at v6.0 38 kB view raw
1/* SPDX-License-Identifier: GPL-2.0+ */ 2/* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2001 6 * 7 * Author: Dipankar Sarma <dipankar@in.ibm.com> 8 * 9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com> 10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 11 * Papers: 12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 14 * 15 * For detailed explanation of Read-Copy Update mechanism see - 16 * http://lse.sourceforge.net/locking/rcupdate.html 17 * 18 */ 19 20#ifndef __LINUX_RCUPDATE_H 21#define __LINUX_RCUPDATE_H 22 23#include <linux/types.h> 24#include <linux/compiler.h> 25#include <linux/atomic.h> 26#include <linux/irqflags.h> 27#include <linux/preempt.h> 28#include <linux/bottom_half.h> 29#include <linux/lockdep.h> 30#include <asm/processor.h> 31#include <linux/cpumask.h> 32#include <linux/context_tracking_irq.h> 33 34#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 35#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 36#define ulong2long(a) (*(long *)(&(a))) 37#define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b))) 38#define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b))) 39 40/* Exported common interfaces */ 41void call_rcu(struct rcu_head *head, rcu_callback_t func); 42void rcu_barrier_tasks(void); 43void rcu_barrier_tasks_rude(void); 44void synchronize_rcu(void); 45unsigned long get_completed_synchronize_rcu(void); 46 47#ifdef CONFIG_PREEMPT_RCU 48 49void __rcu_read_lock(void); 50void __rcu_read_unlock(void); 51 52/* 53 * Defined as a macro as it is a very low level header included from 54 * areas that don't even know about current. This gives the rcu_read_lock() 55 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 56 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 57 */ 58#define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting) 59 60#else /* #ifdef CONFIG_PREEMPT_RCU */ 61 62#ifdef CONFIG_TINY_RCU 63#define rcu_read_unlock_strict() do { } while (0) 64#else 65void rcu_read_unlock_strict(void); 66#endif 67 68static inline void __rcu_read_lock(void) 69{ 70 preempt_disable(); 71} 72 73static inline void __rcu_read_unlock(void) 74{ 75 preempt_enable(); 76 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 77 rcu_read_unlock_strict(); 78} 79 80static inline int rcu_preempt_depth(void) 81{ 82 return 0; 83} 84 85#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 86 87/* Internal to kernel */ 88void rcu_init(void); 89extern int rcu_scheduler_active; 90void rcu_sched_clock_irq(int user); 91void rcu_report_dead(unsigned int cpu); 92void rcutree_migrate_callbacks(int cpu); 93 94#ifdef CONFIG_TASKS_RCU_GENERIC 95void rcu_init_tasks_generic(void); 96#else 97static inline void rcu_init_tasks_generic(void) { } 98#endif 99 100#ifdef CONFIG_RCU_STALL_COMMON 101void rcu_sysrq_start(void); 102void rcu_sysrq_end(void); 103#else /* #ifdef CONFIG_RCU_STALL_COMMON */ 104static inline void rcu_sysrq_start(void) { } 105static inline void rcu_sysrq_end(void) { } 106#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 107 108#if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 109void rcu_irq_work_resched(void); 110#else 111static inline void rcu_irq_work_resched(void) { } 112#endif 113 114#ifdef CONFIG_RCU_NOCB_CPU 115void rcu_init_nohz(void); 116int rcu_nocb_cpu_offload(int cpu); 117int rcu_nocb_cpu_deoffload(int cpu); 118void rcu_nocb_flush_deferred_wakeup(void); 119#else /* #ifdef CONFIG_RCU_NOCB_CPU */ 120static inline void rcu_init_nohz(void) { } 121static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; } 122static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; } 123static inline void rcu_nocb_flush_deferred_wakeup(void) { } 124#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 125 126/** 127 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 128 * @a: Code that RCU needs to pay attention to. 129 * 130 * RCU read-side critical sections are forbidden in the inner idle loop, 131 * that is, between the ct_idle_enter() and the ct_idle_exit() -- RCU 132 * will happily ignore any such read-side critical sections. However, 133 * things like powertop need tracepoints in the inner idle loop. 134 * 135 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 136 * will tell RCU that it needs to pay attention, invoke its argument 137 * (in this example, calling the do_something_with_RCU() function), 138 * and then tell RCU to go back to ignoring this CPU. It is permissible 139 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is 140 * on the order of a million or so, even on 32-bit systems). It is 141 * not legal to block within RCU_NONIDLE(), nor is it permissible to 142 * transfer control either into or out of RCU_NONIDLE()'s statement. 143 */ 144#define RCU_NONIDLE(a) \ 145 do { \ 146 ct_irq_enter_irqson(); \ 147 do { a; } while (0); \ 148 ct_irq_exit_irqson(); \ 149 } while (0) 150 151/* 152 * Note a quasi-voluntary context switch for RCU-tasks's benefit. 