Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: LGPL-2.1
2/*
3 *
4 * Copyright (C) International Business Machines Corp., 2002,2008
5 * Author(s): Steve French (sfrench@us.ibm.com)
6 *
7 */
8
9#include <linux/slab.h>
10#include <linux/ctype.h>
11#include <linux/mempool.h>
12#include <linux/vmalloc.h>
13#include "cifspdu.h"
14#include "cifsglob.h"
15#include "cifsproto.h"
16#include "cifs_debug.h"
17#include "smberr.h"
18#include "nterr.h"
19#include "cifs_unicode.h"
20#include "smb2pdu.h"
21#include "cifsfs.h"
22#ifdef CONFIG_CIFS_DFS_UPCALL
23#include "dns_resolve.h"
24#endif
25#include "fs_context.h"
26#include "cached_dir.h"
27
28extern mempool_t *cifs_sm_req_poolp;
29extern mempool_t *cifs_req_poolp;
30
31/* The xid serves as a useful identifier for each incoming vfs request,
32 in a similar way to the mid which is useful to track each sent smb,
33 and CurrentXid can also provide a running counter (although it
34 will eventually wrap past zero) of the total vfs operations handled
35 since the cifs fs was mounted */
36
37unsigned int
38_get_xid(void)
39{
40 unsigned int xid;
41
42 spin_lock(&GlobalMid_Lock);
43 GlobalTotalActiveXid++;
44
45 /* keep high water mark for number of simultaneous ops in filesystem */
46 if (GlobalTotalActiveXid > GlobalMaxActiveXid)
47 GlobalMaxActiveXid = GlobalTotalActiveXid;
48 if (GlobalTotalActiveXid > 65000)
49 cifs_dbg(FYI, "warning: more than 65000 requests active\n");
50 xid = GlobalCurrentXid++;
51 spin_unlock(&GlobalMid_Lock);
52 return xid;
53}
54
55void
56_free_xid(unsigned int xid)
57{
58 spin_lock(&GlobalMid_Lock);
59 /* if (GlobalTotalActiveXid == 0)
60 BUG(); */
61 GlobalTotalActiveXid--;
62 spin_unlock(&GlobalMid_Lock);
63}
64
65struct cifs_ses *
66sesInfoAlloc(void)
67{
68 struct cifs_ses *ret_buf;
69
70 ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
71 if (ret_buf) {
72 atomic_inc(&sesInfoAllocCount);
73 spin_lock_init(&ret_buf->ses_lock);
74 ret_buf->ses_status = SES_NEW;
75 ++ret_buf->ses_count;
76 INIT_LIST_HEAD(&ret_buf->smb_ses_list);
77 INIT_LIST_HEAD(&ret_buf->tcon_list);
78 mutex_init(&ret_buf->session_mutex);
79 spin_lock_init(&ret_buf->iface_lock);
80 INIT_LIST_HEAD(&ret_buf->iface_list);
81 spin_lock_init(&ret_buf->chan_lock);
82 }
83 return ret_buf;
84}
85
86void
87sesInfoFree(struct cifs_ses *buf_to_free)
88{
89 struct cifs_server_iface *iface = NULL, *niface = NULL;
90
91 if (buf_to_free == NULL) {
92 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
93 return;
94 }
95
96 atomic_dec(&sesInfoAllocCount);
97 kfree(buf_to_free->serverOS);
98 kfree(buf_to_free->serverDomain);
99 kfree(buf_to_free->serverNOS);
100 kfree_sensitive(buf_to_free->password);
101 kfree(buf_to_free->user_name);
102 kfree(buf_to_free->domainName);
103 kfree_sensitive(buf_to_free->auth_key.response);
104 spin_lock(&buf_to_free->iface_lock);
105 list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
106 iface_head)
107 kref_put(&iface->refcount, release_iface);
108 spin_unlock(&buf_to_free->iface_lock);
109 kfree_sensitive(buf_to_free);
110}
111
112struct cifs_tcon *
113tconInfoAlloc(void)
114{
115 struct cifs_tcon *ret_buf;
116
117 ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
118 if (!ret_buf)
119 return NULL;
120 ret_buf->cfid = init_cached_dir();
121 if (!ret_buf->cfid) {
122 kfree(ret_buf);
123 return NULL;
124 }
125
126 atomic_inc(&tconInfoAllocCount);
127 ret_buf->status = TID_NEW;
128 ++ret_buf->tc_count;
129 spin_lock_init(&ret_buf->tc_lock);
130 INIT_LIST_HEAD(&ret_buf->openFileList);
131 INIT_LIST_HEAD(&ret_buf->tcon_list);
132 spin_lock_init(&ret_buf->open_file_lock);
133 spin_lock_init(&ret_buf->stat_lock);
134 atomic_set(&ret_buf->num_local_opens, 0);
135 atomic_set(&ret_buf->num_remote_opens, 0);
136
137 return ret_buf;
138}
139
140void
141tconInfoFree(struct cifs_tcon *tcon)
142{
143 if (tcon == NULL) {
144 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
145 return;
146 }
147 free_cached_dir(tcon);
148 atomic_dec(&tconInfoAllocCount);
149 kfree(tcon->nativeFileSystem);
150 kfree_sensitive(tcon->password);
151 kfree(tcon);
152}
153
154struct smb_hdr *
155cifs_buf_get(void)
156{
157 struct smb_hdr *ret_buf = NULL;
158 /*
159 * SMB2 header is bigger than CIFS one - no problems to clean some
160 * more bytes for CIFS.
