Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/slab.h>
7#include <linux/blkdev.h>
8#include <linux/writeback.h>
9#include <linux/sched/mm.h>
10#include "misc.h"
11#include "ctree.h"
12#include "transaction.h"
13#include "btrfs_inode.h"
14#include "extent_io.h"
15#include "disk-io.h"
16#include "compression.h"
17#include "delalloc-space.h"
18#include "qgroup.h"
19#include "subpage.h"
20
21static struct kmem_cache *btrfs_ordered_extent_cache;
22
23static u64 entry_end(struct btrfs_ordered_extent *entry)
24{
25 if (entry->file_offset + entry->num_bytes < entry->file_offset)
26 return (u64)-1;
27 return entry->file_offset + entry->num_bytes;
28}
29
30/* returns NULL if the insertion worked, or it returns the node it did find
31 * in the tree
32 */
33static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
34 struct rb_node *node)
35{
36 struct rb_node **p = &root->rb_node;
37 struct rb_node *parent = NULL;
38 struct btrfs_ordered_extent *entry;
39
40 while (*p) {
41 parent = *p;
42 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
43
44 if (file_offset < entry->file_offset)
45 p = &(*p)->rb_left;
46 else if (file_offset >= entry_end(entry))
47 p = &(*p)->rb_right;
48 else
49 return parent;
50 }
51
52 rb_link_node(node, parent, p);
53 rb_insert_color(node, root);
54 return NULL;
55}
56
57/*
58 * look for a given offset in the tree, and if it can't be found return the
59 * first lesser offset
60 */
61static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
62 struct rb_node **prev_ret)
63{
64 struct rb_node *n = root->rb_node;
65 struct rb_node *prev = NULL;
66 struct rb_node *test;
67 struct btrfs_ordered_extent *entry;
68 struct btrfs_ordered_extent *prev_entry = NULL;
69
70 while (n) {
71 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
72 prev = n;
73 prev_entry = entry;
74
75 if (file_offset < entry->file_offset)
76 n = n->rb_left;
77 else if (file_offset >= entry_end(entry))
78 n = n->rb_right;
79 else
80 return n;
81 }
82 if (!prev_ret)
83 return NULL;
84
85 while (prev && file_offset >= entry_end(prev_entry)) {
86 test = rb_next(prev);
87 if (!test)
88 break;
89 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
90 rb_node);
91 if (file_offset < entry_end(prev_entry))
92 break;
93
94 prev = test;
95 }
96 if (prev)
97 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
98 rb_node);
99 while (prev && file_offset < entry_end(prev_entry)) {
100 test = rb_prev(prev);
101 if (!test)
102 break;
103 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
104 rb_node);
105 prev = test;
106 }
107 *prev_ret = prev;
108 return NULL;
109}
110
111static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
112 u64 len)
113{
114 if (file_offset + len <= entry->file_offset ||
115 entry->file_offset + entry->num_bytes <= file_offset)
116 return 0;
117 return 1;
118}
119
120/*
121 * look find the first ordered struct that has this offset, otherwise
122 * the first one less than this offset
123 */
124static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
125 u64 file_offset)
126{
127 struct rb_root *root = &tree->tree;
128 struct rb_node *prev = NULL;
129 struct rb_node *ret;
130 struct btrfs_ordered_extent *entry;
131
132 if (tree->last) {
133 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
134 rb_node);
135 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
136 return tree->last;
137 }
138 ret = __tree_search(root, file_offset, &prev);
139 if (!ret)
140 ret = prev;
141 if (ret)
142 tree->last = ret;
143 return ret;
144}
145
146/**
147 * Add an ordered extent to the per-inode tree.
148 *
149 * @inode: Inode that this extent is for.
150 * @file_offset: Logical offset in file where the extent starts.
151 * @num_bytes: Logical length of extent in file.
152 * @ram_bytes: Full length of unencoded data.
153 * @disk_bytenr: Offset of extent on disk.
154 * @disk_num_bytes: Size of extent on disk.
155 * @offset: Offset into unencoded data where file data starts.
156 * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*).
157 * @compress_type: Compression algorithm used for data.
158 *
159 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
160 * tree is given a single reference on the ordered extent that was inserted.
161 *
162 * Return: 0 or -ENOMEM.
