at v6.0 83 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4#ifndef _LINUX_BPF_H 5#define _LINUX_BPF_H 1 6 7#include <uapi/linux/bpf.h> 8#include <uapi/linux/filter.h> 9 10#include <linux/workqueue.h> 11#include <linux/file.h> 12#include <linux/percpu.h> 13#include <linux/err.h> 14#include <linux/rbtree_latch.h> 15#include <linux/numa.h> 16#include <linux/mm_types.h> 17#include <linux/wait.h> 18#include <linux/refcount.h> 19#include <linux/mutex.h> 20#include <linux/module.h> 21#include <linux/kallsyms.h> 22#include <linux/capability.h> 23#include <linux/sched/mm.h> 24#include <linux/slab.h> 25#include <linux/percpu-refcount.h> 26#include <linux/stddef.h> 27#include <linux/bpfptr.h> 28#include <linux/btf.h> 29#include <linux/rcupdate_trace.h> 30 31struct bpf_verifier_env; 32struct bpf_verifier_log; 33struct perf_event; 34struct bpf_prog; 35struct bpf_prog_aux; 36struct bpf_map; 37struct sock; 38struct seq_file; 39struct btf; 40struct btf_type; 41struct exception_table_entry; 42struct seq_operations; 43struct bpf_iter_aux_info; 44struct bpf_local_storage; 45struct bpf_local_storage_map; 46struct kobject; 47struct mem_cgroup; 48struct module; 49struct bpf_func_state; 50struct ftrace_ops; 51 52extern struct idr btf_idr; 53extern spinlock_t btf_idr_lock; 54extern struct kobject *btf_kobj; 55 56typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 57typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 58 struct bpf_iter_aux_info *aux); 59typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 60typedef unsigned int (*bpf_func_t)(const void *, 61 const struct bpf_insn *); 62struct bpf_iter_seq_info { 63 const struct seq_operations *seq_ops; 64 bpf_iter_init_seq_priv_t init_seq_private; 65 bpf_iter_fini_seq_priv_t fini_seq_private; 66 u32 seq_priv_size; 67}; 68 69/* map is generic key/value storage optionally accessible by eBPF programs */ 70struct bpf_map_ops { 71 /* funcs callable from userspace (via syscall) */ 72 int (*map_alloc_check)(union bpf_attr *attr); 73 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 74 void (*map_release)(struct bpf_map *map, struct file *map_file); 75 void (*map_free)(struct bpf_map *map); 76 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 77 void (*map_release_uref)(struct bpf_map *map); 78 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 79 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 80 union bpf_attr __user *uattr); 81 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 82 void *value, u64 flags); 83 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 84 const union bpf_attr *attr, 85 union bpf_attr __user *uattr); 86 int (*map_update_batch)(struct bpf_map *map, const union bpf_attr *attr, 87 union bpf_attr __user *uattr); 88 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 89 union bpf_attr __user *uattr); 90 91 /* funcs callable from userspace and from eBPF programs */ 92 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 93 int (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 94 int (*map_delete_elem)(struct bpf_map *map, void *key); 95 int (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 96 int (*map_pop_elem)(struct bpf_map *map, void *value); 97 int (*map_peek_elem)(struct bpf_map *map, void *value); 98 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 99 100 /* funcs called by prog_array and perf_event_array map */ 101 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 102 int fd); 103 void (*map_fd_put_ptr)(void *ptr); 104 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 105 u32 (*map_fd_sys_lookup_elem)(void *ptr); 106 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 107 struct seq_file *m); 108 int (*map_check_btf)(const struct bpf_map *map, 109 const struct btf *btf, 110 const struct btf_type *key_type, 111 const struct btf_type *value_type); 112 113 /* Prog poke tracking helpers. */ 114 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 115 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 116 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 117 struct bpf_prog *new); 118 119 /* Direct value access helpers. */ 120 int (*map_direct_value_addr)(const struct bpf_map *map, 121 u64 *imm, u32 off); 122 int (*map_direct_value_meta)(const struct bpf_map *map, 123 u64 imm, u32 *off); 124 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 125 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 126 struct poll_table_struct *pts); 127 128 /* Functions called by bpf_local_storage maps */ 129 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 130 void *owner, u32 size); 131 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 132 void *owner, u32 size); 133 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 134 135 /* Misc helpers.*/ 136 int (*map_redirect)(struct bpf_map *map, u32 ifindex, u64 flags); 137 138 /* map_meta_equal must be implemented for maps that can be 139 * used as an inner map. It is a runtime check to ensure 140 * an inner map can be inserted to an outer map. 141 * 142 * Some properties of the inner map has been used during the 143 * verification time. When inserting an inner map at the runtime, 144 * map_meta_equal has to ensure the inserting map has the same 145 * properties that the verifier has used earlier. 146 */ 147 bool (*map_meta_equal)(const struct bpf_map *meta0, 148 const struct bpf_map *meta1); 149 150 151 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 152 struct bpf_func_state *caller, 153 struct bpf_func_state *callee); 154 int (*map_for_each_callback)(struct bpf_map *map, 155 bpf_callback_t callback_fn, 156 void *callback_ctx, u64 flags); 157 158 /* BTF id of struct allocated by map_alloc */ 159 int *map_btf_id; 160 161 /* bpf_iter info used to open a seq_file */ 162 const struct bpf_iter_seq_info *iter_seq_info; 163}; 164 165enum { 166 /* Support at most 8 pointers in a BPF map value */ 167 BPF_MAP_VALUE_OFF_MAX = 8, 168 BPF_MAP_OFF_ARR_MAX = BPF_MAP_VALUE_OFF_MAX + 169 1 + /* for bpf_spin_lock */ 170 1, /* for bpf_timer */ 171}; 172 173enum bpf_kptr_type { 174 BPF_KPTR_UNREF, 175 BPF_KPTR_REF, 176}; 177 178struct bpf_map_value_off_desc { 179 u32 offset; 180 enum bpf_kptr_type type; 181 struct { 182 struct btf *btf; 183 struct module *module; 184 btf_dtor_kfunc_t dtor; 185 u32 btf_id; 186 } kptr; 187}; 188 189struct bpf_map_value_off { 190 u32 nr_off; 191 struct bpf_map_value_off_desc off[]; 192}; 193 194struct bpf_map_off_arr { 195 u32 cnt; 196 u32 field_off[BPF_MAP_OFF_ARR_MAX]; 197 u8 field_sz[BPF_MAP_OFF_ARR_MAX]; 198}; 199 200struct bpf_map { 201 /* The first two cachelines with read-mostly members of which some 202 * are also accessed in fast-path (e.g. ops, max_entries). 203 */ 204 const struct bpf_map_ops *ops ____cacheline_aligned; 205 struct bpf_map *inner_map_meta; 206#ifdef CONFIG_SECURITY 207 void *security; 208#endif 209 enum bpf_map_type map_type; 210 u32 key_size; 211 u32 value_size; 212 u32 max_entries; 213 u64 map_extra; /* any per-map-type extra fields */ 214 u32 map_flags; 215 int spin_lock_off; /* >=0 valid offset, <0 error */ 216 struct bpf_map_value_off *kptr_off_tab; 217 int timer_off; /* >=0 valid offset, <0 error */ 218 u32 id; 219 int numa_node; 220 u32 btf_key_type_id; 221 u32 btf_value_type_id; 222 u32 btf_vmlinux_value_type_id; 223 struct btf *btf; 224#ifdef CONFIG_MEMCG_KMEM 225 struct obj_cgroup *objcg; 226#endif 227 char name[BPF_OBJ_NAME_LEN]; 228 struct bpf_map_off_arr *off_arr; 229 /* The 3rd and 4th cacheline with misc members to avoid false sharing 230 * particularly with refcounting. 231 */ 232 atomic64_t refcnt ____cacheline_aligned; 233 atomic64_t usercnt; 234 struct work_struct work; 235 struct mutex freeze_mutex; 236 atomic64_t writecnt; 237 /* 'Ownership' of program-containing map is claimed by the first program 238 * that is going to use this map or by the first program which FD is 239 * stored in the map to make sure that all callers and callees have the 240 * same prog type, JITed flag and xdp_has_frags flag. 241 */ 242 struct { 243 spinlock_t lock; 244 enum bpf_prog_type type; 245 bool jited; 246 bool xdp_has_frags; 247 } owner; 248 bool bypass_spec_v1; 249 bool frozen; /* write-once; write-protected by freeze_mutex */ 250}; 251 252static inline bool map_value_has_spin_lock(const struct bpf_map *map) 253{ 254 return map->spin_lock_off >= 0; 255} 256 257static inline bool map_value_has_timer(const struct bpf_map *map) 258{ 259 return map->timer_off >= 0; 260} 261 262static inline bool map_value_has_kptrs(const struct bpf_map *map) 263{ 264 return !IS_ERR_OR_NULL(map->kptr_off_tab); 265} 266 267static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 268{ 269 if (unlikely(map_value_has_spin_lock(map))) 270 memset(dst + map->spin_lock_off, 0, sizeof(struct bpf_spin_lock)); 271 if (unlikely(map_value_has_timer(map))) 272 memset(dst + map->timer_off, 0, sizeof(struct bpf_timer)); 273 if (unlikely(map_value_has_kptrs(map))) { 274 struct bpf_map_value_off *tab = map->kptr_off_tab; 275 int i; 276 277 for (i = 0; i < tab->nr_off; i++) 278 *(u64 *)(dst + tab->off[i].offset) = 0; 279 } 280} 281 282/* copy everything but bpf_spin_lock and bpf_timer. There could be one of each. */ 283static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 284{ 285 u32 curr_off = 0; 286 int i; 287 288 if (likely(!map->off_arr)) { 289 memcpy(dst, src, map->value_size); 290 return; 291 } 292 293 for (i = 0; i < map->off_arr->cnt; i++) { 294 u32 next_off = map->off_arr->field_off[i]; 295 296 memcpy(dst + curr_off, src + curr_off, next_off - curr_off); 297 curr_off += map->off_arr->field_sz[i]; 298 } 299 memcpy(dst + curr_off, src + curr_off, map->value_size - curr_off); 300} 301void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 302 bool lock_src); 303void bpf_timer_cancel_and_free(void *timer); 304int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 305 306struct bpf_offload_dev; 307struct bpf_offloaded_map; 308 309struct bpf_map_dev_ops { 310 int (*map_get_next_key)(struct bpf_offloaded_map *map, 311 void *key, void *next_key); 312 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 313 void *key, void *value); 314 int (*map_update_elem)(struct bpf_offloaded_map *map, 315 void *key, void *value, u64 flags); 316 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 317}; 318 319struct bpf_offloaded_map { 320 struct bpf_map map; 321 struct net_device *netdev; 322 const struct bpf_map_dev_ops *dev_ops; 323 void *dev_priv; 324 struct list_head offloads; 325}; 326 327static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 328{ 329 return container_of(map, struct bpf_offloaded_map, map); 330} 331 332static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 333{ 334 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 335} 336 337static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 338{ 339 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 340 map->ops->map_seq_show_elem; 341} 342 343int map_check_no_btf(const struct bpf_map *map, 344 const struct btf *btf, 345 const struct btf_type *key_type, 346 const struct btf_type *value_type); 347 348bool bpf_map_meta_equal(const struct bpf_map *meta0, 349 const struct bpf_map *meta1); 350 351extern const struct bpf_map_ops bpf_map_offload_ops; 352 353/* bpf_type_flag contains a set of flags that are applicable to the values of 354 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 355 * or a memory is read-only. We classify types into two categories: base types 356 * and extended types. Extended types are base types combined with a type flag. 357 * 358 * Currently there are no more than 32 base types in arg_type, ret_type and 359 * reg_types. 