Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
4
5
6#include <linux/types.h>
7#include <linux/hardirq.h>
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/signal.h>
12#include <linux/sched.h>
13#include <linux/sched/stat.h>
14#include <linux/bug.h>
15#include <linux/minmax.h>
16#include <linux/mm.h>
17#include <linux/mmu_notifier.h>
18#include <linux/preempt.h>
19#include <linux/msi.h>
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22#include <linux/rcupdate.h>
23#include <linux/ratelimit.h>
24#include <linux/err.h>
25#include <linux/irqflags.h>
26#include <linux/context_tracking.h>
27#include <linux/irqbypass.h>
28#include <linux/rcuwait.h>
29#include <linux/refcount.h>
30#include <linux/nospec.h>
31#include <linux/notifier.h>
32#include <linux/ftrace.h>
33#include <linux/hashtable.h>
34#include <linux/instrumentation.h>
35#include <linux/interval_tree.h>
36#include <linux/rbtree.h>
37#include <linux/xarray.h>
38#include <asm/signal.h>
39
40#include <linux/kvm.h>
41#include <linux/kvm_para.h>
42
43#include <linux/kvm_types.h>
44
45#include <asm/kvm_host.h>
46#include <linux/kvm_dirty_ring.h>
47
48#ifndef KVM_MAX_VCPU_IDS
49#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50#endif
51
52/*
53 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
54 * in kvm, other bits are visible for userspace which are defined in
55 * include/linux/kvm_h.
56 */
57#define KVM_MEMSLOT_INVALID (1UL << 16)
58
59/*
60 * Bit 63 of the memslot generation number is an "update in-progress flag",
61 * e.g. is temporarily set for the duration of install_new_memslots().
62 * This flag effectively creates a unique generation number that is used to
63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64 * i.e. may (or may not) have come from the previous memslots generation.
65 *
66 * This is necessary because the actual memslots update is not atomic with
67 * respect to the generation number update. Updating the generation number
68 * first would allow a vCPU to cache a spte from the old memslots using the
69 * new generation number, and updating the generation number after switching
70 * to the new memslots would allow cache hits using the old generation number
71 * to reference the defunct memslots.
72 *
73 * This mechanism is used to prevent getting hits in KVM's caches while a
74 * memslot update is in-progress, and to prevent cache hits *after* updating
75 * the actual generation number against accesses that were inserted into the
76 * cache *before* the memslots were updated.
77 */
78#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
79
80/* Two fragments for cross MMIO pages. */
81#define KVM_MAX_MMIO_FRAGMENTS 2
82
83#ifndef KVM_ADDRESS_SPACE_NUM
84#define KVM_ADDRESS_SPACE_NUM 1
85#endif
86
87/*
88 * For the normal pfn, the highest 12 bits should be zero,
89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
90 * mask bit 63 to indicate the noslot pfn.
91 */
92#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
93#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
94#define KVM_PFN_NOSLOT (0x1ULL << 63)
95
96#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
97#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
98#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
99
100/*
101 * error pfns indicate that the gfn is in slot but faild to
102 * translate it to pfn on host.
103 */
104static inline bool is_error_pfn(kvm_pfn_t pfn)
105{
106 return !!(pfn & KVM_PFN_ERR_MASK);
107}
108
109/*
110 * error_noslot pfns indicate that the gfn can not be
111 * translated to pfn - it is not in slot or failed to
112 * translate it to pfn.
113 */
114static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
115{
116 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
117}
118
119/* noslot pfn indicates that the gfn is not in slot. */
120static inline bool is_noslot_pfn(kvm_pfn_t pfn)
121{
122 return pfn == KVM_PFN_NOSLOT;
123}
124
125/*
126 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
127 * provide own defines and kvm_is_error_hva
128 */
129#ifndef KVM_HVA_ERR_BAD
130
131#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
132#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
133
134static inline bool kvm_is_error_hva(unsigned long addr)
135{
136 return addr >= PAGE_OFFSET;
137}
138
139#endif
140
141#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
142
143static inline bool is_error_page(struct page *page)
144{
145 return IS_ERR(page);
146}
147
148#define KVM_REQUEST_MASK GENMASK(7,0)
149#define KVM_REQUEST_NO_WAKEUP BIT(8)
150#define KVM_REQUEST_WAIT BIT(9)
151#define KVM_REQUEST_NO_ACTION BIT(10)
152/*
153 * Architecture-independent vcpu->requests bit members
154 * Bits 4-7 are reserved for more arch-independent bits.
155 */
156#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
157#define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
158#define KVM_REQ_UNBLOCK 2
159#define KVM_REQ_UNHALT 3
160#define KVM_REQUEST_ARCH_BASE 8
161
162/*
163 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
164 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
165 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
166 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
167 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
168 * guarantee the vCPU received an IPI and has actually exited guest mode.
169 */
170#define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
171
172#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
173 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
174 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
175})
176#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
177
178bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
179 unsigned long *vcpu_bitmap);
180bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
181bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
182 struct kvm_vcpu *except);
183bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
184 unsigned long *vcpu_bitmap);
185
186#define KVM_USERSPACE_IRQ_SOURCE_ID 0
187#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
188
189extern struct mutex kvm_lock;
190extern struct list_head vm_list;
191
192struct kvm_io_range {
193 gpa_t addr;
194 int len;
195 struct kvm_io_device *dev;
196};
197
198#define NR_IOBUS_DEVS 1000
199
200struct kvm_io_bus {
201 int dev_count;
202 int ioeventfd_count;
203 struct kvm_io_range range[];
204};
205
206enum kvm_bus {
207 KVM_MMIO_BUS,
208 KVM_PIO_BUS,
209 KVM_VIRTIO_CCW_NOTIFY_BUS,
210 KVM_FAST_MMIO_BUS,
211 KVM_NR_BUSES
212};
213
214int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
215 int len, const void *val);
216int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
217 gpa_t addr, int len, const void *val, long cookie);
218int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
219 int len, void *val);
220int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
221 int len, struct kvm_io_device *dev);
222int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
223 struct kvm_io_device *dev);
224struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
225 gpa_t addr);
226
227#ifdef CONFIG_KVM_ASYNC_PF
228struct kvm_async_pf {
229 struct work_struct work;
230 struct list_head link;
231 struct list_head queue;
232 struct kvm_vcpu *vcpu;
233 struct mm_struct *mm;
234 gpa_t cr2_or_gpa;
235 unsigned long addr;
236 struct kvm_arch_async_pf arch;
237 bool wakeup_all;
238 bool notpresent_injected;
239};
240
241void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
242void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
243bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
244 unsigned long hva, struct kvm_arch_async_pf *arch);
245int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
246#endif
247
248#ifdef KVM_ARCH_WANT_MMU_NOTIFIER
249struct kvm_gfn_range {
250 struct kvm_memory_slot *slot;
251 gfn_t start;
252 gfn_t end;
253 pte_t pte;
254 bool may_block;
255};
256bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
257bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
258bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
259bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
260#endif
261
262enum {
263 OUTSIDE_GUEST_MODE,
264 IN_GUEST_MODE,
265 EXITING_GUEST_MODE,
266 READING_SHADOW_PAGE_TABLES,
267};
268
269#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
270
271struct kvm_host_map {
272 /*
273 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
274 * a 'struct page' for it. When using mem= kernel parameter some memory
275 * can be used as guest memory but they are not managed by host
276 * kernel).
277 * If 'pfn' is not managed by the host kernel, this field is
278 * initialized to KVM_UNMAPPED_PAGE.
279 */
280 struct page *page;
281 void *hva;
282 kvm_pfn_t pfn;
283 kvm_pfn_t gfn;
284};
285
286/*
287 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
288 * directly to check for that.