161 */
162 size_t buf_size = sizeof(struct smb2_hdr);
163
164 /*
165 * We could use negotiated size instead of max_msgsize -
166 * but it may be more efficient to always alloc same size
167 * albeit slightly larger than necessary and maxbuffersize
168 * defaults to this and can not be bigger.
169 */
170 ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
171
172 /* clear the first few header bytes */
173 /* for most paths, more is cleared in header_assemble */
174 memset(ret_buf, 0, buf_size + 3);
175 atomic_inc(&buf_alloc_count);
176#ifdef CONFIG_CIFS_STATS2
177 atomic_inc(&total_buf_alloc_count);
178#endif /* CONFIG_CIFS_STATS2 */
179
180 return ret_buf;
181}
182
183void
184cifs_buf_release(void *buf_to_free)
185{
186 if (buf_to_free == NULL) {
187 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
188 return;
189 }
190 mempool_free(buf_to_free, cifs_req_poolp);
191
192 atomic_dec(&buf_alloc_count);
193 return;
194}
195
196struct smb_hdr *
197cifs_small_buf_get(void)
198{
199 struct smb_hdr *ret_buf = NULL;
200
201/* We could use negotiated size instead of max_msgsize -
202 but it may be more efficient to always alloc same size
203 albeit slightly larger than necessary and maxbuffersize
204 defaults to this and can not be bigger */
205 ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
206 /* No need to clear memory here, cleared in header assemble */
207 /* memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
208 atomic_inc(&small_buf_alloc_count);
209#ifdef CONFIG_CIFS_STATS2
210 atomic_inc(&total_small_buf_alloc_count);
211#endif /* CONFIG_CIFS_STATS2 */
212
213 return ret_buf;
214}
215
216void
217cifs_small_buf_release(void *buf_to_free)
218{
219
220 if (buf_to_free == NULL) {
221 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
222 return;
223 }
224 mempool_free(buf_to_free, cifs_sm_req_poolp);
225
226 atomic_dec(&small_buf_alloc_count);
227 return;
228}
229
230void
231free_rsp_buf(int resp_buftype, void *rsp)
232{
233 if (resp_buftype == CIFS_SMALL_BUFFER)
234 cifs_small_buf_release(rsp);
235 else if (resp_buftype == CIFS_LARGE_BUFFER)
236 cifs_buf_release(rsp);
237}
238
239/* NB: MID can not be set if treeCon not passed in, in that
240 case it is responsbility of caller to set the mid */
241void
242header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
243 const struct cifs_tcon *treeCon, int word_count
244 /* length of fixed section (word count) in two byte units */)
245{
246 char *temp = (char *) buffer;
247
248 memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
249
250 buffer->smb_buf_length = cpu_to_be32(
251 (2 * word_count) + sizeof(struct smb_hdr) -
252 4 /* RFC 1001 length field does not count */ +
253 2 /* for bcc field itself */) ;
254
255 buffer->Protocol[0] = 0xFF;
256 buffer->Protocol[1] = 'S';
257 buffer->Protocol[2] = 'M';
258 buffer->Protocol[3] = 'B';
259 buffer->Command = smb_command;
260 buffer->Flags = 0x00; /* case sensitive */
261 buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
262 buffer->Pid = cpu_to_le16((__u16)current->tgid);
263 buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
264 if (treeCon) {
265 buffer->Tid = treeCon->tid;
266 if (treeCon->ses) {
267 if (treeCon->ses->capabilities & CAP_UNICODE)
268 buffer->Flags2 |= SMBFLG2_UNICODE;
269 if (treeCon->ses->capabilities & CAP_STATUS32)
270 buffer->Flags2 |= SMBFLG2_ERR_STATUS;
271
272 /* Uid is not converted */
273 buffer->Uid = treeCon->ses->Suid;
274 if (treeCon->ses->server)
275 buffer->Mid = get_next_mid(treeCon->ses->server);
276 }
277 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
278 buffer->Flags2 |= SMBFLG2_DFS;
279 if (treeCon->nocase)
280 buffer->Flags |= SMBFLG_CASELESS;
281 if ((treeCon->ses) && (treeCon->ses->server))
282 if (treeCon->ses->server->sign)
283 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
284 }
285
286/* endian conversion of flags is now done just before sending */
287 buffer->WordCount = (char) word_count;
288 return;
289}
290
291static int
292check_smb_hdr(struct smb_hdr *smb)
293{
294 /* does it have the right SMB "signature" ? */
295 if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
296 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
297 *(unsigned int *)smb->Protocol);
298 return 1;
299 }
300
301 /* if it's a response then accept */
302 if (smb->Flags & SMBFLG_RESPONSE)
303 return 0;
304
305 /* only one valid case where server sends us request */
306 if (smb->Command == SMB_COM_LOCKING_ANDX)
307 return 0;
308
309 cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
310 get_mid(smb));
311 return 1;
312}
313
314int
315checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
316{
317 struct smb_hdr *smb = (struct smb_hdr *)buf;
318 __u32 rfclen = be32_to_cpu(smb->smb_buf_length);
319 __u32 clc_len; /* calculated length */
320 cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
321 total_read, rfclen);
322
323 /* is this frame too small to even get to a BCC? */
324 if (total_read < 2 + sizeof(struct smb_hdr)) {
325 if ((total_read >= sizeof(struct smb_hdr) - 1)
326 && (smb->Status.CifsError != 0)) {
327 /* it's an error return */
328 smb->WordCount = 0;
329 /* some error cases do not return wct and bcc */
330 return 0;
331 } else if ((total_read == sizeof(struct smb_hdr) + 1) &&
332 (smb->WordCount == 0)) {
333 char *tmp = (char *)smb;
334 /* Need to work around a bug in two servers here */
335 /* First, check if the part of bcc they sent was zero */
336 if (tmp[sizeof(struct smb_hdr)] == 0) {
337 /* some servers return only half of bcc
338 * on simple responses (wct, bcc both zero)
339 * in particular have seen this on
