end; 1586} 1587 1588static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1589{ 1590 return skb->end - skb->head; 1591} 1592 1593static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1594{ 1595 skb->end = skb->head + offset; 1596} 1597#endif 1598 1599struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1600 struct ubuf_info *uarg); 1601 1602void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1603 1604void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1605 bool success); 1606 1607int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1608 struct sk_buff *skb, struct iov_iter *from, 1609 size_t length); 1610 1611static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1612 struct msghdr *msg, int len) 1613{ 1614 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1615} 1616 1617int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1618 struct msghdr *msg, int len, 1619 struct ubuf_info *uarg); 1620 1621/* Internal */ 1622#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1623 1624static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1625{ 1626 return &skb_shinfo(skb)->hwtstamps; 1627} 1628 1629static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1630{ 1631 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1632 1633 return is_zcopy ? skb_uarg(skb) : NULL; 1634} 1635 1636static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1637{ 1638 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1639} 1640 1641static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1642{ 1643 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1644} 1645 1646static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1647 const struct sk_buff *skb2) 1648{ 1649 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1650} 1651 1652static inline void net_zcopy_get(struct ubuf_info *uarg) 1653{ 1654 refcount_inc(&uarg->refcnt); 1655} 1656 1657static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1658{ 1659 skb_shinfo(skb)->destructor_arg = uarg; 1660 skb_shinfo(skb)->flags |= uarg->flags; 1661} 1662 1663static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1664 bool *have_ref) 1665{ 1666 if (skb && uarg && !skb_zcopy(skb)) { 1667 if (unlikely(have_ref && *have_ref)) 1668 *have_ref = false; 1669 else 1670 net_zcopy_get(uarg); 1671 skb_zcopy_init(skb, uarg); 1672 } 1673} 1674 1675static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1676{ 1677 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1678 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1679} 1680 1681static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1682{ 1683 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1684} 1685 1686static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1687{ 1688 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1689} 1690 1691static inline void net_zcopy_put(struct ubuf_info *uarg) 1692{ 1693 if (uarg) 1694 uarg->callback(NULL, uarg, true); 1695} 1696 1697static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1698{ 1699 if (uarg) { 1700 if (uarg->callback == msg_zerocopy_callback) 1701 msg_zerocopy_put_abort(uarg, have_uref); 1702 else if (have_uref) 1703 net_zcopy_put(uarg); 1704 } 1705} 1706 1707/* Release a reference on a zerocopy structure */ 1708static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1709{ 1710 struct ubuf_info *uarg = skb_zcopy(skb); 1711 1712 if (uarg) { 1713 if (!skb_zcopy_is_nouarg(skb)) 1714 uarg->callback(skb, uarg, zerocopy_success); 1715 1716 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1717 } 1718} 1719 1720void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1721 1722static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1723{ 1724 if (unlikely(skb_zcopy_managed(skb))) 1725 __skb_zcopy_downgrade_managed(skb); 1726} 1727 1728static inline void skb_mark_not_on_list(struct sk_buff *skb) 1729{ 1730 skb->next = NULL; 1731} 1732 1733/* Iterate through singly-linked GSO fragments of an skb. */ 1734#define skb_list_walk_safe(first, skb, next_skb) \ 1735 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1736 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1737 1738static inline void skb_list_del_init(struct sk_buff *skb) 1739{ 1740 __list_del_entry(&skb->list); 1741 skb_mark_not_on_list(skb); 1742} 1743 1744/** 1745 * skb_queue_empty - check if a queue is empty 1746 * @list: queue head 1747 * 1748 * Returns true if the queue is empty, false otherwise. 1749 */ 1750static inline int skb_queue_empty(const struct sk_buff_head *list) 1751{ 1752 return list->next == (const struct sk_buff *) list; 1753} 1754 1755/** 1756 * skb_queue_empty_lockless - check if a queue is empty 1757 * @list: queue head 1758 * 1759 * Returns true if the queue is empty, false otherwise. 1760 * This variant can be used in lockless contexts. 1761 */ 1762static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1763{ 1764 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1765} 1766 1767 1768/** 1769 * skb_queue_is_last - check if skb is the last entry in the queue 1770 * @list: queue head 1771 * @skb: buffer 1772 * 1773 * Returns true if @skb is the last buffer on the list. 1774 */ 1775static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1776 const struct sk_buff *skb) 1777{ 1778 return skb->next == (const struct sk_buff *) list; 1779} 1780 1781/** 1782 * skb_queue_is_first - check if skb is the first entry in the queue 1783 * @list: queue head 1784 * @skb: buffer 1785 * 1786 * Returns true if @skb is the first buffer on the list. 1787 */ 1788static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1789 const struct sk_buff *skb) 1790{ 1791 return skb->prev == (const struct sk_buff *) list; 1792} 1793 1794/** 1795 * skb_queue_next - return the next packet in the queue 1796 * @list: queue head 1797 * @skb: current buffer 1798 * 1799 * Return the next packet in @list after @skb. It is only valid to 1800 * call this if skb_queue_is_last() evaluates to false. 1801 */ 1802static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1803 const struct sk_buff *skb) 1804{ 1805 /* This BUG_ON may seem severe, but if we just return then we 1806 * are going to dereference garbage. 1807 */ 1808 BUG_ON(skb_queue_is_last(list, skb)); 1809 return skb->next; 1810} 1811 1812/** 1813 * skb_queue_prev - return the prev packet in the queue 1814 * @list: queue head 1815 * @skb: current buffer 1816 * 1817 * Return the prev packet in @list before @skb. It is only valid to 1818 * call this if skb_queue_is_first() evaluates to false. 1819 */ 1820static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1821 const struct sk_buff *skb) 1822{ 1823 /* This BUG_ON may seem severe, but if we just return then we 1824 * are going to dereference garbage. 1825 */ 1826 BUG_ON(skb_queue_is_first(list, skb)); 1827 return skb->prev; 1828} 1829 1830/** 1831 * skb_get - reference buffer 1832 * @skb: buffer to reference 1833 * 1834 * Makes another reference to a socket buffer and returns a pointer 1835 * to the buffer. 1836 */ 1837static inline struct sk_buff *skb_get(struct sk_buff *skb) 1838{ 1839 refcount_inc(&skb->users); 1840 return skb; 1841} 1842 1843/* 1844 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1845 */ 1846 1847/** 1848 * skb_cloned - is the buffer a clone 1849 * @skb: buffer to check 1850 * 1851 * Returns true if the buffer was generated with skb_clone() and is 1852 * one of multiple shared copies of the buffer. Cloned buffers are 1853 * shared data so must not be written to under normal circumstances. 1854 */ 1855static inline int skb_cloned(const struct sk_buff *skb) 1856{ 1857 return skb->cloned && 1858 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1859} 1860 1861static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1862{ 1863 might_sleep_if(gfpflags_allow_blocking(pri)); 1864 1865 if (skb_cloned(skb)) 1866 return pskb_expand_head(skb, 0, 0, pri); 1867 1868 return 0; 1869} 1870 1871/* This variant of skb_unclone() makes sure skb->truesize 1872 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1873 * 1874 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1875 * when various debugging features are in place. 1876 */ 1877int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1878static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1879{ 1880 might_sleep_if(gfpflags_allow_blocking(pri)); 1881 1882 if (skb_cloned(skb)) 1883 return __skb_unclone_keeptruesize(skb, pri); 1884 return 0; 1885} 1886 1887/** 1888 * skb_header_cloned - is the header a clone 1889 * @skb: buffer to check 1890 * 1891 * Returns true if modifying the header part of the buffer requires 1892 * the data to be copied. 1893 */ 1894static inline int skb_header_cloned(const struct sk_buff *skb) 1895{ 1896 int dataref; 1897 1898 if (!skb->cloned) 1899 return 0; 1900 1901 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1902 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1903 return dataref != 1; 1904} 1905 1906static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1907{ 1908 might_sleep_if(gfpflags_allow_blocking(pri)); 1909 1910 if (skb_header_cloned(skb)) 1911 return pskb_expand_head(skb, 0, 0, pri); 1912 1913 return 0; 1914} 1915 1916/** 1917 * __skb_header_release() - allow clones to use the headroom 1918 * @skb: buffer to operate on 1919 * 1920 * See "DOC: dataref and headerless skbs". 1921 */ 1922static inline void __skb_header_release(struct sk_buff *skb) 1923{ 1924 skb->nohdr = 1; 1925 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1926} 1927 1928 1929/** 1930 * skb_shared - is the buffer shared 1931 * @skb: buffer to check 1932 * 1933 * Returns true if more than one person has a reference to this 1934 * buffer. 1935 */ 1936static inline int skb_shared(const struct sk_buff *skb) 1937{ 1938 return refcount_read(&skb->users) != 1; 1939} 1940 1941/** 1942 * skb_share_check - check if buffer is shared and if so clone it 1943 * @skb: buffer to check 1944 * @pri: priority for memory allocation 1945 * 1946 * If the buffer is shared the buffer is cloned and the old copy 1947 * drops a reference. A new clone with a single reference is returned. 1948 * If the buffer is not shared the original buffer is returned. When 1949 * being called from interrupt status or with spinlocks held pri must 1950 * be GFP_ATOMIC. 1951 * 1952 * NULL is returned on a memory allocation failure. 1953 */ 1954static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1955{ 1956 might_sleep_if(gfpflags_allow_blocking(pri)); 1957 if (skb_shared(skb)) { 1958 struct sk_buff *nskb = skb_clone(skb, pri); 1959 1960 if (likely(nskb)) 1961 consume_skb(skb); 1962 else 1963 kfree_skb(skb); 1964 skb = nskb; 1965 } 1966 return skb; 1967} 1968 1969/* 1970 * Copy shared buffers into a new sk_buff. We effectively do COW on 1971 * packets to handle cases where we have a local reader and forward 1972 * and a couple of other messy ones. The normal one is tcpdumping 1973 * a packet thats being forwarded. 1974 */ 1975 1976/** 1977 * skb_unshare - make a copy of a shared buffer 1978 * @skb: buffer to check 1979 * @pri: priority for memory allocation 1980 * 1981 * If the socket buffer is a clone then this function creates a new 1982 * copy of the data, drops a reference count on the old copy and returns 1983 * the new copy with the reference count at 1. If the buffer is not a clone 1984 * the original buffer is returned. When called with a spinlock held or 1985 * from interrupt state @pri must be %GFP_ATOMIC 1986 * 1987 * %NULL is returned on a memory allocation failure. 1988 */ 1989static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1990 gfp_t pri) 1991{ 1992 might_sleep_if(gfpflags_allow_blocking(pri)); 1993 if (skb_cloned(skb)) { 1994 struct sk_buff *nskb = skb_copy(skb, pri); 1995 1996 /* Free our shared copy */ 1997 if (likely(nskb)) 1998 consume_skb(skb); 1999 else 2000 kfree_skb(skb); 2001 skb = nskb; 2002 } 2003 return skb; 2004} 2005 2006/** 2007 * skb_peek - peek at the head of an &sk_buff_head 2008 * @list_: list to peek at 2009 * 2010 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2011 * be careful with this one. A peek leaves the buffer on the 2012 * list and someone else may run off with it. You must hold 2013 * the appropriate locks or have a private queue to do this. 2014 * 2015 * Returns %NULL for an empty list or a pointer to the head element. 2016 * The reference count is not incremented and the reference is therefore 2017 * volatile. Use with caution. 2018 */ 2019static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2020{ 2021 struct sk_buff *skb = list_->next; 2022 2023 if (skb == (struct sk_buff *)list_) 2024 skb = NULL; 2025 return skb; 2026} 2027 2028/** 2029 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2030 * @list_: list to peek at 2031 * 2032 * Like skb_peek(), but the caller knows that the list is not empty. 