Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * CPPC (Collaborative Processor Performance Control) driver for
4 * interfacing with the CPUfreq layer and governors. See
5 * cppc_acpi.c for CPPC specific methods.
6 *
7 * (C) Copyright 2014, 2015 Linaro Ltd.
8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9 */
10
11#define pr_fmt(fmt) "CPPC Cpufreq:" fmt
12
13#include <linux/arch_topology.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/delay.h>
17#include <linux/cpu.h>
18#include <linux/cpufreq.h>
19#include <linux/dmi.h>
20#include <linux/irq_work.h>
21#include <linux/kthread.h>
22#include <linux/time.h>
23#include <linux/vmalloc.h>
24#include <uapi/linux/sched/types.h>
25
26#include <asm/unaligned.h>
27
28#include <acpi/cppc_acpi.h>
29
30/* Minimum struct length needed for the DMI processor entry we want */
31#define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48
32
33/* Offset in the DMI processor structure for the max frequency */
34#define DMI_PROCESSOR_MAX_SPEED 0x14
35
36/*
37 * This list contains information parsed from per CPU ACPI _CPC and _PSD
38 * structures: e.g. the highest and lowest supported performance, capabilities,
39 * desired performance, level requested etc. Depending on the share_type, not
40 * all CPUs will have an entry in the list.
41 */
42static LIST_HEAD(cpu_data_list);
43
44static bool boost_supported;
45
46struct cppc_workaround_oem_info {
47 char oem_id[ACPI_OEM_ID_SIZE + 1];
48 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
49 u32 oem_revision;
50};
51
52static struct cppc_workaround_oem_info wa_info[] = {
53 {
54 .oem_id = "HISI ",
55 .oem_table_id = "HIP07 ",
56 .oem_revision = 0,
57 }, {
58 .oem_id = "HISI ",
59 .oem_table_id = "HIP08 ",
60 .oem_revision = 0,
61 }
62};
63
64static struct cpufreq_driver cppc_cpufreq_driver;
65
66#ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE
67
68/* Frequency invariance support */
69struct cppc_freq_invariance {
70 int cpu;
71 struct irq_work irq_work;
72 struct kthread_work work;
73 struct cppc_perf_fb_ctrs prev_perf_fb_ctrs;
74 struct cppc_cpudata *cpu_data;
75};
76
77static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv);
78static struct kthread_worker *kworker_fie;
79
80static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu);
81static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
82 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
83 struct cppc_perf_fb_ctrs *fb_ctrs_t1);
84
85/**
86 * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance
87 * @work: The work item.
88 *
89 * The CPPC driver register itself with the topology core to provide its own
90 * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which
91 * gets called by the scheduler on every tick.
92 *
93 * Note that the arch specific counters have higher priority than CPPC counters,
94 * if available, though the CPPC driver doesn't need to have any special
95 * handling for that.
96 *
97 * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we
98 * reach here from hard-irq context), which then schedules a normal work item
99 * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable
100 * based on the counter updates since the last tick.
101 */
102static void cppc_scale_freq_workfn(struct kthread_work *work)
103{
104 struct cppc_freq_invariance *cppc_fi;
105 struct cppc_perf_fb_ctrs fb_ctrs = {0};
106 struct cppc_cpudata *cpu_data;
107 unsigned long local_freq_scale;
108 u64 perf;
109
110 cppc_fi = container_of(work, struct cppc_freq_invariance, work);
111 cpu_data = cppc_fi->cpu_data;
112
113 if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) {
114 pr_warn("%s: failed to read perf counters\n", __func__);
115 return;
116 }
117
118 perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs,
119 &fb_ctrs);
120 cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
121
122 perf <<= SCHED_CAPACITY_SHIFT;
123 local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf);
124
125 /* This can happen due to counter's overflow */
126 if (unlikely(local_freq_scale > 1024))
127 local_freq_scale = 1024;
128
129 per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale;
130}
131
132static void cppc_irq_work(struct irq_work *irq_work)
133{
134 struct cppc_freq_invariance *cppc_fi;
135
136 cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work);
137 kthread_queue_work(kworker_fie, &cppc_fi->work);
138}
139
140static void cppc_scale_freq_tick(void)
141{
142 struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id());
143
144 /*
145 * cppc_get_perf_ctrs() can potentially sleep, call that from the right
146 * context.