360 */ 361#define BPF_BASE_TYPE_BITS 8 362 363enum bpf_type_flag { 364 /* PTR may be NULL. */ 365 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 366 367 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 368 * compatible with both mutable and immutable memory. 369 */ 370 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 371 372 /* MEM was "allocated" from a different helper, and cannot be mixed 373 * with regular non-MEM_ALLOC'ed MEM types. 374 */ 375 MEM_ALLOC = BIT(2 + BPF_BASE_TYPE_BITS), 376 377 /* MEM is in user address space. */ 378 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 379 380 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 381 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 382 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 383 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 384 * to the specified cpu. 385 */ 386 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 387 388 /* Indicates that the argument will be released. */ 389 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 390 391 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 392 * unreferenced and referenced kptr loaded from map value using a load 393 * instruction, so that they can only be dereferenced but not escape the 394 * BPF program into the kernel (i.e. cannot be passed as arguments to 395 * kfunc or bpf helpers). 396 */ 397 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 398 399 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 400 401 /* DYNPTR points to memory local to the bpf program. */ 402 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 403 404 /* DYNPTR points to a ringbuf record. */ 405 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 406 407 /* Size is known at compile time. */ 408 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 409 410 __BPF_TYPE_FLAG_MAX, 411 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 412}; 413 414#define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF) 415 416/* Max number of base types. */ 417#define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 418 419/* Max number of all types. */ 420#define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 421 422/* function argument constraints */ 423enum bpf_arg_type { 424 ARG_DONTCARE = 0, /* unused argument in helper function */ 425 426 /* the following constraints used to prototype 427 * bpf_map_lookup/update/delete_elem() functions 428 */ 429 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 430 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 431 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 432 433 /* Used to prototype bpf_memcmp() and other functions that access data 434 * on eBPF program stack 435 */ 436 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 437 438 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 439 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 440 441 ARG_PTR_TO_CTX, /* pointer to context */ 442 ARG_ANYTHING, /* any (initialized) argument is ok */ 443 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 444 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 445 ARG_PTR_TO_INT, /* pointer to int */ 446 ARG_PTR_TO_LONG, /* pointer to long */ 447 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 448 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 449 ARG_PTR_TO_ALLOC_MEM, /* pointer to dynamically allocated memory */ 450 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 451 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 452 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 453 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 454 ARG_PTR_TO_STACK, /* pointer to stack */ 455 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 456 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 457 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */ 458 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 459 __BPF_ARG_TYPE_MAX, 460 461 /* Extended arg_types. */ 462 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 463 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 464 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 465 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 466 ARG_PTR_TO_ALLOC_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_ALLOC_MEM, 467 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 468 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 469 /* pointer to memory does not need to be initialized, helper function must fill 470 * all bytes or clear them in error case. 471 */ 472 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM, 473 /* Pointer to valid memory of size known at compile time. */ 474 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 475 476 /* This must be the last entry. Its purpose is to ensure the enum is 477 * wide enough to hold the higher bits reserved for bpf_type_flag. 478 */ 479 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 480}; 481static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 482 483/* type of values returned from helper functions */ 484enum bpf_return_type { 485 RET_INTEGER, /* function returns integer */ 486 RET_VOID, /* function doesn't return anything */ 487 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 488 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 489 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 490 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 491 RET_PTR_TO_ALLOC_MEM, /* returns a pointer to dynamically allocated memory */ 492 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 493 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 494 __BPF_RET_TYPE_MAX, 495 496 /* Extended ret_types. */ 497 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 498 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 499 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 500 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 501 RET_PTR_TO_ALLOC_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_ALLOC | RET_PTR_TO_ALLOC_MEM, 502 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_ALLOC_MEM, 503 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 504 505 /* This must be the last entry. Its purpose is to ensure the enum is 506 * wide enough to hold the higher bits reserved for bpf_type_flag. 507 */ 508 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 509}; 510static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 511 512/* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 513 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 514 * instructions after verifying 515 */ 516struct bpf_func_proto { 517 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 518 bool gpl_only; 519 bool pkt_access; 520 enum bpf_return_type ret_type; 521 union { 522 struct { 523 enum bpf_arg_type arg1_type; 524 enum bpf_arg_type arg2_type; 525 enum bpf_arg_type arg3_type; 526 enum bpf_arg_type arg4_type; 527 enum bpf_arg_type arg5_type; 528 }; 529 enum bpf_arg_type arg_type[5]; 530 }; 531 union { 532 struct { 533 u32 *arg1_btf_id; 534 u32 *arg2_btf_id; 535 u32 *arg3_btf_id; 536 u32 *arg4_btf_id; 537 u32 *arg5_btf_id; 538 }; 539 u32 *arg_btf_id[5]; 540 struct { 541 size_t arg1_size; 542 size_t arg2_size; 543 size_t arg3_size; 544 size_t arg4_size; 545 size_t arg5_size; 546 }; 547 size_t arg_size[5]; 548 }; 549 int *ret_btf_id; /* return value btf_id */ 550 bool (*allowed)(const struct bpf_prog *prog); 551}; 552 553/* bpf_context is intentionally undefined structure. Pointer to bpf_context is 554 * the first argument to eBPF programs. 555 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 556 */ 557struct bpf_context; 558 559enum bpf_access_type { 560 BPF_READ = 1, 561 BPF_WRITE = 2 562}; 563 564/* types of values stored in eBPF registers */ 565/* Pointer types represent: 566 * pointer 567 * pointer + imm 568 * pointer + (u16) var 569 * pointer + (u16) var + imm 570 * if (range > 0) then [ptr, ptr + range - off) is safe to access 571 * if (id > 0) means that some 'var' was added 572 * if (off > 0) means that 'imm' was added 573 */ 574enum bpf_reg_type { 575 NOT_INIT = 0, /* nothing was written into register */ 576 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 577 PTR_TO_CTX, /* reg points to bpf_context */ 578 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 579 PTR_TO_MAP_VALUE, /* reg points to map element value */ 580 PTR_TO_MAP_KEY, /* reg points to a map element key */ 581 PTR_TO_STACK, /* reg == frame_pointer + offset */ 582 PTR_TO_PACKET_META, /* skb->data - meta_len */ 583 PTR_TO_PACKET, /* reg points to skb->data */ 584 PTR_TO_PACKET_END, /* skb->data + headlen */ 585 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 586 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 587 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 588 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 589 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 590 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 591 /* PTR_TO_BTF_ID points to a kernel struct that does not need 592 * to be null checked by the BPF program. This does not imply the 593 * pointer is _not_ null and in practice this can easily be a null 594 * pointer when reading pointer chains. The assumption is program 595 * context will handle null pointer dereference typically via fault 596 * handling. The verifier must keep this in mind and can make no 597 * assumptions about null or non-null when doing branch analysis. 598 * Further, when passed into helpers the helpers can not, without 599 * additional context, assume the value is non-null. 600 */ 601 PTR_TO_BTF_ID, 602 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 603 * been checked for null. Used primarily to inform the verifier 604 * an explicit null check is required for this struct. 