Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
4 */
5
6#ifndef __MTD_MTD_H__
7#define __MTD_MTD_H__
8
9#include <linux/types.h>
10#include <linux/uio.h>
11#include <linux/list.h>
12#include <linux/notifier.h>
13#include <linux/device.h>
14#include <linux/of.h>
15#include <linux/nvmem-provider.h>
16
17#include <mtd/mtd-abi.h>
18
19#include <asm/div64.h>
20
21#define MTD_FAIL_ADDR_UNKNOWN -1LL
22
23struct mtd_info;
24
25/*
26 * If the erase fails, fail_addr might indicate exactly which block failed. If
27 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
28 * or was not specific to any particular block.
29 */
30struct erase_info {
31 uint64_t addr;
32 uint64_t len;
33 uint64_t fail_addr;
34};
35
36struct mtd_erase_region_info {
37 uint64_t offset; /* At which this region starts, from the beginning of the MTD */
38 uint32_t erasesize; /* For this region */
39 uint32_t numblocks; /* Number of blocks of erasesize in this region */
40 unsigned long *lockmap; /* If keeping bitmap of locks */
41};
42
43/**
44 * struct mtd_oob_ops - oob operation operands
45 * @mode: operation mode
46 *
47 * @len: number of data bytes to write/read
48 *
49 * @retlen: number of data bytes written/read
50 *
51 * @ooblen: number of oob bytes to write/read
52 * @oobretlen: number of oob bytes written/read
53 * @ooboffs: offset of oob data in the oob area (only relevant when
54 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
55 * @datbuf: data buffer - if NULL only oob data are read/written
56 * @oobbuf: oob data buffer
57 *
58 * Note, some MTD drivers do not allow you to write more than one OOB area at
59 * one go. If you try to do that on such an MTD device, -EINVAL will be
60 * returned. If you want to make your implementation portable on all kind of MTD
61 * devices you should split the write request into several sub-requests when the
62 * request crosses a page boundary.
63 */
64struct mtd_oob_ops {
65 unsigned int mode;
66 size_t len;
67 size_t retlen;
68 size_t ooblen;
69 size_t oobretlen;
70 uint32_t ooboffs;
71 uint8_t *datbuf;
72 uint8_t *oobbuf;
73};
74
75/**
76 * struct mtd_oob_region - oob region definition
77 * @offset: region offset
78 * @length: region length
79 *
80 * This structure describes a region of the OOB area, and is used
81 * to retrieve ECC or free bytes sections.
82 * Each section is defined by an offset within the OOB area and a
83 * length.
84 */
85struct mtd_oob_region {
86 u32 offset;
87 u32 length;
88};
89
90/*
91 * struct mtd_ooblayout_ops - NAND OOB layout operations
92 * @ecc: function returning an ECC region in the OOB area.
93 * Should return -ERANGE if %section exceeds the total number of
94 * ECC sections.
95 * @free: function returning a free region in the OOB area.
96 * Should return -ERANGE if %section exceeds the total number of
97 * free sections.
98 */
99struct mtd_ooblayout_ops {
100 int (*ecc)(struct mtd_info *mtd, int section,
101 struct mtd_oob_region *oobecc);
102 int (*free)(struct mtd_info *mtd, int section,
103 struct mtd_oob_region *oobfree);
104};
105
106/**
107 * struct mtd_pairing_info - page pairing information
108 *
109 * @pair: pair id
110 * @group: group id
111 *
112 * The term "pair" is used here, even though TLC NANDs might group pages by 3
113 * (3 bits in a single cell). A pair should regroup all pages that are sharing
114 * the same cell. Pairs are then indexed in ascending order.
115 *
116 * @group is defining the position of a page in a given pair. It can also be
117 * seen as the bit position in the cell: page attached to bit 0 belongs to
118 * group 0, page attached to bit 1 belongs to group 1, etc.
119 *
120 * Example:
121 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme:
122 *
123 * group-0 group-1
124 *
125 * pair-0 page-0 page-4
126 * pair-1 page-1 page-5
127 * pair-2 page-2 page-8
128 * ...
129 * pair-127 page-251 page-255
130 *
131 *
132 * Note that the "group" and "pair" terms were extracted from Samsung and
133 * Hynix datasheets, and might be referenced under other names in other
134 * datasheets (Micron is describing this concept as "shared pages").
