at v6.0 52 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MMZONE_H 3#define _LINUX_MMZONE_H 4 5#ifndef __ASSEMBLY__ 6#ifndef __GENERATING_BOUNDS_H 7 8#include <linux/spinlock.h> 9#include <linux/list.h> 10#include <linux/wait.h> 11#include <linux/bitops.h> 12#include <linux/cache.h> 13#include <linux/threads.h> 14#include <linux/numa.h> 15#include <linux/init.h> 16#include <linux/seqlock.h> 17#include <linux/nodemask.h> 18#include <linux/pageblock-flags.h> 19#include <linux/page-flags-layout.h> 20#include <linux/atomic.h> 21#include <linux/mm_types.h> 22#include <linux/page-flags.h> 23#include <linux/local_lock.h> 24#include <asm/page.h> 25 26/* Free memory management - zoned buddy allocator. */ 27#ifndef CONFIG_FORCE_MAX_ZONEORDER 28#define MAX_ORDER 11 29#else 30#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 31#endif 32#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 33 34/* 35 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 36 * costly to service. That is between allocation orders which should 37 * coalesce naturally under reasonable reclaim pressure and those which 38 * will not. 39 */ 40#define PAGE_ALLOC_COSTLY_ORDER 3 41 42enum migratetype { 43 MIGRATE_UNMOVABLE, 44 MIGRATE_MOVABLE, 45 MIGRATE_RECLAIMABLE, 46 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 47 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 48#ifdef CONFIG_CMA 49 /* 50 * MIGRATE_CMA migration type is designed to mimic the way 51 * ZONE_MOVABLE works. Only movable pages can be allocated 52 * from MIGRATE_CMA pageblocks and page allocator never 53 * implicitly change migration type of MIGRATE_CMA pageblock. 54 * 55 * The way to use it is to change migratetype of a range of 56 * pageblocks to MIGRATE_CMA which can be done by 57 * __free_pageblock_cma() function. 58 */ 59 MIGRATE_CMA, 60#endif 61#ifdef CONFIG_MEMORY_ISOLATION 62 MIGRATE_ISOLATE, /* can't allocate from here */ 63#endif 64 MIGRATE_TYPES 65}; 66 67/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 68extern const char * const migratetype_names[MIGRATE_TYPES]; 69 70#ifdef CONFIG_CMA 71# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 72# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 73#else 74# define is_migrate_cma(migratetype) false 75# define is_migrate_cma_page(_page) false 76#endif 77 78static inline bool is_migrate_movable(int mt) 79{ 80 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 81} 82 83/* 84 * Check whether a migratetype can be merged with another migratetype. 85 * 86 * It is only mergeable when it can fall back to other migratetypes for 87 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 88 */ 89static inline bool migratetype_is_mergeable(int mt) 90{ 91 return mt < MIGRATE_PCPTYPES; 92} 93 94#define for_each_migratetype_order(order, type) \ 95 for (order = 0; order < MAX_ORDER; order++) \ 96 for (type = 0; type < MIGRATE_TYPES; type++) 97 98extern int page_group_by_mobility_disabled; 99 100#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 101 102#define get_pageblock_migratetype(page) \ 103 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 104 105struct free_area { 106 struct list_head free_list[MIGRATE_TYPES]; 107 unsigned long nr_free; 108}; 109 110static inline struct page *get_page_from_free_area(struct free_area *area, 111 int migratetype) 112{ 113 return list_first_entry_or_null(&area->free_list[migratetype], 114 struct page, lru); 115} 116 117static inline bool free_area_empty(struct free_area *area, int migratetype) 118{ 119 return list_empty(&area->free_list[migratetype]); 120} 121 122struct pglist_data; 123 124/* 125 * Add a wild amount of padding here to ensure data fall into separate 126 * cachelines. There are very few zone structures in the machine, so space 127 * consumption is not a concern here. 128 */ 129#if defined(CONFIG_SMP) 130struct zone_padding { 131 char x[0]; 132} ____cacheline_internodealigned_in_smp; 133#define ZONE_PADDING(name) struct zone_padding name; 134#else 135#define ZONE_PADDING(name) 136#endif 137 138#ifdef CONFIG_NUMA 139enum numa_stat_item { 140 NUMA_HIT, /* allocated in intended node */ 141 NUMA_MISS, /* allocated in non intended node */ 142 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 143 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 144 NUMA_LOCAL, /* allocation from local node */ 145 NUMA_OTHER, /* allocation from other node */ 146 NR_VM_NUMA_EVENT_ITEMS 147}; 148#else 149#define NR_VM_NUMA_EVENT_ITEMS 0 150#endif 151 152enum zone_stat_item { 153 /* First 128 byte cacheline (assuming 64 bit words) */ 154 NR_FREE_PAGES, 155 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 156 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 157 NR_ZONE_ACTIVE_ANON, 158 NR_ZONE_INACTIVE_FILE, 159 NR_ZONE_ACTIVE_FILE, 160 NR_ZONE_UNEVICTABLE, 161 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 162 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 163 /* Second 128 byte cacheline */ 164 NR_BOUNCE, 165#if IS_ENABLED(CONFIG_ZSMALLOC) 166 NR_ZSPAGES, /* allocated in zsmalloc */ 167#endif 168 NR_FREE_CMA_PAGES, 169 NR_VM_ZONE_STAT_ITEMS }; 170 171enum node_stat_item { 172 NR_LRU_BASE, 173 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 174 NR_ACTIVE_ANON, /* " " " " " */ 175 NR_INACTIVE_FILE, /* " " " " " */ 176 NR_ACTIVE_FILE, /* " " " " " */ 177 NR_UNEVICTABLE, /* " " " " " */ 178 NR_SLAB_RECLAIMABLE_B, 179 NR_SLAB_UNRECLAIMABLE_B, 180 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 181 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 182 WORKINGSET_NODES, 183 WORKINGSET_REFAULT_BASE, 184 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 185 WORKINGSET_REFAULT_FILE, 186 WORKINGSET_ACTIVATE_BASE, 187 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 188 WORKINGSET_ACTIVATE_FILE, 189 WORKINGSET_RESTORE_BASE, 190 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 191 WORKINGSET_RESTORE_FILE, 192 WORKINGSET_NODERECLAIM, 193 NR_ANON_MAPPED, /* Mapped anonymous pages */ 194 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 195 only modified from process context */ 196 NR_FILE_PAGES, 197 NR_FILE_DIRTY, 198 NR_WRITEBACK, 199 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 200 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 201 NR_SHMEM_THPS, 202 NR_SHMEM_PMDMAPPED, 203 NR_FILE_THPS, 204 NR_FILE_PMDMAPPED, 205 NR_ANON_THPS, 206 NR_VMSCAN_WRITE, 207 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 208 NR_DIRTIED, /* page dirtyings since bootup */ 209 NR_WRITTEN, /* page writings since bootup */ 210 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 211 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 212 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 213 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 214 NR_KERNEL_STACK_KB, /* measured in KiB */ 215#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 216 NR_KERNEL_SCS_KB, /* measured in KiB */ 217#endif 218 NR_PAGETABLE, /* used for pagetables */ 219#ifdef CONFIG_SWAP 220 NR_SWAPCACHE, 221#endif 222#ifdef CONFIG_NUMA_BALANCING 223 PGPROMOTE_SUCCESS, /* promote successfully */ 224#endif 225 NR_VM_NODE_STAT_ITEMS 226}; 227 228/* 229 * Returns true if the item should be printed in THPs (/proc/vmstat 230 * currently prints number of anon, file and shmem THPs. But the item 231 * is charged in pages). 