163 */
164int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
165 u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
166 u64 disk_num_bytes, u64 offset, unsigned flags,
167 int compress_type)
168{
169 struct btrfs_root *root = inode->root;
170 struct btrfs_fs_info *fs_info = root->fs_info;
171 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
172 struct rb_node *node;
173 struct btrfs_ordered_extent *entry;
174 int ret;
175
176 if (flags &
177 ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
178 /* For nocow write, we can release the qgroup rsv right now */
179 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
180 if (ret < 0)
181 return ret;
182 ret = 0;
183 } else {
184 /*
185 * The ordered extent has reserved qgroup space, release now
186 * and pass the reserved number for qgroup_record to free.
187 */
188 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
189 if (ret < 0)
190 return ret;
191 }
192 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
193 if (!entry)
194 return -ENOMEM;
195
196 entry->file_offset = file_offset;
197 entry->num_bytes = num_bytes;
198 entry->ram_bytes = ram_bytes;
199 entry->disk_bytenr = disk_bytenr;
200 entry->disk_num_bytes = disk_num_bytes;
201 entry->offset = offset;
202 entry->bytes_left = num_bytes;
203 entry->inode = igrab(&inode->vfs_inode);
204 entry->compress_type = compress_type;
205 entry->truncated_len = (u64)-1;
206 entry->qgroup_rsv = ret;
207 entry->physical = (u64)-1;
208
209 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
210 entry->flags = flags;
211
212 percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
213 fs_info->delalloc_batch);
214
215 /* one ref for the tree */
216 refcount_set(&entry->refs, 1);
217 init_waitqueue_head(&entry->wait);
218 INIT_LIST_HEAD(&entry->list);
219 INIT_LIST_HEAD(&entry->log_list);
220 INIT_LIST_HEAD(&entry->root_extent_list);
221 INIT_LIST_HEAD(&entry->work_list);
222 init_completion(&entry->completion);
223
224 trace_btrfs_ordered_extent_add(inode, entry);
225
226 spin_lock_irq(&tree->lock);
227 node = tree_insert(&tree->tree, file_offset,
228 &entry->rb_node);
229 if (node)
230 btrfs_panic(fs_info, -EEXIST,
231 "inconsistency in ordered tree at offset %llu",
232 file_offset);
233 spin_unlock_irq(&tree->lock);
234
235 spin_lock(&root->ordered_extent_lock);
236 list_add_tail(&entry->root_extent_list,
237 &root->ordered_extents);
238 root->nr_ordered_extents++;
239 if (root->nr_ordered_extents == 1) {
240 spin_lock(&fs_info->ordered_root_lock);
241 BUG_ON(!list_empty(&root->ordered_root));
242 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
243 spin_unlock(&fs_info->ordered_root_lock);
244 }
245 spin_unlock(&root->ordered_extent_lock);
246
247 /*
248 * We don't need the count_max_extents here, we can assume that all of
249 * that work has been done at higher layers, so this is truly the
250 * smallest the extent is going to get.
251 */
252 spin_lock(&inode->lock);
253 btrfs_mod_outstanding_extents(inode, 1);
254 spin_unlock(&inode->lock);
255
256 return 0;
257}
258
259/*
260 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
261 * when an ordered extent is finished. If the list covers more than one
262 * ordered extent, it is split across multiples.
263 */
264void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
265 struct btrfs_ordered_sum *sum)
266{
267 struct btrfs_ordered_inode_tree *tree;
268
269 tree = &BTRFS_I(entry->inode)->ordered_tree;
270 spin_lock_irq(&tree->lock);
271 list_add_tail(&sum->list, &entry->list);
272 spin_unlock_irq(&tree->lock);
273}
274
275static void finish_ordered_fn(struct btrfs_work *work)
276{
277 struct btrfs_ordered_extent *ordered_extent;
278
279 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
280 btrfs_finish_ordered_io(ordered_extent);
281}
282
283/*
284 * Mark all ordered extents io inside the specified range finished.
285 *
286 * @page: The involved page for the operation.
287 * For uncompressed buffered IO, the page status also needs to be
288 * updated to indicate whether the pending ordered io is finished.
289 * Can be NULL for direct IO and compressed write.
290 * For these cases, callers are ensured they won't execute the
291 * endio function twice.