340 * ulogoffX and FindClose. This leaves
341 * one byte of bcc potentially unitialized
342 */
343 /* zero rest of bcc */
344 tmp[sizeof(struct smb_hdr)+1] = 0;
345 return 0;
346 }
347 cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
348 } else {
349 cifs_dbg(VFS, "Length less than smb header size\n");
350 }
351 return -EIO;
352 }
353
354 /* otherwise, there is enough to get to the BCC */
355 if (check_smb_hdr(smb))
356 return -EIO;
357 clc_len = smbCalcSize(smb);
358
359 if (4 + rfclen != total_read) {
360 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
361 rfclen);
362 return -EIO;
363 }
364
365 if (4 + rfclen != clc_len) {
366 __u16 mid = get_mid(smb);
367 /* check if bcc wrapped around for large read responses */
368 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
369 /* check if lengths match mod 64K */
370 if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
371 return 0; /* bcc wrapped */
372 }
373 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
374 clc_len, 4 + rfclen, mid);
375
376 if (4 + rfclen < clc_len) {
377 cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
378 rfclen, mid);
379 return -EIO;
380 } else if (rfclen > clc_len + 512) {
381 /*
382 * Some servers (Windows XP in particular) send more
383 * data than the lengths in the SMB packet would
384 * indicate on certain calls (byte range locks and
385 * trans2 find first calls in particular). While the
386 * client can handle such a frame by ignoring the
387 * trailing data, we choose limit the amount of extra
388 * data to 512 bytes.
389 */
390 cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
391 rfclen, mid);
392 return -EIO;
393 }
394 }
395 return 0;
396}
397
398bool
399is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
400{
401 struct smb_hdr *buf = (struct smb_hdr *)buffer;
402 struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
403 struct cifs_ses *ses;
404 struct cifs_tcon *tcon;
405 struct cifsInodeInfo *pCifsInode;
406 struct cifsFileInfo *netfile;
407
408 cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
409 if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
410 (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
411 struct smb_com_transaction_change_notify_rsp *pSMBr =
412 (struct smb_com_transaction_change_notify_rsp *)buf;
413 struct file_notify_information *pnotify;
414 __u32 data_offset = 0;
415 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
416
417 if (get_bcc(buf) > sizeof(struct file_notify_information)) {
418 data_offset = le32_to_cpu(pSMBr->DataOffset);
419
420 if (data_offset >
421 len - sizeof(struct file_notify_information)) {
422 cifs_dbg(FYI, "Invalid data_offset %u\n",
423 data_offset);
424 return true;
425 }
426 pnotify = (struct file_notify_information *)
427 ((char *)&pSMBr->hdr.Protocol + data_offset);
428 cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
429 pnotify->FileName, pnotify->Action);
430 /* cifs_dump_mem("Rcvd notify Data: ",buf,
431 sizeof(struct smb_hdr)+60); */
432 return true;
433 }
434 if (pSMBr->hdr.Status.CifsError) {
435 cifs_dbg(FYI, "notify err 0x%x\n",
436 pSMBr->hdr.Status.CifsError);
437 return true;
438 }
439 return false;
440 }
441 if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
442 return false;
443 if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
444 /* no sense logging error on invalid handle on oplock
445 break - harmless race between close request and oplock
446 break response is expected from time to time writing out
447 large dirty files cached on the client */
448 if ((NT_STATUS_INVALID_HANDLE) ==
449 le32_to_cpu(pSMB->hdr.Status.CifsError)) {
450 cifs_dbg(FYI, "Invalid handle on oplock break\n");
451 return true;
452 } else if (ERRbadfid ==
453 le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
454 return true;
455 } else {
456 return false; /* on valid oplock brk we get "request" */
457 }
458 }
459 if (pSMB->hdr.WordCount != 8)
460 return false;
461
462 cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
463 pSMB->LockType, pSMB->OplockLevel);
464 if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
465 return false;
466
467 /* look up tcon based on tid & uid */
468 spin_lock(&cifs_tcp_ses_lock);
469 list_for_each_entry(ses, &srv->smb_ses_list, smb_ses_list) {
470 list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
471 if (tcon->tid != buf->Tid)
472 continue;
473
474 cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
475 spin_lock(&tcon->open_file_lock);
476 list_for_each_entry(netfile, &tcon->openFileList, tlist) {
477 if (pSMB->Fid != netfile->fid.netfid)
478 continue;
479
480 cifs_dbg(FYI, "file id match, oplock break\n");
481 pCifsInode = CIFS_I(d_inode(netfile->dentry));
482
483 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
484 &pCifsInode->flags);
485
486 netfile->oplock_epoch = 0;
487 netfile->oplock_level = pSMB->OplockLevel;
488 netfile->oplock_break_cancelled = false;
489 cifs_queue_oplock_break(netfile);
490
491 spin_unlock(&tcon->open_file_lock);
492 spin_unlock(&cifs_tcp_ses_lock);
493 return true;
494 }
495 spin_unlock(&tcon->open_file_lock);
496 spin_unlock(&cifs_tcp_ses_lock);
497 cifs_dbg(FYI, "No matching file for oplock break\n");
498 return true;
499 }
500 }
501 spin_unlock(&cifs_tcp_ses_lock);
502 cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
503 return true;
504}
505
506void
507dump_smb(void *buf, int smb_buf_length)
508{
509 if (traceSMB == 0)
510 return;
511
512 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
513 smb_buf_length, true);
514}
515
516void
517cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
