Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2/*
3 * hcd.c - DesignWare HS OTG Controller host-mode routines
4 *
5 * Copyright (C) 2004-2013 Synopsys, Inc.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 * to endorse or promote products derived from this software without
18 * specific prior written permission.
19 *
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
23 * later version.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38/*
39 * This file contains the core HCD code, and implements the Linux hc_driver
40 * API
41 */
42#include <linux/kernel.h>
43#include <linux/module.h>
44#include <linux/spinlock.h>
45#include <linux/interrupt.h>
46#include <linux/platform_device.h>
47#include <linux/dma-mapping.h>
48#include <linux/delay.h>
49#include <linux/io.h>
50#include <linux/slab.h>
51#include <linux/usb.h>
52
53#include <linux/usb/hcd.h>
54#include <linux/usb/ch11.h>
55#include <linux/usb/of.h>
56
57#include "core.h"
58#include "hcd.h"
59
60/*
61 * =========================================================================
62 * Host Core Layer Functions
63 * =========================================================================
64 */
65
66/**
67 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
68 * used in both device and host modes
69 *
70 * @hsotg: Programming view of the DWC_otg controller
71 */
72static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
73{
74 u32 intmsk;
75
76 /* Clear any pending OTG Interrupts */
77 dwc2_writel(hsotg, 0xffffffff, GOTGINT);
78
79 /* Clear any pending interrupts */
80 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
81
82 /* Enable the interrupts in the GINTMSK */
83 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
84
85 if (!hsotg->params.host_dma)
86 intmsk |= GINTSTS_RXFLVL;
87 if (!hsotg->params.external_id_pin_ctl)
88 intmsk |= GINTSTS_CONIDSTSCHNG;
89
90 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
91 GINTSTS_SESSREQINT;
92
93 if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
94 intmsk |= GINTSTS_LPMTRANRCVD;
95
96 dwc2_writel(hsotg, intmsk, GINTMSK);
97}
98
99static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
100{
101 u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
102
103 switch (hsotg->hw_params.arch) {
104 case GHWCFG2_EXT_DMA_ARCH:
105 dev_err(hsotg->dev, "External DMA Mode not supported\n");
106 return -EINVAL;
107
108 case GHWCFG2_INT_DMA_ARCH:
109 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
110 if (hsotg->params.ahbcfg != -1) {
111 ahbcfg &= GAHBCFG_CTRL_MASK;
112 ahbcfg |= hsotg->params.ahbcfg &
113 ~GAHBCFG_CTRL_MASK;
114 }
115 break;
116
117 case GHWCFG2_SLAVE_ONLY_ARCH:
118 default:
119 dev_dbg(hsotg->dev, "Slave Only Mode\n");
120 break;
121 }
122
123 if (hsotg->params.host_dma)
124 ahbcfg |= GAHBCFG_DMA_EN;
125 else
126 hsotg->params.dma_desc_enable = false;
127
128 dwc2_writel(hsotg, ahbcfg, GAHBCFG);
129
130 return 0;
131}
132
133static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
134{
135 u32 usbcfg;
136
137 usbcfg = dwc2_readl(hsotg, GUSBCFG);
138 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
139
140 switch (hsotg->hw_params.op_mode) {
141 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
142 if (hsotg->params.otg_caps.hnp_support &&
143 hsotg->params.otg_caps.srp_support)
144 usbcfg |= GUSBCFG_HNPCAP;
145 fallthrough;
146
147 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
148 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
149 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
150 if (hsotg->params.otg_caps.srp_support)
151 usbcfg |= GUSBCFG_SRPCAP;
152 break;
153
154 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
155 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
156 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
157 default:
158 break;
159 }
160
161 dwc2_writel(hsotg, usbcfg, GUSBCFG);
162}
163
164static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
165{
166 if (hsotg->vbus_supply)
167 return regulator_enable(hsotg->vbus_supply);
168
169 return 0;
170}
171
172static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
173{
174 if (hsotg->vbus_supply)
175 return regulator_disable(hsotg->vbus_supply);
176
177 return 0;
178}
179
180/**
181 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
182 *
183 * @hsotg: Programming view of DWC_otg controller
184 */
185static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
186{
187 u32 intmsk;
188
189 dev_dbg(hsotg->dev, "%s()\n", __func__);
190
191 /* Disable all interrupts */
192 dwc2_writel(hsotg, 0, GINTMSK);
193 dwc2_writel(hsotg, 0, HAINTMSK);
194
195 /* Enable the common interrupts */
196 dwc2_enable_common_interrupts(hsotg);
197
198 /* Enable host mode interrupts without disturbing common interrupts */
199 intmsk = dwc2_readl(hsotg, GINTMSK);
200 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
201 dwc2_writel(hsotg, intmsk, GINTMSK);
202}
203
204/**
205 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
206 *
207 * @hsotg: Programming view of DWC_otg controller
208 */
209static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
210{
211 u32 intmsk = dwc2_readl(hsotg, GINTMSK);
212
213 /* Disable host mode interrupts without disturbing common interrupts */
214 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
215 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
216 dwc2_writel(hsotg, intmsk, GINTMSK);
217}
218
219/*
220 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
221 * For system that have a total fifo depth that is smaller than the default
222 * RX + TX fifo size.
223 *
224 * @hsotg: Programming view of DWC_otg controller
225 */
226static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
227{
228 struct dwc2_core_params *params = &hsotg->params;
229 struct dwc2_hw_params *hw = &hsotg->hw_params;
230 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
231
232 total_fifo_size = hw->total_fifo_size;
233 rxfsiz = params->host_rx_fifo_size;
234 nptxfsiz = params->host_nperio_tx_fifo_size;
235 ptxfsiz = params->host_perio_tx_fifo_size;
236
237 /*
238 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
239 * allocation with support for high bandwidth endpoints. Synopsys
240 * defines MPS(Max Packet size) for a periodic EP=1024, and for
241 * non-periodic as 512.
242 */
243 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
244 /*
245 * For Buffer DMA mode/Scatter Gather DMA mode
246 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
247 * with n = number of host channel.
248 * 2 * ((1024/4) + 2) = 516
249 */
250 rxfsiz = 516 + hw->host_channels;
251
252 /*
253 * min non-periodic tx fifo depth
254 * 2 * (largest non-periodic USB packet used / 4)
255 * 2 * (512/4) = 256
256 */
257 nptxfsiz = 256;
258
259 /*
260 * min periodic tx fifo depth
261 * (largest packet size*MC)/4
262 * (1024 * 3)/4 = 768
263 */
264 ptxfsiz = 768;
265
266 params->host_rx_fifo_size = rxfsiz;
267 params->host_nperio_tx_fifo_size = nptxfsiz;
268 params->host_perio_tx_fifo_size = ptxfsiz;
269 }
270
271 /*
272 * If the summation of RX, NPTX and PTX fifo sizes is still
273 * bigger than the total_fifo_size, then we have a problem.
274 *
275 * We won't be able to allocate as many endpoints. Right now,
276 * we're just printing an error message, but ideally this FIFO
277 * allocation algorithm would be improved in the future.
278 *
279 * FIXME improve this FIFO allocation algorithm.
280 */
281 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
282 dev_err(hsotg->dev, "invalid fifo sizes\n");
283}
284
285static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
286{
287 struct dwc2_core_params *params = &hsotg->params;
288 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
289
290 if (!params->enable_dynamic_fifo)
291 return;
292
293 dwc2_calculate_dynamic_fifo(hsotg);
294
295 /* Rx FIFO */
296 grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
297 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
298 grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
299 grxfsiz |= params->host_rx_fifo_size <<
300 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
301 dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
302 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
303 dwc2_readl(hsotg, GRXFSIZ));
304
305 /* Non-periodic Tx FIFO */
306 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
307 dwc2_readl(hsotg, GNPTXFSIZ));
308 nptxfsiz = params->host_nperio_tx_fifo_size <<
309 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
310 nptxfsiz |= params->host_rx_fifo_size <<
311 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
312 dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
313 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
314 dwc2_readl(hsotg, GNPTXFSIZ));
315
316 /* Periodic Tx FIFO */
317 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
318 dwc2_readl(hsotg, HPTXFSIZ));
319 hptxfsiz = params->host_perio_tx_fifo_size <<
320 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
321 hptxfsiz |= (params->host_rx_fifo_size +
322 params->host_nperio_tx_fifo_size) <<
323 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
324 dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
325 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
326 dwc2_readl(hsotg, HPTXFSIZ));
327
328 if (hsotg->params.en_multiple_tx_fifo &&
329 hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
330 /*
331 * This feature was implemented in 2.91a version
332 * Global DFIFOCFG calculation for Host mode -
333 * include RxFIFO, NPTXFIFO and HPTXFIFO
334 */
335 dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
336 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
337 dfifocfg |= (params->host_rx_fifo_size +
338 params->host_nperio_tx_fifo_size +
339 params->host_perio_tx_fifo_size) <<
340 GDFIFOCFG_EPINFOBASE_SHIFT &
341 GDFIFOCFG_EPINFOBASE_MASK;
342 dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
343 }
344}
345
346/**
347 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
348 * the HFIR register according to PHY type and speed
349 *
350 * @hsotg: Programming view of DWC_otg controller
351 *
352 * NOTE: The caller can modify the value of the HFIR register only after the
353 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
354 * has been set
355 */
356u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
357{
358 u32 usbcfg;
359 u32 hprt0;
360 int clock = 60; /* default value */
361
362 usbcfg = dwc2_readl(hsotg, GUSBCFG);
363 hprt0 = dwc2_readl(hsotg, HPRT0);
364
365 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
366 !(usbcfg & GUSBCFG_PHYIF16))
367 clock = 60;
368 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
369 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
370 clock = 48;
371 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
372 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
373 clock = 30;
374 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
375 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
376 clock = 60;
377 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
378 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
379 clock = 48;
380 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
381 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
382 clock = 48;
383 if ((usbcfg & GUSBCFG_PHYSEL) &&
384 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
385 clock = 48;
386
387 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
388 /* High speed case */
389 return 125 * clock - 1;
390
391 /* FS/LS case */
392 return 1000 * clock - 1;
393}
394
395/**
396 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
397 * buffer
398 *
399 * @hsotg: Programming view of DWC_otg controller
400 * @dest: Destination buffer for the packet
401 * @bytes: Number of bytes to copy to the destination
402 */
403void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
404{
405 u32 *data_buf = (u32 *)dest;
406 int word_count = (bytes + 3) / 4;
407 int i;
408
409 /*
410 * Todo: Account for the case where dest is not dword aligned. This
411 * requires reading data from the FIFO into a u32 temp buffer, then
412 * moving it into the data buffer.
413 */
414
415 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
416
417 for (i = 0; i < word_count; i++, data_buf++)
418 *data_buf = dwc2_readl(hsotg, HCFIFO(0));
419}
420
421/**
422 * dwc2_dump_channel_info() - Prints the state of a host channel
423 *
424 * @hsotg: Programming view of DWC_otg controller
425 * @chan: Pointer to the channel to dump
426 *
427 * Must be called with interrupt disabled and spinlock held
428 *
429 * NOTE: This function will be removed once the peripheral controller code
430 * is integrated and the driver is stable
431 */
432static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
433 struct dwc2_host_chan *chan)
434{
435#ifdef VERBOSE_DEBUG
436 int num_channels = hsotg->params.host_channels;
437 struct dwc2_qh *qh;
438 u32 hcchar;
439 u32 hcsplt;
440 u32 hctsiz;
441 u32 hc_dma;
442 int i;
443
444 if (!chan)
445 return;
446
447 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
448 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
449 hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
450 hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
451
452 dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan);
453 dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n",
454 hcchar, hcsplt);
455 dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n",
456 hctsiz, hc_dma);
457 dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
458 chan->dev_addr, chan->ep_num, chan->ep_is_in);
459 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
460 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
461 dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start);
462 dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started);
463 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
464 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
465 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
466 (unsigned long)chan->xfer_dma);
467 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
468 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
469 dev_dbg(hsotg->dev, " NP inactive sched:\n");
470 list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
471 qh_list_entry)
472 dev_dbg(hsotg->dev, " %p\n", qh);
473 dev_dbg(hsotg->dev, " NP waiting sched:\n");
474 list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
475 qh_list_entry)
476 dev_dbg(hsotg->dev, " %p\n", qh);
477 dev_dbg(hsotg->dev, " NP active sched:\n");
478 list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
479 qh_list_entry)
480 dev_dbg(hsotg->dev, " %p\n", qh);
481 dev_dbg(hsotg->dev, " Channels:\n");
482 for (i = 0; i < num_channels; i++) {
483 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
484
485 dev_dbg(hsotg->dev, " %2d: %p\n", i, chan);
486 }
487#endif /* VERBOSE_DEBUG */
488}
489
490static int _dwc2_hcd_start(struct usb_hcd *hcd);
491
492static void dwc2_host_start(struct dwc2_hsotg *hsotg)
493{
494 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
495
496 hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
497 _dwc2_hcd_start(hcd);
498}
499
500static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
501{
502 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
503
504 hcd->self.is_b_host = 0;
505}
506
507static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
508 int *hub_addr, int *hub_port)
509{
510 struct urb *urb = context;
511
512 if (urb->dev->tt)
513 *hub_addr = urb->dev->tt->hub->devnum;
514 else
515 *hub_addr = 0;
516 *hub_port = urb->dev->ttport;
517}
518
519/*
520 * =========================================================================
521 * Low Level Host Channel Access Functions
522 * =========================================================================
523 */
524
525static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
526 struct dwc2_host_chan *chan)
527{
528 u32 hcintmsk = HCINTMSK_CHHLTD;
529
530 switch (chan->ep_type) {
531 case USB_ENDPOINT_XFER_CONTROL:
532 case USB_ENDPOINT_XFER_BULK:
533 dev_vdbg(hsotg->dev, "control/bulk\n");
534 hcintmsk |= HCINTMSK_XFERCOMPL;
535 hcintmsk |= HCINTMSK_STALL;
536 hcintmsk |= HCINTMSK_XACTERR;
537 hcintmsk |= HCINTMSK_DATATGLERR;
538 if (chan->ep_is_in) {
539 hcintmsk |= HCINTMSK_BBLERR;
540 } else {
541 hcintmsk |= HCINTMSK_NAK;
542 hcintmsk |= HCINTMSK_NYET;
543 if (chan->do_ping)
544 hcintmsk |= HCINTMSK_ACK;
545 }
546
547 if (chan->do_split) {
548 hcintmsk |= HCINTMSK_NAK;
549 if (chan->complete_split)
550 hcintmsk |= HCINTMSK_NYET;
551 else
552 hcintmsk |= HCINTMSK_ACK;
553 }
554
555 if (chan->error_state)
556 hcintmsk |= HCINTMSK_ACK;
557 break;
558
559 case USB_ENDPOINT_XFER_INT:
560 if (dbg_perio())
561 dev_vdbg(hsotg->dev, "intr\n");
562 hcintmsk |= HCINTMSK_XFERCOMPL;
563 hcintmsk |= HCINTMSK_NAK;
564 hcintmsk |= HCINTMSK_STALL;
565 hcintmsk |= HCINTMSK_XACTERR;
566 hcintmsk |= HCINTMSK_DATATGLERR;
567 hcintmsk |= HCINTMSK_FRMOVRUN;
568
569 if (chan->ep_is_in)
570 hcintmsk |= HCINTMSK_BBLERR;
571 if (chan->error_state)
572 hcintmsk |= HCINTMSK_ACK;
573 if (chan->do_split) {
574 if (chan->complete_split)
575 hcintmsk |= HCINTMSK_NYET;
576 else
577 hcintmsk |= HCINTMSK_ACK;
578 }
579 break;
580
581 case USB_ENDPOINT_XFER_ISOC:
582 if (dbg_perio())
583 dev_vdbg(hsotg->dev, "isoc\n");
584 hcintmsk |= HCINTMSK_XFERCOMPL;
585 hcintmsk |= HCINTMSK_FRMOVRUN;
586 hcintmsk |= HCINTMSK_ACK;
587
588 if (chan->ep_is_in) {
589 hcintmsk |= HCINTMSK_XACTERR;
590 hcintmsk |= HCINTMSK_BBLERR;
591 }
592 break;
593 default:
594 dev_err(hsotg->dev, "## Unknown EP type ##\n");
595 break;
596 }
597
598 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
599 if (dbg_hc(chan))
600 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
601}
602
603static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
604 struct dwc2_host_chan *chan)
605{
606 u32 hcintmsk = HCINTMSK_CHHLTD;
607
608 /*
609 * For Descriptor DMA mode core halts the channel on AHB error.
610 * Interrupt is not required.
611 */
612 if (!hsotg->params.dma_desc_enable) {
613 if (dbg_hc(chan))
614 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
615 hcintmsk |= HCINTMSK_AHBERR;
616 } else {
617 if (dbg_hc(chan))
618 dev_vdbg(hsotg->dev, "desc DMA enabled\n");
619 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
620 hcintmsk |= HCINTMSK_XFERCOMPL;
621 }
622
623 if (chan->error_state && !chan->do_split &&
624 chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
625 if (dbg_hc(chan))
626 dev_vdbg(hsotg->dev, "setting ACK\n");
627 hcintmsk |= HCINTMSK_ACK;
628 if (chan->ep_is_in) {
629 hcintmsk |= HCINTMSK_DATATGLERR;
630 if (chan->ep_type != USB_ENDPOINT_XFER_INT)
631 hcintmsk |= HCINTMSK_NAK;
632 }
633 }
634
635 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
636 if (dbg_hc(chan))
637 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
638}
639
640static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
641 struct dwc2_host_chan *chan)
642{
643 u32 intmsk;
644
645 if (hsotg->params.host_dma) {
646 if (dbg_hc(chan))
647 dev_vdbg(hsotg->dev, "DMA enabled\n");
648 dwc2_hc_enable_dma_ints(hsotg, chan);
649 } else {
650 if (dbg_hc(chan))
651 dev_vdbg(hsotg->dev, "DMA disabled\n");
652 dwc2_hc_enable_slave_ints(hsotg, chan);
653 }
654
655 /* Enable the top level host channel interrupt */
656 intmsk = dwc2_readl(hsotg, HAINTMSK);
657 intmsk |= 1 << chan->hc_num;
658 dwc2_writel(hsotg, intmsk, HAINTMSK);
659 if (dbg_hc(chan))
660 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
661
662 /* Make sure host channel interrupts are enabled */
663 intmsk = dwc2_readl(hsotg, GINTMSK);
664 intmsk |= GINTSTS_HCHINT;
665 dwc2_writel(hsotg, intmsk, GINTMSK);
666 if (dbg_hc(chan))
667 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
668}
669
670/**
671 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
672 * a specific endpoint
673 *
674 * @hsotg: Programming view of DWC_otg controller
675 * @chan: Information needed to initialize the host channel
676 *
677 * The HCCHARn register is set up with the characteristics specified in chan.
678 * Host channel interrupts that may need to be serviced while this transfer is
679 * in progress are enabled.
680 */
681static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
682{
683 u8 hc_num = chan->hc_num;
684 u32 hcintmsk;
685 u32 hcchar;
686 u32 hcsplt = 0;
687
688 if (dbg_hc(chan))
689 dev_vdbg(hsotg->dev, "%s()\n", __func__);
690
691 /* Clear old interrupt conditions for this host channel */
692 hcintmsk = 0xffffffff;
693 hcintmsk &= ~HCINTMSK_RESERVED14_31;
694 dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
695
696 /* Enable channel interrupts required for this transfer */
697 dwc2_hc_enable_ints(hsotg, chan);
698
699 /*
700 * Program the HCCHARn register with the endpoint characteristics for
701 * the current transfer
702 */
703 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
704 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
705 if (chan->ep_is_in)
706 hcchar |= HCCHAR_EPDIR;
707 if (chan->speed == USB_SPEED_LOW)
708 hcchar |= HCCHAR_LSPDDEV;
709 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
710 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
711 dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
712 if (dbg_hc(chan)) {
713 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
714 hc_num, hcchar);
715
716 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
717 __func__, hc_num);
718 dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
719 chan->dev_addr);
720 dev_vdbg(hsotg->dev, " Ep Num: %d\n",
721 chan->ep_num);
722 dev_vdbg(hsotg->dev, " Is In: %d\n",
723 chan->ep_is_in);
724 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
725 chan->speed == USB_SPEED_LOW);
726 dev_vdbg(hsotg->dev, " Ep Type: %d\n",
727 chan->ep_type);
728 dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
729 chan->max_packet);
730 }
731
732 /* Program the HCSPLT register for SPLITs */
733 if (chan->do_split) {
734 if (dbg_hc(chan))
735 dev_vdbg(hsotg->dev,
736 "Programming HC %d with split --> %s\n",
737 hc_num,
738 chan->complete_split ? "CSPLIT" : "SSPLIT");
739 if (chan->complete_split)
740 hcsplt |= HCSPLT_COMPSPLT;
741 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
742 HCSPLT_XACTPOS_MASK;
743 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
744 HCSPLT_HUBADDR_MASK;
745 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
746 HCSPLT_PRTADDR_MASK;
747 if (dbg_hc(chan)) {
748 dev_vdbg(hsotg->dev, " comp split %d\n",
749 chan->complete_split);
750 dev_vdbg(hsotg->dev, " xact pos %d\n",
751 chan->xact_pos);
752 dev_vdbg(hsotg->dev, " hub addr %d\n",
753 chan->hub_addr);
754 dev_vdbg(hsotg->dev, " hub port %d\n",
755 chan->hub_port);
756 dev_vdbg(hsotg->dev, " is_in %d\n",
757 chan->ep_is_in);
758 dev_vdbg(hsotg->dev, " Max Pkt %d\n",
759 chan->max_packet);
760 dev_vdbg(hsotg->dev, " xferlen %d\n",
761 chan->xfer_len);
762 }
763 }
764
765 dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
766}
767
768/**
769 * dwc2_hc_halt() - Attempts to halt a host channel
770 *
771 * @hsotg: Controller register interface
772 * @chan: Host channel to halt
773 * @halt_status: Reason for halting the channel
774 *
775 * This function should only be called in Slave mode or to abort a transfer in
776 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
777 * controller halts the channel when the transfer is complete or a condition
778 * occurs that requires application intervention.
779 *
780 * In slave mode, checks for a free request queue entry, then sets the Channel
781 * Enable and Channel Disable bits of the Host Channel Characteristics
782 * register of the specified channel to intiate the halt. If there is no free
783 * request queue entry, sets only the Channel Disable bit of the HCCHARn
784 * register to flush requests for this channel. In the latter case, sets a
785 * flag to indicate that the host channel needs to be halted when a request
786 * queue slot is open.
787 *
788 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
789 * HCCHARn register. The controller ensures there is space in the request
790 * queue before submitting the halt request.
791 *
792 * Some time may elapse before the core flushes any posted requests for this
793 * host channel and halts. The Channel Halted interrupt handler completes the
794 * deactivation of the host channel.
795 */
796void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
797 enum dwc2_halt_status halt_status)
798{
799 u32 nptxsts, hptxsts, hcchar;
800
801 if (dbg_hc(chan))
802 dev_vdbg(hsotg->dev, "%s()\n", __func__);
803
804 /*
805 * In buffer DMA or external DMA mode channel can't be halted
806 * for non-split periodic channels. At the end of the next
807 * uframe/frame (in the worst case), the core generates a channel
808 * halted and disables the channel automatically.