2033 */ 2034static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2035{ 2036 return list_->next; 2037} 2038 2039/** 2040 * skb_peek_next - peek skb following the given one from a queue 2041 * @skb: skb to start from 2042 * @list_: list to peek at 2043 * 2044 * Returns %NULL when the end of the list is met or a pointer to the 2045 * next element. The reference count is not incremented and the 2046 * reference is therefore volatile. Use with caution. 2047 */ 2048static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2049 const struct sk_buff_head *list_) 2050{ 2051 struct sk_buff *next = skb->next; 2052 2053 if (next == (struct sk_buff *)list_) 2054 next = NULL; 2055 return next; 2056} 2057 2058/** 2059 * skb_peek_tail - peek at the tail of an &sk_buff_head 2060 * @list_: list to peek at 2061 * 2062 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2063 * be careful with this one. A peek leaves the buffer on the 2064 * list and someone else may run off with it. You must hold 2065 * the appropriate locks or have a private queue to do this. 2066 * 2067 * Returns %NULL for an empty list or a pointer to the tail element. 2068 * The reference count is not incremented and the reference is therefore 2069 * volatile. Use with caution. 2070 */ 2071static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2072{ 2073 struct sk_buff *skb = READ_ONCE(list_->prev); 2074 2075 if (skb == (struct sk_buff *)list_) 2076 skb = NULL; 2077 return skb; 2078 2079} 2080 2081/** 2082 * skb_queue_len - get queue length 2083 * @list_: list to measure 2084 * 2085 * Return the length of an &sk_buff queue. 2086 */ 2087static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2088{ 2089 return list_->qlen; 2090} 2091 2092/** 2093 * skb_queue_len_lockless - get queue length 2094 * @list_: list to measure 2095 * 2096 * Return the length of an &sk_buff queue. 2097 * This variant can be used in lockless contexts. 2098 */ 2099static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2100{ 2101 return READ_ONCE(list_->qlen); 2102} 2103 2104/** 2105 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2106 * @list: queue to initialize 2107 * 2108 * This initializes only the list and queue length aspects of 2109 * an sk_buff_head object. This allows to initialize the list 2110 * aspects of an sk_buff_head without reinitializing things like 2111 * the spinlock. It can also be used for on-stack sk_buff_head 2112 * objects where the spinlock is known to not be used. 2113 */ 2114static inline void __skb_queue_head_init(struct sk_buff_head *list) 2115{ 2116 list->prev = list->next = (struct sk_buff *)list; 2117 list->qlen = 0; 2118} 2119 2120/* 2121 * This function creates a split out lock class for each invocation; 2122 * this is needed for now since a whole lot of users of the skb-queue 2123 * infrastructure in drivers have different locking usage (in hardirq) 2124 * than the networking core (in softirq only). In the long run either the 2125 * network layer or drivers should need annotation to consolidate the 2126 * main types of usage into 3 classes. 2127 */ 2128static inline void skb_queue_head_init(struct sk_buff_head *list) 2129{ 2130 spin_lock_init(&list->lock); 2131 __skb_queue_head_init(list); 2132} 2133 2134static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2135 struct lock_class_key *class) 2136{ 2137 skb_queue_head_init(list); 2138 lockdep_set_class(&list->lock, class); 2139} 2140 2141/* 2142 * Insert an sk_buff on a list. 2143 * 2144 * The "__skb_xxxx()" functions are the non-atomic ones that 2145 * can only be called with interrupts disabled. 2146 */ 2147static inline void __skb_insert(struct sk_buff *newsk, 2148 struct sk_buff *prev, struct sk_buff *next, 2149 struct sk_buff_head *list) 2150{ 2151 /* See skb_queue_empty_lockless() and skb_peek_tail() 2152 * for the opposite READ_ONCE() 2153 */ 2154 WRITE_ONCE(newsk->next, next); 2155 WRITE_ONCE(newsk->prev, prev); 2156 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2157 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2158 WRITE_ONCE(list->qlen, list->qlen + 1); 2159} 2160 2161static inline void __skb_queue_splice(const struct sk_buff_head *list, 2162 struct sk_buff *prev, 2163 struct sk_buff *next) 2164{ 2165 struct sk_buff *first = list->next; 2166 struct sk_buff *last = list->prev; 2167 2168 WRITE_ONCE(first->prev, prev); 2169 WRITE_ONCE(prev->next, first); 2170 2171 WRITE_ONCE(last->next, next); 2172 WRITE_ONCE(next->prev, last); 2173} 2174 2175/** 2176 * skb_queue_splice - join two skb lists, this is designed for stacks 2177 * @list: the new list to add 2178 * @head: the place to add it in the first list 2179 */ 2180static inline void skb_queue_splice(const struct sk_buff_head *list, 2181 struct sk_buff_head *head) 2182{ 2183 if (!skb_queue_empty(list)) { 2184 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2185 head->qlen += list->qlen; 2186 } 2187} 2188 2189/** 2190 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2191 * @list: the new list to add 2192 * @head: the place to add it in the first list 2193 * 2194 * The list at @list is reinitialised 2195 */ 2196static inline void skb_queue_splice_init(struct sk_buff_head *list, 2197 struct sk_buff_head *head) 2198{ 2199 if (!skb_queue_empty(list)) { 2200 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2201 head->qlen += list->qlen; 2202 __skb_queue_head_init(list); 2203 } 2204} 2205 2206/** 2207 * skb_queue_splice_tail - join two skb lists, each list being a queue 2208 * @list: the new list to add 2209 * @head: the place to add it in the first list 2210 */ 2211static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2212 struct sk_buff_head *head) 2213{ 2214 if (!skb_queue_empty(list)) { 2215 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2216 head->qlen += list->qlen; 2217 } 2218} 2219 2220/** 2221 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2222 * @list: the new list to add 2223 * @head: the place to add it in the first list 2224 * 2225 * Each of the lists is a queue. 2226 * The list at @list is reinitialised 2227 */ 2228static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2229 struct sk_buff_head *head) 2230{ 2231 if (!skb_queue_empty(list)) { 2232 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2233 head->qlen += list->qlen; 2234 __skb_queue_head_init(list); 2235 } 2236} 2237 2238/** 2239 * __skb_queue_after - queue a buffer at the list head 2240 * @list: list to use 2241 * @prev: place after this buffer 2242 * @newsk: buffer to queue 2243 * 2244 * Queue a buffer int the middle of a list. This function takes no locks 2245 * and you must therefore hold required locks before calling it. 2246 * 2247 * A buffer cannot be placed on two lists at the same time. 2248 */ 2249static inline void __skb_queue_after(struct sk_buff_head *list, 2250 struct sk_buff *prev, 2251 struct sk_buff *newsk) 2252{ 2253 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2254} 2255 2256void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2257 struct sk_buff_head *list); 2258 2259static inline void __skb_queue_before(struct sk_buff_head *list, 2260 struct sk_buff *next, 2261 struct sk_buff *newsk) 2262{ 2263 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2264} 2265 2266/** 2267 * __skb_queue_head - queue a buffer at the list head 2268 * @list: list to use 2269 * @newsk: buffer to queue 2270 * 2271 * Queue a buffer at the start of a list. This function takes no locks 2272 * and you must therefore hold required locks before calling it. 2273 * 2274 * A buffer cannot be placed on two lists at the same time. 2275 */ 2276static inline void __skb_queue_head(struct sk_buff_head *list, 2277 struct sk_buff *newsk) 2278{ 2279 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2280} 2281void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2282 2283/** 2284 * __skb_queue_tail - queue a buffer at the list tail 2285 * @list: list to use 2286 * @newsk: buffer to queue 2287 * 2288 * Queue a buffer at the end of a list. This function takes no locks 2289 * and you must therefore hold required locks before calling it. 2290 * 2291 * A buffer cannot be placed on two lists at the same time. 2292 */ 2293static inline void __skb_queue_tail(struct sk_buff_head *list, 2294 struct sk_buff *newsk) 2295{ 2296 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2297} 2298void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2299 2300/* 2301 * remove sk_buff from list. _Must_ be called atomically, and with 2302 * the list known.. 2303 */ 2304void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2305static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2306{ 2307 struct sk_buff *next, *prev; 2308 2309 WRITE_ONCE(list->qlen, list->qlen - 1); 2310 next = skb->next; 2311 prev = skb->prev; 2312 skb->next = skb->prev = NULL; 2313 WRITE_ONCE(next->prev, prev); 2314 WRITE_ONCE(prev->next, next); 2315} 2316 2317/** 2318 * __skb_dequeue - remove from the head of the queue 2319 * @list: list to dequeue from 2320 * 2321 * Remove the head of the list. This function does not take any locks 2322 * so must be used with appropriate locks held only. The head item is 2323 * returned or %NULL if the list is empty. 2324 */ 2325static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2326{ 2327 struct sk_buff *skb = skb_peek(list); 2328 if (skb) 2329 __skb_unlink(skb, list); 2330 return skb; 2331} 2332struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2333 2334/** 2335 * __skb_dequeue_tail - remove from the tail of the queue 2336 * @list: list to dequeue from 2337 * 2338 * Remove the tail of the list. This function does not take any locks 2339 * so must be used with appropriate locks held only. The tail item is 2340 * returned or %NULL if the list is empty. 2341 */ 2342static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2343{ 2344 struct sk_buff *skb = skb_peek_tail(list); 2345 if (skb) 2346 __skb_unlink(skb, list); 2347 return skb; 2348} 2349struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2350 2351 2352static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2353{ 2354 return skb->data_len; 2355} 2356 2357static inline unsigned int skb_headlen(const struct sk_buff *skb) 2358{ 2359 return skb->len - skb->data_len; 2360} 2361 2362static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2363{ 2364 unsigned int i, len = 0; 2365 2366 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2367 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2368 return len; 2369} 2370 2371static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2372{ 2373 return skb_headlen(skb) + __skb_pagelen(skb); 2374} 2375 2376static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2377 int i, struct page *page, 2378 int off, int size) 2379{ 2380 skb_frag_t *frag = &shinfo->frags[i]; 2381 2382 /* 2383 * Propagate page pfmemalloc to the skb if we can. The problem is 2384 * that not all callers have unique ownership of the page but rely 2385 * on page_is_pfmemalloc doing the right thing(tm). 2386 */ 2387 frag->bv_page = page; 2388 frag->bv_offset = off; 2389 skb_frag_size_set(frag, size); 2390} 2391 2392/** 2393 * skb_len_add - adds a number to len fields of skb 2394 * @skb: buffer to add len to 2395 * @delta: number of bytes to add 2396 */ 2397static inline void skb_len_add(struct sk_buff *skb, int delta) 2398{ 2399 skb->len += delta; 2400 skb->data_len += delta; 2401 skb->truesize += delta; 2402} 2403 2404/** 2405 * __skb_fill_page_desc - initialise a paged fragment in an skb 2406 * @skb: buffer containing fragment to be initialised 2407 * @i: paged fragment index to initialise 2408 * @page: the page to use for this fragment 2409 * @off: the offset to the data with @page 2410 * @size: the length of the data 2411 * 2412 * Initialises the @i'th fragment of @skb to point to &size bytes at 2413 * offset @off within @page. 2414 * 2415 * Does not take any additional reference on the fragment. 2416 */ 2417static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2418 struct page *page, int off, int size) 2419{ 2420 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size); 2421 page = compound_head(page); 2422 if (page_is_pfmemalloc(page)) 2423 skb->pfmemalloc = true; 2424} 2425 2426/** 2427 * skb_fill_page_desc - initialise a paged fragment in an skb 2428 * @skb: buffer containing fragment to be initialised 2429 * @i: paged fragment index to initialise 2430 * @page: the page to use for this fragment 2431 * @off: the offset to the data with @page 2432 * @size: the length of the data 2433 * 2434 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2435 * @skb to point to @size bytes at offset @off within @page. In 2436 * addition updates @skb such that @i is the last fragment. 2437 * 2438 * Does not take any additional reference on the fragment. 