at v6.0 1359 lines 36 kB view raw
1// SPDX-License-Identifier: LGPL-2.1 2/* 3 * 4 * Copyright (C) International Business Machines Corp., 2002,2008 5 * Author(s): Steve French (sfrench@us.ibm.com) 6 * 7 */ 8 9#include <linux/slab.h> 10#include <linux/ctype.h> 11#include <linux/mempool.h> 12#include <linux/vmalloc.h> 13#include "cifspdu.h" 14#include "cifsglob.h" 15#include "cifsproto.h" 16#include "cifs_debug.h" 17#include "smberr.h" 18#include "nterr.h" 19#include "cifs_unicode.h" 20#include "smb2pdu.h" 21#include "cifsfs.h" 22#ifdef CONFIG_CIFS_DFS_UPCALL 23#include "dns_resolve.h" 24#endif 25#include "fs_context.h" 26#include "cached_dir.h" 27 28extern mempool_t *cifs_sm_req_poolp; 29extern mempool_t *cifs_req_poolp; 30 31/* The xid serves as a useful identifier for each incoming vfs request, 32 in a similar way to the mid which is useful to track each sent smb, 33 and CurrentXid can also provide a running counter (although it 34 will eventually wrap past zero) of the total vfs operations handled 35 since the cifs fs was mounted */ 36 37unsigned int 38_get_xid(void) 39{ 40 unsigned int xid; 41 42 spin_lock(&GlobalMid_Lock); 43 GlobalTotalActiveXid++; 44 45 /* keep high water mark for number of simultaneous ops in filesystem */ 46 if (GlobalTotalActiveXid > GlobalMaxActiveXid) 47 GlobalMaxActiveXid = GlobalTotalActiveXid; 48 if (GlobalTotalActiveXid > 65000) 49 cifs_dbg(FYI, "warning: more than 65000 requests active\n"); 50 xid = GlobalCurrentXid++; 51 spin_unlock(&GlobalMid_Lock); 52 return xid; 53} 54 55void 56_free_xid(unsigned int xid) 57{ 58 spin_lock(&GlobalMid_Lock); 59 /* if (GlobalTotalActiveXid == 0) 60 BUG(); */ 61 GlobalTotalActiveXid--; 62 spin_unlock(&GlobalMid_Lock); 63} 64 65struct cifs_ses * 66sesInfoAlloc(void) 67{ 68 struct cifs_ses *ret_buf; 69 70 ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL); 71 if (ret_buf) { 72 atomic_inc(&sesInfoAllocCount); 73 spin_lock_init(&ret_buf->ses_lock); 74 ret_buf->ses_status = SES_NEW; 75 ++ret_buf->ses_count; 76 INIT_LIST_HEAD(&ret_buf->smb_ses_list); 77 INIT_LIST_HEAD(&ret_buf->tcon_list); 78 mutex_init(&ret_buf->session_mutex); 79 spin_lock_init(&ret_buf->iface_lock); 80 INIT_LIST_HEAD(&ret_buf->iface_list); 81 spin_lock_init(&ret_buf->chan_lock); 82 } 83 return ret_buf; 84} 85 86void 87sesInfoFree(struct cifs_ses *buf_to_free) 88{ 89 struct cifs_server_iface *iface = NULL, *niface = NULL; 90 91 if (buf_to_free == NULL) { 92 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n"); 93 return; 94 } 95 96 atomic_dec(&sesInfoAllocCount); 97 kfree(buf_to_free->serverOS); 98 kfree(buf_to_free->serverDomain); 99 kfree(buf_to_free->serverNOS); 100 kfree_sensitive(buf_to_free->password); 101 kfree(buf_to_free->user_name); 102 kfree(buf_to_free->domainName); 103 kfree_sensitive(buf_to_free->auth_key.response); 104 spin_lock(&buf_to_free->iface_lock); 105 list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list, 106 iface_head) 107 kref_put(&iface->refcount, release_iface); 108 spin_unlock(&buf_to_free->iface_lock); 109 kfree_sensitive(buf_to_free); 110} 111 112struct cifs_tcon * 113tconInfoAlloc(void) 114{ 115 struct cifs_tcon *ret_buf; 116 117 ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL); 118 if (!ret_buf) 119 return NULL; 120 ret_buf->cfid = init_cached_dir(); 121 if (!ret_buf->cfid) { 122 kfree(ret_buf); 123 return NULL; 124 } 125 126 atomic_inc(&tconInfoAllocCount); 127 ret_buf->status = TID_NEW; 128 ++ret_buf->tc_count; 129 spin_lock_init(&ret_buf->tc_lock); 130 INIT_LIST_HEAD(&ret_buf->openFileList); 131 INIT_LIST_HEAD(&ret_buf->tcon_list); 132 spin_lock_init(&ret_buf->open_file_lock); 133 spin_lock_init(&ret_buf->stat_lock); 134 atomic_set(&ret_buf->num_local_opens, 0); 135 atomic_set(&ret_buf->num_remote_opens, 0); 136 137 return ret_buf; 138} 139 140void 141tconInfoFree(struct cifs_tcon *tcon) 142{ 143 if (tcon == NULL) { 144 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n"); 145 return; 146 } 147 free_cached_dir(tcon); 148 atomic_dec(&tconInfoAllocCount); 149 kfree(tcon->nativeFileSystem); 150 kfree_sensitive(tcon->password); 151 kfree(tcon); 152} 153 154struct smb_hdr * 155cifs_buf_get(void) 156{ 157 struct smb_hdr *ret_buf = NULL; 158 /* 159 * SMB2 header is bigger than CIFS one - no problems to clean some 160 * more bytes for CIFS. 161 */ 162 size_t buf_size = sizeof(struct smb2_hdr); 163 164 /* 165 * We could use negotiated size instead of max_msgsize - 166 * but it may be more efficient to always alloc same size 167 * albeit slightly larger than necessary and maxbuffersize 168 * defaults to this and can not be bigger. 