292 *
293 * This function is called for endio, thus the range must have ordered
294 * extent(s) covering it.
295 */
296void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
297 struct page *page, u64 file_offset,
298 u64 num_bytes, bool uptodate)
299{
300 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
301 struct btrfs_fs_info *fs_info = inode->root->fs_info;
302 struct btrfs_workqueue *wq;
303 struct rb_node *node;
304 struct btrfs_ordered_extent *entry = NULL;
305 unsigned long flags;
306 u64 cur = file_offset;
307
308 if (btrfs_is_free_space_inode(inode))
309 wq = fs_info->endio_freespace_worker;
310 else
311 wq = fs_info->endio_write_workers;
312
313 if (page)
314 ASSERT(page->mapping && page_offset(page) <= file_offset &&
315 file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
316
317 spin_lock_irqsave(&tree->lock, flags);
318 while (cur < file_offset + num_bytes) {
319 u64 entry_end;
320 u64 end;
321 u32 len;
322
323 node = tree_search(tree, cur);
324 /* No ordered extents at all */
325 if (!node)
326 break;
327
328 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
329 entry_end = entry->file_offset + entry->num_bytes;
330 /*
331 * |<-- OE --->| |
332 * cur
333 * Go to next OE.
334 */
335 if (cur >= entry_end) {
336 node = rb_next(node);
337 /* No more ordered extents, exit */
338 if (!node)
339 break;
340 entry = rb_entry(node, struct btrfs_ordered_extent,
341 rb_node);
342
343 /* Go to next ordered extent and continue */
344 cur = entry->file_offset;
345 continue;
346 }
347 /*
348 * | |<--- OE --->|
349 * cur
350 * Go to the start of OE.
351 */
352 if (cur < entry->file_offset) {
353 cur = entry->file_offset;
354 continue;
355 }
356
357 /*
358 * Now we are definitely inside one ordered extent.
359 *
360 * |<--- OE --->|
361 * |
362 * cur
363 */
364 end = min(entry->file_offset + entry->num_bytes,
365 file_offset + num_bytes) - 1;
366 ASSERT(end + 1 - cur < U32_MAX);
367 len = end + 1 - cur;
368
369 if (page) {
370 /*
371 * Ordered (Private2) bit indicates whether we still
372 * have pending io unfinished for the ordered extent.
373 *
374 * If there's no such bit, we need to skip to next range.
375 */
376 if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
377 cur += len;
378 continue;
379 }
380 btrfs_page_clear_ordered(fs_info, page, cur, len);
381 }
382
383 /* Now we're fine to update the accounting */
384 if (unlikely(len > entry->bytes_left)) {
385 WARN_ON(1);
386 btrfs_crit(fs_info,
387"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
388 inode->root->root_key.objectid,
389 btrfs_ino(inode),
390 entry->file_offset,
391 entry->num_bytes,
392 len, entry->bytes_left);
393 entry->bytes_left = 0;
394 } else {
395 entry->bytes_left -= len;
396 }
397
398 if (!uptodate)
399 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
400
401 /*
402 * All the IO of the ordered extent is finished, we need to queue
403 * the finish_func to be executed.
404 */
405 if (entry->bytes_left == 0) {
406 set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
407 cond_wake_up(&entry->wait);
408 refcount_inc(&entry->refs);
409 trace_btrfs_ordered_extent_mark_finished(inode, entry);
410 spin_unlock_irqrestore(&tree->lock, flags);
411 btrfs_init_work(&entry->work, finish_ordered_fn, NULL, NULL);
412 btrfs_queue_work(wq, &entry->work);
413 spin_lock_irqsave(&tree->lock, flags);
414 }
415 cur += len;
416 }
417 spin_unlock_irqrestore(&tree->lock, flags);
418}
419
420/*
421 * Finish IO for one ordered extent across a given range. The range can only
422 * contain one ordered extent.
423 *
424 * @cached: The cached ordered extent. If not NULL, we can skip the tree
425 * search and use the ordered extent directly.
426 * Will be also used to store the finished ordered extent.
427 * @file_offset: File offset for the finished IO
428 * @io_size: Length of the finish IO range
429 *
430 * Return true if the ordered extent is finished in the range, and update
431 * @cached.