605 */ 606 PTR_TO_MEM, /* reg points to valid memory region */ 607 PTR_TO_BUF, /* reg points to a read/write buffer */ 608 PTR_TO_FUNC, /* reg points to a bpf program function */ 609 __BPF_REG_TYPE_MAX, 610 611 /* Extended reg_types. */ 612 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 613 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 614 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 615 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 616 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 617 618 /* This must be the last entry. Its purpose is to ensure the enum is 619 * wide enough to hold the higher bits reserved for bpf_type_flag. 620 */ 621 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 622}; 623static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 624 625/* The information passed from prog-specific *_is_valid_access 626 * back to the verifier. 627 */ 628struct bpf_insn_access_aux { 629 enum bpf_reg_type reg_type; 630 union { 631 int ctx_field_size; 632 struct { 633 struct btf *btf; 634 u32 btf_id; 635 }; 636 }; 637 struct bpf_verifier_log *log; /* for verbose logs */ 638}; 639 640static inline void 641bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 642{ 643 aux->ctx_field_size = size; 644} 645 646static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 647{ 648 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) && 649 insn->src_reg == BPF_PSEUDO_FUNC; 650} 651 652struct bpf_prog_ops { 653 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 654 union bpf_attr __user *uattr); 655}; 656 657struct bpf_verifier_ops { 658 /* return eBPF function prototype for verification */ 659 const struct bpf_func_proto * 660 (*get_func_proto)(enum bpf_func_id func_id, 661 const struct bpf_prog *prog); 662 663 /* return true if 'size' wide access at offset 'off' within bpf_context 664 * with 'type' (read or write) is allowed 665 */ 666 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 667 const struct bpf_prog *prog, 668 struct bpf_insn_access_aux *info); 669 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 670 const struct bpf_prog *prog); 671 int (*gen_ld_abs)(const struct bpf_insn *orig, 672 struct bpf_insn *insn_buf); 673 u32 (*convert_ctx_access)(enum bpf_access_type type, 674 const struct bpf_insn *src, 675 struct bpf_insn *dst, 676 struct bpf_prog *prog, u32 *target_size); 677 int (*btf_struct_access)(struct bpf_verifier_log *log, 678 const struct btf *btf, 679 const struct btf_type *t, int off, int size, 680 enum bpf_access_type atype, 681 u32 *next_btf_id, enum bpf_type_flag *flag); 682}; 683 684struct bpf_prog_offload_ops { 685 /* verifier basic callbacks */ 686 int (*insn_hook)(struct bpf_verifier_env *env, 687 int insn_idx, int prev_insn_idx); 688 int (*finalize)(struct bpf_verifier_env *env); 689 /* verifier optimization callbacks (called after .finalize) */ 690 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 691 struct bpf_insn *insn); 692 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 693 /* program management callbacks */ 694 int (*prepare)(struct bpf_prog *prog); 695 int (*translate)(struct bpf_prog *prog); 696 void (*destroy)(struct bpf_prog *prog); 697}; 698 699struct bpf_prog_offload { 700 struct bpf_prog *prog; 701 struct net_device *netdev; 702 struct bpf_offload_dev *offdev; 703 void *dev_priv; 704 struct list_head offloads; 705 bool dev_state; 706 bool opt_failed; 707 void *jited_image; 708 u32 jited_len; 709}; 710 711enum bpf_cgroup_storage_type { 712 BPF_CGROUP_STORAGE_SHARED, 713 BPF_CGROUP_STORAGE_PERCPU, 714 __BPF_CGROUP_STORAGE_MAX 715}; 716 717#define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 718 719/* The longest tracepoint has 12 args. 720 * See include/trace/bpf_probe.h 721 */ 722#define MAX_BPF_FUNC_ARGS 12 723 724/* The maximum number of arguments passed through registers 725 * a single function may have. 726 */ 727#define MAX_BPF_FUNC_REG_ARGS 5 728 729struct btf_func_model { 730 u8 ret_size; 731 u8 nr_args; 732 u8 arg_size[MAX_BPF_FUNC_ARGS]; 733}; 734 735/* Restore arguments before returning from trampoline to let original function 736 * continue executing. This flag is used for fentry progs when there are no 737 * fexit progs. 738 */ 739#define BPF_TRAMP_F_RESTORE_REGS BIT(0) 740/* Call original function after fentry progs, but before fexit progs. 741 * Makes sense for fentry/fexit, normal calls and indirect calls. 742 */ 743#define BPF_TRAMP_F_CALL_ORIG BIT(1) 744/* Skip current frame and return to parent. Makes sense for fentry/fexit 745 * programs only. Should not be used with normal calls and indirect calls. 746 */ 747#define BPF_TRAMP_F_SKIP_FRAME BIT(2) 748/* Store IP address of the caller on the trampoline stack, 749 * so it's available for trampoline's programs. 750 */ 751#define BPF_TRAMP_F_IP_ARG BIT(3) 752/* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 753#define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 754 755/* Get original function from stack instead of from provided direct address. 756 * Makes sense for trampolines with fexit or fmod_ret programs. 757 */ 758#define BPF_TRAMP_F_ORIG_STACK BIT(5) 759 760/* This trampoline is on a function with another ftrace_ops with IPMODIFY, 761 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 762 */ 763#define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 764 765/* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 766 * bytes on x86. 767 */ 768#define BPF_MAX_TRAMP_LINKS 38 769 770struct bpf_tramp_links { 771 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 772 int nr_links; 773}; 774 775struct bpf_tramp_run_ctx; 776 777/* Different use cases for BPF trampoline: 778 * 1. replace nop at the function entry (kprobe equivalent) 779 * flags = BPF_TRAMP_F_RESTORE_REGS 780 * fentry = a set of programs to run before returning from trampoline 781 * 782 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 783 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 784 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 785 * fentry = a set of program to run before calling original function 786 * fexit = a set of program to run after original function 787 * 788 * 3. replace direct call instruction anywhere in the function body 789 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 790 * With flags = 0 791 * fentry = a set of programs to run before returning from trampoline 792 * With flags = BPF_TRAMP_F_CALL_ORIG 793 * orig_call = original callback addr or direct function addr 794 * fentry = a set of program to run before calling original function 795 * fexit = a set of program to run after original function 796 */ 797struct bpf_tramp_image; 798int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end, 799 const struct btf_func_model *m, u32 flags, 800 struct bpf_tramp_links *tlinks, 801 void *orig_call); 802/* these two functions are called from generated trampoline */ 803u64 notrace __bpf_prog_enter(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx); 804void notrace __bpf_prog_exit(struct bpf_prog *prog, u64 start, struct bpf_tramp_run_ctx *run_ctx); 805u64 notrace __bpf_prog_enter_sleepable(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx); 806void notrace __bpf_prog_exit_sleepable(struct bpf_prog *prog, u64 start, 807 struct bpf_tramp_run_ctx *run_ctx); 808u64 notrace __bpf_prog_enter_lsm_cgroup(struct bpf_prog *prog, 809 struct bpf_tramp_run_ctx *run_ctx); 810void notrace __bpf_prog_exit_lsm_cgroup(struct bpf_prog *prog, u64 start, 811 struct bpf_tramp_run_ctx *run_ctx); 812void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 813void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 814 815struct bpf_ksym { 816 unsigned long start; 817 unsigned long end; 818 char name[KSYM_NAME_LEN]; 819 struct list_head lnode; 820 struct latch_tree_node tnode; 821 bool prog; 822}; 823 824enum bpf_tramp_prog_type { 825 BPF_TRAMP_FENTRY, 826 BPF_TRAMP_FEXIT, 827 BPF_TRAMP_MODIFY_RETURN, 828 BPF_TRAMP_MAX, 829 BPF_TRAMP_REPLACE, /* more than MAX */ 830}; 831 832struct bpf_tramp_image { 833 void *image; 834 struct bpf_ksym ksym; 835 struct percpu_ref pcref; 836 void *ip_after_call; 837 void *ip_epilogue; 838 union { 839 struct rcu_head rcu; 840 struct work_struct work; 841 }; 842}; 843 844struct bpf_trampoline { 845 /* hlist for trampoline_table */ 846 struct hlist_node hlist; 847 struct ftrace_ops *fops; 848 /* serializes access to fields of this trampoline */ 849 struct mutex mutex; 850 refcount_t refcnt; 851 u32 flags; 852 u64 key; 853 struct { 854 struct btf_func_model model; 855 void *addr; 856 bool ftrace_managed; 857 } func; 858 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 859 * program by replacing one of its functions. func.addr is the address 860 * of the function it replaced. 861 */ 862 struct bpf_prog *extension_prog; 863 /* list of BPF programs using this trampoline */ 864 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 865 /* Number of attached programs. A counter per kind. */ 866 int progs_cnt[BPF_TRAMP_MAX]; 867 /* Executable image of trampoline */ 868 struct bpf_tramp_image *cur_image; 869 u64 selector; 870 struct module *mod; 871}; 872 873struct bpf_attach_target_info { 874 struct btf_func_model fmodel; 875 long tgt_addr; 876 const char *tgt_name; 877 const struct btf_type *tgt_type; 878}; 879 880#define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 881 882struct bpf_dispatcher_prog { 883 struct bpf_prog *prog; 884 refcount_t users; 885}; 886 887struct bpf_dispatcher { 888 /* dispatcher mutex */ 889 struct mutex mutex; 890 void *func; 891 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 892 int num_progs; 893 void *image; 894 u32 image_off; 895 struct bpf_ksym ksym; 896}; 897 898static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func( 899 const void *ctx, 900 const struct bpf_insn *insnsi, 901 bpf_func_t bpf_func) 902{ 903 return bpf_func(ctx, insnsi); 904} 905 906#ifdef CONFIG_BPF_JIT 907int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 908int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 909struct bpf_trampoline *bpf_trampoline_get(u64 key, 910 struct bpf_attach_target_info *tgt_info); 911void bpf_trampoline_put(struct bpf_trampoline *tr); 912int arch_prepare_bpf_dispatcher(void *image, s64 *funcs, int num_funcs); 913#define BPF_DISPATCHER_INIT(_name) { \ 914 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 915 .func = &_name##_func, \ 916 .progs = {}, \ 917 .num_progs = 0, \ 918 .image = NULL, \ 919 .image_off = 0, \ 920 .ksym = { \ 921 .name = #_name, \ 922 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 923 }, \ 924} 925 926#define DEFINE_BPF_DISPATCHER(name) \ 927 noinline __nocfi unsigned int bpf_dispatcher_##name##_func( \ 928 const void *ctx, \ 929 const struct bpf_insn *insnsi, \ 930 bpf_func_t bpf_func) \ 931 { \ 932 return