Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_IA64_PROCESSOR_H
3#define _ASM_IA64_PROCESSOR_H
4
5/*
6 * Copyright (C) 1998-2004 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Stephane Eranian <eranian@hpl.hp.com>
9 * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
10 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
11 *
12 * 11/24/98 S.Eranian added ia64_set_iva()
13 * 12/03/99 D. Mosberger implement thread_saved_pc() via kernel unwind API
14 * 06/16/00 A. Mallick added csd/ssd/tssd for ia32 support
15 */
16
17
18#include <asm/intrinsics.h>
19#include <asm/kregs.h>
20#include <asm/ptrace.h>
21#include <asm/ustack.h>
22
23#define IA64_NUM_PHYS_STACK_REG 96
24#define IA64_NUM_DBG_REGS 8
25
26#define DEFAULT_MAP_BASE __IA64_UL_CONST(0x2000000000000000)
27#define DEFAULT_TASK_SIZE __IA64_UL_CONST(0xa000000000000000)
28
29/*
30 * TASK_SIZE really is a mis-named. It really is the maximum user
31 * space address (plus one). On IA-64, there are five regions of 2TB
32 * each (assuming 8KB page size), for a total of 8TB of user virtual
33 * address space.
34 */
35#define TASK_SIZE DEFAULT_TASK_SIZE
36
37/*
38 * This decides where the kernel will search for a free chunk of vm
39 * space during mmap's.
40 */
41#define TASK_UNMAPPED_BASE (current->thread.map_base)
42
43#define IA64_THREAD_FPH_VALID (__IA64_UL(1) << 0) /* floating-point high state valid? */
44#define IA64_THREAD_DBG_VALID (__IA64_UL(1) << 1) /* debug registers valid? */
45#define IA64_THREAD_PM_VALID (__IA64_UL(1) << 2) /* performance registers valid? */
46#define IA64_THREAD_UAC_NOPRINT (__IA64_UL(1) << 3) /* don't log unaligned accesses */
47#define IA64_THREAD_UAC_SIGBUS (__IA64_UL(1) << 4) /* generate SIGBUS on unaligned acc. */
48#define IA64_THREAD_MIGRATION (__IA64_UL(1) << 5) /* require migration
49 sync at ctx sw */
50#define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6) /* don't log any fpswa faults */
51#define IA64_THREAD_FPEMU_SIGFPE (__IA64_UL(1) << 7) /* send a SIGFPE for fpswa faults */
52
53#define IA64_THREAD_UAC_SHIFT 3
54#define IA64_THREAD_UAC_MASK (IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS)
55#define IA64_THREAD_FPEMU_SHIFT 6
56#define IA64_THREAD_FPEMU_MASK (IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE)
57
58
59/*
60 * This shift should be large enough to be able to represent 1000000000/itc_freq with good
61 * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits
62 * (this will give enough slack to represent 10 seconds worth of time as a scaled number).
63 */
64#define IA64_NSEC_PER_CYC_SHIFT 30
65
66#ifndef __ASSEMBLY__
67
68#include <linux/cache.h>
69#include <linux/compiler.h>
70#include <linux/threads.h>
71#include <linux/types.h>
72#include <linux/bitops.h>
73
74#include <asm/fpu.h>
75#include <asm/page.h>
76#include <asm/percpu.h>
77#include <asm/rse.h>
78#include <asm/unwind.h>
79#include <linux/atomic.h>
80#ifdef CONFIG_NUMA
81#include <asm/nodedata.h>
82#endif
83
84/* like above but expressed as bitfields for more efficient access: */
85struct ia64_psr {
86 __u64 reserved0 : 1;
87 __u64 be : 1;
88 __u64 up : 1;
89 __u64 ac : 1;
90 __u64 mfl : 1;
91 __u64 mfh : 1;
92 __u64 reserved1 : 7;
93 __u64 ic : 1;
94 __u64 i : 1;
95 __u64 pk : 1;
96 __u64 reserved2 : 1;
97 __u64 dt : 1;
98 __u64 dfl : 1;
99 __u64 dfh : 1;
100 __u64 sp : 1;
101 __u64 pp : 1;
102 __u64 di : 1;
103 __u64 si : 1;
104 __u64 db : 1;
105 __u64 lp : 1;
106 __u64 tb : 1;
107 __u64 rt : 1;
108 __u64 reserved3 : 4;