809 */
810 if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
811 hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
812 if (!chan->do_split &&
813 (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
814 chan->ep_type == USB_ENDPOINT_XFER_INT)) {
815 dev_err(hsotg->dev, "%s() Channel can't be halted\n",
816 __func__);
817 return;
818 }
819 }
820
821 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
822 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
823
824 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
825 halt_status == DWC2_HC_XFER_AHB_ERR) {
826 /*
827 * Disable all channel interrupts except Ch Halted. The QTD
828 * and QH state associated with this transfer has been cleared
829 * (in the case of URB_DEQUEUE), so the channel needs to be
830 * shut down carefully to prevent crashes.
831 */
832 u32 hcintmsk = HCINTMSK_CHHLTD;
833
834 dev_vdbg(hsotg->dev, "dequeue/error\n");
835 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
836
837 /*
838 * Make sure no other interrupts besides halt are currently
839 * pending. Handling another interrupt could cause a crash due
840 * to the QTD and QH state.
841 */
842 dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
843
844 /*
845 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
846 * even if the channel was already halted for some other
847 * reason
848 */
849 chan->halt_status = halt_status;
850
851 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
852 if (!(hcchar & HCCHAR_CHENA)) {
853 /*
854 * The channel is either already halted or it hasn't
855 * started yet. In DMA mode, the transfer may halt if
856 * it finishes normally or a condition occurs that
857 * requires driver intervention. Don't want to halt
858 * the channel again. In either Slave or DMA mode,
859 * it's possible that the transfer has been assigned
860 * to a channel, but not started yet when an URB is
861 * dequeued. Don't want to halt a channel that hasn't
862 * started yet.
863 */
864 return;
865 }
866 }
867 if (chan->halt_pending) {
868 /*
869 * A halt has already been issued for this channel. This might
870 * happen when a transfer is aborted by a higher level in
871 * the stack.
872 */
873 dev_vdbg(hsotg->dev,
874 "*** %s: Channel %d, chan->halt_pending already set ***\n",
875 __func__, chan->hc_num);
876 return;
877 }
878
879 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
880
881 /* No need to set the bit in DDMA for disabling the channel */
882 /* TODO check it everywhere channel is disabled */
883 if (!hsotg->params.dma_desc_enable) {
884 if (dbg_hc(chan))
885 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
886 hcchar |= HCCHAR_CHENA;
887 } else {
888 if (dbg_hc(chan))
889 dev_dbg(hsotg->dev, "desc DMA enabled\n");
890 }
891 hcchar |= HCCHAR_CHDIS;
892
893 if (!hsotg->params.host_dma) {
894 if (dbg_hc(chan))
895 dev_vdbg(hsotg->dev, "DMA not enabled\n");
896 hcchar |= HCCHAR_CHENA;
897
898 /* Check for space in the request queue to issue the halt */
899 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
900 chan->ep_type == USB_ENDPOINT_XFER_BULK) {
901 dev_vdbg(hsotg->dev, "control/bulk\n");
902 nptxsts = dwc2_readl(hsotg, GNPTXSTS);
903 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
904 dev_vdbg(hsotg->dev, "Disabling channel\n");
905 hcchar &= ~HCCHAR_CHENA;
906 }
907 } else {
908 if (dbg_perio())
909 dev_vdbg(hsotg->dev, "isoc/intr\n");
910 hptxsts = dwc2_readl(hsotg, HPTXSTS);
911 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
912 hsotg->queuing_high_bandwidth) {
913 if (dbg_perio())
914 dev_vdbg(hsotg->dev, "Disabling channel\n");
915 hcchar &= ~HCCHAR_CHENA;
916 }
917 }
918 } else {
919 if (dbg_hc(chan))
920 dev_vdbg(hsotg->dev, "DMA enabled\n");
921 }
922
923 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
924 chan->halt_status = halt_status;
925
926 if (hcchar & HCCHAR_CHENA) {
927 if (dbg_hc(chan))
928 dev_vdbg(hsotg->dev, "Channel enabled\n");
929 chan->halt_pending = 1;
930 chan->halt_on_queue = 0;
931 } else {
932 if (dbg_hc(chan))
933 dev_vdbg(hsotg->dev, "Channel disabled\n");
934 chan->halt_on_queue = 1;
935 }
936
937 if (dbg_hc(chan)) {
938 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
939 chan->hc_num);
940 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n",
941 hcchar);
942 dev_vdbg(hsotg->dev, " halt_pending: %d\n",
943 chan->halt_pending);
944 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n",
945 chan->halt_on_queue);
946 dev_vdbg(hsotg->dev, " halt_status: %d\n",
947 chan->halt_status);
948 }
949}
950
951/**
952 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
953 *
954 * @hsotg: Programming view of DWC_otg controller
955 * @chan: Identifies the host channel to clean up
956 *
957 * This function is normally called after a transfer is done and the host
958 * channel is being released
959 */
960void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
961{
962 u32 hcintmsk;
963
964 chan->xfer_started = 0;
965
966 list_del_init(&chan->split_order_list_entry);
967
968 /*
969 * Clear channel interrupt enables and any unhandled channel interrupt
970 * conditions
971 */
972 dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
973 hcintmsk = 0xffffffff;
974 hcintmsk &= ~HCINTMSK_RESERVED14_31;
975 dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
976}
977
978/**
979 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
980 * which frame a periodic transfer should occur
981 *
982 * @hsotg: Programming view of DWC_otg controller
983 * @chan: Identifies the host channel to set up and its properties
984 * @hcchar: Current value of the HCCHAR register for the specified host channel
985 *
986 * This function has no effect on non-periodic transfers
987 */
988static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
989 struct dwc2_host_chan *chan, u32 *hcchar)
990{
991 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
992 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
993 int host_speed;
994 int xfer_ns;
995 int xfer_us;
996 int bytes_in_fifo;
997 u16 fifo_space;
998 u16 frame_number;
999 u16 wire_frame;
1000
1001 /*
1002 * Try to figure out if we're an even or odd frame. If we set
1003 * even and the current frame number is even the transfer
1004 * will happen immediately. Similar if both are odd. If one is
1005 * even and the other is odd then the transfer will happen when
1006 * the frame number ticks.
1007 *
1008 * There's a bit of a balancing act to get this right.
1009 * Sometimes we may want to send data in the current frame (AK
1010 * right away). We might want to do this if the frame number
1011 * _just_ ticked, but we might also want to do this in order
1012 * to continue a split transaction that happened late in a
1013 * microframe (so we didn't know to queue the next transfer
1014 * until the frame number had ticked). The problem is that we
1015 * need a lot of knowledge to know if there's actually still
1016 * time to send things or if it would be better to wait until
1017 * the next frame.
1018 *
1019 * We can look at how much time is left in the current frame
1020 * and make a guess about whether we'll have time to transfer.
1021 * We'll do that.
1022 */
1023
1024 /* Get speed host is running at */
1025 host_speed = (chan->speed != USB_SPEED_HIGH &&
1026 !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1027
1028 /* See how many bytes are in the periodic FIFO right now */
1029 fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1030 TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1031 bytes_in_fifo = sizeof(u32) *
1032 (hsotg->params.host_perio_tx_fifo_size -
1033 fifo_space);
1034
1035 /*
1036 * Roughly estimate bus time for everything in the periodic
1037 * queue + our new transfer. This is "rough" because we're
1038 * using a function that makes takes into account IN/OUT
1039 * and INT/ISO and we're just slamming in one value for all
1040 * transfers. This should be an over-estimate and that should
1041 * be OK, but we can probably tighten it.
1042 */
1043 xfer_ns = usb_calc_bus_time(host_speed, false, false,
1044 chan->xfer_len + bytes_in_fifo);
1045 xfer_us = NS_TO_US(xfer_ns);
1046
1047 /* See what frame number we'll be at by the time we finish */
1048 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1049
1050 /* This is when we were scheduled to be on the wire */
1051 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1052
1053 /*
1054 * If we'd finish _after_ the frame we're scheduled in then
1055 * it's hopeless. Just schedule right away and hope for the
1056 * best. Note that it _might_ be wise to call back into the
1057 * scheduler to pick a better frame, but this is better than
1058 * nothing.
1059 */
1060 if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1061 dwc2_sch_vdbg(hsotg,
1062 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1063 chan->qh, wire_frame, frame_number,
1064 dwc2_frame_num_dec(frame_number,
1065 wire_frame));
1066 wire_frame = frame_number;
1067
1068 /*
1069 * We picked a different frame number; communicate this
1070 * back to the scheduler so it doesn't try to schedule
1071 * another in the same frame.
1072 *
1073 * Remember that next_active_frame is 1 before the wire
1074 * frame.
1075 */
1076 chan->qh->next_active_frame =
1077 dwc2_frame_num_dec(frame_number, 1);
1078 }
1079
1080 if (wire_frame & 1)
1081 *hcchar |= HCCHAR_ODDFRM;
1082 else
1083 *hcchar &= ~HCCHAR_ODDFRM;
1084 }
1085}
1086
1087static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1088{
1089 /* Set up the initial PID for the transfer */
1090 if (chan->speed == USB_SPEED_HIGH) {
1091 if (chan->ep_is_in) {
1092 if (chan->multi_count == 1)
1093 chan->data_pid_start = DWC2_HC_PID_DATA0;
1094 else if (chan->multi_count == 2)
1095 chan->data_pid_start = DWC2_HC_PID_DATA1;
1096 else
1097 chan->data_pid_start = DWC2_HC_PID_DATA2;
1098 } else {
1099 if (chan->multi_count == 1)
1100 chan->data_pid_start = DWC2_HC_PID_DATA0;
1101 else
1102 chan->data_pid_start = DWC2_HC_PID_MDATA;
1103 }
1104 } else {
1105 chan->data_pid_start = DWC2_HC_PID_DATA0;
1106 }
1107}
1108
1109/**
1110 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1111 * the Host Channel
1112 *
1113 * @hsotg: Programming view of DWC_otg controller
1114 * @chan: Information needed to initialize the host channel
1115 *
1116 * This function should only be called in Slave mode. For a channel associated
1117 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1118 * associated with a periodic EP, the periodic Tx FIFO is written.
1119 *
1120 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1121 * the number of bytes written to the Tx FIFO.
1122 */
1123static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1124 struct dwc2_host_chan *chan)
1125{
1126 u32 i;
1127 u32 remaining_count;
1128 u32 byte_count;
1129 u32 dword_count;
1130 u32 *data_buf = (u32 *)chan->xfer_buf;
1131
1132 if (dbg_hc(chan))
1133 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1134
1135 remaining_count = chan->xfer_len - chan->xfer_count;
1136 if (remaining_count > chan->max_packet)
1137 byte_count = chan->max_packet;
1138 else
1139 byte_count = remaining_count;
1140
1141 dword_count = (byte_count + 3) / 4;
1142
1143 if (((unsigned long)data_buf & 0x3) == 0) {
1144 /* xfer_buf is DWORD aligned */
1145 for (i = 0; i < dword_count; i++, data_buf++)
1146 dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1147 } else {
1148 /* xfer_buf is not DWORD aligned */
1149 for (i = 0; i < dword_count; i++, data_buf++) {
1150 u32 data = data_buf[0] | data_buf[1] << 8 |
1151 data_buf[2] << 16 | data_buf[3] << 24;
1152 dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1153 }
1154 }
1155
1156 chan->xfer_count += byte_count;
1157 chan->xfer_buf += byte_count;
1158}
1159
1160/**
1161 * dwc2_hc_do_ping() - Starts a PING transfer
1162 *
1163 * @hsotg: Programming view of DWC_otg controller
1164 * @chan: Information needed to initialize the host channel
1165 *
1166 * This function should only be called in Slave mode. The Do Ping bit is set in
1167 * the HCTSIZ register, then the channel is enabled.
1168 */
1169static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1170 struct dwc2_host_chan *chan)
1171{
1172 u32 hcchar;
1173 u32 hctsiz;
1174
1175 if (dbg_hc(chan))
1176 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1177 chan->hc_num);
1178
1179 hctsiz = TSIZ_DOPNG;
1180 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1181 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1182
1183 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1184 hcchar |= HCCHAR_CHENA;
1185 hcchar &= ~HCCHAR_CHDIS;
1186 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1187}
1188
1189/**
1190 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1191 * channel and starts the transfer
1192 *
1193 * @hsotg: Programming view of DWC_otg controller
1194 * @chan: Information needed to initialize the host channel. The xfer_len value
1195 * may be reduced to accommodate the max widths of the XferSize and
1196 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1197 * changed to reflect the final xfer_len value.
1198 *
1199 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1200 * the caller must ensure that there is sufficient space in the request queue
1201 * and Tx Data FIFO.
1202 *
1203 * For an OUT transfer in Slave mode, it loads a data packet into the
1204 * appropriate FIFO. If necessary, additional data packets are loaded in the
1205 * Host ISR.
1206 *
1207 * For an IN transfer in Slave mode, a data packet is requested. The data
1208 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1209 * additional data packets are requested in the Host ISR.
1210 *
1211 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1212 * register along with a packet count of 1 and the channel is enabled. This
1213 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1214 * simply set to 0 since no data transfer occurs in this case.
1215 *
1216 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1217 * all the information required to perform the subsequent data transfer. In
1218 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1219 * controller performs the entire PING protocol, then starts the data
1220 * transfer.
1221 */
1222static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1223 struct dwc2_host_chan *chan)
1224{
1225 u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1226 u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1227 u32 hcchar;
1228 u32 hctsiz = 0;
1229 u16 num_packets;
1230 u32 ec_mc;
1231
1232 if (dbg_hc(chan))
1233 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1234
1235 if (chan->do_ping) {
1236 if (!hsotg->params.host_dma) {
1237 if (dbg_hc(chan))
1238 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1239 dwc2_hc_do_ping(hsotg, chan);
1240 chan->xfer_started = 1;
1241 return;
1242 }
1243
1244 if (dbg_hc(chan))
1245 dev_vdbg(hsotg->dev, "ping, DMA\n");
1246
1247 hctsiz |= TSIZ_DOPNG;
1248 }
1249
1250 if (chan->do_split) {
1251 if (dbg_hc(chan))
1252 dev_vdbg(hsotg->dev, "split\n");
1253 num_packets = 1;
1254
1255 if (chan->complete_split && !chan->ep_is_in)
1256 /*
1257 * For CSPLIT OUT Transfer, set the size to 0 so the
1258 * core doesn't expect any data written to the FIFO
1259 */
1260 chan->xfer_len = 0;
1261 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1262 chan->xfer_len = chan->max_packet;
1263 else if (!chan->ep_is_in && chan->xfer_len > 188)
1264 chan->xfer_len = 188;
1265
1266 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1267 TSIZ_XFERSIZE_MASK;
1268
1269 /* For split set ec_mc for immediate retries */
1270 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1271 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1272 ec_mc = 3;
1273 else
1274 ec_mc = 1;
1275 } else {
1276 if (dbg_hc(chan))
1277 dev_vdbg(hsotg->dev, "no split\n");
1278 /*
1279 * Ensure that the transfer length and packet count will fit
1280 * in the widths allocated for them in the HCTSIZn register
1281 */
1282 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1283 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1284 /*
1285 * Make sure the transfer size is no larger than one
1286 * (micro)frame's worth of data. (A check was done
1287 * when the periodic transfer was accepted to ensure
1288 * that a (micro)frame's worth of data can be
1289 * programmed into a channel.)
1290 */
1291 u32 max_periodic_len =
1292 chan->multi_count * chan->max_packet;
1293
1294 if (chan->xfer_len > max_periodic_len)
1295 chan->xfer_len = max_periodic_len;
1296 } else if (chan->xfer_len > max_hc_xfer_size) {
1297 /*
1298 * Make sure that xfer_len is a multiple of max packet
1299 * size
1300 */
1301 chan->xfer_len =
1302 max_hc_xfer_size - chan->max_packet + 1;
1303 }
1304
1305 if (chan->xfer_len > 0) {
1306 num_packets = (chan->xfer_len + chan->max_packet - 1) /
1307 chan->max_packet;
1308 if (num_packets > max_hc_pkt_count) {
1309 num_packets = max_hc_pkt_count;
1310 chan->xfer_len = num_packets * chan->max_packet;
1311 } else if (chan->ep_is_in) {
1312 /*
1313 * Always program an integral # of max packets
1314 * for IN transfers.
1315 * Note: This assumes that the input buffer is
1316 * aligned and sized accordingly.
1317 */
1318 chan->xfer_len = num_packets * chan->max_packet;
1319 }
1320 } else {
1321 /* Need 1 packet for transfer length of 0 */
1322 num_packets = 1;
1323 }
1324
1325 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1326 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1327 /*
1328 * Make sure that the multi_count field matches the
1329 * actual transfer length
1330 */
1331 chan->multi_count = num_packets;
1332
1333 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1334 dwc2_set_pid_isoc(chan);
1335
1336 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1337 TSIZ_XFERSIZE_MASK;
1338
1339 /* The ec_mc gets the multi_count for non-split */
1340 ec_mc = chan->multi_count;
1341 }
1342
1343 chan->start_pkt_count = num_packets;
1344 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1345 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1346 TSIZ_SC_MC_PID_MASK;
1347 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1348 if (dbg_hc(chan)) {
1349 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1350 hctsiz, chan->hc_num);
1351
1352 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1353 chan->hc_num);
1354 dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
1355 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1356 TSIZ_XFERSIZE_SHIFT);
1357 dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
1358 (hctsiz & TSIZ_PKTCNT_MASK) >>
1359 TSIZ_PKTCNT_SHIFT);
1360 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1361 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1362 TSIZ_SC_MC_PID_SHIFT);
1363 }
1364
1365 if (hsotg->params.host_dma) {
1366 dma_addr_t dma_addr;
1367
1368 if (chan->align_buf) {
1369 if (dbg_hc(chan))
1370 dev_vdbg(hsotg->dev, "align_buf\n");
1371 dma_addr = chan->align_buf;
1372 } else {
1373 dma_addr = chan->xfer_dma;
1374 }
1375 dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1376
1377 if (dbg_hc(chan))
1378 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1379 (unsigned long)dma_addr, chan->hc_num);
1380 }
1381
1382 /* Start the split */
1383 if (chan->do_split) {
1384 u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1385
1386 hcsplt |= HCSPLT_SPLTENA;
1387 dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1388 }
1389
1390 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1391 hcchar &= ~HCCHAR_MULTICNT_MASK;
1392 hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1393 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1394
1395 if (hcchar & HCCHAR_CHDIS)
1396 dev_warn(hsotg->dev,
1397 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1398 __func__, chan->hc_num, hcchar);
1399
1400 /* Set host channel enable after all other setup is complete */
1401 hcchar |= HCCHAR_CHENA;
1402 hcchar &= ~HCCHAR_CHDIS;
1403
1404 if (dbg_hc(chan))
1405 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1406 (hcchar & HCCHAR_MULTICNT_MASK) >>
1407 HCCHAR_MULTICNT_SHIFT);
1408
1409 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1410 if (dbg_hc(chan))
1411 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1412 chan->hc_num);
1413
1414 chan->xfer_started = 1;
1415 chan->requests++;
1416
1417 if (!hsotg->params.host_dma &&
1418 !chan->ep_is_in && chan->xfer_len > 0)
1419 /* Load OUT packet into the appropriate Tx FIFO */
1420 dwc2_hc_write_packet(hsotg, chan);
1421}
1422
1423/**
1424 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1425 * host channel and starts the transfer in Descriptor DMA mode
1426 *
1427 * @hsotg: Programming view of DWC_otg controller
1428 * @chan: Information needed to initialize the host channel
1429 *
1430 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1431 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1432 * with micro-frame bitmap.
1433 *
1434 * Initializes HCDMA register with descriptor list address and CTD value then
1435 * starts the transfer via enabling the channel.
1436 */
1437void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1438 struct dwc2_host_chan *chan)
1439{
1440 u32 hcchar;
1441 u32 hctsiz = 0;
1442
1443 if (chan->do_ping)
1444 hctsiz |= TSIZ_DOPNG;
1445
1446 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1447 dwc2_set_pid_isoc(chan);
1448
1449 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1450 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1451 TSIZ_SC_MC_PID_MASK;
1452
1453 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1454 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1455
1456 /* Non-zero only for high-speed interrupt endpoints */
1457 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1458
1459 if (dbg_hc(chan)) {
1460 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1461 chan->hc_num);
1462 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1463 chan->data_pid_start);
1464 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
1465 }
1466
1467 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1468
1469 dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1470 chan->desc_list_sz, DMA_TO_DEVICE);
1471
1472 dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1473
1474 if (dbg_hc(chan))
1475 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1476 &chan->desc_list_addr, chan->hc_num);
1477
1478 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1479 hcchar &= ~HCCHAR_MULTICNT_MASK;
1480 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1481 HCCHAR_MULTICNT_MASK;
1482
1483 if (hcchar & HCCHAR_CHDIS)
1484 dev_warn(hsotg->dev,
1485 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1486 __func__, chan->hc_num, hcchar);
1487
1488 /* Set host channel enable after all other setup is complete */
1489 hcchar |= HCCHAR_CHENA;
1490 hcchar &= ~HCCHAR_CHDIS;
1491
1492 if (dbg_hc(chan))
1493 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1494 (hcchar & HCCHAR_MULTICNT_MASK) >>
1495 HCCHAR_MULTICNT_SHIFT);
1496
1497 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1498 if (dbg_hc(chan))
1499 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1500 chan->hc_num);
1501
1502 chan->xfer_started = 1;
1503 chan->requests++;
1504}
1505
1506/**
1507 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1508 * a previous call to dwc2_hc_start_transfer()
1509 *
1510 * @hsotg: Programming view of DWC_otg controller
1511 * @chan: Information needed to initialize the host channel
1512 *
1513 * The caller must ensure there is sufficient space in the request queue and Tx
1514 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1515 * the controller acts autonomously to complete transfers programmed to a host
1516 * channel.
1517 *
1518 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1519 * if there is any data remaining to be queued. For an IN transfer, another
1520 * data packet is always requested. For the SETUP phase of a control transfer,
1521 * this function does nothing.
1522 *
1523 * Return: 1 if a new request is queued, 0 if no more requests are required
1524 * for this transfer
1525 */
1526static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1527 struct dwc2_host_chan *chan)
1528{
1529 if (dbg_hc(chan))
1530 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1531 chan->hc_num);
1532
1533 if (chan->do_split)
1534 /* SPLITs always queue just once per channel */
1535 return 0;
1536
1537 if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1538 /* SETUPs are queued only once since they can't be NAK'd */
1539 return 0;
1540
1541 if (chan->ep_is_in) {
1542 /*
1543 * Always queue another request for other IN transfers. If
1544 * back-to-back INs are issued and NAKs are received for both,
1545 * the driver may still be processing the first NAK when the
1546 * second NAK is received. When the interrupt handler clears
1547 * the NAK interrupt for the first NAK, the second NAK will
1548 * not be seen. So we can't depend on the NAK interrupt
1549 * handler to requeue a NAK'd request. Instead, IN requests
1550 * are issued each time this function is called. When the
1551 * transfer completes, the extra requests for the channel will
1552 * be flushed.
