Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
11#include <linux/highmem.h>
12#include <linux/kthread.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
16#include <linux/backing-dev.h>
17#include <linux/writeback.h>
18#include <linux/slab.h>
19#include <linux/sched/mm.h>
20#include <linux/log2.h>
21#include <crypto/hash.h>
22#include "misc.h"
23#include "ctree.h"
24#include "disk-io.h"
25#include "transaction.h"
26#include "btrfs_inode.h"
27#include "volumes.h"
28#include "ordered-data.h"
29#include "compression.h"
30#include "extent_io.h"
31#include "extent_map.h"
32#include "subpage.h"
33#include "zoned.h"
34
35static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
36
37const char* btrfs_compress_type2str(enum btrfs_compression_type type)
38{
39 switch (type) {
40 case BTRFS_COMPRESS_ZLIB:
41 case BTRFS_COMPRESS_LZO:
42 case BTRFS_COMPRESS_ZSTD:
43 case BTRFS_COMPRESS_NONE:
44 return btrfs_compress_types[type];
45 default:
46 break;
47 }
48
49 return NULL;
50}
51
52bool btrfs_compress_is_valid_type(const char *str, size_t len)
53{
54 int i;
55
56 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
57 size_t comp_len = strlen(btrfs_compress_types[i]);
58
59 if (len < comp_len)
60 continue;
61
62 if (!strncmp(btrfs_compress_types[i], str, comp_len))
63 return true;
64 }
65 return false;
66}
67
68static int compression_compress_pages(int type, struct list_head *ws,
69 struct address_space *mapping, u64 start, struct page **pages,
70 unsigned long *out_pages, unsigned long *total_in,
71 unsigned long *total_out)
72{
73 switch (type) {
74 case BTRFS_COMPRESS_ZLIB:
75 return zlib_compress_pages(ws, mapping, start, pages,
76 out_pages, total_in, total_out);
77 case BTRFS_COMPRESS_LZO:
78 return lzo_compress_pages(ws, mapping, start, pages,
79 out_pages, total_in, total_out);
80 case BTRFS_COMPRESS_ZSTD:
81 return zstd_compress_pages(ws, mapping, start, pages,
82 out_pages, total_in, total_out);
83 case BTRFS_COMPRESS_NONE:
84 default:
85 /*
86 * This can happen when compression races with remount setting
87 * it to 'no compress', while caller doesn't call
88 * inode_need_compress() to check if we really need to
89 * compress.
90 *
91 * Not a big deal, just need to inform caller that we
92 * haven't allocated any pages yet.
93 */
94 *out_pages = 0;
95 return -E2BIG;
96 }
97}
98
99static int compression_decompress_bio(struct list_head *ws,
100 struct compressed_bio *cb)
101{
102 switch (cb->compress_type) {
103 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
104 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
105 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
106 case BTRFS_COMPRESS_NONE:
107 default:
108 /*
109 * This can't happen, the type is validated several times
110 * before we get here.
111 */
112 BUG();
113 }
114}
115
116static int compression_decompress(int type, struct list_head *ws,
117 unsigned char *data_in, struct page *dest_page,
118 unsigned long start_byte, size_t srclen, size_t destlen)
119{
120 switch (type) {
121 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
122 start_byte, srclen, destlen);
123 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page,
124 start_byte, srclen, destlen);
125 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
126 start_byte, srclen, destlen);
127 case BTRFS_COMPRESS_NONE:
128 default:
129 /*
130 * This can't happen, the type is validated several times
131 * before we get here.
132 */
133 BUG();
134 }
135}
136
137static int btrfs_decompress_bio(struct compressed_bio *cb);
138
139static void finish_compressed_bio_read(struct compressed_bio *cb)
140{
141 unsigned int index;
142 struct page *page;
143
144 if (cb->status == BLK_STS_OK)
145 cb->status = errno_to_blk_status(btrfs_decompress_bio(cb));
146
147 /* Release the compressed pages */
148 for (index = 0; index < cb->nr_pages; index++) {
149 page = cb->compressed_pages[index];
150 page->mapping = NULL;
151 put_page(page);
152 }
153
154 /* Do io completion on the original bio */
155 if (cb->status != BLK_STS_OK)
156 cb->orig_bio->bi_status = cb->status;
157 bio_endio(cb->orig_bio);
158
159 /* Finally free the cb struct */
160 kfree(cb->compressed_pages);
161 kfree(cb);
162}
163
164/*
165 * Verify the checksums and kick off repair if needed on the uncompressed data
166 * before decompressing it into the original bio and freeing the uncompressed
167 * pages.
168 */
169static void end_compressed_bio_read(struct bio *bio)
170{
171 struct compressed_bio *cb = bio->bi_private;
172 struct inode *inode = cb->inode;
173 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
174 struct btrfs_inode *bi = BTRFS_I(inode);
175 bool csum = !(bi->flags & BTRFS_INODE_NODATASUM) &&
176 !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
177 blk_status_t status = bio->bi_status;
178 struct btrfs_bio *bbio = btrfs_bio(bio);
179 struct bvec_iter iter;
180 struct bio_vec bv;
181 u32 offset;
182
183 btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) {
184 u64 start = bbio->file_offset + offset;
185
186 if (!status &&
187 (!csum || !btrfs_check_data_csum(inode, bbio, offset,
188 bv.bv_page, bv.bv_offset))) {
189 clean_io_failure(fs_info, &bi->io_failure_tree,
190 &bi->io_tree, start, bv.bv_page,
191 btrfs_ino(bi), bv.bv_offset);
192 } else {
193 int ret;
194
195 refcount_inc(&cb->pending_ios);
196 ret = btrfs_repair_one_sector(inode, bbio, offset,
197 bv.bv_page, bv.bv_offset,
198 btrfs_submit_data_read_bio);
199 if (ret) {
200 refcount_dec(&cb->pending_ios);
201 status = errno_to_blk_status(ret);
202 }
203 }
204 }
205
206 if (status)
207 cb->status = status;
208
209 if (refcount_dec_and_test(&cb->pending_ios))
210 finish_compressed_bio_read(cb);
211 btrfs_bio_free_csum(bbio);
212 bio_put(bio);
213}
214
215/*
216 * Clear the writeback bits on all of the file
217 * pages for a compressed write
218 */
219static noinline void end_compressed_writeback(struct inode *inode,
220 const struct compressed_bio *cb)
221{
222 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
223 unsigned long index = cb->start >> PAGE_SHIFT;
224 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
225 struct page *pages[16];
226 unsigned long nr_pages = end_index - index + 1;
227 const int errno = blk_status_to_errno(cb->status);
228 int i;
229 int ret;
230
231 if (errno)
232 mapping_set_error(inode->i_mapping, errno);
233
234 while (nr_pages > 0) {
235 ret = find_get_pages_contig(inode->i_mapping, index,
236 min_t(unsigned long,
237 nr_pages, ARRAY_SIZE(pages)), pages);
238 if (ret == 0) {
239 nr_pages -= 1;
240 index += 1;
241 continue;
242 }
243 for (i = 0; i < ret; i++) {
244 if (errno)
245 SetPageError(pages[i]);
246 btrfs_page_clamp_clear_writeback(fs_info, pages[i],
247 cb->start, cb->len);
248 put_page(pages[i]);
249 }
250 nr_pages -= ret;
251 index += ret;
252 }
253 /* the inode may be gone now */
254}
255
256static void finish_compressed_bio_write(struct compressed_bio *cb)
257{
258 struct inode *inode = cb->inode;
259 unsigned int index;
260
261 /*
262 * Ok, we're the last bio for this extent, step one is to call back
263 * into the FS and do all the end_io operations.
