at v6.0 49 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18#include <uapi/linux/bpf_perf_event.h> 19 20/* 21 * Kernel-internal data types and definitions: 22 */ 23 24#ifdef CONFIG_PERF_EVENTS 25# include <asm/perf_event.h> 26# include <asm/local64.h> 27#endif 28 29#define PERF_GUEST_ACTIVE 0x01 30#define PERF_GUEST_USER 0x02 31 32struct perf_guest_info_callbacks { 33 unsigned int (*state)(void); 34 unsigned long (*get_ip)(void); 35 unsigned int (*handle_intel_pt_intr)(void); 36}; 37 38#ifdef CONFIG_HAVE_HW_BREAKPOINT 39#include <asm/hw_breakpoint.h> 40#endif 41 42#include <linux/list.h> 43#include <linux/mutex.h> 44#include <linux/rculist.h> 45#include <linux/rcupdate.h> 46#include <linux/spinlock.h> 47#include <linux/hrtimer.h> 48#include <linux/fs.h> 49#include <linux/pid_namespace.h> 50#include <linux/workqueue.h> 51#include <linux/ftrace.h> 52#include <linux/cpu.h> 53#include <linux/irq_work.h> 54#include <linux/static_key.h> 55#include <linux/jump_label_ratelimit.h> 56#include <linux/atomic.h> 57#include <linux/sysfs.h> 58#include <linux/perf_regs.h> 59#include <linux/cgroup.h> 60#include <linux/refcount.h> 61#include <linux/security.h> 62#include <linux/static_call.h> 63#include <asm/local.h> 64 65struct perf_callchain_entry { 66 __u64 nr; 67 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ 68}; 69 70struct perf_callchain_entry_ctx { 71 struct perf_callchain_entry *entry; 72 u32 max_stack; 73 u32 nr; 74 short contexts; 75 bool contexts_maxed; 76}; 77 78typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 79 unsigned long off, unsigned long len); 80 81struct perf_raw_frag { 82 union { 83 struct perf_raw_frag *next; 84 unsigned long pad; 85 }; 86 perf_copy_f copy; 87 void *data; 88 u32 size; 89} __packed; 90 91struct perf_raw_record { 92 struct perf_raw_frag frag; 93 u32 size; 94}; 95 96/* 97 * branch stack layout: 98 * nr: number of taken branches stored in entries[] 99 * hw_idx: The low level index of raw branch records 100 * for the most recent branch. 101 * -1ULL means invalid/unknown. 102 * 103 * Note that nr can vary from sample to sample 104 * branches (to, from) are stored from most recent 105 * to least recent, i.e., entries[0] contains the most 106 * recent branch. 107 * The entries[] is an abstraction of raw branch records, 108 * which may not be stored in age order in HW, e.g. Intel LBR. 109 * The hw_idx is to expose the low level index of raw 110 * branch record for the most recent branch aka entries[0]. 111 * The hw_idx index is between -1 (unknown) and max depth, 112 * which can be retrieved in /sys/devices/cpu/caps/branches. 113 * For the architectures whose raw branch records are 114 * already stored in age order, the hw_idx should be 0. 115 */ 116struct perf_branch_stack { 117 __u64 nr; 118 __u64 hw_idx; 119 struct perf_branch_entry entries[]; 120}; 121 122struct task_struct; 123 124/* 125 * extra PMU register associated with an event 126 */ 127struct hw_perf_event_extra { 128 u64 config; /* register value */ 129 unsigned int reg; /* register address or index */ 130 int alloc; /* extra register already allocated */ 131 int idx; /* index in shared_regs->regs[] */ 132}; 133 134/** 135 * hw_perf_event::flag values 136 * 137 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific 138 * usage. 139 */ 140#define PERF_EVENT_FLAG_ARCH 0x0000ffff 141#define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000 142 143/** 144 * struct hw_perf_event - performance event hardware details: 145 */ 146struct hw_perf_event { 147#ifdef CONFIG_PERF_EVENTS 148 union { 149 struct { /* hardware */ 150 u64 config; 151 u64 last_tag; 152 unsigned long config_base; 153 unsigned long event_base; 154 int event_base_rdpmc; 155 int idx; 156 int last_cpu; 157 int flags; 158 159 struct hw_perf_event_extra extra_reg; 160 struct hw_perf_event_extra branch_reg; 161 }; 162 struct { /* software */ 163 struct hrtimer hrtimer; 164 }; 165 struct { /* tracepoint */ 166 /* for tp_event->class */ 167 struct list_head tp_list; 168 }; 169 struct { /* amd_power */ 170 u64 pwr_acc; 171 u64 ptsc; 172 }; 173#ifdef CONFIG_HAVE_HW_BREAKPOINT 174 struct { /* breakpoint */ 175 /* 176 * Crufty hack to avoid the chicken and egg 177 * problem hw_breakpoint has with context 178 * creation and event initalization. 179 */ 180 struct arch_hw_breakpoint info; 181 struct list_head bp_list; 182 }; 183#endif 184 struct { /* amd_iommu */ 185 u8 iommu_bank; 186 u8 iommu_cntr; 187 u16 padding; 188 u64 conf; 189 u64 conf1; 190 }; 191 }; 192 /* 193 * If the event is a per task event, this will point to the task in 194 * question. See the comment in perf_event_alloc(). 195 */ 196 struct task_struct *target; 197 198 /* 199 * PMU would store hardware filter configuration 200 * here. 201 */ 202 void *addr_filters; 203 204 /* Last sync'ed generation of filters */ 205 unsigned long addr_filters_gen; 206 207/* 208 * hw_perf_event::state flags; used to track the PERF_EF_* state. 209 */ 210#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 211#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 212#define PERF_HES_ARCH 0x04 213 214 int state; 215 216 /* 217 * The last observed hardware counter value, updated with a 218 * local64_cmpxchg() such that pmu::read() can be called nested. 219 */ 220 local64_t prev_count; 221 222 /* 223 * The period to start the next sample with. 224 */ 225 u64 sample_period; 226 227 union { 228 struct { /* Sampling */ 229 /* 230 * The period we started this sample with. 231 */ 232 u64 last_period; 233 234 /* 235 * However much is left of the current period; 236 * note that this is a full 64bit value and 237 * allows for generation of periods longer 238 * than hardware might allow. 239 */ 240 local64_t period_left; 241 }; 242 struct { /* Topdown events counting for context switch */ 243 u64 saved_metric; 244 u64 saved_slots; 245 }; 246 }; 247 248 /* 249 * State for throttling the event, see __perf_event_overflow() and 250 * perf_adjust_freq_unthr_context(). 251 */ 252 u64 interrupts_seq; 253 u64 interrupts; 254 255 /* 256 * State for freq target events, see __perf_event_overflow() and 257 * perf_adjust_freq_unthr_context(). 