289 */
290static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
291{
292 return !!map->hva;
293}
294
295static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
296{
297 return single_task_running() && !need_resched() && ktime_before(cur, stop);
298}
299
300/*
301 * Sometimes a large or cross-page mmio needs to be broken up into separate
302 * exits for userspace servicing.
303 */
304struct kvm_mmio_fragment {
305 gpa_t gpa;
306 void *data;
307 unsigned len;
308};
309
310struct kvm_vcpu {
311 struct kvm *kvm;
312#ifdef CONFIG_PREEMPT_NOTIFIERS
313 struct preempt_notifier preempt_notifier;
314#endif
315 int cpu;
316 int vcpu_id; /* id given by userspace at creation */
317 int vcpu_idx; /* index in kvm->vcpus array */
318 int ____srcu_idx; /* Don't use this directly. You've been warned. */
319#ifdef CONFIG_PROVE_RCU
320 int srcu_depth;
321#endif
322 int mode;
323 u64 requests;
324 unsigned long guest_debug;
325
326 struct mutex mutex;
327 struct kvm_run *run;
328
329#ifndef __KVM_HAVE_ARCH_WQP
330 struct rcuwait wait;
331#endif
332 struct pid __rcu *pid;
333 int sigset_active;
334 sigset_t sigset;
335 unsigned int halt_poll_ns;
336 bool valid_wakeup;
337
338#ifdef CONFIG_HAS_IOMEM
339 int mmio_needed;
340 int mmio_read_completed;
341 int mmio_is_write;
342 int mmio_cur_fragment;
343 int mmio_nr_fragments;
344 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
345#endif
346
347#ifdef CONFIG_KVM_ASYNC_PF
348 struct {
349 u32 queued;
350 struct list_head queue;
351 struct list_head done;
352 spinlock_t lock;
353 } async_pf;
354#endif
355
356#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
357 /*
358 * Cpu relax intercept or pause loop exit optimization
359 * in_spin_loop: set when a vcpu does a pause loop exit
360 * or cpu relax intercepted.
361 * dy_eligible: indicates whether vcpu is eligible for directed yield.
362 */
363 struct {
364 bool in_spin_loop;
365 bool dy_eligible;
366 } spin_loop;
367#endif
368 bool preempted;
369 bool ready;
370 struct kvm_vcpu_arch arch;
371 struct kvm_vcpu_stat stat;
372 char stats_id[KVM_STATS_NAME_SIZE];
373 struct kvm_dirty_ring dirty_ring;
374
375 /*
376 * The most recently used memslot by this vCPU and the slots generation
377 * for which it is valid.
378 * No wraparound protection is needed since generations won't overflow in
379 * thousands of years, even assuming 1M memslot operations per second.
380 */
381 struct kvm_memory_slot *last_used_slot;
382 u64 last_used_slot_gen;
383};
384
385/*
386 * Start accounting time towards a guest.
387 * Must be called before entering guest context.
388 */
389static __always_inline void guest_timing_enter_irqoff(void)
390{
391 /*
392 * This is running in ioctl context so its safe to assume that it's the
393 * stime pending cputime to flush.
394 */
395 instrumentation_begin();
396 vtime_account_guest_enter();
397 instrumentation_end();
398}
399
400/*
401 * Enter guest context and enter an RCU extended quiescent state.
402 *
403 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
404 * unsafe to use any code which may directly or indirectly use RCU, tracing
405 * (including IRQ flag tracing), or lockdep. All code in this period must be
406 * non-instrumentable.
407 */
408static __always_inline void guest_context_enter_irqoff(void)
409{
410 /*
411 * KVM does not hold any references to rcu protected data when it
412 * switches CPU into a guest mode. In fact switching to a guest mode
413 * is very similar to exiting to userspace from rcu point of view. In
414 * addition CPU may stay in a guest mode for quite a long time (up to
415 * one time slice). Lets treat guest mode as quiescent state, just like
416 * we do with user-mode execution.
417 */
418 if (!context_tracking_guest_enter()) {
419 instrumentation_begin();
420 rcu_virt_note_context_switch(smp_processor_id());
421 instrumentation_end();
422 }
423}
424
425/*
426 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
427 * guest_state_enter_irqoff().
428 */
429static __always_inline void guest_enter_irqoff(void)
430{
431 guest_timing_enter_irqoff();
432 guest_context_enter_irqoff();
433}
434
435/**
436 * guest_state_enter_irqoff - Fixup state when entering a guest
437 *
438 * Entry to a guest will enable interrupts, but the kernel state is interrupts
439 * disabled when this is invoked. Also tell RCU about it.
440 *
441 * 1) Trace interrupts on state
442 * 2) Invoke context tracking if enabled to adjust RCU state
443 * 3) Tell lockdep that interrupts are enabled
444 *
445 * Invoked from architecture specific code before entering a guest.
446 * Must be called with interrupts disabled and the caller must be
447 * non-instrumentable.
448 * The caller has to invoke guest_timing_enter_irqoff() before this.
449 *
450 * Note: this is analogous to exit_to_user_mode().
451 */
452static __always_inline void guest_state_enter_irqoff(void)
453{
454 instrumentation_begin();
455 trace_hardirqs_on_prepare();
456 lockdep_hardirqs_on_prepare();
457 instrumentation_end();
458
459 guest_context_enter_irqoff();
460 lockdep_hardirqs_on(CALLER_ADDR0);
461}
462
463/*
464 * Exit guest context and exit an RCU extended quiescent state.
465 *
466 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
467 * unsafe to use any code which may directly or indirectly use RCU, tracing
468 * (including IRQ flag tracing), or lockdep. All code in this period must be
469 * non-instrumentable.
470 */
471static __always_inline void guest_context_exit_irqoff(void)
472{
473 context_tracking_guest_exit();
474}
475
476/*
477 * Stop accounting time towards a guest.
478 * Must be called after exiting guest context.
479 */
480static __always_inline void guest_timing_exit_irqoff(void)
481{
482 instrumentation_begin();
483 /* Flush the guest cputime we spent on the guest */
484 vtime_account_guest_exit();
485 instrumentation_end();
486}
487
488/*
489 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
490 * guest_timing_exit_irqoff().
491 */
492static __always_inline void guest_exit_irqoff(void)
493{
494 guest_context_exit_irqoff();
495 guest_timing_exit_irqoff();
496}
497
498static inline void guest_exit(void)
499{
500 unsigned long flags;
501
502 local_irq_save(flags);
503 guest_exit_irqoff();
504 local_irq_restore(flags);
505}
506
507/**
508 * guest_state_exit_irqoff - Establish state when returning from guest mode
509 *
510 * Entry from a guest disables interrupts, but guest mode is traced as
511 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
512 *
513 * 1) Tell lockdep that interrupts are disabled
514 * 2) Invoke context tracking if enabled to reactivate RCU
515 * 3) Trace interrupts off state
516 *
517 * Invoked from architecture specific code after exiting a guest.
518 * Must be invoked with interrupts disabled and the caller must be
519 * non-instrumentable.
520 * The caller has to invoke guest_timing_exit_irqoff() after this.
521 *
522 * Note: this is analogous to enter_from_user_mode().
523 */
524static __always_inline void guest_state_exit_irqoff(void)
525{
526 lockdep_hardirqs_off(CALLER_ADDR0);
527 guest_context_exit_irqoff();
528
529 instrumentation_begin();
530 trace_hardirqs_off_finish();
531 instrumentation_end();
532}
533
534static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
535{
536 /*
537 * The memory barrier ensures a previous write to vcpu->requests cannot
538 * be reordered with the read of vcpu->mode. It pairs with the general
539 * memory barrier following the write of vcpu->mode in VCPU RUN.
