Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31/*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/slab.h>
45#include <linux/tcp.h>
46#include <linux/udp.h>
47#include <linux/sctp.h>
48#include <linux/netdevice.h>
49#ifdef CONFIG_NET_CLS_ACT
50#include <net/pkt_sched.h>
51#endif
52#include <linux/string.h>
53#include <linux/skbuff.h>
54#include <linux/splice.h>
55#include <linux/cache.h>
56#include <linux/rtnetlink.h>
57#include <linux/init.h>
58#include <linux/scatterlist.h>
59#include <linux/errqueue.h>
60#include <linux/prefetch.h>
61#include <linux/if_vlan.h>
62#include <linux/mpls.h>
63#include <linux/kcov.h>
64
65#include <net/protocol.h>
66#include <net/dst.h>
67#include <net/sock.h>
68#include <net/checksum.h>
69#include <net/ip6_checksum.h>
70#include <net/xfrm.h>
71#include <net/mpls.h>
72#include <net/mptcp.h>
73#include <net/mctp.h>
74#include <net/page_pool.h>
75
76#include <linux/uaccess.h>
77#include <trace/events/skb.h>
78#include <linux/highmem.h>
79#include <linux/capability.h>
80#include <linux/user_namespace.h>
81#include <linux/indirect_call_wrapper.h>
82
83#include "dev.h"
84#include "sock_destructor.h"
85
86struct kmem_cache *skbuff_head_cache __ro_after_init;
87static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88#ifdef CONFIG_SKB_EXTENSIONS
89static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90#endif
91int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92EXPORT_SYMBOL(sysctl_max_skb_frags);
93
94#undef FN
95#define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
96const char * const drop_reasons[] = {
97 DEFINE_DROP_REASON(FN, FN)
98};
99EXPORT_SYMBOL(drop_reasons);
100
101/**
102 * skb_panic - private function for out-of-line support
103 * @skb: buffer
104 * @sz: size
105 * @addr: address
106 * @msg: skb_over_panic or skb_under_panic
107 *
108 * Out-of-line support for skb_put() and skb_push().
109 * Called via the wrapper skb_over_panic() or skb_under_panic().
110 * Keep out of line to prevent kernel bloat.
111 * __builtin_return_address is not used because it is not always reliable.
112 */
113static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
114 const char msg[])
115{
116 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
117 msg, addr, skb->len, sz, skb->head, skb->data,
118 (unsigned long)skb->tail, (unsigned long)skb->end,
119 skb->dev ? skb->dev->name : "<NULL>");
120 BUG();
121}
122
123static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
124{
125 skb_panic(skb, sz, addr, __func__);
126}
127
128static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
129{
130 skb_panic(skb, sz, addr, __func__);
131}
132
133#define NAPI_SKB_CACHE_SIZE 64
134#define NAPI_SKB_CACHE_BULK 16
135#define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
136
137struct napi_alloc_cache {
138 struct page_frag_cache page;
139 unsigned int skb_count;
140 void *skb_cache[NAPI_SKB_CACHE_SIZE];
141};
142
143static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
144static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
145
146void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
147{
148 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
149
150 fragsz = SKB_DATA_ALIGN(fragsz);
151
152 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
153}
154EXPORT_SYMBOL(__napi_alloc_frag_align);
155
156void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
157{
158 void *data;
159
160 fragsz = SKB_DATA_ALIGN(fragsz);
161 if (in_hardirq() || irqs_disabled()) {
162 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
163
164 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
165 } else {
166 struct napi_alloc_cache *nc;
167
168 local_bh_disable();
169 nc = this_cpu_ptr(&napi_alloc_cache);
170 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
171 local_bh_enable();
172 }
173 return data;
174}
175EXPORT_SYMBOL(__netdev_alloc_frag_align);
176
177static struct sk_buff *napi_skb_cache_get(void)
178{
179 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
180 struct sk_buff *skb;
181
182 if (unlikely(!nc->skb_count)) {
183 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
184 GFP_ATOMIC,
185 NAPI_SKB_CACHE_BULK,
186 nc->skb_cache);
187 if (unlikely(!nc->skb_count))
188 return NULL;
189 }
190
191 skb = nc->skb_cache[--nc->skb_count];
192 kasan_unpoison_object_data(skbuff_head_cache, skb);
193
194 return skb;
195}
196
197/* Caller must provide SKB that is memset cleared */
198static void __build_skb_around(struct sk_buff *skb, void *data,
199 unsigned int frag_size)
200{
201 struct skb_shared_info *shinfo;
202 unsigned int size = frag_size ? : ksize(data);
203
204 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205
206 /* Assumes caller memset cleared SKB */
207 skb->truesize = SKB_TRUESIZE(size);
208 refcount_set(&skb->users, 1);
209 skb->head = data;
210 skb->data = data;
211 skb_reset_tail_pointer(skb);
212 skb_set_end_offset(skb, size);
213 skb->mac_header = (typeof(skb->mac_header))~0U;
214 skb->transport_header = (typeof(skb->transport_header))~0U;
215 skb->alloc_cpu = raw_smp_processor_id();
216 /* make sure we initialize shinfo sequentially */
217 shinfo = skb_shinfo(skb);
218 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
219 atomic_set(&shinfo->dataref, 1);
220
221 skb_set_kcov_handle(skb, kcov_common_handle());
222}
223
224/**
225 * __build_skb - build a network buffer
226 * @data: data buffer provided by caller
227 * @frag_size: size of data, or 0 if head was kmalloced
228 *
229 * Allocate a new &sk_buff. Caller provides space holding head and
230 * skb_shared_info. @data must have been allocated by kmalloc() only if
231 * @frag_size is 0, otherwise data should come from the page allocator
232 * or vmalloc()
233 * The return is the new skb buffer.
234 * On a failure the return is %NULL, and @data is not freed.
235 * Notes :
236 * Before IO, driver allocates only data buffer where NIC put incoming frame
237 * Driver should add room at head (NET_SKB_PAD) and
238 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
239 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
240 * before giving packet to stack.
241 * RX rings only contains data buffers, not full skbs.