258 */ 259 u64 freq_time_stamp; 260 u64 freq_count_stamp; 261#endif 262}; 263 264struct perf_event; 265 266/* 267 * Common implementation detail of pmu::{start,commit,cancel}_txn 268 */ 269#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 270#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 271 272/** 273 * pmu::capabilities flags 274 */ 275#define PERF_PMU_CAP_NO_INTERRUPT 0x0001 276#define PERF_PMU_CAP_NO_NMI 0x0002 277#define PERF_PMU_CAP_AUX_NO_SG 0x0004 278#define PERF_PMU_CAP_EXTENDED_REGS 0x0008 279#define PERF_PMU_CAP_EXCLUSIVE 0x0010 280#define PERF_PMU_CAP_ITRACE 0x0020 281#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x0040 282#define PERF_PMU_CAP_NO_EXCLUDE 0x0080 283#define PERF_PMU_CAP_AUX_OUTPUT 0x0100 284#define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0200 285 286struct perf_output_handle; 287 288/** 289 * struct pmu - generic performance monitoring unit 290 */ 291struct pmu { 292 struct list_head entry; 293 294 struct module *module; 295 struct device *dev; 296 const struct attribute_group **attr_groups; 297 const struct attribute_group **attr_update; 298 const char *name; 299 int type; 300 301 /* 302 * various common per-pmu feature flags 303 */ 304 int capabilities; 305 306 int __percpu *pmu_disable_count; 307 struct perf_cpu_context __percpu *pmu_cpu_context; 308 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 309 int task_ctx_nr; 310 int hrtimer_interval_ms; 311 312 /* number of address filters this PMU can do */ 313 unsigned int nr_addr_filters; 314 315 /* 316 * Fully disable/enable this PMU, can be used to protect from the PMI 317 * as well as for lazy/batch writing of the MSRs. 318 */ 319 void (*pmu_enable) (struct pmu *pmu); /* optional */ 320 void (*pmu_disable) (struct pmu *pmu); /* optional */ 321 322 /* 323 * Try and initialize the event for this PMU. 324 * 325 * Returns: 326 * -ENOENT -- @event is not for this PMU 327 * 328 * -ENODEV -- @event is for this PMU but PMU not present 329 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 330 * -EINVAL -- @event is for this PMU but @event is not valid 331 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 332 * -EACCES -- @event is for this PMU, @event is valid, but no privileges 333 * 334 * 0 -- @event is for this PMU and valid 335 * 336 * Other error return values are allowed. 337 */ 338 int (*event_init) (struct perf_event *event); 339 340 /* 341 * Notification that the event was mapped or unmapped. Called 342 * in the context of the mapping task. 343 */ 344 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 345 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 346 347 /* 348 * Flags for ->add()/->del()/ ->start()/->stop(). There are 349 * matching hw_perf_event::state flags. 350 */ 351#define PERF_EF_START 0x01 /* start the counter when adding */ 352#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 353#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 354 355 /* 356 * Adds/Removes a counter to/from the PMU, can be done inside a 357 * transaction, see the ->*_txn() methods. 358 * 359 * The add/del callbacks will reserve all hardware resources required 360 * to service the event, this includes any counter constraint 361 * scheduling etc. 362 * 363 * Called with IRQs disabled and the PMU disabled on the CPU the event 364 * is on. 365 * 366 * ->add() called without PERF_EF_START should result in the same state 367 * as ->add() followed by ->stop(). 368 * 369 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 370 * ->stop() that must deal with already being stopped without 371 * PERF_EF_UPDATE. 372 */ 373 int (*add) (struct perf_event *event, int flags); 374 void (*del) (struct perf_event *event, int flags); 375 376 /* 377 * Starts/Stops a counter present on the PMU. 378 * 379 * The PMI handler should stop the counter when perf_event_overflow() 380 * returns !0. ->start() will be used to continue. 381 * 382 * Also used to change the sample period. 383 * 384 * Called with IRQs disabled and the PMU disabled on the CPU the event 385 * is on -- will be called from NMI context with the PMU generates 386 * NMIs. 387 * 388 * ->stop() with PERF_EF_UPDATE will read the counter and update 389 * period/count values like ->read() would. 390 * 391 * ->start() with PERF_EF_RELOAD will reprogram the counter 392 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 393 */ 394 void (*start) (struct perf_event *event, int flags); 395 void (*stop) (struct perf_event *event, int flags); 396 397 /* 398 * Updates the counter value of the event. 399 * 400 * For sampling capable PMUs this will also update the software period 401 * hw_perf_event::period_left field. 402 */ 403 void (*read) (struct perf_event *event); 404 405 /* 406 * Group events scheduling is treated as a transaction, add 407 * group events as a whole and perform one schedulability test. 408 * If the test fails, roll back the whole group 409 * 410 * Start the transaction, after this ->add() doesn't need to 411 * do schedulability tests. 412 * 413 * Optional. 414 */ 415 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 416 /* 417 * If ->start_txn() disabled the ->add() schedulability test 418 * then ->commit_txn() is required to perform one. On success 419 * the transaction is closed. On error the transaction is kept 420 * open until ->cancel_txn() is called. 421 * 422 * Optional. 423 */ 424 int (*commit_txn) (struct pmu *pmu); 425 /* 426 * Will cancel the transaction, assumes ->del() is called 427 * for each successful ->add() during the transaction. 428 * 429 * Optional. 430 */ 431 void (*cancel_txn) (struct pmu *pmu); 432 433 /* 434 * Will return the value for perf_event_mmap_page::index for this event, 435 * if no implementation is provided it will default to: event->hw.idx + 1. 436 */ 437 int (*event_idx) (struct perf_event *event); /*optional */ 438 439 /* 440 * context-switches callback 441 */ 442 void (*sched_task) (struct perf_event_context *ctx, 443 bool sched_in); 444 445 /* 446 * Kmem cache of PMU specific data 447 */ 448 struct kmem_cache *task_ctx_cache; 449 450 /* 451 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) 452 * can be synchronized using this function. See Intel LBR callstack support 453 * implementation and Perf core context switch handling callbacks for usage 454 * examples. 455 */ 456 void (*swap_task_ctx) (struct perf_event_context *prev, 457 struct perf_event_context *next); 458 /* optional */ 459 460 /* 461 * Set up pmu-private data structures for an AUX area 462 */ 463 void *(*setup_aux) (struct perf_event *event, void **pages, 464 int nr_pages, bool overwrite); 465 /* optional */ 466 467 /* 468 * Free pmu-private AUX data structures 469 */ 470 void (*free_aux) (void *aux); /* optional */ 471 472 /* 473 * Take a snapshot of the AUX buffer without touching the event 474 * state, so that preempting ->start()/->stop() callbacks does 475 * not interfere with their logic. Called in PMI context. 