at v6.0 716 lines 19 kB view raw
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * cacheinfo support - processor cache information via sysfs 4 * 5 * Based on arch/x86/kernel/cpu/intel_cacheinfo.c 6 * Author: Sudeep Holla <sudeep.holla@arm.com> 7 */ 8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10#include <linux/acpi.h> 11#include <linux/bitops.h> 12#include <linux/cacheinfo.h> 13#include <linux/compiler.h> 14#include <linux/cpu.h> 15#include <linux/device.h> 16#include <linux/init.h> 17#include <linux/of_device.h> 18#include <linux/sched.h> 19#include <linux/slab.h> 20#include <linux/smp.h> 21#include <linux/sysfs.h> 22 23/* pointer to per cpu cacheinfo */ 24static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo); 25#define ci_cacheinfo(cpu) (&per_cpu(ci_cpu_cacheinfo, cpu)) 26#define cache_leaves(cpu) (ci_cacheinfo(cpu)->num_leaves) 27#define per_cpu_cacheinfo(cpu) (ci_cacheinfo(cpu)->info_list) 28#define per_cpu_cacheinfo_idx(cpu, idx) \ 29 (per_cpu_cacheinfo(cpu) + (idx)) 30 31struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu) 32{ 33 return ci_cacheinfo(cpu); 34} 35 36static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf, 37 struct cacheinfo *sib_leaf) 38{ 39 /* 40 * For non DT/ACPI systems, assume unique level 1 caches, 41 * system-wide shared caches for all other levels. This will be used 42 * only if arch specific code has not populated shared_cpu_map 43 */ 44 if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI))) 45 return !(this_leaf->level == 1); 46 47 if ((sib_leaf->attributes & CACHE_ID) && 48 (this_leaf->attributes & CACHE_ID)) 49 return sib_leaf->id == this_leaf->id; 50 51 return sib_leaf->fw_token == this_leaf->fw_token; 52} 53 54bool last_level_cache_is_valid(unsigned int cpu) 55{ 56 struct cacheinfo *llc; 57 58 if (!cache_leaves(cpu)) 59 return false; 60 61 llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); 62 63 return (llc->attributes & CACHE_ID) || !!llc->fw_token; 64 65} 66 67bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y) 68{ 69 struct cacheinfo *llc_x, *llc_y; 70 71 if (!last_level_cache_is_valid(cpu_x) || 72 !last_level_cache_is_valid(cpu_y)) 73 return false; 74 75 llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1); 76 llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1); 77 78 return cache_leaves_are_shared(llc_x, llc_y); 79} 80 81#ifdef CONFIG_OF 82/* OF properties to query for a given cache type */ 83struct cache_type_info { 84 const char *size_prop; 85 const char *line_size_props[2]; 86 const char *nr_sets_prop; 87}; 88 89static const struct cache_type_info cache_type_info[] = { 90 { 91 .size_prop = "cache-size", 92 .line_size_props = { "cache-line-size", 93 "cache-block-size", }, 94 .nr_sets_prop = "cache-sets", 95 }, { 96 .size_prop = "i-cache-size", 97 .line_size_props = { "i-cache-line-size", 98 "i-cache-block-size", }, 99 .nr_sets_prop = "i-cache-sets", 100 }, { 101 .size_prop = "d-cache-size", 102 .line_size_props = { "d-cache-line-size", 103 "d-cache-block-size", }, 104 .nr_sets_prop = "d-cache-sets", 105 }, 106}; 107 108static inline int get_cacheinfo_idx(enum cache_type type) 109{ 110 if (type == CACHE_TYPE_UNIFIED) 111 return 0; 112 return type; 113} 114 115static void cache_size(struct cacheinfo *this_leaf, struct device_node *np) 116{ 117 const char *propname; 118 int ct_idx; 119 120 ct_idx = get_cacheinfo_idx(this_leaf->type); 