242 */
243struct sk_buff *__build_skb(void *data, unsigned int frag_size)
244{
245 struct sk_buff *skb;
246
247 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
248 if (unlikely(!skb))
249 return NULL;
250
251 memset(skb, 0, offsetof(struct sk_buff, tail));
252 __build_skb_around(skb, data, frag_size);
253
254 return skb;
255}
256
257/* build_skb() is wrapper over __build_skb(), that specifically
258 * takes care of skb->head and skb->pfmemalloc
259 * This means that if @frag_size is not zero, then @data must be backed
260 * by a page fragment, not kmalloc() or vmalloc()
261 */
262struct sk_buff *build_skb(void *data, unsigned int frag_size)
263{
264 struct sk_buff *skb = __build_skb(data, frag_size);
265
266 if (skb && frag_size) {
267 skb->head_frag = 1;
268 if (page_is_pfmemalloc(virt_to_head_page(data)))
269 skb->pfmemalloc = 1;
270 }
271 return skb;
272}
273EXPORT_SYMBOL(build_skb);
274
275/**
276 * build_skb_around - build a network buffer around provided skb
277 * @skb: sk_buff provide by caller, must be memset cleared
278 * @data: data buffer provided by caller
279 * @frag_size: size of data, or 0 if head was kmalloced
280 */
281struct sk_buff *build_skb_around(struct sk_buff *skb,
282 void *data, unsigned int frag_size)
283{
284 if (unlikely(!skb))
285 return NULL;
286
287 __build_skb_around(skb, data, frag_size);
288
289 if (frag_size) {
290 skb->head_frag = 1;
291 if (page_is_pfmemalloc(virt_to_head_page(data)))
292 skb->pfmemalloc = 1;
293 }
294 return skb;
295}
296EXPORT_SYMBOL(build_skb_around);
297
298/**
299 * __napi_build_skb - build a network buffer
300 * @data: data buffer provided by caller
301 * @frag_size: size of data, or 0 if head was kmalloced
302 *
303 * Version of __build_skb() that uses NAPI percpu caches to obtain
304 * skbuff_head instead of inplace allocation.
305 *
306 * Returns a new &sk_buff on success, %NULL on allocation failure.
307 */
308static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
309{
310 struct sk_buff *skb;
311
312 skb = napi_skb_cache_get();
313 if (unlikely(!skb))
314 return NULL;
315
316 memset(skb, 0, offsetof(struct sk_buff, tail));
317 __build_skb_around(skb, data, frag_size);
318
319 return skb;
320}
321
322/**
323 * napi_build_skb - build a network buffer
324 * @data: data buffer provided by caller
325 * @frag_size: size of data, or 0 if head was kmalloced
326 *
327 * Version of __napi_build_skb() that takes care of skb->head_frag
328 * and skb->pfmemalloc when the data is a page or page fragment.
329 *
330 * Returns a new &sk_buff on success, %NULL on allocation failure.
331 */
332struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
333{
334 struct sk_buff *skb = __napi_build_skb(data, frag_size);
335
336 if (likely(skb) && frag_size) {
337 skb->head_frag = 1;
338 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
339 }
340
341 return skb;
342}
343EXPORT_SYMBOL(napi_build_skb);
344
345/*
346 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
347 * the caller if emergency pfmemalloc reserves are being used. If it is and
348 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
349 * may be used. Otherwise, the packet data may be discarded until enough
350 * memory is free
351 */
352static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
353 bool *pfmemalloc)
354{
355 void *obj;
356 bool ret_pfmemalloc = false;
357
358 /*
359 * Try a regular allocation, when that fails and we're not entitled
360 * to the reserves, fail.
361 */
362 obj = kmalloc_node_track_caller(size,
363 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
364 node);
365 if (obj || !(gfp_pfmemalloc_allowed(flags)))
366 goto out;
367
368 /* Try again but now we are using pfmemalloc reserves */
369 ret_pfmemalloc = true;
370 obj = kmalloc_node_track_caller(size, flags, node);
371
372out:
373 if (pfmemalloc)
374 *pfmemalloc = ret_pfmemalloc;
375
376 return obj;
377}
378
379/* Allocate a new skbuff. We do this ourselves so we can fill in a few
380 * 'private' fields and also do memory statistics to find all the
381 * [BEEP] leaks.
382 *
383 */
384
385/**
386 * __alloc_skb - allocate a network buffer
387 * @size: size to allocate
388 * @gfp_mask: allocation mask
389 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
390 * instead of head cache and allocate a cloned (child) skb.
391 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
392 * allocations in case the data is required for writeback
393 * @node: numa node to allocate memory on
394 *
395 * Allocate a new &sk_buff. The returned buffer has no headroom and a
396 * tail room of at least size bytes. The object has a reference count
397 * of one. The return is the buffer. On a failure the return is %NULL.
398 *
399 * Buffers may only be allocated from interrupts using a @gfp_mask of
400 * %GFP_ATOMIC.
401 */
402struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
403 int flags, int node)
404{
405 struct kmem_cache *cache;
406 struct sk_buff *skb;
407 unsigned int osize;
408 bool pfmemalloc;
409 u8 *data;
410
411 cache = (flags & SKB_ALLOC_FCLONE)
412 ? skbuff_fclone_cache : skbuff_head_cache;
413
414 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
415 gfp_mask |= __GFP_MEMALLOC;
416
417 /* Get the HEAD */
418 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
419 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
420 skb = napi_skb_cache_get();
421 else
422 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
423 if (unlikely(!skb))
424 return NULL;
425 prefetchw(skb);
426
427 /* We do our best to align skb_shared_info on a separate cache
428 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
429 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
430 * Both skb->head and skb_shared_info are cache line aligned.
431 */
432 size = SKB_DATA_ALIGN(size);
433 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
434 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
435 if (unlikely(!data))
436 goto nodata;
437 /* kmalloc(size) might give us more room than requested.
438 * Put skb_shared_info exactly at the end of allocated zone,
439 * to allow max possible filling before reallocation.
440 */
441 osize = ksize(data);
442 size = SKB_WITH_OVERHEAD(osize);
443 prefetchw(data + size);
444
445 /*
446 * Only clear those fields we need to clear, not those that we will
447 * actually initialise below. Hence, don't put any more fields after
448 * the tail pointer in struct sk_buff!
449 */
450 memset(skb, 0, offsetof(struct sk_buff, tail));
451 __build_skb_around(skb, data, osize);
452 skb->pfmemalloc = pfmemalloc;
453
454 if (flags & SKB_ALLOC_FCLONE) {
455 struct sk_buff_fclones *fclones;
456
457 fclones = container_of(skb, struct sk_buff_fclones, skb1);
458
459 skb->fclone = SKB_FCLONE_ORIG;
460 refcount_set(&fclones->fclone_ref, 1);
461 }
462
463 return skb;
464
465nodata:
466 kmem_cache_free(cache, skb);
467 return NULL;
468}
469EXPORT_SYMBOL(__alloc_skb);
470
471/**
472 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
473 * @dev: network device to receive on
474 * @len: length to allocate
475 * @gfp_mask: get_free_pages mask, passed to alloc_skb
476 *
477 * Allocate a new &sk_buff and assign it a usage count of one. The
478 * buffer has NET_SKB_PAD headroom built in. Users should allocate
479 * the headroom they think they need without accounting for the
480 * built in space. The built in space is used for optimisations.