147 */
148 irq_work_queue(&cppc_fi->irq_work);
149}
150
151static struct scale_freq_data cppc_sftd = {
152 .source = SCALE_FREQ_SOURCE_CPPC,
153 .set_freq_scale = cppc_scale_freq_tick,
154};
155
156static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
157{
158 struct cppc_freq_invariance *cppc_fi;
159 int cpu, ret;
160
161 if (cppc_cpufreq_driver.get == hisi_cppc_cpufreq_get_rate)
162 return;
163
164 for_each_cpu(cpu, policy->cpus) {
165 cppc_fi = &per_cpu(cppc_freq_inv, cpu);
166 cppc_fi->cpu = cpu;
167 cppc_fi->cpu_data = policy->driver_data;
168 kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn);
169 init_irq_work(&cppc_fi->irq_work, cppc_irq_work);
170
171 ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs);
172 if (ret) {
173 pr_warn("%s: failed to read perf counters for cpu:%d: %d\n",
174 __func__, cpu, ret);
175
176 /*
177 * Don't abort if the CPU was offline while the driver
178 * was getting registered.
179 */
180 if (cpu_online(cpu))
181 return;
182 }
183 }
184
185 /* Register for freq-invariance */
186 topology_set_scale_freq_source(&cppc_sftd, policy->cpus);
187}
188
189/*
190 * We free all the resources on policy's removal and not on CPU removal as the
191 * irq-work are per-cpu and the hotplug core takes care of flushing the pending
192 * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work
193 * fires on another CPU after the concerned CPU is removed, it won't harm.
194 *
195 * We just need to make sure to remove them all on policy->exit().
196 */
197static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
198{
199 struct cppc_freq_invariance *cppc_fi;
200 int cpu;
201
202 if (cppc_cpufreq_driver.get == hisi_cppc_cpufreq_get_rate)
203 return;
204
205 /* policy->cpus will be empty here, use related_cpus instead */
206 topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus);
207
208 for_each_cpu(cpu, policy->related_cpus) {
209 cppc_fi = &per_cpu(cppc_freq_inv, cpu);
210 irq_work_sync(&cppc_fi->irq_work);
211 kthread_cancel_work_sync(&cppc_fi->work);
212 }
213}
214
215static void __init cppc_freq_invariance_init(void)
216{
217 struct sched_attr attr = {
218 .size = sizeof(struct sched_attr),
219 .sched_policy = SCHED_DEADLINE,
220 .sched_nice = 0,
221 .sched_priority = 0,
222 /*
223 * Fake (unused) bandwidth; workaround to "fix"
224 * priority inheritance.
225 */
226 .sched_runtime = 1000000,
227 .sched_deadline = 10000000,
228 .sched_period = 10000000,
229 };
230 int ret;
231
232 if (cppc_cpufreq_driver.get == hisi_cppc_cpufreq_get_rate)
233 return;
234
235 kworker_fie = kthread_create_worker(0, "cppc_fie");
236 if (IS_ERR(kworker_fie))
237 return;
238
239 ret = sched_setattr_nocheck(kworker_fie->task, &attr);
240 if (ret) {
241 pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__,
242 ret);
243 kthread_destroy_worker(kworker_fie);
244 return;
245 }
246}
247
248static void cppc_freq_invariance_exit(void)
249{
250 if (cppc_cpufreq_driver.get == hisi_cppc_cpufreq_get_rate)
251 return;
252
253 kthread_destroy_worker(kworker_fie);
254 kworker_fie = NULL;
255}
256
257#else
258static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
259{
260}
261
262static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
263{
264}
265
266static inline void cppc_freq_invariance_init(void)
267{
268}
269
270static inline void cppc_freq_invariance_exit(void)
271{
272}
273#endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */
274
275/* Callback function used to retrieve the max frequency from DMI */
276static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
277{
278 const u8 *dmi_data = (const u8 *)dm;
279 u16 *mhz = (u16 *)private;
280
281 if (dm->type == DMI_ENTRY_PROCESSOR &&
282 dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
283 u16 val = (u16)get_unaligned((const u16 *)
284 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
285 *mhz = val > *mhz ? val : *mhz;
286 }
287}
288
289/* Look up the max frequency in DMI */
290static u64 cppc_get_dmi_max_khz(void)
291{
292 u16 mhz = 0;
293
294 dmi_walk(cppc_find_dmi_mhz, &mhz);
295
296 /*
297 * Real stupid fallback value, just in case there is no
298 * actual value set.