540 */
541 smp_mb__before_atomic();
542 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
543}
544
545/*
546 * Some of the bitops functions do not support too long bitmaps.
547 * This number must be determined not to exceed such limits.
548 */
549#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
550
551/*
552 * Since at idle each memslot belongs to two memslot sets it has to contain
553 * two embedded nodes for each data structure that it forms a part of.
554 *
555 * Two memslot sets (one active and one inactive) are necessary so the VM
556 * continues to run on one memslot set while the other is being modified.
557 *
558 * These two memslot sets normally point to the same set of memslots.
559 * They can, however, be desynchronized when performing a memslot management
560 * operation by replacing the memslot to be modified by its copy.
561 * After the operation is complete, both memslot sets once again point to
562 * the same, common set of memslot data.
563 *
564 * The memslots themselves are independent of each other so they can be
565 * individually added or deleted.
566 */
567struct kvm_memory_slot {
568 struct hlist_node id_node[2];
569 struct interval_tree_node hva_node[2];
570 struct rb_node gfn_node[2];
571 gfn_t base_gfn;
572 unsigned long npages;
573 unsigned long *dirty_bitmap;
574 struct kvm_arch_memory_slot arch;
575 unsigned long userspace_addr;
576 u32 flags;
577 short id;
578 u16 as_id;
579};
580
581static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
582{
583 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
584}
585
586static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
587{
588 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
589}
590
591static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
592{
593 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
594
595 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
596}
597
598#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
599#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
600#endif
601
602struct kvm_s390_adapter_int {
603 u64 ind_addr;
604 u64 summary_addr;
605 u64 ind_offset;
606 u32 summary_offset;
607 u32 adapter_id;
608};
609
610struct kvm_hv_sint {
611 u32 vcpu;
612 u32 sint;
613};
614
615struct kvm_xen_evtchn {
616 u32 port;
617 u32 vcpu_id;
618 int vcpu_idx;
619 u32 priority;
620};
621
622struct kvm_kernel_irq_routing_entry {
623 u32 gsi;
624 u32 type;
625 int (*set)(struct kvm_kernel_irq_routing_entry *e,
626 struct kvm *kvm, int irq_source_id, int level,
627 bool line_status);
628 union {
629 struct {
630 unsigned irqchip;
631 unsigned pin;
632 } irqchip;
633 struct {
634 u32 address_lo;
635 u32 address_hi;
636 u32 data;
637 u32 flags;
638 u32 devid;
639 } msi;
640 struct kvm_s390_adapter_int adapter;
641 struct kvm_hv_sint hv_sint;
642 struct kvm_xen_evtchn xen_evtchn;
643 };
644 struct hlist_node link;
645};
646
647#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
648struct kvm_irq_routing_table {
649 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
650 u32 nr_rt_entries;
651 /*
652 * Array indexed by gsi. Each entry contains list of irq chips
653 * the gsi is connected to.
654 */
655 struct hlist_head map[];
656};
657#endif
658
659#ifndef KVM_INTERNAL_MEM_SLOTS
660#define KVM_INTERNAL_MEM_SLOTS 0
661#endif
662
663#define KVM_MEM_SLOTS_NUM SHRT_MAX
664#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
665
666#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
667static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
668{
669 return 0;
670}
671#endif
672
673struct kvm_memslots {
674 u64 generation;
675 atomic_long_t last_used_slot;
676 struct rb_root_cached hva_tree;
677 struct rb_root gfn_tree;
678 /*
679 * The mapping table from slot id to memslot.
680 *
681 * 7-bit bucket count matches the size of the old id to index array for
682 * 512 slots, while giving good performance with this slot count.
683 * Higher bucket counts bring only small performance improvements but
684 * always result in higher memory usage (even for lower memslot counts).
685 */
686 DECLARE_HASHTABLE(id_hash, 7);
687 int node_idx;
688};
689
690struct kvm {
691#ifdef KVM_HAVE_MMU_RWLOCK
692 rwlock_t mmu_lock;
693#else
694 spinlock_t mmu_lock;
695#endif /* KVM_HAVE_MMU_RWLOCK */
696
697 struct mutex slots_lock;
698
699 /*
700 * Protects the arch-specific fields of struct kvm_memory_slots in
701 * use by the VM. To be used under the slots_lock (above) or in a
702 * kvm->srcu critical section where acquiring the slots_lock would
703 * lead to deadlock with the synchronize_srcu in
704 * install_new_memslots.
705 */
706 struct mutex slots_arch_lock;
707 struct mm_struct *mm; /* userspace tied to this vm */
708 unsigned long nr_memslot_pages;
709 /* The two memslot sets - active and inactive (per address space) */
710 struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
711 /* The current active memslot set for each address space */
712 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
713 struct xarray vcpu_array;
714
715 /* Used to wait for completion of MMU notifiers. */
716 spinlock_t mn_invalidate_lock;
717 unsigned long mn_active_invalidate_count;
718 struct rcuwait mn_memslots_update_rcuwait;
719
720 /* For management / invalidation of gfn_to_pfn_caches */
721 spinlock_t gpc_lock;
722 struct list_head gpc_list;
723
724 /*
725 * created_vcpus is protected by kvm->lock, and is incremented
726 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
727 * incremented after storing the kvm_vcpu pointer in vcpus,
728 * and is accessed atomically.
729 */
730 atomic_t online_vcpus;
731 int max_vcpus;
732 int created_vcpus;
733 int last_boosted_vcpu;
734 struct list_head vm_list;
735 struct mutex lock;
736 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
737#ifdef CONFIG_HAVE_KVM_EVENTFD
738 struct {
739 spinlock_t lock;
740 struct list_head items;
741 struct list_head resampler_list;
742 struct mutex resampler_lock;
743 } irqfds;
744 struct list_head ioeventfds;
745#endif
746 struct kvm_vm_stat stat;
747 struct kvm_arch arch;
748 refcount_t users_count;
749#ifdef CONFIG_KVM_MMIO
750 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
751 spinlock_t ring_lock;
752 struct list_head coalesced_zones;
753#endif
754
755 struct mutex irq_lock;
756#ifdef CONFIG_HAVE_KVM_IRQCHIP
757 /*
758 * Update side is protected by irq_lock.