476 * 477 * Returns the size of AUX data copied to the output handle. 478 * 479 * Optional. 480 */ 481 long (*snapshot_aux) (struct perf_event *event, 482 struct perf_output_handle *handle, 483 unsigned long size); 484 485 /* 486 * Validate address range filters: make sure the HW supports the 487 * requested configuration and number of filters; return 0 if the 488 * supplied filters are valid, -errno otherwise. 489 * 490 * Runs in the context of the ioctl()ing process and is not serialized 491 * with the rest of the PMU callbacks. 492 */ 493 int (*addr_filters_validate) (struct list_head *filters); 494 /* optional */ 495 496 /* 497 * Synchronize address range filter configuration: 498 * translate hw-agnostic filters into hardware configuration in 499 * event::hw::addr_filters. 500 * 501 * Runs as a part of filter sync sequence that is done in ->start() 502 * callback by calling perf_event_addr_filters_sync(). 503 * 504 * May (and should) traverse event::addr_filters::list, for which its 505 * caller provides necessary serialization. 506 */ 507 void (*addr_filters_sync) (struct perf_event *event); 508 /* optional */ 509 510 /* 511 * Check if event can be used for aux_output purposes for 512 * events of this PMU. 513 * 514 * Runs from perf_event_open(). Should return 0 for "no match" 515 * or non-zero for "match". 516 */ 517 int (*aux_output_match) (struct perf_event *event); 518 /* optional */ 519 520 /* 521 * Filter events for PMU-specific reasons. 522 */ 523 int (*filter_match) (struct perf_event *event); /* optional */ 524 525 /* 526 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 527 */ 528 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 529}; 530 531enum perf_addr_filter_action_t { 532 PERF_ADDR_FILTER_ACTION_STOP = 0, 533 PERF_ADDR_FILTER_ACTION_START, 534 PERF_ADDR_FILTER_ACTION_FILTER, 535}; 536 537/** 538 * struct perf_addr_filter - address range filter definition 539 * @entry: event's filter list linkage 540 * @path: object file's path for file-based filters 541 * @offset: filter range offset 542 * @size: filter range size (size==0 means single address trigger) 543 * @action: filter/start/stop 544 * 545 * This is a hardware-agnostic filter configuration as specified by the user. 546 */ 547struct perf_addr_filter { 548 struct list_head entry; 549 struct path path; 550 unsigned long offset; 551 unsigned long size; 552 enum perf_addr_filter_action_t action; 553}; 554 555/** 556 * struct perf_addr_filters_head - container for address range filters 557 * @list: list of filters for this event 558 * @lock: spinlock that serializes accesses to the @list and event's 559 * (and its children's) filter generations. 560 * @nr_file_filters: number of file-based filters 561 * 562 * A child event will use parent's @list (and therefore @lock), so they are 563 * bundled together; see perf_event_addr_filters(). 564 */ 565struct perf_addr_filters_head { 566 struct list_head list; 567 raw_spinlock_t lock; 568 unsigned int nr_file_filters; 569}; 570 571struct perf_addr_filter_range { 572 unsigned long start; 573 unsigned long size; 574}; 575 576/** 577 * enum perf_event_state - the states of an event: 578 */ 579enum perf_event_state { 580 PERF_EVENT_STATE_DEAD = -4, 581 PERF_EVENT_STATE_EXIT = -3, 582 PERF_EVENT_STATE_ERROR = -2, 583 PERF_EVENT_STATE_OFF = -1, 584 PERF_EVENT_STATE_INACTIVE = 0, 585 PERF_EVENT_STATE_ACTIVE = 1, 586}; 587 588struct file; 589struct perf_sample_data; 590 591typedef void (*perf_overflow_handler_t)(struct perf_event *, 592 struct perf_sample_data *, 593 struct pt_regs *regs); 594 595/* 596 * Event capabilities. For event_caps and groups caps. 597 * 598 * PERF_EV_CAP_SOFTWARE: Is a software event. 599 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 600 * from any CPU in the package where it is active. 601 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and 602 * cannot be a group leader. If an event with this flag is detached from the 603 * group it is scheduled out and moved into an unrecoverable ERROR state. 604 */ 605#define PERF_EV_CAP_SOFTWARE BIT(0) 606#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 607#define PERF_EV_CAP_SIBLING BIT(2) 608 609#define SWEVENT_HLIST_BITS 8 610#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 611 612struct swevent_hlist { 613 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 614 struct rcu_head rcu_head; 615}; 616 617#define PERF_ATTACH_CONTEXT 0x01 618#define PERF_ATTACH_GROUP 0x02 619#define PERF_ATTACH_TASK 0x04 620#define PERF_ATTACH_TASK_DATA 0x08 621#define PERF_ATTACH_ITRACE 0x10 622#define PERF_ATTACH_SCHED_CB 0x20 623#define PERF_ATTACH_CHILD 0x40 624 625struct bpf_prog; 626struct perf_cgroup; 627struct perf_buffer; 628 629struct pmu_event_list { 630 raw_spinlock_t lock; 631 struct list_head list; 632}; 633 634#define for_each_sibling_event(sibling, event) \ 635 if ((event)->group_leader == (event)) \ 636 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 637 638/** 639 * struct perf_event - performance event kernel representation: 640 */ 641struct perf_event { 642#ifdef CONFIG_PERF_EVENTS 643 /* 644 * entry onto perf_event_context::event_list; 645 * modifications require ctx->lock 646 * RCU safe iterations. 647 */ 648 struct list_head event_entry; 649 650 /* 651 * Locked for modification by both ctx->mutex and ctx->lock; holding 652 * either sufficies for read. 653 */ 654 struct list_head sibling_list; 655 struct list_head active_list; 656 /* 657 * Node on the pinned or flexible tree located at the event context; 658 */ 659 struct rb_node group_node; 660 u64 group_index; 661 /* 662 * We need storage to track the entries in perf_pmu_migrate_context; we 663 * cannot use the event_entry because of RCU and we want to keep the 664 * group in tact which avoids us using the other two entries. 