153 * This is a macro rather than an inline function to avoid #include hell. 154 */ 155#ifdef CONFIG_TASKS_RCU_GENERIC 156 157# ifdef CONFIG_TASKS_RCU 158# define rcu_tasks_classic_qs(t, preempt) \ 159 do { \ 160 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ 161 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 162 } while (0) 163void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 164void synchronize_rcu_tasks(void); 165# else 166# define rcu_tasks_classic_qs(t, preempt) do { } while (0) 167# define call_rcu_tasks call_rcu 168# define synchronize_rcu_tasks synchronize_rcu 169# endif 170 171# ifdef CONFIG_TASKS_TRACE_RCU 172// Bits for ->trc_reader_special.b.need_qs field. 173#define TRC_NEED_QS 0x1 // Task needs a quiescent state. 174#define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state. 175 176u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new); 177void rcu_tasks_trace_qs_blkd(struct task_struct *t); 178 179# define rcu_tasks_trace_qs(t) \ 180 do { \ 181 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \ 182 \ 183 if (likely(!READ_ONCE((t)->trc_reader_special.b.need_qs)) && \ 184 likely(!___rttq_nesting)) { \ 185 rcu_trc_cmpxchg_need_qs((t), 0, TRC_NEED_QS_CHECKED); \ 186 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \ 187 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \ 188 rcu_tasks_trace_qs_blkd(t); \ 189 } \ 190 } while (0) 191# else 192# define rcu_tasks_trace_qs(t) do { } while (0) 193# endif 194 195#define rcu_tasks_qs(t, preempt) \ 196do { \ 197 rcu_tasks_classic_qs((t), (preempt)); \ 198 rcu_tasks_trace_qs(t); \ 199} while (0) 200 201# ifdef CONFIG_TASKS_RUDE_RCU 202void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); 203void synchronize_rcu_tasks_rude(void); 204# endif 205 206#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) 207void exit_tasks_rcu_start(void); 208void exit_tasks_rcu_finish(void); 209#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 210#define rcu_tasks_classic_qs(t, preempt) do { } while (0) 211#define rcu_tasks_qs(t, preempt) do { } while (0) 212#define rcu_note_voluntary_context_switch(t) do { } while (0) 213#define call_rcu_tasks call_rcu 214#define synchronize_rcu_tasks synchronize_rcu 215static inline void exit_tasks_rcu_start(void) { } 216static inline void exit_tasks_rcu_finish(void) { } 217#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 218 219/** 220 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU 221 * 222 * This macro resembles cond_resched(), except that it is defined to 223 * report potential quiescent states to RCU-tasks even if the cond_resched() 224 * machinery were to be shut off, as some advocate for PREEMPTION kernels. 225 */ 226#define cond_resched_tasks_rcu_qs() \ 227do { \ 228 rcu_tasks_qs(current, false); \ 229 cond_resched(); \ 230} while (0) 231 232/* 233 * Infrastructure to implement the synchronize_() primitives in 234 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 235 */ 236 237#if defined(CONFIG_TREE_RCU) 238#include <linux/rcutree.h> 239#elif defined(CONFIG_TINY_RCU) 240#include <linux/rcutiny.h> 241#else 242#error "Unknown RCU implementation specified to kernel configuration" 243#endif 244 245/* 246 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls 247 * are needed for dynamic initialization and destruction of rcu_head 248 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for 249 * dynamic initialization and destruction of statically allocated rcu_head 250 * structures. However, rcu_head structures allocated dynamically in the 251 * heap don't need any initialization. 252 */ 253#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 254void init_rcu_head(struct rcu_head *head); 255void destroy_rcu_head(struct rcu_head *head); 256void init_rcu_head_on_stack(struct rcu_head *head); 257void destroy_rcu_head_on_stack(struct rcu_head *head); 258#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 259static inline void init_rcu_head(struct rcu_head *head) { } 260static inline void destroy_rcu_head(struct rcu_head *head) { } 261static inline void init_rcu_head_on_stack(struct rcu_head *head) { } 262static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } 263#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 264 265#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 266bool rcu_lockdep_current_cpu_online(void); 267#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 268static inline bool rcu_lockdep_current_cpu_online(void) { return true; } 269#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 270 271extern struct lockdep_map rcu_lock_map; 272extern struct lockdep_map rcu_bh_lock_map; 273extern struct lockdep_map rcu_sched_lock_map; 274extern struct lockdep_map rcu_callback_map; 275 276#ifdef CONFIG_DEBUG_LOCK_ALLOC 277 278static inline void rcu_lock_acquire(struct lockdep_map *map) 279{ 280 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 281} 282 