481 *
482 * %NULL is returned if there is no free memory.
483 */
484struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
485 gfp_t gfp_mask)
486{
487 struct page_frag_cache *nc;
488 struct sk_buff *skb;
489 bool pfmemalloc;
490 void *data;
491
492 len += NET_SKB_PAD;
493
494 /* If requested length is either too small or too big,
495 * we use kmalloc() for skb->head allocation.
496 */
497 if (len <= SKB_WITH_OVERHEAD(1024) ||
498 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
499 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
500 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
501 if (!skb)
502 goto skb_fail;
503 goto skb_success;
504 }
505
506 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
507 len = SKB_DATA_ALIGN(len);
508
509 if (sk_memalloc_socks())
510 gfp_mask |= __GFP_MEMALLOC;
511
512 if (in_hardirq() || irqs_disabled()) {
513 nc = this_cpu_ptr(&netdev_alloc_cache);
514 data = page_frag_alloc(nc, len, gfp_mask);
515 pfmemalloc = nc->pfmemalloc;
516 } else {
517 local_bh_disable();
518 nc = this_cpu_ptr(&napi_alloc_cache.page);
519 data = page_frag_alloc(nc, len, gfp_mask);
520 pfmemalloc = nc->pfmemalloc;
521 local_bh_enable();
522 }
523
524 if (unlikely(!data))
525 return NULL;
526
527 skb = __build_skb(data, len);
528 if (unlikely(!skb)) {
529 skb_free_frag(data);
530 return NULL;
531 }
532
533 if (pfmemalloc)
534 skb->pfmemalloc = 1;
535 skb->head_frag = 1;
536
537skb_success:
538 skb_reserve(skb, NET_SKB_PAD);
539 skb->dev = dev;
540
541skb_fail:
542 return skb;
543}
544EXPORT_SYMBOL(__netdev_alloc_skb);
545
546/**
547 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
548 * @napi: napi instance this buffer was allocated for
549 * @len: length to allocate
550 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
551 *
552 * Allocate a new sk_buff for use in NAPI receive. This buffer will
553 * attempt to allocate the head from a special reserved region used
554 * only for NAPI Rx allocation. By doing this we can save several
555 * CPU cycles by avoiding having to disable and re-enable IRQs.
556 *
557 * %NULL is returned if there is no free memory.
558 */
559struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
560 gfp_t gfp_mask)
561{
562 struct napi_alloc_cache *nc;
563 struct sk_buff *skb;
564 void *data;
565
566 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
567 len += NET_SKB_PAD + NET_IP_ALIGN;
568
569 /* If requested length is either too small or too big,
570 * we use kmalloc() for skb->head allocation.
571 */
572 if (len <= SKB_WITH_OVERHEAD(1024) ||
573 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
574 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
575 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
576 NUMA_NO_NODE);
577 if (!skb)
578 goto skb_fail;
579 goto skb_success;
580 }
581
582 nc = this_cpu_ptr(&napi_alloc_cache);
583 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
584 len = SKB_DATA_ALIGN(len);
585
586 if (sk_memalloc_socks())
587 gfp_mask |= __GFP_MEMALLOC;
588
589 data = page_frag_alloc(&nc->page, len, gfp_mask);
590 if (unlikely(!data))
591 return NULL;
592
593 skb = __napi_build_skb(data, len);
594 if (unlikely(!skb)) {
595 skb_free_frag(data);
596 return NULL;
597 }
598
599 if (nc->page.pfmemalloc)
600 skb->pfmemalloc = 1;
601 skb->head_frag = 1;
602
603skb_success:
604 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
605 skb->dev = napi->dev;
606
607skb_fail:
608 return skb;
609}
610EXPORT_SYMBOL(__napi_alloc_skb);
611
612void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
613 int size, unsigned int truesize)
614{
615 skb_fill_page_desc(skb, i, page, off, size);
616 skb->len += size;
617 skb->data_len += size;
618 skb->truesize += truesize;
619}
620EXPORT_SYMBOL(skb_add_rx_frag);
621
622void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
623 unsigned int truesize)
624{
625 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
626
627 skb_frag_size_add(frag, size);
628 skb->len += size;
629 skb->data_len += size;
630 skb->truesize += truesize;
631}
632EXPORT_SYMBOL(skb_coalesce_rx_frag);
633
634static void skb_drop_list(struct sk_buff **listp)
635{
636 kfree_skb_list(*listp);
637 *listp = NULL;
638}
639
640static inline void skb_drop_fraglist(struct sk_buff *skb)
641{
642 skb_drop_list(&skb_shinfo(skb)->frag_list);
643}
644
645static void skb_clone_fraglist(struct sk_buff *skb)
646{
647 struct sk_buff *list;
648
649 skb_walk_frags(skb, list)
650 skb_get(list);
651}
652
653static void skb_free_head(struct sk_buff *skb)
654{
655 unsigned char *head = skb->head;
656
657 if (skb->head_frag) {
658 if (skb_pp_recycle(skb, head))
659 return;
660 skb_free_frag(head);
661 } else {
662 kfree(head);
663 }
664}
665
666static void skb_release_data(struct sk_buff *skb)
667{
668 struct skb_shared_info *shinfo = skb_shinfo(skb);
669 int i;
670
671 if (skb->cloned &&
672 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
673 &shinfo->dataref))
674 goto exit;
675
676 if (skb_zcopy(skb)) {
677 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
678
679 skb_zcopy_clear(skb, true);
680 if (skip_unref)
681 goto free_head;
682 }
683
684 for (i = 0; i < shinfo->nr_frags; i++)
685 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
686
687free_head:
688 if (shinfo->frag_list)
689 kfree_skb_list(shinfo->frag_list);
690
691 skb_free_head(skb);
692exit:
693 /* When we clone an SKB we copy the reycling bit. The pp_recycle
694 * bit is only set on the head though, so in order to avoid races
695 * while trying to recycle fragments on __skb_frag_unref() we need
696 * to make one SKB responsible for triggering the recycle path.
697 * So disable the recycling bit if an SKB is cloned and we have
698 * additional references to the fragmented part of the SKB.
699 * Eventually the last SKB will have the recycling bit set and it's
700 * dataref set to 0, which will trigger the recycling
701 */
702 skb->pp_recycle = 0;
703}
704
705/*
706 * Free an skbuff by memory without cleaning the state.