299 */
300 mhz = mhz ? mhz : 1;
301
302 return (1000 * mhz);
303}
304
305/*
306 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
307 * use them to convert perf to freq and vice versa. The conversion is
308 * extrapolated as an affine function passing by the 2 points:
309 * - (Low perf, Low freq)
310 * - (Nominal perf, Nominal perf)
311 */
312static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu_data,
313 unsigned int perf)
314{
315 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
316 s64 retval, offset = 0;
317 static u64 max_khz;
318 u64 mul, div;
319
320 if (caps->lowest_freq && caps->nominal_freq) {
321 mul = caps->nominal_freq - caps->lowest_freq;
322 div = caps->nominal_perf - caps->lowest_perf;
323 offset = caps->nominal_freq - div64_u64(caps->nominal_perf * mul, div);
324 } else {
325 if (!max_khz)
326 max_khz = cppc_get_dmi_max_khz();
327 mul = max_khz;
328 div = caps->highest_perf;
329 }
330
331 retval = offset + div64_u64(perf * mul, div);
332 if (retval >= 0)
333 return retval;
334 return 0;
335}
336
337static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu_data,
338 unsigned int freq)
339{
340 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
341 s64 retval, offset = 0;
342 static u64 max_khz;
343 u64 mul, div;
344
345 if (caps->lowest_freq && caps->nominal_freq) {
346 mul = caps->nominal_perf - caps->lowest_perf;
347 div = caps->nominal_freq - caps->lowest_freq;
348 offset = caps->nominal_perf - div64_u64(caps->nominal_freq * mul, div);
349 } else {
350 if (!max_khz)
351 max_khz = cppc_get_dmi_max_khz();
352 mul = caps->highest_perf;
353 div = max_khz;
354 }
355
356 retval = offset + div64_u64(freq * mul, div);
357 if (retval >= 0)
358 return retval;
359 return 0;
360}
361
362static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
363 unsigned int target_freq,
364 unsigned int relation)
365
366{
367 struct cppc_cpudata *cpu_data = policy->driver_data;
368 unsigned int cpu = policy->cpu;
369 struct cpufreq_freqs freqs;
370 u32 desired_perf;
371 int ret = 0;
372
373 desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq);
374 /* Return if it is exactly the same perf */
375 if (desired_perf == cpu_data->perf_ctrls.desired_perf)
376 return ret;
377
378 cpu_data->perf_ctrls.desired_perf = desired_perf;
379 freqs.old = policy->cur;
380 freqs.new = target_freq;
381
382 cpufreq_freq_transition_begin(policy, &freqs);
383 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
384 cpufreq_freq_transition_end(policy, &freqs, ret != 0);
385
386 if (ret)
387 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
388 cpu, ret);
389
390 return ret;
391}
392
393static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy,
394 unsigned int target_freq)
395{
396 struct cppc_cpudata *cpu_data = policy->driver_data;
397 unsigned int cpu = policy->cpu;
398 u32 desired_perf;
399 int ret;
400
401 desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq);
402 cpu_data->perf_ctrls.desired_perf = desired_perf;
403 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
404
405 if (ret) {
406 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
407 cpu, ret);
408 return 0;
409 }
410
411 return target_freq;
412}
413
414static int cppc_verify_policy(struct cpufreq_policy_data *policy)
415{
416 cpufreq_verify_within_cpu_limits(policy);
417 return 0;
418}
419
420/*
421 * The PCC subspace describes the rate at which platform can accept commands
422 * on the shared PCC channel (including READs which do not count towards freq
423 * transition requests), so ideally we need to use the PCC values as a fallback
424 * if we don't have a platform specific transition_delay_us
425 */
426#ifdef CONFIG_ARM64
427#include <asm/cputype.h>
428
429static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
430{
431 unsigned long implementor = read_cpuid_implementor();
432 unsigned long part_num = read_cpuid_part_number();