518{
519 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
520 struct cifs_tcon *tcon = NULL;
521
522 if (cifs_sb->master_tlink)
523 tcon = cifs_sb_master_tcon(cifs_sb);
524
525 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
526 cifs_sb->mnt_cifs_serverino_autodisabled = true;
527 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
528 tcon ? tcon->treeName : "new server");
529 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
530 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
531
532 }
533}
534
535void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
536{
537 oplock &= 0xF;
538
539 if (oplock == OPLOCK_EXCLUSIVE) {
540 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
541 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
542 &cinode->netfs.inode);
543 } else if (oplock == OPLOCK_READ) {
544 cinode->oplock = CIFS_CACHE_READ_FLG;
545 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
546 &cinode->netfs.inode);
547 } else
548 cinode->oplock = 0;
549}
550
551/*
552 * We wait for oplock breaks to be processed before we attempt to perform
553 * writes.
554 */
555int cifs_get_writer(struct cifsInodeInfo *cinode)
556{
557 int rc;
558
559start:
560 rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
561 TASK_KILLABLE);
562 if (rc)
563 return rc;
564
565 spin_lock(&cinode->writers_lock);
566 if (!cinode->writers)
567 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
568 cinode->writers++;
569 /* Check to see if we have started servicing an oplock break */
570 if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
571 cinode->writers--;
572 if (cinode->writers == 0) {
573 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
574 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
575 }
576 spin_unlock(&cinode->writers_lock);
577 goto start;
578 }
579 spin_unlock(&cinode->writers_lock);
580 return 0;
581}
582
583void cifs_put_writer(struct cifsInodeInfo *cinode)
584{
585 spin_lock(&cinode->writers_lock);
586 cinode->writers--;
587 if (cinode->writers == 0) {
588 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
589 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
590 }
591 spin_unlock(&cinode->writers_lock);
592}
593
594/**
595 * cifs_queue_oplock_break - queue the oplock break handler for cfile
596 * @cfile: The file to break the oplock on
597 *
598 * This function is called from the demultiplex thread when it
599 * receives an oplock break for @cfile.
600 *
601 * Assumes the tcon->open_file_lock is held.
602 * Assumes cfile->file_info_lock is NOT held.
603 */
604void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
605{
606 /*
607 * Bump the handle refcount now while we hold the
608 * open_file_lock to enforce the validity of it for the oplock
609 * break handler. The matching put is done at the end of the
610 * handler.
611 */
612 cifsFileInfo_get(cfile);
613
614 queue_work(cifsoplockd_wq, &cfile->oplock_break);
615}
616
617void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
618{
619 clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
620 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
621}
622
623bool
624backup_cred(struct cifs_sb_info *cifs_sb)
625{
626 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
627 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
628 return true;
629 }
630 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
631 if (in_group_p(cifs_sb->ctx->backupgid))
632 return true;
633 }
634
635 return false;
636}
637
638void
639cifs_del_pending_open(struct cifs_pending_open *open)
640{
641 spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
642 list_del(&open->olist);
643 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
644}
645
646void
647cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
648 struct cifs_pending_open *open)
649{
650 memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
651 open->oplock = CIFS_OPLOCK_NO_CHANGE;
652 open->tlink = tlink;
653 fid->pending_open = open;
654 list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
655}
656
657void
658cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
659 struct cifs_pending_open *open)
660{
661 spin_lock(&tlink_tcon(tlink)->open_file_lock);
662 cifs_add_pending_open_locked(fid, tlink, open);
663 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
664}
665
666/*
667 * Critical section which runs after acquiring deferred_lock.
668 * As there is no reference count on cifs_deferred_close, pdclose
669 * should not be used outside deferred_lock.
670 */
671bool
672cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
673{
674 struct cifs_deferred_close *dclose;
675
676 list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
677 if ((dclose->netfid == cfile->fid.netfid) &&
678 (dclose->persistent_fid == cfile->fid.persistent_fid) &&
679 (dclose->volatile_fid == cfile->fid.volatile_fid)) {
680 *pdclose = dclose;
681 return true;
682 }
683 }
684 return false;
685}
686
687/*
688 * Critical section which runs after acquiring deferred_lock.
689 */
690void
691cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
692{
693 bool is_deferred = false;
694 struct cifs_deferred_close *pdclose;
695
696 is_deferred = cifs_is_deferred_close(cfile, &pdclose);
697 if (is_deferred) {
698 kfree(dclose);
699 return;
700 }
701
702 dclose->tlink = cfile->tlink;
703 dclose->netfid = cfile->fid.netfid;
704 dclose->persistent_fid = cfile->fid.persistent_fid;
705 dclose->volatile_fid = cfile->fid.volatile_fid;
706 list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
707}
708
709/*
710 * Critical section which runs after acquiring deferred_lock.