121 propname = cache_type_info[ct_idx].size_prop; 122 123 of_property_read_u32(np, propname, &this_leaf->size); 124} 125 126/* not cache_line_size() because that's a macro in include/linux/cache.h */ 127static void cache_get_line_size(struct cacheinfo *this_leaf, 128 struct device_node *np) 129{ 130 int i, lim, ct_idx; 131 132 ct_idx = get_cacheinfo_idx(this_leaf->type); 133 lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props); 134 135 for (i = 0; i < lim; i++) { 136 int ret; 137 u32 line_size; 138 const char *propname; 139 140 propname = cache_type_info[ct_idx].line_size_props[i]; 141 ret = of_property_read_u32(np, propname, &line_size); 142 if (!ret) { 143 this_leaf->coherency_line_size = line_size; 144 break; 145 } 146 } 147} 148 149static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np) 150{ 151 const char *propname; 152 int ct_idx; 153 154 ct_idx = get_cacheinfo_idx(this_leaf->type); 155 propname = cache_type_info[ct_idx].nr_sets_prop; 156 157 of_property_read_u32(np, propname, &this_leaf->number_of_sets); 158} 159 160static void cache_associativity(struct cacheinfo *this_leaf) 161{ 162 unsigned int line_size = this_leaf->coherency_line_size; 163 unsigned int nr_sets = this_leaf->number_of_sets; 164 unsigned int size = this_leaf->size; 165 166 /* 167 * If the cache is fully associative, there is no need to 168 * check the other properties. 169 */ 170 if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0)) 171 this_leaf->ways_of_associativity = (size / nr_sets) / line_size; 172} 173 174static bool cache_node_is_unified(struct cacheinfo *this_leaf, 175 struct device_node *np) 176{ 177 return of_property_read_bool(np, "cache-unified"); 178} 179 180static void cache_of_set_props(struct cacheinfo *this_leaf, 181 struct device_node *np) 182{ 183 /* 184 * init_cache_level must setup the cache level correctly 185 * overriding the architecturally specified levels, so 186 * if type is NONE at this stage, it should be unified 187 */ 188 if (this_leaf->type == CACHE_TYPE_NOCACHE && 189 cache_node_is_unified(this_leaf, np)) 190 this_leaf->type = CACHE_TYPE_UNIFIED; 191 cache_size(this_leaf, np); 192 cache_get_line_size(this_leaf, np); 193 cache_nr_sets(this_leaf, np); 194 cache_associativity(this_leaf); 195} 196 197static int cache_setup_of_node(unsigned int cpu) 198{ 199 struct device_node *np; 200 struct cacheinfo *this_leaf; 201 unsigned int index = 0; 202 203 np = of_cpu_device_node_get(cpu); 204 if (!np) { 205 pr_err("Failed to find cpu%d device node\n", cpu); 206 return -ENOENT; 207 } 208 209 while (index < cache_leaves(cpu)) { 210 this_leaf = per_cpu_cacheinfo_idx(cpu, index); 211 if (this_leaf->level != 1) 212 np = of_find_next_cache_node(np); 213 else 214 np = of_node_get(np);/* cpu node itself */ 215 if (!np) 216 break; 217 cache_of_set_props(this_leaf, np); 218 this_leaf->fw_token = np; 219 index++; 220 } 221 222 if (index != cache_leaves(cpu)) /* not all OF nodes populated */ 223 return -ENOENT; 224 225 return 0; 226} 227#else 228static inline int cache_setup_of_node(unsigned int cpu) { return 0; } 229#endif 230 231int __weak cache_setup_acpi(unsigned int cpu) 232{ 233 return -ENOTSUPP; 234} 235 236unsigned int coherency_max_size; 237 238static int cache_setup_properties(unsigned int cpu) 239{ 240 int ret = 0; 241 242 if (of_have_populated_dt()) 243 ret = cache_setup_of_node(cpu); 244 else if (!acpi_disabled) 