169 */ 170 ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS); 171 172 /* clear the first few header bytes */ 173 /* for most paths, more is cleared in header_assemble */ 174 memset(ret_buf, 0, buf_size + 3); 175 atomic_inc(&buf_alloc_count); 176#ifdef CONFIG_CIFS_STATS2 177 atomic_inc(&total_buf_alloc_count); 178#endif /* CONFIG_CIFS_STATS2 */ 179 180 return ret_buf; 181} 182 183void 184cifs_buf_release(void *buf_to_free) 185{ 186 if (buf_to_free == NULL) { 187 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/ 188 return; 189 } 190 mempool_free(buf_to_free, cifs_req_poolp); 191 192 atomic_dec(&buf_alloc_count); 193 return; 194} 195 196struct smb_hdr * 197cifs_small_buf_get(void) 198{ 199 struct smb_hdr *ret_buf = NULL; 200 201/* We could use negotiated size instead of max_msgsize - 202 but it may be more efficient to always alloc same size 203 albeit slightly larger than necessary and maxbuffersize 204 defaults to this and can not be bigger */ 205 ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS); 206 /* No need to clear memory here, cleared in header assemble */ 207 /* memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/ 208 atomic_inc(&small_buf_alloc_count); 209#ifdef CONFIG_CIFS_STATS2 210 atomic_inc(&total_small_buf_alloc_count); 211#endif /* CONFIG_CIFS_STATS2 */ 212 213 return ret_buf; 214} 215 216void 217cifs_small_buf_release(void *buf_to_free) 218{ 219 220 if (buf_to_free == NULL) { 221 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n"); 222 return; 223 } 224 mempool_free(buf_to_free, cifs_sm_req_poolp); 225 226 atomic_dec(&small_buf_alloc_count); 227 return; 228} 229 230void 231free_rsp_buf(int resp_buftype, void *rsp) 232{ 233 if (resp_buftype == CIFS_SMALL_BUFFER) 234 cifs_small_buf_release(rsp); 235 else if (resp_buftype == CIFS_LARGE_BUFFER) 236 cifs_buf_release(rsp); 237} 238 239/* NB: MID can not be set if treeCon not passed in, in that 240 case it is responsbility of caller to set the mid */ 241void 242header_assemble(struct smb_hdr *buffer, char smb_command /* command */ , 243 const struct cifs_tcon *treeCon, int word_count 244 /* length of fixed section (word count) in two byte units */) 245{ 246 char *temp = (char *) buffer; 247 248 memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */ 249 250 buffer->smb_buf_length = cpu_to_be32( 251 (2 * word_count) + sizeof(struct smb_hdr) - 252 4 /* RFC 1001 length field does not count */ + 253 2 /* for bcc field itself */) ; 254 255 buffer->Protocol[0] = 0xFF; 256 buffer->Protocol[1] = 'S'; 257 buffer->Protocol[2] = 'M'; 258 buffer->Protocol[3] = 'B'; 259 buffer->Command = smb_command; 260 buffer->Flags = 0x00; /* case sensitive */ 261 buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES; 262 buffer->Pid = cpu_to_le16((__u16)current->tgid); 263 buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16)); 264 if (treeCon) { 265 buffer->Tid = treeCon->tid; 266 if (treeCon->ses) { 267 if (treeCon->ses->capabilities & CAP_UNICODE) 268 buffer->Flags2 |= SMBFLG2_UNICODE; 269 if (treeCon->ses->capabilities & CAP_STATUS32) 270 buffer->Flags2 |= SMBFLG2_ERR_STATUS; 271 272 /* Uid is not converted */ 273 buffer->Uid = treeCon->ses->Suid; 274 if (treeCon->ses->server) 275 buffer->Mid = get_next_mid(treeCon->ses->server); 276 } 277 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS) 278 buffer->Flags2 |= SMBFLG2_DFS; 279 if (treeCon->nocase) 280 buffer->Flags |= SMBFLG_CASELESS; 281 if ((treeCon->ses) && (treeCon->ses->server)) 282 if (treeCon->ses->server->sign) 283 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE; 284 } 285 286/* endian conversion of flags is now done just before sending */ 287 buffer->WordCount = (char) word_count; 288 return; 289} 290 291static int 292check_smb_hdr(struct smb_hdr *smb) 293{ 294 /* does it have the right SMB "signature" ? */ 295 if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) { 296 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n", 297 *(unsigned int *)smb->Protocol); 298 return 1; 299 } 300 301 /* if it's a response then accept */ 302 if (smb->Flags & SMBFLG_RESPONSE) 303 return 0; 304 305 /* only one valid case where server sends us request */ 306 if (smb->Command == SMB_COM_LOCKING_ANDX) 307 return 0; 308 309 cifs_dbg(VFS, "Server sent request, not response. mid=%u\n", 310 get_mid(smb)); 311 return 1; 312} 313 314int 315checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server) 316{ 317 struct smb_hdr *smb = (struct smb_hdr *)buf; 318 __u32 rfclen = be32_to_cpu(smb->smb_buf_length); 319 __u32 clc_len; /* calculated length */ 320 cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n", 321 total_read, rfclen); 322 323 /* is this frame too small to even get to a BCC? */ 324 if (total_read < 2 + sizeof(struct smb_hdr)) { 325 if ((total_read >= sizeof(struct smb_hdr) - 1) 326 && (smb->Status.CifsError != 0)) { 327 /* it's an error return */ 328 smb->WordCount = 0; 329 /* some error cases do not return wct and bcc */ 330 return 0; 331 } else if ((total_read == sizeof(struct smb_hdr) + 1) && 332 (smb->WordCount == 0)) { 333 char *tmp = (char *)smb; 334 /* Need to work around a bug in two servers