135 */
136struct mtd_pairing_info {
137 int pair;
138 int group;
139};
140
141/**
142 * struct mtd_pairing_scheme - page pairing scheme description
143 *
144 * @ngroups: number of groups. Should be related to the number of bits
145 * per cell.
146 * @get_info: converts a write-unit (page number within an erase block) into
147 * mtd_pairing information (pair + group). This function should
148 * fill the info parameter based on the wunit index or return
149 * -EINVAL if the wunit parameter is invalid.
150 * @get_wunit: converts pairing information into a write-unit (page) number.
151 * This function should return the wunit index pointed by the
152 * pairing information described in the info argument. It should
153 * return -EINVAL, if there's no wunit corresponding to the
154 * passed pairing information.
155 *
156 * See mtd_pairing_info documentation for a detailed explanation of the
157 * pair and group concepts.
158 *
159 * The mtd_pairing_scheme structure provides a generic solution to represent
160 * NAND page pairing scheme. Instead of exposing two big tables to do the
161 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to
162 * implement the ->get_info() and ->get_wunit() functions.
163 *
164 * MTD users will then be able to query these information by using the
165 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers.
166 *
167 * @ngroups is here to help MTD users iterating over all the pages in a
168 * given pair. This value can be retrieved by MTD users using the
169 * mtd_pairing_groups() helper.
170 *
171 * Examples are given in the mtd_pairing_info_to_wunit() and
172 * mtd_wunit_to_pairing_info() documentation.
173 */
174struct mtd_pairing_scheme {
175 int ngroups;
176 int (*get_info)(struct mtd_info *mtd, int wunit,
177 struct mtd_pairing_info *info);
178 int (*get_wunit)(struct mtd_info *mtd,
179 const struct mtd_pairing_info *info);
180};
181
182struct module; /* only needed for owner field in mtd_info */
183
184/**
185 * struct mtd_debug_info - debugging information for an MTD device.
186 *
187 * @dfs_dir: direntry object of the MTD device debugfs directory
188 */
189struct mtd_debug_info {
190 struct dentry *dfs_dir;
191};
192
193/**
194 * struct mtd_part - MTD partition specific fields
195 *
196 * @node: list node used to add an MTD partition to the parent partition list
197 * @offset: offset of the partition relatively to the parent offset
198 * @size: partition size. Should be equal to mtd->size unless
199 * MTD_SLC_ON_MLC_EMULATION is set
200 * @flags: original flags (before the mtdpart logic decided to tweak them based
201 * on flash constraints, like eraseblock/pagesize alignment)
202 *
203 * This struct is embedded in mtd_info and contains partition-specific
204 * properties/fields.
205 */
206struct mtd_part {
207 struct list_head node;
208 u64 offset;
209 u64 size;
210 u32 flags;
211};
212
213/**
214 * struct mtd_master - MTD master specific fields
215 *
216 * @partitions_lock: lock protecting accesses to the partition list. Protects
217 * not only the master partition list, but also all
218 * sub-partitions.
219 * @suspended: et to 1 when the device is suspended, 0 otherwise
220 *
221 * This struct is embedded in mtd_info and contains master-specific
222 * properties/fields. The master is the root MTD device from the MTD partition
223 * point of view.
224 */
225struct mtd_master {
226 struct mutex partitions_lock;
227 struct mutex chrdev_lock;
228 unsigned int suspended : 1;
229};
230
231struct mtd_info {
232 u_char type;
233 uint32_t flags;
234 uint64_t size; // Total size of the MTD
235
236 /* "Major" erase size for the device. Naïve users may take this
237 * to be the only erase size available, or may use the more detailed
238 * information below if they desire
239 */
240 uint32_t erasesize;
241 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even
242 * though individual bits can be cleared), in case of NAND flash it is
243 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
244 * it is of ECC block size, etc. It is illegal to have writesize = 0.
245 * Any driver registering a struct mtd_info must ensure a writesize of
246 * 1 or larger.
247 */
248 uint32_t writesize;
249
250 /*
251 * Size of the write buffer used by the MTD. MTD devices having a write
252 * buffer can write multiple writesize chunks at a time. E.g. while
253 * writing 4 * writesize bytes to a device with 2 * writesize bytes
254 * buffer the MTD driver can (but doesn't have to) do 2 writesize
255 * operations, but not 4. Currently, all NANDs have writebufsize
256 * equivalent to writesize (NAND page size). Some NOR flashes do have
257 * writebufsize greater than writesize.