283static inline void rcu_lock_release(struct lockdep_map *map) 284{ 285 lock_release(map, _THIS_IP_); 286} 287 288int debug_lockdep_rcu_enabled(void); 289int rcu_read_lock_held(void); 290int rcu_read_lock_bh_held(void); 291int rcu_read_lock_sched_held(void); 292int rcu_read_lock_any_held(void); 293 294#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 295 296# define rcu_lock_acquire(a) do { } while (0) 297# define rcu_lock_release(a) do { } while (0) 298 299static inline int rcu_read_lock_held(void) 300{ 301 return 1; 302} 303 304static inline int rcu_read_lock_bh_held(void) 305{ 306 return 1; 307} 308 309static inline int rcu_read_lock_sched_held(void) 310{ 311 return !preemptible(); 312} 313 314static inline int rcu_read_lock_any_held(void) 315{ 316 return !preemptible(); 317} 318 319#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 320 321#ifdef CONFIG_PROVE_RCU 322 323/** 324 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 325 * @c: condition to check 326 * @s: informative message 327 */ 328#define RCU_LOCKDEP_WARN(c, s) \ 329 do { \ 330 static bool __section(".data.unlikely") __warned; \ 331 if ((c) && debug_lockdep_rcu_enabled() && !__warned) { \ 332 __warned = true; \ 333 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 334 } \ 335 } while (0) 336 337#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 338static inline void rcu_preempt_sleep_check(void) 339{ 340 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 341 "Illegal context switch in RCU read-side critical section"); 342} 343#else /* #ifdef CONFIG_PROVE_RCU */ 344static inline void rcu_preempt_sleep_check(void) { } 345#endif /* #else #ifdef CONFIG_PROVE_RCU */ 346 347#define rcu_sleep_check() \ 348 do { \ 349 rcu_preempt_sleep_check(); \ 350 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 351 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 352 "Illegal context switch in RCU-bh read-side critical section"); \ 353 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 354 "Illegal context switch in RCU-sched read-side critical section"); \ 355 } while (0) 356 357#else /* #ifdef CONFIG_PROVE_RCU */ 358 359#define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c)) 360#define rcu_sleep_check() do { } while (0) 361 362#endif /* #else #ifdef CONFIG_PROVE_RCU */ 363 364/* 365 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 366 * and rcu_assign_pointer(). Some of these could be folded into their 367 * callers, but they are left separate in order to ease introduction of 368 * multiple pointers markings to match different RCU implementations 369 * (e.g., __srcu), should this make sense in the future. 370 */ 371 372#ifdef __CHECKER__ 373#define rcu_check_sparse(p, space) \ 374 ((void)(((typeof(*p) space *)p) == p)) 375#else /* #ifdef __CHECKER__ */ 376#define rcu_check_sparse(p, space) 377#endif /* #else #ifdef __CHECKER__ */ 378 379#define __unrcu_pointer(p, local) \ 380({ \ 381 typeof(*p) *local = (typeof(*p) *__force)(p); \ 382 rcu_check_sparse(p, __rcu); \ 383 ((typeof(*p) __force __kernel *)(local)); \ 384}) 385/** 386 * unrcu_pointer - mark a pointer as not being RCU protected 387 * @p: pointer needing to lose its __rcu property 388 * 389 * Converts @p from an __rcu pointer to a __kernel pointer. 390 * This allows an __rcu pointer to be used with xchg() and friends. 391 */ 392#define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu)) 393 394#define __rcu_access_pointer(p, local, space) \ 395({ \ 396 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 397 rcu_check_sparse(p, space); \ 398 ((typeof(*p) __force __kernel *)(local)); \ 399}) 400#define __rcu_dereference_check(p, local, c, space) \ 401({ \ 402 /* Dependency order vs. p above. */ \ 403 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 404 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 405 rcu_check_sparse(p, space); \ 406 ((typeof(*p) __force __kernel *)(local)); \ 407}) 408#define __rcu_dereference_protected(p, local, c, space) \ 409({ \ 410 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 411 rcu_check_sparse(p, space); \ 412 ((typeof(*p) __force __kernel *)(p)); \ 413}) 414#define __rcu_dereference_raw(p, local) \ 415({ \ 416 /* Dependency order vs. p above. */ \ 417 typeof(p) local = READ_ONCE(p); \ 418 ((typeof(*p) __force __kernel *)(local)); \ 419}) 420#define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu)) 421 422/** 423 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 424 * @v: The value to statically initialize with. 425 */ 426#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 427 428/** 429 * rcu_assign_pointer() - assign to RCU-protected pointer 430 * @p: pointer to assign to 431 * @v: value to assign (publish) 432 * 433 * Assigns the specified value to the specified RCU-protected 434 * pointer, ensuring that any concurrent RCU readers will see 435 * any prior initialization. 