665 */ 666 struct list_head migrate_entry; 667 668 struct hlist_node hlist_entry; 669 struct list_head active_entry; 670 int nr_siblings; 671 672 /* Not serialized. Only written during event initialization. */ 673 int event_caps; 674 /* The cumulative AND of all event_caps for events in this group. */ 675 int group_caps; 676 677 struct perf_event *group_leader; 678 struct pmu *pmu; 679 void *pmu_private; 680 681 enum perf_event_state state; 682 unsigned int attach_state; 683 local64_t count; 684 atomic64_t child_count; 685 686 /* 687 * These are the total time in nanoseconds that the event 688 * has been enabled (i.e. eligible to run, and the task has 689 * been scheduled in, if this is a per-task event) 690 * and running (scheduled onto the CPU), respectively. 691 */ 692 u64 total_time_enabled; 693 u64 total_time_running; 694 u64 tstamp; 695 696 struct perf_event_attr attr; 697 u16 header_size; 698 u16 id_header_size; 699 u16 read_size; 700 struct hw_perf_event hw; 701 702 struct perf_event_context *ctx; 703 atomic_long_t refcount; 704 705 /* 706 * These accumulate total time (in nanoseconds) that children 707 * events have been enabled and running, respectively. 708 */ 709 atomic64_t child_total_time_enabled; 710 atomic64_t child_total_time_running; 711 712 /* 713 * Protect attach/detach and child_list: 714 */ 715 struct mutex child_mutex; 716 struct list_head child_list; 717 struct perf_event *parent; 718 719 int oncpu; 720 int cpu; 721 722 struct list_head owner_entry; 723 struct task_struct *owner; 724 725 /* mmap bits */ 726 struct mutex mmap_mutex; 727 atomic_t mmap_count; 728 729 struct perf_buffer *rb; 730 struct list_head rb_entry; 731 unsigned long rcu_batches; 732 int rcu_pending; 733 734 /* poll related */ 735 wait_queue_head_t waitq; 736 struct fasync_struct *fasync; 737 738 /* delayed work for NMIs and such */ 739 int pending_wakeup; 740 int pending_kill; 741 int pending_disable; 742 unsigned long pending_addr; /* SIGTRAP */ 743 struct irq_work pending; 744 745 atomic_t event_limit; 746 747 /* address range filters */ 748 struct perf_addr_filters_head addr_filters; 749 /* vma address array for file-based filders */ 750 struct perf_addr_filter_range *addr_filter_ranges; 751 unsigned long addr_filters_gen; 752 753 /* for aux_output events */ 754 struct perf_event *aux_event; 755 756 void (*destroy)(struct perf_event *); 757 struct rcu_head rcu_head; 758 759 struct pid_namespace *ns; 760 u64 id; 761 762 atomic64_t lost_samples; 763 764 u64 (*clock)(void); 765 perf_overflow_handler_t overflow_handler; 766 void *overflow_handler_context; 767#ifdef CONFIG_BPF_SYSCALL 768 perf_overflow_handler_t orig_overflow_handler; 769 struct bpf_prog *prog; 770 u64 bpf_cookie; 771#endif 772 773#ifdef CONFIG_EVENT_TRACING 774 struct trace_event_call *tp_event; 775 struct event_filter *filter; 776#ifdef CONFIG_FUNCTION_TRACER 777 struct ftrace_ops ftrace_ops; 778#endif 779#endif 780 781#ifdef CONFIG_CGROUP_PERF 782 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 783#endif 784 785#ifdef CONFIG_SECURITY 786 void *security; 787#endif 788 struct list_head sb_list; 789#endif /* CONFIG_PERF_EVENTS */ 790}; 791 792 793struct perf_event_groups { 794 struct rb_root tree; 795 u64 index; 796}; 797 798/** 799 * struct perf_event_context - event context structure 800 * 801 * Used as a container for task events and CPU events as well: 802 */ 803struct perf_event_context { 804 struct pmu *pmu; 805 /* 806 * Protect the states of the events in the list, 807 * nr_active, and the list: 808 */ 809 raw_spinlock_t lock; 810 /* 811 * Protect the list of events. Locking either mutex or lock 812 * is sufficient to ensure the list doesn't change; to change 813 * the list you need to lock both the mutex and the spinlock. 814 */ 815 struct mutex mutex; 816 817 struct list_head active_ctx_list; 818 struct perf_event_groups pinned_groups; 819 struct perf_event_groups flexible_groups; 820 struct list_head event_list; 821 822 struct list_head pinned_active; 823 struct list_head flexible_active; 824 825 int nr_events; 826 int nr_active; 827 int nr_user; 828 int is_active; 829 int nr_stat; 830 int nr_freq; 831 int rotate_disable; 832 /* 833 * Set when nr_events != nr_active, except tolerant to events not 834 * necessary to be active due to scheduling constraints, such as cgroups. 835 */ 836 int rotate_necessary; 837 refcount_t refcount; 838 struct task_struct *task; 839 840 /* 841 * Context clock, runs when context enabled. 842 */ 843 u64 time; 844 u64 timestamp; 845 u64 timeoffset; 846 847 /* 848 * These fields let us detect when two contexts have both 849 * been cloned (inherited) from a common ancestor. 850 */ 851 struct perf_event_context *parent_ctx; 852 u64 parent_gen; 853 u64 generation; 854 int pin_count; 855#ifdef CONFIG_CGROUP_PERF 856 int nr_cgroups; /* cgroup evts */ 857#endif 858 void *task_ctx_data; /* pmu specific data */ 859 struct rcu_head rcu_head; 860}; 861 862/* 863 * Number of contexts where an event can trigger: 864 * task, softirq, hardirq, nmi. 865 */ 866#define PERF_NR_CONTEXTS 4 867 868/** 869 * struct perf_cpu_context - per cpu event context structure 870 */ 871struct perf_cpu_context { 872 struct perf_event_context ctx; 873 struct perf_event_context *task_ctx; 874 int active_oncpu; 875 int exclusive; 876 877 raw_spinlock_t hrtimer_lock; 878 struct hrtimer hrtimer; 879 ktime_t hrtimer_interval; 880 unsigned int hrtimer_active; 881 882#ifdef CONFIG_CGROUP_PERF 883 struct perf_cgroup *cgrp; 884 struct list_head cgrp_cpuctx_entry; 885#endif 886 887 struct list_head sched_cb_entry; 888 int sched_cb_usage; 889 890 int online; 891 /* 892 * Per-CPU storage for iterators used in visit_groups_merge. The default 893 * storage is of size 2 to hold the CPU and any CPU event iterators. 894 */ 895 int heap_size; 896 struct perf_event **heap; 897 struct perf_event *heap_default[2]; 898}; 899 900struct perf_output_handle { 901 struct perf_event *event; 902 struct perf_buffer *rb; 903 unsigned long wakeup; 904 unsigned long size; 905 u64 aux_flags; 906 union { 907 void *addr; 908 unsigned long head; 909 }; 910 int page; 911}; 912 913struct bpf_perf_event_data_kern { 914 bpf_user_pt_regs_t *regs; 915 struct perf_sample_data *data; 916 struct perf_event *event; 917}; 918 919#ifdef CONFIG_CGROUP_PERF 920 921/* 922 * perf_cgroup_info keeps track of time_enabled for a cgroup. 923 * This is a per-cpu dynamically allocated data structure. 924 */ 925struct perf_cgroup_info { 926 u64 time; 927 u64 timestamp; 928 u64 timeoffset; 929 int active; 930}; 931 932struct perf_cgroup { 933 struct cgroup_subsys_state css; 934 struct perf_cgroup_info __percpu *info; 935}; 936 937/* 938 * Must ensure cgroup is pinned (css_get) before calling 939 * this function. In other words, we cannot call this function 940 * if there is no cgroup event for the current CPU context. 