264 */
265 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
266 cb->start, cb->start + cb->len - 1,
267 cb->status == BLK_STS_OK);
268
269 if (cb->writeback)
270 end_compressed_writeback(inode, cb);
271 /* Note, our inode could be gone now */
272
273 /*
274 * Release the compressed pages, these came from alloc_page and
275 * are not attached to the inode at all
276 */
277 for (index = 0; index < cb->nr_pages; index++) {
278 struct page *page = cb->compressed_pages[index];
279
280 page->mapping = NULL;
281 put_page(page);
282 }
283
284 /* Finally free the cb struct */
285 kfree(cb->compressed_pages);
286 kfree(cb);
287}
288
289static void btrfs_finish_compressed_write_work(struct work_struct *work)
290{
291 struct compressed_bio *cb =
292 container_of(work, struct compressed_bio, write_end_work);
293
294 finish_compressed_bio_write(cb);
295}
296
297/*
298 * Do the cleanup once all the compressed pages hit the disk. This will clear
299 * writeback on the file pages and free the compressed pages.
300 *
301 * This also calls the writeback end hooks for the file pages so that metadata
302 * and checksums can be updated in the file.
303 */
304static void end_compressed_bio_write(struct bio *bio)
305{
306 struct compressed_bio *cb = bio->bi_private;
307
308 if (bio->bi_status)
309 cb->status = bio->bi_status;
310
311 if (refcount_dec_and_test(&cb->pending_ios)) {
312 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
313
314 btrfs_record_physical_zoned(cb->inode, cb->start, bio);
315 queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
316 }
317 bio_put(bio);
318}
319
320/*
321 * Allocate a compressed_bio, which will be used to read/write on-disk
322 * (aka, compressed) * data.
323 *
324 * @cb: The compressed_bio structure, which records all the needed
325 * information to bind the compressed data to the uncompressed
326 * page cache.
327 * @disk_byten: The logical bytenr where the compressed data will be read
328 * from or written to.
329 * @endio_func: The endio function to call after the IO for compressed data
330 * is finished.
331 * @next_stripe_start: Return value of logical bytenr of where next stripe starts.
332 * Let the caller know to only fill the bio up to the stripe
333 * boundary.
334 */
335
336
337static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
338 blk_opf_t opf, bio_end_io_t endio_func,
339 u64 *next_stripe_start)
340{
341 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
342 struct btrfs_io_geometry geom;
343 struct extent_map *em;
344 struct bio *bio;
345 int ret;
346
347 bio = btrfs_bio_alloc(BIO_MAX_VECS);
348
349 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
350 bio->bi_opf = opf;
351 bio->bi_private = cb;
352 bio->bi_end_io = endio_func;
353
354 em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
355 if (IS_ERR(em)) {
356 bio_put(bio);
357 return ERR_CAST(em);
358 }
359
360 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
361 bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);
362
363 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
364 free_extent_map(em);
365 if (ret < 0) {
366 bio_put(bio);
367 return ERR_PTR(ret);
368 }
369 *next_stripe_start = disk_bytenr + geom.len;
370 refcount_inc(&cb->pending_ios);
371 return bio;
372}
373
374/*
375 * worker function to build and submit bios for previously compressed pages.
376 * The corresponding pages in the inode should be marked for writeback
377 * and the compressed pages should have a reference on them for dropping
378 * when the IO is complete.
379 *
380 * This also checksums the file bytes and gets things ready for
381 * the end io hooks.
382 */
383blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
384 unsigned int len, u64 disk_start,
385 unsigned int compressed_len,
386 struct page **compressed_pages,
387 unsigned int nr_pages,
388 blk_opf_t write_flags,
389 struct cgroup_subsys_state *blkcg_css,
390 bool writeback)
391{
392 struct btrfs_fs_info *fs_info = inode->root->fs_info;
393 struct bio *bio = NULL;
394 struct compressed_bio *cb;
395 u64 cur_disk_bytenr = disk_start;
396 u64 next_stripe_start;
397 blk_status_t ret = BLK_STS_OK;
398 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
399 const bool use_append = btrfs_use_zone_append(inode, disk_start);
400 const enum req_op bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
401
402 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
403 IS_ALIGNED(len, fs_info->sectorsize));
404 cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
405 if (!cb)
406 return BLK_STS_RESOURCE;
407 refcount_set(&cb->pending_ios, 1);
408 cb->status = BLK_STS_OK;
409 cb->inode = &inode->vfs_inode;
410 cb->start = start;
411 cb->len = len;
412 cb->compressed_pages = compressed_pages;
413 cb->compressed_len = compressed_len;
414 cb->writeback = writeback;
415 INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
416 cb->nr_pages = nr_pages;
417
418 if (blkcg_css)
419 kthread_associate_blkcg(blkcg_css);
420
421 while (cur_disk_bytenr < disk_start + compressed_len) {
422 u64 offset = cur_disk_bytenr - disk_start;
423 unsigned int index = offset >> PAGE_SHIFT;
424 unsigned int real_size;
425 unsigned int added;
426 struct page *page = compressed_pages[index];
427 bool submit = false;
428
429 /* Allocate new bio if submitted or not yet allocated */
430 if (!bio) {
431 bio = alloc_compressed_bio(cb, cur_disk_bytenr,
432 bio_op | write_flags, end_compressed_bio_write,
433 &next_stripe_start);
434 if (IS_ERR(bio)) {
435 ret = errno_to_blk_status(PTR_ERR(bio));
436 break;
437 }
438 if (blkcg_css)
439 bio->bi_opf |= REQ_CGROUP_PUNT;
440 }
441 /*
442 * We should never reach next_stripe_start start as we will
443 * submit comp_bio when reach the boundary immediately.