2439 */ 2440static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2441 struct page *page, int off, int size) 2442{ 2443 __skb_fill_page_desc(skb, i, page, off, size); 2444 skb_shinfo(skb)->nr_frags = i + 1; 2445} 2446 2447/** 2448 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb 2449 * @skb: buffer containing fragment to be initialised 2450 * @i: paged fragment index to initialise 2451 * @page: the page to use for this fragment 2452 * @off: the offset to the data with @page 2453 * @size: the length of the data 2454 * 2455 * Variant of skb_fill_page_desc() which does not deal with 2456 * pfmemalloc, if page is not owned by us. 2457 */ 2458static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, 2459 struct page *page, int off, 2460 int size) 2461{ 2462 struct skb_shared_info *shinfo = skb_shinfo(skb); 2463 2464 __skb_fill_page_desc_noacc(shinfo, i, page, off, size); 2465 shinfo->nr_frags = i + 1; 2466} 2467 2468void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2469 int size, unsigned int truesize); 2470 2471void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2472 unsigned int truesize); 2473 2474#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2475 2476#ifdef NET_SKBUFF_DATA_USES_OFFSET 2477static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2478{ 2479 return skb->head + skb->tail; 2480} 2481 2482static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2483{ 2484 skb->tail = skb->data - skb->head; 2485} 2486 2487static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2488{ 2489 skb_reset_tail_pointer(skb); 2490 skb->tail += offset; 2491} 2492 2493#else /* NET_SKBUFF_DATA_USES_OFFSET */ 2494static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2495{ 2496 return skb->tail; 2497} 2498 2499static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2500{ 2501 skb->tail = skb->data; 2502} 2503 2504static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2505{ 2506 skb->tail = skb->data + offset; 2507} 2508 2509#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2510 2511static inline void skb_assert_len(struct sk_buff *skb) 2512{ 2513#ifdef CONFIG_DEBUG_NET 2514 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2515 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2516#endif /* CONFIG_DEBUG_NET */ 2517} 2518 2519/* 2520 * Add data to an sk_buff 2521 */ 2522void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2523void *skb_put(struct sk_buff *skb, unsigned int len); 2524static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2525{ 2526 void *tmp = skb_tail_pointer(skb); 2527 SKB_LINEAR_ASSERT(skb); 2528 skb->tail += len; 2529 skb->len += len; 2530 return tmp; 2531} 2532 2533static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2534{ 2535 void *tmp = __skb_put(skb, len); 2536 2537 memset(tmp, 0, len); 2538 return tmp; 2539} 2540 2541static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2542 unsigned int len) 2543{ 2544 void *tmp = __skb_put(skb, len); 2545 2546 memcpy(tmp, data, len); 2547 return tmp; 2548} 2549 2550static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2551{ 2552 *(u8 *)__skb_put(skb, 1) = val; 2553} 2554 2555static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2556{ 2557 void *tmp = skb_put(skb, len); 2558 2559 memset(tmp, 0, len); 2560 2561 return tmp; 2562} 2563 2564static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2565 unsigned int len) 2566{ 2567 void *tmp = skb_put(skb, len); 2568 2569 memcpy(tmp, data, len); 2570 2571 return tmp; 2572} 2573 2574static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2575{ 2576 *(u8 *)skb_put(skb, 1) = val; 2577} 2578 2579void *skb_push(struct sk_buff *skb, unsigned int len); 2580static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2581{ 2582 skb->data -= len; 2583 skb->len += len; 2584 return skb->data; 2585} 2586 2587void *skb_pull(struct sk_buff *skb, unsigned int len); 2588static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2589{ 2590 skb->len -= len; 2591 if (unlikely(skb->len < skb->data_len)) { 2592#if defined(CONFIG_DEBUG_NET) 2593 skb->len += len; 2594 pr_err("__skb_pull(len=%u)\n", len); 2595 skb_dump(KERN_ERR, skb, false); 2596#endif 2597 BUG(); 2598 } 2599 return skb->data += len; 2600} 2601 2602static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2603{ 2604 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2605} 2606 2607void *skb_pull_data(struct sk_buff *skb, size_t len); 2608 2609void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2610 2611static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2612{ 2613 if (len > skb_headlen(skb) && 2614 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2615 return NULL; 2616 skb->len -= len; 2617 return skb->data += len; 2618} 2619 2620static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2621{ 2622 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2623} 2624 2625static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2626{ 2627 if (likely(len <= skb_headlen(skb))) 2628 return true; 2629 if (unlikely(len > skb->len)) 2630 return false; 2631 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2632} 2633 2634void skb_condense(struct sk_buff *skb); 2635 2636/** 2637 * skb_headroom - bytes at buffer head 2638 * @skb: buffer to check 2639 * 2640 * Return the number of bytes of free space at the head of an &sk_buff. 2641 */ 2642static inline unsigned int skb_headroom(const struct sk_buff *skb) 2643{ 2644 return skb->data - skb->head; 2645} 2646 2647/** 2648 * skb_tailroom - bytes at buffer end 2649 * @skb: buffer to check 2650 * 2651 * Return the number of bytes of free space at the tail of an sk_buff 2652 */ 2653static inline int skb_tailroom(const struct sk_buff *skb) 2654{ 2655 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2656} 2657 2658/** 2659 * skb_availroom - bytes at buffer end 2660 * @skb: buffer to check 2661 * 2662 * Return the number of bytes of free space at the tail of an sk_buff 2663 * allocated by sk_stream_alloc() 2664 */ 2665static inline int skb_availroom(const struct sk_buff *skb) 2666{ 2667 if (skb_is_nonlinear(skb)) 2668 return 0; 2669 2670 return skb->end - skb->tail - skb->reserved_tailroom; 2671} 2672 2673/** 2674 * skb_reserve - adjust headroom 2675 * @skb: buffer to alter 2676 * @len: bytes to move 2677 * 2678 * Increase the headroom of an empty &sk_buff by reducing the tail 2679 * room. This is only allowed for an empty buffer. 2680 */ 2681static inline void skb_reserve(struct sk_buff *skb, int len) 2682{ 2683 skb->data += len; 2684 skb->tail += len; 2685} 2686 2687/** 2688 * skb_tailroom_reserve - adjust reserved_tailroom 2689 * @skb: buffer to alter 2690 * @mtu: maximum amount of headlen permitted 2691 * @needed_tailroom: minimum amount of reserved_tailroom 2692 * 2693 * Set reserved_tailroom so that headlen can be as large as possible but 2694 * not larger than mtu and tailroom cannot be smaller than 2695 * needed_tailroom. 2696 * The required headroom should already have been reserved before using 2697 * this function. 2698 */ 2699static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2700 unsigned int needed_tailroom) 2701{ 2702 SKB_LINEAR_ASSERT(skb); 2703 if (mtu < skb_tailroom(skb) - needed_tailroom) 2704 /* use at most mtu */ 2705 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2706 else 2707 /* use up to all available space */ 2708 skb->reserved_tailroom = needed_tailroom; 2709} 2710 2711#define ENCAP_TYPE_ETHER 0 2712#define ENCAP_TYPE_IPPROTO 1 2713 2714static inline void skb_set_inner_protocol(struct sk_buff *skb, 2715 __be16 protocol) 2716{ 2717 skb->inner_protocol = protocol; 2718 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2719} 2720 2721static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2722 __u8 ipproto) 2723{ 2724 skb->inner_ipproto = ipproto; 2725 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2726} 2727 2728static inline void skb_reset_inner_headers(struct sk_buff *skb) 2729{ 2730 skb->inner_mac_header = skb->mac_header; 2731 skb->inner_network_header = skb->network_header; 2732 skb->inner_transport_header = skb->transport_header; 2733} 2734 2735static inline void skb_reset_mac_len(struct sk_buff *skb) 2736{ 2737 skb->mac_len = skb->network_header - skb->mac_header; 2738} 2739 2740static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2741 *skb) 2742{ 2743 return skb->head + skb->inner_transport_header; 2744} 2745 2746static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2747{ 2748 return skb_inner_transport_header(skb) - skb->data; 2749} 2750 2751static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2752{ 2753 skb->inner_transport_header = skb->data - skb->head; 2754} 2755 2756static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2757 const int offset) 2758{ 2759 skb_reset_inner_transport_header(skb); 2760 skb->inner_transport_header += offset; 2761} 2762 2763static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2764{ 2765 return skb->head + skb->inner_network_header; 2766} 2767 2768static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2769{ 2770 skb->inner_network_header = skb->data - skb->head; 2771} 2772 2773static inline void skb_set_inner_network_header(struct sk_buff *skb, 2774 const int offset) 2775{ 2776 skb_reset_inner_network_header(skb); 2777 skb->inner_network_header += offset; 2778} 2779 2780static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2781{ 2782 return skb->head + skb->inner_mac_header; 2783} 2784 2785static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2786{ 2787 skb->inner_mac_header = skb->data - skb->head; 2788} 2789 2790static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2791 const int offset) 2792{ 2793 skb_reset_inner_mac_header(skb); 2794 skb->inner_mac_header += offset; 2795} 2796static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2797{ 2798 return skb->transport_header != (typeof(skb->transport_header))~0U; 2799} 2800 2801static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2802{ 2803 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 2804 return skb->head + skb->transport_header; 2805} 2806 2807static inline void skb_reset_transport_header(struct sk_buff *skb) 2808{ 2809 skb->transport_header = skb->data - skb->head; 2810} 2811 2812static inline void skb_set_transport_header(struct sk_buff *skb, 2813 const int offset) 2814{ 2815 skb_reset_transport_header(skb); 2816 skb->transport_header += offset; 2817} 2818 2819static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2820{ 2821 return skb->head + skb->network_header; 2822} 2823 2824static inline void skb_reset_network_header(struct sk_buff *skb) 2825{ 2826 skb->network_header = skb->data - skb->head; 2827} 2828 2829static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2830{ 2831 skb_reset_network_header(skb); 2832 skb->network_header += offset; 2833} 2834 2835static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2836{ 2837 return skb->mac_header != (typeof(skb->mac_header))~0U; 2838} 2839 2840static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2841{ 2842 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2843 return skb->head + skb->mac_header; 2844} 2845 2846static inline int skb_mac_offset(const struct sk_buff *skb) 2847{ 2848 return skb_mac_header(skb) - skb->data; 2849} 2850 2851static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2852{ 2853 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2854 return skb->network_header - skb->mac_header; 2855} 2856 2857static inline void skb_unset_mac_header(struct sk_buff *skb) 2858{ 2859 skb->mac_header = (typeof(skb->mac_header))~0U; 2860} 2861 2862static inline void skb_reset_mac_header(struct sk_buff *skb) 2863{ 2864 skb->mac_header = skb->data - skb->head; 2865} 2866 2867static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2868{ 2869 skb_reset_mac_header(skb); 2870 skb->mac_header += offset; 2871} 2872 2873static inline void skb_pop_mac_header(struct sk_buff *skb) 2874{ 2875 skb->mac_header = skb->network_header; 2876} 2877 2878static inline void skb_probe_transport_header(struct sk_buff *skb) 2879{ 2880 struct flow_keys_basic keys; 2881 2882 if (skb_transport_header_was_set(skb)) 2883 return; 2884 2885 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2886 NULL, 0, 0, 0, 0)) 2887 skb_set_transport_header(skb, keys.control.thoff); 2888} 2889 2890static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2891{ 2892 if (skb_mac_header_was_set(skb)) { 2893 const unsigned char *old_mac = skb_mac_header(skb); 2894 2895 skb_set_mac_header(skb, -skb->mac_len); 2896 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2897 } 2898} 2899 2900static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2901{ 2902 return skb->csum_start - skb_headroom(skb); 2903} 2904 2905static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2906{ 2907 return skb->head + skb->csum_start; 2908} 2909 2910static inline int skb_transport_offset(const struct sk_buff *skb) 2911{ 2912 return skb_transport_header(skb) - skb->data; 2913} 2914 2915static inline u32 skb_network_header_len(const struct sk_buff *skb) 2916{ 2917 return skb->transport_header - skb->network_header; 2918} 2919 2920static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2921{ 2922 return skb->inner_transport_header - skb->inner_network_header; 2923} 2924 2925static inline int skb_network_offset(const struct sk_buff *skb) 2926{ 2927 return skb_network_header(skb) - skb->data; 2928} 2929 2930static inline int skb_inner_network_offset(const struct sk_buff *skb) 2931{ 2932 return skb_inner_network_header(skb) - skb->data; 2933} 2934 2935static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2936{ 2937 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2938} 2939 2940/* 2941 * CPUs often take a performance hit when accessing unaligned memory 2942 * locations. The actual performance hit varies, it can be small if the 2943 * hardware handles it or large if we have to take an exception and fix it 2944 * in software. 