711 */
712void
713cifs_del_deferred_close(struct cifsFileInfo *cfile)
714{
715 bool is_deferred = false;
716 struct cifs_deferred_close *dclose;
717
718 is_deferred = cifs_is_deferred_close(cfile, &dclose);
719 if (!is_deferred)
720 return;
721 list_del(&dclose->dlist);
722 kfree(dclose);
723}
724
725void
726cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
727{
728 struct cifsFileInfo *cfile = NULL;
729 struct file_list *tmp_list, *tmp_next_list;
730 struct list_head file_head;
731
732 if (cifs_inode == NULL)
733 return;
734
735 INIT_LIST_HEAD(&file_head);
736 spin_lock(&cifs_inode->open_file_lock);
737 list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
738 if (delayed_work_pending(&cfile->deferred)) {
739 if (cancel_delayed_work(&cfile->deferred)) {
740 cifs_del_deferred_close(cfile);
741
742 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
743 if (tmp_list == NULL)
744 break;
745 tmp_list->cfile = cfile;
746 list_add_tail(&tmp_list->list, &file_head);
747 }
748 }
749 }
750 spin_unlock(&cifs_inode->open_file_lock);
751
752 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
753 _cifsFileInfo_put(tmp_list->cfile, true, false);
754 list_del(&tmp_list->list);
755 kfree(tmp_list);
756 }
757}
758
759void
760cifs_close_all_deferred_files(struct cifs_tcon *tcon)
761{
762 struct cifsFileInfo *cfile;
763 struct file_list *tmp_list, *tmp_next_list;
764 struct list_head file_head;
765
766 INIT_LIST_HEAD(&file_head);
767 spin_lock(&tcon->open_file_lock);
768 list_for_each_entry(cfile, &tcon->openFileList, tlist) {
769 if (delayed_work_pending(&cfile->deferred)) {
770 if (cancel_delayed_work(&cfile->deferred)) {
771 cifs_del_deferred_close(cfile);
772
773 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
774 if (tmp_list == NULL)
775 break;
776 tmp_list->cfile = cfile;
777 list_add_tail(&tmp_list->list, &file_head);
778 }
779 }
780 }
781 spin_unlock(&tcon->open_file_lock);
782
783 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
784 _cifsFileInfo_put(tmp_list->cfile, true, false);
785 list_del(&tmp_list->list);
786 kfree(tmp_list);
787 }
788}
789void
790cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
791{
792 struct cifsFileInfo *cfile;
793 struct file_list *tmp_list, *tmp_next_list;
794 struct list_head file_head;
795 void *page;
796 const char *full_path;
797
798 INIT_LIST_HEAD(&file_head);
799 page = alloc_dentry_path();
800 spin_lock(&tcon->open_file_lock);
801 list_for_each_entry(cfile, &tcon->openFileList, tlist) {
802 full_path = build_path_from_dentry(cfile->dentry, page);
803 if (strstr(full_path, path)) {
804 if (delayed_work_pending(&cfile->deferred)) {
805 if (cancel_delayed_work(&cfile->deferred)) {
806 cifs_del_deferred_close(cfile);
807
808 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
809 if (tmp_list == NULL)
810 break;
811 tmp_list->cfile = cfile;
812 list_add_tail(&tmp_list->list, &file_head);
813 }
814 }
815 }
816 }
817 spin_unlock(&tcon->open_file_lock);
818
819 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
820 _cifsFileInfo_put(tmp_list->cfile, true, false);
821 list_del(&tmp_list->list);
822 kfree(tmp_list);
823 }
824 free_dentry_path(page);
825}
826
827/* parses DFS refferal V3 structure
828 * caller is responsible for freeing target_nodes
829 * returns:
830 * - on success - 0
831 * - on failure - errno
832 */
833int
834parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
835 unsigned int *num_of_nodes,
836 struct dfs_info3_param **target_nodes,
837 const struct nls_table *nls_codepage, int remap,
838 const char *searchName, bool is_unicode)
839{
840 int i, rc = 0;
841 char *data_end;
842 struct dfs_referral_level_3 *ref;
843
844 *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
845
846 if (*num_of_nodes < 1) {
847 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
848 *num_of_nodes);
849 rc = -EINVAL;
850 goto parse_DFS_referrals_exit;
851 }
852
853 ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
854 if (ref->VersionNumber != cpu_to_le16(3)) {
855 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
856 le16_to_cpu(ref->VersionNumber));
857 rc = -EINVAL;
858 goto parse_DFS_referrals_exit;
859 }
860
861 /* get the upper boundary of the resp buffer */
862 data_end = (char *)rsp + rsp_size;
863
864 cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
865 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
866
867 *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
868 GFP_KERNEL);
869 if (*target_nodes == NULL) {
870 rc = -ENOMEM;
871 goto parse_DFS_referrals_exit;
872 }
873
874 /* collect necessary data from referrals */
875 for (i = 0; i < *num_of_nodes; i++) {
876 char *temp;
877 int max_len;
878 struct dfs_info3_param *node = (*target_nodes)+i;
879
880 node->flags = le32_to_cpu(rsp->DFSFlags);
881 if (is_unicode) {
882 __le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
883 GFP_KERNEL);
884 if (tmp == NULL) {
885 rc = -ENOMEM;
886 goto parse_DFS_referrals_exit;
887 }
888 cifsConvertToUTF16((__le16 *) tmp, searchName,