here */ 335 /* First, check if the part of bcc they sent was zero */ 336 if (tmp[sizeof(struct smb_hdr)] == 0) { 337 /* some servers return only half of bcc 338 * on simple responses (wct, bcc both zero) 339 * in particular have seen this on 340 * ulogoffX and FindClose. This leaves 341 * one byte of bcc potentially unitialized 342 */ 343 /* zero rest of bcc */ 344 tmp[sizeof(struct smb_hdr)+1] = 0; 345 return 0; 346 } 347 cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n"); 348 } else { 349 cifs_dbg(VFS, "Length less than smb header size\n"); 350 } 351 return -EIO; 352 } 353 354 /* otherwise, there is enough to get to the BCC */ 355 if (check_smb_hdr(smb)) 356 return -EIO; 357 clc_len = smbCalcSize(smb); 358 359 if (4 + rfclen != total_read) { 360 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n", 361 rfclen); 362 return -EIO; 363 } 364 365 if (4 + rfclen != clc_len) { 366 __u16 mid = get_mid(smb); 367 /* check if bcc wrapped around for large read responses */ 368 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) { 369 /* check if lengths match mod 64K */ 370 if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF)) 371 return 0; /* bcc wrapped */ 372 } 373 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n", 374 clc_len, 4 + rfclen, mid); 375 376 if (4 + rfclen < clc_len) { 377 cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n", 378 rfclen, mid); 379 return -EIO; 380 } else if (rfclen > clc_len + 512) { 381 /* 382 * Some servers (Windows XP in particular) send more 383 * data than the lengths in the SMB packet would 384 * indicate on certain calls (byte range locks and 385 * trans2 find first calls in particular). While the 386 * client can handle such a frame by ignoring the 387 * trailing data, we choose limit the amount of extra 388 * data to 512 bytes. 389 */ 390 cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n", 391 rfclen, mid); 392 return -EIO; 393 } 394 } 395 return 0; 396} 397 398bool 399is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv) 400{ 401 struct smb_hdr *buf = (struct smb_hdr *)buffer; 402 struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf; 403 struct cifs_ses *ses; 404 struct cifs_tcon *tcon; 405 struct cifsInodeInfo *pCifsInode; 406 struct cifsFileInfo *netfile; 407 408 cifs_dbg(FYI, "Checking for oplock break or dnotify response\n"); 409 if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) && 410 (pSMB->hdr.Flags & SMBFLG_RESPONSE)) { 411 struct smb_com_transaction_change_notify_rsp *pSMBr = 412 (struct smb_com_transaction_change_notify_rsp *)buf; 413 struct file_notify_information *pnotify; 414 __u32 data_offset = 0; 415 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length); 416 417 if (get_bcc(buf) > sizeof(struct file_notify_information)) { 418 data_offset = le32_to_cpu(pSMBr->DataOffset); 419 420 if (data_offset > 421 len - sizeof(struct file_notify_information)) { 422 cifs_dbg(FYI, "Invalid data_offset %u\n", 423 data_offset); 424 return true; 425 } 426 pnotify = (struct file_notify_information *) 427 ((char *)&pSMBr->hdr.Protocol + data_offset); 428 cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n", 429 pnotify->FileName, pnotify->Action); 430 /* cifs_dump_mem("Rcvd notify Data: ",buf, 431 sizeof(struct smb_hdr)+60); */ 432 return true; 433 } 434 if (pSMBr->hdr.Status.CifsError) { 435 cifs_dbg(FYI, "notify err 0x%x\n", 436 pSMBr->hdr.Status.CifsError); 437 return true; 438 } 439 return false; 440 } 441 if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX) 442 return false; 443 if (pSMB->hdr.Flags & SMBFLG_RESPONSE) { 444 /* no sense logging error on invalid handle on oplock 445 break - harmless race between close request and oplock 446 break response is expected from time to time writing out 447 large dirty files cached on the client */ 448 if ((NT_STATUS_INVALID_HANDLE) == 449 le32_to_cpu(pSMB->hdr.Status.CifsError)) { 450 cifs_dbg(FYI, "Invalid handle on oplock break\n"); 451 return true; 452 } else if (ERRbadfid == 453 le16_to_cpu(pSMB->hdr.Status.DosError.Error)) { 454 return true; 455 } else { 456 return false; /* on valid oplock brk we get "request" */ 457 } 458 } 459 if (pSMB->hdr.WordCount != 8) 460 return false; 461 462 cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n", 463 pSMB->LockType, pSMB->OplockLevel); 464 if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE)) 465 return false; 466 467 /* look up tcon based on tid & uid */ 468 spin_lock(&cifs_tcp_ses_lock); 469 list_for_each_entry(ses, &srv->smb_ses_list, smb_ses_list) { 470 list_for_each_entry(tcon, &ses->tcon_list, tcon_list) { 471 if (tcon->tid != buf->Tid) 472 continue; 473 474 cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks); 475 spin_lock(&tcon->open_file_lock); 476 list_for_each_entry(netfile, &tcon->openFileList, tlist) { 477 if (pSMB->Fid != netfile->fid.netfid) 478 continue; 479 480 