941 */ 942static inline struct perf_cgroup * 943perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 944{ 945 return container_of(task_css_check(task, perf_event_cgrp_id, 946 ctx ? lockdep_is_held(&ctx->lock) 947 : true), 948 struct perf_cgroup, css); 949} 950#endif /* CONFIG_CGROUP_PERF */ 951 952#ifdef CONFIG_PERF_EVENTS 953 954extern void *perf_aux_output_begin(struct perf_output_handle *handle, 955 struct perf_event *event); 956extern void perf_aux_output_end(struct perf_output_handle *handle, 957 unsigned long size); 958extern int perf_aux_output_skip(struct perf_output_handle *handle, 959 unsigned long size); 960extern void *perf_get_aux(struct perf_output_handle *handle); 961extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 962extern void perf_event_itrace_started(struct perf_event *event); 963 964extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 965extern void perf_pmu_unregister(struct pmu *pmu); 966 967extern void __perf_event_task_sched_in(struct task_struct *prev, 968 struct task_struct *task); 969extern void __perf_event_task_sched_out(struct task_struct *prev, 970 struct task_struct *next); 971extern int perf_event_init_task(struct task_struct *child, u64 clone_flags); 972extern void perf_event_exit_task(struct task_struct *child); 973extern void perf_event_free_task(struct task_struct *task); 974extern void perf_event_delayed_put(struct task_struct *task); 975extern struct file *perf_event_get(unsigned int fd); 976extern const struct perf_event *perf_get_event(struct file *file); 977extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 978extern void perf_event_print_debug(void); 979extern void perf_pmu_disable(struct pmu *pmu); 980extern void perf_pmu_enable(struct pmu *pmu); 981extern void perf_sched_cb_dec(struct pmu *pmu); 982extern void perf_sched_cb_inc(struct pmu *pmu); 983extern int perf_event_task_disable(void); 984extern int perf_event_task_enable(void); 985 986extern void perf_pmu_resched(struct pmu *pmu); 987 988extern int perf_event_refresh(struct perf_event *event, int refresh); 989extern void perf_event_update_userpage(struct perf_event *event); 990extern int perf_event_release_kernel(struct perf_event *event); 991extern struct perf_event * 992perf_event_create_kernel_counter(struct perf_event_attr *attr, 993 int cpu, 994 struct task_struct *task, 995 perf_overflow_handler_t callback, 996 void *context); 997extern void perf_pmu_migrate_context(struct pmu *pmu, 998 int src_cpu, int dst_cpu); 999int perf_event_read_local(struct perf_event *event, u64 *value, 1000 u64 *enabled, u64 *running); 1001extern u64 perf_event_read_value(struct perf_event *event, 1002 u64 *enabled, u64 *running); 1003 1004 1005struct perf_sample_data { 1006 /* 1007 * Fields set by perf_sample_data_init(), group so as to 1008 * minimize the cachelines touched. 1009 */ 1010 u64 addr; 1011 struct perf_raw_record *raw; 1012 struct perf_branch_stack *br_stack; 1013 u64 period; 1014 union perf_sample_weight weight; 1015 u64 txn; 1016 union perf_mem_data_src data_src; 1017 1018 /* 1019 * The other fields, optionally {set,used} by 1020 * perf_{prepare,output}_sample(). 1021 */ 1022 u64 type; 1023 u64 ip; 1024 struct { 1025 u32 pid; 1026 u32 tid; 1027 } tid_entry; 1028 u64 time; 1029 u64 id; 1030 u64 stream_id; 1031 struct { 1032 u32 cpu; 1033 u32 reserved; 1034 } cpu_entry; 1035 struct perf_callchain_entry *callchain; 1036 u64 aux_size; 1037 1038 struct perf_regs regs_user; 1039 struct perf_regs regs_intr; 1040 u64 stack_user_size; 1041 1042 u64 phys_addr; 1043 u64 cgroup; 1044 u64 data_page_size; 1045 u64 code_page_size; 1046} ____cacheline_aligned; 1047 1048/* default value for data source */ 1049#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 1050 PERF_MEM_S(LVL, NA) |\ 1051 PERF_MEM_S(SNOOP, NA) |\ 1052 PERF_MEM_S(LOCK, NA) |\ 1053 PERF_MEM_S(TLB, NA)) 1054 1055static inline void perf_sample_data_init(struct perf_sample_data *data, 1056 u64 addr, u64 period) 1057{ 1058 /* remaining struct members initialized in perf_prepare_sample() */ 1059 data->addr = addr; 1060 data->raw = NULL; 1061 data->br_stack = NULL; 1062 data->period = period; 1063 data->weight.full = 0; 1064 data->data_src.val = PERF_MEM_NA; 1065 data->txn = 0; 1066} 1067 1068/* 1069 * Clear all bitfields in the perf_branch_entry. 1070 * The to and from fields are not cleared because they are 1071 * systematically modified by caller. 1072 */ 1073static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br) 1074{ 1075 br->mispred = 0; 1076 br->predicted = 0; 1077 br->in_tx = 0; 1078 br->abort = 0; 1079 br->cycles = 0; 1080 br->type = 0; 1081 br->reserved = 0; 1082} 1083 1084extern void perf_output_sample(struct perf_output_handle *handle, 1085 struct perf_event_header *header, 1086 struct perf_sample_data *data, 1087 struct perf_event *event); 1088extern void perf_prepare_sample(struct perf_event_header *header, 1089 struct perf_sample_data *data, 1090 struct perf_event *event, 1091 struct pt_regs *regs); 1092 1093extern int perf_event_overflow(struct perf_event *event, 1094 struct perf_sample_data *data, 1095 struct pt_regs *regs); 1096 1097extern void perf_event_output_forward(struct perf_event *event, 1098 struct perf_sample_data *data, 1099 struct pt_regs *regs); 1100extern void perf_event_output_backward(struct perf_event *event, 1101 struct perf_sample_data *data, 1102 struct pt_regs *regs); 1103extern int perf_event_output(struct perf_event *event, 1104 struct perf_sample_data *data, 1105 struct pt_regs *regs); 1106 1107static inline bool 1108is_default_overflow_handler(struct perf_event *event) 1109{ 1110 if (likely(event->overflow_handler == perf_event_output_forward)) 1111 return true; 1112 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1113 return true; 1114 return false; 1115} 1116 1117extern void 1118perf_event_header__init_id(struct perf_event_header *header, 1119 struct perf_sample_data *data, 1120 struct perf_event *event); 1121extern void 1122perf_event__output_id_sample(struct perf_event *event, 1123 struct perf_output_handle *handle, 1124 struct perf_sample_data *sample); 1125 1126extern void 1127perf_log_lost_samples(struct perf_event *event, u64 lost); 1128 1129static inline bool event_has_any_exclude_flag(struct perf_event *event) 1130{ 1131 struct perf_event_attr *attr = &event->attr; 1132 1133 return attr->exclude_idle || attr->exclude_user || 1134 attr->exclude_kernel || attr->exclude_hv || 1135 attr->exclude_guest || attr->exclude_host; 1136} 1137 1138static inline bool is_sampling_event(struct perf_event *event) 1139{ 1140 return event->attr.sample_period != 0; 1141} 1142 1143/* 1144 * Return 1 for a software event, 0 for a hardware event 1145 */ 1146static inline int is_software_event(struct perf_event *event) 1147{ 1148 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1149} 1150 1151/* 1152 * Return 1 for event in sw context, 0 for event in hw context 1153 */ 1154static inline int in_software_context(struct perf_event *event) 1155{ 1156 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1157} 1158 1159static inline int is_exclusive_pmu(struct pmu *pmu) 1160{ 1161 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; 1162} 1163 1164extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1165 1166extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1167extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1168 1169#ifndef perf_arch_fetch_caller_regs 1170static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1171#endif 1172 1173/* 1174 * When generating a perf sample in-line, instead of from an interrupt / 1175 * exception, we lack a pt_regs. This is typically used from software events 1176 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1177 * 1178 * We typically don't need a full set, but (for x86) do require: 1179 * - ip for PERF_SAMPLE_IP 1180 * - cs for user_mode() tests 1181 * - sp for PERF_SAMPLE_CALLCHAIN 1182 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1183 * 1184 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1185 * things like PERF_SAMPLE_REGS_INTR. 1186 */ 1187static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1188{ 1189 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1190} 1191 1192static __always_inline void 1193perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1194{ 1195 if (static_key_false(&perf_swevent_enabled[event_id])) 1196 __perf_sw_event(event_id, nr, regs, addr); 1197} 1198 1199DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1200 1201/* 1202 * 'Special' version for the scheduler, it hard assumes no recursion, 1203 * which is guaranteed by us not actually scheduling inside other swevents 1204 * because those disable preemption. 1205 */ 1206static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1207{ 1208 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1209 1210 perf_fetch_caller_regs(regs); 1211 ___perf_sw_event(event_id, nr, regs, addr); 1212} 1213 1214extern struct static_key_false perf_sched_events; 1215 1216static __always_inline bool __perf_sw_enabled(int swevt) 1217{ 1218 return static_key_false(&perf_swevent_enabled[swevt]); 1219} 1220 1221static inline void perf_event_task_migrate(struct task_struct *task) 1222{ 1223 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS)) 1224 task->sched_migrated = 1; 1225} 1226 1227static inline void perf_event_task_sched_in(struct task_struct *prev, 1228 struct task_struct *task) 1229{ 1230 if (static_branch_unlikely(&perf_sched_events)) 1231 __perf_event_task_sched_in(prev, task); 1232 1233 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) && 1234 task->sched_migrated) { 1235 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); 1236 task->sched_migrated = 0; 1237 } 1238} 1239 1240static inline void perf_event_task_sched_out(struct task_struct *prev, 1241 struct task_struct *next) 1242{ 1243 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES)) 1244 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1245 1246#ifdef CONFIG_CGROUP_PERF 1247 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) && 1248 perf_cgroup_from_task(prev, NULL) != 1249 perf_cgroup_from_task(next, NULL)) 1250 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0); 1251#endif 1252 1253 if (static_branch_unlikely(&perf_sched_events)) 1254 __perf_event_task_sched_out(prev, next); 1255} 1256 1257extern void perf_event_mmap(struct vm_area_struct *vma); 1258 1259extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1260 bool unregister, const char *sym); 1261extern void perf_event_bpf_event(struct bpf_prog *prog, 1262 enum perf_bpf_event_type type, 1263 u16 flags); 1264 1265#ifdef CONFIG_GUEST_PERF_EVENTS 1266extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 1267 1268DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state); 1269DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 1270DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 1271 1272static inline unsigned int perf_guest_state(void) 1273{ 1274 return static_call(__perf_guest_state)(); 1275} 1276static inline unsigned long perf_guest_get_ip(void) 1277{ 1278 return static_call(__perf_guest_get_ip)(); 1279} 1280static inline unsigned int perf_guest_handle_intel_pt_intr(void) 1281{ 1282 return static_call(__perf_guest_handle_intel_pt_intr)(); 1283} 1284extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1285extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1286#else 1287static inline unsigned int perf_guest_state(void) { return 0; } 1288static inline unsigned long perf_guest_get_ip(void) { return 0; } 1289static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; } 1290#endif /* CONFIG_GUEST_PERF_EVENTS */ 1291 1292extern void perf_event_exec(void); 1293extern void perf_event_comm(struct task_struct *tsk, bool exec); 1294extern void perf_event_namespaces(struct task_struct *tsk); 1295extern void perf_event_fork(struct task_struct *tsk); 1296extern void perf_event_text_poke(const void *addr, 1297 const void *old_bytes, size_t old_len, 1298 const void *new_bytes, size_t new_len); 1299 1300/* Callchains */ 1301DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1302 1303extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1304extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1305extern struct perf_callchain_entry * 1306get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1307 u32 max_stack, bool crosstask, bool add_mark); 1308extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1309extern int get_callchain_buffers(int max_stack); 1310extern void put_callchain_buffers(void); 1311extern struct perf_callchain_entry *get_callchain_entry(int *rctx); 1312extern void put_callchain_entry(int rctx); 1313 1314extern int sysctl_perf_event_max_stack; 1315extern int sysctl_perf_event_max_contexts_per_stack; 