1553 */
1554 u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1555
1556 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1557 hcchar |= HCCHAR_CHENA;
1558 hcchar &= ~HCCHAR_CHDIS;
1559 if (dbg_hc(chan))
1560 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n",
1561 hcchar);
1562 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1563 chan->requests++;
1564 return 1;
1565 }
1566
1567 /* OUT transfers */
1568
1569 if (chan->xfer_count < chan->xfer_len) {
1570 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1571 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1572 u32 hcchar = dwc2_readl(hsotg,
1573 HCCHAR(chan->hc_num));
1574
1575 dwc2_hc_set_even_odd_frame(hsotg, chan,
1576 &hcchar);
1577 }
1578
1579 /* Load OUT packet into the appropriate Tx FIFO */
1580 dwc2_hc_write_packet(hsotg, chan);
1581 chan->requests++;
1582 return 1;
1583 }
1584
1585 return 0;
1586}
1587
1588/*
1589 * =========================================================================
1590 * HCD
1591 * =========================================================================
1592 */
1593
1594/*
1595 * Processes all the URBs in a single list of QHs. Completes them with
1596 * -ETIMEDOUT and frees the QTD.
1597 *
1598 * Must be called with interrupt disabled and spinlock held
1599 */
1600static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1601 struct list_head *qh_list)
1602{
1603 struct dwc2_qh *qh, *qh_tmp;
1604 struct dwc2_qtd *qtd, *qtd_tmp;
1605
1606 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1607 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1608 qtd_list_entry) {
1609 dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1610 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1611 }
1612 }
1613}
1614
1615static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1616 struct list_head *qh_list)
1617{
1618 struct dwc2_qtd *qtd, *qtd_tmp;
1619 struct dwc2_qh *qh, *qh_tmp;
1620 unsigned long flags;
1621
1622 if (!qh_list->next)
1623 /* The list hasn't been initialized yet */
1624 return;
1625
1626 spin_lock_irqsave(&hsotg->lock, flags);
1627
1628 /* Ensure there are no QTDs or URBs left */
1629 dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1630
1631 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1632 dwc2_hcd_qh_unlink(hsotg, qh);
1633
1634 /* Free each QTD in the QH's QTD list */
1635 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1636 qtd_list_entry)
1637 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1638
1639 if (qh->channel && qh->channel->qh == qh)
1640 qh->channel->qh = NULL;
1641
1642 spin_unlock_irqrestore(&hsotg->lock, flags);
1643 dwc2_hcd_qh_free(hsotg, qh);
1644 spin_lock_irqsave(&hsotg->lock, flags);
1645 }
1646
1647 spin_unlock_irqrestore(&hsotg->lock, flags);
1648}
1649
1650/*
1651 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1652 * and periodic schedules. The QTD associated with each URB is removed from
1653 * the schedule and freed. This function may be called when a disconnect is
1654 * detected or when the HCD is being stopped.
1655 *
1656 * Must be called with interrupt disabled and spinlock held
1657 */
1658static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1659{
1660 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1661 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1662 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1663 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1664 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1665 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1666 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1667}
1668
1669/**
1670 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1671 *
1672 * @hsotg: Pointer to struct dwc2_hsotg
1673 */
1674void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1675{
1676 u32 hprt0;
1677
1678 if (hsotg->op_state == OTG_STATE_B_HOST) {
1679 /*
1680 * Reset the port. During a HNP mode switch the reset
1681 * needs to occur within 1ms and have a duration of at
1682 * least 50ms.
1683 */
1684 hprt0 = dwc2_read_hprt0(hsotg);
1685 hprt0 |= HPRT0_RST;
1686 dwc2_writel(hsotg, hprt0, HPRT0);
1687 }
1688
1689 queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1690 msecs_to_jiffies(50));
1691}
1692
1693/* Must be called with interrupt disabled and spinlock held */
1694static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1695{
1696 int num_channels = hsotg->params.host_channels;
1697 struct dwc2_host_chan *channel;
1698 u32 hcchar;
1699 int i;
1700
1701 if (!hsotg->params.host_dma) {
1702 /* Flush out any channel requests in slave mode */
1703 for (i = 0; i < num_channels; i++) {
1704 channel = hsotg->hc_ptr_array[i];
1705 if (!list_empty(&channel->hc_list_entry))
1706 continue;
1707 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1708 if (hcchar & HCCHAR_CHENA) {
1709 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1710 hcchar |= HCCHAR_CHDIS;
1711 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1712 }
1713 }
1714 }
1715
1716 for (i = 0; i < num_channels; i++) {
1717 channel = hsotg->hc_ptr_array[i];
1718 if (!list_empty(&channel->hc_list_entry))
1719 continue;
1720 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1721 if (hcchar & HCCHAR_CHENA) {
1722 /* Halt the channel */
1723 hcchar |= HCCHAR_CHDIS;
1724 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1725 }
1726
1727 dwc2_hc_cleanup(hsotg, channel);
1728 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1729 /*
1730 * Added for Descriptor DMA to prevent channel double cleanup in
1731 * release_channel_ddma(), which is called from ep_disable when
1732 * device disconnects
1733 */
1734 channel->qh = NULL;
1735 }
1736 /* All channels have been freed, mark them available */
1737 if (hsotg->params.uframe_sched) {
1738 hsotg->available_host_channels =
1739 hsotg->params.host_channels;
1740 } else {
1741 hsotg->non_periodic_channels = 0;
1742 hsotg->periodic_channels = 0;
1743 }
1744}
1745
1746/**
1747 * dwc2_hcd_connect() - Handles connect of the HCD
1748 *
1749 * @hsotg: Pointer to struct dwc2_hsotg
1750 *
1751 * Must be called with interrupt disabled and spinlock held
1752 */
1753void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1754{
1755 if (hsotg->lx_state != DWC2_L0)
1756 usb_hcd_resume_root_hub(hsotg->priv);
1757
1758 hsotg->flags.b.port_connect_status_change = 1;
1759 hsotg->flags.b.port_connect_status = 1;
1760}
1761
1762/**
1763 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1764 *
1765 * @hsotg: Pointer to struct dwc2_hsotg
1766 * @force: If true, we won't try to reconnect even if we see device connected.
1767 *
1768 * Must be called with interrupt disabled and spinlock held
1769 */
1770void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1771{
1772 u32 intr;
1773 u32 hprt0;
1774
1775 /* Set status flags for the hub driver */
1776 hsotg->flags.b.port_connect_status_change = 1;
1777 hsotg->flags.b.port_connect_status = 0;
1778
1779 /*
1780 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1781 * interrupt mask and status bits and disabling subsequent host
1782 * channel interrupts.
1783 */
1784 intr = dwc2_readl(hsotg, GINTMSK);
1785 intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1786 dwc2_writel(hsotg, intr, GINTMSK);
1787 intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1788 dwc2_writel(hsotg, intr, GINTSTS);
1789
1790 /*
1791 * Turn off the vbus power only if the core has transitioned to device
1792 * mode. If still in host mode, need to keep power on to detect a
1793 * reconnection.
1794 */
1795 if (dwc2_is_device_mode(hsotg)) {
1796 if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1797 dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1798 dwc2_writel(hsotg, 0, HPRT0);
1799 }
1800
1801 dwc2_disable_host_interrupts(hsotg);
1802 }
1803
1804 /* Respond with an error status to all URBs in the schedule */
1805 dwc2_kill_all_urbs(hsotg);
1806
1807 if (dwc2_is_host_mode(hsotg))
1808 /* Clean up any host channels that were in use */
1809 dwc2_hcd_cleanup_channels(hsotg);
1810
1811 dwc2_host_disconnect(hsotg);
1812
1813 /*
1814 * Add an extra check here to see if we're actually connected but
1815 * we don't have a detection interrupt pending. This can happen if:
1816 * 1. hardware sees connect
1817 * 2. hardware sees disconnect
1818 * 3. hardware sees connect
1819 * 4. dwc2_port_intr() - clears connect interrupt
1820 * 5. dwc2_handle_common_intr() - calls here
1821 *
1822 * Without the extra check here we will end calling disconnect
1823 * and won't get any future interrupts to handle the connect.
1824 */
1825 if (!force) {
1826 hprt0 = dwc2_readl(hsotg, HPRT0);
1827 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1828 dwc2_hcd_connect(hsotg);
1829 }
1830}
1831
1832/**
1833 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1834 *
1835 * @hsotg: Pointer to struct dwc2_hsotg
1836 */
1837static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1838{
1839 if (hsotg->bus_suspended) {
1840 hsotg->flags.b.port_suspend_change = 1;
1841 usb_hcd_resume_root_hub(hsotg->priv);
1842 }
1843
1844 if (hsotg->lx_state == DWC2_L1)
1845 hsotg->flags.b.port_l1_change = 1;
1846}
1847
1848/**
1849 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1850 *
1851 * @hsotg: Pointer to struct dwc2_hsotg
1852 *
1853 * Must be called with interrupt disabled and spinlock held
1854 */
1855void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1856{
1857 dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1858
1859 /*
1860 * The root hub should be disconnected before this function is called.
1861 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1862 * and the QH lists (via ..._hcd_endpoint_disable).
1863 */
1864
1865 /* Turn off all host-specific interrupts */
1866 dwc2_disable_host_interrupts(hsotg);
1867
1868 /* Turn off the vbus power */
1869 dev_dbg(hsotg->dev, "PortPower off\n");
1870 dwc2_writel(hsotg, 0, HPRT0);
1871}
1872
1873/* Caller must hold driver lock */
1874static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1875 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1876 struct dwc2_qtd *qtd)
1877{
1878 u32 intr_mask;
1879 int retval;
1880 int dev_speed;
1881
1882 if (!hsotg->flags.b.port_connect_status) {
1883 /* No longer connected */
1884 dev_err(hsotg->dev, "Not connected\n");
1885 return -ENODEV;
1886 }
1887
1888 dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1889
1890 /* Some configurations cannot support LS traffic on a FS root port */
1891 if ((dev_speed == USB_SPEED_LOW) &&
1892 (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1893 (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1894 u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1895 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1896
1897 if (prtspd == HPRT0_SPD_FULL_SPEED)
1898 return -ENODEV;
1899 }
1900
1901 if (!qtd)
1902 return -EINVAL;
1903
1904 dwc2_hcd_qtd_init(qtd, urb);
1905 retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1906 if (retval) {
1907 dev_err(hsotg->dev,
1908 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1909 retval);
1910 return retval;
1911 }
1912
1913 intr_mask = dwc2_readl(hsotg, GINTMSK);
1914 if (!(intr_mask & GINTSTS_SOF)) {
1915 enum dwc2_transaction_type tr_type;
1916
1917 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1918 !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1919 /*
1920 * Do not schedule SG transactions until qtd has
1921 * URB_GIVEBACK_ASAP set
1922 */
1923 return 0;
1924
1925 tr_type = dwc2_hcd_select_transactions(hsotg);
1926 if (tr_type != DWC2_TRANSACTION_NONE)
1927 dwc2_hcd_queue_transactions(hsotg, tr_type);
1928 }
1929
1930 return 0;
1931}
1932
1933/* Must be called with interrupt disabled and spinlock held */
1934static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1935 struct dwc2_hcd_urb *urb)
1936{
1937 struct dwc2_qh *qh;
1938 struct dwc2_qtd *urb_qtd;
1939
1940 urb_qtd = urb->qtd;
1941 if (!urb_qtd) {
1942 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1943 return -EINVAL;
1944 }
1945
1946 qh = urb_qtd->qh;
1947 if (!qh) {
1948 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1949 return -EINVAL;
1950 }
1951
1952 urb->priv = NULL;
1953
1954 if (urb_qtd->in_process && qh->channel) {
1955 dwc2_dump_channel_info(hsotg, qh->channel);
1956
1957 /* The QTD is in process (it has been assigned to a channel) */
1958 if (hsotg->flags.b.port_connect_status)
1959 /*
1960 * If still connected (i.e. in host mode), halt the
1961 * channel so it can be used for other transfers. If
1962 * no longer connected, the host registers can't be
1963 * written to halt the channel since the core is in
1964 * device mode.
1965 */
1966 dwc2_hc_halt(hsotg, qh->channel,
1967 DWC2_HC_XFER_URB_DEQUEUE);
1968 }
1969
1970 /*
1971 * Free the QTD and clean up the associated QH. Leave the QH in the
1972 * schedule if it has any remaining QTDs.
1973 */
1974 if (!hsotg->params.dma_desc_enable) {
1975 u8 in_process = urb_qtd->in_process;
1976
1977 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1978 if (in_process) {
1979 dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1980 qh->channel = NULL;
1981 } else if (list_empty(&qh->qtd_list)) {
1982 dwc2_hcd_qh_unlink(hsotg, qh);
1983 }
1984 } else {
1985 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1986 }
1987
1988 return 0;
1989}
1990
1991/* Must NOT be called with interrupt disabled or spinlock held */
1992static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1993 struct usb_host_endpoint *ep, int retry)
1994{
1995 struct dwc2_qtd *qtd, *qtd_tmp;
1996 struct dwc2_qh *qh;
1997 unsigned long flags;
1998 int rc;
1999
2000 spin_lock_irqsave(&hsotg->lock, flags);
2001
2002 qh = ep->hcpriv;
2003 if (!qh) {
2004 rc = -EINVAL;
2005 goto err;
2006 }
2007
2008 while (!list_empty(&qh->qtd_list) && retry--) {
2009 if (retry == 0) {
2010 dev_err(hsotg->dev,
2011 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
2012 rc = -EBUSY;
2013 goto err;
2014 }
2015
2016 spin_unlock_irqrestore(&hsotg->lock, flags);
2017 msleep(20);
2018 spin_lock_irqsave(&hsotg->lock, flags);
2019 qh = ep->hcpriv;
2020 if (!qh) {
2021 rc = -EINVAL;
2022 goto err;
2023 }
2024 }
2025
2026 dwc2_hcd_qh_unlink(hsotg, qh);
2027
2028 /* Free each QTD in the QH's QTD list */
2029 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2030 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2031
2032 ep->hcpriv = NULL;
2033
2034 if (qh->channel && qh->channel->qh == qh)
2035 qh->channel->qh = NULL;
2036
2037 spin_unlock_irqrestore(&hsotg->lock, flags);
2038
2039 dwc2_hcd_qh_free(hsotg, qh);
2040
2041 return 0;
2042
2043err:
2044 ep->hcpriv = NULL;
2045 spin_unlock_irqrestore(&hsotg->lock, flags);
2046
2047 return rc;
2048}
2049
2050/* Must be called with interrupt disabled and spinlock held */
2051static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2052 struct usb_host_endpoint *ep)
2053{
2054 struct dwc2_qh *qh = ep->hcpriv;
2055
2056 if (!qh)
2057 return -EINVAL;
2058
2059 qh->data_toggle = DWC2_HC_PID_DATA0;
2060
2061 return 0;
2062}
2063
2064/**
2065 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2066 * prepares the core for device mode or host mode operation
2067 *
2068 * @hsotg: Programming view of the DWC_otg controller
2069 * @initial_setup: If true then this is the first init for this instance.
2070 */
2071int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2072{
2073 u32 usbcfg, otgctl;
2074 int retval;
2075
2076 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2077
2078 usbcfg = dwc2_readl(hsotg, GUSBCFG);
2079
2080 /* Set ULPI External VBUS bit if needed */
2081 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2082 if (hsotg->params.phy_ulpi_ext_vbus)
2083 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2084
2085 /* Set external TS Dline pulsing bit if needed */
2086 usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2087 if (hsotg->params.ts_dline)
2088 usbcfg |= GUSBCFG_TERMSELDLPULSE;
2089
2090 dwc2_writel(hsotg, usbcfg, GUSBCFG);
2091
2092 /*
2093 * Reset the Controller
2094 *
2095 * We only need to reset the controller if this is a re-init.
2096 * For the first init we know for sure that earlier code reset us (it
2097 * needed to in order to properly detect various parameters).
2098 */
2099 if (!initial_setup) {
2100 retval = dwc2_core_reset(hsotg, false);
2101 if (retval) {
2102 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2103 __func__);
2104 return retval;
2105 }
2106 }
2107
2108 /*
2109 * This needs to happen in FS mode before any other programming occurs
2110 */
2111 retval = dwc2_phy_init(hsotg, initial_setup);
2112 if (retval)
2113 return retval;
2114
2115 /* Program the GAHBCFG Register */
2116 retval = dwc2_gahbcfg_init(hsotg);
2117 if (retval)
2118 return retval;
2119
2120 /* Program the GUSBCFG register */
2121 dwc2_gusbcfg_init(hsotg);
2122
2123 /* Program the GOTGCTL register */
2124 otgctl = dwc2_readl(hsotg, GOTGCTL);
2125 otgctl &= ~GOTGCTL_OTGVER;
2126 dwc2_writel(hsotg, otgctl, GOTGCTL);
2127
2128 /* Clear the SRP success bit for FS-I2c */
2129 hsotg->srp_success = 0;
2130
2131 /* Enable common interrupts */
2132 dwc2_enable_common_interrupts(hsotg);
2133
2134 /*
2135 * Do device or host initialization based on mode during PCD and
2136 * HCD initialization
2137 */
2138 if (dwc2_is_host_mode(hsotg)) {
2139 dev_dbg(hsotg->dev, "Host Mode\n");
2140 hsotg->op_state = OTG_STATE_A_HOST;
2141 } else {
2142 dev_dbg(hsotg->dev, "Device Mode\n");
2143 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2144 }
2145
2146 return 0;
2147}
2148
2149/**
2150 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2151 * Host mode
2152 *
2153 * @hsotg: Programming view of DWC_otg controller
2154 *
2155 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2156 * request queues. Host channels are reset to ensure that they are ready for
2157 * performing transfers.
2158 */
2159static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2160{
2161 u32 hcfg, hfir, otgctl, usbcfg;
2162
2163 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2164
2165 /* Set HS/FS Timeout Calibration to 7 (max available value).
2166 * The number of PHY clocks that the application programs in
2167 * this field is added to the high/full speed interpacket timeout
2168 * duration in the core to account for any additional delays
2169 * introduced by the PHY. This can be required, because the delay
2170 * introduced by the PHY in generating the linestate condition
2171 * can vary from one PHY to another.
2172 */
2173 usbcfg = dwc2_readl(hsotg, GUSBCFG);
2174 usbcfg |= GUSBCFG_TOUTCAL(7);
2175 dwc2_writel(hsotg, usbcfg, GUSBCFG);
2176
2177 /* Restart the Phy Clock */
2178 dwc2_writel(hsotg, 0, PCGCTL);
2179
2180 /* Initialize Host Configuration Register */
2181 dwc2_init_fs_ls_pclk_sel(hsotg);
2182 if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2183 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2184 hcfg = dwc2_readl(hsotg, HCFG);
2185 hcfg |= HCFG_FSLSSUPP;
2186 dwc2_writel(hsotg, hcfg, HCFG);
2187 }
2188
2189 /*
2190 * This bit allows dynamic reloading of the HFIR register during
2191 * runtime. This bit needs to be programmed during initial configuration
2192 * and its value must not be changed during runtime.