444 */
445 ASSERT(cur_disk_bytenr != next_stripe_start);
446
447 /*
448 * We have various limits on the real read size:
449 * - stripe boundary
450 * - page boundary
451 * - compressed length boundary
452 */
453 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
454 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
455 real_size = min_t(u64, real_size, compressed_len - offset);
456 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
457
458 if (use_append)
459 added = bio_add_zone_append_page(bio, page, real_size,
460 offset_in_page(offset));
461 else
462 added = bio_add_page(bio, page, real_size,
463 offset_in_page(offset));
464 /* Reached zoned boundary */
465 if (added == 0)
466 submit = true;
467
468 cur_disk_bytenr += added;
469 /* Reached stripe boundary */
470 if (cur_disk_bytenr == next_stripe_start)
471 submit = true;
472
473 /* Finished the range */
474 if (cur_disk_bytenr == disk_start + compressed_len)
475 submit = true;
476
477 if (submit) {
478 if (!skip_sum) {
479 ret = btrfs_csum_one_bio(inode, bio, start, true);
480 if (ret) {
481 bio->bi_status = ret;
482 bio_endio(bio);
483 break;
484 }
485 }
486
487 ASSERT(bio->bi_iter.bi_size);
488 btrfs_submit_bio(fs_info, bio, 0);
489 bio = NULL;
490 }
491 cond_resched();
492 }
493
494 if (blkcg_css)
495 kthread_associate_blkcg(NULL);
496
497 if (refcount_dec_and_test(&cb->pending_ios))
498 finish_compressed_bio_write(cb);
499 return ret;
500}
501
502static u64 bio_end_offset(struct bio *bio)
503{
504 struct bio_vec *last = bio_last_bvec_all(bio);
505
506 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
507}
508
509/*
510 * Add extra pages in the same compressed file extent so that we don't need to
511 * re-read the same extent again and again.
512 *
513 * NOTE: this won't work well for subpage, as for subpage read, we lock the
514 * full page then submit bio for each compressed/regular extents.
515 *
516 * This means, if we have several sectors in the same page points to the same
517 * on-disk compressed data, we will re-read the same extent many times and
518 * this function can only help for the next page.
519 */
520static noinline int add_ra_bio_pages(struct inode *inode,
521 u64 compressed_end,
522 struct compressed_bio *cb)
523{
524 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
525 unsigned long end_index;
526 u64 cur = bio_end_offset(cb->orig_bio);
527 u64 isize = i_size_read(inode);
528 int ret;
529 struct page *page;
530 struct extent_map *em;
531 struct address_space *mapping = inode->i_mapping;
532 struct extent_map_tree *em_tree;
533 struct extent_io_tree *tree;
534 int sectors_missed = 0;
535
536 em_tree = &BTRFS_I(inode)->extent_tree;
537 tree = &BTRFS_I(inode)->io_tree;
538
539 if (isize == 0)
540 return 0;
541
542 /*
543 * For current subpage support, we only support 64K page size,
544 * which means maximum compressed extent size (128K) is just 2x page
545 * size.
546 * This makes readahead less effective, so here disable readahead for
547 * subpage for now, until full compressed write is supported.
548 */
549 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
550 return 0;
551
552 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
553
554 while (cur < compressed_end) {
555 u64 page_end;
556 u64 pg_index = cur >> PAGE_SHIFT;
557 u32 add_size;
558
559 if (pg_index > end_index)
560 break;
561
562 page = xa_load(&mapping->i_pages, pg_index);
563 if (page && !xa_is_value(page)) {
564 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
565 fs_info->sectorsize_bits;
566
567 /* Beyond threshold, no need to continue */
568 if (sectors_missed > 4)
569 break;
570
571 /*
572 * Jump to next page start as we already have page for
573 * current offset.
574 */
575 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
576 continue;
577 }
578
579 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
580 ~__GFP_FS));
581 if (!page)
582 break;
583
584 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
585 put_page(page);
586 /* There is already a page, skip to page end */
587 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
588 continue;
589 }
590
591 ret = set_page_extent_mapped(page);
592 if (ret < 0) {
593 unlock_page(page);
594 put_page(page);
595 break;
596 }
597
598 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
599 lock_extent(tree, cur, page_end);
600 read_lock(&em_tree->lock);
601 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
602 read_unlock(&em_tree->lock);
603
604 /*
605 * At this point, we have a locked page in the page cache for
606 * these bytes in the file. But, we have to make sure they map
607 * to this compressed extent on disk.
608 */
609 if (!em || cur < em->start ||
610 (cur + fs_info->sectorsize > extent_map_end(em)) ||
611 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
612 free_extent_map(em);
613 unlock_extent(tree, cur, page_end);
614 unlock_page(page);
615 put_page(page);
616 break;
617 }
618 free_extent_map(em);
619
620 if (page->index == end_index) {
621 size_t zero_offset = offset_in_page(isize);
622
623 if (zero_offset) {
624 int zeros;
625 zeros = PAGE_SIZE - zero_offset;
626 memzero_page(page, zero_offset, zeros);
627 }
628 }
629
630 add_size = min(em->start + em->len, page_end + 1) - cur;
631 ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
632 if (ret != add_size) {
633 unlock_extent(tree, cur, page_end);
634 unlock_page(page);
635 put_page(page);
636 break;
637 }
638 /*
639 * If it's subpage, we also need to increase its
640 * subpage::readers number, as at endio we will decrease
641 * subpage::readers and to unlock the page.
642 */
643 if (fs_info->sectorsize < PAGE_SIZE)
644 btrfs_subpage_start_reader(fs_info, page, cur, add_size);
645 put_page(page);
646 cur += add_size;
647 }
648 return 0;
649}
650
651/*
652 * for a compressed read, the bio we get passed has all the inode pages
653 * in it. We don't actually do IO on those pages but allocate new ones
654 * to hold the compressed pages on disk.