1316 1317static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1318{ 1319 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1320 struct perf_callchain_entry *entry = ctx->entry; 1321 entry->ip[entry->nr++] = ip; 1322 ++ctx->contexts; 1323 return 0; 1324 } else { 1325 ctx->contexts_maxed = true; 1326 return -1; /* no more room, stop walking the stack */ 1327 } 1328} 1329 1330static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1331{ 1332 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1333 struct perf_callchain_entry *entry = ctx->entry; 1334 entry->ip[entry->nr++] = ip; 1335 ++ctx->nr; 1336 return 0; 1337 } else { 1338 return -1; /* no more room, stop walking the stack */ 1339 } 1340} 1341 1342extern int sysctl_perf_event_paranoid; 1343extern int sysctl_perf_event_mlock; 1344extern int sysctl_perf_event_sample_rate; 1345extern int sysctl_perf_cpu_time_max_percent; 1346 1347extern void perf_sample_event_took(u64 sample_len_ns); 1348 1349int perf_proc_update_handler(struct ctl_table *table, int write, 1350 void *buffer, size_t *lenp, loff_t *ppos); 1351int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1352 void *buffer, size_t *lenp, loff_t *ppos); 1353int perf_event_max_stack_handler(struct ctl_table *table, int write, 1354 void *buffer, size_t *lenp, loff_t *ppos); 1355 1356/* Access to perf_event_open(2) syscall. */ 1357#define PERF_SECURITY_OPEN 0 1358 1359/* Finer grained perf_event_open(2) access control. */ 1360#define PERF_SECURITY_CPU 1 1361#define PERF_SECURITY_KERNEL 2 1362#define PERF_SECURITY_TRACEPOINT 3 1363 1364static inline int perf_is_paranoid(void) 1365{ 1366 return sysctl_perf_event_paranoid > -1; 1367} 1368 1369static inline int perf_allow_kernel(struct perf_event_attr *attr) 1370{ 1371 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 1372 return -EACCES; 1373 1374 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 1375} 1376 1377static inline int perf_allow_cpu(struct perf_event_attr *attr) 1378{ 1379 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) 1380 return -EACCES; 1381 1382 return security_perf_event_open(attr, PERF_SECURITY_CPU); 1383} 1384 1385static inline int perf_allow_tracepoint(struct perf_event_attr *attr) 1386{ 1387 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) 1388 return -EPERM; 1389 1390 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); 1391} 1392 1393extern void perf_event_init(void); 1394extern void perf_tp_event(u16 event_type, u64 count, void *record, 1395 int entry_size, struct pt_regs *regs, 1396 struct hlist_head *head, int rctx, 1397 struct task_struct *task); 1398extern void perf_bp_event(struct perf_event *event, void *data); 1399 1400#ifndef perf_misc_flags 1401# define perf_misc_flags(regs) \ 1402 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1403# define perf_instruction_pointer(regs) instruction_pointer(regs) 1404#endif 1405#ifndef perf_arch_bpf_user_pt_regs 1406# define perf_arch_bpf_user_pt_regs(regs) regs 1407#endif 1408 1409static inline bool has_branch_stack(struct perf_event *event) 1410{ 1411 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1412} 1413 1414static inline bool needs_branch_stack(struct perf_event *event) 1415{ 1416 return event->attr.branch_sample_type != 0; 1417} 1418 1419static inline bool has_aux(struct perf_event *event) 1420{ 1421 return event->pmu->setup_aux; 1422} 1423 1424static inline bool is_write_backward(struct perf_event *event) 1425{ 1426 return !!event->attr.write_backward; 1427} 1428 1429static inline bool has_addr_filter(struct perf_event *event) 1430{ 1431 return event->pmu->nr_addr_filters; 1432} 1433 1434/* 1435 * An inherited event uses parent's filters 1436 */ 1437static inline struct perf_addr_filters_head * 1438perf_event_addr_filters(struct perf_event *event) 1439{ 1440 struct perf_addr_filters_head *ifh = &event->addr_filters; 1441 1442 if (event->parent) 1443 ifh = &event->parent->addr_filters; 1444 1445 return ifh; 1446} 1447 1448extern void perf_event_addr_filters_sync(struct perf_event *event); 1449extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id); 1450 1451extern int perf_output_begin(struct perf_output_handle *handle, 1452 struct perf_sample_data *data, 1453 struct perf_event *event, unsigned int size); 1454extern int perf_output_begin_forward(struct perf_output_handle *handle, 1455 struct perf_sample_data *data, 1456 struct perf_event *event, 1457 unsigned int size); 1458extern int perf_output_begin_backward(struct perf_output_handle *handle, 1459 struct perf_sample_data *data, 1460 struct perf_event *event, 1461 unsigned int size); 1462 1463extern void perf_output_end(struct perf_output_handle *handle); 1464extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1465 const void *buf, unsigned int len); 1466extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1467 unsigned int len); 1468extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, 1469 struct perf_output_handle *handle, 1470 unsigned long from, unsigned long to); 1471extern int perf_swevent_get_recursion_context(void); 1472extern void perf_swevent_put_recursion_context(int rctx); 1473extern u64 perf_swevent_set_period(struct perf_event *event); 1474extern void perf_event_enable(struct perf_event *event); 1475extern void perf_event_disable(struct perf_event *event); 1476extern void perf_event_disable_local(struct perf_event *event); 1477extern void perf_event_disable_inatomic(struct perf_event *event); 1478extern void perf_event_task_tick(void); 1479extern int perf_event_account_interrupt(struct perf_event *event); 1480extern int perf_event_period(struct perf_event *event, u64 value); 1481extern u64 perf_event_pause(struct perf_event *event, bool reset); 1482#else /* !CONFIG_PERF_EVENTS: */ 1483static inline void * 1484perf_aux_output_begin(struct perf_output_handle *handle, 1485 struct perf_event *event) { return NULL; } 1486static inline void 1487perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1488 { } 1489static inline int 1490perf_aux_output_skip(struct perf_output_handle *handle, 1491 unsigned long size) { return -EINVAL; } 1492static inline void * 1493perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1494static inline void 1495perf_event_task_migrate(struct task_struct *task) { } 1496static inline void 1497perf_event_task_sched_in(struct task_struct *prev, 1498 struct task_struct *task) { } 1499static inline void 