759 */
760 struct kvm_irq_routing_table __rcu *irq_routing;
761#endif
762#ifdef CONFIG_HAVE_KVM_IRQFD
763 struct hlist_head irq_ack_notifier_list;
764#endif
765
766#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
767 struct mmu_notifier mmu_notifier;
768 unsigned long mmu_invalidate_seq;
769 long mmu_invalidate_in_progress;
770 unsigned long mmu_invalidate_range_start;
771 unsigned long mmu_invalidate_range_end;
772#endif
773 struct list_head devices;
774 u64 manual_dirty_log_protect;
775 struct dentry *debugfs_dentry;
776 struct kvm_stat_data **debugfs_stat_data;
777 struct srcu_struct srcu;
778 struct srcu_struct irq_srcu;
779 pid_t userspace_pid;
780 unsigned int max_halt_poll_ns;
781 u32 dirty_ring_size;
782 bool vm_bugged;
783 bool vm_dead;
784
785#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
786 struct notifier_block pm_notifier;
787#endif
788 char stats_id[KVM_STATS_NAME_SIZE];
789};
790
791#define kvm_err(fmt, ...) \
792 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
793#define kvm_info(fmt, ...) \
794 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
795#define kvm_debug(fmt, ...) \
796 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
797#define kvm_debug_ratelimited(fmt, ...) \
798 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
799 ## __VA_ARGS__)
800#define kvm_pr_unimpl(fmt, ...) \
801 pr_err_ratelimited("kvm [%i]: " fmt, \
802 task_tgid_nr(current), ## __VA_ARGS__)
803
804/* The guest did something we don't support. */
805#define vcpu_unimpl(vcpu, fmt, ...) \
806 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
807 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
808
809#define vcpu_debug(vcpu, fmt, ...) \
810 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
811#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
812 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
813 ## __VA_ARGS__)
814#define vcpu_err(vcpu, fmt, ...) \
815 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
816
817static inline void kvm_vm_dead(struct kvm *kvm)
818{
819 kvm->vm_dead = true;
820 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
821}
822
823static inline void kvm_vm_bugged(struct kvm *kvm)
824{
825 kvm->vm_bugged = true;
826 kvm_vm_dead(kvm);
827}
828
829
830#define KVM_BUG(cond, kvm, fmt...) \
831({ \
832 int __ret = (cond); \
833 \
834 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
835 kvm_vm_bugged(kvm); \
836 unlikely(__ret); \
837})
838
839#define KVM_BUG_ON(cond, kvm) \
840({ \
841 int __ret = (cond); \
842 \
843 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
844 kvm_vm_bugged(kvm); \
845 unlikely(__ret); \
846})
847
848static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
849{
850#ifdef CONFIG_PROVE_RCU
851 WARN_ONCE(vcpu->srcu_depth++,
852 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
853#endif
854 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
855}
856
857static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
858{
859 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
860
861#ifdef CONFIG_PROVE_RCU
862 WARN_ONCE(--vcpu->srcu_depth,
863 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
864#endif
865}
866
867static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
868{
869 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
870}
871
872static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
873{
874 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
875 lockdep_is_held(&kvm->slots_lock) ||
876 !refcount_read(&kvm->users_count));
877}
878
879static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
880{
881 int num_vcpus = atomic_read(&kvm->online_vcpus);
882 i = array_index_nospec(i, num_vcpus);
883
884 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
885 smp_rmb();
886 return xa_load(&kvm->vcpu_array, i);
887}
888
889#define kvm_for_each_vcpu(idx, vcpup, kvm) \
890 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
891 (atomic_read(&kvm->online_vcpus) - 1))
892
893static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
894{
895 struct kvm_vcpu *vcpu = NULL;
896 unsigned long i;
897
898 if (id < 0)
899 return NULL;
900 if (id < KVM_MAX_VCPUS)
901 vcpu = kvm_get_vcpu(kvm, id);
902 if (vcpu && vcpu->vcpu_id == id)
903 return vcpu;
904 kvm_for_each_vcpu(i, vcpu, kvm)
905 if (vcpu->vcpu_id == id)
906 return vcpu;
907 return NULL;
908}
909
910void kvm_destroy_vcpus(struct kvm *kvm);
911
912void vcpu_load(struct kvm_vcpu *vcpu);
913void vcpu_put(struct kvm_vcpu *vcpu);
914
915#ifdef __KVM_HAVE_IOAPIC
916void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
917void kvm_arch_post_irq_routing_update(struct kvm *kvm);
918#else
919static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
920{
921}
922static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
923{
924}
925#endif
926
927#ifdef CONFIG_HAVE_KVM_IRQFD
928int kvm_irqfd_init(void);
929void kvm_irqfd_exit(void);
930#else
931static inline int kvm_irqfd_init(void)
932{
933 return 0;
934}
935
936static inline void kvm_irqfd_exit(void)
937{
938}
939#endif
940int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
941 struct module *module);
942void kvm_exit(void);
943
944void kvm_get_kvm(struct kvm *kvm);
945bool kvm_get_kvm_safe(struct kvm *kvm);
946void kvm_put_kvm(struct kvm *kvm);
947bool file_is_kvm(struct file *file);
948void kvm_put_kvm_no_destroy(struct kvm *kvm);
949
950static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
951{
952 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
953 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
954 lockdep_is_held(&kvm->slots_lock) ||
955 !refcount_read(&kvm->users_count));
956}
957
958static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
959{
960 return __kvm_memslots(kvm, 0);
961}
962
963static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
964{
965 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
966
967 return __kvm_memslots(vcpu->kvm, as_id);
968}
969
970static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
971{
972 return RB_EMPTY_ROOT(&slots->gfn_tree);
973}
974
975#define kvm_for_each_memslot(memslot, bkt, slots) \
976 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
977 if (WARN_ON_ONCE(!memslot->npages)) { \
978 } else
979
980static inline
981struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
982{
983 struct kvm_memory_slot *slot;
984 int idx = slots->node_idx;
985
986 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
987 if (slot->id == id)
988 return slot;
989 }
990
991 return NULL;
992}
993
994/* Iterator used for walking memslots that overlap a gfn range. */
995struct kvm_memslot_iter {
996 struct kvm_memslots *slots;
997 struct rb_node *node;
998 struct kvm_memory_slot *slot;
999};
1000
1001static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1002{
1003 iter->node = rb_next(iter->node);
1004 if (!iter->node)
1005 return;
1006
1007 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1008}
1009
1010static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1011 struct kvm_memslots *slots,
1012 gfn_t start)
1013{
1014 int idx = slots->node_idx;
1015 struct rb_node *tmp;
1016 struct kvm_memory_slot *slot;
1017
1018 iter->slots = slots;
1019
1020 /*
1021 * Find the so called "upper bound" of a key - the first node that has
1022 * its key strictly greater than the searched one (the start gfn in our case).
1023 */
1024 iter->node = NULL;
1025 for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1026 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1027 if (start < slot->base_gfn) {
1028 iter->node = tmp;
1029 tmp = tmp->rb_left;
1030 } else {
1031 tmp = tmp->rb_right;
1032 }
1033 }
1034
1035 /*
1036 * Find the slot with the lowest gfn that can possibly intersect with
1037 * the range, so we'll ideally have slot start <= range start
1038 */
1039 if (iter->node) {
1040 /*
1041 * A NULL previous node means that the very first slot
1042 * already has a higher start gfn.
1043 * In this case slot start > range start.
1044 */
1045 tmp = rb_prev(iter->node);
1046 if (tmp)
1047 iter->node = tmp;
1048 } else {
1049 /* a NULL node below means no slots */
1050 iter->node = rb_last(&slots->gfn_tree);
1051 }
1052
1053 if (iter->node) {
1054 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1055
1056 /*
1057 * It is possible in the slot start < range start case that the
1058 * found slot ends before or at range start (slot end <= range start)
1059 * and so it does not overlap the requested range.
1060 *
1061 * In such non-overlapping case the next slot (if it exists) will
1062 * already have slot start > range start, otherwise the logic above
1063 * would have found it instead of the current slot.