109 __u64 cpl : 2;
110 __u64 is : 1;
111 __u64 mc : 1;
112 __u64 it : 1;
113 __u64 id : 1;
114 __u64 da : 1;
115 __u64 dd : 1;
116 __u64 ss : 1;
117 __u64 ri : 2;
118 __u64 ed : 1;
119 __u64 bn : 1;
120 __u64 reserved4 : 19;
121};
122
123union ia64_isr {
124 __u64 val;
125 struct {
126 __u64 code : 16;
127 __u64 vector : 8;
128 __u64 reserved1 : 8;
129 __u64 x : 1;
130 __u64 w : 1;
131 __u64 r : 1;
132 __u64 na : 1;
133 __u64 sp : 1;
134 __u64 rs : 1;
135 __u64 ir : 1;
136 __u64 ni : 1;
137 __u64 so : 1;
138 __u64 ei : 2;
139 __u64 ed : 1;
140 __u64 reserved2 : 20;
141 };
142};
143
144union ia64_lid {
145 __u64 val;
146 struct {
147 __u64 rv : 16;
148 __u64 eid : 8;
149 __u64 id : 8;
150 __u64 ig : 32;
151 };
152};
153
154union ia64_tpr {
155 __u64 val;
156 struct {
157 __u64 ig0 : 4;
158 __u64 mic : 4;
159 __u64 rsv : 8;
160 __u64 mmi : 1;
161 __u64 ig1 : 47;
162 };
163};
164
165union ia64_itir {
166 __u64 val;
167 struct {
168 __u64 rv3 : 2; /* 0-1 */
169 __u64 ps : 6; /* 2-7 */
170 __u64 key : 24; /* 8-31 */
171 __u64 rv4 : 32; /* 32-63 */
172 };
173};
174
175union ia64_rr {
176 __u64 val;
177 struct {
178 __u64 ve : 1; /* enable hw walker */
179 __u64 reserved0: 1; /* reserved */
180 __u64 ps : 6; /* log page size */
181 __u64 rid : 24; /* region id */
182 __u64 reserved1: 32; /* reserved */
183 };
184};
185
186/*
187 * CPU type, hardware bug flags, and per-CPU state. Frequently used
188 * state comes earlier:
189 */
190struct cpuinfo_ia64 {
191 unsigned int softirq_pending;
192 unsigned long itm_delta; /* # of clock cycles between clock ticks */
193 unsigned long itm_next; /* interval timer mask value to use for next clock tick */
194 unsigned long nsec_per_cyc; /* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */
195 unsigned long unimpl_va_mask; /* mask of unimplemented virtual address bits (from PAL) */
196 unsigned long unimpl_pa_mask; /* mask of unimplemented physical address bits (from PAL) */
197 unsigned long itc_freq; /* frequency of ITC counter */
198 unsigned long proc_freq; /* frequency of processor */
199 unsigned long cyc_per_usec; /* itc_freq/1000000 */
200 unsigned long ptce_base;
201 unsigned int ptce_count[2];
202 unsigned int ptce_stride[2];
203 struct task_struct *ksoftirqd; /* kernel softirq daemon for this CPU */
204
205#ifdef CONFIG_SMP
206 unsigned long loops_per_jiffy;
207 int cpu;
208 unsigned int socket_id; /* physical processor socket id */
209 unsigned short core_id; /* core id */
210 unsigned short thread_id; /* thread id */
211 unsigned short num_log; /* Total number of logical processors on
212 * this socket that were successfully booted */
213 unsigned char cores_per_socket; /* Cores per processor socket */
214 unsigned char threads_per_core; /* Threads per core */
215#endif
216
217 /* CPUID-derived information: */
218 unsigned long ppn;
219 unsigned long features;
220 unsigned char number;
221 unsigned char revision;
222 unsigned char model;
223 unsigned char family;
224 unsigned char archrev;
225 char vendor[16];
226 char *model_name;
227
228#ifdef CONFIG_NUMA
229 struct ia64_node_data *node_data;
230#endif
231};
232
233DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
234
235/*
236 * The "local" data variable. It refers to the per-CPU data of the currently executing
237 * CPU, much like "current" points to the per-task data of the currently executing task.
238 * Do not use the address of local_cpu_data, since it will be different from
239 * cpu_data(smp_processor_id())!