245 ret = cache_setup_acpi(cpu); 246 247 return ret; 248} 249 250static int cache_shared_cpu_map_setup(unsigned int cpu) 251{ 252 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 253 struct cacheinfo *this_leaf, *sib_leaf; 254 unsigned int index; 255 int ret = 0; 256 257 if (this_cpu_ci->cpu_map_populated) 258 return 0; 259 260 /* 261 * skip setting up cache properties if LLC is valid, just need 262 * to update the shared cpu_map if the cache attributes were 263 * populated early before all the cpus are brought online 264 */ 265 if (!last_level_cache_is_valid(cpu)) { 266 ret = cache_setup_properties(cpu); 267 if (ret) 268 return ret; 269 } 270 271 for (index = 0; index < cache_leaves(cpu); index++) { 272 unsigned int i; 273 274 this_leaf = per_cpu_cacheinfo_idx(cpu, index); 275 276 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 277 for_each_online_cpu(i) { 278 struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i); 279 280 if (i == cpu || !sib_cpu_ci->info_list) 281 continue;/* skip if itself or no cacheinfo */ 282 283 sib_leaf = per_cpu_cacheinfo_idx(i, index); 284 if (cache_leaves_are_shared(this_leaf, sib_leaf)) { 285 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map); 286 cpumask_set_cpu(i, &this_leaf->shared_cpu_map); 287 } 288 } 289 /* record the maximum cache line size */ 290 if (this_leaf->coherency_line_size > coherency_max_size) 291 coherency_max_size = this_leaf->coherency_line_size; 292 } 293 294 return 0; 295} 296 297static void cache_shared_cpu_map_remove(unsigned int cpu) 298{ 299 struct cacheinfo *this_leaf, *sib_leaf; 300 unsigned int sibling, index; 301 302 for (index = 0; index < cache_leaves(cpu); index++) { 303 this_leaf = per_cpu_cacheinfo_idx(cpu, index); 304 for_each_cpu(sibling, &this_leaf->shared_cpu_map) { 305 struct cpu_cacheinfo *sib_cpu_ci = 306 get_cpu_cacheinfo(sibling); 307 308 if (sibling == cpu || !sib_cpu_ci->info_list) 309 continue;/* skip if itself or no cacheinfo */ 310 311 sib_leaf = per_cpu_cacheinfo_idx(sibling, index); 312 cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map); 313 cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map); 314 } 315 if (of_have_populated_dt()) 316 of_node_put(this_leaf->fw_token); 317 } 318} 319 320static void free_cache_attributes(unsigned int cpu) 321{ 322 if (!per_cpu_cacheinfo(cpu)) 323 return; 324 325 cache_shared_cpu_map_remove(cpu); 326 327 kfree(per_cpu_cacheinfo(cpu)); 328 per_cpu_cacheinfo(cpu) = NULL; 329 cache_leaves(cpu) = 0; 330} 331 332int __weak init_cache_level(unsigned int cpu) 333{ 334 return -ENOENT; 335} 336 337int __weak populate_cache_leaves(unsigned int cpu) 338{ 339 return -ENOENT; 340} 341 342int detect_cache_attributes(unsigned int cpu) 343{ 344 int ret; 345 346 /* Since early detection of the cacheinfo is allowed via this 347 * function and this also gets called as CPU hotplug callbacks via 348 * cacheinfo_cpu_online, the initialisation can be skipped and only 349 * CPU maps can be updated as the CPU online status would be update 350 * if called via cacheinfo_cpu_online path. 351 */ 352 if (per_cpu_cacheinfo(cpu)) 353 goto update_cpu_map; 354 355 if (init_cache_level(cpu) || !cache_leaves(cpu)) 356 return -ENOENT; 357 358 per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu), 359 sizeof(struct cacheinfo), GFP_ATOMIC); 360 if (per_cpu_cacheinfo(cpu) == NULL) { 361 cache_leaves(cpu) = 0; 362 return -ENOMEM; 363 } 364 365 /* 366 * populate_cache_leaves() may completely setup the cache leaves and 367 * shared_cpu_map or it may leave it partially setup. 