655 *
656 * bio->bi_iter.bi_sector points to the compressed extent on disk
657 * bio->bi_io_vec points to all of the inode pages
658 *
659 * After the compressed pages are read, we copy the bytes into the
660 * bio we were passed and then call the bio end_io calls
661 */
662void btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
663 int mirror_num)
664{
665 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
666 struct extent_map_tree *em_tree;
667 struct compressed_bio *cb;
668 unsigned int compressed_len;
669 struct bio *comp_bio = NULL;
670 const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
671 u64 cur_disk_byte = disk_bytenr;
672 u64 next_stripe_start;
673 u64 file_offset;
674 u64 em_len;
675 u64 em_start;
676 struct extent_map *em;
677 blk_status_t ret;
678 int ret2;
679 int i;
680
681 em_tree = &BTRFS_I(inode)->extent_tree;
682
683 file_offset = bio_first_bvec_all(bio)->bv_offset +
684 page_offset(bio_first_page_all(bio));
685
686 /* we need the actual starting offset of this extent in the file */
687 read_lock(&em_tree->lock);
688 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
689 read_unlock(&em_tree->lock);
690 if (!em) {
691 ret = BLK_STS_IOERR;
692 goto out;
693 }
694
695 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
696 compressed_len = em->block_len;
697 cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
698 if (!cb) {
699 ret = BLK_STS_RESOURCE;
700 goto out;
701 }
702
703 refcount_set(&cb->pending_ios, 1);
704 cb->status = BLK_STS_OK;
705 cb->inode = inode;
706
707 cb->start = em->orig_start;
708 em_len = em->len;
709 em_start = em->start;
710
711 cb->len = bio->bi_iter.bi_size;
712 cb->compressed_len = compressed_len;
713 cb->compress_type = em->compress_type;
714 cb->orig_bio = bio;
715
716 free_extent_map(em);
717 em = NULL;
718
719 cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
720 cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
721 if (!cb->compressed_pages) {
722 ret = BLK_STS_RESOURCE;
723 goto fail;
724 }
725
726 ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
727 if (ret2) {
728 ret = BLK_STS_RESOURCE;
729 goto fail;
730 }
731
732 add_ra_bio_pages(inode, em_start + em_len, cb);
733
734 /* include any pages we added in add_ra-bio_pages */
735 cb->len = bio->bi_iter.bi_size;
736
737 while (cur_disk_byte < disk_bytenr + compressed_len) {
738 u64 offset = cur_disk_byte - disk_bytenr;
739 unsigned int index = offset >> PAGE_SHIFT;
740 unsigned int real_size;
741 unsigned int added;
742 struct page *page = cb->compressed_pages[index];
743 bool submit = false;
744
745 /* Allocate new bio if submitted or not yet allocated */
746 if (!comp_bio) {
747 comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
748 REQ_OP_READ, end_compressed_bio_read,
749 &next_stripe_start);
750 if (IS_ERR(comp_bio)) {
751 cb->status = errno_to_blk_status(PTR_ERR(comp_bio));
752 break;
753 }
754 }
755 /*
756 * We should never reach next_stripe_start start as we will
757 * submit comp_bio when reach the boundary immediately.
758 */
759 ASSERT(cur_disk_byte != next_stripe_start);
760 /*
761 * We have various limit on the real read size:
762 * - stripe boundary
763 * - page boundary
764 * - compressed length boundary
765 */
766 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
767 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
768 real_size = min_t(u64, real_size, compressed_len - offset);
769 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
770
771 added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
772 /*
773 * Maximum compressed extent is smaller than bio size limit,
774 * thus bio_add_page() should always success.
775 */
776 ASSERT(added == real_size);
777 cur_disk_byte += added;
778
779 /* Reached stripe boundary, need to submit */
780 if (cur_disk_byte == next_stripe_start)
781 submit = true;
782
783 /* Has finished the range, need to submit */
784 if (cur_disk_byte == disk_bytenr + compressed_len)
785 submit = true;
786
787 if (submit) {
788 /* Save the original iter for read repair */
789 if (bio_op(comp_bio) == REQ_OP_READ)
790 btrfs_bio(comp_bio)->iter = comp_bio->bi_iter;
791
792 /*
793 * Save the initial offset of this chunk, as there
794 * is no direct correlation between compressed pages and
795 * the original file offset. The field is only used for
796 * priting error messages.
797 */
798 btrfs_bio(comp_bio)->file_offset = file_offset;
799
800 ret = btrfs_lookup_bio_sums(inode, comp_bio, NULL);
801 if (ret) {
802 comp_bio->bi_status = ret;
803 bio_endio(comp_bio);
804 break;
805 }
806
807 ASSERT(comp_bio->bi_iter.bi_size);
808 btrfs_submit_bio(fs_info, comp_bio, mirror_num);
809 comp_bio = NULL;
810 }
811 }
812
813 if (refcount_dec_and_test(&cb->pending_ios))
814 finish_compressed_bio_read(cb);
815 return;
816
817fail:
818 if (cb->compressed_pages) {
819 for (i = 0; i < cb->nr_pages; i++) {
820 if (cb->compressed_pages[i])
821 __free_page(cb->compressed_pages[i]);
822 }
823 }
824
825 kfree(cb->compressed_pages);
826 kfree(cb);
827out:
828 free_extent_map(em);
829 bio->bi_status = ret;
830 bio_endio(bio);
831 return;
832}
833
834/*
835 * Heuristic uses systematic sampling to collect data from the input data
836 * range, the logic can be tuned by the following constants:
837 *
838 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
839 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
840 */
841#define SAMPLING_READ_SIZE (16)
842#define SAMPLING_INTERVAL (256)
843
844/*
845 * For statistical analysis of the input data we consider bytes that form a
846 * Galois Field of 256 objects. Each object has an attribute count, ie. how
847 * many times the object appeared in the sample.
848 */
849#define BUCKET_SIZE (256)
850
851/*
852 * The size of the sample is based on a statistical sampling rule of thumb.
853 * The common way is to perform sampling tests as long as the number of
854 * elements in each cell is at least 5.
855 *
856 * Instead of 5, we choose 32 to obtain more accurate results.
857 * If the data contain the maximum number of symbols, which is 256, we obtain a
858 * sample size bound by 8192.
859 *
860 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
861 * from up to 512 locations.