240 */
241#define local_cpu_data (&__ia64_per_cpu_var(ia64_cpu_info))
242#define cpu_data(cpu) (&per_cpu(ia64_cpu_info, cpu))
243
244extern void print_cpu_info (struct cpuinfo_ia64 *);
245
246#define SET_UNALIGN_CTL(task,value) \
247({ \
248 (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK) \
249 | (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK)); \
250 0; \
251})
252#define GET_UNALIGN_CTL(task,addr) \
253({ \
254 put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT, \
255 (int __user *) (addr)); \
256})
257
258#define SET_FPEMU_CTL(task,value) \
259({ \
260 (task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK) \
261 | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK)); \
262 0; \
263})
264#define GET_FPEMU_CTL(task,addr) \
265({ \
266 put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT, \
267 (int __user *) (addr)); \
268})
269
270struct thread_struct {
271 __u32 flags; /* various thread flags (see IA64_THREAD_*) */
272 /* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */
273 __u8 on_ustack; /* executing on user-stacks? */
274 __u8 pad[3];
275 __u64 ksp; /* kernel stack pointer */
276 __u64 map_base; /* base address for get_unmapped_area() */
277 __u64 rbs_bot; /* the base address for the RBS */
278 int last_fph_cpu; /* CPU that may hold the contents of f32-f127 */
279 unsigned long dbr[IA64_NUM_DBG_REGS];
280 unsigned long ibr[IA64_NUM_DBG_REGS];
281 struct ia64_fpreg fph[96]; /* saved/loaded on demand */
282};
283
284#define INIT_THREAD { \
285 .flags = 0, \
286 .on_ustack = 0, \
287 .ksp = 0, \
288 .map_base = DEFAULT_MAP_BASE, \
289 .rbs_bot = STACK_TOP - DEFAULT_USER_STACK_SIZE, \
290 .last_fph_cpu = -1, \
291 .dbr = {0, }, \
292 .ibr = {0, }, \
293 .fph = {{{{0}}}, } \
294}
295
296#define start_thread(regs,new_ip,new_sp) do { \
297 regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL)) \
298 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS)); \
299 regs->cr_iip = new_ip; \
300 regs->ar_rsc = 0xf; /* eager mode, privilege level 3 */ \
301 regs->ar_rnat = 0; \
302 regs->ar_bspstore = current->thread.rbs_bot; \
303 regs->ar_fpsr = FPSR_DEFAULT; \
304 regs->loadrs = 0; \
305 regs->r8 = get_dumpable(current->mm); /* set "don't zap registers" flag */ \
306 regs->r12 = new_sp - 16; /* allocate 16 byte scratch area */ \
307 if (unlikely(get_dumpable(current->mm) != SUID_DUMP_USER)) { \
308 /* \
309 * Zap scratch regs to avoid leaking bits between processes with different \
310 * uid/privileges. \
311 */ \
312 regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0; \
313 regs->r1 = 0; regs->r9 = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0; \
314 } \
315} while (0)
316
317/* Forward declarations, a strange C thing... */
318struct mm_struct;
319struct task_struct;
320
321/*
322 * Free all resources held by a thread. This is called after the
323 * parent of DEAD_TASK has collected the exit status of the task via
324 * wait().
325 */
326#define release_thread(dead_task)
327
328/* Get wait channel for task P. */
329extern unsigned long __get_wchan (struct task_struct *p);
330
331/* Return instruction pointer of blocked task TSK. */
332#define KSTK_EIP(tsk) \
333 ({ \
334 struct pt_regs *_regs = task_pt_regs(tsk); \
335 _regs->cr_iip + ia64_psr(_regs)->ri; \
336 })
337
338/* Return stack pointer of blocked task TSK. */
339#define KSTK_ESP(tsk) ((tsk)->thread.ksp)
340
341extern void ia64_getreg_unknown_kr (void);
342extern void ia64_setreg_unknown_kr (void);
343
344#define ia64_get_kr(regnum) \
345({ \
346 unsigned long r = 0; \
347 \
348 switch (regnum) { \
349 case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break; \
350 case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break; \
351 case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break; \
352 case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break; \
353 case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break; \
354 case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break; \
355 case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break; \
356 case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break; \
357 default: ia64_getreg_unknown_kr(); break; \
358 } \
359 r; \
360})
361
362#define ia64_set_kr(regnum, r) \
363({ \
364 switch (regnum) { \
365 case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break; \
366 case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break; \
367 case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break; \
368 case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break; \
369 case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break; \
370 case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break; \
371 case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break; \
372 case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break; \
373 default: ia64_setreg_unknown_kr(); break; \
374 } \
375})
376
377/*
378 * The following three macros can't be inline functions because we don't have struct
379 * task_struct at this point.