436 * 437 * Inserts memory barriers on architectures that require them 438 * (which is most of them), and also prevents the compiler from 439 * reordering the code that initializes the structure after the pointer 440 * assignment. More importantly, this call documents which pointers 441 * will be dereferenced by RCU read-side code. 442 * 443 * In some special cases, you may use RCU_INIT_POINTER() instead 444 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 445 * to the fact that it does not constrain either the CPU or the compiler. 446 * That said, using RCU_INIT_POINTER() when you should have used 447 * rcu_assign_pointer() is a very bad thing that results in 448 * impossible-to-diagnose memory corruption. So please be careful. 449 * See the RCU_INIT_POINTER() comment header for details. 450 * 451 * Note that rcu_assign_pointer() evaluates each of its arguments only 452 * once, appearances notwithstanding. One of the "extra" evaluations 453 * is in typeof() and the other visible only to sparse (__CHECKER__), 454 * neither of which actually execute the argument. As with most cpp 455 * macros, this execute-arguments-only-once property is important, so 456 * please be careful when making changes to rcu_assign_pointer() and the 457 * other macros that it invokes. 458 */ 459#define rcu_assign_pointer(p, v) \ 460do { \ 461 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 462 rcu_check_sparse(p, __rcu); \ 463 \ 464 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 465 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 466 else \ 467 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 468} while (0) 469 470/** 471 * rcu_replace_pointer() - replace an RCU pointer, returning its old value 472 * @rcu_ptr: RCU pointer, whose old value is returned 473 * @ptr: regular pointer 474 * @c: the lockdep conditions under which the dereference will take place 475 * 476 * Perform a replacement, where @rcu_ptr is an RCU-annotated 477 * pointer and @c is the lockdep argument that is passed to the 478 * rcu_dereference_protected() call used to read that pointer. The old 479 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. 480 */ 481#define rcu_replace_pointer(rcu_ptr, ptr, c) \ 482({ \ 483 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 484 rcu_assign_pointer((rcu_ptr), (ptr)); \ 485 __tmp; \ 486}) 487 488/** 489 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 490 * @p: The pointer to read 491 * 492 * Return the value of the specified RCU-protected pointer, but omit the 493 * lockdep checks for being in an RCU read-side critical section. This is 494 * useful when the value of this pointer is accessed, but the pointer is 495 * not dereferenced, for example, when testing an RCU-protected pointer 496 * against NULL. Although rcu_access_pointer() may also be used in cases 497 * where update-side locks prevent the value of the pointer from changing, 498 * you should instead use rcu_dereference_protected() for this use case. 499 * 500 * It is also permissible to use rcu_access_pointer() when read-side 501 * access to the pointer was removed at least one grace period ago, as 502 * is the case in the context of the RCU callback that is freeing up 503 * the data, or after a synchronize_rcu() returns. This can be useful 504 * when tearing down multi-linked structures after a grace period 505 * has elapsed. 506 */ 507#define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu) 508 509/** 510 * rcu_dereference_check() - rcu_dereference with debug checking 511 * @p: The pointer to read, prior to dereferencing 512 * @c: The conditions under which the dereference will take place 513 * 514 * Do an rcu_dereference(), but check that the conditions under which the 515 * dereference will take place are correct. Typically the conditions 516 * indicate the various locking conditions that should be held at that 517 * point. The check should return true if the conditions are satisfied. 518 * An implicit check for being in an RCU read-side critical section 519 * (rcu_read_lock()) is included. 520 * 521 * For example: 522 * 523 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 524 * 525 * could be used to indicate to lockdep that foo->bar may only be dereferenced 526 * if either rcu_read_lock() is held, or that the lock required to replace 527 * the bar struct at foo->bar is held. 528 * 529 * Note that the list of conditions may also include indications of when a lock 530 * need not be held, for example during initialisation or destruction of the 531 * target struct: 532 * 533 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 534 * atomic_read(&foo->usage) == 0); 535 * 536 * Inserts memory barriers on architectures that require them 537 * (currently only the Alpha), prevents the compiler from refetching 538 * (and from merging fetches), and, more importantly, documents exactly 539 * which pointers are protected by RCU and checks that the pointer is 540 * annotated as __rcu. 541 */ 542#define