2193 */
2194 if (hsotg->params.reload_ctl) {
2195 hfir = dwc2_readl(hsotg, HFIR);
2196 hfir |= HFIR_RLDCTRL;
2197 dwc2_writel(hsotg, hfir, HFIR);
2198 }
2199
2200 if (hsotg->params.dma_desc_enable) {
2201 u32 op_mode = hsotg->hw_params.op_mode;
2202
2203 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2204 !hsotg->hw_params.dma_desc_enable ||
2205 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2206 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2207 op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2208 dev_err(hsotg->dev,
2209 "Hardware does not support descriptor DMA mode -\n");
2210 dev_err(hsotg->dev,
2211 "falling back to buffer DMA mode.\n");
2212 hsotg->params.dma_desc_enable = false;
2213 } else {
2214 hcfg = dwc2_readl(hsotg, HCFG);
2215 hcfg |= HCFG_DESCDMA;
2216 dwc2_writel(hsotg, hcfg, HCFG);
2217 }
2218 }
2219
2220 /* Configure data FIFO sizes */
2221 dwc2_config_fifos(hsotg);
2222
2223 /* TODO - check this */
2224 /* Clear Host Set HNP Enable in the OTG Control Register */
2225 otgctl = dwc2_readl(hsotg, GOTGCTL);
2226 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2227 dwc2_writel(hsotg, otgctl, GOTGCTL);
2228
2229 /* Make sure the FIFOs are flushed */
2230 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2231 dwc2_flush_rx_fifo(hsotg);
2232
2233 /* Clear Host Set HNP Enable in the OTG Control Register */
2234 otgctl = dwc2_readl(hsotg, GOTGCTL);
2235 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2236 dwc2_writel(hsotg, otgctl, GOTGCTL);
2237
2238 if (!hsotg->params.dma_desc_enable) {
2239 int num_channels, i;
2240 u32 hcchar;
2241
2242 /* Flush out any leftover queued requests */
2243 num_channels = hsotg->params.host_channels;
2244 for (i = 0; i < num_channels; i++) {
2245 hcchar = dwc2_readl(hsotg, HCCHAR(i));
2246 if (hcchar & HCCHAR_CHENA) {
2247 hcchar &= ~HCCHAR_CHENA;
2248 hcchar |= HCCHAR_CHDIS;
2249 hcchar &= ~HCCHAR_EPDIR;
2250 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2251 }
2252 }
2253
2254 /* Halt all channels to put them into a known state */
2255 for (i = 0; i < num_channels; i++) {
2256 hcchar = dwc2_readl(hsotg, HCCHAR(i));
2257 if (hcchar & HCCHAR_CHENA) {
2258 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2259 hcchar &= ~HCCHAR_EPDIR;
2260 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2261 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2262 __func__, i);
2263
2264 if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2265 HCCHAR_CHENA,
2266 1000)) {
2267 dev_warn(hsotg->dev,
2268 "Unable to clear enable on channel %d\n",
2269 i);
2270 }
2271 }
2272 }
2273 }
2274
2275 /* Enable ACG feature in host mode, if supported */
2276 dwc2_enable_acg(hsotg);
2277
2278 /* Turn on the vbus power */
2279 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2280 if (hsotg->op_state == OTG_STATE_A_HOST) {
2281 u32 hprt0 = dwc2_read_hprt0(hsotg);
2282
2283 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2284 !!(hprt0 & HPRT0_PWR));
2285 if (!(hprt0 & HPRT0_PWR)) {
2286 hprt0 |= HPRT0_PWR;
2287 dwc2_writel(hsotg, hprt0, HPRT0);
2288 }
2289 }
2290
2291 dwc2_enable_host_interrupts(hsotg);
2292}
2293
2294/*
2295 * Initializes dynamic portions of the DWC_otg HCD state
2296 *
2297 * Must be called with interrupt disabled and spinlock held
2298 */
2299static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2300{
2301 struct dwc2_host_chan *chan, *chan_tmp;
2302 int num_channels;
2303 int i;
2304
2305 hsotg->flags.d32 = 0;
2306 hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2307
2308 if (hsotg->params.uframe_sched) {
2309 hsotg->available_host_channels =
2310 hsotg->params.host_channels;
2311 } else {
2312 hsotg->non_periodic_channels = 0;
2313 hsotg->periodic_channels = 0;
2314 }
2315
2316 /*
2317 * Put all channels in the free channel list and clean up channel
2318 * states
2319 */
2320 list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2321 hc_list_entry)
2322 list_del_init(&chan->hc_list_entry);
2323
2324 num_channels = hsotg->params.host_channels;
2325 for (i = 0; i < num_channels; i++) {
2326 chan = hsotg->hc_ptr_array[i];
2327 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2328 dwc2_hc_cleanup(hsotg, chan);
2329 }
2330
2331 /* Initialize the DWC core for host mode operation */
2332 dwc2_core_host_init(hsotg);
2333}
2334
2335static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2336 struct dwc2_host_chan *chan,
2337 struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2338{
2339 int hub_addr, hub_port;
2340
2341 chan->do_split = 1;
2342 chan->xact_pos = qtd->isoc_split_pos;
2343 chan->complete_split = qtd->complete_split;
2344 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2345 chan->hub_addr = (u8)hub_addr;
2346 chan->hub_port = (u8)hub_port;
2347}
2348
2349static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2350 struct dwc2_host_chan *chan,
2351 struct dwc2_qtd *qtd)
2352{
2353 struct dwc2_hcd_urb *urb = qtd->urb;
2354 struct dwc2_hcd_iso_packet_desc *frame_desc;
2355
2356 switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2357 case USB_ENDPOINT_XFER_CONTROL:
2358 chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2359
2360 switch (qtd->control_phase) {
2361 case DWC2_CONTROL_SETUP:
2362 dev_vdbg(hsotg->dev, " Control setup transaction\n");
2363 chan->do_ping = 0;
2364 chan->ep_is_in = 0;
2365 chan->data_pid_start = DWC2_HC_PID_SETUP;
2366 if (hsotg->params.host_dma)
2367 chan->xfer_dma = urb->setup_dma;
2368 else
2369 chan->xfer_buf = urb->setup_packet;
2370 chan->xfer_len = 8;
2371 break;
2372
2373 case DWC2_CONTROL_DATA:
2374 dev_vdbg(hsotg->dev, " Control data transaction\n");
2375 chan->data_pid_start = qtd->data_toggle;
2376 break;
2377
2378 case DWC2_CONTROL_STATUS:
2379 /*
2380 * Direction is opposite of data direction or IN if no
2381 * data
2382 */
2383 dev_vdbg(hsotg->dev, " Control status transaction\n");
2384 if (urb->length == 0)
2385 chan->ep_is_in = 1;
2386 else
2387 chan->ep_is_in =
2388 dwc2_hcd_is_pipe_out(&urb->pipe_info);
2389 if (chan->ep_is_in)
2390 chan->do_ping = 0;
2391 chan->data_pid_start = DWC2_HC_PID_DATA1;
2392 chan->xfer_len = 0;
2393 if (hsotg->params.host_dma)
2394 chan->xfer_dma = hsotg->status_buf_dma;
2395 else
2396 chan->xfer_buf = hsotg->status_buf;
2397 break;
2398 }
2399 break;
2400
2401 case USB_ENDPOINT_XFER_BULK:
2402 chan->ep_type = USB_ENDPOINT_XFER_BULK;
2403 break;
2404
2405 case USB_ENDPOINT_XFER_INT:
2406 chan->ep_type = USB_ENDPOINT_XFER_INT;
2407 break;
2408
2409 case USB_ENDPOINT_XFER_ISOC:
2410 chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2411 if (hsotg->params.dma_desc_enable)
2412 break;
2413
2414 frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2415 frame_desc->status = 0;
2416
2417 if (hsotg->params.host_dma) {
2418 chan->xfer_dma = urb->dma;
2419 chan->xfer_dma += frame_desc->offset +
2420 qtd->isoc_split_offset;
2421 } else {
2422 chan->xfer_buf = urb->buf;
2423 chan->xfer_buf += frame_desc->offset +
2424 qtd->isoc_split_offset;
2425 }
2426
2427 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2428
2429 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2430 if (chan->xfer_len <= 188)
2431 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2432 else
2433 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2434 }
2435 break;
2436 }
2437}
2438
2439static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2440 struct dwc2_qh *qh,
2441 struct dwc2_host_chan *chan)
2442{
2443 if (!hsotg->unaligned_cache ||
2444 chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2445 return -ENOMEM;
2446
2447 if (!qh->dw_align_buf) {
2448 qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2449 GFP_ATOMIC | GFP_DMA);
2450 if (!qh->dw_align_buf)
2451 return -ENOMEM;
2452 }
2453
2454 qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2455 DWC2_KMEM_UNALIGNED_BUF_SIZE,
2456 DMA_FROM_DEVICE);
2457
2458 if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2459 dev_err(hsotg->dev, "can't map align_buf\n");
2460 chan->align_buf = 0;
2461 return -EINVAL;
2462 }
2463
2464 chan->align_buf = qh->dw_align_buf_dma;
2465 return 0;
2466}
2467
2468#define DWC2_USB_DMA_ALIGN 4
2469
2470static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2471{
2472 void *stored_xfer_buffer;
2473 size_t length;
2474
2475 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2476 return;
2477
2478 /* Restore urb->transfer_buffer from the end of the allocated area */
2479 memcpy(&stored_xfer_buffer,
2480 PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2481 dma_get_cache_alignment()),
2482 sizeof(urb->transfer_buffer));
2483
2484 if (usb_urb_dir_in(urb)) {
2485 if (usb_pipeisoc(urb->pipe))
2486 length = urb->transfer_buffer_length;
2487 else
2488 length = urb->actual_length;
2489
2490 memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2491 }
2492 kfree(urb->transfer_buffer);
2493 urb->transfer_buffer = stored_xfer_buffer;
2494
2495 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2496}
2497
2498static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2499{
2500 void *kmalloc_ptr;
2501 size_t kmalloc_size;
2502
2503 if (urb->num_sgs || urb->sg ||
2504 urb->transfer_buffer_length == 0 ||
2505 !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2506 return 0;
2507
2508 /*
2509 * Allocate a buffer with enough padding for original transfer_buffer
2510 * pointer. This allocation is guaranteed to be aligned properly for
2511 * DMA
2512 */
2513 kmalloc_size = urb->transfer_buffer_length +
2514 (dma_get_cache_alignment() - 1) +
2515 sizeof(urb->transfer_buffer);
2516
2517 kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2518 if (!kmalloc_ptr)
2519 return -ENOMEM;
2520
2521 /*
2522 * Position value of original urb->transfer_buffer pointer to the end
2523 * of allocation for later referencing
2524 */
2525 memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2526 dma_get_cache_alignment()),
2527 &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2528
2529 if (usb_urb_dir_out(urb))
2530 memcpy(kmalloc_ptr, urb->transfer_buffer,
2531 urb->transfer_buffer_length);
2532 urb->transfer_buffer = kmalloc_ptr;
2533
2534 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2535
2536 return 0;
2537}
2538
2539static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2540 gfp_t mem_flags)
2541{
2542 int ret;
2543
2544 /* We assume setup_dma is always aligned; warn if not */
2545 WARN_ON_ONCE(urb->setup_dma &&
2546 (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2547
2548 ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2549 if (ret)
2550 return ret;
2551
2552 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2553 if (ret)
2554 dwc2_free_dma_aligned_buffer(urb);
2555
2556 return ret;
2557}
2558
2559static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2560{
2561 usb_hcd_unmap_urb_for_dma(hcd, urb);
2562 dwc2_free_dma_aligned_buffer(urb);
2563}
2564
2565/**
2566 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2567 * channel and initializes the host channel to perform the transactions. The
2568 * host channel is removed from the free list.
2569 *
2570 * @hsotg: The HCD state structure
2571 * @qh: Transactions from the first QTD for this QH are selected and assigned
2572 * to a free host channel
2573 */
2574static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2575{
2576 struct dwc2_host_chan *chan;
2577 struct dwc2_hcd_urb *urb;
2578 struct dwc2_qtd *qtd;
2579
2580 if (dbg_qh(qh))
2581 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2582
2583 if (list_empty(&qh->qtd_list)) {
2584 dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2585 return -ENOMEM;
2586 }
2587
2588 if (list_empty(&hsotg->free_hc_list)) {
2589 dev_dbg(hsotg->dev, "No free channel to assign\n");
2590 return -ENOMEM;
2591 }
2592
2593 chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2594 hc_list_entry);
2595
2596 /* Remove host channel from free list */
2597 list_del_init(&chan->hc_list_entry);
2598
2599 qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2600 urb = qtd->urb;
2601 qh->channel = chan;
2602 qtd->in_process = 1;
2603
2604 /*
2605 * Use usb_pipedevice to determine device address. This address is
2606 * 0 before the SET_ADDRESS command and the correct address afterward.
2607 */
2608 chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2609 chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2610 chan->speed = qh->dev_speed;
2611 chan->max_packet = qh->maxp;
2612
2613 chan->xfer_started = 0;
2614 chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2615 chan->error_state = (qtd->error_count > 0);
2616 chan->halt_on_queue = 0;
2617 chan->halt_pending = 0;
2618 chan->requests = 0;
2619
2620 /*
2621 * The following values may be modified in the transfer type section
2622 * below. The xfer_len value may be reduced when the transfer is
2623 * started to accommodate the max widths of the XferSize and PktCnt
2624 * fields in the HCTSIZn register.
2625 */
2626
2627 chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2628 if (chan->ep_is_in)
2629 chan->do_ping = 0;
2630 else
2631 chan->do_ping = qh->ping_state;
2632
2633 chan->data_pid_start = qh->data_toggle;
2634 chan->multi_count = 1;
2635
2636 if (urb->actual_length > urb->length &&
2637 !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2638 urb->actual_length = urb->length;
2639
2640 if (hsotg->params.host_dma)
2641 chan->xfer_dma = urb->dma + urb->actual_length;
2642 else
2643 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2644
2645 chan->xfer_len = urb->length - urb->actual_length;
2646 chan->xfer_count = 0;
2647
2648 /* Set the split attributes if required */
2649 if (qh->do_split)
2650 dwc2_hc_init_split(hsotg, chan, qtd, urb);
2651 else
2652 chan->do_split = 0;
2653
2654 /* Set the transfer attributes */
2655 dwc2_hc_init_xfer(hsotg, chan, qtd);
2656
2657 /* For non-dword aligned buffers */
2658 if (hsotg->params.host_dma && qh->do_split &&
2659 chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2660 dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2661 if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2662 dev_err(hsotg->dev,
2663 "Failed to allocate memory to handle non-aligned buffer\n");
2664 /* Add channel back to free list */
2665 chan->align_buf = 0;
2666 chan->multi_count = 0;
2667 list_add_tail(&chan->hc_list_entry,
2668 &hsotg->free_hc_list);
2669 qtd->in_process = 0;
2670 qh->channel = NULL;
2671 return -ENOMEM;
2672 }
2673 } else {
2674 /*
2675 * We assume that DMA is always aligned in non-split
2676 * case or split out case. Warn if not.
2677 */
2678 WARN_ON_ONCE(hsotg->params.host_dma &&
2679 (chan->xfer_dma & 0x3));
2680 chan->align_buf = 0;
2681 }
2682
2683 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2684 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2685 /*
2686 * This value may be modified when the transfer is started
2687 * to reflect the actual transfer length
2688 */
2689 chan->multi_count = qh->maxp_mult;
2690
2691 if (hsotg->params.dma_desc_enable) {
2692 chan->desc_list_addr = qh->desc_list_dma;
2693 chan->desc_list_sz = qh->desc_list_sz;
2694 }
2695
2696 dwc2_hc_init(hsotg, chan);
2697 chan->qh = qh;
2698
2699 return 0;
2700}
2701
2702/**
2703 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2704 * schedule and assigns them to available host channels. Called from the HCD
2705 * interrupt handler functions.
2706 *
2707 * @hsotg: The HCD state structure
2708 *
2709 * Return: The types of new transactions that were assigned to host channels
2710 */
2711enum dwc2_transaction_type dwc2_hcd_select_transactions(
2712 struct dwc2_hsotg *hsotg)
2713{
2714 enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2715 struct list_head *qh_ptr;
2716 struct dwc2_qh *qh;
2717 int num_channels;
2718
2719#ifdef DWC2_DEBUG_SOF
2720 dev_vdbg(hsotg->dev, " Select Transactions\n");
2721#endif
2722
2723 /* Process entries in the periodic ready list */
2724 qh_ptr = hsotg->periodic_sched_ready.next;
2725 while (qh_ptr != &hsotg->periodic_sched_ready) {
2726 if (list_empty(&hsotg->free_hc_list))
2727 break;
2728 if (hsotg->params.uframe_sched) {
2729 if (hsotg->available_host_channels <= 1)
2730 break;
2731 hsotg->available_host_channels--;
2732 }
2733 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2734 if (dwc2_assign_and_init_hc(hsotg, qh))
2735 break;
2736
2737 /*
2738 * Move the QH from the periodic ready schedule to the
2739 * periodic assigned schedule
2740 */
2741 qh_ptr = qh_ptr->next;
2742 list_move_tail(&qh->qh_list_entry,
2743 &hsotg->periodic_sched_assigned);
2744 ret_val = DWC2_TRANSACTION_PERIODIC;
2745 }
2746
2747 /*
2748 * Process entries in the inactive portion of the non-periodic
2749 * schedule. Some free host channels may not be used if they are
2750 * reserved for periodic transfers.
2751 */
2752 num_channels = hsotg->params.host_channels;
2753 qh_ptr = hsotg->non_periodic_sched_inactive.next;
2754 while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2755 if (!hsotg->params.uframe_sched &&
2756 hsotg->non_periodic_channels >= num_channels -
2757 hsotg->periodic_channels)
2758 break;
2759 if (list_empty(&hsotg->free_hc_list))
2760 break;
2761 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2762 if (hsotg->params.uframe_sched) {
2763 if (hsotg->available_host_channels < 1)
2764 break;
2765 hsotg->available_host_channels--;
2766 }
2767
2768 if (dwc2_assign_and_init_hc(hsotg, qh))
2769 break;
2770
2771 /*
2772 * Move the QH from the non-periodic inactive schedule to the
2773 * non-periodic active schedule
2774 */
2775 qh_ptr = qh_ptr->next;
2776 list_move_tail(&qh->qh_list_entry,
2777 &hsotg->non_periodic_sched_active);
2778
2779 if (ret_val == DWC2_TRANSACTION_NONE)
2780 ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2781 else
2782 ret_val = DWC2_TRANSACTION_ALL;
2783
2784 if (!hsotg->params.uframe_sched)
2785 hsotg->non_periodic_channels++;
2786 }
2787
2788 return ret_val;
2789}
2790
2791/**
2792 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2793 * a host channel associated with either a periodic or non-periodic transfer
2794 *
2795 * @hsotg: The HCD state structure
2796 * @chan: Host channel descriptor associated with either a periodic or
2797 * non-periodic transfer
2798 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2799 * for periodic transfers or the non-periodic Tx FIFO
2800 * for non-periodic transfers
2801 *
2802 * Return: 1 if a request is queued and more requests may be needed to
2803 * complete the transfer, 0 if no more requests are required for this
2804 * transfer, -1 if there is insufficient space in the Tx FIFO
2805 *
2806 * This function assumes that there is space available in the appropriate
2807 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2808 * it checks whether space is available in the appropriate Tx FIFO.
2809 *
2810 * Must be called with interrupt disabled and spinlock held
2811 */
2812static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2813 struct dwc2_host_chan *chan,
2814 u16 fifo_dwords_avail)
2815{
2816 int retval = 0;
2817
2818 if (chan->do_split)
2819 /* Put ourselves on the list to keep order straight */
2820 list_move_tail(&chan->split_order_list_entry,
2821 &hsotg->split_order);
2822
2823 if (hsotg->params.host_dma && chan->qh) {
2824 if (hsotg->params.dma_desc_enable) {
2825 if (!chan->xfer_started ||
2826 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2827 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2828 chan->qh->ping_state = 0;
2829 }
2830 } else if (!chan->xfer_started) {
2831 dwc2_hc_start_transfer(hsotg, chan);
2832 chan->qh->ping_state = 0;
2833 }
2834 } else if (chan->halt_pending) {
2835 /* Don't queue a request if the channel has been halted */
2836 } else if (chan->halt_on_queue) {
2837 dwc2_hc_halt(hsotg, chan, chan->halt_status);
2838 } else if (chan->do_ping) {
2839 if (!chan->xfer_started)
2840 dwc2_hc_start_transfer(hsotg, chan);
2841 } else if (!chan->ep_is_in ||
2842 chan->data_pid_start == DWC2_HC_PID_SETUP) {
2843 if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2844 if (!chan->xfer_started) {
2845 dwc2_hc_start_transfer(hsotg, chan);
2846 retval = 1;
2847 } else {
2848 retval = dwc2_hc_continue_transfer(hsotg, chan);
2849 }
2850 } else {
2851 retval = -1;
2852 }
2853 } else {
2854 if (!chan->xfer_started) {
2855 dwc2_hc_start_transfer(hsotg, chan);
2856 retval = 1;
2857 } else {
2858 retval = dwc2_hc_continue_transfer(hsotg, chan);
2859 }
2860 }
2861
2862 return retval;
2863}
2864
2865/*
2866 * Processes periodic channels for the next frame and queues transactions for
2867 * these channels to the DWC_otg controller. After queueing transactions, the
2868 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2869 * to queue as Periodic Tx FIFO or request queue space becomes available.
2870 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2871 *
2872 * Must be called with interrupt disabled and spinlock held
2873 */
2874static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2875{
2876 struct list_head *qh_ptr;
2877 struct dwc2_qh *qh;
2878 u32 tx_status;
2879 u32 fspcavail;
2880 u32 gintmsk;
2881 int status;
2882 bool no_queue_space = false;
2883 bool no_fifo_space = false;
2884 u32 qspcavail;
2885
2886 /* If empty list then just adjust interrupt enables */
2887 if (list_empty(&hsotg->periodic_sched_assigned))
2888 goto exit;
2889
2890 if (dbg_perio())
2891 dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2892
2893 tx_status = dwc2_readl(hsotg, HPTXSTS);
2894 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2895 TXSTS_QSPCAVAIL_SHIFT;
2896 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2897 TXSTS_FSPCAVAIL_SHIFT;
2898
2899 if (dbg_perio()) {
2900 dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n",
2901 qspcavail);
2902 dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n",
2903 fspcavail);
2904 }
2905
2906 qh_ptr = hsotg->periodic_sched_assigned.next;
2907 while (qh_ptr != &hsotg->periodic_sched_assigned) {
2908 tx_status = dwc2_readl(hsotg, HPTXSTS);
2909 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2910 TXSTS_QSPCAVAIL_SHIFT;
2911 if (qspcavail == 0) {
2912 no_queue_space = true;
2913 break;
2914 }
2915
2916 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2917 if (!qh->channel) {
2918 qh_ptr = qh_ptr->next;
2919 continue;
2920 }
2921
2922 /* Make sure EP's TT buffer is clean before queueing qtds */
2923 if (qh->tt_buffer_dirty) {
2924 qh_ptr = qh_ptr->next;
2925 continue;
2926 }
2927
2928 /*
2929 * Set a flag if we're queuing high-bandwidth in slave mode.
2930 * The flag prevents any halts to get into the request queue in
2931 * the middle of multiple high-bandwidth packets getting queued.
2932 */
2933 if (!hsotg->params.host_dma &&
2934 qh->channel->multi_count > 1)
2935 hsotg->queuing_high_bandwidth = 1;
2936
2937 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2938 TXSTS_FSPCAVAIL_SHIFT;
2939 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2940 if (status < 0) {
2941 no_fifo_space = true;
2942 break;
2943 }
2944
2945 /*
2946 * In Slave mode, stay on the current transfer until there is
2947 * nothing more to do or the high-bandwidth request count is
2948 * reached. In DMA mode, only need to queue one request. The
2949 * controller automatically handles multiple packets for
2950 * high-bandwidth transfers.
2951 */
2952 if (hsotg->params.host_dma || status == 0 ||
2953 qh->channel->requests == qh->channel->multi_count) {
2954 qh_ptr = qh_ptr->next;
2955 /*
2956 * Move the QH from the periodic assigned schedule to
2957 * the periodic queued schedule
2958 */
2959 list_move_tail(&qh->qh_list_entry,
2960 &hsotg->periodic_sched_queued);
2961
2962 /* done queuing high bandwidth */
2963 hsotg->queuing_high_bandwidth = 0;
2964 }
2965 }
2966
2967exit:
2968 if (no_queue_space || no_fifo_space ||
2969 (!hsotg->params.host_dma &&
2970 !list_empty(&hsotg->periodic_sched_assigned))) {
2971 /*
2972 * May need to queue more transactions as the request
2973 * queue or Tx FIFO empties. Enable the periodic Tx
2974 * FIFO empty interrupt. (Always use the half-empty
2975 * level to ensure that new requests are loaded as
2976 * soon as possible.)
2977 */
2978 gintmsk = dwc2_readl(hsotg, GINTMSK);
2979 if (!(gintmsk & GINTSTS_PTXFEMP)) {
2980 gintmsk |= GINTSTS_PTXFEMP;
2981 dwc2_writel(hsotg, gintmsk, GINTMSK);
2982 }
2983 } else {
2984 /*
2985 * Disable the Tx FIFO empty interrupt since there are
2986 * no more transactions that need to be queued right
2987 * now. This function is called from interrupt
2988 * handlers to queue more transactions as transfer
2989 * states change.
2990 */
2991 gintmsk = dwc2_readl(hsotg, GINTMSK);
2992 if (gintmsk & GINTSTS_PTXFEMP) {
2993 gintmsk &= ~GINTSTS_PTXFEMP;
2994 dwc2_writel(hsotg, gintmsk, GINTMSK);
2995 }
2996 }
2997}
2998
2999/*
3000 * Processes active non-periodic channels and queues transactions for these
3001 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3002 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3003 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3004 * FIFO Empty interrupt is disabled.
3005 *
3006 * Must be called with interrupt disabled and spinlock held
3007 */
3008static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3009{
3010 struct list_head *orig_qh_ptr;
3011 struct dwc2_qh *qh;
3012 u32 tx_status;
3013 u32 qspcavail;
3014 u32 fspcavail;
3015 u32 gintmsk;
3016 int status;
3017 int no_queue_space = 0;
3018 int no_fifo_space = 0;
3019 int more_to_do = 0;
3020
3021 dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3022
3023 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3024 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3025 TXSTS_QSPCAVAIL_SHIFT;
3026 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3027 TXSTS_FSPCAVAIL_SHIFT;
3028 dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n",
3029 qspcavail);
3030 dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n",
3031 fspcavail);
3032
3033 /*
3034 * Keep track of the starting point. Skip over the start-of-list
3035 * entry.