cifs_dbg(FYI, "file id match, oplock break\n"); 481 pCifsInode = CIFS_I(d_inode(netfile->dentry)); 482 483 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, 484 &pCifsInode->flags); 485 486 netfile->oplock_epoch = 0; 487 netfile->oplock_level = pSMB->OplockLevel; 488 netfile->oplock_break_cancelled = false; 489 cifs_queue_oplock_break(netfile); 490 491 spin_unlock(&tcon->open_file_lock); 492 spin_unlock(&cifs_tcp_ses_lock); 493 return true; 494 } 495 spin_unlock(&tcon->open_file_lock); 496 spin_unlock(&cifs_tcp_ses_lock); 497 cifs_dbg(FYI, "No matching file for oplock break\n"); 498 return true; 499 } 500 } 501 spin_unlock(&cifs_tcp_ses_lock); 502 cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n"); 503 return true; 504} 505 506void 507dump_smb(void *buf, int smb_buf_length) 508{ 509 if (traceSMB == 0) 510 return; 511 512 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf, 513 smb_buf_length, true); 514} 515 516void 517cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb) 518{ 519 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) { 520 struct cifs_tcon *tcon = NULL; 521 522 if (cifs_sb->master_tlink) 523 tcon = cifs_sb_master_tcon(cifs_sb); 524 525 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM; 526 cifs_sb->mnt_cifs_serverino_autodisabled = true; 527 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n", 528 tcon ? tcon->treeName : "new server"); 529 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n"); 530 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n"); 531 532 } 533} 534 535void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock) 536{ 537 oplock &= 0xF; 538 539 if (oplock == OPLOCK_EXCLUSIVE) { 540 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG; 541 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n", 542 &cinode->netfs.inode); 543 } else if (oplock == OPLOCK_READ) { 544 cinode->oplock = CIFS_CACHE_READ_FLG; 545 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n", 546 &cinode->netfs.inode); 547 } else 548 cinode->oplock = 0; 549} 550 551/* 552 * We wait for oplock breaks to be processed before we attempt to perform 553 * writes. 554 */ 555int cifs_get_writer(struct cifsInodeInfo *cinode) 556{ 557 int rc; 558 559start: 560 rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK, 561 TASK_KILLABLE); 562 if (rc) 563 return rc; 564 565 spin_lock(&cinode->writers_lock); 566 if (!cinode->writers) 567 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 568 cinode->writers++; 569 /* Check to see if we have started servicing an oplock break */ 570 if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) { 571 cinode->writers--; 572 if (cinode->writers == 0) { 573 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 574 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS); 575 } 576 spin_unlock(&cinode->writers_lock); 577 goto start; 578 } 579 spin_unlock(&cinode->writers_lock); 580 return 0; 581} 582 583void cifs_put_writer(struct cifsInodeInfo *cinode) 584{ 585 spin_lock(&cinode->writers_lock); 586 cinode->writers--; 587 if (cinode->writers == 0) { 588 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 589 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS); 590 } 591 spin_unlock(&cinode->writers_lock); 592} 593 594/** 595 * cifs_queue_oplock_break - queue the oplock break handler for cfile 596 * @cfile: The file to break the oplock on 597 * 598 * This function is called from the demultiplex thread when it 599 * receives an oplock break for @cfile. 600 * 601 * Assumes the tcon->open_file_lock is held. 602 * Assumes cfile->file_info_lock is NOT held. 603 */ 604void cifs_queue_oplock_break(struct cifsFileInfo *cfile) 605{ 606 /* 607 * Bump the handle refcount now while we hold the 608 * open_file_lock to enforce the validity of it for the oplock 609 * break handler. The matching put is done at the end of the 610 * handler. 611 */ 612 cifsFileInfo_get(cfile); 613 614 queue_work(cifsoplockd_wq, &cfile->oplock_break); 615} 616 617void cifs_done_oplock_break(struct cifsInodeInfo *cinode) 618{ 619 clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags); 620 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK); 621} 622 623bool 624backup_cred(struct cifs_sb_info *cifs_sb) 625{ 626 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) { 627 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid())) 628 return true; 629 } 630 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) { 631 if (in_group_p(cifs_sb->ctx->backupgid)) 632 return true; 633 } 634 635 return false; 636} 637 638void 639cifs_del_pending_open(struct cifs_pending_open *open) 640{ 641 spin_lock(&tlink_tcon(open->tlink)->open_file_lock); 642 list_del(&open->olist); 643 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock); 644} 645 646void 647cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink, 648 struct cifs_pending_open *open) 649{ 650 memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE); 651 open->oplock = CIFS_OPLOCK_NO_CHANGE; 652 open->tlink = tlink; 653 fid->pending_open = open; 654 list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens); 655} 656 657void 658cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink, 659 struct cifs_pending_open *open) 660{ 661 spin_lock(&tlink_tcon(tlink)->open_file_lock); 662 cifs_add_pending_open_locked(fid, tlink, open); 663 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock); 664} 665 666/* 667 * Critical section which runs after acquiring deferred_lock. 668 * As there is no reference count on cifs_deferred_close, pdclose 669 * should not be used outside deferred_lock. 670 */ 671bool 672cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose) 673{ 674 struct cifs_deferred_close *dclose; 675 676 list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) { 677 if ((dclose->netfid == cfile->fid.netfid) && 678 (dclose->persistent_fid == cfile->fid.persistent_fid) && 679 (dclose->volatile_fid == cfile->fid.volatile_fid)) { 680 *pdclose = dclose; 681 return true; 682 } 683 } 684 return false; 685} 686 687/* 688 * Critical section which runs after acquiring deferred_lock. 689 */ 690void 691cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose) 692{ 693 bool is_deferred = false; 694 struct cifs_deferred_close *pdclose; 695 696 is_deferred = cifs_is_deferred_close(cfile, &pdclose); 697 if (is_deferred) { 698 kfree(dclose); 699 return; 700 } 701 702 dclose->tlink = cfile->tlink; 703 dclose->netfid = cfile->fid.netfid; 704 dclose->persistent_fid = cfile->fid.persistent_fid; 705 dclose->volatile_fid = cfile->fid.volatile_fid; 706 list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes); 707} 708 709/* 710 * Critical section which runs after acquiring deferred_lock. 711 */ 712void 713cifs_del_deferred_close(struct cifsFileInfo *cfile) 714{ 715 bool is_deferred = false; 716 struct cifs_deferred_close *dclose; 717 718 is_deferred = cifs_is_deferred_close(cfile, &dclose); 719 if (!is_deferred) 720 return; 721 list_del(&dclose->dlist); 722 kfree(dclose); 723} 724 725void 726cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode) 727{ 728 struct cifsFileInfo *cfile = NULL; 729 struct file_list *tmp_list, *tmp_next_list; 730 struct list_head file_head; 731 732 if (cifs_inode == NULL) 733 return; 734 735 INIT_LIST_HEAD(&file_head); 736 spin_lock(&cifs_inode->open_file_lock); 737 list_for_each_entry(cfile, &cifs_inode->openFileList, flist) { 738 if (delayed_work_pending(&cfile->deferred)) { 739 if (cancel_delayed_work(&cfile->deferred)) { 740 cifs_del_deferred_close(cfile); 741 742 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 743 if (tmp_list == NULL) 744 break; 745 tmp_list->cfile = cfile; 746 list_add_tail(&tmp_list->list, &file_head); 747 } 748 } 749 } 750 spin_unlock(&cifs_inode->open_file_lock); 751 752 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 753 _cifsFileInfo_put(tmp_list->cfile, true, false); 754 list_del(&tmp_list->list); 755 kfree(tmp_list); 756 } 757} 758 759void 760cifs_close_all_deferred_files(struct cifs_tcon *tcon) 761{ 762 struct cifsFileInfo *cfile; 763 struct file_list *tmp_list, *tmp_next_list; 764 struct list_head file_head; 765 766 INIT_LIST_HEAD(&file_head); 767 spin_lock(&tcon->open_file_lock); 768 list_for_each_entry(cfile, &tcon->openFileList, tlist) { 769 if (delayed_work_pending(&cfile->deferred)) { 770 if (cancel_delayed_work(&cfile->deferred)) { 771 cifs_del_deferred_close(cfile); 772 773 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 774 if (tmp_list == NULL) 775 break; 776 tmp_list->cfile = cfile; 777 list_add_tail(&tmp_list->list, &file_head); 778 } 779 } 780 } 781 spin_unlock(&tcon->open_file_lock); 782 783 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 784 _cifsFileInfo_put(tmp_list->cfile, true, false); 785 list_del(&tmp_list->list); 786 kfree(tmp_list); 787 } 788} 789void 790cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path) 791{ 792 struct cifsFileInfo *cfile; 793 struct file_list *tmp_list, *tmp_next_list; 794 struct list_head file_head; 795 void *page; 796 const char *full_path; 797 798 INIT_LIST_HEAD(&file_head); 799 page = alloc_dentry_path(); 800 spin_lock(&tcon->open_file_lock); 801 list_for_each_entry(cfile, &tcon->openFileList, tlist) { 802 full_path = build_path_from_dentry(cfile->dentry, page); 803 if (strstr(full_path, path)) { 804 if (delayed_work_pending(&cfile->deferred)) { 805 if (cancel_delayed_work(&cfile->deferred)) { 806 cifs_del_deferred_close(cfile); 807 808 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 809 if (tmp_list == NULL) 810 break; 811 tmp_list->cfile = cfile; 812 list_add_tail(&tmp_list->list, &file_head); 813 } 814 } 815 } 816 } 817 spin_unlock(&tcon->open_file_lock); 818 819 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 