rcu_dereference_check(p, c) \ 543 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 544 (c) || rcu_read_lock_held(), __rcu) 545 546/** 547 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 548 * @p: The pointer to read, prior to dereferencing 549 * @c: The conditions under which the dereference will take place 550 * 551 * This is the RCU-bh counterpart to rcu_dereference_check(). However, 552 * please note that starting in v5.0 kernels, vanilla RCU grace periods 553 * wait for local_bh_disable() regions of code in addition to regions of 554 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means 555 * that synchronize_rcu(), call_rcu, and friends all take not only 556 * rcu_read_lock() but also rcu_read_lock_bh() into account. 557 */ 558#define rcu_dereference_bh_check(p, c) \ 559 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 560 (c) || rcu_read_lock_bh_held(), __rcu) 561 562/** 563 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 564 * @p: The pointer to read, prior to dereferencing 565 * @c: The conditions under which the dereference will take place 566 * 567 * This is the RCU-sched counterpart to rcu_dereference_check(). 568 * However, please note that starting in v5.0 kernels, vanilla RCU grace 569 * periods wait for preempt_disable() regions of code in addition to 570 * regions of code demarked by rcu_read_lock() and rcu_read_unlock(). 571 * This means that synchronize_rcu(), call_rcu, and friends all take not 572 * only rcu_read_lock() but also rcu_read_lock_sched() into account. 573 */ 574#define rcu_dereference_sched_check(p, c) \ 575 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 576 (c) || rcu_read_lock_sched_held(), \ 577 __rcu) 578 579/* 580 * The tracing infrastructure traces RCU (we want that), but unfortunately 581 * some of the RCU checks causes tracing to lock up the system. 582 * 583 * The no-tracing version of rcu_dereference_raw() must not call 584 * rcu_read_lock_held(). 585 */ 586#define rcu_dereference_raw_check(p) \ 587 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu) 588 589/** 590 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 591 * @p: The pointer to read, prior to dereferencing 592 * @c: The conditions under which the dereference will take place 593 * 594 * Return the value of the specified RCU-protected pointer, but omit 595 * the READ_ONCE(). This is useful in cases where update-side locks 596 * prevent the value of the pointer from changing. Please note that this 597 * primitive does *not* prevent the compiler from repeating this reference 598 * or combining it with other references, so it should not be used without 599 * protection of appropriate locks. 600 * 601 * This function is only for update-side use. Using this function 602 * when protected only by rcu_read_lock() will result in infrequent 603 * but very ugly failures. 604 */ 605#define rcu_dereference_protected(p, c) \ 606 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu) 607 608 609/** 610 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 611 * @p: The pointer to read, prior to dereferencing 612 * 613 * This is a simple wrapper around rcu_dereference_check(). 614 */ 615#define rcu_dereference(p) rcu_dereference_check(p, 0) 616 617/** 618 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 619 * @p: The pointer to read, prior to dereferencing 620 * 621 * Makes rcu_dereference_check() do the dirty work. 622 */ 623#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 624 625/** 626 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 627 * @p: The pointer to read, prior to dereferencing 628 * 629 * Makes rcu_dereference_check() do the dirty work. 630 */ 631#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 632 633/** 634 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 635 * @p: The pointer to hand off 636 * 637 * This is simply an identity function, but it documents where a pointer 638 * is handed off from RCU to some other synchronization mechanism, for 639 * example, reference counting or locking. In C11, it would map to 640 * kill_dependency(). It could be used as follows:: 641 * 642 * rcu_read_lock(); 643 * p = rcu_dereference(gp); 644 * long_lived = is_long_lived(p); 645 * if (long_lived) { 646 * if (!atomic_inc_not_zero(p->refcnt)) 647 * long_lived = false; 648 * else 649 * p = rcu_pointer_handoff(p); 650 * } 651 * rcu_read_unlock(); 652 */ 653#define rcu_pointer_handoff(p) (p) 654 655/** 656 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 657 * 658 * When synchronize_rcu() is invoked on one CPU while other CPUs 659 * are within RCU read-side critical sections, then the 660 * synchronize_rcu() is guaranteed to block until after all the other 661 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 662 * on one CPU while other CPUs are within RCU read-side critical 663 * sections, invocation of the corresponding RCU callback is deferred 664 * until after the all the other CPUs exit their critical sections. 