380 */
381
382/*
383 * Return TRUE if task T owns the fph partition of the CPU we're running on.
384 * Must be called from code that has preemption disabled.
385 */
386#define ia64_is_local_fpu_owner(t) \
387({ \
388 struct task_struct *__ia64_islfo_task = (t); \
389 (__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id() \
390 && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER)); \
391})
392
393/*
394 * Mark task T as owning the fph partition of the CPU we're running on.
395 * Must be called from code that has preemption disabled.
396 */
397#define ia64_set_local_fpu_owner(t) do { \
398 struct task_struct *__ia64_slfo_task = (t); \
399 __ia64_slfo_task->thread.last_fph_cpu = smp_processor_id(); \
400 ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task); \
401} while (0)
402
403/* Mark the fph partition of task T as being invalid on all CPUs. */
404#define ia64_drop_fpu(t) ((t)->thread.last_fph_cpu = -1)
405
406extern void __ia64_init_fpu (void);
407extern void __ia64_save_fpu (struct ia64_fpreg *fph);
408extern void __ia64_load_fpu (struct ia64_fpreg *fph);
409extern void ia64_save_debug_regs (unsigned long *save_area);
410extern void ia64_load_debug_regs (unsigned long *save_area);
411
412#define ia64_fph_enable() do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
413#define ia64_fph_disable() do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
414
415/* load fp 0.0 into fph */
416static inline void
417ia64_init_fpu (void) {
418 ia64_fph_enable();
419 __ia64_init_fpu();
420 ia64_fph_disable();
421}
422
423/* save f32-f127 at FPH */
424static inline void
425ia64_save_fpu (struct ia64_fpreg *fph) {
426 ia64_fph_enable();
427 __ia64_save_fpu(fph);
428 ia64_fph_disable();
429}
430
431/* load f32-f127 from FPH */
432static inline void
433ia64_load_fpu (struct ia64_fpreg *fph) {
434 ia64_fph_enable();
435 __ia64_load_fpu(fph);
436 ia64_fph_disable();
437}
438
439static inline __u64
440ia64_clear_ic (void)
441{
442 __u64 psr;
443 psr = ia64_getreg(_IA64_REG_PSR);
444 ia64_stop();
445 ia64_rsm(IA64_PSR_I | IA64_PSR_IC);
446 ia64_srlz_i();
447 return psr;
448}
449
450/*
451 * Restore the psr.
452 */
453static inline void
454ia64_set_psr (__u64 psr)
455{
456 ia64_stop();
457 ia64_setreg(_IA64_REG_PSR_L, psr);
458 ia64_srlz_i();
459}
460
461/*
462 * Insert a translation into an instruction and/or data translation
463 * register.
464 */
465static inline void
466ia64_itr (__u64 target_mask, __u64 tr_num,
467 __u64 vmaddr, __u64 pte,
468 __u64 log_page_size)
469{
470 ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
471 ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
472 ia64_stop();
473 if (target_mask & 0x1)
474 ia64_itri(tr_num, pte);
475 if (target_mask & 0x2)
476 ia64_itrd(tr_num, pte);
477}
478
479/*
480 * Insert a translation into the instruction and/or data translation
481 * cache.
482 */
483static inline void
484ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte,
485 __u64 log_page_size)
486{
487 ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
488 ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
489 ia64_stop();
490 /* as per EAS2.6, itc must be the last instruction in an instruction group */
491 if (target_mask & 0x1)
492 ia64_itci(pte);
493 if (target_mask & 0x2)
494 ia64_itcd(pte);
495}
496
497/*
498 * Purge a range of addresses from instruction and/or data translation
499 * register(s).