258 */
259 uint32_t writebufsize;
260
261 uint32_t oobsize; // Amount of OOB data per block (e.g. 16)
262 uint32_t oobavail; // Available OOB bytes per block
263
264 /*
265 * If erasesize is a power of 2 then the shift is stored in
266 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
267 */
268 unsigned int erasesize_shift;
269 unsigned int writesize_shift;
270 /* Masks based on erasesize_shift and writesize_shift */
271 unsigned int erasesize_mask;
272 unsigned int writesize_mask;
273
274 /*
275 * read ops return -EUCLEAN if max number of bitflips corrected on any
276 * one region comprising an ecc step equals or exceeds this value.
277 * Settable by driver, else defaults to ecc_strength. User can override
278 * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed;
279 * see Documentation/ABI/testing/sysfs-class-mtd for more detail.
280 */
281 unsigned int bitflip_threshold;
282
283 /* Kernel-only stuff starts here. */
284 const char *name;
285 int index;
286
287 /* OOB layout description */
288 const struct mtd_ooblayout_ops *ooblayout;
289
290 /* NAND pairing scheme, only provided for MLC/TLC NANDs */
291 const struct mtd_pairing_scheme *pairing;
292
293 /* the ecc step size. */
294 unsigned int ecc_step_size;
295
296 /* max number of correctible bit errors per ecc step */
297 unsigned int ecc_strength;
298
299 /* Data for variable erase regions. If numeraseregions is zero,
300 * it means that the whole device has erasesize as given above.
301 */
302 int numeraseregions;
303 struct mtd_erase_region_info *eraseregions;
304
305 /*
306 * Do not call via these pointers, use corresponding mtd_*()
307 * wrappers instead.
308 */
309 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr);
310 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len,
311 size_t *retlen, void **virt, resource_size_t *phys);
312 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
313 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len,
314 size_t *retlen, u_char *buf);
315 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len,
316 size_t *retlen, const u_char *buf);
317 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len,
318 size_t *retlen, const u_char *buf);
319 int (*_read_oob) (struct mtd_info *mtd, loff_t from,
320 struct mtd_oob_ops *ops);
321 int (*_write_oob) (struct mtd_info *mtd, loff_t to,
322 struct mtd_oob_ops *ops);
323 int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len,
324 size_t *retlen, struct otp_info *buf);
325 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from,
326 size_t len, size_t *retlen, u_char *buf);
327 int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len,
328 size_t *retlen, struct otp_info *buf);
329 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from,
330 size_t len, size_t *retlen, u_char *buf);
331 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to,
332 size_t len, size_t *retlen,
333 const u_char *buf);
334 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from,
335 size_t len);
336 int (*_erase_user_prot_reg) (struct mtd_info *mtd, loff_t from,
337 size_t len);
338 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs,
339 unsigned long count, loff_t to, size_t *retlen);
340 void (*_sync) (struct mtd_info *mtd);
341 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
342 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
343 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
344 int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs);
345 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs);
346 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs);
347 int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len);
348 int (*_suspend) (struct mtd_info *mtd);
349 void (*_resume) (struct mtd_info *mtd);
350 void (*_reboot) (struct mtd_info *mtd);
351 /*
352 * If the driver is something smart, like UBI, it may need to maintain
353 * its own reference counting. The below functions are only for driver.
354 */
355 int (*_get_device) (struct mtd_info *mtd);
356 void (*_put_device) (struct mtd_info *mtd);
357
358 /*
359 * flag indicates a panic write, low level drivers can take appropriate
360 * action if required to ensure writes go through
361 */
362 bool oops_panic_write;
363
364 struct notifier_block reboot_notifier; /* default mode before reboot */
365
366 /* ECC status information */
367 struct mtd_ecc_stats ecc_stats;
368 /* Subpage shift (NAND) */
369 int subpage_sft;
370
371 void *priv;
372
373 struct module *owner;
374 struct device dev;
375 int usecount;
376 struct mtd_debug_info dbg;
377 struct nvmem_device *nvmem;
378 struct nvmem_device *otp_user_nvmem;
379 struct nvmem_device *otp_factory_nvmem;
380
381 /*
382 * Parent device from the MTD partition point of view.
383 *
384 * MTD masters do not have any parent, MTD partitions do. The parent
385 * MTD device can itself be a partition.