232 */ 233static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 234{ 235 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 236 return false; 237 238 return item == NR_ANON_THPS || 239 item == NR_FILE_THPS || 240 item == NR_SHMEM_THPS || 241 item == NR_SHMEM_PMDMAPPED || 242 item == NR_FILE_PMDMAPPED; 243} 244 245/* 246 * Returns true if the value is measured in bytes (most vmstat values are 247 * measured in pages). This defines the API part, the internal representation 248 * might be different. 249 */ 250static __always_inline bool vmstat_item_in_bytes(int idx) 251{ 252 /* 253 * Global and per-node slab counters track slab pages. 254 * It's expected that changes are multiples of PAGE_SIZE. 255 * Internally values are stored in pages. 256 * 257 * Per-memcg and per-lruvec counters track memory, consumed 258 * by individual slab objects. These counters are actually 259 * byte-precise. 260 */ 261 return (idx == NR_SLAB_RECLAIMABLE_B || 262 idx == NR_SLAB_UNRECLAIMABLE_B); 263} 264 265/* 266 * We do arithmetic on the LRU lists in various places in the code, 267 * so it is important to keep the active lists LRU_ACTIVE higher in 268 * the array than the corresponding inactive lists, and to keep 269 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 270 * 271 * This has to be kept in sync with the statistics in zone_stat_item 272 * above and the descriptions in vmstat_text in mm/vmstat.c 273 */ 274#define LRU_BASE 0 275#define LRU_ACTIVE 1 276#define LRU_FILE 2 277 278enum lru_list { 279 LRU_INACTIVE_ANON = LRU_BASE, 280 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 281 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 282 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 283 LRU_UNEVICTABLE, 284 NR_LRU_LISTS 285}; 286 287enum vmscan_throttle_state { 288 VMSCAN_THROTTLE_WRITEBACK, 289 VMSCAN_THROTTLE_ISOLATED, 290 VMSCAN_THROTTLE_NOPROGRESS, 291 VMSCAN_THROTTLE_CONGESTED, 292 NR_VMSCAN_THROTTLE, 293}; 294 295#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 296 297#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 298 299static inline bool is_file_lru(enum lru_list lru) 300{ 301 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 302} 303 304static inline bool is_active_lru(enum lru_list lru) 305{ 306 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 307} 308 309#define ANON_AND_FILE 2 310 311enum lruvec_flags { 312 LRUVEC_CONGESTED, /* lruvec has many dirty pages 313 * backed by a congested BDI 314 */ 315}; 316 317struct lruvec { 318 struct list_head lists[NR_LRU_LISTS]; 319 /* per lruvec lru_lock for memcg */ 320 spinlock_t lru_lock; 321 /* 322 * These track the cost of reclaiming one LRU - file or anon - 323 * over the other. As the observed cost of reclaiming one LRU 324 * increases, the reclaim scan balance tips toward the other. 325 */ 326 unsigned long anon_cost; 327 unsigned long file_cost; 328 /* Non-resident age, driven by LRU movement */ 329 atomic_long_t nonresident_age; 330 /* Refaults at the time of last reclaim cycle */ 331 unsigned long refaults[ANON_AND_FILE]; 332 /* Various lruvec state flags (enum lruvec_flags) */ 333 unsigned long flags; 334#ifdef CONFIG_MEMCG 335 struct pglist_data *pgdat; 336#endif 337}; 338 339/* Isolate unmapped pages */ 340#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 341/* Isolate for asynchronous migration */ 342#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 343/* Isolate unevictable pages */ 344#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 345 346/* LRU Isolation modes. */ 347typedef unsigned __bitwise isolate_mode_t; 348 349enum zone_watermarks { 350 WMARK_MIN, 351 WMARK_LOW, 352 WMARK_HIGH, 353 WMARK_PROMO, 354 NR_WMARK 355}; 356 357/* 358 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list 359 * for THP which will usually be GFP_MOVABLE. Even if it is another type, 360 * it should not contribute to serious fragmentation causing THP allocation 361 * failures. 362 */ 363#ifdef CONFIG_TRANSPARENT_HUGEPAGE 364#define NR_PCP_THP 1 365#else 366#define NR_PCP_THP 0 367#endif 368#define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 369#define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 370 371/* 372 * Shift to encode migratetype and order in the same integer, with order 373 * in the least significant bits. 374 */ 375#define NR_PCP_ORDER_WIDTH 8 376#define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1) 377 378#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 379#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 380#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 381#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 382 383/* Fields and list protected by pagesets local_lock in page_alloc.c */ 384struct per_cpu_pages { 385 spinlock_t lock; /* Protects lists field */ 386 int count; /* number of pages in the list */ 387 int high; /* high watermark, emptying needed */ 388 int batch; /* chunk size for buddy add/remove */ 389 short free_factor; /* batch scaling factor during free */ 390#ifdef CONFIG_NUMA 391 short expire; /* When 0, remote pagesets are drained */ 392#endif 393 394 /* Lists of pages, one per migrate type stored on the pcp-lists */ 395 struct list_head lists[NR_PCP_LISTS]; 396} ____cacheline_aligned_in_smp; 397 398struct per_cpu_zonestat { 399#ifdef CONFIG_SMP 400 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 401 s8 stat_threshold; 402#endif 403#ifdef CONFIG_NUMA 404 /* 405 * Low priority inaccurate counters that are only folded 406 * on demand. Use a large type to avoid the overhead of 407 * folding during refresh_cpu_vm_stats. 408 */ 409 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 410#endif 411}; 412 413struct per_cpu_nodestat { 414 s8 stat_threshold; 415 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 416}; 417 418#endif /* !__GENERATING_BOUNDS.H */ 419 420enum zone_type { 421 /* 422 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 423 * to DMA to all of the addressable memory (ZONE_NORMAL). 424 * On architectures where this area covers the whole 32 bit address 425 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 426 * DMA addressing constraints. This distinction is important as a 32bit 427 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 428 * platforms may need both zones as they support peripherals with 429 * different DMA addressing limitations. 