707 */
708static void kfree_skbmem(struct sk_buff *skb)
709{
710 struct sk_buff_fclones *fclones;
711
712 switch (skb->fclone) {
713 case SKB_FCLONE_UNAVAILABLE:
714 kmem_cache_free(skbuff_head_cache, skb);
715 return;
716
717 case SKB_FCLONE_ORIG:
718 fclones = container_of(skb, struct sk_buff_fclones, skb1);
719
720 /* We usually free the clone (TX completion) before original skb
721 * This test would have no chance to be true for the clone,
722 * while here, branch prediction will be good.
723 */
724 if (refcount_read(&fclones->fclone_ref) == 1)
725 goto fastpath;
726 break;
727
728 default: /* SKB_FCLONE_CLONE */
729 fclones = container_of(skb, struct sk_buff_fclones, skb2);
730 break;
731 }
732 if (!refcount_dec_and_test(&fclones->fclone_ref))
733 return;
734fastpath:
735 kmem_cache_free(skbuff_fclone_cache, fclones);
736}
737
738void skb_release_head_state(struct sk_buff *skb)
739{
740 skb_dst_drop(skb);
741 if (skb->destructor) {
742 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
743 skb->destructor(skb);
744 }
745#if IS_ENABLED(CONFIG_NF_CONNTRACK)
746 nf_conntrack_put(skb_nfct(skb));
747#endif
748 skb_ext_put(skb);
749}
750
751/* Free everything but the sk_buff shell. */
752static void skb_release_all(struct sk_buff *skb)
753{
754 skb_release_head_state(skb);
755 if (likely(skb->head))
756 skb_release_data(skb);
757}
758
759/**
760 * __kfree_skb - private function
761 * @skb: buffer
762 *
763 * Free an sk_buff. Release anything attached to the buffer.
764 * Clean the state. This is an internal helper function. Users should
765 * always call kfree_skb
766 */
767
768void __kfree_skb(struct sk_buff *skb)
769{
770 skb_release_all(skb);
771 kfree_skbmem(skb);
772}
773EXPORT_SYMBOL(__kfree_skb);
774
775/**
776 * kfree_skb_reason - free an sk_buff with special reason
777 * @skb: buffer to free
778 * @reason: reason why this skb is dropped
779 *
780 * Drop a reference to the buffer and free it if the usage count has
781 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
782 * tracepoint.
783 */
784void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
785{
786 if (!skb_unref(skb))
787 return;
788
789 DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
790
791 trace_kfree_skb(skb, __builtin_return_address(0), reason);
792 __kfree_skb(skb);
793}
794EXPORT_SYMBOL(kfree_skb_reason);
795
796void kfree_skb_list_reason(struct sk_buff *segs,
797 enum skb_drop_reason reason)
798{
799 while (segs) {
800 struct sk_buff *next = segs->next;
801
802 kfree_skb_reason(segs, reason);
803 segs = next;
804 }
805}
806EXPORT_SYMBOL(kfree_skb_list_reason);
807
808/* Dump skb information and contents.
809 *
810 * Must only be called from net_ratelimit()-ed paths.
811 *
812 * Dumps whole packets if full_pkt, only headers otherwise.
813 */
814void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
815{
816 struct skb_shared_info *sh = skb_shinfo(skb);
817 struct net_device *dev = skb->dev;
818 struct sock *sk = skb->sk;
819 struct sk_buff *list_skb;
820 bool has_mac, has_trans;
821 int headroom, tailroom;
822 int i, len, seg_len;
823
824 if (full_pkt)
825 len = skb->len;
826 else
827 len = min_t(int, skb->len, MAX_HEADER + 128);
828
829 headroom = skb_headroom(skb);
830 tailroom = skb_tailroom(skb);
831
832 has_mac = skb_mac_header_was_set(skb);
833 has_trans = skb_transport_header_was_set(skb);
834
835 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
836 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
837 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
838 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
839 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
840 level, skb->len, headroom, skb_headlen(skb), tailroom,
841 has_mac ? skb->mac_header : -1,
842 has_mac ? skb_mac_header_len(skb) : -1,
843 skb->network_header,
844 has_trans ? skb_network_header_len(skb) : -1,
845 has_trans ? skb->transport_header : -1,
846 sh->tx_flags, sh->nr_frags,
847 sh->gso_size, sh->gso_type, sh->gso_segs,
848 skb->csum, skb->ip_summed, skb->csum_complete_sw,
849 skb->csum_valid, skb->csum_level,
850 skb->hash, skb->sw_hash, skb->l4_hash,
851 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
852
853 if (dev)
854 printk("%sdev name=%s feat=%pNF\n",
855 level, dev->name, &dev->features);
856 if (sk)
857 printk("%ssk family=%hu type=%u proto=%u\n",
858 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
859
860 if (full_pkt && headroom)
861 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
862 16, 1, skb->head, headroom, false);
863
864 seg_len = min_t(int, skb_headlen(skb), len);
865 if (seg_len)
866 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
867 16, 1, skb->data, seg_len, false);
868 len -= seg_len;
869
870 if (full_pkt && tailroom)
871 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
872 16, 1, skb_tail_pointer(skb), tailroom, false);
873
874 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
875 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
876 u32 p_off, p_len, copied;
877 struct page *p;
878 u8 *vaddr;
879
880 skb_frag_foreach_page(frag, skb_frag_off(frag),
881 skb_frag_size(frag), p, p_off, p_len,
882 copied) {
883 seg_len = min_t(int, p_len, len);
884 vaddr = kmap_atomic(p);
885 print_hex_dump(level, "skb frag: ",
886 DUMP_PREFIX_OFFSET,
887 16, 1, vaddr + p_off, seg_len, false);
888 kunmap_atomic(vaddr);
889 len -= seg_len;
890 if (!len)
891 break;
892 }
893 }
894
895 if (full_pkt && skb_has_frag_list(skb)) {
896 printk("skb fraglist:\n");
897 skb_walk_frags(skb, list_skb)
898 skb_dump(level, list_skb, true);
899 }
900}
901EXPORT_SYMBOL(skb_dump);
902
903/**
904 * skb_tx_error - report an sk_buff xmit error
905 * @skb: buffer that triggered an error
906 *
907 * Report xmit error if a device callback is tracking this skb.
908 * skb must be freed afterwards.