432 * Return false otherwise.
433 *
434 * NOTE: The range can NOT cross multiple ordered extents.
435 * Thus caller should ensure the range doesn't cross ordered extents.
436 */
437bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
438 struct btrfs_ordered_extent **cached,
439 u64 file_offset, u64 io_size)
440{
441 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
442 struct rb_node *node;
443 struct btrfs_ordered_extent *entry = NULL;
444 unsigned long flags;
445 bool finished = false;
446
447 spin_lock_irqsave(&tree->lock, flags);
448 if (cached && *cached) {
449 entry = *cached;
450 goto have_entry;
451 }
452
453 node = tree_search(tree, file_offset);
454 if (!node)
455 goto out;
456
457 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
458have_entry:
459 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
460 goto out;
461
462 if (io_size > entry->bytes_left)
463 btrfs_crit(inode->root->fs_info,
464 "bad ordered accounting left %llu size %llu",
465 entry->bytes_left, io_size);
466
467 entry->bytes_left -= io_size;
468
469 if (entry->bytes_left == 0) {
470 /*
471 * Ensure only one caller can set the flag and finished_ret
472 * accordingly
473 */
474 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
475 /* test_and_set_bit implies a barrier */
476 cond_wake_up_nomb(&entry->wait);
477 }
478out:
479 if (finished && cached && entry) {
480 *cached = entry;
481 refcount_inc(&entry->refs);
482 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
483 }
484 spin_unlock_irqrestore(&tree->lock, flags);
485 return finished;
486}
487
488/*
489 * used to drop a reference on an ordered extent. This will free
490 * the extent if the last reference is dropped
491 */
492void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
493{
494 struct list_head *cur;
495 struct btrfs_ordered_sum *sum;
496
497 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
498
499 if (refcount_dec_and_test(&entry->refs)) {
500 ASSERT(list_empty(&entry->root_extent_list));
501 ASSERT(list_empty(&entry->log_list));
502 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
503 if (entry->inode)
504 btrfs_add_delayed_iput(entry->inode);
505 while (!list_empty(&entry->list)) {
506 cur = entry->list.next;
507 sum = list_entry(cur, struct btrfs_ordered_sum, list);
508 list_del(&sum->list);
509 kvfree(sum);
510 }
511 kmem_cache_free(btrfs_ordered_extent_cache, entry);
512 }
513}
514
515/*
516 * remove an ordered extent from the tree. No references are dropped
517 * and waiters are woken up.
518 */
519void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
520 struct btrfs_ordered_extent *entry)
521{
522 struct btrfs_ordered_inode_tree *tree;
523 struct btrfs_root *root = btrfs_inode->root;
524 struct btrfs_fs_info *fs_info = root->fs_info;
525 struct rb_node *node;
526 bool pending;
527
528 /* This is paired with btrfs_add_ordered_extent. */
529 spin_lock(&btrfs_inode->lock);
530 btrfs_mod_outstanding_extents(btrfs_inode, -1);
531 spin_unlock(&btrfs_inode->lock);
532 if (root != fs_info->tree_root) {
533 u64 release;
534
535 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
536 release = entry->disk_num_bytes;
537 else
538 release = entry->num_bytes;
539 btrfs_delalloc_release_metadata(btrfs_inode, release, false);
540 }
541
542 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
543 fs_info->delalloc_batch);
544
545 tree = &btrfs_inode->ordered_tree;
546 spin_lock_irq(&tree->lock);
547 node = &entry->rb_node;
548 rb_erase(node, &tree->tree);
549 RB_CLEAR_NODE(node);
550 if (tree->last == node)
551 tree->last = NULL;
552 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
553 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
554 spin_unlock_irq(&tree->lock);
555
556 /*
557 * The current running transaction is waiting on us, we need to let it
558 * know that we're complete and wake it up.
559 */
560 if (pending) {
561 struct btrfs_transaction *trans;
562
563 /*
564 * The checks for trans are just a formality, it should be set,
565 * but if it isn't we don't want to deref/assert under the spin
566 * lock, so be nice and check if trans is set, but ASSERT() so
567 * if it isn't set a developer will notice.