1064 */
1065 if (iter->slot->base_gfn + iter->slot->npages <= start)
1066 kvm_memslot_iter_next(iter);
1067 }
1068}
1069
1070static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1071{
1072 if (!iter->node)
1073 return false;
1074
1075 /*
1076 * If this slot starts beyond or at the end of the range so does
1077 * every next one
1078 */
1079 return iter->slot->base_gfn < end;
1080}
1081
1082/* Iterate over each memslot at least partially intersecting [start, end) range */
1083#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
1084 for (kvm_memslot_iter_start(iter, slots, start); \
1085 kvm_memslot_iter_is_valid(iter, end); \
1086 kvm_memslot_iter_next(iter))
1087
1088/*
1089 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1090 * - create a new memory slot
1091 * - delete an existing memory slot
1092 * - modify an existing memory slot
1093 * -- move it in the guest physical memory space
1094 * -- just change its flags
1095 *
1096 * Since flags can be changed by some of these operations, the following
1097 * differentiation is the best we can do for __kvm_set_memory_region():
1098 */
1099enum kvm_mr_change {
1100 KVM_MR_CREATE,
1101 KVM_MR_DELETE,
1102 KVM_MR_MOVE,
1103 KVM_MR_FLAGS_ONLY,
1104};
1105
1106int kvm_set_memory_region(struct kvm *kvm,
1107 const struct kvm_userspace_memory_region *mem);
1108int __kvm_set_memory_region(struct kvm *kvm,
1109 const struct kvm_userspace_memory_region *mem);
1110void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1111void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1112int kvm_arch_prepare_memory_region(struct kvm *kvm,
1113 const struct kvm_memory_slot *old,
1114 struct kvm_memory_slot *new,
1115 enum kvm_mr_change change);
1116void kvm_arch_commit_memory_region(struct kvm *kvm,
1117 struct kvm_memory_slot *old,
1118 const struct kvm_memory_slot *new,
1119 enum kvm_mr_change change);
1120/* flush all memory translations */
1121void kvm_arch_flush_shadow_all(struct kvm *kvm);
1122/* flush memory translations pointing to 'slot' */
1123void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1124 struct kvm_memory_slot *slot);
1125
1126int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1127 struct page **pages, int nr_pages);
1128
1129struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1130unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1131unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1132unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1133unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1134 bool *writable);
1135void kvm_release_page_clean(struct page *page);
1136void kvm_release_page_dirty(struct page *page);
1137
1138kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1139kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1140 bool *writable);
1141kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1142kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1143kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1144 bool atomic, bool *async, bool write_fault,
1145 bool *writable, hva_t *hva);
1146
1147void kvm_release_pfn_clean(kvm_pfn_t pfn);
1148void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1149void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1150void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1151
1152void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1153int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1154 int len);
1155int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1156int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1157 void *data, unsigned long len);
1158int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1159 void *data, unsigned int offset,
1160 unsigned long len);
1161int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1162 int offset, int len);
1163int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1164 unsigned long len);
1165int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1166 void *data, unsigned long len);
1167int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1168 void *data, unsigned int offset,
1169 unsigned long len);
1170int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1171 gpa_t gpa, unsigned long len);
1172
1173#define __kvm_get_guest(kvm, gfn, offset, v) \
1174({ \
1175 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1176 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1177 int __ret = -EFAULT; \
1178 \
1179 if (!kvm_is_error_hva(__addr)) \
1180 __ret = get_user(v, __uaddr); \
1181 __ret; \
1182})
1183
1184#define kvm_get_guest(kvm, gpa, v) \
1185({ \
1186 gpa_t __gpa = gpa; \
1187 struct kvm *__kvm = kvm; \
1188 \
1189 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1190 offset_in_page(__gpa), v); \
1191})
1192
1193#define __kvm_put_guest(kvm, gfn, offset, v) \
1194({ \
1195 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1196 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1197 int __ret = -EFAULT; \
1198 \
1199 if (!kvm_is_error_hva(__addr)) \
1200 __ret = put_user(v, __uaddr); \
1201 if (!__ret) \
1202 mark_page_dirty(kvm, gfn); \
1203 __ret; \
1204})
1205
1206#define kvm_put_guest(kvm, gpa, v) \
1207({ \
1208 gpa_t __gpa = gpa; \
1209 struct kvm *__kvm = kvm; \
1210 \
1211 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1212 offset_in_page(__gpa), v); \
1213})
1214
1215int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1216struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1217bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1218bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1219unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1220void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1221void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1222
1223struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1224struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1225kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1226kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1227int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1228void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1229unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1230unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1231int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1232 int len);
1233int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1234 unsigned long len);
1235int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1236 unsigned long len);
1237int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1238 int offset, int len);
1239int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1240 unsigned long len);
1241void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1242
1243/**
1244 * kvm_gfn_to_pfn_cache_init - prepare a cached kernel mapping and HPA for a
1245 * given guest physical address.
1246 *
1247 * @kvm: pointer to kvm instance.
1248 * @gpc: struct gfn_to_pfn_cache object.
1249 * @vcpu: vCPU to be used for marking pages dirty and to be woken on
1250 * invalidation.
1251 * @usage: indicates if the resulting host physical PFN is used while
1252 * the @vcpu is IN_GUEST_MODE (in which case invalidation of
1253 * the cache from MMU notifiers---but not for KVM memslot
1254 * changes!---will also force @vcpu to exit the guest and
1255 * refresh the cache); and/or if the PFN used directly
1256 * by KVM (and thus needs a kernel virtual mapping).
1257 * @gpa: guest physical address to map.
1258 * @len: sanity check; the range being access must fit a single page.
1259 *
1260 * @return: 0 for success.
1261 * -EINVAL for a mapping which would cross a page boundary.
1262 * -EFAULT for an untranslatable guest physical address.
1263 *
1264 * This primes a gfn_to_pfn_cache and links it into the @kvm's list for
1265 * invalidations to be processed. Callers are required to use
1266 * kvm_gfn_to_pfn_cache_check() to ensure that the cache is valid before
1267 * accessing the target page.
1268 */
1269int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1270 struct kvm_vcpu *vcpu, enum pfn_cache_usage usage,
1271 gpa_t gpa, unsigned long len);
1272
1273/**
1274 * kvm_gfn_to_pfn_cache_check - check validity of a gfn_to_pfn_cache.
1275 *
1276 * @kvm: pointer to kvm instance.
1277 * @gpc: struct gfn_to_pfn_cache object.
1278 * @gpa: current guest physical address to map.
1279 * @len: sanity check; the range being access must fit a single page.
1280 *
1281 * @return: %true if the cache is still valid and the address matches.
1282 * %false if the cache is not valid.
1283 *
1284 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1285 * while calling this function, and then continue to hold the lock until the
1286 * access is complete.
1287 *
1288 * Callers in IN_GUEST_MODE may do so without locking, although they should
1289 * still hold a read lock on kvm->scru for the memslot checks.
1290 */
1291bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1292 gpa_t gpa, unsigned long len);
1293
1294/**
1295 * kvm_gfn_to_pfn_cache_refresh - update a previously initialized cache.
1296 *
1297 * @kvm: pointer to kvm instance.
1298 * @gpc: struct gfn_to_pfn_cache object.
1299 * @gpa: updated guest physical address to map.
1300 * @len: sanity check; the range being access must fit a single page.
1301 *
1302 * @return: 0 for success.
1303 * -EINVAL for a mapping which would cross a page boundary.
1304 * -EFAULT for an untranslatable guest physical address.
1305 *
1306 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1307 * returm from this function does not mean the page can be immediately
1308 * accessed because it may have raced with an invalidation. Callers must
1309 * still lock and check the cache status, as this function does not return
1310 * with the lock still held to permit access.
1311 */
1312int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1313 gpa_t gpa, unsigned long len);
1314
1315/**
1316 * kvm_gfn_to_pfn_cache_unmap - temporarily unmap a gfn_to_pfn_cache.
1317 *
1318 * @kvm: pointer to kvm instance.
1319 * @gpc: struct gfn_to_pfn_cache object.
1320 *
1321 * This unmaps the referenced page. The cache is left in the invalid state
1322 * but at least the mapping from GPA to userspace HVA will remain cached
1323 * and can be reused on a subsequent refresh.
1324 */
1325void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1326
1327/**
1328 * kvm_gfn_to_pfn_cache_destroy - destroy and unlink a gfn_to_pfn_cache.
1329 *
1330 * @kvm: pointer to kvm instance.
1331 * @gpc: struct gfn_to_pfn_cache object.
1332 *
1333 * This removes a cache from the @kvm's list to be processed on MMU notifier
1334 * invocation.