430 */ 431#ifdef CONFIG_ZONE_DMA 432 ZONE_DMA, 433#endif 434#ifdef CONFIG_ZONE_DMA32 435 ZONE_DMA32, 436#endif 437 /* 438 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 439 * performed on pages in ZONE_NORMAL if the DMA devices support 440 * transfers to all addressable memory. 441 */ 442 ZONE_NORMAL, 443#ifdef CONFIG_HIGHMEM 444 /* 445 * A memory area that is only addressable by the kernel through 446 * mapping portions into its own address space. This is for example 447 * used by i386 to allow the kernel to address the memory beyond 448 * 900MB. The kernel will set up special mappings (page 449 * table entries on i386) for each page that the kernel needs to 450 * access. 451 */ 452 ZONE_HIGHMEM, 453#endif 454 /* 455 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 456 * movable pages with few exceptional cases described below. Main use 457 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 458 * likely to succeed, and to locally limit unmovable allocations - e.g., 459 * to increase the number of THP/huge pages. Notable special cases are: 460 * 461 * 1. Pinned pages: (long-term) pinning of movable pages might 462 * essentially turn such pages unmovable. Therefore, we do not allow 463 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 464 * faulted, they come from the right zone right away. However, it is 465 * still possible that address space already has pages in 466 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 467 * touches that memory before pinning). In such case we migrate them 468 * to a different zone. When migration fails - pinning fails. 469 * 2. memblock allocations: kernelcore/movablecore setups might create 470 * situations where ZONE_MOVABLE contains unmovable allocations 471 * after boot. Memory offlining and allocations fail early. 472 * 3. Memory holes: kernelcore/movablecore setups might create very rare 473 * situations where ZONE_MOVABLE contains memory holes after boot, 474 * for example, if we have sections that are only partially 475 * populated. Memory offlining and allocations fail early. 476 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 477 * memory offlining, such pages cannot be allocated. 478 * 5. Unmovable PG_offline pages: in paravirtualized environments, 479 * hotplugged memory blocks might only partially be managed by the 480 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 481 * parts not manged by the buddy are unmovable PG_offline pages. In 482 * some cases (virtio-mem), such pages can be skipped during 483 * memory offlining, however, cannot be moved/allocated. These 484 * techniques might use alloc_contig_range() to hide previously 485 * exposed pages from the buddy again (e.g., to implement some sort 486 * of memory unplug in virtio-mem). 487 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 488 * situations where ZERO_PAGE(0) which is allocated differently 489 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 490 * cannot be migrated. 491 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 492 * memory to the MOVABLE zone, the vmemmap pages are also placed in 493 * such zone. Such pages cannot be really moved around as they are 494 * self-stored in the range, but they are treated as movable when 495 * the range they describe is about to be offlined. 496 * 497 * In general, no unmovable allocations that degrade memory offlining 498 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 499 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 500 * if has_unmovable_pages() states that there are no unmovable pages, 501 * there can be false negatives). 502 */ 503 ZONE_MOVABLE, 504#ifdef CONFIG_ZONE_DEVICE 505 ZONE_DEVICE, 506#endif 507 __MAX_NR_ZONES 508 509}; 510 511#ifndef __GENERATING_BOUNDS_H 512 513#define ASYNC_AND_SYNC 2 514 515struct zone { 516 /* Read-mostly fields */ 517 518 /* zone watermarks, access with *_wmark_pages(zone) macros */ 519 unsigned long _watermark[NR_WMARK]; 520 unsigned long watermark_boost; 521 522 unsigned long nr_reserved_highatomic; 523 524 /* 525 * We don't know if the memory that we're going to allocate will be 526 * freeable or/and it will be released eventually, so to avoid totally 527 * wasting several GB of ram we must reserve some of the lower zone 528 * memory (otherwise we risk to run OOM on the lower zones despite 529 * there being tons of freeable ram on the higher zones). This array is 530 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 531 * changes. 532 */ 533 long lowmem_reserve[MAX_NR_ZONES]; 534 535#ifdef CONFIG_NUMA 536 int node; 537#endif 538 struct pglist_data *zone_pgdat; 539 struct per_cpu_pages __percpu *per_cpu_pageset; 540 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 541 /* 542 * the high and batch values are copied to individual pagesets for 543 * faster access 544 */ 545 int pageset_high; 546 int pageset_batch; 547 548#ifndef CONFIG_SPARSEMEM 549 /* 550 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 551 * In SPARSEMEM, this map is stored in struct mem_section 552 */ 553 unsigned long *pageblock_flags; 554#endif /* CONFIG_SPARSEMEM */ 555 556 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 557 unsigned long zone_start_pfn; 558 559 /* 560 * spanned_pages is the total pages spanned by the zone, including 561 * holes, which is calculated as: 562 * spanned_pages = zone_end_pfn - zone_start_pfn; 563 * 564 * present_pages is physical pages existing within the zone, which 565 * is calculated as: 566 * present_pages = spanned_pages - absent_pages(pages in holes); 567 * 568 * present_early_pages is present pages existing within the zone 569 * located on memory available since early boot, excluding hotplugged 570 * memory. 571 * 572 * managed_pages is present pages managed by the buddy system, which 573 * is calculated as (reserved_pages includes pages allocated by the 574 * bootmem allocator): 575 * managed_pages = present_pages - reserved_pages; 576 * 577 * cma pages is present pages that are assigned for CMA use 578 * (MIGRATE_CMA). 579 * 580 * So present_pages may be used by memory hotplug or memory power 581 * management logic to figure out unmanaged pages by checking 582 * (present_pages - managed_pages). And managed_pages should be used 583 * by page allocator and vm scanner to calculate all kinds of watermarks 584 * and thresholds. 585 * 586 * Locking rules: 587 * 588 * zone_start_pfn and spanned_pages are protected by span_seqlock. 589 * It is a seqlock because it has to be read outside of zone->lock, 590 * and it is done in the main allocator path. But, it is written 591 * quite infrequently. 592 * 593 * The span_seq lock is declared along with zone->lock because it is 594 * frequently read in proximity to zone->lock. It's good to 595 * give them a chance of being in the same cacheline. 596 * 597 * Write access to present_pages at runtime should be protected by 598 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 599 * present_pages should use get_online_mems() to get a stable value. 