909 */
910void skb_tx_error(struct sk_buff *skb)
911{
912 if (skb) {
913 skb_zcopy_downgrade_managed(skb);
914 skb_zcopy_clear(skb, true);
915 }
916}
917EXPORT_SYMBOL(skb_tx_error);
918
919#ifdef CONFIG_TRACEPOINTS
920/**
921 * consume_skb - free an skbuff
922 * @skb: buffer to free
923 *
924 * Drop a ref to the buffer and free it if the usage count has hit zero
925 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
926 * is being dropped after a failure and notes that
927 */
928void consume_skb(struct sk_buff *skb)
929{
930 if (!skb_unref(skb))
931 return;
932
933 trace_consume_skb(skb);
934 __kfree_skb(skb);
935}
936EXPORT_SYMBOL(consume_skb);
937#endif
938
939/**
940 * __consume_stateless_skb - free an skbuff, assuming it is stateless
941 * @skb: buffer to free
942 *
943 * Alike consume_skb(), but this variant assumes that this is the last
944 * skb reference and all the head states have been already dropped
945 */
946void __consume_stateless_skb(struct sk_buff *skb)
947{
948 trace_consume_skb(skb);
949 skb_release_data(skb);
950 kfree_skbmem(skb);
951}
952
953static void napi_skb_cache_put(struct sk_buff *skb)
954{
955 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
956 u32 i;
957
958 kasan_poison_object_data(skbuff_head_cache, skb);
959 nc->skb_cache[nc->skb_count++] = skb;
960
961 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
962 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
963 kasan_unpoison_object_data(skbuff_head_cache,
964 nc->skb_cache[i]);
965
966 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
967 nc->skb_cache + NAPI_SKB_CACHE_HALF);
968 nc->skb_count = NAPI_SKB_CACHE_HALF;
969 }
970}
971
972void __kfree_skb_defer(struct sk_buff *skb)
973{
974 skb_release_all(skb);
975 napi_skb_cache_put(skb);
976}
977
978void napi_skb_free_stolen_head(struct sk_buff *skb)
979{
980 if (unlikely(skb->slow_gro)) {
981 nf_reset_ct(skb);
982 skb_dst_drop(skb);
983 skb_ext_put(skb);
984 skb_orphan(skb);
985 skb->slow_gro = 0;
986 }
987 napi_skb_cache_put(skb);
988}
989
990void napi_consume_skb(struct sk_buff *skb, int budget)
991{
992 /* Zero budget indicate non-NAPI context called us, like netpoll */
993 if (unlikely(!budget)) {
994 dev_consume_skb_any(skb);
995 return;
996 }
997
998 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
999
1000 if (!skb_unref(skb))
1001 return;
1002
1003 /* if reaching here SKB is ready to free */
1004 trace_consume_skb(skb);
1005
1006 /* if SKB is a clone, don't handle this case */
1007 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1008 __kfree_skb(skb);
1009 return;
1010 }
1011
1012 skb_release_all(skb);
1013 napi_skb_cache_put(skb);
1014}
1015EXPORT_SYMBOL(napi_consume_skb);
1016
1017/* Make sure a field is contained by headers group */
1018#define CHECK_SKB_FIELD(field) \
1019 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1020 offsetof(struct sk_buff, headers.field)); \
1021
1022static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1023{
1024 new->tstamp = old->tstamp;
1025 /* We do not copy old->sk */
1026 new->dev = old->dev;
1027 memcpy(new->cb, old->cb, sizeof(old->cb));
1028 skb_dst_copy(new, old);
1029 __skb_ext_copy(new, old);
1030 __nf_copy(new, old, false);
1031
1032 /* Note : this field could be in the headers group.
1033 * It is not yet because we do not want to have a 16 bit hole
1034 */
1035 new->queue_mapping = old->queue_mapping;
1036
1037 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1038 CHECK_SKB_FIELD(protocol);
1039 CHECK_SKB_FIELD(csum);
1040 CHECK_SKB_FIELD(hash);
1041 CHECK_SKB_FIELD(priority);
1042 CHECK_SKB_FIELD(skb_iif);
1043 CHECK_SKB_FIELD(vlan_proto);
1044 CHECK_SKB_FIELD(vlan_tci);
1045 CHECK_SKB_FIELD(transport_header);
1046 CHECK_SKB_FIELD(network_header);
1047 CHECK_SKB_FIELD(mac_header);
1048 CHECK_SKB_FIELD(inner_protocol);
1049 CHECK_SKB_FIELD(inner_transport_header);
1050 CHECK_SKB_FIELD(inner_network_header);
1051 CHECK_SKB_FIELD(inner_mac_header);
1052 CHECK_SKB_FIELD(mark);
1053#ifdef CONFIG_NETWORK_SECMARK
1054 CHECK_SKB_FIELD(secmark);
1055#endif
1056#ifdef CONFIG_NET_RX_BUSY_POLL
1057 CHECK_SKB_FIELD(napi_id);
1058#endif
1059 CHECK_SKB_FIELD(alloc_cpu);
1060#ifdef CONFIG_XPS
1061 CHECK_SKB_FIELD(sender_cpu);
1062#endif
1063#ifdef CONFIG_NET_SCHED
1064 CHECK_SKB_FIELD(tc_index);
1065#endif
1066
1067}
1068
1069/*
1070 * You should not add any new code to this function. Add it to
1071 * __copy_skb_header above instead.
1072 */
1073static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1074{
1075#define C(x) n->x = skb->x
1076
1077 n->next = n->prev = NULL;
1078 n->sk = NULL;
1079 __copy_skb_header(n, skb);
1080
1081 C(len);
1082 C(data_len);
1083 C(mac_len);
1084 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1085 n->cloned = 1;
1086 n->nohdr = 0;
1087 n->peeked = 0;
1088 C(pfmemalloc);
1089 C(pp_recycle);
1090 n->destructor = NULL;
1091 C(tail);
1092 C(end);
1093 C(head);
1094 C(head_frag);
1095 C(data);
1096 C(truesize);
1097 refcount_set(&n->users, 1);
1098
1099 atomic_inc(&(skb_shinfo(skb)->dataref));
1100 skb->cloned = 1;
1101
1102 return n;
1103#undef C
1104}
1105
1106/**
1107 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1108 * @first: first sk_buff of the msg
1109 */
1110struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1111{
1112 struct sk_buff *n;
1113
1114 n = alloc_skb(0, GFP_ATOMIC);
1115 if (!n)
1116 return NULL;
1117
1118 n->len = first->len;
1119 n->data_len = first->len;
1120 n->truesize = first->truesize;
1121
1122 skb_shinfo(n)->frag_list = first;
1123
1124 __copy_skb_header(n, first);
1125 n->destructor = NULL;
1126
1127 return n;
1128}
1129EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1130
1131/**
1132 * skb_morph - morph one skb into another
1133 * @dst: the skb to receive the contents
1134 * @src: the skb to supply the contents
1135 *
1136 * This is identical to skb_clone except that the target skb is
1137 * supplied by the user.
1138 *
1139 * The target skb is returned upon exit.
