at v6.0 12 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_HIGHMEM_H 3#define _LINUX_HIGHMEM_H 4 5#include <linux/fs.h> 6#include <linux/kernel.h> 7#include <linux/bug.h> 8#include <linux/cacheflush.h> 9#include <linux/mm.h> 10#include <linux/uaccess.h> 11#include <linux/hardirq.h> 12 13#include "highmem-internal.h" 14 15/** 16 * kmap - Map a page for long term usage 17 * @page: Pointer to the page to be mapped 18 * 19 * Returns: The virtual address of the mapping 20 * 21 * Can only be invoked from preemptible task context because on 32bit 22 * systems with CONFIG_HIGHMEM enabled this function might sleep. 23 * 24 * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area 25 * this returns the virtual address of the direct kernel mapping. 26 * 27 * The returned virtual address is globally visible and valid up to the 28 * point where it is unmapped via kunmap(). The pointer can be handed to 29 * other contexts. 30 * 31 * For highmem pages on 32bit systems this can be slow as the mapping space 32 * is limited and protected by a global lock. In case that there is no 33 * mapping slot available the function blocks until a slot is released via 34 * kunmap(). 35 */ 36static inline void *kmap(struct page *page); 37 38/** 39 * kunmap - Unmap the virtual address mapped by kmap() 40 * @page: Pointer to the page which was mapped by kmap() 41 * 42 * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of 43 * pages in the low memory area. 44 */ 45static inline void kunmap(struct page *page); 46 47/** 48 * kmap_to_page - Get the page for a kmap'ed address 49 * @addr: The address to look up 50 * 51 * Returns: The page which is mapped to @addr. 52 */ 53static inline struct page *kmap_to_page(void *addr); 54 55/** 56 * kmap_flush_unused - Flush all unused kmap mappings in order to 57 * remove stray mappings 58 */ 59static inline void kmap_flush_unused(void); 60 61/** 62 * kmap_local_page - Map a page for temporary usage 63 * @page: Pointer to the page to be mapped 64 * 65 * Returns: The virtual address of the mapping 66 * 67 * Can be invoked from any context, including interrupts. 68 * 69 * Requires careful handling when nesting multiple mappings because the map 70 * management is stack based. The unmap has to be in the reverse order of 71 * the map operation: 72 * 73 * addr1 = kmap_local_page(page1); 74 * addr2 = kmap_local_page(page2); 75 * ... 76 * kunmap_local(addr2); 77 * kunmap_local(addr1); 78 * 79 * Unmapping addr1 before addr2 is invalid and causes malfunction. 80 * 81 * Contrary to kmap() mappings the mapping is only valid in the context of 82 * the caller and cannot be handed to other contexts. 83 * 84 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the 85 * virtual address of the direct mapping. Only real highmem pages are 86 * temporarily mapped. 87 * 88 * While it is significantly faster than kmap() for the higmem case it 89 * comes with restrictions about the pointer validity. 90 * 91 * On HIGHMEM enabled systems mapping a highmem page has the side effect of 92 * disabling migration in order to keep the virtual address stable across 93 * preemption. No caller of kmap_local_page() can rely on this side effect. 94 */ 95static inline void *kmap_local_page(struct page *page); 96 97/** 98 * kmap_local_folio - Map a page in this folio for temporary usage 99 * @folio: The folio containing the page. 100 * @offset: The byte offset within the folio which identifies the page. 101 * 102 * Requires careful handling when nesting multiple mappings because the map 103 * management is stack based. The unmap has to be in the reverse order of 104 * the map operation:: 105 * 106 * addr1 = kmap_local_folio(folio1, offset1); 107 * addr2 = kmap_local_folio(folio2, offset2); 108 * ... 109 * kunmap_local(addr2); 110 * kunmap_local(addr1); 111 * 112 * Unmapping addr1 before addr2 is invalid and causes malfunction. 113 * 114 * Contrary to kmap() mappings the mapping is only valid in the context of 115 * the caller and cannot be handed to other contexts. 116 * 117 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the 118 * virtual address of the direct mapping. Only real highmem pages are 119 * temporarily mapped. 120 * 121 * While it is significantly faster than kmap() for the higmem case it 122 * comes with restrictions about the pointer validity. Only use when really 123 * necessary. 124 * 125 * On HIGHMEM enabled systems mapping a highmem page has the side effect of 126 * disabling migration in order to keep the virtual address stable across 127 * preemption. No caller of kmap_local_folio() can rely on this side effect. 