600 */ 601 atomic_long_t managed_pages; 602 unsigned long spanned_pages; 603 unsigned long present_pages; 604#if defined(CONFIG_MEMORY_HOTPLUG) 605 unsigned long present_early_pages; 606#endif 607#ifdef CONFIG_CMA 608 unsigned long cma_pages; 609#endif 610 611 const char *name; 612 613#ifdef CONFIG_MEMORY_ISOLATION 614 /* 615 * Number of isolated pageblock. It is used to solve incorrect 616 * freepage counting problem due to racy retrieving migratetype 617 * of pageblock. Protected by zone->lock. 618 */ 619 unsigned long nr_isolate_pageblock; 620#endif 621 622#ifdef CONFIG_MEMORY_HOTPLUG 623 /* see spanned/present_pages for more description */ 624 seqlock_t span_seqlock; 625#endif 626 627 int initialized; 628 629 /* Write-intensive fields used from the page allocator */ 630 ZONE_PADDING(_pad1_) 631 632 /* free areas of different sizes */ 633 struct free_area free_area[MAX_ORDER]; 634 635 /* zone flags, see below */ 636 unsigned long flags; 637 638 /* Primarily protects free_area */ 639 spinlock_t lock; 640 641 /* Write-intensive fields used by compaction and vmstats. */ 642 ZONE_PADDING(_pad2_) 643 644 /* 645 * When free pages are below this point, additional steps are taken 646 * when reading the number of free pages to avoid per-cpu counter 647 * drift allowing watermarks to be breached 648 */ 649 unsigned long percpu_drift_mark; 650 651#if defined CONFIG_COMPACTION || defined CONFIG_CMA 652 /* pfn where compaction free scanner should start */ 653 unsigned long compact_cached_free_pfn; 654 /* pfn where compaction migration scanner should start */ 655 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 656 unsigned long compact_init_migrate_pfn; 657 unsigned long compact_init_free_pfn; 658#endif 659 660#ifdef CONFIG_COMPACTION 661 /* 662 * On compaction failure, 1<<compact_defer_shift compactions 663 * are skipped before trying again. The number attempted since 664 * last failure is tracked with compact_considered. 665 * compact_order_failed is the minimum compaction failed order. 666 */ 667 unsigned int compact_considered; 668 unsigned int compact_defer_shift; 669 int compact_order_failed; 670#endif 671 672#if defined CONFIG_COMPACTION || defined CONFIG_CMA 673 /* Set to true when the PG_migrate_skip bits should be cleared */ 674 bool compact_blockskip_flush; 675#endif 676 677 bool contiguous; 678 679 ZONE_PADDING(_pad3_) 680 /* Zone statistics */ 681 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 682 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 683} ____cacheline_internodealigned_in_smp; 684 685enum pgdat_flags { 686 PGDAT_DIRTY, /* reclaim scanning has recently found 687 * many dirty file pages at the tail 688 * of the LRU. 689 */ 690 PGDAT_WRITEBACK, /* reclaim scanning has recently found 691 * many pages under writeback 692 */ 693 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 694}; 695 696enum zone_flags { 697 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 698 * Cleared when kswapd is woken. 699 */ 700 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 701}; 702 703static inline unsigned long zone_managed_pages(struct zone *zone) 704{ 705 return (unsigned long)atomic_long_read(&zone->managed_pages); 706} 707 708static inline unsigned long zone_cma_pages(struct zone *zone) 709{ 710#ifdef CONFIG_CMA 711 return zone->cma_pages; 712#else 713 return 0; 714#endif 715} 716 717static inline unsigned long zone_end_pfn(const struct zone *zone) 718{ 719 return zone->zone_start_pfn + zone->spanned_pages; 720} 721 722static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 723{ 724 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 725} 726 727static inline bool zone_is_initialized(struct zone *zone) 728{ 729 return zone->initialized; 730} 731 732static inline bool zone_is_empty(struct zone *zone) 733{ 734 return zone->spanned_pages == 0; 735} 736 737#ifndef BUILD_VDSO32_64 738/* 739 * The zone field is never updated after free_area_init_core() 740 * sets it, so none of the operations on it need to be atomic. 741 */ 742 743/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 744#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 745#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 746#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 747#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 748#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 749 750/* 751 * Define the bit shifts to access each section. For non-existent 752 * sections we define the shift as 0; that plus a 0 mask ensures 753 * the compiler will optimise away reference to them. 754 */ 755#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 756#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 757#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 758#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 759#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 760 761/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 762#ifdef NODE_NOT_IN_PAGE_FLAGS 763#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 764#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 765 SECTIONS_PGOFF : ZONES_PGOFF) 766#else 767#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 768#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 769 NODES_PGOFF : ZONES_PGOFF) 770#endif 771 772#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 773 774#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 775#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 776#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 777#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 778#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 779#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 780 781static inline enum zone_type page_zonenum(const struct page *page) 782{ 783 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 784 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 785} 786 787static inline enum zone_type folio_zonenum(const struct folio *folio) 788{ 789 return page_zonenum(&folio->page); 790} 791 792#ifdef CONFIG_ZONE_DEVICE 793static inline bool is_zone_device_page(const struct page *page) 794{ 795 return page_zonenum(page) == ZONE_DEVICE; 796} 797extern void memmap_init_zone_device(struct zone *, unsigned long, 798 unsigned long, struct dev_pagemap *); 799#else 800static inline bool is_zone_device_page(const struct page *page) 801{ 802 return false; 803} 804#endif 805 806static inline bool folio_is_zone_device(const struct folio *folio) 807{ 808 return is_zone_device_page(&folio->page); 809} 810 811static inline bool is_zone_movable_page(const struct page *page) 812{ 813 return page_zonenum(page) == ZONE_MOVABLE; 814} 815#endif 816 817/* 818 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 819 * intersection with the given zone 820 */ 821static inline bool zone_intersects(struct zone *zone, 822 unsigned long start_pfn, unsigned long nr_pages) 823{ 824 if (zone_is_empty(zone)) 825 return false; 826 if (start_pfn >= zone_end_pfn(zone) || 827 start_pfn + nr_pages <= zone->zone_start_pfn) 828 return false; 829 830 return true; 831} 832 833/* 834 * The "priority" of VM scanning is how much of the queues we will scan in one 835 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 836 * queues ("queue_length >> 12") during an aging round. 