bpf_func(ctx, insnsi); \ 933 } \ 934 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 935 struct bpf_dispatcher bpf_dispatcher_##name = \ 936 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 937#define DECLARE_BPF_DISPATCHER(name) \ 938 unsigned int bpf_dispatcher_##name##_func( \ 939 const void *ctx, \ 940 const struct bpf_insn *insnsi, \ 941 bpf_func_t bpf_func); \ 942 extern struct bpf_dispatcher bpf_dispatcher_##name; 943#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 944#define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 945void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 946 struct bpf_prog *to); 947/* Called only from JIT-enabled code, so there's no need for stubs. */ 948void *bpf_jit_alloc_exec_page(void); 949void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym); 950void bpf_image_ksym_del(struct bpf_ksym *ksym); 951void bpf_ksym_add(struct bpf_ksym *ksym); 952void bpf_ksym_del(struct bpf_ksym *ksym); 953int bpf_jit_charge_modmem(u32 size); 954void bpf_jit_uncharge_modmem(u32 size); 955bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 956#else 957static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 958 struct bpf_trampoline *tr) 959{ 960 return -ENOTSUPP; 961} 962static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 963 struct bpf_trampoline *tr) 964{ 965 return -ENOTSUPP; 966} 967static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 968 struct bpf_attach_target_info *tgt_info) 969{ 970 return ERR_PTR(-EOPNOTSUPP); 971} 972static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 973#define DEFINE_BPF_DISPATCHER(name) 974#define DECLARE_BPF_DISPATCHER(name) 975#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 976#define BPF_DISPATCHER_PTR(name) NULL 977static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 978 struct bpf_prog *from, 979 struct bpf_prog *to) {} 980static inline bool is_bpf_image_address(unsigned long address) 981{ 982 return false; 983} 984static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 985{ 986 return false; 987} 988#endif 989 990struct bpf_func_info_aux { 991 u16 linkage; 992 bool unreliable; 993}; 994 995enum bpf_jit_poke_reason { 996 BPF_POKE_REASON_TAIL_CALL, 997}; 998 999/* Descriptor of pokes pointing /into/ the JITed image. */ 1000struct bpf_jit_poke_descriptor { 1001 void *tailcall_target; 1002 void *tailcall_bypass; 1003 void *bypass_addr; 1004 void *aux; 1005 union { 1006 struct { 1007 struct bpf_map *map; 1008 u32 key; 1009 } tail_call; 1010 }; 1011 bool tailcall_target_stable; 1012 u8 adj_off; 1013 u16 reason; 1014 u32 insn_idx; 1015}; 1016 1017/* reg_type info for ctx arguments */ 1018struct bpf_ctx_arg_aux { 1019 u32 offset; 1020 enum bpf_reg_type reg_type; 1021 u32 btf_id; 1022}; 1023 1024struct btf_mod_pair { 1025 struct btf *btf; 1026 struct module *module; 1027}; 1028 1029struct bpf_kfunc_desc_tab; 1030 1031struct bpf_prog_aux { 1032 atomic64_t refcnt; 1033 u32 used_map_cnt; 1034 u32 used_btf_cnt; 1035 u32 max_ctx_offset; 1036 u32 max_pkt_offset; 1037 u32 max_tp_access; 1038 u32 stack_depth; 1039 u32 id; 1040 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1041 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1042 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1043 u32 ctx_arg_info_size; 1044 u32 max_rdonly_access; 1045 u32 max_rdwr_access; 1046 struct btf *attach_btf; 1047 const struct bpf_ctx_arg_aux *ctx_arg_info; 1048 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1049 struct bpf_prog *dst_prog; 1050 struct bpf_trampoline *dst_trampoline; 1051 enum bpf_prog_type saved_dst_prog_type; 1052 enum bpf_attach_type saved_dst_attach_type; 1053 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1054 bool offload_requested; 1055 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1056 bool func_proto_unreliable; 1057 bool sleepable; 1058 bool tail_call_reachable; 1059 bool xdp_has_frags; 1060 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1061 const struct btf_type *attach_func_proto; 1062 /* function name for valid attach_btf_id */ 1063 const char *attach_func_name; 1064 struct bpf_prog **func; 1065 void *jit_data; /* JIT specific data. arch dependent */ 1066 struct bpf_jit_poke_descriptor *poke_tab; 1067 struct bpf_kfunc_desc_tab *kfunc_tab; 1068 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1069 u32 size_poke_tab; 1070 struct bpf_ksym ksym; 1071 const struct bpf_prog_ops *ops; 1072 struct bpf_map **used_maps; 1073 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1074 struct btf_mod_pair *used_btfs; 1075 struct bpf_prog *prog; 1076 struct user_struct *user; 1077 u64 load_time; /* ns since boottime */ 1078 u32 verified_insns; 1079 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1080 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1081 char name[BPF_OBJ_NAME_LEN]; 1082#ifdef CONFIG_SECURITY 1083 void *security; 1084#endif 1085 struct bpf_prog_offload *offload; 1086 struct btf *btf; 1087 struct bpf_func_info *func_info; 1088 struct bpf_func_info_aux *func_info_aux; 1089 /* bpf_line_info loaded from userspace. linfo->insn_off 1090 * has the xlated insn offset. 1091 * Both the main and sub prog share the same linfo. 1092 * The subprog can access its first linfo by 1093 * using the linfo_idx. 1094 */ 1095 struct bpf_line_info *linfo; 1096 /* jited_linfo is the jited addr of the linfo. It has a 1097 * one to one mapping to linfo: 1098 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1099 * Both the main and sub prog share the same jited_linfo. 1100 * The subprog can access its first jited_linfo by 1101 * using the linfo_idx. 1102 */ 1103 void **jited_linfo; 1104 u32 func_info_cnt; 1105 u32 nr_linfo; 1106 /* subprog can use linfo_idx to access its first linfo and 1107 * jited_linfo. 1108 * main prog always has linfo_idx == 0 1109 */ 1110 u32 linfo_idx; 1111 u32 num_exentries; 1112 struct exception_table_entry *extable; 1113 union { 1114 struct work_struct work; 1115 struct rcu_head rcu; 1116 }; 1117}; 1118 1119struct bpf_prog { 1120 u16 pages; /* Number of allocated pages */ 1121 u16 jited:1, /* Is our filter JIT'ed? */ 1122 jit_requested:1,/* archs need to JIT the prog */ 1123 gpl_compatible:1, /* Is filter GPL compatible? */ 1124 cb_access:1, /* Is control block accessed? */ 1125 dst_needed:1, /* Do we need dst entry? */ 1126 blinding_requested:1, /* needs constant blinding */ 1127 blinded:1, /* Was blinded */ 1128 is_func:1, /* program is a bpf function */ 1129 kprobe_override:1, /* Do we override a kprobe? */ 1130 has_callchain_buf:1, /* callchain buffer allocated? */ 1131 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1132 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1133 call_get_func_ip:1, /* Do we call get_func_ip() */ 1134 tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */ 1135 enum bpf_prog_type type; /* Type of BPF program */ 1136 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1137 u32 len; /* Number of filter blocks */ 1138 u32 jited_len; /* Size of jited insns in bytes */ 1139 u8 tag[BPF_TAG_SIZE]; 1140 struct bpf_prog_stats __percpu *stats; 1141 int __percpu *active; 1142 unsigned int (*bpf_func)(const void *ctx, 1143 const struct bpf_insn *insn); 1144 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1145 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1146 /* Instructions for interpreter */ 1147 union { 1148 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1149 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1150 }; 1151}; 1152 1153struct bpf_array_aux { 1154 /* Programs with direct jumps into programs part of this array. */ 1155 struct list_head poke_progs; 1156 struct bpf_map *map; 1157 struct mutex poke_mutex; 1158 struct work_struct work; 1159}; 1160 1161struct bpf_link { 1162 atomic64_t refcnt; 1163 u32 id; 1164 enum bpf_link_type type; 1165 const struct bpf_link_ops *ops; 1166 struct bpf_prog *prog; 1167 struct work_struct work; 1168}; 1169 1170struct bpf_link_ops { 1171 void (*release)(struct bpf_link *link); 1172 void (*dealloc)(struct bpf_link *link); 1173 int (*detach)(struct bpf_link *link); 1174 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1175 struct bpf_prog *old_prog); 1176 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1177 int (*fill_link_info)(const struct bpf_link *link, 1178 struct bpf_link_info *info); 1179}; 1180 1181struct bpf_tramp_link { 1182 struct bpf_link link; 1183 struct hlist_node tramp_hlist; 1184 u64 cookie; 1185}; 1186 1187struct bpf_shim_tramp_link { 1188 struct bpf_tramp_link link; 1189 struct bpf_trampoline *trampoline; 1190}; 1191 1192struct bpf_tracing_link { 1193 struct bpf_tramp_link link; 1194 enum bpf_attach_type attach_type; 1195 struct bpf_trampoline *trampoline; 1196 struct bpf_prog *tgt_prog; 1197}; 1198 1199struct bpf_link_primer { 1200 struct bpf_link *link; 1201 struct file *file; 1202 int fd; 1203 u32 id; 1204}; 1205 1206struct bpf_struct_ops_value; 1207struct btf_member; 1208 1209#define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1210struct bpf_struct_ops { 1211 const struct bpf_verifier_ops *verifier_ops; 1212 int (*init)(struct btf *btf); 1213 int (*check_member)(const struct btf_type *t, 1214 const struct btf_member *member); 1215 int (*init_member)(const struct btf_type *t, 1216 const struct btf_member *member, 1217 void *kdata, const void *udata); 1218 int (*reg)(void *kdata); 1219 void (*unreg)(void *kdata); 1220 const struct btf_type *type; 1221 const struct btf_type *value_type; 1222 const char *name; 1223 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1224 u32 type_id; 1225 u32 value_id; 1226}; 1227 1228#if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1229#define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1230const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id); 1231void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log); 1232bool bpf_struct_ops_get(const void *kdata); 1233void bpf_struct_ops_put(const void *kdata); 1234int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1235 void *value); 1236int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1237 struct bpf_tramp_link *link, 1238 const struct btf_func_model *model, 1239 void *image, void *image_end); 1240static inline bool bpf_try_module_get(const void *data, struct module *owner) 1241{ 1242 if (owner == BPF_MODULE_OWNER) 1243 return bpf_struct_ops_get(data); 1244 else 1245 return try_module_get(owner); 1246} 1247static inline void bpf_module_put(const void *data, struct module *owner) 1248{ 1249 if (owner == BPF_MODULE_OWNER) 1250 bpf_struct_ops_put(data); 1251 else 1252 module_put(owner); 1253} 1254 1255#ifdef CONFIG_NET 1256/* Define it here to avoid the use of forward declaration */ 1257struct bpf_dummy_ops_state { 1258 int val; 1259}; 1260 