368 */ 369 ret = populate_cache_leaves(cpu); 370 if (ret) 371 goto free_ci; 372 373update_cpu_map: 374 /* 375 * For systems using DT for cache hierarchy, fw_token 376 * and shared_cpu_map will be set up here only if they are 377 * not populated already 378 */ 379 ret = cache_shared_cpu_map_setup(cpu); 380 if (ret) { 381 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu); 382 goto free_ci; 383 } 384 385 return 0; 386 387free_ci: 388 free_cache_attributes(cpu); 389 return ret; 390} 391 392/* pointer to cpuX/cache device */ 393static DEFINE_PER_CPU(struct device *, ci_cache_dev); 394#define per_cpu_cache_dev(cpu) (per_cpu(ci_cache_dev, cpu)) 395 396static cpumask_t cache_dev_map; 397 398/* pointer to array of devices for cpuX/cache/indexY */ 399static DEFINE_PER_CPU(struct device **, ci_index_dev); 400#define per_cpu_index_dev(cpu) (per_cpu(ci_index_dev, cpu)) 401#define per_cache_index_dev(cpu, idx) ((per_cpu_index_dev(cpu))[idx]) 402 403#define show_one(file_name, object) \ 404static ssize_t file_name##_show(struct device *dev, \ 405 struct device_attribute *attr, char *buf) \ 406{ \ 407 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ 408 return sysfs_emit(buf, "%u\n", this_leaf->object); \ 409} 410 411show_one(id, id); 412show_one(level, level); 413show_one(coherency_line_size, coherency_line_size); 414show_one(number_of_sets, number_of_sets); 415show_one(physical_line_partition, physical_line_partition); 416show_one(ways_of_associativity, ways_of_associativity); 417 418static ssize_t size_show(struct device *dev, 419 struct device_attribute *attr, char *buf) 420{ 421 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 422 423 return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10); 424} 425 426static ssize_t shared_cpu_map_show(struct device *dev, 427 struct device_attribute *attr, char *buf) 428{ 429 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 430 const struct cpumask *mask = &this_leaf->shared_cpu_map; 431 432 return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask); 433} 434 435static ssize_t shared_cpu_list_show(struct device *dev, 436 struct device_attribute *attr, char *buf) 437{ 438 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 439 const struct cpumask *mask = &this_leaf->shared_cpu_map; 440 441 return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask); 442} 443 444static ssize_t type_show(struct device *dev, 445 struct device_attribute *attr, char *buf) 446{ 447 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 448 const char *output; 449 450 switch (this_leaf->type) { 451 case CACHE_TYPE_DATA: 452 output = "Data"; 453 break; 454 case CACHE_TYPE_INST: 455 output = "Instruction"; 456 break; 457 case CACHE_TYPE_UNIFIED: 458 output = "Unified"; 459 break; 460 default: 461 return -EINVAL; 462 } 463 464 return sysfs_emit(buf, "%s\n", output); 465} 466 467static ssize_t allocation_policy_show(struct device *dev, 468 struct device_attribute *attr, char *buf) 469{ 470 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 471 unsigned int ci_attr = this_leaf->attributes; 472 const char *output; 473 474 if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE)) 475 output = "ReadWriteAllocate"; 476 else if (ci_attr & CACHE_READ_ALLOCATE) 477 output = "ReadAllocate"; 478 else if (ci_attr & CACHE_WRITE_ALLOCATE) 479 output = "WriteAllocate"; 480 else 481 return 0; 482 483 return sysfs_emit(buf, "%s\n", output); 484} 485 486static ssize_t write_policy_show(struct device *dev, 487 struct device_attribute *attr, char *buf) 488{ 489 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 490 unsigned int ci_attr = this_leaf->attributes; 491 int n = 0; 492 493 if (ci_attr & CACHE_WRITE_THROUGH) 494 n = sysfs_emit(buf, "WriteThrough\n"); 495 else if (ci_attr & CACHE_WRITE_BACK) 496 n = sysfs_emit(buf, "WriteBack\n"); 497 return n; 498} 499 500static DEVICE_ATTR_RO(id); 501static DEVICE_ATTR_RO(level); 502static DEVICE_ATTR_RO(type); 503static DEVICE_ATTR_RO(coherency_line_size); 504static DEVICE_ATTR_RO(ways_of_associativity); 505static DEVICE_ATTR_RO(number_of_sets); 506static DEVICE_ATTR_RO(size); 507static DEVICE_ATTR_RO(allocation_policy); 508static DEVICE_ATTR_RO(write_policy); 509static DEVICE_ATTR_RO(shared_cpu_map); 510static DEVICE_ATTR_RO(shared_cpu_list); 511static DEVICE_ATTR_RO(physical_line_partition); 512 513static struct attribute *cache_default_attrs[] = { 514 &dev_attr_id.attr, 515 &dev_attr_type.attr, 516 &dev_attr_level.attr, 517 &dev_attr_shared_cpu_map.attr, 518 &dev_attr_shared_cpu_list.attr, 519 &dev_attr_coherency_line_size.attr, 520 &dev_attr_ways_of_associativity.attr, 521 &dev_attr_number_of_sets.attr, 522 &dev_attr_size.attr, 523 &dev_attr_allocation_policy.attr, 524 &dev_attr_write_policy.attr, 525 &dev_attr_physical_line_partition.attr, 526 NULL 527}; 528 529static umode_t 530cache_default_attrs_is_visible(struct kobject *kobj, 531 struct attribute *attr, int unused) 532{ 533 struct device *dev = kobj_to_dev(kobj); 534 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 535 const struct cpumask *mask = &this_leaf->shared_cpu_map; 536 umode_t mode = attr->mode; 537 538 if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID)) 539 return mode; 540 if ((attr == &dev_attr_type.attr) && this_leaf->type) 541 return mode; 542 if ((attr == &dev_attr_level.attr) && this_leaf->level) 543 return mode; 544 if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask)) 545 return mode; 546 if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask)) 547 return mode; 548 if ((attr == &dev_attr_coherency_line_size.attr) && 549 this_leaf->coherency_line_size) 550 return mode; 551 if ((attr == &dev_attr_ways_of_associativity.attr) && 552 this_leaf->size) /* allow 0 = full associativity */ 553 return mode; 554 if ((attr == &dev_attr_number_of_sets.attr) && 555 this_leaf->number_of_sets) 556 return mode; 557 if ((attr == &dev_attr_size.attr) && this_leaf->size) 558 return mode; 559 if ((attr == &dev_attr_write_policy.attr) && 560 (this_leaf->attributes & CACHE_WRITE_POLICY_MASK)) 561 return mode; 562 if ((attr == &dev_attr_allocation_policy.attr) && 563 (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK)) 564 return mode; 565 if ((attr == &dev_attr_physical_line_partition.attr) && 566 this_leaf->physical_line_partition) 567 return mode; 568 569 return 0; 570} 571 572static const struct attribute_group cache_default_group = { 573 .attrs = cache_default_attrs, 574 .is_visible = cache_default_attrs_is_visible, 575}; 576 577static const struct attribute_group *cache_default_groups[] = { 578 &cache_default_group, 579 NULL, 580}; 581 582static