837 */ 838#define DEF_PRIORITY 12 839 840/* Maximum number of zones on a zonelist */ 841#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 842 843enum { 844 ZONELIST_FALLBACK, /* zonelist with fallback */ 845#ifdef CONFIG_NUMA 846 /* 847 * The NUMA zonelists are doubled because we need zonelists that 848 * restrict the allocations to a single node for __GFP_THISNODE. 849 */ 850 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 851#endif 852 MAX_ZONELISTS 853}; 854 855/* 856 * This struct contains information about a zone in a zonelist. It is stored 857 * here to avoid dereferences into large structures and lookups of tables 858 */ 859struct zoneref { 860 struct zone *zone; /* Pointer to actual zone */ 861 int zone_idx; /* zone_idx(zoneref->zone) */ 862}; 863 864/* 865 * One allocation request operates on a zonelist. A zonelist 866 * is a list of zones, the first one is the 'goal' of the 867 * allocation, the other zones are fallback zones, in decreasing 868 * priority. 869 * 870 * To speed the reading of the zonelist, the zonerefs contain the zone index 871 * of the entry being read. Helper functions to access information given 872 * a struct zoneref are 873 * 874 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 875 * zonelist_zone_idx() - Return the index of the zone for an entry 876 * zonelist_node_idx() - Return the index of the node for an entry 877 */ 878struct zonelist { 879 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 880}; 881 882/* 883 * The array of struct pages for flatmem. 884 * It must be declared for SPARSEMEM as well because there are configurations 885 * that rely on that. 886 */ 887extern struct page *mem_map; 888 889#ifdef CONFIG_TRANSPARENT_HUGEPAGE 890struct deferred_split { 891 spinlock_t split_queue_lock; 892 struct list_head split_queue; 893 unsigned long split_queue_len; 894}; 895#endif 896 897/* 898 * On NUMA machines, each NUMA node would have a pg_data_t to describe 899 * it's memory layout. On UMA machines there is a single pglist_data which 900 * describes the whole memory. 901 * 902 * Memory statistics and page replacement data structures are maintained on a 903 * per-zone basis. 904 */ 905typedef struct pglist_data { 906 /* 907 * node_zones contains just the zones for THIS node. Not all of the 908 * zones may be populated, but it is the full list. It is referenced by 909 * this node's node_zonelists as well as other node's node_zonelists. 910 */ 911 struct zone node_zones[MAX_NR_ZONES]; 912 913 /* 914 * node_zonelists contains references to all zones in all nodes. 915 * Generally the first zones will be references to this node's 916 * node_zones. 917 */ 918 struct zonelist node_zonelists[MAX_ZONELISTS]; 919 920 int nr_zones; /* number of populated zones in this node */ 921#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 922 struct page *node_mem_map; 923#ifdef CONFIG_PAGE_EXTENSION 924 struct page_ext *node_page_ext; 925#endif 926#endif 927#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 928 /* 929 * Must be held any time you expect node_start_pfn, 930 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 931 * Also synchronizes pgdat->first_deferred_pfn during deferred page 932 * init. 933 * 934 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 935 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 936 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 937 * 938 * Nests above zone->lock and zone->span_seqlock 939 */ 940 spinlock_t node_size_lock; 941#endif 942 unsigned long node_start_pfn; 943 unsigned long node_present_pages; /* total number of physical pages */ 944 unsigned long node_spanned_pages; /* total size of physical page 945 range, including holes */ 946 int node_id; 947 wait_queue_head_t kswapd_wait; 948 wait_queue_head_t pfmemalloc_wait; 949 950 /* workqueues for throttling reclaim for different reasons. */ 951 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 952 953 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 954 unsigned long nr_reclaim_start; /* nr pages written while throttled 955 * when throttling started. */ 956 struct task_struct *kswapd; /* Protected by 957 mem_hotplug_begin/done() */ 958 int kswapd_order; 959 enum zone_type kswapd_highest_zoneidx; 960 961 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 962 963#ifdef CONFIG_COMPACTION 964 int kcompactd_max_order; 965 enum zone_type kcompactd_highest_zoneidx; 966 wait_queue_head_t kcompactd_wait; 967 struct task_struct *kcompactd; 968 bool proactive_compact_trigger; 969#endif 970 /* 971 * This is a per-node reserve of pages that are not available 972 * to userspace allocations. 973 */ 974 unsigned long totalreserve_pages; 975 976#ifdef CONFIG_NUMA 977 /* 978 * node reclaim becomes active if more unmapped pages exist. 979 */ 980 unsigned long min_unmapped_pages; 981 unsigned long min_slab_pages; 982#endif /* CONFIG_NUMA */ 983 984 /* Write-intensive fields used by page reclaim */ 985 ZONE_PADDING(_pad1_) 986 987#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 988 /* 989 * If memory initialisation on large machines is deferred then this 990 * is the first PFN that needs to be initialised. 991 */ 992 unsigned long first_deferred_pfn; 993#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 994 995#ifdef CONFIG_TRANSPARENT_HUGEPAGE 996 struct deferred_split deferred_split_queue; 997#endif 998 999 /* Fields commonly accessed by the page reclaim scanner */ 1000 1001 /* 1002 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1003 * 1004 * Use mem_cgroup_lruvec() to look up lruvecs. 1005 */ 1006 struct lruvec __lruvec; 1007 1008 unsigned long flags; 1009 1010 ZONE_PADDING(_pad2_) 1011 1012 /* Per-node vmstats */ 1013 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1014 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1015} pg_data_t; 1016 1017#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1018#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1019 1020#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1021#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1022 1023static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1024{ 1025 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1026} 1027 1028static inline bool pgdat_is_empty(pg_data_t *pgdat) 1029{ 1030 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 1031} 1032 1033#include <linux/memory_hotplug.h> 1034 1035void build_all_zonelists(pg_data_t *pgdat); 1036void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1037 enum zone_type highest_zoneidx); 1038bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1039 int highest_zoneidx, unsigned int alloc_flags, 1040 long free_pages); 1041bool zone_watermark_ok(struct zone *z, unsigned int order, 1042 unsigned long mark, int highest_zoneidx, 1043 unsigned int alloc_flags); 1044bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1045 unsigned long mark, int highest_zoneidx); 1046/* 1047 * Memory initialization context, use to differentiate memory added by 1048 * the platform statically or via memory hotplug interface. 