Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012 Regents of the University of California
4 */
5
6#ifndef _ASM_RISCV_PGTABLE_H
7#define _ASM_RISCV_PGTABLE_H
8
9#include <linux/mmzone.h>
10#include <linux/sizes.h>
11
12#include <asm/pgtable-bits.h>
13
14#ifndef CONFIG_MMU
15#define KERNEL_LINK_ADDR PAGE_OFFSET
16#define KERN_VIRT_SIZE (UL(-1))
17#else
18
19#define ADDRESS_SPACE_END (UL(-1))
20
21#ifdef CONFIG_64BIT
22/* Leave 2GB for kernel and BPF at the end of the address space */
23#define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1)
24#else
25#define KERNEL_LINK_ADDR PAGE_OFFSET
26#endif
27
28/* Number of entries in the page global directory */
29#define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t))
30/* Number of entries in the page table */
31#define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t))
32
33/*
34 * Half of the kernel address space (half of the entries of the page global
35 * directory) is for the direct mapping.
36 */
37#define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
38
39#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
40#define VMALLOC_END PAGE_OFFSET
41#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
42
43#define BPF_JIT_REGION_SIZE (SZ_128M)
44#ifdef CONFIG_64BIT
45#define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
46#define BPF_JIT_REGION_END (MODULES_END)
47#else
48#define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
49#define BPF_JIT_REGION_END (VMALLOC_END)
50#endif
51
52/* Modules always live before the kernel */
53#ifdef CONFIG_64BIT
54/* This is used to define the end of the KASAN shadow region */
55#define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G)
56#define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G)
57#define MODULES_END (PFN_ALIGN((unsigned long)&_start))
58#endif
59
60/*
61 * Roughly size the vmemmap space to be large enough to fit enough
62 * struct pages to map half the virtual address space. Then
63 * position vmemmap directly below the VMALLOC region.
64 */
65#ifdef CONFIG_64BIT
66#define VA_BITS (pgtable_l5_enabled ? \
67 57 : (pgtable_l4_enabled ? 48 : 39))
68#else
69#define VA_BITS 32
70#endif
71
72#define VMEMMAP_SHIFT \
73 (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
74#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
75#define VMEMMAP_END VMALLOC_START
76#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
77
78/*
79 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
80 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
81 */
82#define vmemmap ((struct page *)VMEMMAP_START)
83
84#define PCI_IO_SIZE SZ_16M
85#define PCI_IO_END VMEMMAP_START
86#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
87
88#define FIXADDR_TOP PCI_IO_START
89#ifdef CONFIG_64BIT
90#define FIXADDR_SIZE PMD_SIZE
91#else
92#define FIXADDR_SIZE PGDIR_SIZE
93#endif
94#define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
95
96#endif
97
98#ifdef CONFIG_XIP_KERNEL
99#define XIP_OFFSET SZ_32M
100#define XIP_OFFSET_MASK (SZ_32M - 1)
101#else
102#define XIP_OFFSET 0
103#endif
104
105#ifndef __ASSEMBLY__
106
107#include <asm/page.h>
108#include <asm/tlbflush.h>
109#include <linux/mm_types.h>
110
111#define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
112
113#ifdef CONFIG_64BIT
114#include <asm/pgtable-64.h>
115#else
116#include <asm/pgtable-32.h>
117#endif /* CONFIG_64BIT */
118
119#include <linux/page_table_check.h>
120
121#ifdef CONFIG_XIP_KERNEL
122#define XIP_FIXUP(addr) ({ \
123 uintptr_t __a = (uintptr_t)(addr); \
124 (__a >= CONFIG_XIP_PHYS_ADDR && \
125 __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \
126 __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\
127 __a; \
128 })
129#else
130#define XIP_FIXUP(addr) (addr)
131#endif /* CONFIG_XIP_KERNEL */
132
133struct pt_alloc_ops {
134 pte_t *(*get_pte_virt)(phys_addr_t pa);
135 phys_addr_t (*alloc_pte)(uintptr_t va);
136#ifndef __PAGETABLE_PMD_FOLDED
137 pmd_t *(*get_pmd_virt)(phys_addr_t pa);
138 phys_addr_t (*alloc_pmd)(uintptr_t va);
139 pud_t *(*get_pud_virt)(phys_addr_t pa);
140 phys_addr_t (*alloc_pud)(uintptr_t va);
141 p4d_t *(*get_p4d_virt)(phys_addr_t pa);
142 phys_addr_t (*alloc_p4d)(uintptr_t va);
143#endif
144};
145
146extern struct pt_alloc_ops pt_ops __initdata;
147
148#ifdef CONFIG_MMU