889 PATH_MAX, nls_codepage, remap);
890 node->path_consumed = cifs_utf16_bytes(tmp,
891 le16_to_cpu(rsp->PathConsumed),
892 nls_codepage);
893 kfree(tmp);
894 } else
895 node->path_consumed = le16_to_cpu(rsp->PathConsumed);
896
897 node->server_type = le16_to_cpu(ref->ServerType);
898 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
899
900 /* copy DfsPath */
901 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
902 max_len = data_end - temp;
903 node->path_name = cifs_strndup_from_utf16(temp, max_len,
904 is_unicode, nls_codepage);
905 if (!node->path_name) {
906 rc = -ENOMEM;
907 goto parse_DFS_referrals_exit;
908 }
909
910 /* copy link target UNC */
911 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
912 max_len = data_end - temp;
913 node->node_name = cifs_strndup_from_utf16(temp, max_len,
914 is_unicode, nls_codepage);
915 if (!node->node_name) {
916 rc = -ENOMEM;
917 goto parse_DFS_referrals_exit;
918 }
919
920 node->ttl = le32_to_cpu(ref->TimeToLive);
921
922 ref++;
923 }
924
925parse_DFS_referrals_exit:
926 if (rc) {
927 free_dfs_info_array(*target_nodes, *num_of_nodes);
928 *target_nodes = NULL;
929 *num_of_nodes = 0;
930 }
931 return rc;
932}
933
934struct cifs_aio_ctx *
935cifs_aio_ctx_alloc(void)
936{
937 struct cifs_aio_ctx *ctx;
938
939 /*
940 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
941 * to false so that we know when we have to unreference pages within
942 * cifs_aio_ctx_release()
943 */
944 ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
945 if (!ctx)
946 return NULL;
947
948 INIT_LIST_HEAD(&ctx->list);
949 mutex_init(&ctx->aio_mutex);
950 init_completion(&ctx->done);
951 kref_init(&ctx->refcount);
952 return ctx;
953}
954
955void
956cifs_aio_ctx_release(struct kref *refcount)
957{
958 struct cifs_aio_ctx *ctx = container_of(refcount,
959 struct cifs_aio_ctx, refcount);
960
961 cifsFileInfo_put(ctx->cfile);
962
963 /*
964 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
965 * which means that iov_iter_get_pages() was a success and thus that
966 * we have taken reference on pages.
967 */
968 if (ctx->bv) {
969 unsigned i;
970
971 for (i = 0; i < ctx->npages; i++) {
972 if (ctx->should_dirty)
973 set_page_dirty(ctx->bv[i].bv_page);
974 put_page(ctx->bv[i].bv_page);
975 }
976 kvfree(ctx->bv);
977 }
978
979 kfree(ctx);
980}
981
982#define CIFS_AIO_KMALLOC_LIMIT (1024 * 1024)
983
984int
985setup_aio_ctx_iter(struct cifs_aio_ctx *ctx, struct iov_iter *iter, int rw)
986{
987 ssize_t rc;
988 unsigned int cur_npages;
989 unsigned int npages = 0;
990 unsigned int i;
991 size_t len;
992 size_t count = iov_iter_count(iter);
993 unsigned int saved_len;
994 size_t start;
995 unsigned int max_pages = iov_iter_npages(iter, INT_MAX);
996 struct page **pages = NULL;
997 struct bio_vec *bv = NULL;
998
999 if (iov_iter_is_kvec(iter)) {
1000 memcpy(&ctx->iter, iter, sizeof(*iter));
1001 ctx->len = count;
1002 iov_iter_advance(iter, count);
1003 return 0;
1004 }
1005
1006 if (array_size(max_pages, sizeof(*bv)) <= CIFS_AIO_KMALLOC_LIMIT)
1007 bv = kmalloc_array(max_pages, sizeof(*bv), GFP_KERNEL);
1008
1009 if (!bv) {
1010 bv = vmalloc(array_size(max_pages, sizeof(*bv)));
1011 if (!bv)
1012 return -ENOMEM;
1013 }
1014
1015 if (array_size(max_pages, sizeof(*pages)) <= CIFS_AIO_KMALLOC_LIMIT)
1016 pages = kmalloc_array(max_pages, sizeof(*pages), GFP_KERNEL);
1017
1018 if (!pages) {
1019 pages = vmalloc(array_size(max_pages, sizeof(*pages)));
1020 if (!pages) {
1021 kvfree(bv);
1022 return -ENOMEM;
1023 }
1024 }
1025
1026 saved_len = count;
1027
1028 while (count && npages < max_pages) {
1029 rc = iov_iter_get_pages2(iter, pages, count, max_pages, &start);
1030 if (rc < 0) {
1031 cifs_dbg(VFS, "Couldn't get user pages (rc=%zd)\n", rc);
1032 break;
1033 }
1034
1035 if (rc > count) {
1036 cifs_dbg(VFS, "get pages rc=%zd more than %zu\n", rc,
1037 count);
1038 break;
1039 }
1040
1041 count -= rc;
1042 rc += start;
1043 cur_npages = DIV_ROUND_UP(rc, PAGE_SIZE);
1044
1045 if (npages + cur_npages > max_pages) {
1046 cifs_dbg(VFS, "out of vec array capacity (%u vs %u)\n",
1047 npages + cur_npages, max_pages);
1048 break;
1049 }
1050
1051 for (i = 0; i < cur_npages; i++) {
1052 len = rc > PAGE_SIZE ? PAGE_SIZE : rc;
1053 bv[npages + i].bv_page = pages[i];
1054 bv[npages + i].bv_offset = start;
1055 bv[npages + i].bv_len = len - start;
1056 rc -= len;
1057 start = 0;
1058 }
1059
1060 npages += cur_npages;
1061 }
1062
1063 kvfree(pages);
1064 ctx->bv = bv;
1065 ctx->len = saved_len - count;
1066 ctx->npages = npages;
1067 iov_iter_bvec(&ctx->iter, rw, ctx->bv, npages, ctx->len);
1068 return 0;
1069}
1070
1071/**
1072 * cifs_alloc_hash - allocate hash and hash context together
1073 * @name: The name of the crypto hash algo
1074 * @shash: Where to put the pointer to the hash algo
1075 * @sdesc: Where to put the pointer to the hash descriptor
1076 *
1077 * The caller has to make sure @sdesc is initialized to either NULL or
1078 * a valid context. Both can be freed via cifs_free_hash().