665 * 666 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also 667 * wait for regions of code with preemption disabled, including regions of 668 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which 669 * define synchronize_sched(), only code enclosed within rcu_read_lock() 670 * and rcu_read_unlock() are guaranteed to be waited for. 671 * 672 * Note, however, that RCU callbacks are permitted to run concurrently 673 * with new RCU read-side critical sections. One way that this can happen 674 * is via the following sequence of events: (1) CPU 0 enters an RCU 675 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 676 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 677 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 678 * callback is invoked. This is legal, because the RCU read-side critical 679 * section that was running concurrently with the call_rcu() (and which 680 * therefore might be referencing something that the corresponding RCU 681 * callback would free up) has completed before the corresponding 682 * RCU callback is invoked. 683 * 684 * RCU read-side critical sections may be nested. Any deferred actions 685 * will be deferred until the outermost RCU read-side critical section 686 * completes. 687 * 688 * You can avoid reading and understanding the next paragraph by 689 * following this rule: don't put anything in an rcu_read_lock() RCU 690 * read-side critical section that would block in a !PREEMPTION kernel. 691 * But if you want the full story, read on! 692 * 693 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), 694 * it is illegal to block while in an RCU read-side critical section. 695 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION 696 * kernel builds, RCU read-side critical sections may be preempted, 697 * but explicit blocking is illegal. Finally, in preemptible RCU 698 * implementations in real-time (with -rt patchset) kernel builds, RCU 699 * read-side critical sections may be preempted and they may also block, but 700 * only when acquiring spinlocks that are subject to priority inheritance. 701 */ 702static __always_inline void rcu_read_lock(void) 703{ 704 __rcu_read_lock(); 705 __acquire(RCU); 706 rcu_lock_acquire(&rcu_lock_map); 707 RCU_LOCKDEP_WARN(!rcu_is_watching(), 708 "rcu_read_lock() used illegally while idle"); 709} 710 711/* 712 * So where is rcu_write_lock()? It does not exist, as there is no 713 * way for writers to lock out RCU readers. This is a feature, not 714 * a bug -- this property is what provides RCU's performance benefits. 715 * Of course, writers must coordinate with each other. The normal 716 * spinlock primitives work well for this, but any other technique may be 717 * used as well. RCU does not care how the writers keep out of each 718 * others' way, as long as they do so. 719 */ 720 721/** 722 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 723 * 724 * In almost all situations, rcu_read_unlock() is immune from deadlock. 725 * In recent kernels that have consolidated synchronize_sched() and 726 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity 727 * also extends to the scheduler's runqueue and priority-inheritance 728 * spinlocks, courtesy of the quiescent-state deferral that is carried 729 * out when rcu_read_unlock() is invoked with interrupts disabled. 730 * 731 * See rcu_read_lock() for more information. 732 */ 733static inline void rcu_read_unlock(void) 734{ 735 RCU_LOCKDEP_WARN(!rcu_is_watching(), 736 "rcu_read_unlock() used illegally while idle"); 737 __release(RCU); 738 __rcu_read_unlock(); 739 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 740} 741 742/** 743 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 744 * 745 * This is equivalent to rcu_read_lock(), but also disables softirqs. 746 * Note that anything else that disables softirqs can also serve as an RCU 747 * read-side critical section. However, please note that this equivalence 748 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and 749 * rcu_read_lock_bh() were unrelated. 750 * 751 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 752 * must occur in the same context, for example, it is illegal to invoke 753 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 754 * was invoked from some other task. 755 */ 756static inline void rcu_read_lock_bh(void) 757{ 758 local_bh_disable(); 759 __acquire(RCU_BH); 760 rcu_lock_acquire(&rcu_bh_lock_map); 761 RCU_LOCKDEP_WARN(!rcu_is_watching(), 762 "rcu_read_lock_bh() used illegally while idle"); 763} 764 765/** 766 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section 767 * 768 * See rcu_read_lock_bh() for more information. 769 */ 770static inline void rcu_read_unlock_bh(void) 771{ 772 RCU_LOCKDEP_WARN(!rcu_is_watching(), 773 "rcu_read_unlock_bh() used illegally while idle"); 774 rcu_lock_release(&rcu_bh_lock_map); 775 __release(RCU_BH); 776 local_bh_enable(); 777} 778 779/** 780 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 781 * 782 * This is equivalent to rcu_read_lock(), but also disables preemption. 