1261struct bpf_dummy_ops { 1262 int (*test_1)(struct bpf_dummy_ops_state *cb); 1263 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1264 char a3, unsigned long a4); 1265}; 1266 1267int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1268 union bpf_attr __user *uattr); 1269#endif 1270#else 1271static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id) 1272{ 1273 return NULL; 1274} 1275static inline void bpf_struct_ops_init(struct btf *btf, 1276 struct bpf_verifier_log *log) 1277{ 1278} 1279static inline bool bpf_try_module_get(const void *data, struct module *owner) 1280{ 1281 return try_module_get(owner); 1282} 1283static inline void bpf_module_put(const void *data, struct module *owner) 1284{ 1285 module_put(owner); 1286} 1287static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1288 void *key, 1289 void *value) 1290{ 1291 return -EINVAL; 1292} 1293#endif 1294 1295#if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1296int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1297 int cgroup_atype); 1298void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1299#else 1300static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1301 int cgroup_atype) 1302{ 1303 return -EOPNOTSUPP; 1304} 1305static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1306{ 1307} 1308#endif 1309 1310struct bpf_array { 1311 struct bpf_map map; 1312 u32 elem_size; 1313 u32 index_mask; 1314 struct bpf_array_aux *aux; 1315 union { 1316 char value[0] __aligned(8); 1317 void *ptrs[0] __aligned(8); 1318 void __percpu *pptrs[0] __aligned(8); 1319 }; 1320}; 1321 1322#define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1323#define MAX_TAIL_CALL_CNT 33 1324 1325/* Maximum number of loops for bpf_loop */ 1326#define BPF_MAX_LOOPS BIT(23) 1327 1328#define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 1329 BPF_F_RDONLY_PROG | \ 1330 BPF_F_WRONLY | \ 1331 BPF_F_WRONLY_PROG) 1332 1333#define BPF_MAP_CAN_READ BIT(0) 1334#define BPF_MAP_CAN_WRITE BIT(1) 1335 1336static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 1337{ 1338 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1339 1340 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 1341 * not possible. 1342 */ 1343 if (access_flags & BPF_F_RDONLY_PROG) 1344 return BPF_MAP_CAN_READ; 1345 else if (access_flags & BPF_F_WRONLY_PROG) 1346 return BPF_MAP_CAN_WRITE; 1347 else 1348 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 1349} 1350 1351static inline bool bpf_map_flags_access_ok(u32 access_flags) 1352{ 1353 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 1354 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1355} 1356 1357struct bpf_event_entry { 1358 struct perf_event *event; 1359 struct file *perf_file; 1360 struct file *map_file; 1361 struct rcu_head rcu; 1362}; 1363 1364static inline bool map_type_contains_progs(struct bpf_map *map) 1365{ 1366 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 1367 map->map_type == BPF_MAP_TYPE_DEVMAP || 1368 map->map_type == BPF_MAP_TYPE_CPUMAP; 1369} 1370 1371bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 1372int bpf_prog_calc_tag(struct bpf_prog *fp); 1373 1374const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 1375const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 1376 1377typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 1378 unsigned long off, unsigned long len); 1379typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 1380 const struct bpf_insn *src, 1381 struct bpf_insn *dst, 1382 struct bpf_prog *prog, 1383 u32 *target_size); 1384 1385u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 1386 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 1387 1388/* an array of programs to be executed under rcu_lock. 1389 * 1390 * Typical usage: 1391 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 1392 * 1393 * the structure returned by bpf_prog_array_alloc() should be populated 1394 * with program pointers and the last pointer must be NULL. 1395 * The user has to keep refcnt on the program and make sure the program 1396 * is removed from the array before bpf_prog_put(). 1397 * The 'struct bpf_prog_array *' should only be replaced with xchg() 1398 * since other cpus are walking the array of pointers in parallel. 1399 */ 1400struct bpf_prog_array_item { 1401 struct bpf_prog *prog; 1402 union { 1403 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1404 u64 bpf_cookie; 1405 }; 1406}; 1407 1408struct bpf_prog_array { 1409 struct rcu_head rcu; 1410 struct bpf_prog_array_item items[]; 1411}; 1412 1413struct bpf_empty_prog_array { 1414 struct bpf_prog_array hdr; 1415 struct bpf_prog *null_prog; 1416}; 1417 1418/* to avoid allocating empty bpf_prog_array for cgroups that 1419 * don't have bpf program attached use one global 'bpf_empty_prog_array' 1420 * It will not be modified the caller of bpf_prog_array_alloc() 1421 * (since caller requested prog_cnt == 0) 1422 * that pointer should be 'freed' by bpf_prog_array_free() 1423 */ 1424extern struct bpf_empty_prog_array bpf_empty_prog_array; 1425 1426struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 1427void bpf_prog_array_free(struct bpf_prog_array *progs); 1428/* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 1429void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 1430int bpf_prog_array_length(struct bpf_prog_array *progs); 1431bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 1432int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 1433 __u32 __user *prog_ids, u32 cnt); 1434 1435void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 1436 struct bpf_prog *old_prog); 1437int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 1438int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 1439 struct bpf_prog *prog); 1440int bpf_prog_array_copy_info(struct bpf_prog_array *array, 1441 u32 *prog_ids, u32 request_cnt, 1442 u32 *prog_cnt); 1443int bpf_prog_array_copy(struct bpf_prog_array *old_array, 1444 struct bpf_prog *exclude_prog, 1445 struct bpf_prog *include_prog, 1446 u64 bpf_cookie, 1447 struct bpf_prog_array **new_array); 1448 1449struct bpf_run_ctx {}; 1450 1451struct bpf_cg_run_ctx { 1452 struct bpf_run_ctx run_ctx; 1453 const struct bpf_prog_array_item *prog_item; 1454 int retval; 1455}; 1456 1457struct bpf_trace_run_ctx { 1458 struct bpf_run_ctx run_ctx; 1459 u64 bpf_cookie; 1460}; 1461 1462struct bpf_tramp_run_ctx { 1463 struct bpf_run_ctx run_ctx; 1464 u64 bpf_cookie; 1465 struct bpf_run_ctx *saved_run_ctx; 1466}; 1467 1468static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 1469{ 1470 struct bpf_run_ctx *old_ctx = NULL; 1471 1472#ifdef CONFIG_BPF_SYSCALL 1473 old_ctx = current->bpf_ctx; 1474 current->bpf_ctx = new_ctx; 1475#endif 1476 return old_ctx; 1477} 1478 1479static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 1480{ 1481#ifdef CONFIG_BPF_SYSCALL 1482 current->bpf_ctx = old_ctx; 1483#endif 1484} 1485 1486/* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 1487#define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 1488/* BPF program asks to set CN on the packet. */ 1489#define BPF_RET_SET_CN (1 << 0) 1490 1491typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 1492 1493static __always_inline u32 1494bpf_prog_run_array(const struct bpf_prog_array *array, 1495 const void *ctx, bpf_prog_run_fn run_prog) 1496{ 1497 const struct bpf_prog_array_item *item; 1498 const struct bpf_prog *prog; 1499 struct bpf_run_ctx *old_run_ctx; 1500 struct bpf_trace_run_ctx run_ctx; 1501 u32 ret = 1; 1502 1503 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 1504 1505 if (unlikely(!array)) 1506 return ret; 1507 1508 migrate_disable(); 1509 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 1510 item = &array->items[0]; 1511 while ((prog = READ_ONCE(item->prog))) { 1512 run_ctx.bpf_cookie = item->bpf_cookie; 1513 ret &= run_prog(prog, ctx); 1514 item++; 1515 } 1516 bpf_reset_run_ctx(old_run_ctx); 1517 migrate_enable(); 1518 return ret; 1519} 1520 1521/* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 1522 * 1523 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 1524 * overall. As a result, we must use the bpf_prog_array_free_sleepable 1525 * in order to use the tasks_trace rcu grace period. 1526 * 1527 * When a non-sleepable program is inside the array, we take the rcu read 1528 * section and disable preemption for that program alone, so it can access 1529 * rcu-protected dynamically sized maps. 1530 */ 1531static __always_inline u32 1532bpf_prog_run_array_sleepable(const struct bpf_prog_array __rcu *array_rcu, 1533 const void *ctx, bpf_prog_run_fn run_prog) 1534{ 1535 const struct bpf_prog_array_item *item; 1536 const struct bpf_prog *prog; 1537 const struct bpf_prog_array *array; 1538 struct bpf_run_ctx *old_run_ctx; 1539 struct bpf_trace_run_ctx run_ctx; 1540 u32 ret = 1; 1541 1542 might_fault(); 1543 1544 rcu_read_lock_trace(); 1545 migrate_disable(); 1546 1547 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held()); 1548 if (unlikely(!array)) 1549 goto out; 1550 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 1551 item = &array->items[0]; 1552 while ((prog = READ_ONCE(item->prog))) { 1553 if (!prog->aux->sleepable) 1554 rcu_read_lock(); 1555 1556 run_ctx.bpf_cookie = item->bpf_cookie; 1557 ret &= run_prog(prog, ctx); 1558 item++; 1559 1560 if (!prog->aux->sleepable) 1561 rcu_read_unlock(); 1562 } 1563 bpf_reset_run_ctx(old_run_ctx); 1564out: 1565 migrate_enable(); 1566 rcu_read_unlock_trace(); 1567 return ret; 1568} 1569 1570#ifdef CONFIG_BPF_SYSCALL 1571DECLARE_PER_CPU(int, bpf_prog_active); 1572extern struct mutex bpf_stats_enabled_mutex; 1573 1574/* 1575 * Block execution of BPF programs attached to instrumentation (perf, 1576 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 1577 * these events can happen inside a region which holds a map bucket lock 1578 * and can deadlock on it. 1579 */ 1580static inline void bpf_disable_instrumentation(void) 1581{ 1582 migrate_disable(); 1583 this_cpu_inc(bpf_prog_active); 1584} 1585 1586static inline void bpf_enable_instrumentation(void) 1587{ 1588 this_cpu_dec(bpf_prog_active); 1589 migrate_enable(); 1590} 1591 1592extern const struct file_operations bpf_map_fops; 1593extern const struct file_operations bpf_prog_fops; 1594extern const struct file_operations bpf_iter_fops; 1595 1596#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 1597 extern const struct bpf_prog_ops _name ## _prog_ops; \ 1598 extern const struct bpf_verifier_ops _name ## _verifier_ops; 1599#define BPF_MAP_TYPE(_id, _ops) \ 1600 extern const struct bpf_map_ops _ops; 1601#define BPF_LINK_TYPE(_id, _name) 1602#include <linux/bpf_types.h> 1603#undef BPF_PROG_TYPE 1604#undef BPF_MAP_TYPE 1605#undef BPF_LINK_TYPE 1606 1607extern const struct