820 _cifsFileInfo_put(tmp_list->cfile, true, false); 821 list_del(&tmp_list->list); 822 kfree(tmp_list); 823 } 824 free_dentry_path(page); 825} 826 827/* parses DFS refferal V3 structure 828 * caller is responsible for freeing target_nodes 829 * returns: 830 * - on success - 0 831 * - on failure - errno 832 */ 833int 834parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size, 835 unsigned int *num_of_nodes, 836 struct dfs_info3_param **target_nodes, 837 const struct nls_table *nls_codepage, int remap, 838 const char *searchName, bool is_unicode) 839{ 840 int i, rc = 0; 841 char *data_end; 842 struct dfs_referral_level_3 *ref; 843 844 *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals); 845 846 if (*num_of_nodes < 1) { 847 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n", 848 *num_of_nodes); 849 rc = -EINVAL; 850 goto parse_DFS_referrals_exit; 851 } 852 853 ref = (struct dfs_referral_level_3 *) &(rsp->referrals); 854 if (ref->VersionNumber != cpu_to_le16(3)) { 855 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n", 856 le16_to_cpu(ref->VersionNumber)); 857 rc = -EINVAL; 858 goto parse_DFS_referrals_exit; 859 } 860 861 /* get the upper boundary of the resp buffer */ 862 data_end = (char *)rsp + rsp_size; 863 864 cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n", 865 *num_of_nodes, le32_to_cpu(rsp->DFSFlags)); 866 867 *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param), 868 GFP_KERNEL); 869 if (*target_nodes == NULL) { 870 rc = -ENOMEM; 871 goto parse_DFS_referrals_exit; 872 } 873 874 /* collect necessary data from referrals */ 875 for (i = 0; i < *num_of_nodes; i++) { 876 char *temp; 877 int max_len; 878 struct dfs_info3_param *node = (*target_nodes)+i; 879 880 node->flags = le32_to_cpu(rsp->DFSFlags); 881 if (is_unicode) { 882 __le16 *tmp = kmalloc(strlen(searchName)*2 + 2, 883 GFP_KERNEL); 884 if (tmp == NULL) { 885 rc = -ENOMEM; 886 goto parse_DFS_referrals_exit; 887 } 888 cifsConvertToUTF16((__le16 *) tmp, searchName, 889 PATH_MAX, nls_codepage, remap); 890 node->path_consumed = cifs_utf16_bytes(tmp, 891 le16_to_cpu(rsp->PathConsumed), 892 nls_codepage); 893 kfree(tmp); 894 } else 895 node->path_consumed = le16_to_cpu(rsp->PathConsumed); 896 897 node->server_type = le16_to_cpu(ref->ServerType); 898 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags); 899 900 /* copy DfsPath */ 901 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset); 902 max_len = data_end - temp; 903 node->path_name = cifs_strndup_from_utf16(temp, max_len, 904 is_unicode, nls_codepage); 905 if (!node->path_name) { 906 rc = -ENOMEM; 907 goto parse_DFS_referrals_exit; 908 } 909 910 /* copy link target UNC */ 911 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset); 912 max_len = data_end - temp; 913 node->node_name = cifs_strndup_from_utf16(temp, max_len, 914 is_unicode, nls_codepage); 915 if (!node->node_name) { 916 rc = -ENOMEM; 917 goto parse_DFS_referrals_exit; 918 } 919 920 node->ttl = le32_to_cpu(ref->TimeToLive); 921 922 ref++; 923 } 924 925parse_DFS_referrals_exit: 926 if (rc) { 927 free_dfs_info_array(*target_nodes, *num_of_nodes); 928 *target_nodes = NULL; 929 *num_of_nodes = 0; 930 } 931 return rc; 932} 933 934struct cifs_aio_ctx * 935cifs_aio_ctx_alloc(void) 936{ 937 struct cifs_aio_ctx *ctx; 938 939 /* 940 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io 941 * to false so that we know when we have to unreference pages within 942 * cifs_aio_ctx_release() 943 */ 944 ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL); 945 if (!ctx) 946 return NULL; 947 948 INIT_LIST_HEAD(&ctx->list); 949 mutex_init(&ctx->aio_mutex); 950 init_completion(&ctx->done); 951 kref_init(&ctx->refcount); 952 return ctx; 953} 954 955void 956cifs_aio_ctx_release(struct kref *refcount) 957{ 958 struct cifs_aio_ctx *ctx = container_of(refcount, 959 struct cifs_aio_ctx, refcount); 960 961 cifsFileInfo_put(ctx->cfile); 962 963 /* 964 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly 965 * which means that iov_iter_get_pages() was a success and thus that 966 * we have taken reference on pages. 967 */ 968 if (ctx->bv) { 969 unsigned i; 970 971 for (i = 0; i < ctx->npages; i++) { 972 if (ctx->should_dirty) 973 set_page_dirty(ctx->bv[i].bv_page); 974 put_page(ctx->bv[i].bv_page); 975 } 976 kvfree(ctx->bv); 977 } 978 979 kfree(ctx); 980} 981 982#define CIFS_AIO_KMALLOC_LIMIT (1024 * 1024) 983 984int 985setup_aio_ctx_iter(struct cifs_aio_ctx *ctx, struct iov_iter *iter, int rw) 986{ 987 ssize_t rc; 988 unsigned int cur_npages; 989 unsigned int npages = 0; 990 unsigned int i; 991 size_t len; 992 size_t count = iov_iter_count(iter); 993 unsigned int saved_len; 994 size_t start; 995 unsigned int max_pages = iov_iter_npages(iter, INT_MAX); 996 struct page **pages = NULL; 997 struct bio_vec *bv = NULL; 998 999 if (iov_iter_is_kvec(iter)) { 1000 