1335 */
1336void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1337
1338void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1339void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1340
1341void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1342bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1343void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1344void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1345bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1346void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1347int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1348void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
1349
1350void kvm_flush_remote_tlbs(struct kvm *kvm);
1351
1352#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1353int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1354int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1355int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1356void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1357void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1358#endif
1359
1360void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
1361 unsigned long end);
1362void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
1363 unsigned long end);
1364
1365long kvm_arch_dev_ioctl(struct file *filp,
1366 unsigned int ioctl, unsigned long arg);
1367long kvm_arch_vcpu_ioctl(struct file *filp,
1368 unsigned int ioctl, unsigned long arg);
1369vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1370
1371int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1372
1373void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1374 struct kvm_memory_slot *slot,
1375 gfn_t gfn_offset,
1376 unsigned long mask);
1377void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1378
1379#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1380void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1381 const struct kvm_memory_slot *memslot);
1382#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1383int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1384int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1385 int *is_dirty, struct kvm_memory_slot **memslot);
1386#endif
1387
1388int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1389 bool line_status);
1390int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1391 struct kvm_enable_cap *cap);
1392long kvm_arch_vm_ioctl(struct file *filp,
1393 unsigned int ioctl, unsigned long arg);
1394
1395int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1396int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1397
1398int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1399 struct kvm_translation *tr);
1400
1401int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1402int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1403int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1404 struct kvm_sregs *sregs);
1405int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1406 struct kvm_sregs *sregs);
1407int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1408 struct kvm_mp_state *mp_state);
1409int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1410 struct kvm_mp_state *mp_state);
1411int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1412 struct kvm_guest_debug *dbg);
1413int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1414
1415int kvm_arch_init(void *opaque);
1416void kvm_arch_exit(void);
1417
1418void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1419
1420void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1421void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1422int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1423int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1424void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1425void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1426
1427#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1428int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1429#endif
1430
1431#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1432void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1433#else
1434static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1435#endif
1436
1437int kvm_arch_hardware_enable(void);
1438void kvm_arch_hardware_disable(void);
1439int kvm_arch_hardware_setup(void *opaque);
1440void kvm_arch_hardware_unsetup(void);
1441int kvm_arch_check_processor_compat(void *opaque);
1442int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1443bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1444int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1445bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1446bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1447int kvm_arch_post_init_vm(struct kvm *kvm);
1448void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1449int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1450
1451#ifndef __KVM_HAVE_ARCH_VM_ALLOC
1452/*
1453 * All architectures that want to use vzalloc currently also
1454 * need their own kvm_arch_alloc_vm implementation.
1455 */
1456static inline struct kvm *kvm_arch_alloc_vm(void)
1457{
1458 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1459}
1460#endif
1461
1462static inline void __kvm_arch_free_vm(struct kvm *kvm)
1463{
1464 kvfree(kvm);
1465}
1466
1467#ifndef __KVM_HAVE_ARCH_VM_FREE
1468static inline void kvm_arch_free_vm(struct kvm *kvm)
1469{
1470 __kvm_arch_free_vm(kvm);
1471}
1472#endif
1473
1474#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1475static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1476{
1477 return -ENOTSUPP;
1478}
1479#endif
1480
1481#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1482void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1483void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1484bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1485#else
1486static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1487{
1488}
1489
1490static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1491{
1492}
1493
1494static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1495{
1496 return false;
1497}
1498#endif
1499#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1500void kvm_arch_start_assignment(struct kvm *kvm);
1501void kvm_arch_end_assignment(struct kvm *kvm);
1502bool kvm_arch_has_assigned_device(struct kvm *kvm);
1503#else
1504static inline void kvm_arch_start_assignment(struct kvm *kvm)
1505{
1506}
1507
1508static inline void kvm_arch_end_assignment(struct kvm *kvm)
1509{
1510}
1511
1512static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1513{
1514 return false;
1515}
1516#endif
1517
1518static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1519{
1520#ifdef __KVM_HAVE_ARCH_WQP
1521 return vcpu->arch.waitp;
1522#else
1523 return &vcpu->wait;
1524#endif
1525}
1526
1527/*
1528 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1529 * true if the vCPU was blocking and was awakened, false otherwise.
1530 */
1531static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1532{
1533 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1534}
1535
1536static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1537{
1538 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1539}
1540
1541#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1542/*
1543 * returns true if the virtual interrupt controller is initialized and
1544 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1545 * controller is dynamically instantiated and this is not always true.
1546 */
1547bool kvm_arch_intc_initialized(struct kvm *kvm);
1548#else
1549static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1550{
1551 return true;
1552}
1553#endif
1554
1555#ifdef CONFIG_GUEST_PERF_EVENTS
1556unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1557
1558void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1559void kvm_unregister_perf_callbacks(void);
1560#else
1561static inline void kvm_register_perf_callbacks(void *ign) {}
1562static inline void kvm_unregister_perf_callbacks(void) {}
1563#endif /* CONFIG_GUEST_PERF_EVENTS */
1564
1565int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1566void kvm_arch_destroy_vm(struct kvm *kvm);
1567void kvm_arch_sync_events(struct kvm *kvm);
1568
1569int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1570
1571struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1572bool kvm_is_zone_device_page(struct page *page);
1573
1574struct kvm_irq_ack_notifier {
1575 struct hlist_node link;
1576 unsigned gsi;
1577 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1578};
1579
1580int kvm_irq_map_gsi(struct kvm *kvm,
1581 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1582int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1583
1584int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1585 bool line_status);
1586int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1587 int irq_source_id, int level, bool line_status);
1588int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1589 struct kvm *kvm, int irq_source_id,
1590 int level, bool line_status);
1591bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1592void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1593void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1594void kvm_register_irq_ack_notifier(struct kvm *kvm,
1595 struct kvm_irq_ack_notifier *kian);
1596void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1597 struct kvm_irq_ack_notifier *kian);
1598int kvm_request_irq_source_id(struct kvm *kvm);
1599void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1600bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1601
1602/*
1603 * Returns a pointer to the memslot if it contains gfn.
1604 * Otherwise returns NULL.
1605 */
1606static inline struct kvm_memory_slot *
1607try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1608{
1609 if (!slot)
1610 return NULL;
1611
1612 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1613 return slot;
1614 else
1615 return NULL;
1616}
1617
1618/*
1619 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1620 *
1621 * With "approx" set returns the memslot also when the address falls
1622 * in a hole. In that case one of the memslots bordering the hole is
1623 * returned.
1624 */
1625static inline struct kvm_memory_slot *
1626search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1627{
1628 struct kvm_memory_slot *slot;
1629 struct rb_node *node;
1630 int idx = slots->node_idx;
1631
1632 slot = NULL;
1633 for (node = slots->gfn_tree.rb_node; node; ) {
1634 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1635 if (gfn >= slot->base_gfn) {
1636 if (gfn < slot->base_gfn + slot->npages)
1637 return slot;
1638 node = node->rb_right;
1639 } else
1640 node = node->rb_left;
1641 }
1642
1643 return approx ? slot : NULL;
1644}
1645
1646static inline struct kvm_memory_slot *
1647____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1648{
1649 struct kvm_memory_slot *slot;
1650
1651 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1652 slot = try_get_memslot(slot, gfn);
1653 if (slot)
1654 return slot;
1655
1656 slot = search_memslots(slots, gfn, approx);
1657 if (slot) {
1658 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1659 return slot;
1660 }
1661
1662 return NULL;
1663}
1664
1665/*
1666 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1667 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1668 * because that would bloat other code too much.
1669 */
1670static inline struct kvm_memory_slot *
1671__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1672{
1673 return ____gfn_to_memslot(slots, gfn, false);
1674}
1675
1676static inline unsigned long
1677__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1678{
1679 /*
1680 * The index was checked originally in search_memslots. To avoid
1681 * that a malicious guest builds a Spectre gadget out of e.g. page
1682 * table walks, do not let the processor speculate loads outside
1683 * the guest's registered memslots.