1049 */ 1050enum meminit_context { 1051 MEMINIT_EARLY, 1052 MEMINIT_HOTPLUG, 1053}; 1054 1055extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1056 unsigned long size); 1057 1058extern void lruvec_init(struct lruvec *lruvec); 1059 1060static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1061{ 1062#ifdef CONFIG_MEMCG 1063 return lruvec->pgdat; 1064#else 1065 return container_of(lruvec, struct pglist_data, __lruvec); 1066#endif 1067} 1068 1069#ifdef CONFIG_HAVE_MEMORYLESS_NODES 1070int local_memory_node(int node_id); 1071#else 1072static inline int local_memory_node(int node_id) { return node_id; }; 1073#endif 1074 1075/* 1076 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1077 */ 1078#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1079 1080#ifdef CONFIG_ZONE_DEVICE 1081static inline bool zone_is_zone_device(struct zone *zone) 1082{ 1083 return zone_idx(zone) == ZONE_DEVICE; 1084} 1085#else 1086static inline bool zone_is_zone_device(struct zone *zone) 1087{ 1088 return false; 1089} 1090#endif 1091 1092/* 1093 * Returns true if a zone has pages managed by the buddy allocator. 1094 * All the reclaim decisions have to use this function rather than 1095 * populated_zone(). If the whole zone is reserved then we can easily 1096 * end up with populated_zone() && !managed_zone(). 1097 */ 1098static inline bool managed_zone(struct zone *zone) 1099{ 1100 return zone_managed_pages(zone); 1101} 1102 1103/* Returns true if a zone has memory */ 1104static inline bool populated_zone(struct zone *zone) 1105{ 1106 return zone->present_pages; 1107} 1108 1109#ifdef CONFIG_NUMA 1110static inline int zone_to_nid(struct zone *zone) 1111{ 1112 return zone->node; 1113} 1114 1115static inline void zone_set_nid(struct zone *zone, int nid) 1116{ 1117 zone->node = nid; 1118} 1119#else 1120static inline int zone_to_nid(struct zone *zone) 1121{ 1122 return 0; 1123} 1124 1125static inline void zone_set_nid(struct zone *zone, int nid) {} 1126#endif 1127 1128extern int movable_zone; 1129 1130static inline int is_highmem_idx(enum zone_type idx) 1131{ 1132#ifdef CONFIG_HIGHMEM 1133 return (idx == ZONE_HIGHMEM || 1134 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1135#else 1136 return 0; 1137#endif 1138} 1139 1140/** 1141 * is_highmem - helper function to quickly check if a struct zone is a 1142 * highmem zone or not. This is an attempt to keep references 1143 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1144 * @zone: pointer to struct zone variable 1145 * Return: 1 for a highmem zone, 0 otherwise 1146 */ 1147static inline int is_highmem(struct zone *zone) 1148{ 1149 return is_highmem_idx(zone_idx(zone)); 1150} 1151 1152#ifdef CONFIG_ZONE_DMA 1153bool has_managed_dma(void); 1154#else 1155static inline bool has_managed_dma(void) 1156{ 1157 return false; 1158} 1159#endif 1160 1161/* These two functions are used to setup the per zone pages min values */ 1162struct ctl_table; 1163 1164int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *, 1165 loff_t *); 1166int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *, 1167 size_t *, loff_t *); 1168extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 1169int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *, 1170 size_t *, loff_t *); 1171int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int, 1172 void *, size_t *, loff_t *); 1173int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 1174 void *, size_t *, loff_t *); 1175int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 1176 void *, size_t *, loff_t *); 1177int numa_zonelist_order_handler(struct ctl_table *, int, 1178 void *, size_t *, loff_t *); 1179extern int percpu_pagelist_high_fraction; 1180extern char numa_zonelist_order[]; 1181#define NUMA_ZONELIST_ORDER_LEN 16 1182 1183#ifndef CONFIG_NUMA 1184 1185extern struct pglist_data contig_page_data; 1186static inline struct pglist_data *NODE_DATA(int nid) 1187{ 1188 return &contig_page_data; 1189} 1190 1191#else /* CONFIG_NUMA */ 1192 1193#include <asm/mmzone.h> 1194 1195#endif /* !CONFIG_NUMA */ 1196 1197extern struct pglist_data *first_online_pgdat(void); 1198extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1199extern struct zone *next_zone(struct zone *zone); 1200 1201/** 1202 * for_each_online_pgdat - helper macro to iterate over all online nodes 1203 * @pgdat: pointer to a pg_data_t variable 1204 */ 1205#define for_each_online_pgdat(pgdat) \ 1206 for (pgdat = first_online_pgdat(); \ 1207 pgdat; \ 1208 pgdat = next_online_pgdat(pgdat)) 1209/** 1210 * for_each_zone - helper macro to iterate over all memory zones 1211 * @zone: pointer to struct zone variable 1212 * 1213 * The user only needs to declare the zone variable, for_each_zone 1214 * fills it in. 1215 */ 1216#define for_each_zone(zone) \ 1217 for (zone = (first_online_pgdat())->node_zones; \ 1218 zone; \ 1219 zone = next_zone(zone)) 1220 1221#define for_each_populated_zone(zone) \ 1222 for (zone = (first_online_pgdat())->node_zones; \ 1223 zone; \ 1224 zone = next_zone(zone)) \ 1225 if (!populated_zone(zone)) \ 1226 ; /* do nothing */ \ 1227 else 1228 1229static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1230{ 1231 return zoneref->zone; 1232} 1233 1234static inline int zonelist_zone_idx(struct zoneref *zoneref) 1235{ 1236 return zoneref->zone_idx; 1237} 1238 1239static inline int zonelist_node_idx(struct zoneref *zoneref) 1240{ 1241 return zone_to_nid(zoneref->zone); 1242} 1243 1244struct zoneref *__next_zones_zonelist(struct zoneref *z, 1245 enum zone_type highest_zoneidx, 1246 nodemask_t *nodes); 1247 1248/** 1249 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1250 * @z: The cursor used as a starting point for the search 1251 * @highest_zoneidx: The zone index of the highest zone to return 1252 * @nodes: An optional nodemask to filter the zonelist with 1253 * 1254 * This function returns the next zone at or below a given zone index that is 1255 * within the allowed nodemask using a cursor as the starting point for the 1256 * search. The zoneref returned is a cursor that represents the current zone 1257 * being examined. It should be advanced by one before calling 1258 * next_zones_zonelist again. 