433
434 switch (implementor) {
435 case ARM_CPU_IMP_QCOM:
436 switch (part_num) {
437 case QCOM_CPU_PART_FALKOR_V1:
438 case QCOM_CPU_PART_FALKOR:
439 return 10000;
440 }
441 }
442 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
443}
444#else
445static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
446{
447 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
448}
449#endif
450
451#if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL)
452
453static DEFINE_PER_CPU(unsigned int, efficiency_class);
454static void cppc_cpufreq_register_em(struct cpufreq_policy *policy);
455
456/* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */
457#define CPPC_EM_CAP_STEP (20)
458/* Increase the cost value by CPPC_EM_COST_STEP every performance state. */
459#define CPPC_EM_COST_STEP (1)
460/* Add a cost gap correspnding to the energy of 4 CPUs. */
461#define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \
462 / CPPC_EM_CAP_STEP)
463
464static unsigned int get_perf_level_count(struct cpufreq_policy *policy)
465{
466 struct cppc_perf_caps *perf_caps;
467 unsigned int min_cap, max_cap;
468 struct cppc_cpudata *cpu_data;
469 int cpu = policy->cpu;
470
471 cpu_data = policy->driver_data;
472 perf_caps = &cpu_data->perf_caps;
473 max_cap = arch_scale_cpu_capacity(cpu);
474 min_cap = div_u64(max_cap * perf_caps->lowest_perf, perf_caps->highest_perf);
475 if ((min_cap == 0) || (max_cap < min_cap))
476 return 0;
477 return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP;
478}
479
480/*
481 * The cost is defined as:
482 * cost = power * max_frequency / frequency
483 */
484static inline unsigned long compute_cost(int cpu, int step)
485{
486 return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) +
487 step * CPPC_EM_COST_STEP;
488}
489
490static int cppc_get_cpu_power(struct device *cpu_dev,
491 unsigned long *power, unsigned long *KHz)
492{
493 unsigned long perf_step, perf_prev, perf, perf_check;
494 unsigned int min_step, max_step, step, step_check;
495 unsigned long prev_freq = *KHz;
496 unsigned int min_cap, max_cap;
497 struct cpufreq_policy *policy;
498
499 struct cppc_perf_caps *perf_caps;
500 struct cppc_cpudata *cpu_data;
501
502 policy = cpufreq_cpu_get_raw(cpu_dev->id);
503 cpu_data = policy->driver_data;
504 perf_caps = &cpu_data->perf_caps;
505 max_cap = arch_scale_cpu_capacity(cpu_dev->id);
506 min_cap = div_u64(max_cap * perf_caps->lowest_perf,
507 perf_caps->highest_perf);
508
509 perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
510 min_step = min_cap / CPPC_EM_CAP_STEP;
511 max_step = max_cap / CPPC_EM_CAP_STEP;
512
513 perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, *KHz);
514 step = perf_prev / perf_step;
515
516 if (step > max_step)
517 return -EINVAL;
518
519 if (min_step == max_step) {
520 step = max_step;
521 perf = perf_caps->highest_perf;
522 } else if (step < min_step) {
523 step = min_step;
524 perf = perf_caps->lowest_perf;
525 } else {
526 step++;
527 if (step == max_step)
528 perf = perf_caps->highest_perf;
529 else
530 perf = step * perf_step;
531 }
532
533 *KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf);
534 perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz);
535 step_check = perf_check / perf_step;
536
537 /*
538 * To avoid bad integer approximation, check that new frequency value
539 * increased and that the new frequency will be converted to the
540 * desired step value.
541 */
542 while ((*KHz == prev_freq) || (step_check != step)) {
543 perf++;
544 *KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf);
545 perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz);
546 step_check = perf_check / perf_step;
547 }
548
549 /*
550 * With an artificial EM, only the cost value is used. Still the power
551 * is populated such as 0 < power < EM_MAX_POWER. This allows to add
552 * more sense to the artificial performance states.