2945 * 2946 * Since an ethernet header is 14 bytes network drivers often end up with 2947 * the IP header at an unaligned offset. The IP header can be aligned by 2948 * shifting the start of the packet by 2 bytes. Drivers should do this 2949 * with: 2950 * 2951 * skb_reserve(skb, NET_IP_ALIGN); 2952 * 2953 * The downside to this alignment of the IP header is that the DMA is now 2954 * unaligned. On some architectures the cost of an unaligned DMA is high 2955 * and this cost outweighs the gains made by aligning the IP header. 2956 * 2957 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2958 * to be overridden. 2959 */ 2960#ifndef NET_IP_ALIGN 2961#define NET_IP_ALIGN 2 2962#endif 2963 2964/* 2965 * The networking layer reserves some headroom in skb data (via 2966 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2967 * the header has to grow. In the default case, if the header has to grow 2968 * 32 bytes or less we avoid the reallocation. 2969 * 2970 * Unfortunately this headroom changes the DMA alignment of the resulting 2971 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2972 * on some architectures. An architecture can override this value, 2973 * perhaps setting it to a cacheline in size (since that will maintain 2974 * cacheline alignment of the DMA). It must be a power of 2. 2975 * 2976 * Various parts of the networking layer expect at least 32 bytes of 2977 * headroom, you should not reduce this. 2978 * 2979 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2980 * to reduce average number of cache lines per packet. 2981 * get_rps_cpu() for example only access one 64 bytes aligned block : 2982 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2983 */ 2984#ifndef NET_SKB_PAD 2985#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2986#endif 2987 2988int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2989 2990static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2991{ 2992 if (WARN_ON(skb_is_nonlinear(skb))) 2993 return; 2994 skb->len = len; 2995 skb_set_tail_pointer(skb, len); 2996} 2997 2998static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2999{ 3000 __skb_set_length(skb, len); 3001} 3002 3003void skb_trim(struct sk_buff *skb, unsigned int len); 3004 3005static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3006{ 3007 if (skb->data_len) 3008 return ___pskb_trim(skb, len); 3009 __skb_trim(skb, len); 3010 return 0; 3011} 3012 3013static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3014{ 3015 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3016} 3017 3018/** 3019 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3020 * @skb: buffer to alter 3021 * @len: new length 3022 * 3023 * This is identical to pskb_trim except that the caller knows that 3024 * the skb is not cloned so we should never get an error due to out- 3025 * of-memory. 3026 */ 3027static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3028{ 3029 int err = pskb_trim(skb, len); 3030 BUG_ON(err); 3031} 3032 3033static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3034{ 3035 unsigned int diff = len - skb->len; 3036 3037 if (skb_tailroom(skb) < diff) { 3038 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3039 GFP_ATOMIC); 3040 if (ret) 3041 return ret; 3042 } 3043 __skb_set_length(skb, len); 3044 return 0; 3045} 3046 3047/** 3048 * skb_orphan - orphan a buffer 3049 * @skb: buffer to orphan 3050 * 3051 * If a buffer currently has an owner then we call the owner's 3052 * destructor function and make the @skb unowned. The buffer continues 3053 * to exist but is no longer charged to its former owner. 3054 */ 3055static inline void skb_orphan(struct sk_buff *skb) 3056{ 3057 if (skb->destructor) { 3058 skb->destructor(skb); 3059 skb->destructor = NULL; 3060 skb->sk = NULL; 3061 } else { 3062 BUG_ON(skb->sk); 3063 } 3064} 3065 3066/** 3067 * skb_orphan_frags - orphan the frags contained in a buffer 3068 * @skb: buffer to orphan frags from 3069 * @gfp_mask: allocation mask for replacement pages 3070 * 3071 * For each frag in the SKB which needs a destructor (i.e. has an 3072 * owner) create a copy of that frag and release the original 3073 * page by calling the destructor. 3074 */ 3075static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3076{ 3077 if (likely(!skb_zcopy(skb))) 3078 return 0; 3079 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3080 return 0; 3081 return skb_copy_ubufs(skb, gfp_mask); 3082} 3083 3084/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3085static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3086{ 3087 if (likely(!skb_zcopy(skb))) 3088 return 0; 3089 return skb_copy_ubufs(skb, gfp_mask); 3090} 3091 3092/** 3093 * __skb_queue_purge - empty a list 3094 * @list: list to empty 3095 * 3096 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3097 * the list and one reference dropped. This function does not take the 3098 * list lock and the caller must hold the relevant locks to use it. 3099 */ 3100static inline void __skb_queue_purge(struct sk_buff_head *list) 3101{ 3102 struct sk_buff *skb; 3103 while ((skb = __skb_dequeue(list)) != NULL) 3104 kfree_skb(skb); 3105} 3106void skb_queue_purge(struct sk_buff_head *list); 3107 3108unsigned int skb_rbtree_purge(struct rb_root *root); 3109 3110void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3111 3112/** 3113 * netdev_alloc_frag - allocate a page fragment 3114 * @fragsz: fragment size 3115 * 3116 * Allocates a frag from a page for receive buffer. 3117 * Uses GFP_ATOMIC allocations. 3118 */ 3119static inline void *netdev_alloc_frag(unsigned int fragsz) 3120{ 3121 return __netdev_alloc_frag_align(fragsz, ~0u); 3122} 3123 3124static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3125 unsigned int align) 3126{ 3127 WARN_ON_ONCE(!is_power_of_2(align)); 3128 return __netdev_alloc_frag_align(fragsz, -align); 3129} 3130 3131struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3132 gfp_t gfp_mask); 3133 3134/** 3135 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3136 * @dev: network device to receive on 3137 * @length: length to allocate 3138 * 3139 * Allocate a new &sk_buff and assign it a usage count of one. The 3140 * buffer has unspecified headroom built in. Users should allocate 3141 * the headroom they think they need without accounting for the 3142 * built in space. The built in space is used for optimisations. 3143 * 3144 * %NULL is returned if there is no free memory. Although this function 3145 * allocates memory it can be called from an interrupt. 3146 */ 3147static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3148 unsigned int length) 3149{ 3150 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3151} 3152 3153/* legacy helper around __netdev_alloc_skb() */ 3154static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3155 gfp_t gfp_mask) 3156{ 3157 return __netdev_alloc_skb(NULL, length, gfp_mask); 3158} 3159 3160/* legacy helper around netdev_alloc_skb() */ 3161static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3162{ 3163 return netdev_alloc_skb(NULL, length); 3164} 3165 3166 3167static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3168 unsigned int length, gfp_t gfp) 3169{ 3170 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3171 3172 if (NET_IP_ALIGN && skb) 3173 skb_reserve(skb, NET_IP_ALIGN); 3174 return skb; 3175} 3176 3177static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3178 unsigned int length) 3179{ 3180 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3181} 3182 3183static inline void skb_free_frag(void *addr) 3184{ 3185 page_frag_free(addr); 3186} 3187 3188void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3189 3190static inline void *napi_alloc_frag(unsigned int fragsz) 3191{ 3192 return __napi_alloc_frag_align(fragsz, ~0u); 3193} 3194 3195static inline void *napi_alloc_frag_align(unsigned int fragsz, 3196 unsigned int align) 3197{ 3198 WARN_ON_ONCE(!is_power_of_2(align)); 3199 return __napi_alloc_frag_align(fragsz, -align); 3200} 3201 3202struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 3203 unsigned int length, gfp_t gfp_mask); 3204static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 3205 unsigned int length) 3206{ 3207 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 3208} 3209void napi_consume_skb(struct sk_buff *skb, int budget); 3210 3211void napi_skb_free_stolen_head(struct sk_buff *skb); 3212void __kfree_skb_defer(struct sk_buff *skb); 3213 3214/** 3215 * __dev_alloc_pages - allocate page for network Rx 3216 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3217 * @order: size of the allocation 3218 * 3219 * Allocate a new page. 3220 * 3221 * %NULL is returned if there is no free memory. 3222*/ 3223static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 3224 unsigned int order) 3225{ 3226 /* This piece of code contains several assumptions. 3227 * 1. This is for device Rx, therefor a cold page is preferred. 3228 * 2. The expectation is the user wants a compound page. 3229 * 3. If requesting a order 0 page it will not be compound 3230 * due to the check to see if order has a value in prep_new_page 3231 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3232 * code in gfp_to_alloc_flags that should be enforcing this. 3233 */ 3234 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3235 3236 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 3237} 3238 3239static inline struct page *dev_alloc_pages(unsigned int order) 3240{ 3241 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 3242} 3243 3244/** 3245 * __dev_alloc_page - allocate a page for network Rx 3246 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3247 * 3248 * Allocate a new page. 3249 * 3250 * %NULL is returned if there is no free memory. 3251 */ 3252static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 3253{ 3254 return __dev_alloc_pages(gfp_mask, 0); 3255} 3256 3257static inline struct page *dev_alloc_page(void) 3258{ 3259 return dev_alloc_pages(0); 3260} 3261 3262/** 3263 * dev_page_is_reusable - check whether a page can be reused for network Rx 3264 * @page: the page to test 3265 * 3266 * A page shouldn't be considered for reusing/recycling if it was allocated 3267 * under memory pressure or at a distant memory node. 3268 * 3269 * Returns false if this page should be returned to page allocator, true 3270 * otherwise. 3271 */ 3272static inline bool dev_page_is_reusable(const struct page *page) 3273{ 3274 return likely(page_to_nid(page) == numa_mem_id() && 3275 !page_is_pfmemalloc(page)); 3276} 3277 3278/** 3279 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3280 * @page: The page that was allocated from skb_alloc_page 3281 * @skb: The skb that may need pfmemalloc set 3282 */ 3283static inline void skb_propagate_pfmemalloc(const struct page *page, 3284 struct sk_buff *skb) 3285{ 3286 if (page_is_pfmemalloc(page)) 3287 skb->pfmemalloc = true; 3288} 3289 3290/** 3291 * skb_frag_off() - Returns the offset of a skb fragment 3292 * @frag: the paged fragment 3293 */ 3294static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3295{ 3296 return frag->bv_offset; 3297} 3298 3299/** 3300 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3301 * @frag: skb fragment 3302 * @delta: value to add 3303 */ 3304static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3305{ 3306 frag->bv_offset += delta; 3307} 3308 3309/** 3310 * skb_frag_off_set() - Sets the offset of a skb fragment 3311 * @frag: skb fragment 3312 * @offset: offset of fragment 3313 */ 3314static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3315{ 3316 frag->bv_offset = offset; 3317} 3318 3319/** 3320 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3321 * @fragto: skb fragment where offset is set 3322 * @fragfrom: skb fragment offset is copied from 3323 */ 3324static inline void skb_frag_off_copy(skb_frag_t *fragto, 3325 const skb_frag_t *fragfrom) 3326{ 3327 fragto->bv_offset = fragfrom->bv_offset; 3328} 3329 3330/** 3331 * skb_frag_page - retrieve the page referred to by a paged fragment 3332 * @frag: the paged fragment 3333 * 3334 * Returns the &struct page associated with @frag. 3335 */ 3336static inline struct page *skb_frag_page(const skb_frag_t *frag) 3337{ 3338 return frag->bv_page; 3339} 3340 3341/** 3342 * __skb_frag_ref - take an addition reference on a paged fragment. 3343 * @frag: the paged fragment 3344 * 3345 * Takes an additional reference on the paged fragment @frag. 3346 */ 3347static inline void __skb_frag_ref(skb_frag_t *frag) 3348{ 3349 get_page(skb_frag_page(frag)); 3350} 3351 3352/** 3353 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 3354 * @skb: the buffer 3355 * @f: the fragment offset. 