3036 */
3037 if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3038 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3039 orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3040
3041 /*
3042 * Process once through the active list or until no more space is
3043 * available in the request queue or the Tx FIFO
3044 */
3045 do {
3046 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3047 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3048 TXSTS_QSPCAVAIL_SHIFT;
3049 if (!hsotg->params.host_dma && qspcavail == 0) {
3050 no_queue_space = 1;
3051 break;
3052 }
3053
3054 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3055 qh_list_entry);
3056 if (!qh->channel)
3057 goto next;
3058
3059 /* Make sure EP's TT buffer is clean before queueing qtds */
3060 if (qh->tt_buffer_dirty)
3061 goto next;
3062
3063 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3064 TXSTS_FSPCAVAIL_SHIFT;
3065 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3066
3067 if (status > 0) {
3068 more_to_do = 1;
3069 } else if (status < 0) {
3070 no_fifo_space = 1;
3071 break;
3072 }
3073next:
3074 /* Advance to next QH, skipping start-of-list entry */
3075 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3076 if (hsotg->non_periodic_qh_ptr ==
3077 &hsotg->non_periodic_sched_active)
3078 hsotg->non_periodic_qh_ptr =
3079 hsotg->non_periodic_qh_ptr->next;
3080 } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3081
3082 if (!hsotg->params.host_dma) {
3083 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3084 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3085 TXSTS_QSPCAVAIL_SHIFT;
3086 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3087 TXSTS_FSPCAVAIL_SHIFT;
3088 dev_vdbg(hsotg->dev,
3089 " NP Tx Req Queue Space Avail (after queue): %d\n",
3090 qspcavail);
3091 dev_vdbg(hsotg->dev,
3092 " NP Tx FIFO Space Avail (after queue): %d\n",
3093 fspcavail);
3094
3095 if (more_to_do || no_queue_space || no_fifo_space) {
3096 /*
3097 * May need to queue more transactions as the request
3098 * queue or Tx FIFO empties. Enable the non-periodic
3099 * Tx FIFO empty interrupt. (Always use the half-empty
3100 * level to ensure that new requests are loaded as
3101 * soon as possible.)
3102 */
3103 gintmsk = dwc2_readl(hsotg, GINTMSK);
3104 gintmsk |= GINTSTS_NPTXFEMP;
3105 dwc2_writel(hsotg, gintmsk, GINTMSK);
3106 } else {
3107 /*
3108 * Disable the Tx FIFO empty interrupt since there are
3109 * no more transactions that need to be queued right
3110 * now. This function is called from interrupt
3111 * handlers to queue more transactions as transfer
3112 * states change.
3113 */
3114 gintmsk = dwc2_readl(hsotg, GINTMSK);
3115 gintmsk &= ~GINTSTS_NPTXFEMP;
3116 dwc2_writel(hsotg, gintmsk, GINTMSK);
3117 }
3118 }
3119}
3120
3121/**
3122 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3123 * and queues transactions for these channels to the DWC_otg controller. Called
3124 * from the HCD interrupt handler functions.
3125 *
3126 * @hsotg: The HCD state structure
3127 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3128 * or both)
3129 *
3130 * Must be called with interrupt disabled and spinlock held
3131 */
3132void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3133 enum dwc2_transaction_type tr_type)
3134{
3135#ifdef DWC2_DEBUG_SOF
3136 dev_vdbg(hsotg->dev, "Queue Transactions\n");
3137#endif
3138 /* Process host channels associated with periodic transfers */
3139 if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3140 tr_type == DWC2_TRANSACTION_ALL)
3141 dwc2_process_periodic_channels(hsotg);
3142
3143 /* Process host channels associated with non-periodic transfers */
3144 if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3145 tr_type == DWC2_TRANSACTION_ALL) {
3146 if (!list_empty(&hsotg->non_periodic_sched_active)) {
3147 dwc2_process_non_periodic_channels(hsotg);
3148 } else {
3149 /*
3150 * Ensure NP Tx FIFO empty interrupt is disabled when
3151 * there are no non-periodic transfers to process
3152 */
3153 u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3154
3155 gintmsk &= ~GINTSTS_NPTXFEMP;
3156 dwc2_writel(hsotg, gintmsk, GINTMSK);
3157 }
3158 }
3159}
3160
3161static void dwc2_conn_id_status_change(struct work_struct *work)
3162{
3163 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3164 wf_otg);
3165 u32 count = 0;
3166 u32 gotgctl;
3167 unsigned long flags;
3168
3169 dev_dbg(hsotg->dev, "%s()\n", __func__);
3170
3171 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3172 dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3173 dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3174 !!(gotgctl & GOTGCTL_CONID_B));
3175
3176 /* B-Device connector (Device Mode) */
3177 if (gotgctl & GOTGCTL_CONID_B) {
3178 dwc2_vbus_supply_exit(hsotg);
3179 /* Wait for switch to device mode */
3180 dev_dbg(hsotg->dev, "connId B\n");
3181 if (hsotg->bus_suspended) {
3182 dev_info(hsotg->dev,
3183 "Do port resume before switching to device mode\n");
3184 dwc2_port_resume(hsotg);
3185 }
3186 while (!dwc2_is_device_mode(hsotg)) {
3187 dev_info(hsotg->dev,
3188 "Waiting for Peripheral Mode, Mode=%s\n",
3189 dwc2_is_host_mode(hsotg) ? "Host" :
3190 "Peripheral");
3191 msleep(20);
3192 /*
3193 * Sometimes the initial GOTGCTRL read is wrong, so
3194 * check it again and jump to host mode if that was
3195 * the case.
3196 */
3197 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3198 if (!(gotgctl & GOTGCTL_CONID_B))
3199 goto host;
3200 if (++count > 250)
3201 break;
3202 }
3203 if (count > 250)
3204 dev_err(hsotg->dev,
3205 "Connection id status change timed out\n");
3206
3207 /*
3208 * Exit Partial Power Down without restoring registers.
3209 * No need to check the return value as registers
3210 * are not being restored.
3211 */
3212 if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3213 dwc2_exit_partial_power_down(hsotg, 0, false);
3214
3215 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3216 dwc2_core_init(hsotg, false);
3217 dwc2_enable_global_interrupts(hsotg);
3218 spin_lock_irqsave(&hsotg->lock, flags);
3219 dwc2_hsotg_core_init_disconnected(hsotg, false);
3220 spin_unlock_irqrestore(&hsotg->lock, flags);
3221 /* Enable ACG feature in device mode,if supported */
3222 dwc2_enable_acg(hsotg);
3223 dwc2_hsotg_core_connect(hsotg);
3224 } else {
3225host:
3226 /* A-Device connector (Host Mode) */
3227 dev_dbg(hsotg->dev, "connId A\n");
3228 while (!dwc2_is_host_mode(hsotg)) {
3229 dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3230 dwc2_is_host_mode(hsotg) ?
3231 "Host" : "Peripheral");
3232 msleep(20);
3233 if (++count > 250)
3234 break;
3235 }
3236 if (count > 250)
3237 dev_err(hsotg->dev,
3238 "Connection id status change timed out\n");
3239
3240 spin_lock_irqsave(&hsotg->lock, flags);
3241 dwc2_hsotg_disconnect(hsotg);
3242 spin_unlock_irqrestore(&hsotg->lock, flags);
3243
3244 hsotg->op_state = OTG_STATE_A_HOST;
3245 /* Initialize the Core for Host mode */
3246 dwc2_core_init(hsotg, false);
3247 dwc2_enable_global_interrupts(hsotg);
3248 dwc2_hcd_start(hsotg);
3249 }
3250}
3251
3252static void dwc2_wakeup_detected(struct timer_list *t)
3253{
3254 struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3255 u32 hprt0;
3256
3257 dev_dbg(hsotg->dev, "%s()\n", __func__);
3258
3259 /*
3260 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3261 * so that OPT tests pass with all PHYs.)
3262 */
3263 hprt0 = dwc2_read_hprt0(hsotg);
3264 dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3265 hprt0 &= ~HPRT0_RES;
3266 dwc2_writel(hsotg, hprt0, HPRT0);
3267 dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3268 dwc2_readl(hsotg, HPRT0));
3269
3270 dwc2_hcd_rem_wakeup(hsotg);
3271 hsotg->bus_suspended = false;
3272
3273 /* Change to L0 state */
3274 hsotg->lx_state = DWC2_L0;
3275}
3276
3277static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3278{
3279 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3280
3281 return hcd->self.b_hnp_enable;
3282}
3283
3284/**
3285 * dwc2_port_suspend() - Put controller in suspend mode for host.
3286 *
3287 * @hsotg: Programming view of the DWC_otg controller
3288 * @windex: The control request wIndex field
3289 *
3290 * Return: non-zero if failed to enter suspend mode for host.
3291 *
3292 * This function is for entering Host mode suspend.
3293 * Must NOT be called with interrupt disabled or spinlock held.
3294 */
3295int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3296{
3297 unsigned long flags;
3298 u32 pcgctl;
3299 u32 gotgctl;
3300 int ret = 0;
3301
3302 dev_dbg(hsotg->dev, "%s()\n", __func__);
3303
3304 spin_lock_irqsave(&hsotg->lock, flags);
3305
3306 if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3307 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3308 gotgctl |= GOTGCTL_HSTSETHNPEN;
3309 dwc2_writel(hsotg, gotgctl, GOTGCTL);
3310 hsotg->op_state = OTG_STATE_A_SUSPEND;
3311 }
3312
3313 switch (hsotg->params.power_down) {
3314 case DWC2_POWER_DOWN_PARAM_PARTIAL:
3315 ret = dwc2_enter_partial_power_down(hsotg);
3316 if (ret)
3317 dev_err(hsotg->dev,
3318 "enter partial_power_down failed.\n");
3319 break;
3320 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3321 /*
3322 * Perform spin unlock and lock because in
3323 * "dwc2_host_enter_hibernation()" function there is a spinlock
3324 * logic which prevents servicing of any IRQ during entering
3325 * hibernation.
3326 */
3327 spin_unlock_irqrestore(&hsotg->lock, flags);
3328 ret = dwc2_enter_hibernation(hsotg, 1);
3329 if (ret)
3330 dev_err(hsotg->dev, "enter hibernation failed.\n");
3331 spin_lock_irqsave(&hsotg->lock, flags);
3332 break;
3333 case DWC2_POWER_DOWN_PARAM_NONE:
3334 /*
3335 * If not hibernation nor partial power down are supported,
3336 * clock gating is used to save power.
3337 */
3338 if (!hsotg->params.no_clock_gating)
3339 dwc2_host_enter_clock_gating(hsotg);
3340 break;
3341 }
3342
3343 /* For HNP the bus must be suspended for at least 200ms */
3344 if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3345 pcgctl = dwc2_readl(hsotg, PCGCTL);
3346 pcgctl &= ~PCGCTL_STOPPCLK;
3347 dwc2_writel(hsotg, pcgctl, PCGCTL);
3348
3349 spin_unlock_irqrestore(&hsotg->lock, flags);
3350
3351 msleep(200);
3352 } else {
3353 spin_unlock_irqrestore(&hsotg->lock, flags);
3354 }
3355
3356 return ret;
3357}
3358
3359/**
3360 * dwc2_port_resume() - Exit controller from suspend mode for host.
3361 *
3362 * @hsotg: Programming view of the DWC_otg controller
3363 *
3364 * Return: non-zero if failed to exit suspend mode for host.
3365 *
3366 * This function is for exiting Host mode suspend.
3367 * Must NOT be called with interrupt disabled or spinlock held.
3368 */
3369int dwc2_port_resume(struct dwc2_hsotg *hsotg)
3370{
3371 unsigned long flags;
3372 int ret = 0;
3373
3374 spin_lock_irqsave(&hsotg->lock, flags);
3375
3376 switch (hsotg->params.power_down) {
3377 case DWC2_POWER_DOWN_PARAM_PARTIAL:
3378 ret = dwc2_exit_partial_power_down(hsotg, 0, true);
3379 if (ret)
3380 dev_err(hsotg->dev,
3381 "exit partial_power_down failed.\n");
3382 break;
3383 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3384 /* Exit host hibernation. */
3385 ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
3386 if (ret)
3387 dev_err(hsotg->dev, "exit hibernation failed.\n");
3388 break;
3389 case DWC2_POWER_DOWN_PARAM_NONE:
3390 /*
3391 * If not hibernation nor partial power down are supported,
3392 * port resume is done using the clock gating programming flow.
3393 */
3394 spin_unlock_irqrestore(&hsotg->lock, flags);
3395 dwc2_host_exit_clock_gating(hsotg, 0);
3396 spin_lock_irqsave(&hsotg->lock, flags);
3397 break;
3398 }
3399
3400 spin_unlock_irqrestore(&hsotg->lock, flags);
3401
3402 return ret;
3403}
3404
3405/* Handles hub class-specific requests */
3406static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3407 u16 wvalue, u16 windex, char *buf, u16 wlength)
3408{
3409 struct usb_hub_descriptor *hub_desc;
3410 int retval = 0;
3411 u32 hprt0;
3412 u32 port_status;
3413 u32 speed;
3414 u32 pcgctl;
3415 u32 pwr;
3416
3417 switch (typereq) {
3418 case ClearHubFeature:
3419 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3420
3421 switch (wvalue) {
3422 case C_HUB_LOCAL_POWER:
3423 case C_HUB_OVER_CURRENT:
3424 /* Nothing required here */
3425 break;
3426
3427 default:
3428 retval = -EINVAL;
3429 dev_err(hsotg->dev,
3430 "ClearHubFeature request %1xh unknown\n",
3431 wvalue);
3432 }
3433 break;
3434
3435 case ClearPortFeature:
3436 if (wvalue != USB_PORT_FEAT_L1)
3437 if (!windex || windex > 1)
3438 goto error;
3439 switch (wvalue) {
3440 case USB_PORT_FEAT_ENABLE:
3441 dev_dbg(hsotg->dev,
3442 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3443 hprt0 = dwc2_read_hprt0(hsotg);
3444 hprt0 |= HPRT0_ENA;
3445 dwc2_writel(hsotg, hprt0, HPRT0);
3446 break;
3447
3448 case USB_PORT_FEAT_SUSPEND:
3449 dev_dbg(hsotg->dev,
3450 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3451
3452 if (hsotg->bus_suspended)
3453 retval = dwc2_port_resume(hsotg);
3454 break;
3455
3456 case USB_PORT_FEAT_POWER:
3457 dev_dbg(hsotg->dev,
3458 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3459 hprt0 = dwc2_read_hprt0(hsotg);
3460 pwr = hprt0 & HPRT0_PWR;
3461 hprt0 &= ~HPRT0_PWR;
3462 dwc2_writel(hsotg, hprt0, HPRT0);
3463 if (pwr)
3464 dwc2_vbus_supply_exit(hsotg);
3465 break;
3466
3467 case USB_PORT_FEAT_INDICATOR:
3468 dev_dbg(hsotg->dev,
3469 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3470 /* Port indicator not supported */
3471 break;
3472
3473 case USB_PORT_FEAT_C_CONNECTION:
3474 /*
3475 * Clears driver's internal Connect Status Change flag
3476 */
3477 dev_dbg(hsotg->dev,
3478 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3479 hsotg->flags.b.port_connect_status_change = 0;
3480 break;
3481
3482 case USB_PORT_FEAT_C_RESET:
3483 /* Clears driver's internal Port Reset Change flag */
3484 dev_dbg(hsotg->dev,
3485 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3486 hsotg->flags.b.port_reset_change = 0;
3487 break;
3488
3489 case USB_PORT_FEAT_C_ENABLE:
3490 /*
3491 * Clears the driver's internal Port Enable/Disable
3492 * Change flag
3493 */
3494 dev_dbg(hsotg->dev,
3495 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3496 hsotg->flags.b.port_enable_change = 0;
3497 break;
3498
3499 case USB_PORT_FEAT_C_SUSPEND:
3500 /*
3501 * Clears the driver's internal Port Suspend Change
3502 * flag, which is set when resume signaling on the host
3503 * port is complete
3504 */
3505 dev_dbg(hsotg->dev,
3506 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3507 hsotg->flags.b.port_suspend_change = 0;
3508 break;
3509
3510 case USB_PORT_FEAT_C_PORT_L1:
3511 dev_dbg(hsotg->dev,
3512 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3513 hsotg->flags.b.port_l1_change = 0;
3514 break;
3515
3516 case USB_PORT_FEAT_C_OVER_CURRENT:
3517 dev_dbg(hsotg->dev,
3518 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3519 hsotg->flags.b.port_over_current_change = 0;
3520 break;
3521
3522 default:
3523 retval = -EINVAL;
3524 dev_err(hsotg->dev,
3525 "ClearPortFeature request %1xh unknown or unsupported\n",
3526 wvalue);
3527 }
3528 break;
3529
3530 case GetHubDescriptor:
3531 dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3532 hub_desc = (struct usb_hub_descriptor *)buf;
3533 hub_desc->bDescLength = 9;
3534 hub_desc->bDescriptorType = USB_DT_HUB;
3535 hub_desc->bNbrPorts = 1;
3536 hub_desc->wHubCharacteristics =
3537 cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3538 HUB_CHAR_INDV_PORT_OCPM);
3539 hub_desc->bPwrOn2PwrGood = 1;
3540 hub_desc->bHubContrCurrent = 0;
3541 hub_desc->u.hs.DeviceRemovable[0] = 0;
3542 hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3543 break;
3544
3545 case GetHubStatus:
3546 dev_dbg(hsotg->dev, "GetHubStatus\n");
3547 memset(buf, 0, 4);
3548 break;
3549
3550 case GetPortStatus:
3551 dev_vdbg(hsotg->dev,
3552 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3553 hsotg->flags.d32);
3554 if (!windex || windex > 1)
3555 goto error;
3556
3557 port_status = 0;
3558 if (hsotg->flags.b.port_connect_status_change)
3559 port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3560 if (hsotg->flags.b.port_enable_change)
3561 port_status |= USB_PORT_STAT_C_ENABLE << 16;
3562 if (hsotg->flags.b.port_suspend_change)
3563 port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3564 if (hsotg->flags.b.port_l1_change)
3565 port_status |= USB_PORT_STAT_C_L1 << 16;
3566 if (hsotg->flags.b.port_reset_change)
3567 port_status |= USB_PORT_STAT_C_RESET << 16;
3568 if (hsotg->flags.b.port_over_current_change) {
3569 dev_warn(hsotg->dev, "Overcurrent change detected\n");
3570 port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3571 }
3572
3573 if (!hsotg->flags.b.port_connect_status) {
3574 /*
3575 * The port is disconnected, which means the core is
3576 * either in device mode or it soon will be. Just
3577 * return 0's for the remainder of the port status
3578 * since the port register can't be read if the core
3579 * is in device mode.
3580 */
3581 *(__le32 *)buf = cpu_to_le32(port_status);
3582 break;
3583 }
3584
3585 hprt0 = dwc2_readl(hsotg, HPRT0);
3586 dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0);
3587
3588 if (hprt0 & HPRT0_CONNSTS)
3589 port_status |= USB_PORT_STAT_CONNECTION;
3590 if (hprt0 & HPRT0_ENA)
3591 port_status |= USB_PORT_STAT_ENABLE;
3592 if (hprt0 & HPRT0_SUSP)
3593 port_status |= USB_PORT_STAT_SUSPEND;
3594 if (hprt0 & HPRT0_OVRCURRACT)
3595 port_status |= USB_PORT_STAT_OVERCURRENT;
3596 if (hprt0 & HPRT0_RST)
3597 port_status |= USB_PORT_STAT_RESET;
3598 if (hprt0 & HPRT0_PWR)
3599 port_status |= USB_PORT_STAT_POWER;
3600
3601 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3602 if (speed == HPRT0_SPD_HIGH_SPEED)
3603 port_status |= USB_PORT_STAT_HIGH_SPEED;
3604 else if (speed == HPRT0_SPD_LOW_SPEED)
3605 port_status |= USB_PORT_STAT_LOW_SPEED;
3606
3607 if (hprt0 & HPRT0_TSTCTL_MASK)
3608 port_status |= USB_PORT_STAT_TEST;
3609 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3610
3611 if (hsotg->params.dma_desc_fs_enable) {
3612 /*
3613 * Enable descriptor DMA only if a full speed
3614 * device is connected.
3615 */
3616 if (hsotg->new_connection &&
3617 ((port_status &
3618 (USB_PORT_STAT_CONNECTION |
3619 USB_PORT_STAT_HIGH_SPEED |
3620 USB_PORT_STAT_LOW_SPEED)) ==
3621 USB_PORT_STAT_CONNECTION)) {
3622 u32 hcfg;
3623
3624 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3625 hsotg->params.dma_desc_enable = true;
3626 hcfg = dwc2_readl(hsotg, HCFG);
3627 hcfg |= HCFG_DESCDMA;
3628 dwc2_writel(hsotg, hcfg, HCFG);
3629 hsotg->new_connection = false;
3630 }
3631 }
3632
3633 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3634 *(__le32 *)buf = cpu_to_le32(port_status);
3635 break;
3636
3637 case SetHubFeature:
3638 dev_dbg(hsotg->dev, "SetHubFeature\n");
3639 /* No HUB features supported */
3640 break;
3641
3642 case SetPortFeature:
3643 dev_dbg(hsotg->dev, "SetPortFeature\n");
3644 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3645 goto error;
3646
3647 if (!hsotg->flags.b.port_connect_status) {
3648 /*
3649 * The port is disconnected, which means the core is
3650 * either in device mode or it soon will be. Just
3651 * return without doing anything since the port
3652 * register can't be written if the core is in device
3653 * mode.