1079 */
1080int
1081cifs_alloc_hash(const char *name,
1082 struct crypto_shash **shash, struct sdesc **sdesc)
1083{
1084 int rc = 0;
1085 size_t size;
1086
1087 if (*sdesc != NULL)
1088 return 0;
1089
1090 *shash = crypto_alloc_shash(name, 0, 0);
1091 if (IS_ERR(*shash)) {
1092 cifs_dbg(VFS, "Could not allocate crypto %s\n", name);
1093 rc = PTR_ERR(*shash);
1094 *shash = NULL;
1095 *sdesc = NULL;
1096 return rc;
1097 }
1098
1099 size = sizeof(struct shash_desc) + crypto_shash_descsize(*shash);
1100 *sdesc = kmalloc(size, GFP_KERNEL);
1101 if (*sdesc == NULL) {
1102 cifs_dbg(VFS, "no memory left to allocate crypto %s\n", name);
1103 crypto_free_shash(*shash);
1104 *shash = NULL;
1105 return -ENOMEM;
1106 }
1107
1108 (*sdesc)->shash.tfm = *shash;
1109 return 0;
1110}
1111
1112/**
1113 * cifs_free_hash - free hash and hash context together
1114 * @shash: Where to find the pointer to the hash algo
1115 * @sdesc: Where to find the pointer to the hash descriptor
1116 *
1117 * Freeing a NULL hash or context is safe.
1118 */
1119void
1120cifs_free_hash(struct crypto_shash **shash, struct sdesc **sdesc)
1121{
1122 kfree(*sdesc);
1123 *sdesc = NULL;
1124 if (*shash)
1125 crypto_free_shash(*shash);
1126 *shash = NULL;
1127}
1128
1129/**
1130 * rqst_page_get_length - obtain the length and offset for a page in smb_rqst
1131 * @rqst: The request descriptor
1132 * @page: The index of the page to query
1133 * @len: Where to store the length for this page:
1134 * @offset: Where to store the offset for this page
1135 */
1136void rqst_page_get_length(struct smb_rqst *rqst, unsigned int page,
1137 unsigned int *len, unsigned int *offset)
1138{
1139 *len = rqst->rq_pagesz;
1140 *offset = (page == 0) ? rqst->rq_offset : 0;
1141
1142 if (rqst->rq_npages == 1 || page == rqst->rq_npages-1)
1143 *len = rqst->rq_tailsz;
1144 else if (page == 0)
1145 *len = rqst->rq_pagesz - rqst->rq_offset;
1146}
1147
1148void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1149{
1150 const char *end;
1151
1152 /* skip initial slashes */
1153 while (*unc && (*unc == '\\' || *unc == '/'))
1154 unc++;
1155
1156 end = unc;
1157
1158 while (*end && !(*end == '\\' || *end == '/'))
1159 end++;
1160
1161 *h = unc;
1162 *len = end - unc;
1163}
1164
1165/**
1166 * copy_path_name - copy src path to dst, possibly truncating
1167 * @dst: The destination buffer
1168 * @src: The source name
1169 *
1170 * returns number of bytes written (including trailing nul)
1171 */
1172int copy_path_name(char *dst, const char *src)
1173{
1174 int name_len;
1175
1176 /*
1177 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1178 * will truncate and strlen(dst) will be PATH_MAX-1
1179 */
1180 name_len = strscpy(dst, src, PATH_MAX);
1181 if (WARN_ON_ONCE(name_len < 0))
1182 name_len = PATH_MAX-1;
1183
1184 /* we count the trailing nul */
1185 name_len++;
1186 return name_len;
1187}
1188
1189struct super_cb_data {
1190 void *data;
1191 struct super_block *sb;
1192};
1193
1194static void tcp_super_cb(struct super_block *sb, void *arg)
1195{
1196 struct super_cb_data *sd = arg;
1197 struct TCP_Server_Info *server = sd->data;
1198 struct cifs_sb_info *cifs_sb;
1199 struct cifs_tcon *tcon;
1200
1201 if (sd->sb)
1202 return;
1203
1204 cifs_sb = CIFS_SB(sb);
1205 tcon = cifs_sb_master_tcon(cifs_sb);
1206 if (tcon->ses->server == server)
1207 sd->sb = sb;
1208}
1209
1210static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1211 void *data)
1212{
1213 struct super_cb_data sd = {
1214 .data = data,
1215 .sb = NULL,
1216 };
1217 struct file_system_type **fs_type = (struct file_system_type *[]) {
1218 &cifs_fs_type, &smb3_fs_type, NULL,
1219 };
1220
1221 for (; *fs_type; fs_type++) {
1222 iterate_supers_type(*fs_type, f, &sd);
1223 if (sd.sb) {
1224 /*
1225 * Grab an active reference in order to prevent automounts (DFS links)
1226 * of expiring and then freeing up our cifs superblock pointer while
1227 * we're doing failover.