568 */
569 spin_lock(&fs_info->trans_lock);
570 trans = fs_info->running_transaction;
571 if (trans)
572 refcount_inc(&trans->use_count);
573 spin_unlock(&fs_info->trans_lock);
574
575 ASSERT(trans);
576 if (trans) {
577 if (atomic_dec_and_test(&trans->pending_ordered))
578 wake_up(&trans->pending_wait);
579 btrfs_put_transaction(trans);
580 }
581 }
582
583 spin_lock(&root->ordered_extent_lock);
584 list_del_init(&entry->root_extent_list);
585 root->nr_ordered_extents--;
586
587 trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
588
589 if (!root->nr_ordered_extents) {
590 spin_lock(&fs_info->ordered_root_lock);
591 BUG_ON(list_empty(&root->ordered_root));
592 list_del_init(&root->ordered_root);
593 spin_unlock(&fs_info->ordered_root_lock);
594 }
595 spin_unlock(&root->ordered_extent_lock);
596 wake_up(&entry->wait);
597}
598
599static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
600{
601 struct btrfs_ordered_extent *ordered;
602
603 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
604 btrfs_start_ordered_extent(ordered, 1);
605 complete(&ordered->completion);
606}
607
608/*
609 * wait for all the ordered extents in a root. This is done when balancing
610 * space between drives.
611 */
612u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
613 const u64 range_start, const u64 range_len)
614{
615 struct btrfs_fs_info *fs_info = root->fs_info;
616 LIST_HEAD(splice);
617 LIST_HEAD(skipped);
618 LIST_HEAD(works);
619 struct btrfs_ordered_extent *ordered, *next;
620 u64 count = 0;
621 const u64 range_end = range_start + range_len;
622
623 mutex_lock(&root->ordered_extent_mutex);
624 spin_lock(&root->ordered_extent_lock);
625 list_splice_init(&root->ordered_extents, &splice);
626 while (!list_empty(&splice) && nr) {
627 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
628 root_extent_list);
629
630 if (range_end <= ordered->disk_bytenr ||
631 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
632 list_move_tail(&ordered->root_extent_list, &skipped);
633 cond_resched_lock(&root->ordered_extent_lock);
634 continue;
635 }
636
637 list_move_tail(&ordered->root_extent_list,
638 &root->ordered_extents);
639 refcount_inc(&ordered->refs);
640 spin_unlock(&root->ordered_extent_lock);
641
642 btrfs_init_work(&ordered->flush_work,
643 btrfs_run_ordered_extent_work, NULL, NULL);
644 list_add_tail(&ordered->work_list, &works);
645 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
646
647 cond_resched();
648 spin_lock(&root->ordered_extent_lock);
649 if (nr != U64_MAX)
650 nr--;
651 count++;
652 }
653 list_splice_tail(&skipped, &root->ordered_extents);
654 list_splice_tail(&splice, &root->ordered_extents);
655 spin_unlock(&root->ordered_extent_lock);
656
657 list_for_each_entry_safe(ordered, next, &works, work_list) {
658 list_del_init(&ordered->work_list);
659 wait_for_completion(&ordered->completion);
660 btrfs_put_ordered_extent(ordered);
661 cond_resched();
662 }
663 mutex_unlock(&root->ordered_extent_mutex);
664
665 return count;
666}
667
668void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
669 const u64 range_start, const u64 range_len)
670{
671 struct btrfs_root *root;
672 struct list_head splice;
673 u64 done;
674
675 INIT_LIST_HEAD(&splice);
676
677 mutex_lock(&fs_info->ordered_operations_mutex);
678 spin_lock(&fs_info->ordered_root_lock);
679 list_splice_init(&fs_info->ordered_roots, &splice);
680 while (!list_empty(&splice) && nr) {
681 root = list_first_entry(&splice, struct btrfs_root,
682 ordered_root);
683 root = btrfs_grab_root(root);
684 BUG_ON(!root);
685 list_move_tail(&root->ordered_root,
686 &fs_info->ordered_roots);
687 spin_unlock(&fs_info->ordered_root_lock);
688
689 done = btrfs_wait_ordered_extents(root, nr,
690 range_start, range_len);
691 btrfs_put_root(root);
692
693 spin_lock(&fs_info->ordered_root_lock);
694 if (nr != U64_MAX) {
695 nr -= done;
696 }
697 }
698 list_splice_tail(&splice, &fs_info->ordered_roots);
699 spin_unlock(&fs_info->ordered_root_lock);
700 mutex_unlock(&fs_info->ordered_operations_mutex);
701}
702
703/*
704 * Used to start IO or wait for a given ordered extent to finish.