3356 * 3357 * Takes an additional reference on the @f'th paged fragment of @skb. 3358 */ 3359static inline void skb_frag_ref(struct sk_buff *skb, int f) 3360{ 3361 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 3362} 3363 3364/** 3365 * __skb_frag_unref - release a reference on a paged fragment. 3366 * @frag: the paged fragment 3367 * @recycle: recycle the page if allocated via page_pool 3368 * 3369 * Releases a reference on the paged fragment @frag 3370 * or recycles the page via the page_pool API. 3371 */ 3372static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) 3373{ 3374 struct page *page = skb_frag_page(frag); 3375 3376#ifdef CONFIG_PAGE_POOL 3377 if (recycle && page_pool_return_skb_page(page)) 3378 return; 3379#endif 3380 put_page(page); 3381} 3382 3383/** 3384 * skb_frag_unref - release a reference on a paged fragment of an skb. 3385 * @skb: the buffer 3386 * @f: the fragment offset 3387 * 3388 * Releases a reference on the @f'th paged fragment of @skb. 3389 */ 3390static inline void skb_frag_unref(struct sk_buff *skb, int f) 3391{ 3392 struct skb_shared_info *shinfo = skb_shinfo(skb); 3393 3394 if (!skb_zcopy_managed(skb)) 3395 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle); 3396} 3397 3398/** 3399 * skb_frag_address - gets the address of the data contained in a paged fragment 3400 * @frag: the paged fragment buffer 3401 * 3402 * Returns the address of the data within @frag. The page must already 3403 * be mapped. 3404 */ 3405static inline void *skb_frag_address(const skb_frag_t *frag) 3406{ 3407 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3408} 3409 3410/** 3411 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3412 * @frag: the paged fragment buffer 3413 * 3414 * Returns the address of the data within @frag. Checks that the page 3415 * is mapped and returns %NULL otherwise. 3416 */ 3417static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3418{ 3419 void *ptr = page_address(skb_frag_page(frag)); 3420 if (unlikely(!ptr)) 3421 return NULL; 3422 3423 return ptr + skb_frag_off(frag); 3424} 3425 3426/** 3427 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3428 * @fragto: skb fragment where page is set 3429 * @fragfrom: skb fragment page is copied from 3430 */ 3431static inline void skb_frag_page_copy(skb_frag_t *fragto, 3432 const skb_frag_t *fragfrom) 3433{ 3434 fragto->bv_page = fragfrom->bv_page; 3435} 3436 3437/** 3438 * __skb_frag_set_page - sets the page contained in a paged fragment 3439 * @frag: the paged fragment 3440 * @page: the page to set 3441 * 3442 * Sets the fragment @frag to contain @page. 3443 */ 3444static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 3445{ 3446 frag->bv_page = page; 3447} 3448 3449/** 3450 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 3451 * @skb: the buffer 3452 * @f: the fragment offset 3453 * @page: the page to set 3454 * 3455 * Sets the @f'th fragment of @skb to contain @page. 3456 */ 3457static inline void skb_frag_set_page(struct sk_buff *skb, int f, 3458 struct page *page) 3459{ 3460 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 3461} 3462 3463bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3464 3465/** 3466 * skb_frag_dma_map - maps a paged fragment via the DMA API 3467 * @dev: the device to map the fragment to 3468 * @frag: the paged fragment to map 3469 * @offset: the offset within the fragment (starting at the 3470 * fragment's own offset) 3471 * @size: the number of bytes to map 3472 * @dir: the direction of the mapping (``PCI_DMA_*``) 3473 * 3474 * Maps the page associated with @frag to @device. 3475 */ 3476static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3477 const skb_frag_t *frag, 3478 size_t offset, size_t size, 3479 enum dma_data_direction dir) 3480{ 3481 return dma_map_page(dev, skb_frag_page(frag), 3482 skb_frag_off(frag) + offset, size, dir); 3483} 3484 3485static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3486 gfp_t gfp_mask) 3487{ 3488 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3489} 3490 3491 3492static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3493 gfp_t gfp_mask) 3494{ 3495 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3496} 3497 3498 3499/** 3500 * skb_clone_writable - is the header of a clone writable 3501 * @skb: buffer to check 3502 * @len: length up to which to write 3503 * 3504 * Returns true if modifying the header part of the cloned buffer 3505 * does not requires the data to be copied. 3506 */ 3507static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3508{ 3509 return !skb_header_cloned(skb) && 3510 skb_headroom(skb) + len <= skb->hdr_len; 3511} 3512 3513static inline int skb_try_make_writable(struct sk_buff *skb, 3514 unsigned int write_len) 3515{ 3516 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3517 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3518} 3519 3520static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3521 int cloned) 3522{ 3523 int delta = 0; 3524 3525 if (headroom > skb_headroom(skb)) 3526 delta = headroom - skb_headroom(skb); 3527 3528 if (delta || cloned) 3529 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3530 GFP_ATOMIC); 3531 return 0; 3532} 3533 3534/** 3535 * skb_cow - copy header of skb when it is required 3536 * @skb: buffer to cow 3537 * @headroom: needed headroom 3538 * 3539 * If the skb passed lacks sufficient headroom or its data part 3540 * is shared, data is reallocated. If reallocation fails, an error 3541 * is returned and original skb is not changed. 3542 * 3543 * The result is skb with writable area skb->head...skb->tail 3544 * and at least @headroom of space at head. 3545 */ 3546static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3547{ 3548 return __skb_cow(skb, headroom, skb_cloned(skb)); 3549} 3550 3551/** 3552 * skb_cow_head - skb_cow but only making the head writable 3553 * @skb: buffer to cow 3554 * @headroom: needed headroom 3555 * 3556 * This function is identical to skb_cow except that we replace the 3557 * skb_cloned check by skb_header_cloned. It should be used when 3558 * you only need to push on some header and do not need to modify 3559 * the data. 3560 */ 3561static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3562{ 3563 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3564} 3565 3566/** 3567 * skb_padto - pad an skbuff up to a minimal size 3568 * @skb: buffer to pad 3569 * @len: minimal length 3570 * 3571 * Pads up a buffer to ensure the trailing bytes exist and are 3572 * blanked. If the buffer already contains sufficient data it 3573 * is untouched. Otherwise it is extended. Returns zero on 3574 * success. The skb is freed on error. 3575 */ 3576static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3577{ 3578 unsigned int size = skb->len; 3579 if (likely(size >= len)) 3580 return 0; 3581 return skb_pad(skb, len - size); 3582} 3583 3584/** 3585 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3586 * @skb: buffer to pad 3587 * @len: minimal length 3588 * @free_on_error: free buffer on error 3589 * 3590 * Pads up a buffer to ensure the trailing bytes exist and are 3591 * blanked. If the buffer already contains sufficient data it 3592 * is untouched. Otherwise it is extended. Returns zero on 3593 * success. The skb is freed on error if @free_on_error is true. 3594 */ 3595static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3596 unsigned int len, 3597 bool free_on_error) 3598{ 3599 unsigned int size = skb->len; 3600 3601 if (unlikely(size < len)) { 3602 len -= size; 3603 if (__skb_pad(skb, len, free_on_error)) 3604 return -ENOMEM; 3605 __skb_put(skb, len); 3606 } 3607 return 0; 3608} 3609 3610/** 3611 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3612 * @skb: buffer to pad 3613 * @len: minimal length 3614 * 3615 * Pads up a buffer to ensure the trailing bytes exist and are 3616 * blanked. If the buffer already contains sufficient data it 3617 * is untouched. Otherwise it is extended. Returns zero on 3618 * success. The skb is freed on error. 3619 */ 3620static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3621{ 3622 return __skb_put_padto(skb, len, true); 3623} 3624 3625static inline int skb_add_data(struct sk_buff *skb, 3626 struct iov_iter *from, int copy) 3627{ 3628 const int off = skb->len; 3629 3630 if (skb->ip_summed == CHECKSUM_NONE) { 3631 __wsum csum = 0; 3632 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3633 &csum, from)) { 3634 skb->csum = csum_block_add(skb->csum, csum, off); 3635 return 0; 3636 } 3637 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3638 return 0; 3639 3640 __skb_trim(skb, off); 3641 return -EFAULT; 3642} 3643 3644static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3645 const struct page *page, int off) 3646{ 3647 if (skb_zcopy(skb)) 3648 return false; 3649 if (i) { 3650 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3651 3652 return page == skb_frag_page(frag) && 3653 off == skb_frag_off(frag) + skb_frag_size(frag); 3654 } 3655 return false; 3656} 3657 3658static inline int __skb_linearize(struct sk_buff *skb) 3659{ 3660 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3661} 3662 3663/** 3664 * skb_linearize - convert paged skb to linear one 3665 * @skb: buffer to linarize 3666 * 3667 * If there is no free memory -ENOMEM is returned, otherwise zero 3668 * is returned and the old skb data released. 3669 */ 3670static inline int skb_linearize(struct sk_buff *skb) 3671{ 3672 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3673} 3674 3675/** 3676 * skb_has_shared_frag - can any frag be overwritten 3677 * @skb: buffer to test 3678 * 3679 * Return true if the skb has at least one frag that might be modified 3680 * by an external entity (as in vmsplice()/sendfile()) 3681 */ 3682static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3683{ 3684 return skb_is_nonlinear(skb) && 3685 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3686} 3687 3688/** 3689 * skb_linearize_cow - make sure skb is linear and writable 3690 * @skb: buffer to process 3691 * 3692 * If there is no free memory -ENOMEM is returned, otherwise zero 3693 * is returned and the old skb data released. 3694 */ 3695static inline int skb_linearize_cow(struct sk_buff *skb) 3696{ 3697 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3698 __skb_linearize(skb) : 0; 3699} 3700 3701static __always_inline void 3702__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3703 unsigned int off) 3704{ 3705 if (skb->ip_summed == CHECKSUM_COMPLETE) 3706 skb->csum = csum_block_sub(skb->csum, 3707 csum_partial(start, len, 0), off); 3708 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3709 skb_checksum_start_offset(skb) < 0) 3710 skb->ip_summed = CHECKSUM_NONE; 3711} 3712 3713/** 3714 * skb_postpull_rcsum - update checksum for received skb after pull 3715 * @skb: buffer to update 3716 * @start: start of data before pull 3717 * @len: length of data pulled 3718 * 3719 * After doing a pull on a received packet, you need to call this to 3720 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3721 * CHECKSUM_NONE so that it can be recomputed from scratch. 3722 */ 3723static inline void skb_postpull_rcsum(struct sk_buff *skb, 3724 const void *start, unsigned int len) 3725{ 3726 if (skb->ip_summed == CHECKSUM_COMPLETE) 3727 skb->csum = wsum_negate(csum_partial(start, len, 3728 wsum_negate(skb->csum))); 3729 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3730 skb_checksum_start_offset(skb) < 0) 3731 skb->ip_summed = CHECKSUM_NONE; 3732} 3733 3734static __always_inline void 3735__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3736 unsigned int off) 3737{ 3738 if (skb->ip_summed == CHECKSUM_COMPLETE) 3739 skb->csum = csum_block_add(skb->csum, 3740 csum_partial(start, len, 0), off); 3741} 3742 3743/** 3744 * skb_postpush_rcsum - update checksum for received skb after push 3745 * @skb: buffer to update 3746 * @start: start of data after push 3747 * @len: length of data pushed 3748 * 3749 * After doing a push on a received packet, you need to call this to 3750 * update the CHECKSUM_COMPLETE checksum. 3751 */ 3752static inline void skb_postpush_rcsum(struct sk_buff *skb, 3753 const void *start, unsigned int len) 3754{ 3755 __skb_postpush_rcsum(skb, start, len, 0); 3756} 3757 3758void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3759 3760/** 3761 * skb_push_rcsum - push skb and update receive checksum 3762 * @skb: buffer to update 3763 * @len: length of data pulled 3764 * 3765 * This function performs an skb_push on the packet and updates 3766 * the CHECKSUM_COMPLETE checksum. It should be used on 3767 * receive path processing instead of skb_push unless you know 3768 * that the checksum difference is zero (e.g., a valid IP header) 3769 * or you are setting ip_summed to CHECKSUM_NONE. 3770 */ 3771static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3772{ 3773 skb_push(skb, len); 3774 skb_postpush_rcsum(skb, skb->data, len); 3775 return skb->data; 3776} 3777 3778int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3779/** 3780 * pskb_trim_rcsum - trim received skb and update checksum 3781 * @skb: buffer to trim 3782 * @len: new length 3783 * 3784 * This is exactly the same as pskb_trim except that it ensures the 3785 * checksum of received packets are still valid after the operation. 