1259 * 1260 * Return: the next zone at or below highest_zoneidx within the allowed 1261 * nodemask using a cursor within a zonelist as a starting point 1262 */ 1263static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1264 enum zone_type highest_zoneidx, 1265 nodemask_t *nodes) 1266{ 1267 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1268 return z; 1269 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1270} 1271 1272/** 1273 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1274 * @zonelist: The zonelist to search for a suitable zone 1275 * @highest_zoneidx: The zone index of the highest zone to return 1276 * @nodes: An optional nodemask to filter the zonelist with 1277 * 1278 * This function returns the first zone at or below a given zone index that is 1279 * within the allowed nodemask. The zoneref returned is a cursor that can be 1280 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1281 * one before calling. 1282 * 1283 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1284 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1285 * update due to cpuset modification. 1286 * 1287 * Return: Zoneref pointer for the first suitable zone found 1288 */ 1289static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1290 enum zone_type highest_zoneidx, 1291 nodemask_t *nodes) 1292{ 1293 return next_zones_zonelist(zonelist->_zonerefs, 1294 highest_zoneidx, nodes); 1295} 1296 1297/** 1298 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1299 * @zone: The current zone in the iterator 1300 * @z: The current pointer within zonelist->_zonerefs being iterated 1301 * @zlist: The zonelist being iterated 1302 * @highidx: The zone index of the highest zone to return 1303 * @nodemask: Nodemask allowed by the allocator 1304 * 1305 * This iterator iterates though all zones at or below a given zone index and 1306 * within a given nodemask 1307 */ 1308#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1309 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1310 zone; \ 1311 z = next_zones_zonelist(++z, highidx, nodemask), \ 1312 zone = zonelist_zone(z)) 1313 1314#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1315 for (zone = z->zone; \ 1316 zone; \ 1317 z = next_zones_zonelist(++z, highidx, nodemask), \ 1318 zone = zonelist_zone(z)) 1319 1320 1321/** 1322 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1323 * @zone: The current zone in the iterator 1324 * @z: The current pointer within zonelist->zones being iterated 1325 * @zlist: The zonelist being iterated 1326 * @highidx: The zone index of the highest zone to return 1327 * 1328 * This iterator iterates though all zones at or below a given zone index. 1329 */ 1330#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1331 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1332 1333/* Whether the 'nodes' are all movable nodes */ 1334static inline bool movable_only_nodes(nodemask_t *nodes) 1335{ 1336 struct zonelist *zonelist; 1337 struct zoneref *z; 1338 int nid; 1339 1340 if (nodes_empty(*nodes)) 1341 return false; 1342 1343 /* 1344 * We can chose arbitrary node from the nodemask to get a 1345 * zonelist as they are interlinked. We just need to find 1346 * at least one zone that can satisfy kernel allocations. 1347 */ 1348 nid = first_node(*nodes); 1349 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1350 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1351 return (!z->zone) ? true : false; 1352} 1353 1354 1355#ifdef CONFIG_SPARSEMEM 1356#include <asm/sparsemem.h> 1357#endif 1358 1359#ifdef CONFIG_FLATMEM 1360#define pfn_to_nid(pfn) (0) 1361#endif 1362 1363#ifdef CONFIG_SPARSEMEM 1364 1365/* 1366 * PA_SECTION_SHIFT physical address to/from section number 1367 * PFN_SECTION_SHIFT pfn to/from section number 1368 */ 1369#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1370#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1371 1372#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1373 1374#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1375#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1376 1377#define SECTION_BLOCKFLAGS_BITS \ 1378 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1379 1380#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1381#error Allocator MAX_ORDER exceeds SECTION_SIZE 1382#endif 1383 1384static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1385{ 1386 return pfn >> PFN_SECTION_SHIFT; 1387} 1388static inline unsigned long section_nr_to_pfn(unsigned long sec) 1389{ 1390 return sec << PFN_SECTION_SHIFT; 1391} 1392 1393#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1394#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1395 1396#define SUBSECTION_SHIFT 21 1397#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1398 1399#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1400#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1401#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1402 1403#if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1404#error Subsection size exceeds section size 1405#else 1406#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1407#endif 1408 1409#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1410#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1411 1412struct mem_section_usage { 1413#ifdef CONFIG_SPARSEMEM_VMEMMAP 1414 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1415#endif 1416 /* See declaration of similar field in struct zone */ 1417 unsigned long pageblock_flags[0]; 1418}; 1419 1420void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1421 1422struct page; 1423struct page_ext; 1424struct mem_section { 1425 /* 1426 * This is, logically, a pointer to an array of struct 1427 * pages. However, it is stored with some other magic. 1428 * (see sparse.c::sparse_init_one_section()) 1429 * 1430 * Additionally during early boot we encode node id of 1431 * the location of the section here to guide allocation. 1432 * (see sparse.c::memory_present()) 1433 * 1434 * Making it a UL at least makes someone do a cast 1435 * before using it wrong. 1436 */ 1437 unsigned long section_mem_map; 1438 1439 struct mem_section_usage *usage; 1440#ifdef CONFIG_PAGE_EXTENSION 1441 /* 1442 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1443 * section. (see page_ext.h about this.) 1444 */ 1445 struct page_ext *page_ext; 1446 unsigned long pad; 1447#endif 1448 /* 1449 * WARNING: mem_section must be a power-of-2 in size for the 1450 * calculation and use of SECTION_ROOT_MASK to make sense. 1451 */ 1452}; 1453 1454#ifdef CONFIG_SPARSEMEM_EXTREME 1455#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1456#else 1457#define SECTIONS_PER_ROOT 1 1458#endif 1459 1460#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1461#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1462#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1463 1464#ifdef CONFIG_SPARSEMEM_EXTREME 1465extern struct mem_section **mem_section; 1466#else 1467extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1468#endif 1469 1470static inline unsigned long *section_to_usemap(struct mem_section *ms) 1471{ 1472 return ms->usage->pageblock_flags; 1473} 1474 1475static inline struct mem_section *__nr_to_section(unsigned long nr) 1476{ 1477 unsigned long root = SECTION_NR_TO_ROOT(nr); 1478 1479 if (unlikely(root >= NR_SECTION_ROOTS)) 1480 return NULL; 1481 1482#ifdef CONFIG_SPARSEMEM_EXTREME 1483 if (!mem_section || !mem_section[root]) 1484 return NULL; 1485#endif 1486 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1487} 1488extern size_t mem_section_usage_size(void); 1489 1490/* 1491 * We use the lower bits of the mem_map pointer to store 1492 * a little bit of information. The pointer is calculated 1493 * as mem_map - section_nr_to_pfn(pnum). The result is 1494 * aligned to the minimum alignment of the two values: 1495 * 1. All mem_map arrays are page-aligned. 