705 *
706 * If wait is one, this effectively waits on page writeback for all the pages
707 * in the extent, and it waits on the io completion code to insert
708 * metadata into the btree corresponding to the extent
709 */
710void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
711{
712 u64 start = entry->file_offset;
713 u64 end = start + entry->num_bytes - 1;
714 struct btrfs_inode *inode = BTRFS_I(entry->inode);
715
716 trace_btrfs_ordered_extent_start(inode, entry);
717
718 /*
719 * pages in the range can be dirty, clean or writeback. We
720 * start IO on any dirty ones so the wait doesn't stall waiting
721 * for the flusher thread to find them
722 */
723 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
724 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
725 if (wait) {
726 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
727 &entry->flags));
728 }
729}
730
731/*
732 * Used to wait on ordered extents across a large range of bytes.
733 */
734int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
735{
736 int ret = 0;
737 int ret_wb = 0;
738 u64 end;
739 u64 orig_end;
740 struct btrfs_ordered_extent *ordered;
741
742 if (start + len < start) {
743 orig_end = INT_LIMIT(loff_t);
744 } else {
745 orig_end = start + len - 1;
746 if (orig_end > INT_LIMIT(loff_t))
747 orig_end = INT_LIMIT(loff_t);
748 }
749
750 /* start IO across the range first to instantiate any delalloc
751 * extents
752 */
753 ret = btrfs_fdatawrite_range(inode, start, orig_end);
754 if (ret)
755 return ret;
756
757 /*
758 * If we have a writeback error don't return immediately. Wait first
759 * for any ordered extents that haven't completed yet. This is to make
760 * sure no one can dirty the same page ranges and call writepages()
761 * before the ordered extents complete - to avoid failures (-EEXIST)
762 * when adding the new ordered extents to the ordered tree.
763 */
764 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
765
766 end = orig_end;
767 while (1) {
768 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
769 if (!ordered)
770 break;
771 if (ordered->file_offset > orig_end) {
772 btrfs_put_ordered_extent(ordered);
773 break;
774 }
775 if (ordered->file_offset + ordered->num_bytes <= start) {
776 btrfs_put_ordered_extent(ordered);
777 break;
778 }
779 btrfs_start_ordered_extent(ordered, 1);
780 end = ordered->file_offset;
781 /*
782 * If the ordered extent had an error save the error but don't
783 * exit without waiting first for all other ordered extents in
784 * the range to complete.
785 */
786 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
787 ret = -EIO;
788 btrfs_put_ordered_extent(ordered);
789 if (end == 0 || end == start)
790 break;
791 end--;
792 }
793 return ret_wb ? ret_wb : ret;
794}
795
796/*
797 * find an ordered extent corresponding to file_offset. return NULL if
798 * nothing is found, otherwise take a reference on the extent and return it
799 */
800struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
801 u64 file_offset)
802{
803 struct btrfs_ordered_inode_tree *tree;
804 struct rb_node *node;
805 struct btrfs_ordered_extent *entry = NULL;
806 unsigned long flags;
807
808 tree = &inode->ordered_tree;
809 spin_lock_irqsave(&tree->lock, flags);
810 node = tree_search(tree, file_offset);
811 if (!node)
812 goto out;
813
814 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
815 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
816 entry = NULL;
817 if (entry) {
818 refcount_inc(&entry->refs);
819 trace_btrfs_ordered_extent_lookup(inode, entry);
820 }
821out:
822 spin_unlock_irqrestore(&tree->lock, flags);
823 return entry;
824}
825
826/* Since the DIO code tries to lock a wide area we need to look for any ordered
827 * extents that exist in the range, rather than just the start of the range.