1228 */
1229 cifs_sb_active(sd.sb);
1230 return sd.sb;
1231 }
1232 }
1233 return ERR_PTR(-EINVAL);
1234}
1235
1236static void __cifs_put_super(struct super_block *sb)
1237{
1238 if (!IS_ERR_OR_NULL(sb))
1239 cifs_sb_deactive(sb);
1240}
1241
1242struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server)
1243{
1244 return __cifs_get_super(tcp_super_cb, server);
1245}
1246
1247void cifs_put_tcp_super(struct super_block *sb)
1248{
1249 __cifs_put_super(sb);
1250}
1251
1252#ifdef CONFIG_CIFS_DFS_UPCALL
1253int match_target_ip(struct TCP_Server_Info *server,
1254 const char *share, size_t share_len,
1255 bool *result)
1256{
1257 int rc;
1258 char *target, *tip = NULL;
1259 struct sockaddr tipaddr;
1260
1261 *result = false;
1262
1263 target = kzalloc(share_len + 3, GFP_KERNEL);
1264 if (!target) {
1265 rc = -ENOMEM;
1266 goto out;
1267 }
1268
1269 scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1270
1271 cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1272
1273 rc = dns_resolve_server_name_to_ip(target, &tip, NULL);
1274 if (rc < 0)
1275 goto out;
1276
1277 cifs_dbg(FYI, "%s: target ip: %s\n", __func__, tip);
1278
1279 if (!cifs_convert_address(&tipaddr, tip, strlen(tip))) {
1280 cifs_dbg(VFS, "%s: failed to convert target ip address\n",
1281 __func__);
1282 rc = -EINVAL;
1283 goto out;
1284 }
1285
1286 *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr,
1287 &tipaddr);
1288 cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1289 rc = 0;
1290
1291out:
1292 kfree(target);
1293 kfree(tip);
1294
1295 return rc;
1296}
1297
1298int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1299{
1300 kfree(cifs_sb->prepath);
1301
1302 if (prefix && *prefix) {
1303 cifs_sb->prepath = kstrdup(prefix, GFP_ATOMIC);
1304 if (!cifs_sb->prepath)
1305 return -ENOMEM;
1306
1307 convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1308 } else
1309 cifs_sb->prepath = NULL;
1310
1311 cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1312 return 0;
1313}
1314
1315/** cifs_dfs_query_info_nonascii_quirk
1316 * Handle weird Windows SMB server behaviour. It responds with
1317 * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request
1318 * for "\<server>\<dfsname>\<linkpath>" DFS reference,
1319 * where <dfsname> contains non-ASCII unicode symbols.
1320 *
1321 * Check such DFS reference.
1322 */
1323int cifs_dfs_query_info_nonascii_quirk(const unsigned int xid,
1324 struct cifs_tcon *tcon,
1325 struct cifs_sb_info *cifs_sb,
1326 const char *linkpath)
1327{
1328 char *treename, *dfspath, sep;
1329 int treenamelen, linkpathlen, rc;
1330
1331 treename = tcon->treeName;
1332 /* MS-DFSC: All paths in REQ_GET_DFS_REFERRAL and RESP_GET_DFS_REFERRAL
1333 * messages MUST be encoded with exactly one leading backslash, not two
1334 * leading backslashes.
1335 */
1336 sep = CIFS_DIR_SEP(cifs_sb);
1337 if (treename[0] == sep && treename[1] == sep)
1338 treename++;
1339 linkpathlen = strlen(linkpath);
1340 treenamelen = strnlen(treename, MAX_TREE_SIZE + 1);
1341 dfspath = kzalloc(treenamelen + linkpathlen + 1, GFP_KERNEL);
1342 if (!dfspath)
1343 return -ENOMEM;
1344 if (treenamelen)
1345 memcpy(dfspath, treename, treenamelen);
1346 memcpy(dfspath + treenamelen, linkpath, linkpathlen);
1347 rc = dfs_cache_find(xid, tcon->ses, cifs_sb->local_nls,
1348 cifs_remap(cifs_sb), dfspath, NULL, NULL);
1349 if (rc == 0) {
1350 cifs_dbg(FYI, "DFS ref '%s' is found, emulate -EREMOTE\n",
1351 dfspath);
1352 rc = -EREMOTE;
1353 } else {
1354 cifs_dbg(FYI, "%s: dfs_cache_find returned %d\n", __func__, rc);
1355 }
1356 kfree(dfspath);
1357 return rc;
1358}
1359#endif