386 */
387 struct mtd_info *parent;
388
389 /* List of partitions attached to this MTD device */
390 struct list_head partitions;
391
392 struct mtd_part part;
393 struct mtd_master master;
394};
395
396static inline struct mtd_info *mtd_get_master(struct mtd_info *mtd)
397{
398 while (mtd->parent)
399 mtd = mtd->parent;
400
401 return mtd;
402}
403
404static inline u64 mtd_get_master_ofs(struct mtd_info *mtd, u64 ofs)
405{
406 while (mtd->parent) {
407 ofs += mtd->part.offset;
408 mtd = mtd->parent;
409 }
410
411 return ofs;
412}
413
414static inline bool mtd_is_partition(const struct mtd_info *mtd)
415{
416 return mtd->parent;
417}
418
419static inline bool mtd_has_partitions(const struct mtd_info *mtd)
420{
421 return !list_empty(&mtd->partitions);
422}
423
424int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
425 struct mtd_oob_region *oobecc);
426int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
427 int *section,
428 struct mtd_oob_region *oobregion);
429int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
430 const u8 *oobbuf, int start, int nbytes);
431int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
432 u8 *oobbuf, int start, int nbytes);
433int mtd_ooblayout_free(struct mtd_info *mtd, int section,
434 struct mtd_oob_region *oobfree);
435int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
436 const u8 *oobbuf, int start, int nbytes);
437int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
438 u8 *oobbuf, int start, int nbytes);
439int mtd_ooblayout_count_freebytes(struct mtd_info *mtd);
440int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd);
441
442static inline void mtd_set_ooblayout(struct mtd_info *mtd,
443 const struct mtd_ooblayout_ops *ooblayout)
444{
445 mtd->ooblayout = ooblayout;
446}
447
448static inline void mtd_set_pairing_scheme(struct mtd_info *mtd,
449 const struct mtd_pairing_scheme *pairing)
450{
451 mtd->pairing = pairing;
452}
453
454static inline void mtd_set_of_node(struct mtd_info *mtd,
455 struct device_node *np)
456{
457 mtd->dev.of_node = np;
458 if (!mtd->name)
459 of_property_read_string(np, "label", &mtd->name);
460}
461
462static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd)
463{
464 return dev_of_node(&mtd->dev);
465}
466
467static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops)
468{
469 return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize;
470}
471
472static inline int mtd_max_bad_blocks(struct mtd_info *mtd,
473 loff_t ofs, size_t len)
474{
475 struct mtd_info *master = mtd_get_master(mtd);
476
477 if (!master->_max_bad_blocks)
478 return -ENOTSUPP;
479
480 if (mtd->size < (len + ofs) || ofs < 0)
481 return -EINVAL;
482
483 return master->_max_bad_blocks(master, mtd_get_master_ofs(mtd, ofs),
484 len);
485}
486
487int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
488 struct mtd_pairing_info *info);
489int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
490 const struct mtd_pairing_info *info);
491int mtd_pairing_groups(struct mtd_info *mtd);
492int mtd_erase(struct mtd_info *mtd, struct erase_info *instr);
493int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
494 void **virt, resource_size_t *phys);
495int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
496unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
497 unsigned long offset, unsigned long flags);
498int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
499 u_char *buf);
500int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
501 const u_char *buf);
502int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
503 const u_char *buf);
504
505int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops);
506int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops);
507
508int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
509 struct otp_info *buf);
510int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
511 size_t *retlen, u_char *buf);
512int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
513 struct otp_info *buf);
514int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
515 size_t *retlen, u_char *buf);
516int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
517 size_t *retlen, const u_char *buf);
518int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
519int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
520
521int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
522 unsigned long count, loff_t to, size_t *retlen);
523
524static inline void mtd_sync(struct mtd_info *mtd)
525{
526 struct mtd_info *master = mtd_get_master(mtd);
527
528 if (master->_sync)
529 master->_sync(master);
530}
531
532int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
533int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
534int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
535int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs);
536int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs);
537int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs);
538
539static inline int mtd_suspend(struct mtd_info *mtd)
540{
541 struct mtd_info *master = mtd_get_master(mtd);
542 int ret;
543
544 if (master->master.suspended)
545 return 0;
546
547 ret = master->_suspend ? master->_suspend(master) : 0;
548 if (ret)
549 return ret;
550
551 master->master.suspended = 1;
552 return 0;
553}
554
555static inline void mtd_resume(struct mtd_info *mtd)
556{
557 struct mtd_info *master = mtd_get_master(mtd);
558
559 if (!master->master.suspended)
560 return;
561
562 if (master->_resume)
563 master->_resume(master);
564
565 master->master.suspended = 0;
566}
567
568static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
569{
570 if (mtd->erasesize_shift)
571 return sz >> mtd->erasesize_shift;
572 do_div(sz, mtd->erasesize);
573 return sz;
574}
575
576static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
577{
578 if (mtd->erasesize_shift)
579 return sz & mtd->erasesize_mask;
580 return do_div(sz, mtd->erasesize);
581}
582
583/**
584 * mtd_align_erase_req - Adjust an erase request to align things on eraseblock
585 * boundaries.