828 */
829struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
830 struct btrfs_inode *inode, u64 file_offset, u64 len)
831{
832 struct btrfs_ordered_inode_tree *tree;
833 struct rb_node *node;
834 struct btrfs_ordered_extent *entry = NULL;
835
836 tree = &inode->ordered_tree;
837 spin_lock_irq(&tree->lock);
838 node = tree_search(tree, file_offset);
839 if (!node) {
840 node = tree_search(tree, file_offset + len);
841 if (!node)
842 goto out;
843 }
844
845 while (1) {
846 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
847 if (range_overlaps(entry, file_offset, len))
848 break;
849
850 if (entry->file_offset >= file_offset + len) {
851 entry = NULL;
852 break;
853 }
854 entry = NULL;
855 node = rb_next(node);
856 if (!node)
857 break;
858 }
859out:
860 if (entry) {
861 refcount_inc(&entry->refs);
862 trace_btrfs_ordered_extent_lookup_range(inode, entry);
863 }
864 spin_unlock_irq(&tree->lock);
865 return entry;
866}
867
868/*
869 * Adds all ordered extents to the given list. The list ends up sorted by the
870 * file_offset of the ordered extents.
871 */
872void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
873 struct list_head *list)
874{
875 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
876 struct rb_node *n;
877
878 ASSERT(inode_is_locked(&inode->vfs_inode));
879
880 spin_lock_irq(&tree->lock);
881 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
882 struct btrfs_ordered_extent *ordered;
883
884 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
885
886 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
887 continue;
888
889 ASSERT(list_empty(&ordered->log_list));
890 list_add_tail(&ordered->log_list, list);
891 refcount_inc(&ordered->refs);
892 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
893 }
894 spin_unlock_irq(&tree->lock);
895}
896
897/*
898 * lookup and return any extent before 'file_offset'. NULL is returned
899 * if none is found
900 */
901struct btrfs_ordered_extent *
902btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
903{
904 struct btrfs_ordered_inode_tree *tree;
905 struct rb_node *node;
906 struct btrfs_ordered_extent *entry = NULL;
907
908 tree = &inode->ordered_tree;
909 spin_lock_irq(&tree->lock);
910 node = tree_search(tree, file_offset);
911 if (!node)
912 goto out;
913
914 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
915 refcount_inc(&entry->refs);
916 trace_btrfs_ordered_extent_lookup_first(inode, entry);
917out:
918 spin_unlock_irq(&tree->lock);
919 return entry;
920}
921
922/*
923 * Lookup the first ordered extent that overlaps the range
924 * [@file_offset, @file_offset + @len).
925 *
926 * The difference between this and btrfs_lookup_first_ordered_extent() is
927 * that this one won't return any ordered extent that does not overlap the range.
928 * And the difference against btrfs_lookup_ordered_extent() is, this function
929 * ensures the first ordered extent gets returned.
930 */
931struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
932 struct btrfs_inode *inode, u64 file_offset, u64 len)
933{
934 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
935 struct rb_node *node;
936 struct rb_node *cur;
937 struct rb_node *prev;
938 struct rb_node *next;
939 struct btrfs_ordered_extent *entry = NULL;
940
941 spin_lock_irq(&tree->lock);
942 node = tree->tree.rb_node;
943 /*
944 * Here we don't want to use tree_search() which will use tree->last
945 * and screw up the search order.
946 * And __tree_search() can't return the adjacent ordered extents
947 * either, thus here we do our own search.
948 */
949 while (node) {
950 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
951
952 if (file_offset < entry->file_offset) {
953 node = node->rb_left;
954 } else if (file_offset >= entry_end(entry)) {
955 node = node->rb_right;
956 } else {
957 /*
958 * Direct hit, got an ordered extent that starts at
959 * @file_offset
960 */
961 goto out;
962 }
963 }
964 if (!entry) {
965 /* Empty tree */
966 goto out;
967 }
968
969 cur = &entry->rb_node;
970 /* We got an entry around @file_offset, check adjacent entries */
971 if (entry->file_offset < file_offset) {
972 prev = cur;
973 next = rb_next(cur);
974 } else {
975 prev = rb_prev(cur);
976 next = cur;
977 }
978 if (prev) {
979 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
980 if (range_overlaps(entry, file_offset, len))
981 goto out;
982 }
983 if (next) {
984 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
985 if (range_overlaps(entry, file_offset, len))
986 goto out;
987 }
988 /* No ordered extent in the range */
989 entry = NULL;
990out:
991 if (entry) {
992 refcount_inc(&entry->refs);
993 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
994 }
995
996 spin_unlock_irq(&tree->lock);
997 return entry;
998}
999
1000/*
1001 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
1002 * ordered extents in it are run to completion.