3786 * It can change skb pointers. 3787 */ 3788 3789static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3790{ 3791 if (likely(len >= skb->len)) 3792 return 0; 3793 return pskb_trim_rcsum_slow(skb, len); 3794} 3795 3796static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3797{ 3798 if (skb->ip_summed == CHECKSUM_COMPLETE) 3799 skb->ip_summed = CHECKSUM_NONE; 3800 __skb_trim(skb, len); 3801 return 0; 3802} 3803 3804static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3805{ 3806 if (skb->ip_summed == CHECKSUM_COMPLETE) 3807 skb->ip_summed = CHECKSUM_NONE; 3808 return __skb_grow(skb, len); 3809} 3810 3811#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3812#define skb_rb_first(root) rb_to_skb(rb_first(root)) 3813#define skb_rb_last(root) rb_to_skb(rb_last(root)) 3814#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3815#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3816 3817#define skb_queue_walk(queue, skb) \ 3818 for (skb = (queue)->next; \ 3819 skb != (struct sk_buff *)(queue); \ 3820 skb = skb->next) 3821 3822#define skb_queue_walk_safe(queue, skb, tmp) \ 3823 for (skb = (queue)->next, tmp = skb->next; \ 3824 skb != (struct sk_buff *)(queue); \ 3825 skb = tmp, tmp = skb->next) 3826 3827#define skb_queue_walk_from(queue, skb) \ 3828 for (; skb != (struct sk_buff *)(queue); \ 3829 skb = skb->next) 3830 3831#define skb_rbtree_walk(skb, root) \ 3832 for (skb = skb_rb_first(root); skb != NULL; \ 3833 skb = skb_rb_next(skb)) 3834 3835#define skb_rbtree_walk_from(skb) \ 3836 for (; skb != NULL; \ 3837 skb = skb_rb_next(skb)) 3838 3839#define skb_rbtree_walk_from_safe(skb, tmp) \ 3840 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3841 skb = tmp) 3842 3843#define skb_queue_walk_from_safe(queue, skb, tmp) \ 3844 for (tmp = skb->next; \ 3845 skb != (struct sk_buff *)(queue); \ 3846 skb = tmp, tmp = skb->next) 3847 3848#define skb_queue_reverse_walk(queue, skb) \ 3849 for (skb = (queue)->prev; \ 3850 skb != (struct sk_buff *)(queue); \ 3851 skb = skb->prev) 3852 3853#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3854 for (skb = (queue)->prev, tmp = skb->prev; \ 3855 skb != (struct sk_buff *)(queue); \ 3856 skb = tmp, tmp = skb->prev) 3857 3858#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3859 for (tmp = skb->prev; \ 3860 skb != (struct sk_buff *)(queue); \ 3861 skb = tmp, tmp = skb->prev) 3862 3863static inline bool skb_has_frag_list(const struct sk_buff *skb) 3864{ 3865 return skb_shinfo(skb)->frag_list != NULL; 3866} 3867 3868static inline void skb_frag_list_init(struct sk_buff *skb) 3869{ 3870 skb_shinfo(skb)->frag_list = NULL; 3871} 3872 3873#define skb_walk_frags(skb, iter) \ 3874 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3875 3876 3877int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3878 int *err, long *timeo_p, 3879 const struct sk_buff *skb); 3880struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3881 struct sk_buff_head *queue, 3882 unsigned int flags, 3883 int *off, int *err, 3884 struct sk_buff **last); 3885struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3886 struct sk_buff_head *queue, 3887 unsigned int flags, int *off, int *err, 3888 struct sk_buff **last); 3889struct sk_buff *__skb_recv_datagram(struct sock *sk, 3890 struct sk_buff_head *sk_queue, 3891 unsigned int flags, int *off, int *err); 3892struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 3893__poll_t datagram_poll(struct file *file, struct socket *sock, 3894 struct poll_table_struct *wait); 3895int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3896 struct iov_iter *to, int size); 3897static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3898 struct msghdr *msg, int size) 3899{ 3900 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3901} 3902int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3903 struct msghdr *msg); 3904int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3905 struct iov_iter *to, int len, 3906 struct ahash_request *hash); 3907int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3908 struct iov_iter *from, int len); 3909int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3910void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3911void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3912static inline void skb_free_datagram_locked(struct sock *sk, 3913 struct sk_buff *skb) 3914{ 3915 __skb_free_datagram_locked(sk, skb, 0); 3916} 3917int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3918int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3919int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3920__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3921 int len); 3922int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3923 struct pipe_inode_info *pipe, unsigned int len, 3924 unsigned int flags); 3925int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3926 int len); 3927int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3928void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3929unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3930int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3931 int len, int hlen); 3932void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3933int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3934void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3935bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3936bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3937struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3938struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 3939 unsigned int offset); 3940struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3941int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 3942int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3943int skb_vlan_pop(struct sk_buff *skb); 3944int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3945int skb_eth_pop(struct sk_buff *skb); 3946int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 3947 const unsigned char *src); 3948int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 3949 int mac_len, bool ethernet); 3950int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 3951 bool ethernet); 3952int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 3953int skb_mpls_dec_ttl(struct sk_buff *skb); 3954struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3955 gfp_t gfp); 3956 3957static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3958{ 3959 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3960} 3961 3962static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3963{ 3964 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3965} 3966 3967struct skb_checksum_ops { 3968 __wsum (*update)(const void *mem, int len, __wsum wsum); 3969 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3970}; 3971 3972extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3973 3974__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3975 __wsum csum, const struct skb_checksum_ops *ops); 3976__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3977 __wsum csum); 3978 3979static inline void * __must_check 3980__skb_header_pointer(const struct sk_buff *skb, int offset, int len, 3981 const void *data, int hlen, void *buffer) 3982{ 3983 if (likely(hlen - offset >= len)) 3984 return (void *)data + offset; 3985 3986 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 3987 return NULL; 3988 3989 return buffer; 3990} 3991 3992static inline void * __must_check 3993skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3994{ 3995 return __skb_header_pointer(skb, offset, len, skb->data, 3996 skb_headlen(skb), buffer); 3997} 3998 3999/** 4000 * skb_needs_linearize - check if we need to linearize a given skb 4001 * depending on the given device features. 4002 * @skb: socket buffer to check 4003 * @features: net device features 4004 * 4005 * Returns true if either: 4006 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4007 * 2. skb is fragmented and the device does not support SG. 4008 */ 4009static inline bool skb_needs_linearize(struct sk_buff *skb, 4010 netdev_features_t features) 4011{ 4012 return skb_is_nonlinear(skb) && 4013 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4014 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4015} 4016 4017static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4018 void *to, 4019 const unsigned int len) 4020{ 4021 memcpy(to, skb->data, len); 4022} 4023 4024static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4025 const int offset, void *to, 4026 const unsigned int len) 4027{ 4028 memcpy(to, skb->data + offset, len); 4029} 4030 4031static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4032 const void *from, 4033 const unsigned int len) 4034{ 4035 memcpy(skb->data, from, len); 4036} 4037 4038static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4039 const int offset, 4040 const void *from, 4041 const unsigned int len) 4042{ 4043 memcpy(skb->data + offset, from, len); 4044} 4045 4046void skb_init(void); 4047 4048static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4049{ 4050 return skb->tstamp; 4051} 4052 4053/** 4054 * skb_get_timestamp - get timestamp from a skb 4055 * @skb: skb to get stamp from 4056 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4057 * 4058 * Timestamps are stored in the skb as offsets to a base timestamp. 4059 * This function converts the offset back to a struct timeval and stores 4060 * it in stamp. 4061 */ 4062static inline void skb_get_timestamp(const struct sk_buff *skb, 4063 struct __kernel_old_timeval *stamp) 4064{ 4065 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4066} 4067 4068static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4069 struct __kernel_sock_timeval *stamp) 4070{ 4071 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4072 4073 stamp->tv_sec = ts.tv_sec; 4074 stamp->tv_usec = ts.tv_nsec / 1000; 4075} 4076 4077static inline void skb_get_timestampns(const struct sk_buff *skb, 4078 struct __kernel_old_timespec *stamp) 4079{ 4080 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4081 4082 stamp->tv_sec = ts.tv_sec; 4083 stamp->tv_nsec = ts.tv_nsec; 4084} 4085 4086static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4087 struct __kernel_timespec *stamp) 4088{ 4089 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4090 4091 stamp->tv_sec = ts.tv_sec; 4092 stamp->tv_nsec = ts.tv_nsec; 4093} 4094 4095static inline void __net_timestamp(struct sk_buff *skb) 4096{ 4097 skb->tstamp = ktime_get_real(); 4098 skb->mono_delivery_time = 0; 4099} 4100 4101static inline ktime_t net_timedelta(ktime_t t) 4102{ 4103 return ktime_sub(ktime_get_real(), t); 4104} 4105 4106static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4107 bool mono) 4108{ 4109 skb->tstamp = kt; 4110 skb->mono_delivery_time = kt && mono; 4111} 4112 4113DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4114 4115/* It is used in the ingress path to clear the delivery_time. 4116 * If needed, set the skb->tstamp to the (rcv) timestamp. 4117 */ 4118static inline void skb_clear_delivery_time(struct sk_buff *skb) 4119{ 4120 if (skb->mono_delivery_time) { 4121 skb->mono_delivery_time = 0; 4122 if (static_branch_unlikely(&netstamp_needed_key)) 4123 skb->tstamp = ktime_get_real(); 4124 else 4125 skb->tstamp = 0; 4126 } 4127} 4128 4129static inline void skb_clear_tstamp(struct sk_buff *skb) 4130{ 4131 if (skb->mono_delivery_time) 4132 return; 4133 4134 skb->tstamp = 0; 4135} 4136 4137static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4138{ 4139 if (skb->mono_delivery_time) 4140 return 0; 4141 4142 return skb->tstamp; 4143} 4144 4145static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4146{ 4147 if (!skb->mono_delivery_time && skb->tstamp) 4148 return skb->tstamp; 4149 4150 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4151 return ktime_get_real(); 4152 4153 return 0; 4154} 4155 4156static inline u8 skb_metadata_len(const struct sk_buff *skb) 4157{ 4158 return skb_shinfo(skb)->meta_len; 4159} 4160 4161static inline void *skb_metadata_end(const struct sk_buff *skb) 4162{ 4163 return skb_mac_header(skb); 4164} 4165 4166static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4167 const struct sk_buff *skb_b, 4168 u8 meta_len) 4169{ 4170 const void *a = skb_metadata_end(skb_a); 4171 const void *b = skb_metadata_end(skb_b); 4172 /* Using more efficient varaiant than plain call to memcmp(). */ 4173#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 4174 u64 diffs = 0; 4175 4176 switch (meta_len) { 4177#define __it(x, op) (x -= sizeof(u##op)) 4178#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4179 case 32: diffs |= __it_diff(a, b, 64); 4180 fallthrough; 4181 case 24: diffs |= __it_diff(a, b, 64); 4182 fallthrough; 4183 case 16: diffs |= __it_diff(a, b, 64); 4184 fallthrough; 4185 case 8: diffs |= __it_diff(a, b, 64); 4186 break; 4187 case 28: diffs |= __it_diff(a, b, 64); 4188 fallthrough; 4189 case 20: diffs |= __it_diff(a, b, 64); 4190 fallthrough; 4191 case 12: diffs |= __it_diff(a, b, 64); 4192 fallthrough; 4193 case 4: diffs |= __it_diff(a, b, 32); 4194 break; 4195 } 4196 return diffs; 4197#else 4198 return memcmp(a - meta_len, b - meta_len, meta_len); 4199#endif 4200} 4201 4202static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4203 const struct sk_buff *skb_b) 4204{ 4205 u8 len_a = skb_metadata_len(skb_a); 4206 u8 len_b = skb_metadata_len(skb_b); 4207 4208 if (!