500 */
501static inline void
502ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size)
503{
504 if (target_mask & 0x1)
505 ia64_ptri(vmaddr, (log_size << 2));
506 if (target_mask & 0x2)
507 ia64_ptrd(vmaddr, (log_size << 2));
508}
509
510/* Set the interrupt vector address. The address must be suitably aligned (32KB). */
511static inline void
512ia64_set_iva (void *ivt_addr)
513{
514 ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr);
515 ia64_srlz_i();
516}
517
518/* Set the page table address and control bits. */
519static inline void
520ia64_set_pta (__u64 pta)
521{
522 /* Note: srlz.i implies srlz.d */
523 ia64_setreg(_IA64_REG_CR_PTA, pta);
524 ia64_srlz_i();
525}
526
527static inline void
528ia64_eoi (void)
529{
530 ia64_setreg(_IA64_REG_CR_EOI, 0);
531 ia64_srlz_d();
532}
533
534#define cpu_relax() ia64_hint(ia64_hint_pause)
535
536static inline int
537ia64_get_irr(unsigned int vector)
538{
539 unsigned int reg = vector / 64;
540 unsigned int bit = vector % 64;
541 unsigned long irr;
542
543 switch (reg) {
544 case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break;
545 case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break;
546 case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break;
547 case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break;
548 }
549
550 return test_bit(bit, &irr);
551}
552
553static inline void
554ia64_set_lrr0 (unsigned long val)
555{
556 ia64_setreg(_IA64_REG_CR_LRR0, val);
557 ia64_srlz_d();
558}
559
560static inline void
561ia64_set_lrr1 (unsigned long val)
562{
563 ia64_setreg(_IA64_REG_CR_LRR1, val);
564 ia64_srlz_d();
565}
566
567
568/*
569 * Given the address to which a spill occurred, return the unat bit
570 * number that corresponds to this address.
571 */
572static inline __u64
573ia64_unat_pos (void *spill_addr)
574{
575 return ((__u64) spill_addr >> 3) & 0x3f;
576}
577
578/*
579 * Set the NaT bit of an integer register which was spilled at address
580 * SPILL_ADDR. UNAT is the mask to be updated.
581 */
582static inline void
583ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat)
584{
585 __u64 bit = ia64_unat_pos(spill_addr);
586 __u64 mask = 1UL << bit;
587
588 *unat = (*unat & ~mask) | (nat << bit);
589}
590
591static inline __u64
592ia64_get_ivr (void)
593{
594 __u64 r;
595 ia64_srlz_d();
596 r = ia64_getreg(_IA64_REG_CR_IVR);
597 ia64_srlz_d();
598 return r;
599}
600
601static inline void
602ia64_set_dbr (__u64 regnum, __u64 value)
603{
604 __ia64_set_dbr(regnum, value);
605#ifdef CONFIG_ITANIUM
606 ia64_srlz_d();
607#endif
608}
609
610static inline __u64
611ia64_get_dbr (__u64 regnum)
612{
613 __u64 retval;
614
615 retval = __ia64_get_dbr(regnum);
616#ifdef CONFIG_ITANIUM
617 ia64_srlz_d();
618#endif
619 return retval;
620}
621
622static inline __u64
623ia64_rotr (__u64 w, __u64 n)
624{
625 return (w >> n) | (w << (64 - n));
626}
627
628#define ia64_rotl(w,n) ia64_rotr((w), (64) - (n))
629
630/*
631 * Take a mapped kernel address and return the equivalent address
632 * in the region 7 identity mapped virtual area.
633 */
634static inline void *
635ia64_imva (void *addr)
636{
637 void *result;
638 result = (void *) ia64_tpa(addr);
639 return __va(result);
640}
641
642#define ARCH_HAS_PREFETCH
643#define ARCH_HAS_PREFETCHW
644#define ARCH_HAS_SPINLOCK_PREFETCH
645#define PREFETCH_STRIDE L1_CACHE_BYTES
646
647static inline void
648prefetch (const void *x)
649{
650 ia64_lfetch(ia64_lfhint_none, x);
651}
652
653static inline void
654prefetchw (const void *x)
655{
656 ia64_lfetch_excl(ia64_lfhint_none, x);
657}
658
659#define spin_lock_prefetch(x) prefetchw(x)
660
661extern unsigned long boot_option_idle_override;
662
663enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_FORCE_MWAIT,
664 IDLE_NOMWAIT, IDLE_POLL};
665
666void default_idle(void);
667
668#endif /* !__ASSEMBLY__ */
669
670#endif /* _ASM_IA64_PROCESSOR_H */