1140 */
1141struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1142{
1143 skb_release_all(dst);
1144 return __skb_clone(dst, src);
1145}
1146EXPORT_SYMBOL_GPL(skb_morph);
1147
1148int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1149{
1150 unsigned long max_pg, num_pg, new_pg, old_pg;
1151 struct user_struct *user;
1152
1153 if (capable(CAP_IPC_LOCK) || !size)
1154 return 0;
1155
1156 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1157 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1158 user = mmp->user ? : current_user();
1159
1160 do {
1161 old_pg = atomic_long_read(&user->locked_vm);
1162 new_pg = old_pg + num_pg;
1163 if (new_pg > max_pg)
1164 return -ENOBUFS;
1165 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1166 old_pg);
1167
1168 if (!mmp->user) {
1169 mmp->user = get_uid(user);
1170 mmp->num_pg = num_pg;
1171 } else {
1172 mmp->num_pg += num_pg;
1173 }
1174
1175 return 0;
1176}
1177EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1178
1179void mm_unaccount_pinned_pages(struct mmpin *mmp)
1180{
1181 if (mmp->user) {
1182 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1183 free_uid(mmp->user);
1184 }
1185}
1186EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1187
1188static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1189{
1190 struct ubuf_info *uarg;
1191 struct sk_buff *skb;
1192
1193 WARN_ON_ONCE(!in_task());
1194
1195 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1196 if (!skb)
1197 return NULL;
1198
1199 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1200 uarg = (void *)skb->cb;
1201 uarg->mmp.user = NULL;
1202
1203 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1204 kfree_skb(skb);
1205 return NULL;
1206 }
1207
1208 uarg->callback = msg_zerocopy_callback;
1209 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1210 uarg->len = 1;
1211 uarg->bytelen = size;
1212 uarg->zerocopy = 1;
1213 uarg->flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1214 refcount_set(&uarg->refcnt, 1);
1215 sock_hold(sk);
1216
1217 return uarg;
1218}
1219
1220static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1221{
1222 return container_of((void *)uarg, struct sk_buff, cb);
1223}
1224
1225struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1226 struct ubuf_info *uarg)
1227{
1228 if (uarg) {
1229 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1230 u32 bytelen, next;
1231
1232 /* there might be non MSG_ZEROCOPY users */
1233 if (uarg->callback != msg_zerocopy_callback)
1234 return NULL;
1235
1236 /* realloc only when socket is locked (TCP, UDP cork),
1237 * so uarg->len and sk_zckey access is serialized
1238 */
1239 if (!sock_owned_by_user(sk)) {
1240 WARN_ON_ONCE(1);
1241 return NULL;
1242 }
1243
1244 bytelen = uarg->bytelen + size;
1245 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1246 /* TCP can create new skb to attach new uarg */
1247 if (sk->sk_type == SOCK_STREAM)
1248 goto new_alloc;
1249 return NULL;
1250 }
1251
1252 next = (u32)atomic_read(&sk->sk_zckey);
1253 if ((u32)(uarg->id + uarg->len) == next) {
1254 if (mm_account_pinned_pages(&uarg->mmp, size))
1255 return NULL;
1256 uarg->len++;
1257 uarg->bytelen = bytelen;
1258 atomic_set(&sk->sk_zckey, ++next);
1259
1260 /* no extra ref when appending to datagram (MSG_MORE) */
1261 if (sk->sk_type == SOCK_STREAM)
1262 net_zcopy_get(uarg);
1263
1264 return uarg;
1265 }
1266 }
1267
1268new_alloc:
1269 return msg_zerocopy_alloc(sk, size);
1270}
1271EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1272
1273static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1274{
1275 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1276 u32 old_lo, old_hi;
1277 u64 sum_len;
1278
1279 old_lo = serr->ee.ee_info;
1280 old_hi = serr->ee.ee_data;
1281 sum_len = old_hi - old_lo + 1ULL + len;
1282
1283 if (sum_len >= (1ULL << 32))
1284 return false;
1285
1286 if (lo != old_hi + 1)
1287 return false;
1288
1289 serr->ee.ee_data += len;
1290 return true;
1291}
1292
1293static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1294{
1295 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1296 struct sock_exterr_skb *serr;
1297 struct sock *sk = skb->sk;
1298 struct sk_buff_head *q;
1299 unsigned long flags;
1300 bool is_zerocopy;
1301 u32 lo, hi;
1302 u16 len;
1303
1304 mm_unaccount_pinned_pages(&uarg->mmp);
1305
1306 /* if !len, there was only 1 call, and it was aborted
1307 * so do not queue a completion notification
1308 */
1309 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1310 goto release;
1311
1312 len = uarg->len;
1313 lo = uarg->id;
1314 hi = uarg->id + len - 1;
1315 is_zerocopy = uarg->zerocopy;
1316
1317 serr = SKB_EXT_ERR(skb);
1318 memset(serr, 0, sizeof(*serr));
1319 serr->ee.ee_errno = 0;
1320 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1321 serr->ee.ee_data = hi;
1322 serr->ee.ee_info = lo;
1323 if (!is_zerocopy)
1324 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1325
1326 q = &sk->sk_error_queue;
1327 spin_lock_irqsave(&q->lock, flags);
1328 tail = skb_peek_tail(q);
1329 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1330 !skb_zerocopy_notify_extend(tail, lo, len)) {
1331 __skb_queue_tail(q, skb);
1332 skb = NULL;
1333 }
1334 spin_unlock_irqrestore(&q->lock, flags);
1335
1336 sk_error_report(sk);
1337
1338release:
1339 consume_skb(skb);
1340 sock_put(sk);
1341}
1342
1343void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1344 bool success)
1345{
1346 uarg->zerocopy = uarg->zerocopy & success;
1347
1348 if (refcount_dec_and_test(&uarg->refcnt))
1349 __msg_zerocopy_callback(uarg);
1350}
1351EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1352
1353void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1354{
1355 struct sock *sk = skb_from_uarg(uarg)->sk;
1356
1357 atomic_dec(&sk->sk_zckey);
1358 uarg->len--;
1359
1360 if (have_uref)
1361 msg_zerocopy_callback(NULL, uarg, true);
1362}
1363EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1364
1365int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1366 struct msghdr *msg, int len,
1367 struct ubuf_info *uarg)
1368{
1369 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1370 int err, orig_len = skb->len;
1371
1372 /* An skb can only point to one uarg. This edge case happens when
1373 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1374 */
1375 if (orig_uarg && uarg != orig_uarg)
1376 return -EEXIST;
1377
1378 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1379 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1380 struct sock *save_sk = skb->sk;
1381
1382 /* Streams do not free skb on error. Reset to prev state. */
1383 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1384 skb->sk = sk;
1385 ___pskb_trim(skb, orig_len);
1386 skb->sk = save_sk;
1387 return err;
1388 }
1389
1390 skb_zcopy_set(skb, uarg, NULL);
1391 return skb->len - orig_len;
1392}
1393EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1394
1395void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1396{
1397 int i;
1398
1399 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1400 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1401 skb_frag_ref(skb, i);
1402}
1403EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1404
1405static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1406 gfp_t gfp_mask)
1407{
1408 if (skb_zcopy(orig)) {
1409 if (skb_zcopy(nskb)) {
1410 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1411 if (!gfp_mask) {
1412 WARN_ON_ONCE(1);
1413 return -ENOMEM;
1414 }
1415 if (skb_uarg(nskb) == skb_uarg(orig))
1416 return 0;
1417 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1418 return -EIO;
1419 }
1420 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1421 }
1422 return 0;
1423}
1424
1425/**
1426 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1427 * @skb: the skb to modify
1428 * @gfp_mask: allocation priority
1429 *
1430 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1431 * It will copy all frags into kernel and drop the reference
1432 * to userspace pages.