128 * 129 * Context: Can be invoked from any context. 130 * Return: The virtual address of @offset. 131 */ 132static inline void *kmap_local_folio(struct folio *folio, size_t offset); 133 134/** 135 * kmap_atomic - Atomically map a page for temporary usage - Deprecated! 136 * @page: Pointer to the page to be mapped 137 * 138 * Returns: The virtual address of the mapping 139 * 140 * In fact a wrapper around kmap_local_page() which also disables pagefaults 141 * and, depending on PREEMPT_RT configuration, also CPU migration and 142 * preemption. Therefore users should not count on the latter two side effects. 143 * 144 * Mappings should always be released by kunmap_atomic(). 145 * 146 * Do not use in new code. Use kmap_local_page() instead. 147 * 148 * It is used in atomic context when code wants to access the contents of a 149 * page that might be allocated from high memory (see __GFP_HIGHMEM), for 150 * example a page in the pagecache. The API has two functions, and they 151 * can be used in a manner similar to the following:: 152 * 153 * // Find the page of interest. 154 * struct page *page = find_get_page(mapping, offset); 155 * 156 * // Gain access to the contents of that page. 157 * void *vaddr = kmap_atomic(page); 158 * 159 * // Do something to the contents of that page. 160 * memset(vaddr, 0, PAGE_SIZE); 161 * 162 * // Unmap that page. 163 * kunmap_atomic(vaddr); 164 * 165 * Note that the kunmap_atomic() call takes the result of the kmap_atomic() 166 * call, not the argument. 167 * 168 * If you need to map two pages because you want to copy from one page to 169 * another you need to keep the kmap_atomic calls strictly nested, like: 170 * 171 * vaddr1 = kmap_atomic(page1); 172 * vaddr2 = kmap_atomic(page2); 173 * 174 * memcpy(vaddr1, vaddr2, PAGE_SIZE); 175 * 176 * kunmap_atomic(vaddr2); 177 * kunmap_atomic(vaddr1); 178 */ 179static inline void *kmap_atomic(struct page *page); 180 181/* Highmem related interfaces for management code */ 182static inline unsigned int nr_free_highpages(void); 183static inline unsigned long totalhigh_pages(void); 184 185#ifndef ARCH_HAS_FLUSH_ANON_PAGE 186static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) 187{ 188} 189#endif 190 191#ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE 192static inline void flush_kernel_vmap_range(void *vaddr, int size) 193{ 194} 195static inline void invalidate_kernel_vmap_range(void *vaddr, int size) 196{ 197} 198#endif 199 200/* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */ 201#ifndef clear_user_highpage 202static inline void clear_user_highpage(struct page *page, unsigned long vaddr) 203{ 204 void *addr = kmap_local_page(page); 205 clear_user_page(addr, vaddr, page); 206 kunmap_local(addr); 207} 208#endif 209 210#ifndef __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE 211/** 212 * alloc_zeroed_user_highpage_movable - Allocate a zeroed HIGHMEM page for a VMA that the caller knows can move 213 * @vma: The VMA the page is to be allocated for 214 * @vaddr: The virtual address the page will be inserted into 215 * 216 * Returns: The allocated and zeroed HIGHMEM page 217 * 218 * This function will allocate a page for a VMA that the caller knows will 219 * be able to migrate in the future using move_pages() or reclaimed 220 * 221 * An architecture may override this function by defining 222 * __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE and providing their own 223 * implementation. 224 */ 225static inline struct page * 226alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma, 227 unsigned long vaddr) 228{ 229 struct page *page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 230 231 if (page) 232 clear_user_highpage(page, vaddr); 233 234 return page; 235} 236#endif 237 238static inline void clear_highpage(struct page *page) 239{ 240 void *kaddr = kmap_local_page(page); 241 clear_page(kaddr); 242 kunmap_local(kaddr); 243} 244 245static inline void clear_highpage_kasan_tagged(struct page *page) 246{ 247 u8 tag; 248 249 tag = page_kasan_tag(page); 250 page_kasan_tag_reset(page); 251 clear_highpage(page); 252 page_kasan_tag_set(page, tag); 253} 254 255#ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGE 256 257static inline void tag_clear_highpage(struct page *page) 258{ 259} 260 261#endif 262 263/* 264 * If we pass in a base or tail page, we can zero up to PAGE_SIZE. 265 * If we pass in a head page, we can zero up to the