3654 */
3655 break;
3656 }
3657
3658 switch (wvalue) {
3659 case USB_PORT_FEAT_SUSPEND:
3660 dev_dbg(hsotg->dev,
3661 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3662 if (windex != hsotg->otg_port)
3663 goto error;
3664 if (!hsotg->bus_suspended)
3665 retval = dwc2_port_suspend(hsotg, windex);
3666 break;
3667
3668 case USB_PORT_FEAT_POWER:
3669 dev_dbg(hsotg->dev,
3670 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3671 hprt0 = dwc2_read_hprt0(hsotg);
3672 pwr = hprt0 & HPRT0_PWR;
3673 hprt0 |= HPRT0_PWR;
3674 dwc2_writel(hsotg, hprt0, HPRT0);
3675 if (!pwr)
3676 dwc2_vbus_supply_init(hsotg);
3677 break;
3678
3679 case USB_PORT_FEAT_RESET:
3680 dev_dbg(hsotg->dev,
3681 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3682
3683 hprt0 = dwc2_read_hprt0(hsotg);
3684
3685 if (hsotg->hibernated) {
3686 retval = dwc2_exit_hibernation(hsotg, 0, 1, 1);
3687 if (retval)
3688 dev_err(hsotg->dev,
3689 "exit hibernation failed\n");
3690 }
3691
3692 if (hsotg->in_ppd) {
3693 retval = dwc2_exit_partial_power_down(hsotg, 1,
3694 true);
3695 if (retval)
3696 dev_err(hsotg->dev,
3697 "exit partial_power_down failed\n");
3698 }
3699
3700 if (hsotg->params.power_down ==
3701 DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended)
3702 dwc2_host_exit_clock_gating(hsotg, 0);
3703
3704 pcgctl = dwc2_readl(hsotg, PCGCTL);
3705 pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3706 dwc2_writel(hsotg, pcgctl, PCGCTL);
3707 /* ??? Original driver does this */
3708 dwc2_writel(hsotg, 0, PCGCTL);
3709
3710 hprt0 = dwc2_read_hprt0(hsotg);
3711 pwr = hprt0 & HPRT0_PWR;
3712 /* Clear suspend bit if resetting from suspend state */
3713 hprt0 &= ~HPRT0_SUSP;
3714
3715 /*
3716 * When B-Host the Port reset bit is set in the Start
3717 * HCD Callback function, so that the reset is started
3718 * within 1ms of the HNP success interrupt
3719 */
3720 if (!dwc2_hcd_is_b_host(hsotg)) {
3721 hprt0 |= HPRT0_PWR | HPRT0_RST;
3722 dev_dbg(hsotg->dev,
3723 "In host mode, hprt0=%08x\n", hprt0);
3724 dwc2_writel(hsotg, hprt0, HPRT0);
3725 if (!pwr)
3726 dwc2_vbus_supply_init(hsotg);
3727 }
3728
3729 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3730 msleep(50);
3731 hprt0 &= ~HPRT0_RST;
3732 dwc2_writel(hsotg, hprt0, HPRT0);
3733 hsotg->lx_state = DWC2_L0; /* Now back to On state */
3734 break;
3735
3736 case USB_PORT_FEAT_INDICATOR:
3737 dev_dbg(hsotg->dev,
3738 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3739 /* Not supported */
3740 break;
3741
3742 case USB_PORT_FEAT_TEST:
3743 hprt0 = dwc2_read_hprt0(hsotg);
3744 dev_dbg(hsotg->dev,
3745 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3746 hprt0 &= ~HPRT0_TSTCTL_MASK;
3747 hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3748 dwc2_writel(hsotg, hprt0, HPRT0);
3749 break;
3750
3751 default:
3752 retval = -EINVAL;
3753 dev_err(hsotg->dev,
3754 "SetPortFeature %1xh unknown or unsupported\n",
3755 wvalue);
3756 break;
3757 }
3758 break;
3759
3760 default:
3761error:
3762 retval = -EINVAL;
3763 dev_dbg(hsotg->dev,
3764 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3765 typereq, windex, wvalue);
3766 break;
3767 }
3768
3769 return retval;
3770}
3771
3772static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3773{
3774 int retval;
3775
3776 if (port != 1)
3777 return -EINVAL;
3778
3779 retval = (hsotg->flags.b.port_connect_status_change ||
3780 hsotg->flags.b.port_reset_change ||
3781 hsotg->flags.b.port_enable_change ||
3782 hsotg->flags.b.port_suspend_change ||
3783 hsotg->flags.b.port_over_current_change);
3784
3785 if (retval) {
3786 dev_dbg(hsotg->dev,
3787 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3788 dev_dbg(hsotg->dev, " port_connect_status_change: %d\n",
3789 hsotg->flags.b.port_connect_status_change);
3790 dev_dbg(hsotg->dev, " port_reset_change: %d\n",
3791 hsotg->flags.b.port_reset_change);
3792 dev_dbg(hsotg->dev, " port_enable_change: %d\n",
3793 hsotg->flags.b.port_enable_change);
3794 dev_dbg(hsotg->dev, " port_suspend_change: %d\n",
3795 hsotg->flags.b.port_suspend_change);
3796 dev_dbg(hsotg->dev, " port_over_current_change: %d\n",
3797 hsotg->flags.b.port_over_current_change);
3798 }
3799
3800 return retval;
3801}
3802
3803int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3804{
3805 u32 hfnum = dwc2_readl(hsotg, HFNUM);
3806
3807#ifdef DWC2_DEBUG_SOF
3808 dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3809 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3810#endif
3811 return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3812}
3813
3814int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3815{
3816 u32 hprt = dwc2_readl(hsotg, HPRT0);
3817 u32 hfir = dwc2_readl(hsotg, HFIR);
3818 u32 hfnum = dwc2_readl(hsotg, HFNUM);
3819 unsigned int us_per_frame;
3820 unsigned int frame_number;
3821 unsigned int remaining;
3822 unsigned int interval;
3823 unsigned int phy_clks;
3824
3825 /* High speed has 125 us per (micro) frame; others are 1 ms per */
3826 us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3827
3828 /* Extract fields */
3829 frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3830 remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3831 interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3832
3833 /*
3834 * Number of phy clocks since the last tick of the frame number after
3835 * "us" has passed.
3836 */
3837 phy_clks = (interval - remaining) +
3838 DIV_ROUND_UP(interval * us, us_per_frame);
3839
3840 return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3841}
3842
3843int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3844{
3845 return hsotg->op_state == OTG_STATE_B_HOST;
3846}
3847
3848static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3849 int iso_desc_count,
3850 gfp_t mem_flags)
3851{
3852 struct dwc2_hcd_urb *urb;
3853
3854 urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3855 if (urb)
3856 urb->packet_count = iso_desc_count;
3857 return urb;
3858}
3859
3860static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3861 struct dwc2_hcd_urb *urb, u8 dev_addr,
3862 u8 ep_num, u8 ep_type, u8 ep_dir,
3863 u16 maxp, u16 maxp_mult)
3864{
3865 if (dbg_perio() ||
3866 ep_type == USB_ENDPOINT_XFER_BULK ||
3867 ep_type == USB_ENDPOINT_XFER_CONTROL)
3868 dev_vdbg(hsotg->dev,
3869 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3870 dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3871 urb->pipe_info.dev_addr = dev_addr;
3872 urb->pipe_info.ep_num = ep_num;
3873 urb->pipe_info.pipe_type = ep_type;
3874 urb->pipe_info.pipe_dir = ep_dir;
3875 urb->pipe_info.maxp = maxp;
3876 urb->pipe_info.maxp_mult = maxp_mult;
3877}
3878
3879/*
3880 * NOTE: This function will be removed once the peripheral controller code
3881 * is integrated and the driver is stable
3882 */
3883void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3884{
3885#ifdef DEBUG
3886 struct dwc2_host_chan *chan;
3887 struct dwc2_hcd_urb *urb;
3888 struct dwc2_qtd *qtd;
3889 int num_channels;
3890 u32 np_tx_status;
3891 u32 p_tx_status;
3892 int i;
3893
3894 num_channels = hsotg->params.host_channels;
3895 dev_dbg(hsotg->dev, "\n");
3896 dev_dbg(hsotg->dev,
3897 "************************************************************\n");
3898 dev_dbg(hsotg->dev, "HCD State:\n");
3899 dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels);
3900
3901 for (i = 0; i < num_channels; i++) {
3902 chan = hsotg->hc_ptr_array[i];
3903 dev_dbg(hsotg->dev, " Channel %d:\n", i);
3904 dev_dbg(hsotg->dev,
3905 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3906 chan->dev_addr, chan->ep_num, chan->ep_is_in);
3907 dev_dbg(hsotg->dev, " speed: %d\n", chan->speed);
3908 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
3909 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
3910 dev_dbg(hsotg->dev, " data_pid_start: %d\n",
3911 chan->data_pid_start);
3912 dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count);
3913 dev_dbg(hsotg->dev, " xfer_started: %d\n",
3914 chan->xfer_started);
3915 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
3916 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
3917 (unsigned long)chan->xfer_dma);
3918 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
3919 dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count);
3920 dev_dbg(hsotg->dev, " halt_on_queue: %d\n",
3921 chan->halt_on_queue);
3922 dev_dbg(hsotg->dev, " halt_pending: %d\n",
3923 chan->halt_pending);
3924 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
3925 dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split);
3926 dev_dbg(hsotg->dev, " complete_split: %d\n",
3927 chan->complete_split);
3928 dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr);
3929 dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port);
3930 dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos);
3931 dev_dbg(hsotg->dev, " requests: %d\n", chan->requests);
3932 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
3933
3934 if (chan->xfer_started) {
3935 u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3936
3937 hfnum = dwc2_readl(hsotg, HFNUM);
3938 hcchar = dwc2_readl(hsotg, HCCHAR(i));
3939 hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3940 hcint = dwc2_readl(hsotg, HCINT(i));
3941 hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3942 dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum);
3943 dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar);
3944 dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz);
3945 dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint);
3946 dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk);
3947 }
3948
3949 if (!(chan->xfer_started && chan->qh))
3950 continue;
3951
3952 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3953 if (!qtd->in_process)
3954 break;
3955 urb = qtd->urb;
3956 dev_dbg(hsotg->dev, " URB Info:\n");
3957 dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n",
3958 qtd, urb);
3959 if (urb) {
3960 dev_dbg(hsotg->dev,
3961 " Dev: %d, EP: %d %s\n",
3962 dwc2_hcd_get_dev_addr(&urb->pipe_info),
3963 dwc2_hcd_get_ep_num(&urb->pipe_info),
3964 dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3965 "IN" : "OUT");
3966 dev_dbg(hsotg->dev,
3967 " Max packet size: %d (%d mult)\n",
3968 dwc2_hcd_get_maxp(&urb->pipe_info),
3969 dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3970 dev_dbg(hsotg->dev,
3971 " transfer_buffer: %p\n",
3972 urb->buf);
3973 dev_dbg(hsotg->dev,
3974 " transfer_dma: %08lx\n",
3975 (unsigned long)urb->dma);
3976 dev_dbg(hsotg->dev,
3977 " transfer_buffer_length: %d\n",
3978 urb->length);
3979 dev_dbg(hsotg->dev, " actual_length: %d\n",
3980 urb->actual_length);
3981 }
3982 }
3983 }
3984
3985 dev_dbg(hsotg->dev, " non_periodic_channels: %d\n",
3986 hsotg->non_periodic_channels);
3987 dev_dbg(hsotg->dev, " periodic_channels: %d\n",
3988 hsotg->periodic_channels);
3989 dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs);
3990 np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3991 dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n",
3992 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3993 dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n",
3994 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3995 p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3996 dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n",
3997 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3998 dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n",
3999 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4000 dwc2_dump_global_registers(hsotg);
4001 dwc2_dump_host_registers(hsotg);
4002 dev_dbg(hsotg->dev,
4003 "************************************************************\n");
4004 dev_dbg(hsotg->dev, "\n");
4005#endif
4006}
4007
4008struct wrapper_priv_data {
4009 struct dwc2_hsotg *hsotg;
4010};
4011
4012/* Gets the dwc2_hsotg from a usb_hcd */
4013static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4014{
4015 struct wrapper_priv_data *p;
4016
4017 p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4018 return p->hsotg;
4019}
4020
4021/**
4022 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4023 *
4024 * This will get the dwc2_tt structure (and ttport) associated with the given
4025 * context (which is really just a struct urb pointer).
4026 *
4027 * The first time this is called for a given TT we allocate memory for our
4028 * structure. When everyone is done and has called dwc2_host_put_tt_info()
4029 * then the refcount for the structure will go to 0 and we'll free it.
4030 *
4031 * @hsotg: The HCD state structure for the DWC OTG controller.
4032 * @context: The priv pointer from a struct dwc2_hcd_urb.
4033 * @mem_flags: Flags for allocating memory.
4034 * @ttport: We'll return this device's port number here. That's used to
4035 * reference into the bitmap if we're on a multi_tt hub.
4036 *
4037 * Return: a pointer to a struct dwc2_tt. Don't forget to call
4038 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure.
4039 */
4040
4041struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4042 gfp_t mem_flags, int *ttport)
4043{
4044 struct urb *urb = context;
4045 struct dwc2_tt *dwc_tt = NULL;
4046
4047 if (urb->dev->tt) {
4048 *ttport = urb->dev->ttport;
4049
4050 dwc_tt = urb->dev->tt->hcpriv;
4051 if (!dwc_tt) {
4052 size_t bitmap_size;
4053
4054 /*
4055 * For single_tt we need one schedule. For multi_tt
4056 * we need one per port.
4057 */
4058 bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4059 sizeof(dwc_tt->periodic_bitmaps[0]);
4060 if (urb->dev->tt->multi)
4061 bitmap_size *= urb->dev->tt->hub->maxchild;
4062
4063 dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4064 mem_flags);
4065 if (!dwc_tt)
4066 return NULL;
4067
4068 dwc_tt->usb_tt = urb->dev->tt;
4069 dwc_tt->usb_tt->hcpriv = dwc_tt;
4070 }
4071
4072 dwc_tt->refcount++;
4073 }
4074
4075 return dwc_tt;
4076}
4077
4078/**
4079 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4080 *
4081 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4082 * of the structure are done.
4083 *
4084 * It's OK to call this with NULL.
4085 *
4086 * @hsotg: The HCD state structure for the DWC OTG controller.
4087 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info.
4088 */
4089void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4090{
4091 /* Model kfree and make put of NULL a no-op */
4092 if (!dwc_tt)
4093 return;
4094
4095 WARN_ON(dwc_tt->refcount < 1);
4096
4097 dwc_tt->refcount--;
4098 if (!dwc_tt->refcount) {
4099 dwc_tt->usb_tt->hcpriv = NULL;
4100 kfree(dwc_tt);
4101 }
4102}
4103
4104int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4105{
4106 struct urb *urb = context;
4107
4108 return urb->dev->speed;
4109}
4110
4111static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4112 struct urb *urb)
4113{
4114 struct usb_bus *bus = hcd_to_bus(hcd);
4115
4116 if (urb->interval)
4117 bus->bandwidth_allocated += bw / urb->interval;
4118 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4119 bus->bandwidth_isoc_reqs++;
4120 else
4121 bus->bandwidth_int_reqs++;
4122}
4123
4124static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4125 struct urb *urb)
4126{
4127 struct usb_bus *bus = hcd_to_bus(hcd);
4128
4129 if (urb->interval)
4130 bus->bandwidth_allocated -= bw / urb->interval;
4131 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4132 bus->bandwidth_isoc_reqs--;
4133 else
4134 bus->bandwidth_int_reqs--;
4135}
4136
4137/*
4138 * Sets the final status of an URB and returns it to the upper layer. Any
4139 * required cleanup of the URB is performed.
4140 *
4141 * Must be called with interrupt disabled and spinlock held
4142 */
4143void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4144 int status)
4145{
4146 struct urb *urb;
4147 int i;
4148
4149 if (!qtd) {
4150 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4151 return;
4152 }
4153
4154 if (!qtd->urb) {
4155 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4156 return;
4157 }
4158
4159 urb = qtd->urb->priv;
4160 if (!urb) {
4161 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4162 return;
4163 }
4164
4165 urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4166
4167 if (dbg_urb(urb))
4168 dev_vdbg(hsotg->dev,
4169 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4170 __func__, urb, usb_pipedevice(urb->pipe),
4171 usb_pipeendpoint(urb->pipe),
4172 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4173 urb->actual_length);
4174
4175 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4176 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4177 for (i = 0; i < urb->number_of_packets; ++i) {
4178 urb->iso_frame_desc[i].actual_length =
4179 dwc2_hcd_urb_get_iso_desc_actual_length(
4180 qtd->urb, i);
4181 urb->iso_frame_desc[i].status =
4182 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4183 }
4184 }
4185
4186 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4187 for (i = 0; i < urb->number_of_packets; i++)
4188 dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4189 i, urb->iso_frame_desc[i].status);
4190 }
4191
4192 urb->status = status;
4193 if (!status) {
4194 if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4195 urb->actual_length < urb->transfer_buffer_length)
4196 urb->status = -EREMOTEIO;
4197 }
4198
4199 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4200 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4201 struct usb_host_endpoint *ep = urb->ep;
4202
4203 if (ep)
4204 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4205 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4206 urb);
4207 }
4208
4209 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4210 urb->hcpriv = NULL;
4211 kfree(qtd->urb);
4212 qtd->urb = NULL;
4213
4214 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4215}
4216
4217/*
4218 * Work queue function for starting the HCD when A-Cable is connected
4219 */
4220static void dwc2_hcd_start_func(struct work_struct *work)
4221{
4222 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4223 start_work.work);
4224
4225 dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4226 dwc2_host_start(hsotg);
4227}
4228
4229/*
4230 * Reset work queue function
4231 */
4232static void dwc2_hcd_reset_func(struct work_struct *work)
4233{
4234 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4235 reset_work.work);
4236 unsigned long flags;
4237 u32 hprt0;
4238
4239 dev_dbg(hsotg->dev, "USB RESET function called\n");
4240
4241 spin_lock_irqsave(&hsotg->lock, flags);
4242
4243 hprt0 = dwc2_read_hprt0(hsotg);
4244 hprt0 &= ~HPRT0_RST;
4245 dwc2_writel(hsotg, hprt0, HPRT0);
4246 hsotg->flags.b.port_reset_change = 1;
4247
4248 spin_unlock_irqrestore(&hsotg->lock, flags);
4249}
4250
4251static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4252{
4253 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4254 phy_reset_work);
4255 int ret;
4256
4257 ret = phy_reset(hsotg->phy);
4258 if (ret)
4259 dev_warn(hsotg->dev, "PHY reset failed\n");
4260}
4261
4262/*
4263 * =========================================================================
4264 * Linux HC Driver Functions
4265 * =========================================================================
4266 */
4267
4268/*
4269 * Initializes the DWC_otg controller and its root hub and prepares it for host
4270 * mode operation. Activates the root port. Returns 0 on success and a negative
4271 * error code on failure.
4272 */
4273static int _dwc2_hcd_start(struct usb_hcd *hcd)
4274{
4275 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4276 struct usb_bus *bus = hcd_to_bus(hcd);
4277 unsigned long flags;
4278 u32 hprt0;
4279 int ret;
4280
4281 dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4282
4283 spin_lock_irqsave(&hsotg->lock, flags);
4284 hsotg->lx_state = DWC2_L0;
4285 hcd->state = HC_STATE_RUNNING;
4286 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4287
4288 if (dwc2_is_device_mode(hsotg)) {
4289 spin_unlock_irqrestore(&hsotg->lock, flags);
4290 return 0; /* why 0 ?? */
4291 }
4292
4293 dwc2_hcd_reinit(hsotg);
4294
4295 hprt0 = dwc2_read_hprt0(hsotg);
4296 /* Has vbus power been turned on in dwc2_core_host_init ? */
4297 if (hprt0 & HPRT0_PWR) {
4298 /* Enable external vbus supply before resuming root hub */
4299 spin_unlock_irqrestore(&hsotg->lock, flags);
4300 ret = dwc2_vbus_supply_init(hsotg);
4301 if (ret)
4302 return ret;
4303 spin_lock_irqsave(&hsotg->lock, flags);
4304 }
4305
4306 /* Initialize and connect root hub if one is not already attached */
4307 if (bus->root_hub) {
4308 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4309 /* Inform the HUB driver to resume */
4310 usb_hcd_resume_root_hub(hcd);
4311 }
4312
4313 spin_unlock_irqrestore(&hsotg->lock, flags);
4314
4315 return 0;
4316}
4317
4318/*
4319 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4320 * stopped.
4321 */
4322static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4323{
4324 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4325 unsigned long flags;
4326 u32 hprt0;
4327
4328 /* Turn off all host-specific interrupts */
4329 dwc2_disable_host_interrupts(hsotg);
4330
4331 /* Wait for interrupt processing to finish */
4332 synchronize_irq(hcd->irq);
4333
4334 spin_lock_irqsave(&hsotg->lock, flags);
4335 hprt0 = dwc2_read_hprt0(hsotg);
4336 /* Ensure hcd is disconnected */
4337 dwc2_hcd_disconnect(hsotg, true);
4338 dwc2_hcd_stop(hsotg);
4339 hsotg->lx_state = DWC2_L3;
4340 hcd->state = HC_STATE_HALT;
4341 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4342 spin_unlock_irqrestore(&hsotg->lock, flags);
4343
4344 /* keep balanced supply init/exit by checking HPRT0_PWR */
4345 if (hprt0 & HPRT0_PWR)
4346 dwc2_vbus_supply_exit(hsotg);
4347
4348 usleep_range(1000, 3000);
4349}
4350
4351static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4352{
4353 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4354 unsigned long flags;
4355 int ret = 0;
4356
4357 spin_lock_irqsave(&hsotg->lock, flags);
4358
4359 if (dwc2_is_device_mode(hsotg))
4360 goto unlock;
4361
4362 if (hsotg->lx_state != DWC2_L0)
4363 goto unlock;
4364
4365 if (!HCD_HW_ACCESSIBLE(hcd))
4366 goto unlock;
4367
4368 if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4369 goto unlock;
4370
4371 if (hsotg->bus_suspended)
4372 goto skip_power_saving;
4373
4374 if (hsotg->flags.b.port_connect_status == 0)
4375 goto skip_power_saving;
4376
4377 switch (hsotg->params.power_down) {
4378 case DWC2_POWER_DOWN_PARAM_PARTIAL:
4379 /* Enter partial_power_down */
4380 ret = dwc2_enter_partial_power_down(hsotg);
4381 if (ret)
4382 dev_err(hsotg->dev,
4383 "enter partial_power_down failed\n");
4384 /* After entering suspend, hardware is not accessible */
4385 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4386 break;
4387 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4388 /* Enter hibernation */
4389 spin_unlock_irqrestore(&hsotg->lock, flags);
4390 ret = dwc2_enter_hibernation(hsotg, 1);
4391 if (ret)
4392 dev_err(hsotg->dev, "enter hibernation failed\n");
4393 spin_lock_irqsave(&hsotg->lock, flags);
4394
4395 /* After entering suspend, hardware is not accessible */
4396 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4397 break;
4398 case DWC2_POWER_DOWN_PARAM_NONE:
4399 /*
4400 * If not hibernation nor partial power down are supported,
4401 * clock gating is used to save power.
4402 */
4403 if (!hsotg->params.no_clock_gating) {
4404 dwc2_host_enter_clock_gating(hsotg);
4405
4406 /* After entering suspend, hardware is not accessible */
4407 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4408 }
4409 break;
4410 default:
4411 goto skip_power_saving;
4412 }
4413
4414 spin_unlock_irqrestore(&hsotg->lock, flags);
4415 dwc2_vbus_supply_exit(hsotg);
4416 spin_lock_irqsave(&hsotg->lock, flags);
4417
4418 /* Ask phy to be suspended */
4419 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4420 spin_unlock_irqrestore(&hsotg->lock, flags);
4421 usb_phy_set_suspend(hsotg->uphy, true);
4422 spin_lock_irqsave(&hsotg->lock, flags);
4423 }
4424
4425skip_power_saving:
4426 hsotg->lx_state = DWC2_L2;
4427unlock:
4428 spin_unlock_irqrestore(&hsotg->lock, flags);
4429
4430 return ret;
4431}
4432
4433static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4434{
4435 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4436 unsigned long flags;
4437 u32 hprt0;
4438 int ret = 0;
4439
4440 spin_lock_irqsave(&hsotg->lock, flags);
4441
4442 if (dwc2_is_device_mode(hsotg))
4443 goto unlock;
4444
4445 if (hsotg->lx_state != DWC2_L2)
4446 goto unlock;
4447
4448 hprt0 = dwc2_read_hprt0(hsotg);
4449
4450 /*
4451 * Added port connection status checking which prevents exiting from
4452 * Partial Power Down mode from _dwc2_hcd_resume() if not in Partial
4453 * Power Down mode.
4454 */
4455 if (hprt0 & HPRT0_CONNSTS) {
4456 hsotg->lx_state = DWC2_L0;
4457 goto unlock;
4458 }
4459
4460 switch (hsotg->params.power_down) {
4461 case DWC2_POWER_DOWN_PARAM_PARTIAL:
4462 ret = dwc2_exit_partial_power_down(hsotg, 0, true);
4463 if (ret)
4464 dev_err(hsotg->dev,
4465 "exit partial_power_down failed\n");
4466 /*
4467 * Set HW accessible bit before powering on the controller
4468 * since an interrupt may rise.