(len_a | len_b)) 4209 return false; 4210 4211 return len_a != len_b ? 4212 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4213} 4214 4215static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4216{ 4217 skb_shinfo(skb)->meta_len = meta_len; 4218} 4219 4220static inline void skb_metadata_clear(struct sk_buff *skb) 4221{ 4222 skb_metadata_set(skb, 0); 4223} 4224 4225struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4226 4227#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4228 4229void skb_clone_tx_timestamp(struct sk_buff *skb); 4230bool skb_defer_rx_timestamp(struct sk_buff *skb); 4231 4232#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4233 4234static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4235{ 4236} 4237 4238static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4239{ 4240 return false; 4241} 4242 4243#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4244 4245/** 4246 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4247 * 4248 * PHY drivers may accept clones of transmitted packets for 4249 * timestamping via their phy_driver.txtstamp method. These drivers 4250 * must call this function to return the skb back to the stack with a 4251 * timestamp. 4252 * 4253 * @skb: clone of the original outgoing packet 4254 * @hwtstamps: hardware time stamps 4255 * 4256 */ 4257void skb_complete_tx_timestamp(struct sk_buff *skb, 4258 struct skb_shared_hwtstamps *hwtstamps); 4259 4260void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4261 struct skb_shared_hwtstamps *hwtstamps, 4262 struct sock *sk, int tstype); 4263 4264/** 4265 * skb_tstamp_tx - queue clone of skb with send time stamps 4266 * @orig_skb: the original outgoing packet 4267 * @hwtstamps: hardware time stamps, may be NULL if not available 4268 * 4269 * If the skb has a socket associated, then this function clones the 4270 * skb (thus sharing the actual data and optional structures), stores 4271 * the optional hardware time stamping information (if non NULL) or 4272 * generates a software time stamp (otherwise), then queues the clone 4273 * to the error queue of the socket. Errors are silently ignored. 4274 */ 4275void skb_tstamp_tx(struct sk_buff *orig_skb, 4276 struct skb_shared_hwtstamps *hwtstamps); 4277 4278/** 4279 * skb_tx_timestamp() - Driver hook for transmit timestamping 4280 * 4281 * Ethernet MAC Drivers should call this function in their hard_xmit() 4282 * function immediately before giving the sk_buff to the MAC hardware. 4283 * 4284 * Specifically, one should make absolutely sure that this function is 4285 * called before TX completion of this packet can trigger. Otherwise 4286 * the packet could potentially already be freed. 4287 * 4288 * @skb: A socket buffer. 4289 */ 4290static inline void skb_tx_timestamp(struct sk_buff *skb) 4291{ 4292 skb_clone_tx_timestamp(skb); 4293 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4294 skb_tstamp_tx(skb, NULL); 4295} 4296 4297/** 4298 * skb_complete_wifi_ack - deliver skb with wifi status 4299 * 4300 * @skb: the original outgoing packet 4301 * @acked: ack status 4302 * 4303 */ 4304void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4305 4306__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4307__sum16 __skb_checksum_complete(struct sk_buff *skb); 4308 4309static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4310{ 4311 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4312 skb->csum_valid || 4313 (skb->ip_summed == CHECKSUM_PARTIAL && 4314 skb_checksum_start_offset(skb) >= 0)); 4315} 4316 4317/** 4318 * skb_checksum_complete - Calculate checksum of an entire packet 4319 * @skb: packet to process 4320 * 4321 * This function calculates the checksum over the entire packet plus 4322 * the value of skb->csum. The latter can be used to supply the 4323 * checksum of a pseudo header as used by TCP/UDP. It returns the 4324 * checksum. 4325 * 4326 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4327 * this function can be used to verify that checksum on received 4328 * packets. In that case the function should return zero if the 4329 * checksum is correct. In particular, this function will return zero 4330 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4331 * hardware has already verified the correctness of the checksum. 4332 */ 4333static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4334{ 4335 return skb_csum_unnecessary(skb) ? 4336 0 : __skb_checksum_complete(skb); 4337} 4338 4339static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4340{ 4341 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4342 if (skb->csum_level == 0) 4343 skb->ip_summed = CHECKSUM_NONE; 4344 else 4345 skb->csum_level--; 4346 } 4347} 4348 4349static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4350{ 4351 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4352 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4353 skb->csum_level++; 4354 } else if (skb->ip_summed == CHECKSUM_NONE) { 4355 skb->ip_summed = CHECKSUM_UNNECESSARY; 4356 skb->csum_level = 0; 4357 } 4358} 4359 4360static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4361{ 4362 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4363 skb->ip_summed = CHECKSUM_NONE; 4364 skb->csum_level = 0; 4365 } 4366} 4367 4368/* Check if we need to perform checksum complete validation. 4369 * 4370 * Returns true if checksum complete is needed, false otherwise 4371 * (either checksum is unnecessary or zero checksum is allowed). 4372 */ 4373static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4374 bool zero_okay, 4375 __sum16 check) 4376{ 4377 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4378 skb->csum_valid = 1; 4379 __skb_decr_checksum_unnecessary(skb); 4380 return false; 4381 } 4382 4383 return true; 4384} 4385 4386/* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4387 * in checksum_init. 4388 */ 4389#define CHECKSUM_BREAK 76 4390 4391/* Unset checksum-complete 4392 * 4393 * Unset checksum complete can be done when packet is being modified 4394 * (uncompressed for instance) and checksum-complete value is 4395 * invalidated. 4396 */ 4397static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4398{ 4399 if (skb->ip_summed == CHECKSUM_COMPLETE) 4400 skb->ip_summed = CHECKSUM_NONE; 4401} 4402 4403/* Validate (init) checksum based on checksum complete. 4404 * 4405 * Return values: 4406 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4407 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4408 * checksum is stored in skb->csum for use in __skb_checksum_complete 4409 * non-zero: value of invalid checksum 4410 * 4411 */ 4412static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4413 bool complete, 4414 __wsum psum) 4415{ 4416 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4417 if (!csum_fold(csum_add(psum, skb->csum))) { 4418 skb->csum_valid = 1; 4419 return 0; 4420 } 4421 } 4422 4423 skb->csum = psum; 4424 4425 if (complete || skb->len <= CHECKSUM_BREAK) { 4426 __sum16 csum; 4427 4428 csum = __skb_checksum_complete(skb); 4429 skb->csum_valid = !csum; 4430 return csum; 4431 } 4432 4433 return 0; 4434} 4435 4436static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4437{ 4438 return 0; 4439} 4440 4441/* Perform checksum validate (init). Note that this is a macro since we only 4442 * want to calculate the pseudo header which is an input function if necessary. 4443 * First we try to validate without any computation (checksum unnecessary) and 4444 * then calculate based on checksum complete calling the function to compute 4445 * pseudo header. 4446 * 4447 * Return values: 4448 * 0: checksum is validated or try to in skb_checksum_complete 4449 * non-zero: value of invalid checksum 4450 */ 4451#define __skb_checksum_validate(skb, proto, complete, \ 4452 zero_okay, check, compute_pseudo) \ 4453({ \ 4454 __sum16 __ret = 0; \ 4455 skb->csum_valid = 0; \ 4456 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4457 __ret = __skb_checksum_validate_complete(skb, \ 4458 complete, compute_pseudo(skb, proto)); \ 4459 __ret; \ 4460}) 4461 4462#define skb_checksum_init(skb, proto, compute_pseudo) \ 4463 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4464 4465#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4466 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4467 4468#define skb_checksum_validate(skb, proto, compute_pseudo) \ 4469 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4470 4471#define skb_checksum_validate_zero_check(skb, proto, check, \ 4472 compute_pseudo) \ 4473 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4474 4475#define skb_checksum_simple_validate(skb) \ 4476 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4477 4478static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4479{ 4480 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4481} 4482 4483static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4484{ 4485 skb->csum = ~pseudo; 4486 skb->ip_summed = CHECKSUM_COMPLETE; 4487} 4488 4489#define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4490do { \ 4491 if (__skb_checksum_convert_check(skb)) \ 4492 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4493} while (0) 4494 4495static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4496 u16 start, u16 offset) 4497{ 4498 skb->ip_summed = CHECKSUM_PARTIAL; 4499 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4500 skb->csum_offset = offset - start; 4501} 4502 4503/* Update skbuf and packet to reflect the remote checksum offload operation. 4504 * When called, ptr indicates the starting point for skb->csum when 4505 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4506 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4507 */ 4508static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4509 int start, int offset, bool nopartial) 4510{ 4511 __wsum delta; 4512 4513 if (!nopartial) { 4514 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4515 return; 4516 } 4517 4518 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4519 __skb_checksum_complete(skb); 4520 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4521 } 4522 4523 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4524 4525 /* Adjust skb->csum since we changed the packet */ 4526 skb->csum = csum_add(skb->csum, delta); 4527} 4528 4529static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4530{ 4531#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4532 return (void *)(skb->_nfct & NFCT_PTRMASK); 4533#else 4534 return NULL; 4535#endif 4536} 4537 4538static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4539{ 4540#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4541 return skb->_nfct; 4542#else 4543 return 0UL; 4544#endif 4545} 4546 4547static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4548{ 4549#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4550 skb->slow_gro |= !!nfct; 4551 skb->_nfct = nfct; 4552#endif 4553} 4554 4555#ifdef CONFIG_SKB_EXTENSIONS 4556enum skb_ext_id { 4557#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4558 SKB_EXT_BRIDGE_NF, 4559#endif 4560#ifdef CONFIG_XFRM 4561 SKB_EXT_SEC_PATH, 4562#endif 4563#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4564 TC_SKB_EXT, 4565#endif 4566#if IS_ENABLED(CONFIG_MPTCP) 4567 SKB_EXT_MPTCP, 4568#endif 4569#if IS_ENABLED(CONFIG_MCTP_FLOWS) 4570 SKB_EXT_MCTP, 4571#endif 4572 SKB_EXT_NUM, /* must be last */ 4573}; 4574 4575/** 4576 * struct skb_ext - sk_buff extensions 4577 * @refcnt: 1 on allocation, deallocated on 0 4578 * @offset: offset to add to @data to obtain extension address 4579 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4580 * @data: start of extension data, variable sized 4581 * 4582 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4583 * to use 'u8' types while allowing up to 2kb worth of extension data. 4584 */ 4585struct skb_ext { 4586 refcount_t refcnt; 4587 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4588 u8 chunks; /* same */ 4589 char data[] __aligned(8); 4590}; 4591 4592struct skb_ext *__skb_ext_alloc(gfp_t flags); 4593void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4594 struct skb_ext *ext); 4595void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4596void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4597void __skb_ext_put(struct