size of the compound page. 266 */ 267#ifdef CONFIG_HIGHMEM 268void zero_user_segments(struct page *page, unsigned start1, unsigned end1, 269 unsigned start2, unsigned end2); 270#else 271static inline void zero_user_segments(struct page *page, 272 unsigned start1, unsigned end1, 273 unsigned start2, unsigned end2) 274{ 275 void *kaddr = kmap_local_page(page); 276 unsigned int i; 277 278 BUG_ON(end1 > page_size(page) || end2 > page_size(page)); 279 280 if (end1 > start1) 281 memset(kaddr + start1, 0, end1 - start1); 282 283 if (end2 > start2) 284 memset(kaddr + start2, 0, end2 - start2); 285 286 kunmap_local(kaddr); 287 for (i = 0; i < compound_nr(page); i++) 288 flush_dcache_page(page + i); 289} 290#endif 291 292static inline void zero_user_segment(struct page *page, 293 unsigned start, unsigned end) 294{ 295 zero_user_segments(page, start, end, 0, 0); 296} 297 298static inline void zero_user(struct page *page, 299 unsigned start, unsigned size) 300{ 301 zero_user_segments(page, start, start + size, 0, 0); 302} 303 304#ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE 305 306static inline void copy_user_highpage(struct page *to, struct page *from, 307 unsigned long vaddr, struct vm_area_struct *vma) 308{ 309 char *vfrom, *vto; 310 311 vfrom = kmap_local_page(from); 312 vto = kmap_local_page(to); 313 copy_user_page(vto, vfrom, vaddr, to); 314 kunmap_local(vto); 315 kunmap_local(vfrom); 316} 317 318#endif 319 320#ifndef __HAVE_ARCH_COPY_HIGHPAGE 321 322static inline void copy_highpage(struct page *to, struct page *from) 323{ 324 char *vfrom, *vto; 325 326 vfrom = kmap_local_page(from); 327 vto = kmap_local_page(to); 328 copy_page(vto, vfrom); 329 kunmap_local(vto); 330 kunmap_local(vfrom); 331} 332 333#endif 334 335static inline void memcpy_page(struct page *dst_page, size_t dst_off, 336 struct page *src_page, size_t src_off, 337 size_t len) 338{ 339 char *dst = kmap_local_page(dst_page); 340 char *src = kmap_local_page(src_page); 341 342 VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE); 343 memcpy(dst + dst_off, src + src_off, len); 344 kunmap_local(src); 345 kunmap_local(dst); 346} 347 348static inline void memset_page(struct page *page, size_t offset, int val, 349 size_t len) 350{ 351 char *addr = kmap_local_page(page); 352 353 VM_BUG_ON(offset + len > PAGE_SIZE); 354 memset(addr + offset, val, len); 355 kunmap_local(addr); 356} 357 358static inline void memcpy_from_page(char *to, struct page *page, 359 size_t offset, size_t len) 360{ 361 char *from = kmap_local_page(page); 362 363 VM_BUG_ON(offset + len > PAGE_SIZE); 364 memcpy(to, from + offset, len); 365 kunmap_local(from); 366} 367 368static inline void memcpy_to_page(struct page *page, size_t offset, 369 const char *from, size_t len) 370{ 371 char *to = kmap_local_page(page); 372 373 VM_BUG_ON(offset + len > PAGE_SIZE); 374 memcpy(to + offset, from, len); 375 flush_dcache_page(page); 376 kunmap_local(to); 377} 378 379static inline void memzero_page(struct page *page, size_t offset, size_t len) 380{ 381 char *addr = kmap_local_page(page); 382 383 VM_BUG_ON(offset + len > PAGE_SIZE); 384 memset(addr + offset, 0, len); 385 flush_dcache_page(page); 386 kunmap_local(addr); 387} 388 389/** 390 * folio_zero_segments() - Zero two byte ranges in a folio. 391 * @folio: The folio to write to. 392 * @start1: The first byte to zero. 393 * @xend1: One more than the last byte in the first range. 394 * @start2: The first byte to zero in the second range. 395 * @xend2: One more than the last byte in the second range. 396 */ 397static inline void folio_zero_segments(struct folio *folio, 398 size_t start1, size_t xend1, size_t start2, size_t xend2) 399{ 400 zero_user_segments(&folio->page, start1, xend1, start2, xend2); 401} 402 403/** 404 * folio_zero_segment() - Zero a byte range in a folio. 405 * @folio: The folio to write to. 406 * @start: The first byte to zero. 407 * @xend: One more than the last byte to zero. 408 */ 409static inline void folio_zero_segment(struct folio *folio, 410 size_t start, size_t xend) 411{ 412 zero_user_segments(&folio->page, start, xend, 0, 0); 413} 414 415/** 416 * folio_zero_range() - Zero a byte range in a folio. 417 * @folio: The folio to write to. 418 * @start: The first byte to zero. 419 * @length: The number of bytes to zero. 420 */ 421static inline void folio_zero_range(struct folio *folio, 422 size_t start, size_t length) 423{ 424 zero_user_segments(&folio->page, start, start + length, 0, 0); 425} 426 427#endif /* _LINUX_HIGHMEM_H */