const struct attribute_group *cache_private_groups[] = { 583 &cache_default_group, 584 NULL, /* Place holder for private group */ 585 NULL, 586}; 587 588const struct attribute_group * 589__weak cache_get_priv_group(struct cacheinfo *this_leaf) 590{ 591 return NULL; 592} 593 594static const struct attribute_group ** 595cache_get_attribute_groups(struct cacheinfo *this_leaf) 596{ 597 const struct attribute_group *priv_group = 598 cache_get_priv_group(this_leaf); 599 600 if (!priv_group) 601 return cache_default_groups; 602 603 if (!cache_private_groups[1]) 604 cache_private_groups[1] = priv_group; 605 606 return cache_private_groups; 607} 608 609/* Add/Remove cache interface for CPU device */ 610static void cpu_cache_sysfs_exit(unsigned int cpu) 611{ 612 int i; 613 struct device *ci_dev; 614 615 if (per_cpu_index_dev(cpu)) { 616 for (i = 0; i < cache_leaves(cpu); i++) { 617 ci_dev = per_cache_index_dev(cpu, i); 618 if (!ci_dev) 619 continue; 620 device_unregister(ci_dev); 621 } 622 kfree(per_cpu_index_dev(cpu)); 623 per_cpu_index_dev(cpu) = NULL; 624 } 625 device_unregister(per_cpu_cache_dev(cpu)); 626 per_cpu_cache_dev(cpu) = NULL; 627} 628 629static int cpu_cache_sysfs_init(unsigned int cpu) 630{ 631 struct device *dev = get_cpu_device(cpu); 632 633 if (per_cpu_cacheinfo(cpu) == NULL) 634 return -ENOENT; 635 636 per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache"); 637 if (IS_ERR(per_cpu_cache_dev(cpu))) 638 return PTR_ERR(per_cpu_cache_dev(cpu)); 639 640 /* Allocate all required memory */ 641 per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu), 642 sizeof(struct device *), GFP_KERNEL); 643 if (unlikely(per_cpu_index_dev(cpu) == NULL)) 644 goto err_out; 645 646 return 0; 647 648err_out: 649 cpu_cache_sysfs_exit(cpu); 650 return -ENOMEM; 651} 652 653static int cache_add_dev(unsigned int cpu) 654{ 655 unsigned int i; 656 int rc; 657 struct device *ci_dev, *parent; 658 struct cacheinfo *this_leaf; 659 const struct attribute_group **cache_groups; 660 661 rc = cpu_cache_sysfs_init(cpu); 662 if (unlikely(rc < 0)) 663 return rc; 664 665 parent = per_cpu_cache_dev(cpu); 666 for (i = 0; i < cache_leaves(cpu); i++) { 667 this_leaf = per_cpu_cacheinfo_idx(cpu, i); 668 if (this_leaf->disable_sysfs) 669 continue; 670 if (this_leaf->type == CACHE_TYPE_NOCACHE) 671 break; 672 cache_groups = cache_get_attribute_groups(this_leaf); 673 ci_dev = cpu_device_create(parent, this_leaf, cache_groups, 674 "index%1u", i); 675 if (IS_ERR(ci_dev)) { 676 rc = PTR_ERR(ci_dev); 677 goto err; 678 } 679 per_cache_index_dev(cpu, i) = ci_dev; 680 } 681 cpumask_set_cpu(cpu, &cache_dev_map); 682 683 return 0; 684err: 685 cpu_cache_sysfs_exit(cpu); 686 return rc; 687} 688 689static int cacheinfo_cpu_online(unsigned int cpu) 690{ 691 int rc = detect_cache_attributes(cpu); 692 693 if (rc) 694 return rc; 695 rc = cache_add_dev(cpu); 696 if (rc) 697 free_cache_attributes(cpu); 698 return rc; 699} 700 701static int cacheinfo_cpu_pre_down(unsigned int cpu) 702{ 703 if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map)) 704 cpu_cache_sysfs_exit(cpu); 705 706 free_cache_attributes(cpu); 707 return 0; 708} 709 710static int __init cacheinfo_sysfs_init(void) 711{ 712 return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE, 713 "base/cacheinfo:online", 714 cacheinfo_cpu_online, cacheinfo_cpu_pre_down); 715} 716device_initcall(cacheinfo_sysfs_init);