1433 *
1434 * If this function is called from an interrupt gfp_mask() must be
1435 * %GFP_ATOMIC.
1436 *
1437 * Returns 0 on success or a negative error code on failure
1438 * to allocate kernel memory to copy to.
1439 */
1440int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1441{
1442 int num_frags = skb_shinfo(skb)->nr_frags;
1443 struct page *page, *head = NULL;
1444 int i, new_frags;
1445 u32 d_off;
1446
1447 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1448 return -EINVAL;
1449
1450 if (!num_frags)
1451 goto release;
1452
1453 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1454 for (i = 0; i < new_frags; i++) {
1455 page = alloc_page(gfp_mask);
1456 if (!page) {
1457 while (head) {
1458 struct page *next = (struct page *)page_private(head);
1459 put_page(head);
1460 head = next;
1461 }
1462 return -ENOMEM;
1463 }
1464 set_page_private(page, (unsigned long)head);
1465 head = page;
1466 }
1467
1468 page = head;
1469 d_off = 0;
1470 for (i = 0; i < num_frags; i++) {
1471 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1472 u32 p_off, p_len, copied;
1473 struct page *p;
1474 u8 *vaddr;
1475
1476 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1477 p, p_off, p_len, copied) {
1478 u32 copy, done = 0;
1479 vaddr = kmap_atomic(p);
1480
1481 while (done < p_len) {
1482 if (d_off == PAGE_SIZE) {
1483 d_off = 0;
1484 page = (struct page *)page_private(page);
1485 }
1486 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1487 memcpy(page_address(page) + d_off,
1488 vaddr + p_off + done, copy);
1489 done += copy;
1490 d_off += copy;
1491 }
1492 kunmap_atomic(vaddr);
1493 }
1494 }
1495
1496 /* skb frags release userspace buffers */
1497 for (i = 0; i < num_frags; i++)
1498 skb_frag_unref(skb, i);
1499
1500 /* skb frags point to kernel buffers */
1501 for (i = 0; i < new_frags - 1; i++) {
1502 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1503 head = (struct page *)page_private(head);
1504 }
1505 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1506 skb_shinfo(skb)->nr_frags = new_frags;
1507
1508release:
1509 skb_zcopy_clear(skb, false);
1510 return 0;
1511}
1512EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1513
1514/**
1515 * skb_clone - duplicate an sk_buff
1516 * @skb: buffer to clone
1517 * @gfp_mask: allocation priority
1518 *
1519 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1520 * copies share the same packet data but not structure. The new
1521 * buffer has a reference count of 1. If the allocation fails the
1522 * function returns %NULL otherwise the new buffer is returned.
1523 *
1524 * If this function is called from an interrupt gfp_mask() must be
1525 * %GFP_ATOMIC.
1526 */
1527
1528struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1529{
1530 struct sk_buff_fclones *fclones = container_of(skb,
1531 struct sk_buff_fclones,
1532 skb1);
1533 struct sk_buff *n;
1534
1535 if (skb_orphan_frags(skb, gfp_mask))
1536 return NULL;
1537
1538 if (skb->fclone == SKB_FCLONE_ORIG &&
1539 refcount_read(&fclones->fclone_ref) == 1) {
1540 n = &fclones->skb2;
1541 refcount_set(&fclones->fclone_ref, 2);
1542 n->fclone = SKB_FCLONE_CLONE;
1543 } else {
1544 if (skb_pfmemalloc(skb))
1545 gfp_mask |= __GFP_MEMALLOC;
1546
1547 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1548 if (!n)
1549 return NULL;
1550
1551 n->fclone = SKB_FCLONE_UNAVAILABLE;
1552 }
1553
1554 return __skb_clone(n, skb);
1555}
1556EXPORT_SYMBOL(skb_clone);
1557
1558void skb_headers_offset_update(struct sk_buff *skb, int off)
1559{
1560 /* Only adjust this if it actually is csum_start rather than csum */
1561 if (skb->ip_summed == CHECKSUM_PARTIAL)
1562 skb->csum_start += off;
1563 /* {transport,network,mac}_header and tail are relative to skb->head */
1564 skb->transport_header += off;
1565 skb->network_header += off;
1566 if (skb_mac_header_was_set(skb))
1567 skb->mac_header += off;
1568 skb->inner_transport_header += off;
1569 skb->inner_network_header += off;
1570 skb->inner_mac_header += off;
1571}
1572EXPORT_SYMBOL(skb_headers_offset_update);
1573
1574void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1575{
1576 __copy_skb_header(new, old);
1577
1578 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1579 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1580 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1581}
1582EXPORT_SYMBOL(skb_copy_header);
1583
1584static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1585{
1586 if (skb_pfmemalloc(skb))
1587 return SKB_ALLOC_RX;
1588 return 0;
1589}
1590
1591/**
1592 * skb_copy - create private copy of an sk_buff
1593 * @skb: buffer to copy
1594 * @gfp_mask: allocation priority
1595 *
1596 * Make a copy of both an &sk_buff and its data. This is used when the
1597 * caller wishes to modify the data and needs a private copy of the
1598 * data to alter. Returns %NULL on failure or the pointer to the buffer
1599 * on success. The returned buffer has a reference count of 1.
1600 *
1601 * As by-product this function converts non-linear &sk_buff to linear
1602 * one, so that &sk_buff becomes completely private and caller is allowed
1603 * to modify all the data of returned buffer. This means that this
1604 * function is not recommended for use in circumstances when only
1605 * header is going to be modified. Use pskb_copy() instead.