553 */
554 *power = compute_cost(cpu_dev->id, step);
555
556 return 0;
557}
558
559static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz,
560 unsigned long *cost)
561{
562 unsigned long perf_step, perf_prev;
563 struct cppc_perf_caps *perf_caps;
564 struct cpufreq_policy *policy;
565 struct cppc_cpudata *cpu_data;
566 unsigned int max_cap;
567 int step;
568
569 policy = cpufreq_cpu_get_raw(cpu_dev->id);
570 cpu_data = policy->driver_data;
571 perf_caps = &cpu_data->perf_caps;
572 max_cap = arch_scale_cpu_capacity(cpu_dev->id);
573
574 perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, KHz);
575 perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
576 step = perf_prev / perf_step;
577
578 *cost = compute_cost(cpu_dev->id, step);
579
580 return 0;
581}
582
583static int populate_efficiency_class(void)
584{
585 struct acpi_madt_generic_interrupt *gicc;
586 DECLARE_BITMAP(used_classes, 256) = {};
587 int class, cpu, index;
588
589 for_each_possible_cpu(cpu) {
590 gicc = acpi_cpu_get_madt_gicc(cpu);
591 class = gicc->efficiency_class;
592 bitmap_set(used_classes, class, 1);
593 }
594
595 if (bitmap_weight(used_classes, 256) <= 1) {
596 pr_debug("Efficiency classes are all equal (=%d). "
597 "No EM registered", class);
598 return -EINVAL;
599 }
600
601 /*
602 * Squeeze efficiency class values on [0:#efficiency_class-1].
603 * Values are per spec in [0:255].
604 */
605 index = 0;
606 for_each_set_bit(class, used_classes, 256) {
607 for_each_possible_cpu(cpu) {
608 gicc = acpi_cpu_get_madt_gicc(cpu);
609 if (gicc->efficiency_class == class)
610 per_cpu(efficiency_class, cpu) = index;
611 }
612 index++;
613 }
614 cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em;
615
616 return 0;
617}
618
619static void cppc_cpufreq_register_em(struct cpufreq_policy *policy)
620{
621 struct cppc_cpudata *cpu_data;
622 struct em_data_callback em_cb =
623 EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost);
624
625 cpu_data = policy->driver_data;
626 em_dev_register_perf_domain(get_cpu_device(policy->cpu),
627 get_perf_level_count(policy), &em_cb,
628 cpu_data->shared_cpu_map, 0);
629}
630
631#else
632static int populate_efficiency_class(void)
633{
634 return 0;
635}
636#endif
637
638static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
639{
640 struct cppc_cpudata *cpu_data;
641 int ret;
642
643 cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
644 if (!cpu_data)
645 goto out;
646
647 if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
648 goto free_cpu;
649
650 ret = acpi_get_psd_map(cpu, cpu_data);
651 if (ret) {
652 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
653 goto free_mask;
654 }
655
656 ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
657 if (ret) {
658 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
659 goto free_mask;
660 }
661
662 /* Convert the lowest and nominal freq from MHz to KHz */
663 cpu_data->perf_caps.lowest_freq *= 1000;
664 cpu_data->perf_caps.nominal_freq *= 1000;
665
666 list_add(&cpu_data->node, &cpu_data_list);
667
668 return cpu_data;
669
670free_mask:
671 free_cpumask_var(cpu_data->shared_cpu_map);
672free_cpu:
673 kfree(cpu_data);
674out:
675 return NULL;
676}
677
678static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy)
679{
680 struct cppc_cpudata *cpu_data = policy->driver_data;
681
682 list_del(&cpu_data->node);
683 free_cpumask_var(cpu_data->shared_cpu_map);
684 kfree(cpu_data);
685 policy->driver_data = NULL;
686}
687
688static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
689{
690 unsigned int cpu = policy->cpu;
691 struct cppc_cpudata *cpu_data;
692 struct cppc_perf_caps *caps;
693 int ret;
694
695 cpu_data = cppc_cpufreq_get_cpu_data(cpu);
696 if (!cpu_data) {
697 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
698 return -ENODEV;
699 }
700 caps = &cpu_data->perf_caps;
701 policy->driver_data = cpu_data;
702
703 /*
704 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
705 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
706 */
707 policy->min = cppc_cpufreq_perf_to_khz(cpu_data,
708 caps->lowest_nonlinear_perf);
709 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
710 caps->nominal_perf);
711
712 /*
713 * Set cpuinfo.min_freq to Lowest to make the full range of performance
714 * available if userspace wants to use any perf between lowest & lowest
715 * nonlinear perf
716 */
717 policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu_data,
718 caps->lowest_perf);
719 policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu_data,
720 caps->nominal_perf);
721
722 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
723 policy->shared_type = cpu_data->shared_type;
724
725 switch (policy->shared_type) {
726 case CPUFREQ_SHARED_TYPE_HW:
727 case CPUFREQ_SHARED_TYPE_NONE:
728 /* Nothing to be done - we'll have a policy for each CPU */
729 break;
730 case CPUFREQ_SHARED_TYPE_ANY:
731 /*
732 * All CPUs in the domain will share a policy and all cpufreq
733 * operations will use a single cppc_cpudata structure stored
734 * in policy->driver_data.