862 */
863#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
864 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
865
866struct bucket_item {
867 u32 count;
868};
869
870struct heuristic_ws {
871 /* Partial copy of input data */
872 u8 *sample;
873 u32 sample_size;
874 /* Buckets store counters for each byte value */
875 struct bucket_item *bucket;
876 /* Sorting buffer */
877 struct bucket_item *bucket_b;
878 struct list_head list;
879};
880
881static struct workspace_manager heuristic_wsm;
882
883static void free_heuristic_ws(struct list_head *ws)
884{
885 struct heuristic_ws *workspace;
886
887 workspace = list_entry(ws, struct heuristic_ws, list);
888
889 kvfree(workspace->sample);
890 kfree(workspace->bucket);
891 kfree(workspace->bucket_b);
892 kfree(workspace);
893}
894
895static struct list_head *alloc_heuristic_ws(unsigned int level)
896{
897 struct heuristic_ws *ws;
898
899 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
900 if (!ws)
901 return ERR_PTR(-ENOMEM);
902
903 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
904 if (!ws->sample)
905 goto fail;
906
907 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
908 if (!ws->bucket)
909 goto fail;
910
911 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
912 if (!ws->bucket_b)
913 goto fail;
914
915 INIT_LIST_HEAD(&ws->list);
916 return &ws->list;
917fail:
918 free_heuristic_ws(&ws->list);
919 return ERR_PTR(-ENOMEM);
920}
921
922const struct btrfs_compress_op btrfs_heuristic_compress = {
923 .workspace_manager = &heuristic_wsm,
924};
925
926static const struct btrfs_compress_op * const btrfs_compress_op[] = {
927 /* The heuristic is represented as compression type 0 */
928 &btrfs_heuristic_compress,
929 &btrfs_zlib_compress,
930 &btrfs_lzo_compress,
931 &btrfs_zstd_compress,
932};
933
934static struct list_head *alloc_workspace(int type, unsigned int level)
935{
936 switch (type) {
937 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
938 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
939 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
940 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
941 default:
942 /*
943 * This can't happen, the type is validated several times
944 * before we get here.
945 */
946 BUG();
947 }
948}
949
950static void free_workspace(int type, struct list_head *ws)
951{
952 switch (type) {
953 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
954 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
955 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
956 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
957 default:
958 /*
959 * This can't happen, the type is validated several times
960 * before we get here.
961 */
962 BUG();
963 }
964}
965
966static void btrfs_init_workspace_manager(int type)
967{
968 struct workspace_manager *wsm;
969 struct list_head *workspace;
970
971 wsm = btrfs_compress_op[type]->workspace_manager;
972 INIT_LIST_HEAD(&wsm->idle_ws);
973 spin_lock_init(&wsm->ws_lock);
974 atomic_set(&wsm->total_ws, 0);
975 init_waitqueue_head(&wsm->ws_wait);
976
977 /*
978 * Preallocate one workspace for each compression type so we can
979 * guarantee forward progress in the worst case
980 */
981 workspace = alloc_workspace(type, 0);
982 if (IS_ERR(workspace)) {
983 pr_warn(
984 "BTRFS: cannot preallocate compression workspace, will try later\n");
985 } else {
986 atomic_set(&wsm->total_ws, 1);
987 wsm->free_ws = 1;
988 list_add(workspace, &wsm->idle_ws);
989 }
990}
991
992static void btrfs_cleanup_workspace_manager(int type)
993{
994 struct workspace_manager *wsman;
995 struct list_head *ws;
996
997 wsman = btrfs_compress_op[type]->workspace_manager;
998 while (!list_empty(&wsman->idle_ws)) {
999 ws = wsman->idle_ws.next;
1000 list_del(ws);
1001 free_workspace(type, ws);
1002 atomic_dec(&wsman->total_ws);
1003 }
1004}
1005
1006/*
1007 * This finds an available workspace or allocates a new one.
1008 * If it's not possible to allocate a new one, waits until there's one.
1009 * Preallocation makes a forward progress guarantees and we do not return
1010 * errors.
1011 */
1012struct list_head *btrfs_get_workspace(int type, unsigned int level)
1013{
1014 struct workspace_manager *wsm;
1015 struct list_head *workspace;
1016 int cpus = num_online_cpus();
1017 unsigned nofs_flag;
1018 struct list_head *idle_ws;
1019 spinlock_t *ws_lock;
1020 atomic_t *total_ws;
1021 wait_queue_head_t *ws_wait;
1022 int *free_ws;
1023
1024 wsm = btrfs_compress_op[type]->workspace_manager;
1025 idle_ws = &wsm->idle_ws;
1026 ws_lock = &wsm->ws_lock;
1027 total_ws = &wsm->total_ws;
1028 ws_wait = &wsm->ws_wait;
1029 free_ws = &wsm->free_ws;
1030
1031again:
1032 spin_lock(ws_lock);
1033 if (!list_empty(idle_ws)) {
1034 workspace = idle_ws->next;
1035 list_del(workspace);
1036 (*free_ws)--;
1037 spin_unlock(ws_lock);
1038 return workspace;
1039
1040 }
1041 if (atomic_read(total_ws) > cpus) {
1042 DEFINE_WAIT(wait);
1043
1044 spin_unlock(ws_lock);
1045 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1046 if (atomic_read(total_ws) > cpus && !*free_ws)
1047 schedule();
1048 finish_wait(ws_wait, &wait);
1049 goto again;
1050 }
1051 atomic_inc(total_ws);
1052 spin_unlock(ws_lock);
1053
1054 /*
1055 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1056 * to turn it off here because we might get called from the restricted
1057 * context of btrfs_compress_bio/btrfs_compress_pages
1058 */
1059 nofs_flag = memalloc_nofs_save();
1060 workspace = alloc_workspace(type, level);
1061 memalloc_nofs_restore(nofs_flag);
1062
1063 if (IS_ERR(workspace)) {
1064 atomic_dec(total_ws);
1065 wake_up(ws_wait);
1066
1067 /*
1068 * Do not return the error but go back to waiting. There's a
1069 * workspace preallocated for each type and the compression
1070 * time is bounded so we get to a workspace eventually. This
1071 * makes our caller's life easier.
1072 *
1073 * To prevent silent and low-probability deadlocks (when the
1074 * initial preallocation fails), check if there are any
1075 * workspaces at all.
1076 */
1077 if (atomic_read(total_ws) == 0) {
1078 static DEFINE_RATELIMIT_STATE(_rs,
1079 /* once per minute */ 60 * HZ,
1080 /* no burst */ 1);
1081
1082 if (__ratelimit(&_rs)) {
1083 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1084 }
1085 }
1086 goto again;
1087 }
1088 return workspace;
1089}
1090
1091static struct list_head *get_workspace(int type, int level)
1092{
1093 switch (type) {
1094 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1095 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1096 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
1097 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1098 default:
1099 /*
1100 * This can't happen, the type is validated several times
1101 * before we get here.