1684 */
1685 unsigned long offset = gfn - slot->base_gfn;
1686 offset = array_index_nospec(offset, slot->npages);
1687 return slot->userspace_addr + offset * PAGE_SIZE;
1688}
1689
1690static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1691{
1692 return gfn_to_memslot(kvm, gfn)->id;
1693}
1694
1695static inline gfn_t
1696hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1697{
1698 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1699
1700 return slot->base_gfn + gfn_offset;
1701}
1702
1703static inline gpa_t gfn_to_gpa(gfn_t gfn)
1704{
1705 return (gpa_t)gfn << PAGE_SHIFT;
1706}
1707
1708static inline gfn_t gpa_to_gfn(gpa_t gpa)
1709{
1710 return (gfn_t)(gpa >> PAGE_SHIFT);
1711}
1712
1713static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1714{
1715 return (hpa_t)pfn << PAGE_SHIFT;
1716}
1717
1718static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1719{
1720 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1721
1722 return kvm_is_error_hva(hva);
1723}
1724
1725enum kvm_stat_kind {
1726 KVM_STAT_VM,
1727 KVM_STAT_VCPU,
1728};
1729
1730struct kvm_stat_data {
1731 struct kvm *kvm;
1732 const struct _kvm_stats_desc *desc;
1733 enum kvm_stat_kind kind;
1734};
1735
1736struct _kvm_stats_desc {
1737 struct kvm_stats_desc desc;
1738 char name[KVM_STATS_NAME_SIZE];
1739};
1740
1741#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1742 .flags = type | unit | base | \
1743 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1744 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1745 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1746 .exponent = exp, \
1747 .size = sz, \
1748 .bucket_size = bsz
1749
1750#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1751 { \
1752 { \
1753 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1754 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1755 }, \
1756 .name = #stat, \
1757 }
1758#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1759 { \
1760 { \
1761 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1762 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1763 }, \
1764 .name = #stat, \
1765 }
1766#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1767 { \
1768 { \
1769 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1770 .offset = offsetof(struct kvm_vm_stat, stat) \
1771 }, \
1772 .name = #stat, \
1773 }
1774#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1775 { \
1776 { \
1777 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1778 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1779 }, \
1780 .name = #stat, \
1781 }
1782/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1783#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1784 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1785
1786#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1787 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1788 unit, base, exponent, 1, 0)
1789#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1790 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1791 unit, base, exponent, 1, 0)
1792#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1793 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1794 unit, base, exponent, 1, 0)
1795#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1796 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1797 unit, base, exponent, sz, bsz)
1798#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1799 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1800 unit, base, exponent, sz, 0)
1801
1802/* Cumulative counter, read/write */
1803#define STATS_DESC_COUNTER(SCOPE, name) \
1804 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1805 KVM_STATS_BASE_POW10, 0)
1806/* Instantaneous counter, read only */
1807#define STATS_DESC_ICOUNTER(SCOPE, name) \
1808 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1809 KVM_STATS_BASE_POW10, 0)
1810/* Peak counter, read/write */
1811#define STATS_DESC_PCOUNTER(SCOPE, name) \
1812 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1813 KVM_STATS_BASE_POW10, 0)
1814
1815/* Instantaneous boolean value, read only */
1816#define STATS_DESC_IBOOLEAN(SCOPE, name) \
1817 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1818 KVM_STATS_BASE_POW10, 0)
1819/* Peak (sticky) boolean value, read/write */
1820#define STATS_DESC_PBOOLEAN(SCOPE, name) \
1821 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1822 KVM_STATS_BASE_POW10, 0)
1823
1824/* Cumulative time in nanosecond */
1825#define STATS_DESC_TIME_NSEC(SCOPE, name) \
1826 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1827 KVM_STATS_BASE_POW10, -9)
1828/* Linear histogram for time in nanosecond */
1829#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
1830 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1831 KVM_STATS_BASE_POW10, -9, sz, bsz)
1832/* Logarithmic histogram for time in nanosecond */
1833#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
1834 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1835 KVM_STATS_BASE_POW10, -9, sz)
1836
1837#define KVM_GENERIC_VM_STATS() \
1838 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
1839 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1840
1841#define KVM_GENERIC_VCPU_STATS() \
1842 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
1843 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
1844 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
1845 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
1846 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
1847 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
1848 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
1849 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
1850 HALT_POLL_HIST_COUNT), \
1851 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
1852 HALT_POLL_HIST_COUNT), \
1853 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
1854 HALT_POLL_HIST_COUNT), \
1855 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1856
1857extern struct dentry *kvm_debugfs_dir;
1858
1859ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1860 const struct _kvm_stats_desc *desc,
1861 void *stats, size_t size_stats,
1862 char __user *user_buffer, size_t size, loff_t *offset);
1863
1864/**
1865 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1866 * statistics data.
1867 *
1868 * @data: start address of the stats data
1869 * @size: the number of bucket of the stats data
1870 * @value: the new value used to update the linear histogram's bucket
1871 * @bucket_size: the size (width) of a bucket
1872 */
1873static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1874 u64 value, size_t bucket_size)
1875{
1876 size_t index = div64_u64(value, bucket_size);
1877
1878 index = min(index, size - 1);
1879 ++data[index];
1880}
1881
1882/**
1883 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1884 * statistics data.
1885 *
1886 * @data: start address of the stats data
1887 * @size: the number of bucket of the stats data
1888 * @value: the new value used to update the logarithmic histogram's bucket
1889 */
1890static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1891{
1892 size_t index = fls64(value);
1893
1894 index = min(index, size - 1);
1895 ++data[index];
1896}
1897
1898#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
1899 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1900#define KVM_STATS_LOG_HIST_UPDATE(array, value) \
1901 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1902
1903
1904extern const struct kvm_stats_header kvm_vm_stats_header;
1905extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1906extern const struct kvm_stats_header kvm_vcpu_stats_header;
1907extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1908
1909#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1910static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
1911{
1912 if (unlikely(kvm->mmu_invalidate_in_progress))
1913 return 1;
1914 /*
1915 * Ensure the read of mmu_invalidate_in_progress happens before
1916 * the read of mmu_invalidate_seq. This interacts with the
1917 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
1918 * that the caller either sees the old (non-zero) value of
1919 * mmu_invalidate_in_progress or the new (incremented) value of
1920 * mmu_invalidate_seq.
1921 *
1922 * PowerPC Book3s HV KVM calls this under a per-page lock rather
1923 * than under kvm->mmu_lock, for scalability, so can't rely on
1924 * kvm->mmu_lock to keep things ordered.
1925 */
1926 smp_rmb();
1927 if (kvm->mmu_invalidate_seq != mmu_seq)
1928 return 1;
1929 return 0;
1930}
1931
1932static inline int mmu_invalidate_retry_hva(struct kvm *kvm,
1933 unsigned long mmu_seq,
1934 unsigned long hva)
1935{
1936 lockdep_assert_held(&kvm->mmu_lock);
1937 /*
1938 * If mmu_invalidate_in_progress is non-zero, then the range maintained
1939 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
1940 * that might be being invalidated. Note that it may include some false
1941 * positives, due to shortcuts when handing concurrent invalidations.