735 */
736 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
737 break;
738 default:
739 pr_debug("Unsupported CPU co-ord type: %d\n",
740 policy->shared_type);
741 ret = -EFAULT;
742 goto out;
743 }
744
745 policy->fast_switch_possible = cppc_allow_fast_switch();
746 policy->dvfs_possible_from_any_cpu = true;
747
748 /*
749 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
750 * is supported.
751 */
752 if (caps->highest_perf > caps->nominal_perf)
753 boost_supported = true;
754
755 /* Set policy->cur to max now. The governors will adjust later. */
756 policy->cur = cppc_cpufreq_perf_to_khz(cpu_data, caps->highest_perf);
757 cpu_data->perf_ctrls.desired_perf = caps->highest_perf;
758
759 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
760 if (ret) {
761 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
762 caps->highest_perf, cpu, ret);
763 goto out;
764 }
765
766 cppc_cpufreq_cpu_fie_init(policy);
767 return 0;
768
769out:
770 cppc_cpufreq_put_cpu_data(policy);
771 return ret;
772}
773
774static int cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy)
775{
776 struct cppc_cpudata *cpu_data = policy->driver_data;
777 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
778 unsigned int cpu = policy->cpu;
779 int ret;
780
781 cppc_cpufreq_cpu_fie_exit(policy);
782
783 cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
784
785 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
786 if (ret)
787 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
788 caps->lowest_perf, cpu, ret);
789
790 cppc_cpufreq_put_cpu_data(policy);
791 return 0;
792}
793
794static inline u64 get_delta(u64 t1, u64 t0)
795{
796 if (t1 > t0 || t0 > ~(u32)0)
797 return t1 - t0;
798
799 return (u32)t1 - (u32)t0;
800}
801
802static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
803 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
804 struct cppc_perf_fb_ctrs *fb_ctrs_t1)
805{
806 u64 delta_reference, delta_delivered;
807 u64 reference_perf;
808
809 reference_perf = fb_ctrs_t0->reference_perf;
810
811 delta_reference = get_delta(fb_ctrs_t1->reference,
812 fb_ctrs_t0->reference);
813 delta_delivered = get_delta(fb_ctrs_t1->delivered,
814 fb_ctrs_t0->delivered);
815
816 /* Check to avoid divide-by zero and invalid delivered_perf */
817 if (!delta_reference || !delta_delivered)
818 return cpu_data->perf_ctrls.desired_perf;
819
820 return (reference_perf * delta_delivered) / delta_reference;
821}
822
823static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
824{
825 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
826 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
827 struct cppc_cpudata *cpu_data = policy->driver_data;
828 u64 delivered_perf;
829 int ret;
830
831 cpufreq_cpu_put(policy);
832
833 ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0);
834 if (ret)
835 return ret;
836
837 udelay(2); /* 2usec delay between sampling */
838
839 ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1);
840 if (ret)
841 return ret;
842
843 delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0,
844 &fb_ctrs_t1);
845
846 return cppc_cpufreq_perf_to_khz(cpu_data, delivered_perf);
847}
848
849static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
850{
851 struct cppc_cpudata *cpu_data = policy->driver_data;
852 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
853 int ret;
854
855 if (!boost_supported) {
856 pr_err("BOOST not supported by CPU or firmware\n");
857 return -EINVAL;
858 }
859
860 if (state)
861 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
862 caps->highest_perf);