1500perf_event_task_sched_out(struct task_struct *prev, 1501 struct task_struct *next) { } 1502static inline int perf_event_init_task(struct task_struct *child, 1503 u64 clone_flags) { return 0; } 1504static inline void perf_event_exit_task(struct task_struct *child) { } 1505static inline void perf_event_free_task(struct task_struct *task) { } 1506static inline void perf_event_delayed_put(struct task_struct *task) { } 1507static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1508static inline const struct perf_event *perf_get_event(struct file *file) 1509{ 1510 return ERR_PTR(-EINVAL); 1511} 1512static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1513{ 1514 return ERR_PTR(-EINVAL); 1515} 1516static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1517 u64 *enabled, u64 *running) 1518{ 1519 return -EINVAL; 1520} 1521static inline void perf_event_print_debug(void) { } 1522static inline int perf_event_task_disable(void) { return -EINVAL; } 1523static inline int perf_event_task_enable(void) { return -EINVAL; } 1524static inline int perf_event_refresh(struct perf_event *event, int refresh) 1525{ 1526 return -EINVAL; 1527} 1528 1529static inline void 1530perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1531static inline void 1532perf_bp_event(struct perf_event *event, void *data) { } 1533 1534static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1535 1536typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1537static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1538 bool unregister, const char *sym) { } 1539static inline void perf_event_bpf_event(struct bpf_prog *prog, 1540 enum perf_bpf_event_type type, 1541 u16 flags) { } 1542static inline void perf_event_exec(void) { } 1543static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1544static inline void perf_event_namespaces(struct task_struct *tsk) { } 1545static inline void perf_event_fork(struct task_struct *tsk) { } 1546static inline void perf_event_text_poke(const void *addr, 1547 const void *old_bytes, 1548 size_t old_len, 1549 const void *new_bytes, 1550 size_t new_len) { } 1551static inline void perf_event_init(void) { } 1552static inline int perf_swevent_get_recursion_context(void) { return -1; } 1553static inline void perf_swevent_put_recursion_context(int rctx) { } 1554static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1555static inline void perf_event_enable(struct perf_event *event) { } 1556static inline void perf_event_disable(struct perf_event *event) { } 1557static inline int __perf_event_disable(void *info) { return -1; } 1558static inline void perf_event_task_tick(void) { } 1559static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1560static inline int perf_event_period(struct perf_event *event, u64 value) 1561{ 1562 return -EINVAL; 1563} 1564static inline u64 perf_event_pause(struct perf_event *event, bool reset) 1565{ 1566 return 0; 1567} 1568#endif 1569 1570#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1571extern void perf_restore_debug_store(void); 1572#else 1573static inline void perf_restore_debug_store(void) { } 1574#endif 1575 1576static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1577{ 1578 return frag->pad < sizeof(u64); 1579} 1580 1581#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1582 1583struct perf_pmu_events_attr { 1584 struct device_attribute attr; 1585 u64 id; 1586 const char *event_str; 1587}; 1588 1589struct perf_pmu_events_ht_attr { 1590 struct device_attribute attr; 1591 u64 id; 1592 const char *event_str_ht; 1593 const char *event_str_noht; 1594}; 1595 1596struct perf_pmu_events_hybrid_attr { 1597 struct device_attribute attr; 1598 u64 id; 1599 const char *event_str; 1600 u64 pmu_type; 1601}; 1602 1603struct perf_pmu_format_hybrid_attr { 1604 struct device_attribute attr; 1605 u64 pmu_type; 1606}; 1607 1608ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1609 char *page); 1610 1611#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1612static struct perf_pmu_events_attr _var = { \ 1613 .attr = __ATTR(_name, 0444, _show, NULL), \ 1614 .id = _id, \ 1615}; 1616 1617#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1618static struct perf_pmu_events_attr _var = { \ 1619 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1620 .id = 0, \ 1621 .event_str = _str, \ 1622}; 1623 1624#define PMU_EVENT_ATTR_ID(_name, _show, _id) \ 1625 (&((struct perf_pmu_events_attr[]) { \ 1626 { .attr = __ATTR(_name, 0444, _show, NULL), \ 1627 .id = _id, } \ 1628 })[0].attr.attr) 1629 1630#define PMU_FORMAT_ATTR(_name, _format) \ 1631static ssize_t \ 1632_name##_show(struct device *dev, \ 1633 struct device_attribute *attr, \ 1634 char *page) \ 1635{ \ 1636 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1637 return sprintf(page, _format "\n"); \ 1638} \ 1639 \ 1640static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1641 1642/* Performance counter hotplug functions */ 1643#ifdef CONFIG_PERF_EVENTS 1644int perf_event_init_cpu(unsigned int cpu); 1645int perf_event_exit_cpu(unsigned int cpu); 1646#else 1647#define perf_event_init_cpu NULL 1648#define perf_event_exit_cpu NULL 1649#endif 1650 1651extern void __weak arch_perf_update_userpage(struct perf_event *event, 1652 struct perf_event_mmap_page *userpg, 1653 u64 now); 1654 1655#ifdef CONFIG_MMU 1656extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr); 1657#endif 1658 1659/* 1660 * Snapshot branch stack on software events. 1661 * 1662 * Branch stack can be very useful in understanding software events. For 1663 * example, when a long function, e.g. sys_perf_event_open, returns an 1664 * errno, it is not obvious why the function failed. Branch stack could 1665 * provide very helpful information in this type of scenarios. 1666 * 1667 * On software event, it is necessary to stop the hardware branch recorder 1668 * fast. Otherwise, the hardware register/buffer will be flushed with 1669 * entries of the triggering event. Therefore, static call is used to 1670 * stop the hardware recorder. 1671 */ 1672 1673/* 1674 * cnt is the number of entries allocated for entries. 1675 * Return number of entries copied to . 1676 */ 1677typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries, 1678 unsigned int cnt); 1679DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 1680 1681#ifndef PERF_NEEDS_LOPWR_CB 1682static inline void perf_lopwr_cb(bool mode) 1683{ 1684} 1685#endif 1686 1687#endif /* _LINUX_PERF_EVENT_H */