1942 */
1943 if (unlikely(kvm->mmu_invalidate_in_progress) &&
1944 hva >= kvm->mmu_invalidate_range_start &&
1945 hva < kvm->mmu_invalidate_range_end)
1946 return 1;
1947 if (kvm->mmu_invalidate_seq != mmu_seq)
1948 return 1;
1949 return 0;
1950}
1951#endif
1952
1953#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1954
1955#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1956
1957bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1958int kvm_set_irq_routing(struct kvm *kvm,
1959 const struct kvm_irq_routing_entry *entries,
1960 unsigned nr,
1961 unsigned flags);
1962int kvm_set_routing_entry(struct kvm *kvm,
1963 struct kvm_kernel_irq_routing_entry *e,
1964 const struct kvm_irq_routing_entry *ue);
1965void kvm_free_irq_routing(struct kvm *kvm);
1966
1967#else
1968
1969static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1970
1971#endif
1972
1973int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1974
1975#ifdef CONFIG_HAVE_KVM_EVENTFD
1976
1977void kvm_eventfd_init(struct kvm *kvm);
1978int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1979
1980#ifdef CONFIG_HAVE_KVM_IRQFD
1981int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1982void kvm_irqfd_release(struct kvm *kvm);
1983void kvm_irq_routing_update(struct kvm *);
1984#else
1985static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1986{
1987 return -EINVAL;
1988}
1989
1990static inline void kvm_irqfd_release(struct kvm *kvm) {}
1991#endif
1992
1993#else
1994
1995static inline void kvm_eventfd_init(struct kvm *kvm) {}
1996
1997static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1998{
1999 return -EINVAL;
2000}
2001
2002static inline void kvm_irqfd_release(struct kvm *kvm) {}
2003
2004#ifdef CONFIG_HAVE_KVM_IRQCHIP
2005static inline void kvm_irq_routing_update(struct kvm *kvm)
2006{
2007}
2008#endif
2009
2010static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
2011{
2012 return -ENOSYS;
2013}
2014
2015#endif /* CONFIG_HAVE_KVM_EVENTFD */
2016
2017void kvm_arch_irq_routing_update(struct kvm *kvm);
2018
2019static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2020{
2021 /*
2022 * Ensure the rest of the request is published to kvm_check_request's
2023 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
2024 */
2025 smp_wmb();
2026 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2027}
2028
2029static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2030{
2031 /*
2032 * Request that don't require vCPU action should never be logged in
2033 * vcpu->requests. The vCPU won't clear the request, so it will stay
2034 * logged indefinitely and prevent the vCPU from entering the guest.
2035 */
2036 BUILD_BUG_ON(!__builtin_constant_p(req) ||
2037 (req & KVM_REQUEST_NO_ACTION));
2038
2039 __kvm_make_request(req, vcpu);
2040}
2041
2042static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2043{
2044 return READ_ONCE(vcpu->requests);
2045}
2046
2047static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2048{
2049 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2050}
2051
2052static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2053{
2054 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2055}
2056
2057static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2058{
2059 if (kvm_test_request(req, vcpu)) {
2060 kvm_clear_request(req, vcpu);
2061
2062 /*
2063 * Ensure the rest of the request is visible to kvm_check_request's
2064 * caller. Paired with the smp_wmb in kvm_make_request.
2065 */
2066 smp_mb__after_atomic();
2067 return true;
2068 } else {
2069 return false;
2070 }
2071}
2072
2073extern bool kvm_rebooting;
2074
2075extern unsigned int halt_poll_ns;
2076extern unsigned int halt_poll_ns_grow;
2077extern unsigned int halt_poll_ns_grow_start;
2078extern unsigned int halt_poll_ns_shrink;
2079
2080struct kvm_device {
2081 const struct kvm_device_ops *ops;
2082 struct kvm *kvm;
2083 void *private;
2084 struct list_head vm_node;
2085};
2086
2087/* create, destroy, and name are mandatory */
2088struct kvm_device_ops {
2089 const char *name;
2090
2091 /*
2092 * create is called holding kvm->lock and any operations not suitable
2093 * to do while holding the lock should be deferred to init (see
2094 * below).
2095 */
2096 int (*create)(struct kvm_device *dev, u32 type);
2097
2098 /*
2099 * init is called after create if create is successful and is called
2100 * outside of holding kvm->lock.
2101 */
2102 void (*init)(struct kvm_device *dev);
2103
2104 /*
2105 * Destroy is responsible for freeing dev.
2106 *
2107 * Destroy may be called before or after destructors are called
2108 * on emulated I/O regions, depending on whether a reference is
2109 * held by a vcpu or other kvm component that gets destroyed
2110 * after the emulated I/O.
2111 */
2112 void (*destroy)(struct kvm_device *dev);
2113
2114 /*
2115 * Release is an alternative method to free the device. It is
2116 * called when the device file descriptor is closed. Once
2117 * release is called, the destroy method will not be called
2118 * anymore as the device is removed from the device list of
2119 * the VM. kvm->lock is held.
2120 */
2121 void (*release)(struct kvm_device *dev);
2122
2123 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2124 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2125 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2126 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2127 unsigned long arg);
2128 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2129};
2130
2131void kvm_device_get(struct kvm_device *dev);
2132void kvm_device_put(struct kvm_device *dev);
2133struct kvm_device *kvm_device_from_filp(struct file *filp);
2134int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2135void kvm_unregister_device_ops(u32 type);
2136
2137extern struct kvm_device_ops kvm_mpic_ops;
2138extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2139extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2140
2141#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2142
2143static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2144{
2145 vcpu->spin_loop.in_spin_loop = val;
2146}
2147static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2148{
2149 vcpu->spin_loop.dy_eligible = val;
2150}
2151
2152#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2153
2154static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2155{
2156}
2157
2158static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2159{
2160}
2161#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2162
2163static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2164{
2165 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2166 !(memslot->flags & KVM_MEMSLOT_INVALID));
2167}
2168
2169struct kvm_vcpu *kvm_get_running_vcpu(void);
2170struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2171
2172#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2173bool kvm_arch_has_irq_bypass(void);
2174int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2175 struct irq_bypass_producer *);
2176void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2177 struct irq_bypass_producer *);
2178void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2179void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2180int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2181 uint32_t guest_irq, bool set);
2182bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2183 struct kvm_kernel_irq_routing_entry *);
2184#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2185
2186#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2187/* If we wakeup during the poll time, was it a sucessful poll? */
2188static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2189{
2190 return vcpu->valid_wakeup;
2191}
2192
2193#else
2194static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2195{
2196 return true;
2197}
2198#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2199
2200#ifdef CONFIG_HAVE_KVM_NO_POLL
2201/* Callback that tells if we must not poll */
2202bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2203#else
2204static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2205{
2206 return false;
2207}
2208#endif /* CONFIG_HAVE_KVM_NO_POLL */
2209
2210#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2211long kvm_arch_vcpu_async_ioctl(struct file *filp,
2212 unsigned int ioctl, unsigned long arg);
2213#else
2214static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2215 unsigned int ioctl,
2216 unsigned long arg)
2217{
2218 return -ENOIOCTLCMD;
2219}
2220#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2221
2222void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
2223 unsigned long start, unsigned long end);
2224
2225void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2226
2227#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2228int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2229#else
2230static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2231{
2232 return 0;
2233}
2234#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2235
2236typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2237
2238int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2239 uintptr_t data, const char *name,
2240 struct task_struct **thread_ptr);
2241
2242#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2243static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2244{
2245 vcpu->run->exit_reason = KVM_EXIT_INTR;
2246 vcpu->stat.signal_exits++;
2247}
2248#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2249
2250/*
2251 * This defines how many reserved entries we want to keep before we
2252 * kick the vcpu to the userspace to avoid dirty ring full. This
2253 * value can be tuned to higher if e.g. PML is enabled on the host.
2254 */
2255#define KVM_DIRTY_RING_RSVD_ENTRIES 64
2256
2257/* Max number of entries allowed for each kvm dirty ring */
2258#define KVM_DIRTY_RING_MAX_ENTRIES 65536
2259
2260#endif