1102 */
1103 BUG();
1104 }
1105}
1106
1107/*
1108 * put a workspace struct back on the list or free it if we have enough
1109 * idle ones sitting around
1110 */
1111void btrfs_put_workspace(int type, struct list_head *ws)
1112{
1113 struct workspace_manager *wsm;
1114 struct list_head *idle_ws;
1115 spinlock_t *ws_lock;
1116 atomic_t *total_ws;
1117 wait_queue_head_t *ws_wait;
1118 int *free_ws;
1119
1120 wsm = btrfs_compress_op[type]->workspace_manager;
1121 idle_ws = &wsm->idle_ws;
1122 ws_lock = &wsm->ws_lock;
1123 total_ws = &wsm->total_ws;
1124 ws_wait = &wsm->ws_wait;
1125 free_ws = &wsm->free_ws;
1126
1127 spin_lock(ws_lock);
1128 if (*free_ws <= num_online_cpus()) {
1129 list_add(ws, idle_ws);
1130 (*free_ws)++;
1131 spin_unlock(ws_lock);
1132 goto wake;
1133 }
1134 spin_unlock(ws_lock);
1135
1136 free_workspace(type, ws);
1137 atomic_dec(total_ws);
1138wake:
1139 cond_wake_up(ws_wait);
1140}
1141
1142static void put_workspace(int type, struct list_head *ws)
1143{
1144 switch (type) {
1145 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1146 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1147 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
1148 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1149 default:
1150 /*
1151 * This can't happen, the type is validated several times
1152 * before we get here.
1153 */
1154 BUG();
1155 }
1156}
1157
1158/*
1159 * Adjust @level according to the limits of the compression algorithm or
1160 * fallback to default
1161 */
1162static unsigned int btrfs_compress_set_level(int type, unsigned level)
1163{
1164 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1165
1166 if (level == 0)
1167 level = ops->default_level;
1168 else
1169 level = min(level, ops->max_level);
1170
1171 return level;
1172}
1173
1174/*
1175 * Given an address space and start and length, compress the bytes into @pages
1176 * that are allocated on demand.
1177 *
1178 * @type_level is encoded algorithm and level, where level 0 means whatever
1179 * default the algorithm chooses and is opaque here;
1180 * - compression algo are 0-3
1181 * - the level are bits 4-7
1182 *
1183 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1184 * and returns number of actually allocated pages
1185 *
1186 * @total_in is used to return the number of bytes actually read. It
1187 * may be smaller than the input length if we had to exit early because we
1188 * ran out of room in the pages array or because we cross the
1189 * max_out threshold.
1190 *
1191 * @total_out is an in/out parameter, must be set to the input length and will
1192 * be also used to return the total number of compressed bytes
1193 */
1194int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1195 u64 start, struct page **pages,
1196 unsigned long *out_pages,
1197 unsigned long *total_in,
1198 unsigned long *total_out)
1199{
1200 int type = btrfs_compress_type(type_level);
1201 int level = btrfs_compress_level(type_level);
1202 struct list_head *workspace;
1203 int ret;
1204
1205 level = btrfs_compress_set_level(type, level);
1206 workspace = get_workspace(type, level);
1207 ret = compression_compress_pages(type, workspace, mapping, start, pages,
1208 out_pages, total_in, total_out);
1209 put_workspace(type, workspace);
1210 return ret;
1211}
1212
1213static int btrfs_decompress_bio(struct compressed_bio *cb)
1214{
1215 struct list_head *workspace;
1216 int ret;
1217 int type = cb->compress_type;
1218
1219 workspace = get_workspace(type, 0);
1220 ret = compression_decompress_bio(workspace, cb);
1221 put_workspace(type, workspace);
1222
1223 return ret;
1224}
1225
1226/*
1227 * a less complex decompression routine. Our compressed data fits in a
1228 * single page, and we want to read a single page out of it.
1229 * start_byte tells us the offset into the compressed data we're interested in
1230 */
1231int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1232 unsigned long start_byte, size_t srclen, size_t destlen)
1233{
1234 struct list_head *workspace;
1235 int ret;
1236
1237 workspace = get_workspace(type, 0);
1238 ret = compression_decompress(type, workspace, data_in, dest_page,
1239 start_byte, srclen, destlen);
1240 put_workspace(type, workspace);
1241
1242 return ret;
1243}
1244
1245void __init btrfs_init_compress(void)
1246{
1247 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1248 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1249 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1250 zstd_init_workspace_manager();
1251}
1252
1253void __cold btrfs_exit_compress(void)
1254{
1255 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1256 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1257 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1258 zstd_cleanup_workspace_manager();
1259}
1260
1261/*
1262 * Copy decompressed data from working buffer to pages.
1263 *
1264 * @buf: The decompressed data buffer
1265 * @buf_len: The decompressed data length
1266 * @decompressed: Number of bytes that are already decompressed inside the
1267 * compressed extent
1268 * @cb: The compressed extent descriptor
1269 * @orig_bio: The original bio that the caller wants to read for
1270 *
1271 * An easier to understand graph is like below:
1272 *
1273 * |<- orig_bio ->| |<- orig_bio->|
1274 * |<------- full decompressed extent ----->|
1275 * |<----------- @cb range ---->|
1276 * | |<-- @buf_len -->|
1277 * |<--- @decompressed --->|
1278 *
1279 * Note that, @cb can be a subpage of the full decompressed extent, but
1280 * @cb->start always has the same as the orig_file_offset value of the full
1281 * decompressed extent.
1282 *
1283 * When reading compressed extent, we have to read the full compressed extent,
1284 * while @orig_bio may only want part of the range.
1285 * Thus this function will ensure only data covered by @orig_bio will be copied
1286 * to.
1287 *
1288 * Return 0 if we have copied all needed contents for @orig_bio.
1289 * Return >0 if we need continue decompress.
1290 */
1291int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1292 struct compressed_bio *cb, u32 decompressed)
1293{
1294 struct bio *orig_bio = cb->orig_bio;
1295 /* Offset inside the full decompressed extent */
1296 u32 cur_offset;
1297
1298 cur_offset = decompressed;
1299 /* The main loop to do the copy */
1300 while (cur_offset < decompressed + buf_len) {
1301 struct bio_vec bvec;
1302 size_t copy_len;
1303 u32 copy_start;
1304 /* Offset inside the full decompressed extent */
1305 u32 bvec_offset;
1306
1307 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1308 /*
1309 * cb->start may underflow, but subtracting that value can still
1310 * give us correct offset inside the full decompressed extent.