memcpy(&ctx->iter, iter, sizeof(*iter)); 1001 ctx->len = count; 1002 iov_iter_advance(iter, count); 1003 return 0; 1004 } 1005 1006 if (array_size(max_pages, sizeof(*bv)) <= CIFS_AIO_KMALLOC_LIMIT) 1007 bv = kmalloc_array(max_pages, sizeof(*bv), GFP_KERNEL); 1008 1009 if (!bv) { 1010 bv = vmalloc(array_size(max_pages, sizeof(*bv))); 1011 if (!bv) 1012 return -ENOMEM; 1013 } 1014 1015 if (array_size(max_pages, sizeof(*pages)) <= CIFS_AIO_KMALLOC_LIMIT) 1016 pages = kmalloc_array(max_pages, sizeof(*pages), GFP_KERNEL); 1017 1018 if (!pages) { 1019 pages = vmalloc(array_size(max_pages, sizeof(*pages))); 1020 if (!pages) { 1021 kvfree(bv); 1022 return -ENOMEM; 1023 } 1024 } 1025 1026 saved_len = count; 1027 1028 while (count && npages < max_pages) { 1029 rc = iov_iter_get_pages2(iter, pages, count, max_pages, &start); 1030 if (rc < 0) { 1031 cifs_dbg(VFS, "Couldn't get user pages (rc=%zd)\n", rc); 1032 break; 1033 } 1034 1035 if (rc > count) { 1036 cifs_dbg(VFS, "get pages rc=%zd more than %zu\n", rc, 1037 count); 1038 break; 1039 } 1040 1041 count -= rc; 1042 rc += start; 1043 cur_npages = DIV_ROUND_UP(rc, PAGE_SIZE); 1044 1045 if (npages + cur_npages > max_pages) { 1046 cifs_dbg(VFS, "out of vec array capacity (%u vs %u)\n", 1047 npages + cur_npages, max_pages); 1048 break; 1049 } 1050 1051 for (i = 0; i < cur_npages; i++) { 1052 len = rc > PAGE_SIZE ? PAGE_SIZE : rc; 1053 bv[npages + i].bv_page = pages[i]; 1054 bv[npages + i].bv_offset = start; 1055 bv[npages + i].bv_len = len - start; 1056 rc -= len; 1057 start = 0; 1058 } 1059 1060 npages += cur_npages; 1061 } 1062 1063 kvfree(pages); 1064 ctx->bv = bv; 1065 ctx->len = saved_len - count; 1066 ctx->npages = npages; 1067 iov_iter_bvec(&ctx->iter, rw, ctx->bv, npages, ctx->len); 1068 return 0; 1069} 1070 1071/** 1072 * cifs_alloc_hash - allocate hash and hash context together 1073 * @name: The name of the crypto hash algo 1074 * @shash: Where to put the pointer to the hash algo 1075 * @sdesc: Where to put the pointer to the hash descriptor 1076 * 1077 * The caller has to make sure @sdesc is initialized to either NULL or 1078 * a valid context. Both can be freed via cifs_free_hash(). 1079 */ 1080int 1081cifs_alloc_hash(const char *name, 1082 struct crypto_shash **shash, struct sdesc **sdesc) 1083{ 1084 int rc = 0; 1085 size_t size; 1086 1087 if (*sdesc != NULL) 1088 return 0; 1089 1090 *shash = crypto_alloc_shash(name, 0, 0); 1091 if (IS_ERR(*shash)) { 1092 cifs_dbg(VFS, "Could not allocate crypto %s\n", name); 1093 rc = PTR_ERR(*shash); 1094 *shash = NULL; 1095 *sdesc = NULL; 1096 return rc; 1097 } 1098 1099 size = sizeof(struct shash_desc) + crypto_shash_descsize(*shash); 1100 *sdesc = kmalloc(size, GFP_KERNEL); 1101 if (*sdesc == NULL) { 1102 cifs_dbg(VFS, "no memory left to allocate crypto %s\n", name); 1103 crypto_free_shash(*shash); 1104 *shash = NULL; 1105 return -ENOMEM; 1106 } 1107 1108 (*sdesc)->shash.tfm = *shash; 1109 return 0; 1110} 1111 1112/** 1113 * cifs_free_hash - free hash and hash context together 1114 * @shash: Where to find the pointer to the hash algo 1115 * @sdesc: Where to find the pointer to the hash descriptor 1116 * 1117 * Freeing a NULL hash or context is safe. 1118 */ 1119void 1120cifs_free_hash(struct crypto_shash **shash, struct sdesc **sdesc) 1121{ 1122 kfree(*sdesc); 1123 *sdesc = NULL; 1124 if (*shash) 1125 crypto_free_shash(*shash); 1126 *shash = NULL; 1127} 1128 1129/** 1130 * rqst_page_get_length - obtain the length and offset for a page in smb_rqst 1131 * @rqst: The request descriptor 1132 * @page: The index of the page to query 1133 * @len: Where to store the length for this page: 1134 * @offset: Where to store the offset for this page 1135 */ 1136void rqst_page_get_length(struct smb_rqst *rqst, unsigned int page, 1137 unsigned int *len, unsigned int *offset) 1138{ 1139 *len = rqst->rq_pagesz; 1140 *offset = (page == 0) ? rqst->rq_offset : 0; 1141 1142 if (rqst->rq_npages == 1 || page == rqst->rq_npages-1) 1143 *len = rqst->rq_tailsz; 1144 else if (page == 0) 1145 *len = rqst->rq_pagesz - rqst->rq_offset; 1146} 1147 1148void extract_unc_hostname(const char *unc, const char **h, size_t *len) 1149{ 1150 const char *end; 1151 1152 /* skip initial slashes */ 1153 while (*unc && (*unc == '\\' || *unc == '/')) 1154 unc++; 1155 1156 end = unc; 1157 1158 while (*end && !