4469 */
4470 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4471 break;
4472 case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4473 ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4474 if (ret)
4475 dev_err(hsotg->dev, "exit hibernation failed.\n");
4476
4477 /*
4478 * Set HW accessible bit before powering on the controller
4479 * since an interrupt may rise.
4480 */
4481 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4482 break;
4483 case DWC2_POWER_DOWN_PARAM_NONE:
4484 /*
4485 * If not hibernation nor partial power down are supported,
4486 * port resume is done using the clock gating programming flow.
4487 */
4488 spin_unlock_irqrestore(&hsotg->lock, flags);
4489 dwc2_host_exit_clock_gating(hsotg, 0);
4490
4491 /*
4492 * Initialize the Core for Host mode, as after system resume
4493 * the global interrupts are disabled.
4494 */
4495 dwc2_core_init(hsotg, false);
4496 dwc2_enable_global_interrupts(hsotg);
4497 dwc2_hcd_reinit(hsotg);
4498 spin_lock_irqsave(&hsotg->lock, flags);
4499
4500 /*
4501 * Set HW accessible bit before powering on the controller
4502 * since an interrupt may rise.
4503 */
4504 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4505 break;
4506 default:
4507 hsotg->lx_state = DWC2_L0;
4508 goto unlock;
4509 }
4510
4511 /* Change Root port status, as port status change occurred after resume.*/
4512 hsotg->flags.b.port_suspend_change = 1;
4513
4514 /*
4515 * Enable power if not already done.
4516 * This must not be spinlocked since duration
4517 * of this call is unknown.
4518 */
4519 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4520 spin_unlock_irqrestore(&hsotg->lock, flags);
4521 usb_phy_set_suspend(hsotg->uphy, false);
4522 spin_lock_irqsave(&hsotg->lock, flags);
4523 }
4524
4525 /* Enable external vbus supply after resuming the port. */
4526 spin_unlock_irqrestore(&hsotg->lock, flags);
4527 dwc2_vbus_supply_init(hsotg);
4528
4529 /* Wait for controller to correctly update D+/D- level */
4530 usleep_range(3000, 5000);
4531 spin_lock_irqsave(&hsotg->lock, flags);
4532
4533 /*
4534 * Clear Port Enable and Port Status changes.
4535 * Enable Port Power.
4536 */
4537 dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4538 HPRT0_ENACHG, HPRT0);
4539
4540 /* Wait for controller to detect Port Connect */
4541 spin_unlock_irqrestore(&hsotg->lock, flags);
4542 usleep_range(5000, 7000);
4543 spin_lock_irqsave(&hsotg->lock, flags);
4544unlock:
4545 spin_unlock_irqrestore(&hsotg->lock, flags);
4546
4547 return ret;
4548}
4549
4550/* Returns the current frame number */
4551static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4552{
4553 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4554
4555 return dwc2_hcd_get_frame_number(hsotg);
4556}
4557
4558static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4559 char *fn_name)
4560{
4561#ifdef VERBOSE_DEBUG
4562 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4563 char *pipetype = NULL;
4564 char *speed = NULL;
4565
4566 dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4567 dev_vdbg(hsotg->dev, " Device address: %d\n",
4568 usb_pipedevice(urb->pipe));
4569 dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n",
4570 usb_pipeendpoint(urb->pipe),
4571 usb_pipein(urb->pipe) ? "IN" : "OUT");
4572
4573 switch (usb_pipetype(urb->pipe)) {
4574 case PIPE_CONTROL:
4575 pipetype = "CONTROL";
4576 break;
4577 case PIPE_BULK:
4578 pipetype = "BULK";
4579 break;
4580 case PIPE_INTERRUPT:
4581 pipetype = "INTERRUPT";
4582 break;
4583 case PIPE_ISOCHRONOUS:
4584 pipetype = "ISOCHRONOUS";
4585 break;
4586 }
4587
4588 dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype,
4589 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4590 "IN" : "OUT");
4591
4592 switch (urb->dev->speed) {
4593 case USB_SPEED_HIGH:
4594 speed = "HIGH";
4595 break;
4596 case USB_SPEED_FULL:
4597 speed = "FULL";
4598 break;
4599 case USB_SPEED_LOW:
4600 speed = "LOW";
4601 break;
4602 default:
4603 speed = "UNKNOWN";
4604 break;
4605 }
4606
4607 dev_vdbg(hsotg->dev, " Speed: %s\n", speed);
4608 dev_vdbg(hsotg->dev, " Max packet size: %d (%d mult)\n",
4609 usb_endpoint_maxp(&urb->ep->desc),
4610 usb_endpoint_maxp_mult(&urb->ep->desc));
4611
4612 dev_vdbg(hsotg->dev, " Data buffer length: %d\n",
4613 urb->transfer_buffer_length);
4614 dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n",
4615 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4616 dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n",
4617 urb->setup_packet, (unsigned long)urb->setup_dma);
4618 dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval);
4619
4620 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4621 int i;
4622
4623 for (i = 0; i < urb->number_of_packets; i++) {
4624 dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i);
4625 dev_vdbg(hsotg->dev, " offset: %d, length %d\n",
4626 urb->iso_frame_desc[i].offset,
4627 urb->iso_frame_desc[i].length);
4628 }
4629 }
4630#endif
4631}
4632
4633/*
4634 * Starts processing a USB transfer request specified by a USB Request Block
4635 * (URB). mem_flags indicates the type of memory allocation to use while
4636 * processing this URB.
4637 */
4638static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4639 gfp_t mem_flags)
4640{
4641 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4642 struct usb_host_endpoint *ep = urb->ep;
4643 struct dwc2_hcd_urb *dwc2_urb;
4644 int i;
4645 int retval;
4646 int alloc_bandwidth = 0;
4647 u8 ep_type = 0;
4648 u32 tflags = 0;
4649 void *buf;
4650 unsigned long flags;
4651 struct dwc2_qh *qh;
4652 bool qh_allocated = false;
4653 struct dwc2_qtd *qtd;
4654 struct dwc2_gregs_backup *gr;
4655
4656 gr = &hsotg->gr_backup;
4657
4658 if (dbg_urb(urb)) {
4659 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4660 dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4661 }
4662
4663 if (hsotg->hibernated) {
4664 if (gr->gotgctl & GOTGCTL_CURMODE_HOST)
4665 retval = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4666 else
4667 retval = dwc2_exit_hibernation(hsotg, 0, 0, 0);
4668
4669 if (retval)
4670 dev_err(hsotg->dev,
4671 "exit hibernation failed.\n");
4672 }
4673
4674 if (hsotg->in_ppd) {
4675 retval = dwc2_exit_partial_power_down(hsotg, 0, true);
4676 if (retval)
4677 dev_err(hsotg->dev,
4678 "exit partial_power_down failed\n");
4679 }
4680
4681 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_NONE &&
4682 hsotg->bus_suspended) {
4683 if (dwc2_is_device_mode(hsotg))
4684 dwc2_gadget_exit_clock_gating(hsotg, 0);
4685 else
4686 dwc2_host_exit_clock_gating(hsotg, 0);
4687 }
4688
4689 if (!ep)
4690 return -EINVAL;
4691
4692 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4693 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4694 spin_lock_irqsave(&hsotg->lock, flags);
4695 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4696 alloc_bandwidth = 1;
4697 spin_unlock_irqrestore(&hsotg->lock, flags);
4698 }
4699
4700 switch (usb_pipetype(urb->pipe)) {
4701 case PIPE_CONTROL:
4702 ep_type = USB_ENDPOINT_XFER_CONTROL;
4703 break;
4704 case PIPE_ISOCHRONOUS:
4705 ep_type = USB_ENDPOINT_XFER_ISOC;
4706 break;
4707 case PIPE_BULK:
4708 ep_type = USB_ENDPOINT_XFER_BULK;
4709 break;
4710 case PIPE_INTERRUPT:
4711 ep_type = USB_ENDPOINT_XFER_INT;
4712 break;
4713 }
4714
4715 dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4716 mem_flags);
4717 if (!dwc2_urb)
4718 return -ENOMEM;
4719
4720 dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4721 usb_pipeendpoint(urb->pipe), ep_type,
4722 usb_pipein(urb->pipe),
4723 usb_endpoint_maxp(&ep->desc),
4724 usb_endpoint_maxp_mult(&ep->desc));
4725
4726 buf = urb->transfer_buffer;
4727
4728 if (hcd_uses_dma(hcd)) {
4729 if (!buf && (urb->transfer_dma & 3)) {
4730 dev_err(hsotg->dev,
4731 "%s: unaligned transfer with no transfer_buffer",
4732 __func__);
4733 retval = -EINVAL;
4734 goto fail0;
4735 }
4736 }
4737
4738 if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4739 tflags |= URB_GIVEBACK_ASAP;
4740 if (urb->transfer_flags & URB_ZERO_PACKET)
4741 tflags |= URB_SEND_ZERO_PACKET;
4742
4743 dwc2_urb->priv = urb;
4744 dwc2_urb->buf = buf;
4745 dwc2_urb->dma = urb->transfer_dma;
4746 dwc2_urb->length = urb->transfer_buffer_length;
4747 dwc2_urb->setup_packet = urb->setup_packet;
4748 dwc2_urb->setup_dma = urb->setup_dma;
4749 dwc2_urb->flags = tflags;
4750 dwc2_urb->interval = urb->interval;
4751 dwc2_urb->status = -EINPROGRESS;
4752
4753 for (i = 0; i < urb->number_of_packets; ++i)
4754 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4755 urb->iso_frame_desc[i].offset,
4756 urb->iso_frame_desc[i].length);
4757
4758 urb->hcpriv = dwc2_urb;
4759 qh = (struct dwc2_qh *)ep->hcpriv;
4760 /* Create QH for the endpoint if it doesn't exist */
4761 if (!qh) {
4762 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4763 if (!qh) {
4764 retval = -ENOMEM;
4765 goto fail0;
4766 }
4767 ep->hcpriv = qh;
4768 qh_allocated = true;
4769 }
4770
4771 qtd = kzalloc(sizeof(*qtd), mem_flags);
4772 if (!qtd) {
4773 retval = -ENOMEM;
4774 goto fail1;
4775 }
4776
4777 spin_lock_irqsave(&hsotg->lock, flags);
4778 retval = usb_hcd_link_urb_to_ep(hcd, urb);
4779 if (retval)
4780 goto fail2;
4781
4782 retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4783 if (retval)
4784 goto fail3;
4785
4786 if (alloc_bandwidth) {
4787 dwc2_allocate_bus_bandwidth(hcd,
4788 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4789 urb);
4790 }
4791
4792 spin_unlock_irqrestore(&hsotg->lock, flags);
4793
4794 return 0;
4795
4796fail3:
4797 dwc2_urb->priv = NULL;
4798 usb_hcd_unlink_urb_from_ep(hcd, urb);
4799 if (qh_allocated && qh->channel && qh->channel->qh == qh)
4800 qh->channel->qh = NULL;
4801fail2:
4802 spin_unlock_irqrestore(&hsotg->lock, flags);
4803 urb->hcpriv = NULL;
4804 kfree(qtd);
4805fail1:
4806 if (qh_allocated) {
4807 struct dwc2_qtd *qtd2, *qtd2_tmp;
4808
4809 ep->hcpriv = NULL;
4810 dwc2_hcd_qh_unlink(hsotg, qh);
4811 /* Free each QTD in the QH's QTD list */
4812 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4813 qtd_list_entry)
4814 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4815 dwc2_hcd_qh_free(hsotg, qh);
4816 }
4817fail0:
4818 kfree(dwc2_urb);
4819
4820 return retval;
4821}
4822
4823/*
4824 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4825 */
4826static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4827 int status)
4828{
4829 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4830 int rc;
4831 unsigned long flags;
4832
4833 dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4834 dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4835
4836 spin_lock_irqsave(&hsotg->lock, flags);
4837
4838 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4839 if (rc)
4840 goto out;
4841
4842 if (!urb->hcpriv) {
4843 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4844 goto out;
4845 }
4846
4847 rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4848
4849 usb_hcd_unlink_urb_from_ep(hcd, urb);
4850
4851 kfree(urb->hcpriv);
4852 urb->hcpriv = NULL;
4853
4854 /* Higher layer software sets URB status */
4855 spin_unlock(&hsotg->lock);
4856 usb_hcd_giveback_urb(hcd, urb, status);
4857 spin_lock(&hsotg->lock);
4858
4859 dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4860 dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status);
4861out:
4862 spin_unlock_irqrestore(&hsotg->lock, flags);
4863
4864 return rc;
4865}
4866
4867/*
4868 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4869 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4870 * must already be dequeued.
4871 */
4872static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4873 struct usb_host_endpoint *ep)
4874{
4875 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4876
4877 dev_dbg(hsotg->dev,
4878 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4879 ep->desc.bEndpointAddress, ep->hcpriv);
4880 dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4881}
4882
4883/*
4884 * Resets endpoint specific parameter values, in current version used to reset
4885 * the data toggle (as a WA). This function can be called from usb_clear_halt
4886 * routine.
4887 */
4888static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4889 struct usb_host_endpoint *ep)
4890{
4891 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4892 unsigned long flags;
4893
4894 dev_dbg(hsotg->dev,
4895 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4896 ep->desc.bEndpointAddress);
4897
4898 spin_lock_irqsave(&hsotg->lock, flags);
4899 dwc2_hcd_endpoint_reset(hsotg, ep);
4900 spin_unlock_irqrestore(&hsotg->lock, flags);
4901}
4902
4903/*
4904 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4905 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4906 * interrupt.
4907 *
4908 * This function is called by the USB core when an interrupt occurs
4909 */
4910static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4911{
4912 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4913
4914 return dwc2_handle_hcd_intr(hsotg);
4915}
4916
4917/*
4918 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4919 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4920 * is the status change indicator for the single root port. Returns 1 if either
4921 * change indicator is 1, otherwise returns 0.
4922 */
4923static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4924{
4925 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4926
4927 buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4928 return buf[0] != 0;
4929}
4930
4931/* Handles hub class-specific requests */
4932static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4933 u16 windex, char *buf, u16 wlength)
4934{
4935 int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4936 wvalue, windex, buf, wlength);
4937 return retval;
4938}
4939
4940/* Handles hub TT buffer clear completions */
4941static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4942 struct usb_host_endpoint *ep)
4943{
4944 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4945 struct dwc2_qh *qh;
4946 unsigned long flags;
4947
4948 qh = ep->hcpriv;
4949 if (!qh)
4950 return;
4951
4952 spin_lock_irqsave(&hsotg->lock, flags);
4953 qh->tt_buffer_dirty = 0;
4954
4955 if (hsotg->flags.b.port_connect_status)
4956 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4957
4958 spin_unlock_irqrestore(&hsotg->lock, flags);
4959}
4960
4961/*
4962 * HPRT0_SPD_HIGH_SPEED: high speed
4963 * HPRT0_SPD_FULL_SPEED: full speed
4964 */
4965static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4966{
4967 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4968
4969 if (hsotg->params.speed == speed)
4970 return;
4971
4972 hsotg->params.speed = speed;
4973 queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4974}
4975
4976static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4977{
4978 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4979
4980 if (!hsotg->params.change_speed_quirk)
4981 return;
4982
4983 /*
4984 * On removal, set speed to default high-speed.
4985 */
4986 if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4987 udev->parent->speed < USB_SPEED_HIGH) {
4988 dev_info(hsotg->dev, "Set speed to default high-speed\n");
4989 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4990 }
4991}
4992
4993static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4994{
4995 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4996
4997 if (!hsotg->params.change_speed_quirk)
4998 return 0;
4999
5000 if (udev->speed == USB_SPEED_HIGH) {
5001 dev_info(hsotg->dev, "Set speed to high-speed\n");
5002 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
5003 } else if ((udev->speed == USB_SPEED_FULL ||
5004 udev->speed == USB_SPEED_LOW)) {
5005 /*
5006 * Change speed setting to full-speed if there's
5007 * a full-speed or low-speed device plugged in.
5008 */
5009 dev_info(hsotg->dev, "Set speed to full-speed\n");
5010 dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
5011 }
5012
5013 return 0;
5014}
5015
5016static struct hc_driver dwc2_hc_driver = {
5017 .description = "dwc2_hsotg",
5018 .product_desc = "DWC OTG Controller",
5019 .hcd_priv_size = sizeof(struct wrapper_priv_data),
5020
5021 .irq = _dwc2_hcd_irq,
5022 .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
5023
5024 .start = _dwc2_hcd_start,
5025 .stop = _dwc2_hcd_stop,
5026 .urb_enqueue = _dwc2_hcd_urb_enqueue,
5027 .urb_dequeue = _dwc2_hcd_urb_dequeue,
5028 .endpoint_disable = _dwc2_hcd_endpoint_disable,
5029 .endpoint_reset = _dwc2_hcd_endpoint_reset,
5030 .get_frame_number = _dwc2_hcd_get_frame_number,
5031
5032 .hub_status_data = _dwc2_hcd_hub_status_data,
5033 .hub_control = _dwc2_hcd_hub_control,
5034 .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5035
5036 .bus_suspend = _dwc2_hcd_suspend,
5037 .bus_resume = _dwc2_hcd_resume,
5038
5039 .map_urb_for_dma = dwc2_map_urb_for_dma,
5040 .unmap_urb_for_dma = dwc2_unmap_urb_for_dma,
5041};
5042
5043/*
5044 * Frees secondary storage associated with the dwc2_hsotg structure contained
5045 * in the struct usb_hcd field
5046 */
5047static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5048{
5049 u32 ahbcfg;
5050 u32 dctl;
5051 int i;
5052
5053 dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5054
5055 /* Free memory for QH/QTD lists */
5056 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5057 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5058 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5059 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5060 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5061 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5062 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5063
5064 /* Free memory for the host channels */
5065 for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5066 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5067
5068 if (chan) {
5069 dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5070 i, chan);
5071 hsotg->hc_ptr_array[i] = NULL;
5072 kfree(chan);
5073 }
5074 }
5075
5076 if (hsotg->params.host_dma) {
5077 if (hsotg->status_buf) {
5078 dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5079 hsotg->status_buf,
5080 hsotg->status_buf_dma);
5081 hsotg->status_buf = NULL;
5082 }
5083 } else {
5084 kfree(hsotg->status_buf);
5085 hsotg->status_buf = NULL;
5086 }
5087
5088 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
5089
5090 /* Disable all interrupts */
5091 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5092 dwc2_writel(hsotg, ahbcfg, GAHBCFG);
5093 dwc2_writel(hsotg, 0, GINTMSK);
5094
5095 if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5096 dctl = dwc2_readl(hsotg, DCTL);
5097 dctl |= DCTL_SFTDISCON;
5098 dwc2_writel(hsotg, dctl, DCTL);
5099 }
5100
5101 if (hsotg->wq_otg) {
5102 if (!cancel_work_sync(&hsotg->wf_otg))
5103 flush_workqueue(hsotg->wq_otg);
5104 destroy_workqueue(hsotg->wq_otg);
5105 }
5106
5107 cancel_work_sync(&hsotg->phy_reset_work);
5108
5109 del_timer(&hsotg->wkp_timer);
5110}
5111
5112static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5113{
5114 /* Turn off all host-specific interrupts */
5115 dwc2_disable_host_interrupts(hsotg);
5116
5117 dwc2_hcd_free(hsotg);
5118}
5119
5120/*
5121 * Initializes the HCD. This function allocates memory for and initializes the
5122 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5123 * USB bus with the core and calls the hc_driver->start() function. It returns
5124 * a negative error on failure.
5125 */
5126int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5127{
5128 struct platform_device *pdev = to_platform_device(hsotg->dev);
5129 struct resource *res;
5130 struct usb_hcd *hcd;
5131 struct dwc2_host_chan *channel;
5132 u32 hcfg;
5133 int i, num_channels;
5134 int retval;
5135
5136 if (usb_disabled())
5137 return -ENODEV;
5138
5139 dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5140
5141 retval = -ENOMEM;
5142
5143 hcfg = dwc2_readl(hsotg, HCFG);
5144 dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5145
5146#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5147 hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5148 sizeof(*hsotg->frame_num_array),
5149 GFP_KERNEL);
5150 if (!hsotg->frame_num_array)
5151 goto error1;
5152 hsotg->last_frame_num_array =
5153 kcalloc(FRAME_NUM_ARRAY_SIZE,
5154 sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5155 if (!hsotg->last_frame_num_array)
5156 goto error1;
5157#endif
5158 hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5159
5160 /* Check if the bus driver or platform code has setup a dma_mask */
5161 if (hsotg->params.host_dma &&
5162 !hsotg->dev->dma_mask) {
5163 dev_warn(hsotg->dev,
5164 "dma_mask not set, disabling DMA\n");
5165 hsotg->params.host_dma = false;
5166 hsotg->params.dma_desc_enable = false;
5167 }
5168
5169 /* Set device flags indicating whether the HCD supports DMA */
5170 if (hsotg->params.host_dma) {
5171 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5172 dev_warn(hsotg->dev, "can't set DMA mask\n");
5173 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5174 dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5175 }
5176
5177 if (hsotg->params.change_speed_quirk) {
5178 dwc2_hc_driver.free_dev = dwc2_free_dev;
5179 dwc2_hc_driver.reset_device = dwc2_reset_device;
5180 }
5181
5182 if (hsotg->params.host_dma)
5183 dwc2_hc_driver.flags |= HCD_DMA;
5184
5185 hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5186 if (!hcd)
5187 goto error1;
5188
5189 hcd->has_tt = 1;
5190
5191 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5192 if (!res) {
5193 retval = -EINVAL;
5194 goto error2;
5195 }
5196 hcd->rsrc_start = res->start;
5197 hcd->rsrc_len = resource_size(res);
5198
5199 ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5200 hsotg->priv = hcd;
5201
5202 /*
5203 * Disable the global interrupt until all the interrupt handlers are
5204 * installed
5205 */
5206 dwc2_disable_global_interrupts(hsotg);
5207
5208 /* Initialize the DWC_otg core, and select the Phy type */
5209 retval = dwc2_core_init(hsotg, true);
5210 if (retval)
5211 goto error2;
5212
5213 /* Create new workqueue and init work */
5214 retval = -ENOMEM;
5215 hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5216 if (!hsotg->wq_otg) {
5217 dev_err(hsotg->dev, "Failed to create workqueue\n");
5218 goto error2;
5219 }
5220 INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5221
5222 timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5223
5224 /* Initialize the non-periodic schedule */
5225 INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5226 INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5227 INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5228
5229 /* Initialize the periodic schedule */
5230 INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5231 INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5232 INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5233 INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5234
5235 INIT_LIST_HEAD(&hsotg->split_order);
5236
5237 /*
5238 * Create a host channel descriptor for each host channel implemented
5239 * in the controller. Initialize the channel descriptor array.