1311 */
1312 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1313
1314 /* Haven't reached the bvec range, exit */
1315 if (decompressed + buf_len <= bvec_offset)
1316 return 1;
1317
1318 copy_start = max(cur_offset, bvec_offset);
1319 copy_len = min(bvec_offset + bvec.bv_len,
1320 decompressed + buf_len) - copy_start;
1321 ASSERT(copy_len);
1322
1323 /*
1324 * Extra range check to ensure we didn't go beyond
1325 * @buf + @buf_len.
1326 */
1327 ASSERT(copy_start - decompressed < buf_len);
1328 memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1329 buf + copy_start - decompressed, copy_len);
1330 cur_offset += copy_len;
1331
1332 bio_advance(orig_bio, copy_len);
1333 /* Finished the bio */
1334 if (!orig_bio->bi_iter.bi_size)
1335 return 0;
1336 }
1337 return 1;
1338}
1339
1340/*
1341 * Shannon Entropy calculation
1342 *
1343 * Pure byte distribution analysis fails to determine compressibility of data.
1344 * Try calculating entropy to estimate the average minimum number of bits
1345 * needed to encode the sampled data.
1346 *
1347 * For convenience, return the percentage of needed bits, instead of amount of
1348 * bits directly.
1349 *
1350 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1351 * and can be compressible with high probability
1352 *
1353 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1354 *
1355 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1356 */
1357#define ENTROPY_LVL_ACEPTABLE (65)
1358#define ENTROPY_LVL_HIGH (80)
1359
1360/*
1361 * For increasead precision in shannon_entropy calculation,
1362 * let's do pow(n, M) to save more digits after comma:
1363 *
1364 * - maximum int bit length is 64
1365 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1366 * - 13 * 4 = 52 < 64 -> M = 4
1367 *
1368 * So use pow(n, 4).
1369 */
1370static inline u32 ilog2_w(u64 n)
1371{
1372 return ilog2(n * n * n * n);
1373}
1374
1375static u32 shannon_entropy(struct heuristic_ws *ws)
1376{
1377 const u32 entropy_max = 8 * ilog2_w(2);
1378 u32 entropy_sum = 0;
1379 u32 p, p_base, sz_base;
1380 u32 i;
1381
1382 sz_base = ilog2_w(ws->sample_size);
1383 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1384 p = ws->bucket[i].count;
1385 p_base = ilog2_w(p);
1386 entropy_sum += p * (sz_base - p_base);
1387 }
1388
1389 entropy_sum /= ws->sample_size;
1390 return entropy_sum * 100 / entropy_max;
1391}
1392
1393#define RADIX_BASE 4U
1394#define COUNTERS_SIZE (1U << RADIX_BASE)
1395
1396static u8 get4bits(u64 num, int shift) {
1397 u8 low4bits;
1398
1399 num >>= shift;
1400 /* Reverse order */
1401 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1402 return low4bits;
1403}
1404
1405/*
1406 * Use 4 bits as radix base
1407 * Use 16 u32 counters for calculating new position in buf array
1408 *
1409 * @array - array that will be sorted
1410 * @array_buf - buffer array to store sorting results
1411 * must be equal in size to @array
1412 * @num - array size
1413 */
1414static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1415 int num)
1416{
1417 u64 max_num;
1418 u64 buf_num;
1419 u32 counters[COUNTERS_SIZE];
1420 u32 new_addr;
1421 u32 addr;
1422 int bitlen;
1423 int shift;
1424 int i;
1425
1426 /*
1427 * Try avoid useless loop iterations for small numbers stored in big
1428 * counters. Example: 48 33 4 ... in 64bit array
1429 */
1430 max_num = array[0].count;
1431 for (i = 1; i < num; i++) {
1432 buf_num = array[i].count;
1433 if (buf_num > max_num)
1434 max_num = buf_num;
1435 }
1436
1437 buf_num = ilog2(max_num);
1438 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1439
1440 shift = 0;
1441 while (shift < bitlen) {
1442 memset(counters, 0, sizeof(counters));
1443
1444 for (i = 0; i < num; i++) {
1445 buf_num = array[i].count;
1446 addr = get4bits(buf_num, shift);
1447 counters[addr]++;
1448 }
1449
1450 for (i = 1; i < COUNTERS_SIZE; i++)
1451 counters[i] += counters[i - 1];
1452
1453 for (i = num - 1; i >= 0; i--) {
1454 buf_num = array[i].count;
1455 addr = get4bits(buf_num, shift);
1456 counters[addr]--;
1457 new_addr = counters[addr];
1458 array_buf[new_addr] = array[i];
1459 }
1460
1461 shift += RADIX_BASE;
1462
1463 /*
1464 * Normal radix expects to move data from a temporary array, to
1465 * the main one. But that requires some CPU time. Avoid that
1466 * by doing another sort iteration to original array instead of
1467 * memcpy()
1468 */
1469 memset(counters, 0, sizeof(counters));
1470
1471 for (i = 0; i < num; i ++) {
1472 buf_num = array_buf[i].count;
1473 addr = get4bits(buf_num, shift);
1474 counters[addr]++;
1475 }
1476
1477 for (i = 1; i < COUNTERS_SIZE; i++)
1478 counters[i] += counters[i - 1];
1479
1480 for (i = num - 1; i >= 0; i--) {
1481 buf_num = array_buf[i].count;
1482 addr = get4bits(buf_num, shift);
1483 counters[addr]--;
1484 new_addr = counters[addr];
1485 array[new_addr] = array_buf[i];
1486 }
1487
1488 shift += RADIX_BASE;
1489 }
1490}
1491
1492/*
1493 * Size of the core byte set - how many bytes cover 90% of the sample
1494 *
1495 * There are several types of structured binary data that use nearly all byte
1496 * values. The distribution can be uniform and counts in all buckets will be
1497 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1498 *
1499 * Other possibility is normal (Gaussian) distribution, where the data could
1500 * be potentially compressible, but we have to take a few more steps to decide
1501 * how much.