863 else
864 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
865 caps->nominal_perf);
866 policy->cpuinfo.max_freq = policy->max;
867
868 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
869 if (ret < 0)
870 return ret;
871
872 return 0;
873}
874
875static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
876{
877 struct cppc_cpudata *cpu_data = policy->driver_data;
878
879 return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
880}
881cpufreq_freq_attr_ro(freqdomain_cpus);
882
883static struct freq_attr *cppc_cpufreq_attr[] = {
884 &freqdomain_cpus,
885 NULL,
886};
887
888static struct cpufreq_driver cppc_cpufreq_driver = {
889 .flags = CPUFREQ_CONST_LOOPS,
890 .verify = cppc_verify_policy,
891 .target = cppc_cpufreq_set_target,
892 .get = cppc_cpufreq_get_rate,
893 .fast_switch = cppc_cpufreq_fast_switch,
894 .init = cppc_cpufreq_cpu_init,
895 .exit = cppc_cpufreq_cpu_exit,
896 .set_boost = cppc_cpufreq_set_boost,
897 .attr = cppc_cpufreq_attr,
898 .name = "cppc_cpufreq",
899};
900
901/*
902 * HISI platform does not support delivered performance counter and
903 * reference performance counter. It can calculate the performance using the
904 * platform specific mechanism. We reuse the desired performance register to
905 * store the real performance calculated by the platform.
906 */
907static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu)
908{
909 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
910 struct cppc_cpudata *cpu_data = policy->driver_data;
911 u64 desired_perf;
912 int ret;
913
914 cpufreq_cpu_put(policy);
915
916 ret = cppc_get_desired_perf(cpu, &desired_perf);
917 if (ret < 0)
918 return -EIO;
919
920 return cppc_cpufreq_perf_to_khz(cpu_data, desired_perf);
921}
922
923static void cppc_check_hisi_workaround(void)
924{
925 struct acpi_table_header *tbl;
926 acpi_status status = AE_OK;
927 int i;
928
929 status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
930 if (ACPI_FAILURE(status) || !tbl)
931 return;
932
933 for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
934 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
935 !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
936 wa_info[i].oem_revision == tbl->oem_revision) {
937 /* Overwrite the get() callback */
938 cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate;
939 break;
940 }
941 }
942
943 acpi_put_table(tbl);
944}
945
946static int __init cppc_cpufreq_init(void)
947{
948 int ret;
949
950 if ((acpi_disabled) || !acpi_cpc_valid())
951 return -ENODEV;
952
953 cppc_check_hisi_workaround();
954 cppc_freq_invariance_init();
955 populate_efficiency_class();
956
957 ret = cpufreq_register_driver(&cppc_cpufreq_driver);
958 if (ret)
959 cppc_freq_invariance_exit();
960
961 return ret;
962}
963
964static inline void free_cpu_data(void)
965{
966 struct cppc_cpudata *iter, *tmp;
967
968 list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) {
969 free_cpumask_var(iter->shared_cpu_map);
970 list_del(&iter->node);
971 kfree(iter);
972 }
973
974}
975
976static void __exit cppc_cpufreq_exit(void)
977{
978 cpufreq_unregister_driver(&cppc_cpufreq_driver);
979 cppc_freq_invariance_exit();
980
981 free_cpu_data();
982}
983
984module_exit(cppc_cpufreq_exit);
985MODULE_AUTHOR("Ashwin Chaugule");
986MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
987MODULE_LICENSE("GPL");
988
989late_initcall(cppc_cpufreq_init);
990
991static const struct acpi_device_id cppc_acpi_ids[] __used = {
992 {ACPI_PROCESSOR_DEVICE_HID, },
993 {}
994};
995
996MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);