(*end == '\\' || *end == '/')) 1159 end++; 1160 1161 *h = unc; 1162 *len = end - unc; 1163} 1164 1165/** 1166 * copy_path_name - copy src path to dst, possibly truncating 1167 * @dst: The destination buffer 1168 * @src: The source name 1169 * 1170 * returns number of bytes written (including trailing nul) 1171 */ 1172int copy_path_name(char *dst, const char *src) 1173{ 1174 int name_len; 1175 1176 /* 1177 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it 1178 * will truncate and strlen(dst) will be PATH_MAX-1 1179 */ 1180 name_len = strscpy(dst, src, PATH_MAX); 1181 if (WARN_ON_ONCE(name_len < 0)) 1182 name_len = PATH_MAX-1; 1183 1184 /* we count the trailing nul */ 1185 name_len++; 1186 return name_len; 1187} 1188 1189struct super_cb_data { 1190 void *data; 1191 struct super_block *sb; 1192}; 1193 1194static void tcp_super_cb(struct super_block *sb, void *arg) 1195{ 1196 struct super_cb_data *sd = arg; 1197 struct TCP_Server_Info *server = sd->data; 1198 struct cifs_sb_info *cifs_sb; 1199 struct cifs_tcon *tcon; 1200 1201 if (sd->sb) 1202 return; 1203 1204 cifs_sb = CIFS_SB(sb); 1205 tcon = cifs_sb_master_tcon(cifs_sb); 1206 if (tcon->ses->server == server) 1207 sd->sb = sb; 1208} 1209 1210static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *), 1211 void *data) 1212{ 1213 struct super_cb_data sd = { 1214 .data = data, 1215 .sb = NULL, 1216 }; 1217 struct file_system_type **fs_type = (struct file_system_type *[]) { 1218 &cifs_fs_type, &smb3_fs_type, NULL, 1219 }; 1220 1221 for (; *fs_type; fs_type++) { 1222 iterate_supers_type(*fs_type, f, &sd); 1223 if (sd.sb) { 1224 /* 1225 * Grab an active reference in order to prevent automounts (DFS links) 1226 * of expiring and then freeing up our cifs superblock pointer while 1227 * we're doing failover. 1228 */ 1229 cifs_sb_active(sd.sb); 1230 return sd.sb; 1231 } 1232 } 1233 return ERR_PTR(-EINVAL); 1234} 1235 1236static void __cifs_put_super(struct super_block *sb) 1237{ 1238 if (!IS_ERR_OR_NULL(sb)) 1239 cifs_sb_deactive(sb); 1240} 1241 1242struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server) 1243{ 1244 return __cifs_get_super(tcp_super_cb, server); 1245} 1246 1247void cifs_put_tcp_super(struct super_block *sb) 1248{ 1249 __cifs_put_super(sb); 1250} 1251 1252#ifdef CONFIG_CIFS_DFS_UPCALL 1253int match_target_ip(struct TCP_Server_Info *server, 1254 const char *share, size_t share_len, 1255 bool *result) 1256{ 1257 int rc; 1258 char *target, *tip = NULL; 1259 struct sockaddr tipaddr; 1260 1261 *result = false; 1262 1263 target = kzalloc(share_len + 3, GFP_KERNEL); 1264 if (!target) { 1265 rc = -ENOMEM; 1266 goto out; 1267 } 1268 1269 scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share); 1270 1271 cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2); 1272 1273 rc = dns_resolve_server_name_to_ip(target, &tip, NULL); 1274 if (rc < 0) 1275 goto out; 1276 1277 cifs_dbg(FYI, "%s: target ip: %s\n", __func__, tip); 1278 1279 if (!cifs_convert_address(&tipaddr, tip, strlen(tip))) { 1280 cifs_dbg(VFS, "%s: failed to convert target ip address\n", 1281 __func__); 1282 rc = -EINVAL; 1283 goto out; 1284 } 1285 1286 *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, 1287 &tipaddr); 1288 cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result); 1289 rc = 0; 1290 1291out: 1292 kfree(target); 1293 kfree(tip); 1294 1295 return rc; 1296} 1297 1298int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix) 1299{ 1300 kfree(cifs_sb->prepath); 1301 1302 if (prefix && *prefix) { 1303 cifs_sb->prepath = kstrdup(prefix, GFP_ATOMIC); 1304 if (!cifs_sb->prepath) 1305 return -ENOMEM; 1306 1307 convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb)); 1308 } else 1309 cifs_sb->prepath = NULL; 1310 1311 cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH; 1312 return 0; 1313} 1314 1315/** cifs_dfs_query_info_nonascii_quirk 1316 * Handle weird Windows SMB server behaviour. It responds with 1317 * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request 1318 * for "\<server>\<dfsname>\<linkpath>" DFS reference, 1319 * where <dfsname> contains non-ASCII unicode symbols. 1320 * 1321 * Check such DFS reference. 1322 */ 1323int cifs_dfs_query_info_nonascii_quirk(const unsigned int xid, 1324 struct cifs_tcon *tcon, 1325 struct cifs_sb_info *cifs_sb, 1326 const char *linkpath) 1327{ 1328 char *treename, *dfspath, sep; 1329 int treenamelen, linkpathlen, rc; 1330 1331 treename = tcon->treeName; 1332 /* MS-DFSC: All paths in REQ_GET_DFS_REFERRAL and RESP_GET_DFS_REFERRAL 1333 * messages MUST be encoded with exactly one leading backslash, not two 1334 * leading backslashes. 1335 */ 1336 sep = CIFS_DIR_SEP(cifs_sb); 1337 if (treename[0] == sep && treename[1] == sep) 1338 treename++; 1339 linkpathlen = strlen(linkpath); 1340 treenamelen = strnlen(treename, MAX_TREE_SIZE + 1); 1341 dfspath = kzalloc(treenamelen + linkpathlen + 1, GFP_KERNEL); 1342 if (!dfspath) 1343 return -ENOMEM; 1344 if (treenamelen) 1345 memcpy(dfspath, treename, treenamelen); 1346 memcpy(dfspath + treenamelen, linkpath, linkpathlen); 1347 rc = dfs_cache_find(xid, tcon->ses, cifs_sb->local_nls, 1348 cifs_remap(cifs_sb), dfspath, NULL, NULL); 1349 if (rc == 0) { 1350 cifs_dbg(FYI, "DFS ref '%s' is found, emulate -EREMOTE\n", 1351 dfspath); 1352 rc = -EREMOTE; 1353 } else { 1354 cifs_dbg(FYI, "%s: dfs_cache_find returned %d\n", __func__, rc); 1355 } 1356 kfree(dfspath); 1357 return rc; 1358} 1359#endif