skb_ext *ext); 4598 4599static inline void skb_ext_put(struct sk_buff *skb) 4600{ 4601 if (skb->active_extensions) 4602 __skb_ext_put(skb->extensions); 4603} 4604 4605static inline void __skb_ext_copy(struct sk_buff *dst, 4606 const struct sk_buff *src) 4607{ 4608 dst->active_extensions = src->active_extensions; 4609 4610 if (src->active_extensions) { 4611 struct skb_ext *ext = src->extensions; 4612 4613 refcount_inc(&ext->refcnt); 4614 dst->extensions = ext; 4615 } 4616} 4617 4618static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4619{ 4620 skb_ext_put(dst); 4621 __skb_ext_copy(dst, src); 4622} 4623 4624static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4625{ 4626 return !!ext->offset[i]; 4627} 4628 4629static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4630{ 4631 return skb->active_extensions & (1 << id); 4632} 4633 4634static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4635{ 4636 if (skb_ext_exist(skb, id)) 4637 __skb_ext_del(skb, id); 4638} 4639 4640static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4641{ 4642 if (skb_ext_exist(skb, id)) { 4643 struct skb_ext *ext = skb->extensions; 4644 4645 return (void *)ext + (ext->offset[id] << 3); 4646 } 4647 4648 return NULL; 4649} 4650 4651static inline void skb_ext_reset(struct sk_buff *skb) 4652{ 4653 if (unlikely(skb->active_extensions)) { 4654 __skb_ext_put(skb->extensions); 4655 skb->active_extensions = 0; 4656 } 4657} 4658 4659static inline bool skb_has_extensions(struct sk_buff *skb) 4660{ 4661 return unlikely(skb->active_extensions); 4662} 4663#else 4664static inline void skb_ext_put(struct sk_buff *skb) {} 4665static inline void skb_ext_reset(struct sk_buff *skb) {} 4666static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4667static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4668static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4669static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4670#endif /* CONFIG_SKB_EXTENSIONS */ 4671 4672static inline void nf_reset_ct(struct sk_buff *skb) 4673{ 4674#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4675 nf_conntrack_put(skb_nfct(skb)); 4676 skb->_nfct = 0; 4677#endif 4678} 4679 4680static inline void nf_reset_trace(struct sk_buff *skb) 4681{ 4682#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4683 skb->nf_trace = 0; 4684#endif 4685} 4686 4687static inline void ipvs_reset(struct sk_buff *skb) 4688{ 4689#if IS_ENABLED(CONFIG_IP_VS) 4690 skb->ipvs_property = 0; 4691#endif 4692} 4693 4694/* Note: This doesn't put any conntrack info in dst. */ 4695static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4696 bool copy) 4697{ 4698#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4699 dst->_nfct = src->_nfct; 4700 nf_conntrack_get(skb_nfct(src)); 4701#endif 4702#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4703 if (copy) 4704 dst->nf_trace = src->nf_trace; 4705#endif 4706} 4707 4708static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4709{ 4710#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4711 nf_conntrack_put(skb_nfct(dst)); 4712#endif 4713 dst->slow_gro = src->slow_gro; 4714 __nf_copy(dst, src, true); 4715} 4716 4717#ifdef CONFIG_NETWORK_SECMARK 4718static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4719{ 4720 to->secmark = from->secmark; 4721} 4722 4723static inline void skb_init_secmark(struct sk_buff *skb) 4724{ 4725 skb->secmark = 0; 4726} 4727#else 4728static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4729{ } 4730 4731static inline void skb_init_secmark(struct sk_buff *skb) 4732{ } 4733#endif 4734 4735static inline int secpath_exists(const struct sk_buff *skb) 4736{ 4737#ifdef CONFIG_XFRM 4738 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4739#else 4740 return 0; 4741#endif 4742} 4743 4744static inline bool skb_irq_freeable(const struct sk_buff *skb) 4745{ 4746 return !skb->destructor && 4747 !secpath_exists(skb) && 4748 !skb_nfct(skb) && 4749 !skb->_skb_refdst && 4750 !skb_has_frag_list(skb); 4751} 4752 4753static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4754{ 4755 skb->queue_mapping = queue_mapping; 4756} 4757 4758static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4759{ 4760 return skb->queue_mapping; 4761} 4762 4763static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4764{ 4765 to->queue_mapping = from->queue_mapping; 4766} 4767 4768static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4769{ 4770 skb->queue_mapping = rx_queue + 1; 4771} 4772 4773static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4774{ 4775 return skb->queue_mapping - 1; 4776} 4777 4778static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4779{ 4780 return skb->queue_mapping != 0; 4781} 4782 4783static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4784{ 4785 skb->dst_pending_confirm = val; 4786} 4787 4788static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4789{ 4790 return skb->dst_pending_confirm != 0; 4791} 4792 4793static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4794{ 4795#ifdef CONFIG_XFRM 4796 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4797#else 4798 return NULL; 4799#endif 4800} 4801 4802/* Keeps track of mac header offset relative to skb->head. 4803 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4804 * For non-tunnel skb it points to skb_mac_header() and for 4805 * tunnel skb it points to outer mac header. 4806 * Keeps track of level of encapsulation of network headers. 4807 */ 4808struct skb_gso_cb { 4809 union { 4810 int mac_offset; 4811 int data_offset; 4812 }; 4813 int encap_level; 4814 __wsum csum; 4815 __u16 csum_start; 4816}; 4817#define SKB_GSO_CB_OFFSET 32 4818#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) 4819 4820static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4821{ 4822 return (skb_mac_header(inner_skb) - inner_skb->head) - 4823 SKB_GSO_CB(inner_skb)->mac_offset; 4824} 4825 4826static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4827{ 4828 int new_headroom, headroom; 4829 int ret; 4830 4831 headroom = skb_headroom(skb); 4832 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4833 if (ret) 4834 return ret; 4835 4836 new_headroom = skb_headroom(skb); 4837 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4838 return 0; 4839} 4840 4841static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4842{ 4843 /* Do not update partial checksums if remote checksum is enabled. */ 4844 if (skb->remcsum_offload) 4845 return; 4846 4847 SKB_GSO_CB(skb)->csum = res; 4848 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4849} 4850 4851/* Compute the checksum for a gso segment. First compute the checksum value 4852 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4853 * then add in skb->csum (checksum from csum_start to end of packet). 4854 * skb->csum and csum_start are then updated to reflect the checksum of the 4855 * resultant packet starting from the transport header-- the resultant checksum 4856 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4857 * header. 4858 */ 4859static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4860{ 4861 unsigned char *csum_start = skb_transport_header(skb); 4862 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4863 __wsum partial = SKB_GSO_CB(skb)->csum; 4864 4865 SKB_GSO_CB(skb)->csum = res; 4866 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4867 4868 return csum_fold(csum_partial(csum_start, plen, partial)); 4869} 4870 4871static inline bool skb_is_gso(const struct sk_buff *skb) 4872{ 4873 return skb_shinfo(skb)->gso_size; 4874} 4875 4876/* Note: Should be called only if skb_is_gso(skb) is true */ 4877static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4878{ 4879 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4880} 4881 4882/* Note: Should be called only if skb_is_gso(skb) is true */ 4883static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4884{ 4885 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4886} 4887 4888/* Note: Should be called only if skb_is_gso(skb) is true */ 4889static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4890{ 4891 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4892} 4893 4894static inline void skb_gso_reset(struct sk_buff *skb) 4895{ 4896 skb_shinfo(skb)->gso_size = 0; 4897 skb_shinfo(skb)->gso_segs = 0; 4898 skb_shinfo(skb)->gso_type = 0; 4899} 4900 4901static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4902 u16 increment) 4903{ 4904 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4905 return; 4906 shinfo->gso_size += increment; 4907} 4908 4909static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4910 u16 decrement) 4911{ 4912 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4913 return; 4914 shinfo->gso_size -= decrement; 4915} 4916 4917void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4918 4919static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4920{ 4921 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4922 * wanted then gso_type will be set. */ 4923 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4924 4925 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4926 unlikely(shinfo->gso_type == 0)) { 4927 __skb_warn_lro_forwarding(skb); 4928 return true; 4929 } 4930 return false; 4931} 4932 4933static inline void skb_forward_csum(struct sk_buff *skb) 4934{ 4935 /* Unfortunately we don't support this one. Any brave souls? */ 4936 if (skb->ip_summed == CHECKSUM_COMPLETE) 4937 skb->ip_summed = CHECKSUM_NONE; 4938} 4939 4940/** 4941 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4942 * @skb: skb to check 4943 * 4944 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4945 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4946 * use this helper, to document places where we make this assertion. 4947 */ 4948static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4949{ 4950 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 4951} 4952 4953bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4954 4955int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4956struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4957 unsigned int transport_len, 4958 __sum16(*skb_chkf)(struct sk_buff *skb)); 4959 4960/** 4961 * skb_head_is_locked - Determine if the skb->head is locked down 4962 * @skb: skb to check 4963 * 4964 * The head on skbs build around a head frag can be removed if they are 4965 * not cloned. This function returns true if the skb head is locked down 4966 * due to either being allocated via kmalloc, or by being a clone with 4967 * multiple references to the head. 4968 */ 4969static inline bool skb_head_is_locked(const struct sk_buff *skb) 4970{ 4971 return !skb->head_frag || skb_cloned(skb); 4972} 4973 4974/* Local Checksum Offload. 4975 * Compute outer checksum based on the assumption that the 4976 * inner checksum will be offloaded later. 4977 * See Documentation/networking/checksum-offloads.rst for 4978 * explanation of how this works. 4979 * Fill in outer checksum adjustment (e.g. with sum of outer 4980 * pseudo-header) before calling. 4981 * Also ensure that inner checksum is in linear data area. 4982 */ 4983static inline __wsum lco_csum(struct sk_buff *skb) 4984{ 4985 unsigned char *csum_start = skb_checksum_start(skb); 4986 unsigned char *l4_hdr = skb_transport_header(skb); 4987 __wsum partial; 4988 4989 /* Start with complement of inner checksum adjustment */ 4990 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4991 skb->csum_offset)); 4992 4993 /* Add in checksum of our headers (incl. outer checksum 4994 * adjustment filled in by caller) and return result. 4995 */ 4996 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4997} 4998 4999static inline bool skb_is_redirected(const struct sk_buff *skb) 5000{ 5001 return skb->redirected; 5002} 5003 5004static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 5005{ 5006 skb->redirected = 1; 5007#ifdef CONFIG_NET_REDIRECT 5008 skb->from_ingress = from_ingress; 5009 if (skb->from_ingress) 5010 skb_clear_tstamp(skb); 5011#endif 5012} 5013 5014static inline void skb_reset_redirect(struct sk_buff *skb) 5015{ 5016 skb->redirected = 0; 5017} 5018 5019static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5020{ 5021 return skb->csum_not_inet; 5022} 5023 5024static inline void skb_set_kcov_handle(struct sk_buff *skb, 5025 const u64 kcov_handle) 5026{ 5027#ifdef CONFIG_KCOV 5028 skb->kcov_handle = kcov_handle; 5029#endif 5030} 5031 5032static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5033{ 5034#ifdef CONFIG_KCOV 5035 return skb->kcov_handle; 5036#else 5037 return 0; 5038#endif 5039} 5040 5041#ifdef CONFIG_PAGE_POOL 5042static inline void skb_mark_for_recycle(struct sk_buff *skb) 5043{ 5044 skb->pp_recycle = 1; 5045} 5046#endif 5047 5048static inline bool skb_pp_recycle(struct sk_buff *skb, void *data) 5049{ 5050 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 5051 return false; 5052 return page_pool_return_skb_page(virt_to_page(data)); 5053} 5054 5055#endif /* __KERNEL__ */ 5056#endif /* _LINUX_SKBUFF_H */