149/* Number of PGD entries that a user-mode program can use */
150#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
151
152/* Page protection bits */
153#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
154
155#define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ)
156#define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ)
157#define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
158#define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC)
159#define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
160#define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \
161 _PAGE_EXEC | _PAGE_WRITE)
162
163#define PAGE_COPY PAGE_READ
164#define PAGE_COPY_EXEC PAGE_EXEC
165#define PAGE_COPY_READ_EXEC PAGE_READ_EXEC
166#define PAGE_SHARED PAGE_WRITE
167#define PAGE_SHARED_EXEC PAGE_WRITE_EXEC
168
169#define _PAGE_KERNEL (_PAGE_READ \
170 | _PAGE_WRITE \
171 | _PAGE_PRESENT \
172 | _PAGE_ACCESSED \
173 | _PAGE_DIRTY \
174 | _PAGE_GLOBAL)
175
176#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
177#define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
178#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
179#define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
180 | _PAGE_EXEC)
181
182#define PAGE_TABLE __pgprot(_PAGE_TABLE)
183
184#define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
185#define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP)
186
187extern pgd_t swapper_pg_dir[];
188
189#ifdef CONFIG_TRANSPARENT_HUGEPAGE
190static inline int pmd_present(pmd_t pmd)
191{
192 /*
193 * Checking for _PAGE_LEAF is needed too because:
194 * When splitting a THP, split_huge_page() will temporarily clear
195 * the present bit, in this situation, pmd_present() and
196 * pmd_trans_huge() still needs to return true.
197 */
198 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
199}
200#else
201static inline int pmd_present(pmd_t pmd)
202{
203 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
204}
205#endif
206
207static inline int pmd_none(pmd_t pmd)
208{
209 return (pmd_val(pmd) == 0);
210}
211
212static inline int pmd_bad(pmd_t pmd)
213{
214 return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
215}
216
217#define pmd_leaf pmd_leaf
218static inline int pmd_leaf(pmd_t pmd)
219{
220 return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
221}
222
223static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
224{
225 *pmdp = pmd;
226}
227
228static inline void pmd_clear(pmd_t *pmdp)
229{
230 set_pmd(pmdp, __pmd(0));
231}
232
233static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
234{
235 unsigned long prot_val = pgprot_val(prot);
236
237 ALT_THEAD_PMA(prot_val);
238
239 return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
240}
241
242static inline unsigned long _pgd_pfn(pgd_t pgd)
243{
244 return __page_val_to_pfn(pgd_val(pgd));
245}
246
247static inline struct page *pmd_page(pmd_t pmd)
248{
249 return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
250}
251
252static inline unsigned long pmd_page_vaddr(pmd_t pmd)
253{
254 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
255}
256
257static inline pte_t pmd_pte(pmd_t pmd)
258{
259 return __pte(pmd_val(pmd));
260}
261
262static inline pte_t pud_pte(pud_t pud)
263{
264 return __pte(pud_val(pud));
265}
266
267/* Yields the page frame number (PFN) of a page table entry */
268static inline unsigned long pte_pfn(pte_t pte)
269{
270 return __page_val_to_pfn(pte_val(pte));
271}
272
273#define pte_page(x) pfn_to_page(pte_pfn(x))
274
275/* Constructs a page table entry */
276static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
277{
278 unsigned long prot_val = pgprot_val(prot);
279
280 ALT_THEAD_PMA(prot_val);
281
282 return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
283}
284
285#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
286
287static inline int pte_present(pte_t pte)
288{
289 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
290}
291
292static inline int pte_none(pte_t pte)
293{
294 return (pte_val(pte) == 0);
295}
296
297static inline int pte_write(pte_t pte)
298{
299 return pte_val(pte) & _PAGE_WRITE;
300}
301
302static inline int pte_exec(pte_t pte)
303{
304 return pte_val(pte) & _PAGE_EXEC;
305}
306
307static inline int pte_user(pte_t pte)
308{
309 return pte_val(pte) & _PAGE_USER;
310}
311