783 * Read-side critical sections can also be introduced by anything else that 784 * disables preemption, including local_irq_disable() and friends. However, 785 * please note that the equivalence to rcu_read_lock() applies only to 786 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched() 787 * were unrelated. 788 * 789 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 790 * must occur in the same context, for example, it is illegal to invoke 791 * rcu_read_unlock_sched() from process context if the matching 792 * rcu_read_lock_sched() was invoked from an NMI handler. 793 */ 794static inline void rcu_read_lock_sched(void) 795{ 796 preempt_disable(); 797 __acquire(RCU_SCHED); 798 rcu_lock_acquire(&rcu_sched_lock_map); 799 RCU_LOCKDEP_WARN(!rcu_is_watching(), 800 "rcu_read_lock_sched() used illegally while idle"); 801} 802 803/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 804static inline notrace void rcu_read_lock_sched_notrace(void) 805{ 806 preempt_disable_notrace(); 807 __acquire(RCU_SCHED); 808} 809 810/** 811 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section 812 * 813 * See rcu_read_lock_sched() for more information. 814 */ 815static inline void rcu_read_unlock_sched(void) 816{ 817 RCU_LOCKDEP_WARN(!rcu_is_watching(), 818 "rcu_read_unlock_sched() used illegally while idle"); 819 rcu_lock_release(&rcu_sched_lock_map); 820 __release(RCU_SCHED); 821 preempt_enable(); 822} 823 824/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 825static inline notrace void rcu_read_unlock_sched_notrace(void) 826{ 827 __release(RCU_SCHED); 828 preempt_enable_notrace(); 829} 830 831/** 832 * RCU_INIT_POINTER() - initialize an RCU protected pointer 833 * @p: The pointer to be initialized. 834 * @v: The value to initialized the pointer to. 835 * 836 * Initialize an RCU-protected pointer in special cases where readers 837 * do not need ordering constraints on the CPU or the compiler. These 838 * special cases are: 839 * 840 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* 841 * 2. The caller has taken whatever steps are required to prevent 842 * RCU readers from concurrently accessing this pointer *or* 843 * 3. The referenced data structure has already been exposed to 844 * readers either at compile time or via rcu_assign_pointer() *and* 845 * 846 * a. You have not made *any* reader-visible changes to 847 * this structure since then *or* 848 * b. It is OK for readers accessing this structure from its 849 * new location to see the old state of the structure. (For 850 * example, the changes were to statistical counters or to 851 * other state where exact synchronization is not required.) 852 * 853 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 854 * result in impossible-to-diagnose memory corruption. As in the structures 855 * will look OK in crash dumps, but any concurrent RCU readers might 856 * see pre-initialized values of the referenced data structure. So 857 * please be very careful how you use RCU_INIT_POINTER()!!! 858 * 859 * If you are creating an RCU-protected linked structure that is accessed 860 * by a single external-to-structure RCU-protected pointer, then you may 861 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 862 * pointers, but you must use rcu_assign_pointer() to initialize the 863 * external-to-structure pointer *after* you have completely initialized 864 * the reader-accessible portions of the linked structure. 865 * 866 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 867 * ordering guarantees for either the CPU or the compiler. 868 */ 869#define RCU_INIT_POINTER(p, v) \ 870 do { \ 871 rcu_check_sparse(p, __rcu); \ 872 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 873 } while (0) 874 875/** 876 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 877 * @p: The pointer to be initialized. 878 * @v: The value to initialized the pointer to. 879 * 880 * GCC-style initialization for an RCU-protected pointer in a structure field. 881 */ 882#define RCU_POINTER_INITIALIZER(p, v) \ 883 .p = RCU_INITIALIZER(v) 884 885/* 886 * Does the specified offset indicate that the corresponding rcu_head 887 * structure can be handled by kvfree_rcu()? 888 */ 889#define __is_kvfree_rcu_offset(offset) ((offset) < 4096) 890 891/** 892 * kfree_rcu() - kfree an object after a grace period. 893 * @ptr: pointer to kfree for both single- and double-argument invocations. 894 * @rhf: the name of the struct rcu_head within the type of @ptr, 895 * but only for double-argument invocations. 896 * 897 * Many rcu callbacks functions just call kfree() on the base structure. 