1502 *
1503 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1504 * compression algo can easy fix that
1505 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1506 * probability is not compressible
1507 */
1508#define BYTE_CORE_SET_LOW (64)
1509#define BYTE_CORE_SET_HIGH (200)
1510
1511static int byte_core_set_size(struct heuristic_ws *ws)
1512{
1513 u32 i;
1514 u32 coreset_sum = 0;
1515 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1516 struct bucket_item *bucket = ws->bucket;
1517
1518 /* Sort in reverse order */
1519 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1520
1521 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1522 coreset_sum += bucket[i].count;
1523
1524 if (coreset_sum > core_set_threshold)
1525 return i;
1526
1527 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1528 coreset_sum += bucket[i].count;
1529 if (coreset_sum > core_set_threshold)
1530 break;
1531 }
1532
1533 return i;
1534}
1535
1536/*
1537 * Count byte values in buckets.
1538 * This heuristic can detect textual data (configs, xml, json, html, etc).
1539 * Because in most text-like data byte set is restricted to limited number of
1540 * possible characters, and that restriction in most cases makes data easy to
1541 * compress.
1542 *
1543 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1544 * less - compressible
1545 * more - need additional analysis
1546 */
1547#define BYTE_SET_THRESHOLD (64)
1548
1549static u32 byte_set_size(const struct heuristic_ws *ws)
1550{
1551 u32 i;
1552 u32 byte_set_size = 0;
1553
1554 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1555 if (ws->bucket[i].count > 0)
1556 byte_set_size++;
1557 }
1558
1559 /*
1560 * Continue collecting count of byte values in buckets. If the byte
1561 * set size is bigger then the threshold, it's pointless to continue,
1562 * the detection technique would fail for this type of data.
1563 */
1564 for (; i < BUCKET_SIZE; i++) {
1565 if (ws->bucket[i].count > 0) {
1566 byte_set_size++;
1567 if (byte_set_size > BYTE_SET_THRESHOLD)
1568 return byte_set_size;
1569 }
1570 }
1571
1572 return byte_set_size;
1573}
1574
1575static bool sample_repeated_patterns(struct heuristic_ws *ws)
1576{
1577 const u32 half_of_sample = ws->sample_size / 2;
1578 const u8 *data = ws->sample;
1579
1580 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1581}
1582
1583static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1584 struct heuristic_ws *ws)
1585{
1586 struct page *page;
1587 u64 index, index_end;
1588 u32 i, curr_sample_pos;
1589 u8 *in_data;
1590
1591 /*
1592 * Compression handles the input data by chunks of 128KiB
1593 * (defined by BTRFS_MAX_UNCOMPRESSED)
1594 *
1595 * We do the same for the heuristic and loop over the whole range.
1596 *
1597 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1598 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1599 */
1600 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1601 end = start + BTRFS_MAX_UNCOMPRESSED;
1602
1603 index = start >> PAGE_SHIFT;
1604 index_end = end >> PAGE_SHIFT;
1605
1606 /* Don't miss unaligned end */
1607 if (!IS_ALIGNED(end, PAGE_SIZE))
1608 index_end++;
1609
1610 curr_sample_pos = 0;
1611 while (index < index_end) {
1612 page = find_get_page(inode->i_mapping, index);
1613 in_data = kmap_local_page(page);
1614 /* Handle case where the start is not aligned to PAGE_SIZE */
1615 i = start % PAGE_SIZE;
1616 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1617 /* Don't sample any garbage from the last page */
1618 if (start > end - SAMPLING_READ_SIZE)
1619 break;
1620 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1621 SAMPLING_READ_SIZE);
1622 i += SAMPLING_INTERVAL;
1623 start += SAMPLING_INTERVAL;
1624 curr_sample_pos += SAMPLING_READ_SIZE;
1625 }
1626 kunmap_local(in_data);
1627 put_page(page);
1628
1629 index++;
1630 }
1631
1632 ws->sample_size = curr_sample_pos;
1633}
1634
1635/*
1636 * Compression heuristic.
1637 *
1638 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1639 * quickly (compared to direct compression) detect data characteristics
1640 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1641 * data.
1642 *
1643 * The following types of analysis can be performed:
1644 * - detect mostly zero data
1645 * - detect data with low "byte set" size (text, etc)
1646 * - detect data with low/high "core byte" set
1647 *
1648 * Return non-zero if the compression should be done, 0 otherwise.
1649 */
1650int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1651{
1652 struct list_head *ws_list = get_workspace(0, 0);
1653 struct heuristic_ws *ws;
1654 u32 i;
1655 u8 byte;
1656 int ret = 0;
1657
1658 ws = list_entry(ws_list, struct heuristic_ws, list);
1659
1660 heuristic_collect_sample(inode, start, end, ws);
1661
1662 if (sample_repeated_patterns(ws)) {
1663 ret = 1;
1664 goto out;
1665 }
1666
1667 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1668
1669 for (i = 0; i < ws->sample_size; i++) {
1670 byte = ws->sample[i];
1671 ws->bucket[byte].count++;
1672 }
1673
1674 i = byte_set_size(ws);
1675 if (i < BYTE_SET_THRESHOLD) {
1676 ret = 2;
1677 goto out;
1678 }
1679
1680 i = byte_core_set_size(ws);
1681 if (i <= BYTE_CORE_SET_LOW) {
1682 ret = 3;
1683 goto out;
1684 }
1685
1686 if (i >= BYTE_CORE_SET_HIGH) {
1687 ret = 0;
1688 goto out;
1689 }
1690
1691 i = shannon_entropy(ws);
1692 if (i <= ENTROPY_LVL_ACEPTABLE) {
1693 ret = 4;
1694 goto out;
1695 }
1696
1697 /*
1698 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1699 * needed to give green light to compression.
1700 *
1701 * For now just assume that compression at that level is not worth the
1702 * resources because:
1703 *
1704 * 1. it is possible to defrag the data later
1705 *
1706 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1707 * values, every bucket has counter at level ~54. The heuristic would
1708 * be confused. This can happen when data have some internal repeated
1709 * patterns like "abbacbbc...". This can be detected by analyzing
1710 * pairs of bytes, which is too costly.
1711 */
1712 if (i < ENTROPY_LVL_HIGH) {
1713 ret = 5;
1714 goto out;
1715 } else {
1716 ret = 0;
1717 goto out;
1718 }
1719
1720out:
1721 put_workspace(0, ws_list);
1722 return ret;
1723}
1724
1725/*
1726 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1727 * level, unrecognized string will set the default level
1728 */
1729unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1730{
1731 unsigned int level = 0;
1732 int ret;
1733
1734 if (!type)
1735 return 0;
1736
1737 if (str[0] == ':') {
1738 ret = kstrtouint(str + 1, 10, &level);
1739 if (ret)
1740 level = 0;
1741 }
1742
1743 level = btrfs_compress_set_level(type, level);
1744
1745 return level;
1746}