312static inline int pte_huge(pte_t pte)
313{
314 return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
315}
316
317static inline int pte_dirty(pte_t pte)
318{
319 return pte_val(pte) & _PAGE_DIRTY;
320}
321
322static inline int pte_young(pte_t pte)
323{
324 return pte_val(pte) & _PAGE_ACCESSED;
325}
326
327static inline int pte_special(pte_t pte)
328{
329 return pte_val(pte) & _PAGE_SPECIAL;
330}
331
332/* static inline pte_t pte_rdprotect(pte_t pte) */
333
334static inline pte_t pte_wrprotect(pte_t pte)
335{
336 return __pte(pte_val(pte) & ~(_PAGE_WRITE));
337}
338
339/* static inline pte_t pte_mkread(pte_t pte) */
340
341static inline pte_t pte_mkwrite(pte_t pte)
342{
343 return __pte(pte_val(pte) | _PAGE_WRITE);
344}
345
346/* static inline pte_t pte_mkexec(pte_t pte) */
347
348static inline pte_t pte_mkdirty(pte_t pte)
349{
350 return __pte(pte_val(pte) | _PAGE_DIRTY);
351}
352
353static inline pte_t pte_mkclean(pte_t pte)
354{
355 return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
356}
357
358static inline pte_t pte_mkyoung(pte_t pte)
359{
360 return __pte(pte_val(pte) | _PAGE_ACCESSED);
361}
362
363static inline pte_t pte_mkold(pte_t pte)
364{
365 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
366}
367
368static inline pte_t pte_mkspecial(pte_t pte)
369{
370 return __pte(pte_val(pte) | _PAGE_SPECIAL);
371}
372
373static inline pte_t pte_mkhuge(pte_t pte)
374{
375 return pte;
376}
377
378#ifdef CONFIG_NUMA_BALANCING
379/*
380 * See the comment in include/asm-generic/pgtable.h
381 */
382static inline int pte_protnone(pte_t pte)
383{
384 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
385}
386
387static inline int pmd_protnone(pmd_t pmd)
388{
389 return pte_protnone(pmd_pte(pmd));
390}
391#endif
392
393/* Modify page protection bits */
394static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
395{
396 unsigned long newprot_val = pgprot_val(newprot);
397
398 ALT_THEAD_PMA(newprot_val);
399
400 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
401}
402
403#define pgd_ERROR(e) \
404 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
405
406
407/* Commit new configuration to MMU hardware */
408static inline void update_mmu_cache(struct vm_area_struct *vma,
409 unsigned long address, pte_t *ptep)
410{
411 /*
412 * The kernel assumes that TLBs don't cache invalid entries, but
413 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
414 * cache flush; it is necessary even after writing invalid entries.
415 * Relying on flush_tlb_fix_spurious_fault would suffice, but
416 * the extra traps reduce performance. So, eagerly SFENCE.VMA.
417 */
418 local_flush_tlb_page(address);
419}
420
421static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
422 unsigned long address, pmd_t *pmdp)
423{
424 pte_t *ptep = (pte_t *)pmdp;
425
426 update_mmu_cache(vma, address, ptep);
427}
428
429#define __HAVE_ARCH_PTE_SAME
430static inline int pte_same(pte_t pte_a, pte_t pte_b)
431{
432 return pte_val(pte_a) == pte_val(pte_b);
433}
434
435/*
436 * Certain architectures need to do special things when PTEs within
437 * a page table are directly modified. Thus, the following hook is
438 * made available.
439 */
440static inline void set_pte(pte_t *ptep, pte_t pteval)
441{
442 *ptep = pteval;
443}
444
445void flush_icache_pte(pte_t pte);
446
447static inline void __set_pte_at(struct mm_struct *mm,
448 unsigned long addr, pte_t *ptep, pte_t pteval)
449{
450 if (pte_present(pteval) && pte_exec(pteval))
451 flush_icache_pte(pteval);
452
453 set_pte(ptep, pteval);
454}
455
456static inline void set_pte_at(struct mm_struct *mm,
457 unsigned long addr, pte_t *ptep, pte_t pteval)
458{
459 page_table_check_pte_set(mm, addr, ptep, pteval);
460 __set_pte_at(mm, addr, ptep, pteval);
461}
462
463static inline void pte_clear(struct mm_struct *mm,
464 unsigned long addr, pte_t *ptep)
465{
466 __set_pte_at(mm, addr, ptep, __pte(0));
467}
468
469#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
470static inline int ptep_set_access_flags(struct vm_area_struct *vma,
471 unsigned long address, pte_t *ptep,
472 pte_t entry, int dirty)
473{
474 if (!pte_same(*ptep, entry))
475 set_pte_at(vma->vm_mm, address, ptep, entry);
476 /*
477 * update_mmu_cache will unconditionally execute, handling both
478 * the case that the PTE changed and the spurious fault case.