bpf_prog_ops bpf_offload_prog_ops; 1608extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 1609extern const struct bpf_verifier_ops xdp_analyzer_ops; 1610 1611struct bpf_prog *bpf_prog_get(u32 ufd); 1612struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 1613 bool attach_drv); 1614void bpf_prog_add(struct bpf_prog *prog, int i); 1615void bpf_prog_sub(struct bpf_prog *prog, int i); 1616void bpf_prog_inc(struct bpf_prog *prog); 1617struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 1618void bpf_prog_put(struct bpf_prog *prog); 1619 1620void bpf_prog_free_id(struct bpf_prog *prog, bool do_idr_lock); 1621void bpf_map_free_id(struct bpf_map *map, bool do_idr_lock); 1622 1623struct bpf_map_value_off_desc *bpf_map_kptr_off_contains(struct bpf_map *map, u32 offset); 1624void bpf_map_free_kptr_off_tab(struct bpf_map *map); 1625struct bpf_map_value_off *bpf_map_copy_kptr_off_tab(const struct bpf_map *map); 1626bool bpf_map_equal_kptr_off_tab(const struct bpf_map *map_a, const struct bpf_map *map_b); 1627void bpf_map_free_kptrs(struct bpf_map *map, void *map_value); 1628 1629struct bpf_map *bpf_map_get(u32 ufd); 1630struct bpf_map *bpf_map_get_with_uref(u32 ufd); 1631struct bpf_map *__bpf_map_get(struct fd f); 1632void bpf_map_inc(struct bpf_map *map); 1633void bpf_map_inc_with_uref(struct bpf_map *map); 1634struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 1635void bpf_map_put_with_uref(struct bpf_map *map); 1636void bpf_map_put(struct bpf_map *map); 1637void *bpf_map_area_alloc(u64 size, int numa_node); 1638void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 1639void bpf_map_area_free(void *base); 1640bool bpf_map_write_active(const struct bpf_map *map); 1641void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 1642int generic_map_lookup_batch(struct bpf_map *map, 1643 const union bpf_attr *attr, 1644 union bpf_attr __user *uattr); 1645int generic_map_update_batch(struct bpf_map *map, 1646 const union bpf_attr *attr, 1647 union bpf_attr __user *uattr); 1648int generic_map_delete_batch(struct bpf_map *map, 1649 const union bpf_attr *attr, 1650 union bpf_attr __user *uattr); 1651struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 1652struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 1653 1654#ifdef CONFIG_MEMCG_KMEM 1655void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 1656 int node); 1657void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 1658void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 1659 size_t align, gfp_t flags); 1660#else 1661static inline void * 1662bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 1663 int node) 1664{ 1665 return kmalloc_node(size, flags, node); 1666} 1667 1668static inline void * 1669bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags) 1670{ 1671 return kzalloc(size, flags); 1672} 1673 1674static inline void __percpu * 1675bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align, 1676 gfp_t flags) 1677{ 1678 return __alloc_percpu_gfp(size, align, flags); 1679} 1680#endif 1681 1682extern int sysctl_unprivileged_bpf_disabled; 1683 1684static inline bool bpf_allow_ptr_leaks(void) 1685{ 1686 return perfmon_capable(); 1687} 1688 1689static inline bool bpf_allow_uninit_stack(void) 1690{ 1691 return perfmon_capable(); 1692} 1693 1694static inline bool bpf_allow_ptr_to_map_access(void) 1695{ 1696 return perfmon_capable(); 1697} 1698 1699static inline bool bpf_bypass_spec_v1(void) 1700{ 1701 return perfmon_capable(); 1702} 1703 1704static inline bool bpf_bypass_spec_v4(void) 1705{ 1706 return perfmon_capable(); 1707} 1708 1709int bpf_map_new_fd(struct bpf_map *map, int flags); 1710int bpf_prog_new_fd(struct bpf_prog *prog); 1711 1712void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 1713 const struct bpf_link_ops *ops, struct bpf_prog *prog); 1714int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 1715int bpf_link_settle(struct bpf_link_primer *primer); 1716void bpf_link_cleanup(struct bpf_link_primer *primer); 1717void bpf_link_inc(struct bpf_link *link); 1718void bpf_link_put(struct bpf_link *link); 1719int bpf_link_new_fd(struct bpf_link *link); 1720struct file *bpf_link_new_file(struct bpf_link *link, int *reserved_fd); 1721struct bpf_link *bpf_link_get_from_fd(u32 ufd); 1722struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 1723 1724int bpf_obj_pin_user(u32 ufd, const char __user *pathname); 1725int bpf_obj_get_user(const char __user *pathname, int flags); 1726 1727#define BPF_ITER_FUNC_PREFIX "bpf_iter_" 1728#define DEFINE_BPF_ITER_FUNC(target, args...) \ 1729 extern int bpf_iter_ ## target(args); \ 1730 int __init bpf_iter_ ## target(args) { return 0; } 1731 1732struct bpf_iter_aux_info { 1733 struct bpf_map *map; 1734}; 1735 1736typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 1737 union bpf_iter_link_info *linfo, 1738 struct bpf_iter_aux_info *aux); 1739typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 1740typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 1741 struct seq_file *seq); 1742typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 1743 struct bpf_link_info *info); 1744typedef const struct bpf_func_proto * 1745(*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 1746 const struct bpf_prog *prog); 1747 1748enum bpf_iter_feature { 1749 BPF_ITER_RESCHED = BIT(0), 1750}; 1751 1752#define BPF_ITER_CTX_ARG_MAX 2 1753struct bpf_iter_reg { 1754 const char *target; 1755 bpf_iter_attach_target_t attach_target; 1756 bpf_iter_detach_target_t detach_target; 1757 bpf_iter_show_fdinfo_t show_fdinfo; 1758 bpf_iter_fill_link_info_t fill_link_info; 1759 bpf_iter_get_func_proto_t get_func_proto; 1760 u32 ctx_arg_info_size; 1761 u32 feature; 1762 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 1763 const struct bpf_iter_seq_info *seq_info; 1764}; 1765 1766struct bpf_iter_meta { 1767 __bpf_md_ptr(struct seq_file *, seq); 1768 u64 session_id; 1769 u64 seq_num; 1770}; 1771 1772struct bpf_iter__bpf_map_elem { 1773 __bpf_md_ptr(struct bpf_iter_meta *, meta); 1774 __bpf_md_ptr(struct bpf_map *, map); 1775 __bpf_md_ptr(void *, key); 1776 __bpf_md_ptr(void *, value); 1777}; 1778 1779int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 1780void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 1781bool bpf_iter_prog_supported(struct bpf_prog *prog); 1782const struct bpf_func_proto * 1783bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 1784int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 1785int bpf_iter_new_fd(struct bpf_link *link); 1786bool bpf_link_is_iter(struct bpf_link *link); 1787struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 1788int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 1789void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 1790 struct seq_file *seq); 1791int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 1792 struct bpf_link_info *info); 1793 1794int map_set_for_each_callback_args(struct bpf_verifier_env *env, 1795 struct bpf_func_state *caller, 1796 struct bpf_func_state *callee); 1797 1798int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 1799int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 1800int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 1801 u64 flags); 1802int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 1803 u64 flags); 1804 1805int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 1806 1807int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 1808 void *key, void *value, u64 map_flags); 1809int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 1810int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 1811 void *key, void *value, u64 map_flags); 1812int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 1813 1814int bpf_get_file_flag(int flags); 1815int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 1816 size_t actual_size); 1817 1818/* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 1819 * forced to use 'long' read/writes to try to atomically copy long counters. 1820 * Best-effort only. No barriers here, since it _will_ race with concurrent 1821 * updates from BPF programs. Called from bpf syscall and mostly used with 1822 * size 8 or 16 bytes, so ask compiler to inline it. 1823 */ 1824static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 1825{ 1826 const long *lsrc = src; 1827 long *ldst = dst; 1828 1829 size /= sizeof(long); 1830 while (size--) 1831 *ldst++ = *lsrc++; 1832} 1833 1834/* verify correctness of eBPF program */ 1835int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr); 1836 1837#ifndef CONFIG_BPF_JIT_ALWAYS_ON 1838void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 1839#endif 1840 1841struct btf *bpf_get_btf_vmlinux(void); 1842 1843/* Map specifics */ 1844struct xdp_frame; 1845struct sk_buff; 1846struct bpf_dtab_netdev; 1847struct bpf_cpu_map_entry; 1848 1849void __dev_flush(void); 1850int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 1851 struct net_device *dev_rx); 1852int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 1853 struct net_device *dev_rx); 1854int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 1855 struct bpf_map *map, bool exclude_ingress); 1856int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 1857 struct bpf_prog *xdp_prog); 1858int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 1859 struct bpf_prog *xdp_prog, struct bpf_map *map, 1860 bool exclude_ingress); 1861 1862void __cpu_map_flush(void); 1863int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 1864 struct net_device *dev_rx); 1865int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 1866 struct sk_buff *skb); 1867 1868/* Return map's numa specified by userspace */ 1869static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 1870{ 1871 return (attr->map_flags & BPF_F_NUMA_NODE) ? 