586 * @mtd: the MTD device this erase request applies on
587 * @req: the erase request to adjust
588 *
589 * This function will adjust @req->addr and @req->len to align them on
590 * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0.
591 */
592static inline void mtd_align_erase_req(struct mtd_info *mtd,
593 struct erase_info *req)
594{
595 u32 mod;
596
597 if (WARN_ON(!mtd->erasesize))
598 return;
599
600 mod = mtd_mod_by_eb(req->addr, mtd);
601 if (mod) {
602 req->addr -= mod;
603 req->len += mod;
604 }
605
606 mod = mtd_mod_by_eb(req->addr + req->len, mtd);
607 if (mod)
608 req->len += mtd->erasesize - mod;
609}
610
611static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
612{
613 if (mtd->writesize_shift)
614 return sz >> mtd->writesize_shift;
615 do_div(sz, mtd->writesize);
616 return sz;
617}
618
619static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
620{
621 if (mtd->writesize_shift)
622 return sz & mtd->writesize_mask;
623 return do_div(sz, mtd->writesize);
624}
625
626static inline int mtd_wunit_per_eb(struct mtd_info *mtd)
627{
628 struct mtd_info *master = mtd_get_master(mtd);
629
630 return master->erasesize / mtd->writesize;
631}
632
633static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs)
634{
635 return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd);
636}
637
638static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base,
639 int wunit)
640{
641 return base + (wunit * mtd->writesize);
642}
643
644
645static inline int mtd_has_oob(const struct mtd_info *mtd)
646{
647 struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
648
649 return master->_read_oob && master->_write_oob;
650}
651
652static inline int mtd_type_is_nand(const struct mtd_info *mtd)
653{
654 return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH;
655}
656
657static inline int mtd_can_have_bb(const struct mtd_info *mtd)
658{
659 struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
660
661 return !!master->_block_isbad;
662}
663
664 /* Kernel-side ioctl definitions */
665
666struct mtd_partition;
667struct mtd_part_parser_data;
668
669extern int mtd_device_parse_register(struct mtd_info *mtd,
670 const char * const *part_probe_types,
671 struct mtd_part_parser_data *parser_data,
672 const struct mtd_partition *defparts,
673 int defnr_parts);
674#define mtd_device_register(master, parts, nr_parts) \
675 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
676extern int mtd_device_unregister(struct mtd_info *master);
677extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
678extern int __get_mtd_device(struct mtd_info *mtd);
679extern void __put_mtd_device(struct mtd_info *mtd);
680extern struct mtd_info *get_mtd_device_nm(const char *name);
681extern void put_mtd_device(struct mtd_info *mtd);
682
683
684struct mtd_notifier {
685 void (*add)(struct mtd_info *mtd);
686 void (*remove)(struct mtd_info *mtd);
687 struct list_head list;
688};
689
690
691extern void register_mtd_user (struct mtd_notifier *new);
692extern int unregister_mtd_user (struct mtd_notifier *old);
693void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
694
695static inline int mtd_is_bitflip(int err) {
696 return err == -EUCLEAN;
697}
698
699static inline int mtd_is_eccerr(int err) {
700 return err == -EBADMSG;
701}
702
703static inline int mtd_is_bitflip_or_eccerr(int err) {
704 return mtd_is_bitflip(err) || mtd_is_eccerr(err);
705}
706
707unsigned mtd_mmap_capabilities(struct mtd_info *mtd);
708
709#ifdef CONFIG_DEBUG_FS
710bool mtd_check_expert_analysis_mode(void);
711#else
712static inline bool mtd_check_expert_analysis_mode(void) { return false; }
713#endif
714
715
716#endif /* __MTD_MTD_H__ */