1003 *
1004 * @inode: Inode whose ordered tree is to be searched
1005 * @start: Beginning of range to flush
1006 * @end: Last byte of range to lock
1007 * @cached_state: If passed, will return the extent state responsible for the
1008 * locked range. It's the caller's responsibility to free the cached state.
1009 *
1010 * This function always returns with the given range locked, ensuring after it's
1011 * called no order extent can be pending.
1012 */
1013void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1014 u64 end,
1015 struct extent_state **cached_state)
1016{
1017 struct btrfs_ordered_extent *ordered;
1018 struct extent_state *cache = NULL;
1019 struct extent_state **cachedp = &cache;
1020
1021 if (cached_state)
1022 cachedp = cached_state;
1023
1024 while (1) {
1025 lock_extent_bits(&inode->io_tree, start, end, cachedp);
1026 ordered = btrfs_lookup_ordered_range(inode, start,
1027 end - start + 1);
1028 if (!ordered) {
1029 /*
1030 * If no external cached_state has been passed then
1031 * decrement the extra ref taken for cachedp since we
1032 * aren't exposing it outside of this function
1033 */
1034 if (!cached_state)
1035 refcount_dec(&cache->refs);
1036 break;
1037 }
1038 unlock_extent_cached(&inode->io_tree, start, end, cachedp);
1039 btrfs_start_ordered_extent(ordered, 1);
1040 btrfs_put_ordered_extent(ordered);
1041 }
1042}
1043
1044static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1045 u64 len)
1046{
1047 struct inode *inode = ordered->inode;
1048 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1049 u64 file_offset = ordered->file_offset + pos;
1050 u64 disk_bytenr = ordered->disk_bytenr + pos;
1051 unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS;
1052
1053 /*
1054 * The splitting extent is already counted and will be added again in
1055 * btrfs_add_ordered_extent_*(). Subtract len to avoid double counting.
1056 */
1057 percpu_counter_add_batch(&fs_info->ordered_bytes, -len,
1058 fs_info->delalloc_batch);
1059 WARN_ON_ONCE(flags & (1 << BTRFS_ORDERED_COMPRESSED));
1060 return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len,
1061 disk_bytenr, len, 0, flags,
1062 ordered->compress_type);
1063}
1064
1065int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1066 u64 post)
1067{
1068 struct inode *inode = ordered->inode;
1069 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1070 struct rb_node *node;
1071 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1072 int ret = 0;
1073
1074 trace_btrfs_ordered_extent_split(BTRFS_I(inode), ordered);
1075
1076 spin_lock_irq(&tree->lock);
1077 /* Remove from tree once */
1078 node = &ordered->rb_node;
1079 rb_erase(node, &tree->tree);
1080 RB_CLEAR_NODE(node);
1081 if (tree->last == node)
1082 tree->last = NULL;
1083
1084 ordered->file_offset += pre;
1085 ordered->disk_bytenr += pre;
1086 ordered->num_bytes -= (pre + post);
1087 ordered->disk_num_bytes -= (pre + post);
1088 ordered->bytes_left -= (pre + post);
1089
1090 /* Re-insert the node */
1091 node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1092 if (node)
1093 btrfs_panic(fs_info, -EEXIST,
1094 "zoned: inconsistency in ordered tree at offset %llu",
1095 ordered->file_offset);
1096
1097 spin_unlock_irq(&tree->lock);
1098
1099 if (pre)
1100 ret = clone_ordered_extent(ordered, 0, pre);
1101 if (ret == 0 && post)
1102 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1103 post);
1104
1105 return ret;
1106}
1107
1108int __init ordered_data_init(void)
1109{
1110 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1111 sizeof(struct btrfs_ordered_extent), 0,
1112 SLAB_MEM_SPREAD,
1113 NULL);
1114 if (!btrfs_ordered_extent_cache)
1115 return -ENOMEM;
1116
1117 return 0;
1118}
1119
1120void __cold ordered_data_exit(void)
1121{
1122 kmem_cache_destroy(btrfs_ordered_extent_cache);
1123}