1872 attr->numa_node : NUMA_NO_NODE; 1873} 1874 1875struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 1876int array_map_alloc_check(union bpf_attr *attr); 1877 1878int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 1879 union bpf_attr __user *uattr); 1880int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 1881 union bpf_attr __user *uattr); 1882int bpf_prog_test_run_tracing(struct bpf_prog *prog, 1883 const union bpf_attr *kattr, 1884 union bpf_attr __user *uattr); 1885int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 1886 const union bpf_attr *kattr, 1887 union bpf_attr __user *uattr); 1888int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 1889 const union bpf_attr *kattr, 1890 union bpf_attr __user *uattr); 1891int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 1892 const union bpf_attr *kattr, 1893 union bpf_attr __user *uattr); 1894bool btf_ctx_access(int off, int size, enum bpf_access_type type, 1895 const struct bpf_prog *prog, 1896 struct bpf_insn_access_aux *info); 1897 1898static inline bool bpf_tracing_ctx_access(int off, int size, 1899 enum bpf_access_type type) 1900{ 1901 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 1902 return false; 1903 if (type != BPF_READ) 1904 return false; 1905 if (off % size != 0) 1906 return false; 1907 return true; 1908} 1909 1910static inline bool bpf_tracing_btf_ctx_access(int off, int size, 1911 enum bpf_access_type type, 1912 const struct bpf_prog *prog, 1913 struct bpf_insn_access_aux *info) 1914{ 1915 if (!bpf_tracing_ctx_access(off, size, type)) 1916 return false; 1917 return btf_ctx_access(off, size, type, prog, info); 1918} 1919 1920int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf, 1921 const struct btf_type *t, int off, int size, 1922 enum bpf_access_type atype, 1923 u32 *next_btf_id, enum bpf_type_flag *flag); 1924bool btf_struct_ids_match(struct bpf_verifier_log *log, 1925 const struct btf *btf, u32 id, int off, 1926 const struct btf *need_btf, u32 need_type_id, 1927 bool strict); 1928 1929int btf_distill_func_proto(struct bpf_verifier_log *log, 1930 struct btf *btf, 1931 const struct btf_type *func_proto, 1932 const char *func_name, 1933 struct btf_func_model *m); 1934 1935struct bpf_reg_state; 1936int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 1937 struct bpf_reg_state *regs); 1938int btf_check_kfunc_arg_match(struct bpf_verifier_env *env, 1939 const struct btf *btf, u32 func_id, 1940 struct bpf_reg_state *regs, 1941 u32 kfunc_flags); 1942int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 1943 struct bpf_reg_state *reg); 1944int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 1945 struct btf *btf, const struct btf_type *t); 1946 1947struct bpf_prog *bpf_prog_by_id(u32 id); 1948struct bpf_link *bpf_link_by_id(u32 id); 1949 1950const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id); 1951void bpf_task_storage_free(struct task_struct *task); 1952bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 1953const struct btf_func_model * 1954bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 1955 const struct bpf_insn *insn); 1956struct bpf_core_ctx { 1957 struct bpf_verifier_log *log; 1958 const struct btf *btf; 1959}; 1960 1961int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 1962 int relo_idx, void *insn); 1963 1964static inline bool unprivileged_ebpf_enabled(void) 1965{ 1966 return !sysctl_unprivileged_bpf_disabled; 1967} 1968 1969#else /* !CONFIG_BPF_SYSCALL */ 1970static inline struct bpf_prog *bpf_prog_get(u32 ufd) 1971{ 1972 return ERR_PTR(-EOPNOTSUPP); 1973} 1974 1975static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 1976 enum bpf_prog_type type, 1977 bool attach_drv) 1978{ 1979 return ERR_PTR(-EOPNOTSUPP); 1980} 1981 1982static inline void bpf_prog_add(struct bpf_prog *prog, int i) 1983{ 1984} 1985 1986static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 1987{ 1988} 1989 1990static inline void bpf_prog_put(struct bpf_prog *prog) 1991{ 1992} 1993 1994static inline void bpf_prog_inc(struct bpf_prog *prog) 1995{ 1996} 1997 1998static inline struct bpf_prog *__must_check 1999bpf_prog_inc_not_zero(struct bpf_prog *prog) 2000{ 2001 return ERR_PTR(-EOPNOTSUPP); 2002} 2003 2004static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2005 const struct bpf_link_ops *ops, 2006 struct bpf_prog *prog) 2007{ 2008} 2009 2010static inline int bpf_link_prime(struct bpf_link *link, 2011 struct bpf_link_primer *primer) 2012{ 2013 return -EOPNOTSUPP; 2014} 2015 2016static inline int bpf_link_settle(struct bpf_link_primer *primer) 2017{ 2018 return -EOPNOTSUPP; 2019} 2020 2021static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2022{ 2023} 2024 2025static inline void bpf_link_inc(struct bpf_link *link) 2026{ 2027} 2028 2029static inline void bpf_link_put(struct bpf_link *link) 2030{ 2031} 2032 2033static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2034{ 2035 return -EOPNOTSUPP; 2036} 2037 2038static inline void __dev_flush(void) 2039{ 2040} 2041 2042struct xdp_frame; 2043struct bpf_dtab_netdev; 2044struct bpf_cpu_map_entry; 2045 2046static inline 2047int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2048 struct net_device *dev_rx) 2049{ 2050 return 0; 2051} 2052 2053static inline 2054int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2055 struct net_device *dev_rx) 2056{ 2057 return 0; 2058} 2059 2060static inline 2061int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2062 struct bpf_map *map, bool exclude_ingress) 2063{ 2064 return 0; 2065} 2066 2067struct sk_buff; 2068 2069static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2070 struct sk_buff *skb, 2071 struct bpf_prog *xdp_prog) 2072{ 2073 return 0; 2074} 2075 2076static inline 2077int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2078 struct bpf_prog *xdp_prog, struct bpf_map *map, 2079 bool exclude_ingress) 2080{ 2081 return 0; 2082} 2083 2084static inline void __cpu_map_flush(void) 2085{ 2086} 2087 2088static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2089 struct xdp_frame *xdpf, 2090 struct net_device *dev_rx) 2091{ 2092 return 0; 2093} 2094 2095static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2096 struct sk_buff *skb) 2097{ 2098 return -EOPNOTSUPP; 2099} 2100 2101static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2102 enum bpf_prog_type type) 2103{ 2104 return ERR_PTR(-EOPNOTSUPP); 2105} 2106 2107static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2108 const union bpf_attr *kattr, 2109 union bpf_attr __user *uattr) 2110{ 2111 return -ENOTSUPP; 2112} 2113 2114static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2115 const union bpf_attr *kattr, 2116 union bpf_attr __user *uattr) 2117{ 2118 return -ENOTSUPP; 2119} 2120 2121static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2122 const union bpf_attr *kattr, 2123 union bpf_attr __user *uattr) 2124{ 2125 return -ENOTSUPP; 2126} 2127 2128static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2129 const union bpf_attr *kattr, 2130 union bpf_attr __user *uattr) 2131{ 2132 return -ENOTSUPP; 2133} 2134 2135static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2136 const union bpf_attr *kattr, 2137 union bpf_attr __user *uattr) 2138{ 2139 return -ENOTSUPP; 2140} 2141 2142static inline void bpf_map_put(struct bpf_map *map) 2143{ 2144} 2145 2146static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2147{ 2148 return ERR_PTR(-ENOTSUPP); 2149} 2150 2151static inline const struct bpf_func_proto * 2152bpf_base_func_proto(enum bpf_func_id func_id) 2153{ 2154 return NULL; 2155} 2156 2157static inline void bpf_task_storage_free(struct task_struct *task) 2158{ 2159} 2160 2161static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2162{ 2163 return false; 2164} 2165 2166static inline const struct btf_func_model * 2167bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2168 const struct bpf_insn *insn) 2169{ 2170 return NULL; 2171} 2172 2173static inline bool unprivileged_ebpf_enabled(void) 2174{ 2175 return false; 2176} 2177 2178#endif /* CONFIG_BPF_SYSCALL */ 2179 2180void __bpf_free_used_btfs(struct bpf_prog_aux *aux, 2181 struct btf_mod_pair *used_btfs, u32 len); 2182 2183static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 2184 enum bpf_prog_type type) 2185{ 2186 return bpf_prog_get_type_dev(ufd, type, false); 2187} 2188 2189void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2190 struct bpf_map **used_maps, u32 len); 2191 2192bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 2193 2194int bpf_prog_offload_compile(struct bpf_prog *prog); 2195void bpf_prog_offload_destroy(struct bpf_prog *prog); 2196int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 2197 struct bpf_prog *prog); 2198 2199int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 2200 2201int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 2202int bpf_map_offload_update_elem(struct bpf_map *map, 2203 void *key, void *value, u64 flags); 2204int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 2205int bpf_map_offload_get_next_key(struct bpf_map *map, 2206 void *key, void *next_key); 2207 2208bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 2209 2210struct bpf_offload_dev * 2211bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 2212void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 2213void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 2214int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 2215 struct net_device *netdev); 2216void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 2217 struct net_device *netdev); 2218bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 2219 2220void unpriv_ebpf_notify(int new_state); 2221 2222#if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 2223int bpf_prog_offload_init(struct bpf_prog *prog, union bpf_attr *attr); 2224 2225static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 2226{ 2227 return aux->offload_requested; 2228} 2229 2230static inline bool bpf_map_is_dev_bound(struct bpf_map *map) 2231{ 2232 return unlikely(map->ops == &bpf_map_offload_ops); 2233} 2234 2235struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 2236void bpf_map_offload_map_free(struct bpf_map *map); 2237int bpf_prog_test_run_syscall(struct bpf_prog *prog, 2238 const union bpf_attr *kattr, 2239 union bpf_attr __user *uattr); 2240 2241int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 2242int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 2243int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 2244int sock_map_bpf_prog_query(const union bpf_attr *attr, 2245 union bpf_attr __user *uattr); 2246 2247void sock_map_unhash(struct sock *sk); 2248void sock_map_destroy(struct sock *sk); 2249void sock_map_close(struct sock *sk, long timeout); 2250#else 2251static inline int bpf_prog_offload_init(struct bpf_prog *prog, 2252 union bpf_attr *attr) 2253{ 2254 return -EOPNOTSUPP; 2255} 2256 2257static inline bool bpf_prog_is_dev_bound(struct bpf_prog_aux *aux) 2258{ 2259 return false; 2260} 2261 2262static inline bool bpf_map_is_dev_bound(struct bpf_map *map) 2263{ 2264 return false; 2265} 2266 2267static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 2268{ 2269 return ERR_PTR(-EOPNOTSUPP); 2270} 2271 2272static inline void bpf_map_offload_map_free(struct bpf_map *map) 2273{ 2274} 2275 2276static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 2277 const union bpf_attr *kattr, 2278 union bpf_attr __user *uattr) 2279{ 2280 return -ENOTSUPP; 2281} 2282 2283#ifdef CONFIG_BPF_SYSCALL 2284static inline int sock_map_get_from_fd(const union bpf_attr *attr, 2285 struct bpf_prog *prog) 2286{ 2287 return -EINVAL; 2288} 2289 2290static inline int sock_map_prog_detach(const union bpf_attr *attr, 2291 