5240 */
5241 INIT_LIST_HEAD(&hsotg->free_hc_list);
5242 num_channels = hsotg->params.host_channels;
5243 memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5244
5245 for (i = 0; i < num_channels; i++) {
5246 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5247 if (!channel)
5248 goto error3;
5249 channel->hc_num = i;
5250 INIT_LIST_HEAD(&channel->split_order_list_entry);
5251 hsotg->hc_ptr_array[i] = channel;
5252 }
5253
5254 /* Initialize work */
5255 INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5256 INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5257 INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5258
5259 /*
5260 * Allocate space for storing data on status transactions. Normally no
5261 * data is sent, but this space acts as a bit bucket. This must be
5262 * done after usb_add_hcd since that function allocates the DMA buffer
5263 * pool.
5264 */
5265 if (hsotg->params.host_dma)
5266 hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5267 DWC2_HCD_STATUS_BUF_SIZE,
5268 &hsotg->status_buf_dma, GFP_KERNEL);
5269 else
5270 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5271 GFP_KERNEL);
5272
5273 if (!hsotg->status_buf)
5274 goto error3;
5275
5276 /*
5277 * Create kmem caches to handle descriptor buffers in descriptor
5278 * DMA mode.
5279 * Alignment must be set to 512 bytes.
5280 */
5281 if (hsotg->params.dma_desc_enable ||
5282 hsotg->params.dma_desc_fs_enable) {
5283 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5284 sizeof(struct dwc2_dma_desc) *
5285 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5286 NULL);
5287 if (!hsotg->desc_gen_cache) {
5288 dev_err(hsotg->dev,
5289 "unable to create dwc2 generic desc cache\n");
5290
5291 /*
5292 * Disable descriptor dma mode since it will not be
5293 * usable.
5294 */
5295 hsotg->params.dma_desc_enable = false;
5296 hsotg->params.dma_desc_fs_enable = false;
5297 }
5298
5299 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5300 sizeof(struct dwc2_dma_desc) *
5301 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5302 if (!hsotg->desc_hsisoc_cache) {
5303 dev_err(hsotg->dev,
5304 "unable to create dwc2 hs isoc desc cache\n");
5305
5306 kmem_cache_destroy(hsotg->desc_gen_cache);
5307
5308 /*
5309 * Disable descriptor dma mode since it will not be
5310 * usable.
5311 */
5312 hsotg->params.dma_desc_enable = false;
5313 hsotg->params.dma_desc_fs_enable = false;
5314 }
5315 }
5316
5317 if (hsotg->params.host_dma) {
5318 /*
5319 * Create kmem caches to handle non-aligned buffer
5320 * in Buffer DMA mode.
5321 */
5322 hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5323 DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5324 SLAB_CACHE_DMA, NULL);
5325 if (!hsotg->unaligned_cache)
5326 dev_err(hsotg->dev,
5327 "unable to create dwc2 unaligned cache\n");
5328 }
5329
5330 hsotg->otg_port = 1;
5331 hsotg->frame_list = NULL;
5332 hsotg->frame_list_dma = 0;
5333 hsotg->periodic_qh_count = 0;
5334
5335 /* Initiate lx_state to L3 disconnected state */
5336 hsotg->lx_state = DWC2_L3;
5337
5338 hcd->self.otg_port = hsotg->otg_port;
5339
5340 /* Don't support SG list at this point */
5341 hcd->self.sg_tablesize = 0;
5342
5343 hcd->tpl_support = of_usb_host_tpl_support(hsotg->dev->of_node);
5344
5345 if (!IS_ERR_OR_NULL(hsotg->uphy))
5346 otg_set_host(hsotg->uphy->otg, &hcd->self);
5347
5348 /*
5349 * Finish generic HCD initialization and start the HCD. This function
5350 * allocates the DMA buffer pool, registers the USB bus, requests the
5351 * IRQ line, and calls hcd_start method.
5352 */
5353 retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5354 if (retval < 0)
5355 goto error4;
5356
5357 device_wakeup_enable(hcd->self.controller);
5358
5359 dwc2_hcd_dump_state(hsotg);
5360
5361 dwc2_enable_global_interrupts(hsotg);
5362
5363 return 0;
5364
5365error4:
5366 kmem_cache_destroy(hsotg->unaligned_cache);
5367 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5368 kmem_cache_destroy(hsotg->desc_gen_cache);
5369error3:
5370 dwc2_hcd_release(hsotg);
5371error2:
5372 usb_put_hcd(hcd);
5373error1:
5374
5375#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5376 kfree(hsotg->last_frame_num_array);
5377 kfree(hsotg->frame_num_array);
5378#endif
5379
5380 dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5381 return retval;
5382}
5383
5384/*
5385 * Removes the HCD.
5386 * Frees memory and resources associated with the HCD and deregisters the bus.
5387 */
5388void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5389{
5390 struct usb_hcd *hcd;
5391
5392 dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5393
5394 hcd = dwc2_hsotg_to_hcd(hsotg);
5395 dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5396
5397 if (!hcd) {
5398 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5399 __func__);
5400 return;
5401 }
5402
5403 if (!IS_ERR_OR_NULL(hsotg->uphy))
5404 otg_set_host(hsotg->uphy->otg, NULL);
5405
5406 usb_remove_hcd(hcd);
5407 hsotg->priv = NULL;
5408
5409 kmem_cache_destroy(hsotg->unaligned_cache);
5410 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5411 kmem_cache_destroy(hsotg->desc_gen_cache);
5412
5413 dwc2_hcd_release(hsotg);
5414 usb_put_hcd(hcd);
5415
5416#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5417 kfree(hsotg->last_frame_num_array);
5418 kfree(hsotg->frame_num_array);
5419#endif
5420}
5421
5422/**
5423 * dwc2_backup_host_registers() - Backup controller host registers.
5424 * When suspending usb bus, registers needs to be backuped
5425 * if controller power is disabled once suspended.
5426 *
5427 * @hsotg: Programming view of the DWC_otg controller
5428 */
5429int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5430{
5431 struct dwc2_hregs_backup *hr;
5432 int i;
5433
5434 dev_dbg(hsotg->dev, "%s\n", __func__);
5435
5436 /* Backup Host regs */
5437 hr = &hsotg->hr_backup;
5438 hr->hcfg = dwc2_readl(hsotg, HCFG);
5439 hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5440 for (i = 0; i < hsotg->params.host_channels; ++i)
5441 hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5442
5443 hr->hprt0 = dwc2_read_hprt0(hsotg);
5444 hr->hfir = dwc2_readl(hsotg, HFIR);
5445 hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5446 hr->valid = true;
5447
5448 return 0;
5449}
5450
5451/**
5452 * dwc2_restore_host_registers() - Restore controller host registers.
5453 * When resuming usb bus, device registers needs to be restored
5454 * if controller power were disabled.
5455 *
5456 * @hsotg: Programming view of the DWC_otg controller
5457 */
5458int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5459{
5460 struct dwc2_hregs_backup *hr;
5461 int i;
5462
5463 dev_dbg(hsotg->dev, "%s\n", __func__);
5464
5465 /* Restore host regs */
5466 hr = &hsotg->hr_backup;
5467 if (!hr->valid) {
5468 dev_err(hsotg->dev, "%s: no host registers to restore\n",
5469 __func__);
5470 return -EINVAL;
5471 }
5472 hr->valid = false;
5473
5474 dwc2_writel(hsotg, hr->hcfg, HCFG);
5475 dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5476
5477 for (i = 0; i < hsotg->params.host_channels; ++i)
5478 dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5479
5480 dwc2_writel(hsotg, hr->hprt0, HPRT0);
5481 dwc2_writel(hsotg, hr->hfir, HFIR);
5482 dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5483 hsotg->frame_number = 0;
5484
5485 return 0;
5486}
5487
5488/**
5489 * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5490 *
5491 * @hsotg: Programming view of the DWC_otg controller
5492 */
5493int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5494{
5495 unsigned long flags;
5496 int ret = 0;
5497 u32 hprt0;
5498 u32 pcgcctl;
5499 u32 gusbcfg;
5500 u32 gpwrdn;
5501
5502 dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5503 ret = dwc2_backup_global_registers(hsotg);
5504 if (ret) {
5505 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5506 __func__);
5507 return ret;
5508 }
5509 ret = dwc2_backup_host_registers(hsotg);
5510 if (ret) {
5511 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5512 __func__);
5513 return ret;
5514 }
5515
5516 /* Enter USB Suspend Mode */
5517 hprt0 = dwc2_readl(hsotg, HPRT0);
5518 hprt0 |= HPRT0_SUSP;
5519 hprt0 &= ~HPRT0_ENA;
5520 dwc2_writel(hsotg, hprt0, HPRT0);
5521
5522 /* Wait for the HPRT0.PrtSusp register field to be set */
5523 if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 5000))
5524 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5525
5526 /*
5527 * We need to disable interrupts to prevent servicing of any IRQ
5528 * during going to hibernation
5529 */
5530 spin_lock_irqsave(&hsotg->lock, flags);
5531 hsotg->lx_state = DWC2_L2;
5532
5533 gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5534 if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5535 /* ULPI interface */
5536 /* Suspend the Phy Clock */
5537 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5538 pcgcctl |= PCGCTL_STOPPCLK;
5539 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5540 udelay(10);
5541
5542 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5543 gpwrdn |= GPWRDN_PMUACTV;
5544 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5545 udelay(10);
5546 } else {
5547 /* UTMI+ Interface */
5548 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5549 gpwrdn |= GPWRDN_PMUACTV;
5550 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5551 udelay(10);
5552
5553 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5554 pcgcctl |= PCGCTL_STOPPCLK;
5555 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5556 udelay(10);
5557 }
5558
5559 /* Enable interrupts from wake up logic */
5560 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5561 gpwrdn |= GPWRDN_PMUINTSEL;
5562 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5563 udelay(10);
5564
5565 /* Unmask host mode interrupts in GPWRDN */
5566 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5567 gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5568 gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5569 gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5570 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5571 udelay(10);
5572
5573 /* Enable Power Down Clamp */
5574 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5575 gpwrdn |= GPWRDN_PWRDNCLMP;
5576 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5577 udelay(10);
5578
5579 /* Switch off VDD */
5580 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5581 gpwrdn |= GPWRDN_PWRDNSWTCH;
5582 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5583
5584 hsotg->hibernated = 1;
5585 hsotg->bus_suspended = 1;
5586 dev_dbg(hsotg->dev, "Host hibernation completed\n");
5587 spin_unlock_irqrestore(&hsotg->lock, flags);
5588 return ret;
5589}
5590
5591/*
5592 * dwc2_host_exit_hibernation()
5593 *
5594 * @hsotg: Programming view of the DWC_otg controller
5595 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5596 * @param reset: indicates whether resume is initiated by Reset.
5597 *
5598 * Return: non-zero if failed to enter to hibernation.
5599 *
5600 * This function is for exiting from Host mode hibernation by
5601 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5602 */
5603int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5604 int reset)
5605{
5606 u32 gpwrdn;
5607 u32 hprt0;
5608 int ret = 0;
5609 struct dwc2_gregs_backup *gr;
5610 struct dwc2_hregs_backup *hr;
5611
5612 gr = &hsotg->gr_backup;
5613 hr = &hsotg->hr_backup;
5614
5615 dev_dbg(hsotg->dev,
5616 "%s: called with rem_wakeup = %d reset = %d\n",
5617 __func__, rem_wakeup, reset);
5618
5619 dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5620 hsotg->hibernated = 0;
5621
5622 /*
5623 * This step is not described in functional spec but if not wait for
5624 * this delay, mismatch interrupts occurred because just after restore
5625 * core is in Device mode(gintsts.curmode == 0)
5626 */
5627 mdelay(100);
5628
5629 /* Clear all pending interupts */
5630 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5631
5632 /* De-assert Restore */
5633 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5634 gpwrdn &= ~GPWRDN_RESTORE;
5635 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5636 udelay(10);
5637
5638 /* Restore GUSBCFG, HCFG */
5639 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5640 dwc2_writel(hsotg, hr->hcfg, HCFG);
5641
5642 /* De-assert Wakeup Logic */
5643 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5644 gpwrdn &= ~GPWRDN_PMUACTV;
5645 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5646 udelay(10);
5647
5648 hprt0 = hr->hprt0;
5649 hprt0 |= HPRT0_PWR;
5650 hprt0 &= ~HPRT0_ENA;
5651 hprt0 &= ~HPRT0_SUSP;
5652 dwc2_writel(hsotg, hprt0, HPRT0);
5653
5654 hprt0 = hr->hprt0;
5655 hprt0 |= HPRT0_PWR;
5656 hprt0 &= ~HPRT0_ENA;
5657 hprt0 &= ~HPRT0_SUSP;
5658
5659 if (reset) {
5660 hprt0 |= HPRT0_RST;
5661 dwc2_writel(hsotg, hprt0, HPRT0);
5662
5663 /* Wait for Resume time and then program HPRT again */
5664 mdelay(60);
5665 hprt0 &= ~HPRT0_RST;
5666 dwc2_writel(hsotg, hprt0, HPRT0);
5667 } else {
5668 hprt0 |= HPRT0_RES;
5669 dwc2_writel(hsotg, hprt0, HPRT0);
5670
5671 /* Wait for Resume time and then program HPRT again */
5672 mdelay(100);
5673 hprt0 &= ~HPRT0_RES;
5674 dwc2_writel(hsotg, hprt0, HPRT0);
5675 }
5676 /* Clear all interrupt status */
5677 hprt0 = dwc2_readl(hsotg, HPRT0);
5678 hprt0 |= HPRT0_CONNDET;
5679 hprt0 |= HPRT0_ENACHG;
5680 hprt0 &= ~HPRT0_ENA;
5681 dwc2_writel(hsotg, hprt0, HPRT0);
5682
5683 hprt0 = dwc2_readl(hsotg, HPRT0);
5684
5685 /* Clear all pending interupts */
5686 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5687
5688 /* Restore global registers */
5689 ret = dwc2_restore_global_registers(hsotg);
5690 if (ret) {
5691 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5692 __func__);
5693 return ret;
5694 }
5695
5696 /* Restore host registers */
5697 ret = dwc2_restore_host_registers(hsotg);
5698 if (ret) {
5699 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5700 __func__);
5701 return ret;
5702 }
5703
5704 if (rem_wakeup) {
5705 dwc2_hcd_rem_wakeup(hsotg);
5706 /*
5707 * Change "port_connect_status_change" flag to re-enumerate,
5708 * because after exit from hibernation port connection status
5709 * is not detected.
5710 */
5711 hsotg->flags.b.port_connect_status_change = 1;
5712 }
5713
5714 hsotg->hibernated = 0;
5715 hsotg->bus_suspended = 0;
5716 hsotg->lx_state = DWC2_L0;
5717 dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5718 return ret;
5719}
5720
5721bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5722{
5723 struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5724
5725 /* If the controller isn't allowed to wakeup then we can power off. */
5726 if (!device_may_wakeup(dwc2->dev))
5727 return true;
5728
5729 /*
5730 * We don't want to power off the PHY if something under the
5731 * root hub has wakeup enabled.
5732 */
5733 if (usb_wakeup_enabled_descendants(root_hub))
5734 return false;
5735
5736 /* No reason to keep the PHY powered, so allow poweroff */
5737 return true;
5738}
5739
5740/**
5741 * dwc2_host_enter_partial_power_down() - Put controller in partial
5742 * power down.
5743 *
5744 * @hsotg: Programming view of the DWC_otg controller
5745 *
5746 * Return: non-zero if failed to enter host partial power down.
5747 *
5748 * This function is for entering Host mode partial power down.
5749 */
5750int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5751{
5752 u32 pcgcctl;
5753 u32 hprt0;
5754 int ret = 0;
5755
5756 dev_dbg(hsotg->dev, "Entering host partial power down started.\n");
5757
5758 /* Put this port in suspend mode. */
5759 hprt0 = dwc2_read_hprt0(hsotg);
5760 hprt0 |= HPRT0_SUSP;
5761 dwc2_writel(hsotg, hprt0, HPRT0);
5762 udelay(5);
5763
5764 /* Wait for the HPRT0.PrtSusp register field to be set */
5765 if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5766 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5767
5768 /* Backup all registers */
5769 ret = dwc2_backup_global_registers(hsotg);
5770 if (ret) {
5771 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5772 __func__);
5773 return ret;
5774 }
5775
5776 ret = dwc2_backup_host_registers(hsotg);
5777 if (ret) {
5778 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5779 __func__);
5780 return ret;
5781 }
5782
5783 /*
5784 * Clear any pending interrupts since dwc2 will not be able to
5785 * clear them after entering partial_power_down.
5786 */
5787 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5788
5789 /* Put the controller in low power state */
5790 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5791
5792 pcgcctl |= PCGCTL_PWRCLMP;
5793 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5794 udelay(5);
5795
5796 pcgcctl |= PCGCTL_RSTPDWNMODULE;
5797 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5798 udelay(5);
5799
5800 pcgcctl |= PCGCTL_STOPPCLK;
5801 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5802
5803 /* Set in_ppd flag to 1 as here core enters suspend. */
5804 hsotg->in_ppd = 1;
5805 hsotg->lx_state = DWC2_L2;
5806 hsotg->bus_suspended = true;
5807
5808 dev_dbg(hsotg->dev, "Entering host partial power down completed.\n");
5809
5810 return ret;
5811}
5812
5813/*
5814 * dwc2_host_exit_partial_power_down() - Exit controller from host partial
5815 * power down.
5816 *
5817 * @hsotg: Programming view of the DWC_otg controller
5818 * @rem_wakeup: indicates whether resume is initiated by Reset.
5819 * @restore: indicates whether need to restore the registers or not.
5820 *
5821 * Return: non-zero if failed to exit host partial power down.
5822 *
5823 * This function is for exiting from Host mode partial power down.
5824 */
5825int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5826 int rem_wakeup, bool restore)
5827{
5828 u32 pcgcctl;
5829 int ret = 0;
5830 u32 hprt0;
5831
5832 dev_dbg(hsotg->dev, "Exiting host partial power down started.\n");
5833
5834 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5835 pcgcctl &= ~PCGCTL_STOPPCLK;
5836 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5837 udelay(5);
5838
5839 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5840 pcgcctl &= ~PCGCTL_PWRCLMP;
5841 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5842 udelay(5);
5843
5844 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5845 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5846 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5847
5848 udelay(100);
5849 if (restore) {
5850 ret = dwc2_restore_global_registers(hsotg);
5851 if (ret) {
5852 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5853 __func__);
5854 return ret;
5855 }
5856
5857 ret = dwc2_restore_host_registers(hsotg);
5858 if (ret) {
5859 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5860 __func__);
5861 return ret;
5862 }
5863 }
5864
5865 /* Drive resume signaling and exit suspend mode on the port. */
5866 hprt0 = dwc2_read_hprt0(hsotg);
5867 hprt0 |= HPRT0_RES;
5868 hprt0 &= ~HPRT0_SUSP;
5869 dwc2_writel(hsotg, hprt0, HPRT0);
5870 udelay(5);
5871
5872 if (!rem_wakeup) {
5873 /* Stop driveing resume signaling on the port. */
5874 hprt0 = dwc2_read_hprt0(hsotg);
5875 hprt0 &= ~HPRT0_RES;
5876 dwc2_writel(hsotg, hprt0, HPRT0);
5877
5878 hsotg->bus_suspended = false;
5879 } else {
5880 /* Turn on the port power bit. */
5881 hprt0 = dwc2_read_hprt0(hsotg);
5882 hprt0 |= HPRT0_PWR;
5883 dwc2_writel(hsotg, hprt0, HPRT0);
5884
5885 /* Connect hcd. */
5886 dwc2_hcd_connect(hsotg);
5887
5888 mod_timer(&hsotg->wkp_timer,
5889 jiffies + msecs_to_jiffies(71));
5890 }
5891
5892 /* Set lx_state to and in_ppd to 0 as here core exits from suspend. */
5893 hsotg->in_ppd = 0;
5894 hsotg->lx_state = DWC2_L0;
5895
5896 dev_dbg(hsotg->dev, "Exiting host partial power down completed.\n");
5897 return ret;
5898}
5899
5900/**
5901 * dwc2_host_enter_clock_gating() - Put controller in clock gating.
5902 *
5903 * @hsotg: Programming view of the DWC_otg controller
5904 *
5905 * This function is for entering Host mode clock gating.
5906 */
5907void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg)
5908{
5909 u32 hprt0;
5910 u32 pcgctl;
5911
5912 dev_dbg(hsotg->dev, "Entering host clock gating.\n");
5913
5914 /* Put this port in suspend mode. */
5915 hprt0 = dwc2_read_hprt0(hsotg);
5916 hprt0 |= HPRT0_SUSP;
5917 dwc2_writel(hsotg, hprt0, HPRT0);
5918
5919 /* Set the Phy Clock bit as suspend is received. */
5920 pcgctl = dwc2_readl(hsotg, PCGCTL);
5921 pcgctl |= PCGCTL_STOPPCLK;
5922 dwc2_writel(hsotg, pcgctl, PCGCTL);
5923 udelay(5);
5924
5925 /* Set the Gate hclk as suspend is received. */
5926 pcgctl = dwc2_readl(hsotg, PCGCTL);
5927 pcgctl |= PCGCTL_GATEHCLK;
5928 dwc2_writel(hsotg, pcgctl, PCGCTL);
5929 udelay(5);
5930
5931 hsotg->bus_suspended = true;
5932 hsotg->lx_state = DWC2_L2;
5933}
5934
5935/**
5936 * dwc2_host_exit_clock_gating() - Exit controller from clock gating.
5937 *
5938 * @hsotg: Programming view of the DWC_otg controller
5939 * @rem_wakeup: indicates whether resume is initiated by remote wakeup
5940 *
5941 * This function is for exiting Host mode clock gating.
5942 */
5943void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5944{
5945 u32 hprt0;
5946 u32 pcgctl;
5947
5948 dev_dbg(hsotg->dev, "Exiting host clock gating.\n");
5949
5950 /* Clear the Gate hclk. */
5951 pcgctl = dwc2_readl(hsotg, PCGCTL);
5952 pcgctl &= ~PCGCTL_GATEHCLK;
5953 dwc2_writel(hsotg, pcgctl, PCGCTL);
5954 udelay(5);
5955
5956 /* Phy Clock bit. */
5957 pcgctl = dwc2_readl(hsotg, PCGCTL);
5958 pcgctl &= ~PCGCTL_STOPPCLK;
5959 dwc2_writel(hsotg, pcgctl, PCGCTL);
5960 udelay(5);
5961
5962 /* Drive resume signaling and exit suspend mode on the port. */
5963 hprt0 = dwc2_read_hprt0(hsotg);
5964 hprt0 |= HPRT0_RES;
5965 hprt0 &= ~HPRT0_SUSP;
5966 dwc2_writel(hsotg, hprt0, HPRT0);
5967 udelay(5);
5968
5969 if (!rem_wakeup) {
5970 /* In case of port resume need to wait for 40 ms */
5971 msleep(USB_RESUME_TIMEOUT);
5972
5973 /* Stop driveing resume signaling on the port. */
5974 hprt0 = dwc2_read_hprt0(hsotg);
5975 hprt0 &= ~HPRT0_RES;
5976 dwc2_writel(hsotg, hprt0, HPRT0);
5977
5978 hsotg->bus_suspended = false;
5979 hsotg->lx_state = DWC2_L0;
5980 } else {
5981 mod_timer(&hsotg->wkp_timer,
5982 jiffies + msecs_to_jiffies(71));
5983 }
5984}