1496 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1497 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1498 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1499 * worst combination is powerpc with 256k pages, 1500 * which results in PFN_SECTION_SHIFT equal 6. 1501 * To sum it up, at least 6 bits are available on all architectures. 1502 * However, we can exceed 6 bits on some other architectures except 1503 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1504 * with the worst case of 64K pages on arm64) if we make sure the 1505 * exceeded bit is not applicable to powerpc. 1506 */ 1507enum { 1508 SECTION_MARKED_PRESENT_BIT, 1509 SECTION_HAS_MEM_MAP_BIT, 1510 SECTION_IS_ONLINE_BIT, 1511 SECTION_IS_EARLY_BIT, 1512#ifdef CONFIG_ZONE_DEVICE 1513 SECTION_TAINT_ZONE_DEVICE_BIT, 1514#endif 1515 SECTION_MAP_LAST_BIT, 1516}; 1517 1518#define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1519#define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1520#define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1521#define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1522#ifdef CONFIG_ZONE_DEVICE 1523#define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1524#endif 1525#define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1526#define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1527 1528static inline struct page *__section_mem_map_addr(struct mem_section *section) 1529{ 1530 unsigned long map = section->section_mem_map; 1531 map &= SECTION_MAP_MASK; 1532 return (struct page *)map; 1533} 1534 1535static inline int present_section(struct mem_section *section) 1536{ 1537 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1538} 1539 1540static inline int present_section_nr(unsigned long nr) 1541{ 1542 return present_section(__nr_to_section(nr)); 1543} 1544 1545static inline int valid_section(struct mem_section *section) 1546{ 1547 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1548} 1549 1550static inline int early_section(struct mem_section *section) 1551{ 1552 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1553} 1554 1555static inline int valid_section_nr(unsigned long nr) 1556{ 1557 return valid_section(__nr_to_section(nr)); 1558} 1559 1560static inline int online_section(struct mem_section *section) 1561{ 1562 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1563} 1564 1565#ifdef CONFIG_ZONE_DEVICE 1566static inline int online_device_section(struct mem_section *section) 1567{ 1568 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1569 1570 return section && ((section->section_mem_map & flags) == flags); 1571} 1572#else 1573static inline int online_device_section(struct mem_section *section) 1574{ 1575 return 0; 1576} 1577#endif 1578 1579static inline int online_section_nr(unsigned long nr) 1580{ 1581 return online_section(__nr_to_section(nr)); 1582} 1583 1584#ifdef CONFIG_MEMORY_HOTPLUG 1585void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1586void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1587#endif 1588 1589static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1590{ 1591 return __nr_to_section(pfn_to_section_nr(pfn)); 1592} 1593 1594extern unsigned long __highest_present_section_nr; 1595 1596static inline int subsection_map_index(unsigned long pfn) 1597{ 1598 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1599} 1600 1601#ifdef CONFIG_SPARSEMEM_VMEMMAP 1602static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1603{ 1604 int idx = subsection_map_index(pfn); 1605 1606 return test_bit(idx, ms->usage->subsection_map); 1607} 1608#else 1609static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1610{ 1611 return 1; 1612} 1613#endif 1614 1615#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1616/** 1617 * pfn_valid - check if there is a valid memory map entry for a PFN 1618 * @pfn: the page frame number to check 1619 * 1620 * Check if there is a valid memory map entry aka struct page for the @pfn. 1621 * Note, that availability of the memory map entry does not imply that 1622 * there is actual usable memory at that @pfn. The struct page may 1623 * represent a hole or an unusable page frame. 1624 * 1625 * Return: 1 for PFNs that have memory map entries and 0 otherwise 1626 */ 1627static inline int pfn_valid(unsigned long pfn) 1628{ 1629 struct mem_section *ms; 1630 1631 /* 1632 * Ensure the upper PAGE_SHIFT bits are clear in the 1633 * pfn. Else it might lead to false positives when 1634 * some of the upper bits are set, but the lower bits 1635 * match a valid pfn. 1636 */ 1637 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 1638 return 0; 1639 1640 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1641 return 0; 1642 ms = __pfn_to_section(pfn); 1643 if (!valid_section(ms)) 1644 return 0; 1645 /* 1646 * Traditionally early sections always returned pfn_valid() for 1647 * the entire section-sized span. 1648 */ 1649 return early_section(ms) || pfn_section_valid(ms, pfn); 1650} 1651#endif 1652 1653static inline int pfn_in_present_section(unsigned long pfn) 1654{ 1655 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1656 return 0; 1657 return present_section(__pfn_to_section(pfn)); 1658} 1659 1660static inline unsigned long next_present_section_nr(unsigned long section_nr) 1661{ 1662 while (++section_nr <= __highest_present_section_nr) { 1663 if (present_section_nr(section_nr)) 1664 return section_nr; 1665 } 1666 1667 return -1; 1668} 1669 1670/* 1671 * These are _only_ used during initialisation, therefore they 1672 * can use __initdata ... They could have names to indicate 1673 * this restriction. 1674 */ 1675#ifdef CONFIG_NUMA 1676#define pfn_to_nid(pfn) \ 1677({ \ 1678 unsigned long __pfn_to_nid_pfn = (pfn); \ 1679 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1680}) 1681#else 1682#define pfn_to_nid(pfn) (0) 1683#endif 1684 1685void sparse_init(void); 1686#else 1687#define sparse_init() do {} while (0) 1688#define sparse_index_init(_sec, _nid) do {} while (0) 1689#define pfn_in_present_section pfn_valid 1690#define subsection_map_init(_pfn, _nr_pages) do {} while (0) 1691#endif /* CONFIG_SPARSEMEM */ 1692 1693#endif /* !__GENERATING_BOUNDS.H */ 1694#endif /* !__ASSEMBLY__ */ 1695#endif /* _LINUX_MMZONE_H */