enum bpf_prog_type ptype) 2292{ 2293 return -EOPNOTSUPP; 2294} 2295 2296static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 2297 u64 flags) 2298{ 2299 return -EOPNOTSUPP; 2300} 2301 2302static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 2303 union bpf_attr __user *uattr) 2304{ 2305 return -EINVAL; 2306} 2307#endif /* CONFIG_BPF_SYSCALL */ 2308#endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 2309 2310#if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 2311void bpf_sk_reuseport_detach(struct sock *sk); 2312int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 2313 void *value); 2314int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 2315 void *value, u64 map_flags); 2316#else 2317static inline void bpf_sk_reuseport_detach(struct sock *sk) 2318{ 2319} 2320 2321#ifdef CONFIG_BPF_SYSCALL 2322static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 2323 void *key, void *value) 2324{ 2325 return -EOPNOTSUPP; 2326} 2327 2328static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 2329 void *key, void *value, 2330 u64 map_flags) 2331{ 2332 return -EOPNOTSUPP; 2333} 2334#endif /* CONFIG_BPF_SYSCALL */ 2335#endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 2336 2337/* verifier prototypes for helper functions called from eBPF programs */ 2338extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 2339extern const struct bpf_func_proto bpf_map_update_elem_proto; 2340extern const struct bpf_func_proto bpf_map_delete_elem_proto; 2341extern const struct bpf_func_proto bpf_map_push_elem_proto; 2342extern const struct bpf_func_proto bpf_map_pop_elem_proto; 2343extern const struct bpf_func_proto bpf_map_peek_elem_proto; 2344extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 2345 2346extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 2347extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 2348extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 2349extern const struct bpf_func_proto bpf_tail_call_proto; 2350extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 2351extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 2352extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 2353extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 2354extern const struct bpf_func_proto bpf_get_current_comm_proto; 2355extern const struct bpf_func_proto bpf_get_stackid_proto; 2356extern const struct bpf_func_proto bpf_get_stack_proto; 2357extern const struct bpf_func_proto bpf_get_task_stack_proto; 2358extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 2359extern const struct bpf_func_proto bpf_get_stack_proto_pe; 2360extern const struct bpf_func_proto bpf_sock_map_update_proto; 2361extern const struct bpf_func_proto bpf_sock_hash_update_proto; 2362extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 2363extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 2364extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 2365extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 2366extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 2367extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 2368extern const struct bpf_func_proto bpf_spin_lock_proto; 2369extern const struct bpf_func_proto bpf_spin_unlock_proto; 2370extern const struct bpf_func_proto bpf_get_local_storage_proto; 2371extern const struct bpf_func_proto bpf_strtol_proto; 2372extern const struct bpf_func_proto bpf_strtoul_proto; 2373extern const struct bpf_func_proto bpf_tcp_sock_proto; 2374extern const struct bpf_func_proto bpf_jiffies64_proto; 2375extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 2376extern const struct bpf_func_proto bpf_event_output_data_proto; 2377extern const struct bpf_func_proto bpf_ringbuf_output_proto; 2378extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 2379extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 2380extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 2381extern const struct bpf_func_proto bpf_ringbuf_query_proto; 2382extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 2383extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 2384extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 2385extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 2386extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 2387extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 2388extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 2389extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 2390extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 2391extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 2392extern const struct bpf_func_proto bpf_copy_from_user_proto; 2393extern const struct bpf_func_proto bpf_snprintf_btf_proto; 2394extern const struct bpf_func_proto bpf_snprintf_proto; 2395extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 2396extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 2397extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 2398extern const struct bpf_func_proto bpf_sock_from_file_proto; 2399extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 2400extern const struct bpf_func_proto bpf_task_storage_get_proto; 2401extern const struct bpf_func_proto bpf_task_storage_delete_proto; 2402extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 2403extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 2404extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 2405extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 2406extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 2407extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 2408extern const struct bpf_func_proto bpf_find_vma_proto; 2409extern const struct bpf_func_proto bpf_loop_proto; 2410extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 2411extern const struct bpf_func_proto bpf_set_retval_proto; 2412extern const struct bpf_func_proto bpf_get_retval_proto; 2413 2414const struct bpf_func_proto *tracing_prog_func_proto( 2415 enum bpf_func_id func_id, const struct bpf_prog *prog); 2416 2417/* Shared helpers among cBPF and eBPF. */ 2418void bpf_user_rnd_init_once(void); 2419u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 2420u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 2421 2422#if defined(CONFIG_NET) 2423bool bpf_sock_common_is_valid_access(int off, int size, 2424 enum bpf_access_type type, 2425 struct bpf_insn_access_aux *info); 2426bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 2427 struct bpf_insn_access_aux *info); 2428u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 2429 const struct bpf_insn *si, 2430 struct bpf_insn *insn_buf, 2431 struct bpf_prog *prog, 2432 u32 *target_size); 2433#else 2434static inline bool bpf_sock_common_is_valid_access(int off, int size, 2435 enum bpf_access_type type, 2436 struct bpf_insn_access_aux *info) 2437{ 2438 return false; 2439} 2440static inline bool bpf_sock_is_valid_access(int off, int size, 2441 enum bpf_access_type type, 2442 struct bpf_insn_access_aux *info) 2443{ 2444 return false; 2445} 2446static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 2447 const struct bpf_insn *si, 2448 struct bpf_insn *insn_buf, 2449 struct bpf_prog *prog, 2450 u32 *target_size) 2451{ 2452 return 0; 2453} 2454#endif 2455 2456#ifdef CONFIG_INET 2457struct sk_reuseport_kern { 2458 struct sk_buff *skb; 2459 struct sock *sk; 2460 struct sock *selected_sk; 2461 struct sock *migrating_sk; 2462 void *data_end; 2463 u32 hash; 2464 u32 reuseport_id; 2465 bool bind_inany; 2466}; 2467bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 2468 struct bpf_insn_access_aux *info); 2469 2470u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 2471 const struct bpf_insn *si, 2472 struct bpf_insn *insn_buf, 2473 struct bpf_prog *prog, 2474 u32 *target_size); 2475 2476bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 2477 struct bpf_insn_access_aux *info); 2478 2479u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 2480 const struct bpf_insn *si, 2481 struct bpf_insn *insn_buf, 2482 struct bpf_prog *prog, 2483 u32 *target_size); 2484#else 2485static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 2486 enum bpf_access_type type, 2487 struct bpf_insn_access_aux *info) 2488{ 2489 return false; 2490} 2491 2492static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 2493 const struct bpf_insn *si, 2494 struct bpf_insn *insn_buf, 2495 struct bpf_prog *prog, 2496 u32 *target_size) 2497{ 2498 return 0; 2499} 2500static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 2501 enum bpf_access_type type, 2502 struct bpf_insn_access_aux *info) 2503{ 2504 return false; 2505} 2506 2507static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 2508 const struct bpf_insn *si, 2509 struct bpf_insn *insn_buf, 2510 struct bpf_prog *prog, 2511 u32 *target_size) 2512{ 2513 return 0; 2514} 2515#endif /* CONFIG_INET */ 2516 2517enum bpf_text_poke_type { 2518 BPF_MOD_CALL, 2519 BPF_MOD_JUMP, 2520}; 2521 2522int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 2523 void *addr1, void *addr2); 2524 2525void *bpf_arch_text_copy(void *dst, void *src, size_t len); 2526int bpf_arch_text_invalidate(void *dst, size_t len); 2527 2528struct btf_id_set; 2529bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 2530 2531#define MAX_BPRINTF_VARARGS 12 2532 2533int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 2534 u32 **bin_buf, u32 num_args); 2535void bpf_bprintf_cleanup(void); 2536 2537/* the implementation of the opaque uapi struct bpf_dynptr */ 2538struct bpf_dynptr_kern { 2539 void *data; 2540 /* Size represents the number of usable bytes of dynptr data. 2541 * If for example the offset is at 4 for a local dynptr whose data is 2542 * of type u64, the number of usable bytes is 4. 2543 * 2544 * The upper 8 bits are reserved. It is as follows: 2545 * Bits 0 - 23 = size 2546 * Bits 24 - 30 = dynptr type 2547 * Bit 31 = whether dynptr is read-only 2548 */ 2549 u32 size; 2550 u32 offset; 2551} __aligned(8); 2552 2553enum bpf_dynptr_type { 2554 BPF_DYNPTR_TYPE_INVALID, 2555 /* Points to memory that is local to the bpf program */ 2556 BPF_DYNPTR_TYPE_LOCAL, 2557 /* Underlying data is a ringbuf record */ 2558 BPF_DYNPTR_TYPE_RINGBUF, 2559}; 2560 2561void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2562 enum bpf_dynptr_type type, u32 offset, u32 size); 2563void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2564int bpf_dynptr_check_size(u32 size); 2565 2566#ifdef CONFIG_BPF_LSM 2567void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 2568void bpf_cgroup_atype_put(int cgroup_atype); 2569#else 2570static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 2571static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 2572#endif /* CONFIG_BPF_LSM */ 2573 2574#endif /* _LINUX_BPF_H */