479 */
480 return true;
481}
482
483#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
484static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
485 unsigned long address, pte_t *ptep)
486{
487 pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
488
489 page_table_check_pte_clear(mm, address, pte);
490
491 return pte;
492}
493
494#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
495static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
496 unsigned long address,
497 pte_t *ptep)
498{
499 if (!pte_young(*ptep))
500 return 0;
501 return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
502}
503
504#define __HAVE_ARCH_PTEP_SET_WRPROTECT
505static inline void ptep_set_wrprotect(struct mm_struct *mm,
506 unsigned long address, pte_t *ptep)
507{
508 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
509}
510
511#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
512static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
513 unsigned long address, pte_t *ptep)
514{
515 /*
516 * This comment is borrowed from x86, but applies equally to RISC-V:
517 *
518 * Clearing the accessed bit without a TLB flush
519 * doesn't cause data corruption. [ It could cause incorrect
520 * page aging and the (mistaken) reclaim of hot pages, but the
521 * chance of that should be relatively low. ]
522 *
523 * So as a performance optimization don't flush the TLB when
524 * clearing the accessed bit, it will eventually be flushed by
525 * a context switch or a VM operation anyway. [ In the rare
526 * event of it not getting flushed for a long time the delay
527 * shouldn't really matter because there's no real memory
528 * pressure for swapout to react to. ]
529 */
530 return ptep_test_and_clear_young(vma, address, ptep);
531}
532
533#define pgprot_noncached pgprot_noncached
534static inline pgprot_t pgprot_noncached(pgprot_t _prot)
535{
536 unsigned long prot = pgprot_val(_prot);
537
538 prot &= ~_PAGE_MTMASK;
539 prot |= _PAGE_IO;
540
541 return __pgprot(prot);
542}
543
544#define pgprot_writecombine pgprot_writecombine
545static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
546{
547 unsigned long prot = pgprot_val(_prot);
548
549 prot &= ~_PAGE_MTMASK;
550 prot |= _PAGE_NOCACHE;
551
552 return __pgprot(prot);
553}
554
555/*
556 * THP functions
557 */
558static inline pmd_t pte_pmd(pte_t pte)
559{
560 return __pmd(pte_val(pte));
561}
562
563static inline pmd_t pmd_mkhuge(pmd_t pmd)
564{
565 return pmd;
566}
567
568static inline pmd_t pmd_mkinvalid(pmd_t pmd)
569{
570 return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
571}
572
573#define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
574
575static inline unsigned long pmd_pfn(pmd_t pmd)
576{
577 return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
578}
579
580#define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
581
582static inline unsigned long pud_pfn(pud_t pud)
583{
584 return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
585}
586
587static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
588{
589 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
590}
591
592#define pmd_write pmd_write
593static inline int pmd_write(pmd_t pmd)
594{
595 return pte_write(pmd_pte(pmd));
596}
597
598static inline int pmd_dirty(pmd_t pmd)
599{
600 return pte_dirty(pmd_pte(pmd));
601}
602
603static inline int pmd_young(pmd_t pmd)
604{
605 return pte_young(pmd_pte(pmd));
606}
607
608static inline int pmd_user(pmd_t pmd)
609{
610 return pte_user(pmd_pte(pmd));
611}
612
613static inline pmd_t pmd_mkold(pmd_t pmd)
614{
615 return pte_pmd(pte_mkold(pmd_pte(pmd)));
616}
617
618static inline pmd_t pmd_mkyoung(pmd_t pmd)
619{
620 return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
621}
622
623static inline pmd_t pmd_mkwrite(pmd_t pmd)
624{
625 return pte_pmd(pte_mkwrite(pmd_pte(pmd)));
626}
627
628static inline pmd_t pmd_wrprotect(pmd_t pmd)
629{
630 return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
631}
632
633static inline pmd_t pmd_mkclean(pmd_t pmd)
634{
635 return pte_pmd(pte_mkclean(pmd_pte(pmd)));
636}
637
638static inline pmd_t pmd_mkdirty(pmd_t pmd)
639{
640 return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
641}
642
643static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
644 pmd_t *pmdp, pmd_t pmd)
645{
646 page_table_check_pmd_set(mm, addr, pmdp, pmd);
647 return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd));
648}
649
650static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
651 pud_t *pudp, pud_t pud)
652{
653 page_table_check_pud_set(mm, addr, pudp, pud);
654 return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud));
655}
656
657#ifdef CONFIG_PAGE_TABLE_CHECK
658static inline bool pte_user_accessible_page(pte_t pte)
659{
660 return pte_present(pte) && pte_user(pte);
661}
662
663static inline bool pmd_user_accessible_page(pmd_t pmd)
664{
665 return pmd_leaf(pmd) && pmd_user(pmd);
666}
667
668static inline bool pud_user_accessible_page(pud_t pud)
669{
670 return pud_leaf(pud) && pud_user(pud);
671}
672#endif
673
674#ifdef CONFIG_TRANSPARENT_HUGEPAGE