898 * These functions are trivial, but their size adds up, and furthermore 899 * when they are used in a kernel module, that module must invoke the 900 * high-latency rcu_barrier() function at module-unload time. 901 * 902 * The kfree_rcu() function handles this issue. Rather than encoding a 903 * function address in the embedded rcu_head structure, kfree_rcu() instead 904 * encodes the offset of the rcu_head structure within the base structure. 905 * Because the functions are not allowed in the low-order 4096 bytes of 906 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 907 * If the offset is larger than 4095 bytes, a compile-time error will 908 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can 909 * either fall back to use of call_rcu() or rearrange the structure to 910 * position the rcu_head structure into the first 4096 bytes. 911 * 912 * Note that the allowable offset might decrease in the future, for example, 913 * to allow something like kmem_cache_free_rcu(). 914 * 915 * The BUILD_BUG_ON check must not involve any function calls, hence the 916 * checks are done in macros here. 917 */ 918#define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf) 919 920/** 921 * kvfree_rcu() - kvfree an object after a grace period. 922 * 923 * This macro consists of one or two arguments and it is 924 * based on whether an object is head-less or not. If it 925 * has a head then a semantic stays the same as it used 926 * to be before: 927 * 928 * kvfree_rcu(ptr, rhf); 929 * 930 * where @ptr is a pointer to kvfree(), @rhf is the name 931 * of the rcu_head structure within the type of @ptr. 932 * 933 * When it comes to head-less variant, only one argument 934 * is passed and that is just a pointer which has to be 935 * freed after a grace period. Therefore the semantic is 936 * 937 * kvfree_rcu(ptr); 938 * 939 * where @ptr is the pointer to be freed by kvfree(). 940 * 941 * Please note, head-less way of freeing is permitted to 942 * use from a context that has to follow might_sleep() 943 * annotation. Otherwise, please switch and embed the 944 * rcu_head structure within the type of @ptr. 945 */ 946#define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \ 947 kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__) 948 949#define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME 950#define kvfree_rcu_arg_2(ptr, rhf) \ 951do { \ 952 typeof (ptr) ___p = (ptr); \ 953 \ 954 if (___p) { \ 955 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \ 956 kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long) \ 957 (offsetof(typeof(*(ptr)), rhf))); \ 958 } \ 959} while (0) 960 961#define kvfree_rcu_arg_1(ptr) \ 962do { \ 963 typeof(ptr) ___p = (ptr); \ 964 \ 965 if (___p) \ 966 kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \ 967} while (0) 968 969/* 970 * Place this after a lock-acquisition primitive to guarantee that 971 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 972 * if the UNLOCK and LOCK are executed by the same CPU or if the 973 * UNLOCK and LOCK operate on the same lock variable. 974 */ 975#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 976#define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 977#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 978#define smp_mb__after_unlock_lock() do { } while (0) 979#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 980 981 982/* Has the specified rcu_head structure been handed to call_rcu()? */ 983 984/** 985 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() 986 * @rhp: The rcu_head structure to initialize. 987 * 988 * If you intend to invoke rcu_head_after_call_rcu() to test whether a 989 * given rcu_head structure has already been passed to call_rcu(), then 990 * you must also invoke this rcu_head_init() function on it just after 991 * allocating that structure. Calls to this function must not race with 992 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. 993 */ 994static inline void rcu_head_init(struct rcu_head *rhp) 995{ 996 rhp->func = (rcu_callback_t)~0L; 997} 998 999/** 1000 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()? 1001 * @rhp: The rcu_head structure to test. 1002 * @f: The function passed to call_rcu() along with @rhp. 1003 * 1004 * Returns @true if the @rhp has been passed to call_rcu() with @func, 1005 * and @false otherwise. Emits a warning in any other case, including 1006 * the case where @rhp has already been invoked after a grace period. 1007 * Calls to this function must not race with callback invocation. One way 1008 * to avoid such races is to enclose the call to rcu_head_after_call_rcu() 1009 * in an RCU read-side critical section that includes a read-side fetch 1010 * of the pointer to the structure containing @rhp. 1011 */ 1012static inline bool 1013rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) 1014{ 1015 rcu_callback_t func = READ_ONCE(rhp->func); 1016 1017 if (func == f) 1018 return true; 1019 WARN_ON_ONCE(func != (rcu_callback_t)~0L); 1020 return false; 1021} 1022 1023/* kernel/ksysfs.c definitions */ 1024extern int rcu_expedited; 1025extern int rcu_normal; 1026 1027#endif /* __LINUX_RCUPDATE_H */