675static inline int pmd_trans_huge(pmd_t pmd)
676{
677 return pmd_leaf(pmd);
678}
679
680#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
681static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
682 unsigned long address, pmd_t *pmdp,
683 pmd_t entry, int dirty)
684{
685 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
686}
687
688#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
689static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
690 unsigned long address, pmd_t *pmdp)
691{
692 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
693}
694
695#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
696static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
697 unsigned long address, pmd_t *pmdp)
698{
699 pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
700
701 page_table_check_pmd_clear(mm, address, pmd);
702
703 return pmd;
704}
705
706#define __HAVE_ARCH_PMDP_SET_WRPROTECT
707static inline void pmdp_set_wrprotect(struct mm_struct *mm,
708 unsigned long address, pmd_t *pmdp)
709{
710 ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
711}
712
713#define pmdp_establish pmdp_establish
714static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
715 unsigned long address, pmd_t *pmdp, pmd_t pmd)
716{
717 page_table_check_pmd_set(vma->vm_mm, address, pmdp, pmd);
718 return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
719}
720#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
721
722/*
723 * Encode and decode a swap entry
724 *
725 * Format of swap PTE:
726 * bit 0: _PAGE_PRESENT (zero)
727 * bit 1 to 3: _PAGE_LEAF (zero)
728 * bit 5: _PAGE_PROT_NONE (zero)
729 * bits 6 to 10: swap type
730 * bits 10 to XLEN-1: swap offset
731 */
732#define __SWP_TYPE_SHIFT 6
733#define __SWP_TYPE_BITS 5
734#define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1)
735#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
736
737#define MAX_SWAPFILES_CHECK() \
738 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
739
740#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
741#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
742#define __swp_entry(type, offset) ((swp_entry_t) \
743 { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
744
745#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
746#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
747
748#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
749#define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
750#define __swp_entry_to_pmd(swp) __pmd((swp).val)
751#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
752
753/*
754 * In the RV64 Linux scheme, we give the user half of the virtual-address space
755 * and give the kernel the other (upper) half.
756 */
757#ifdef CONFIG_64BIT
758#define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE)
759#else
760#define KERN_VIRT_START FIXADDR_START
761#endif
762
763/*
764 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
765 * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
766 * Task size is:
767 * - 0x9fc00000 (~2.5GB) for RV32.
768 * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu
769 * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu
770 *
771 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
772 * Instruction Set Manual Volume II: Privileged Architecture" states that
773 * "load and store effective addresses, which are 64bits, must have bits
774 * 63–48 all equal to bit 47, or else a page-fault exception will occur."
775 */
776#ifdef CONFIG_64BIT
777#define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2)
778#define TASK_SIZE_MIN (PGDIR_SIZE_L3 * PTRS_PER_PGD / 2)
779
780#ifdef CONFIG_COMPAT
781#define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE)
782#define TASK_SIZE (test_thread_flag(TIF_32BIT) ? \
783 TASK_SIZE_32 : TASK_SIZE_64)
784#else
785#define TASK_SIZE TASK_SIZE_64
786#endif
787
788#else
789#define TASK_SIZE FIXADDR_START
790#define TASK_SIZE_MIN TASK_SIZE
791#endif
792
793#else /* CONFIG_MMU */
794
795#define PAGE_SHARED __pgprot(0)
796#define PAGE_KERNEL __pgprot(0)
797#define swapper_pg_dir NULL
798#define TASK_SIZE 0xffffffffUL
799#define VMALLOC_START 0
800#define VMALLOC_END TASK_SIZE
801
802#endif /* !CONFIG_MMU */
803
804#define kern_addr_valid(addr) (1) /* FIXME */
805
806extern char _start[];
807extern void *_dtb_early_va;
808extern uintptr_t _dtb_early_pa;
809#if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
810#define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va))
811#define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
812#else
813#define dtb_early_va _dtb_early_va
814#define dtb_early_pa _dtb_early_pa
815#endif /* CONFIG_XIP_KERNEL */
816extern u64 satp_mode;
817extern bool pgtable_l4_enabled;
818
819void paging_init(void);
820void misc_mem_init(void);
821
822/*
823 * ZERO_PAGE is a global shared page that is always zero,
824 * used for zero-mapped memory areas, etc.
825 */
826extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
827#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
828
829#endif /* !__ASSEMBLY__ */
830
831#endif /* _ASM_RISCV_PGTABLE_H */