1606 */
1607
1608struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1609{
1610 int headerlen = skb_headroom(skb);
1611 unsigned int size = skb_end_offset(skb) + skb->data_len;
1612 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1613 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1614
1615 if (!n)
1616 return NULL;
1617
1618 /* Set the data pointer */
1619 skb_reserve(n, headerlen);
1620 /* Set the tail pointer and length */
1621 skb_put(n, skb->len);
1622
1623 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1624
1625 skb_copy_header(n, skb);
1626 return n;
1627}
1628EXPORT_SYMBOL(skb_copy);
1629
1630/**
1631 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1632 * @skb: buffer to copy
1633 * @headroom: headroom of new skb
1634 * @gfp_mask: allocation priority
1635 * @fclone: if true allocate the copy of the skb from the fclone
1636 * cache instead of the head cache; it is recommended to set this
1637 * to true for the cases where the copy will likely be cloned
1638 *
1639 * Make a copy of both an &sk_buff and part of its data, located
1640 * in header. Fragmented data remain shared. This is used when
1641 * the caller wishes to modify only header of &sk_buff and needs
1642 * private copy of the header to alter. Returns %NULL on failure
1643 * or the pointer to the buffer on success.
1644 * The returned buffer has a reference count of 1.
1645 */
1646
1647struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1648 gfp_t gfp_mask, bool fclone)
1649{
1650 unsigned int size = skb_headlen(skb) + headroom;
1651 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1652 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1653
1654 if (!n)
1655 goto out;
1656
1657 /* Set the data pointer */
1658 skb_reserve(n, headroom);
1659 /* Set the tail pointer and length */
1660 skb_put(n, skb_headlen(skb));
1661 /* Copy the bytes */
1662 skb_copy_from_linear_data(skb, n->data, n->len);
1663
1664 n->truesize += skb->data_len;
1665 n->data_len = skb->data_len;
1666 n->len = skb->len;
1667
1668 if (skb_shinfo(skb)->nr_frags) {
1669 int i;
1670
1671 if (skb_orphan_frags(skb, gfp_mask) ||
1672 skb_zerocopy_clone(n, skb, gfp_mask)) {
1673 kfree_skb(n);
1674 n = NULL;
1675 goto out;
1676 }
1677 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1678 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1679 skb_frag_ref(skb, i);
1680 }
1681 skb_shinfo(n)->nr_frags = i;
1682 }
1683
1684 if (skb_has_frag_list(skb)) {
1685 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1686 skb_clone_fraglist(n);
1687 }
1688
1689 skb_copy_header(n, skb);
1690out:
1691 return n;
1692}
1693EXPORT_SYMBOL(__pskb_copy_fclone);
1694
1695/**
1696 * pskb_expand_head - reallocate header of &sk_buff
1697 * @skb: buffer to reallocate
1698 * @nhead: room to add at head
1699 * @ntail: room to add at tail
1700 * @gfp_mask: allocation priority
1701 *
1702 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1703 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1704 * reference count of 1. Returns zero in the case of success or error,
1705 * if expansion failed. In the last case, &sk_buff is not changed.
1706 *
1707 * All the pointers pointing into skb header may change and must be
1708 * reloaded after call to this function.
1709 */
1710
1711int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1712 gfp_t gfp_mask)
1713{
1714 int i, osize = skb_end_offset(skb);
1715 int size = osize + nhead + ntail;
1716 long off;
1717 u8 *data;
1718
1719 BUG_ON(nhead < 0);
1720
1721 BUG_ON(skb_shared(skb));
1722
1723 skb_zcopy_downgrade_managed(skb);
1724
1725 size = SKB_DATA_ALIGN(size);
1726
1727 if (skb_pfmemalloc(skb))
1728 gfp_mask |= __GFP_MEMALLOC;
1729 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1730 gfp_mask, NUMA_NO_NODE, NULL);
1731 if (!data)
1732 goto nodata;
1733 size = SKB_WITH_OVERHEAD(ksize(data));
1734
1735 /* Copy only real data... and, alas, header. This should be
1736 * optimized for the cases when header is void.
1737 */
1738 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1739
1740 memcpy((struct skb_shared_info *)(data + size),
1741 skb_shinfo(skb),
1742 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1743
1744 /*
1745 * if shinfo is shared we must drop the old head gracefully, but if it
1746 * is not we can just drop the old head and let the existing refcount
1747 * be since all we did is relocate the values
1748 */
1749 if (skb_cloned(skb)) {
1750 if (skb_orphan_frags(skb, gfp_mask))
1751 goto nofrags;
1752 if (skb_zcopy(skb))
1753 refcount_inc(&skb_uarg(skb)->refcnt);
1754 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1755 skb_frag_ref(skb, i);
1756
1757 if (skb_has_frag_list(skb))
1758 skb_clone_fraglist(skb);
1759
1760 skb_release_data(skb);
1761 } else {
1762 skb_free_head(skb);
1763 }
1764 off = (data + nhead) - skb->head;
1765
1766 skb->head = data;
1767 skb->head_frag = 0;
1768 skb->data += off;
1769
1770 skb_set_end_offset(skb, size);
1771#ifdef NET_SKBUFF_DATA_USES_OFFSET
1772 off = nhead;
1773#endif
1774 skb->tail += off;
1775 skb_headers_offset_update(skb, nhead);
1776 skb->cloned = 0;
1777 skb->hdr_len = 0;
1778 skb->nohdr = 0;
1779 atomic_set(&skb_shinfo(skb)->dataref, 1);
1780
1781 skb_metadata_clear(skb);
1782
1783 /* It is not generally safe to change skb->truesize.
1784 * For the moment, we really care of rx path, or
1785 * when skb is orphaned (not attached to a socket).
1786 */
1787 if (!skb->sk || skb->destructor == sock_edemux)
1788 skb->truesize += size - osize;
1789
1790 return 0;
1791
1792nofrags:
1793 kfree(data);
1794nodata:
1795 return -ENOMEM;
1796}
1797EXPORT_SYMBOL(pskb_expand_head);
1798
1799/* Make private copy of skb with writable head and some headroom */
1800
1801struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1802{
1803 struct sk_buff *skb2;
1804 int delta = headroom - skb_headroom(skb);
1805
1806 if (delta <= 0)
1807 skb2 = pskb_copy(skb, GFP_ATOMIC);
1808 else {
1809 skb2 = skb_clone(skb, GFP_ATOMIC);
1810 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1811 GFP_ATOMIC)) {
1812 kfree_skb(skb2);
1813 skb2 = NULL;
1814 }
1815 }
1816 return skb2;
1817}
1818EXPORT_SYMBOL(skb_realloc_headroom);
1819
1820int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1821{
1822 unsigned int saved_end_offset, saved_truesize;
1823 struct skb_shared_info *shinfo;
1824 int res;
1825
1826 saved_end_offset = skb_end_offset(skb);
1827 saved_truesize = skb->truesize;
1828
1829 res = pskb_expand_head(skb, 0, 0, pri);
1830 if (res)
1831 return res;
1832
1833 skb->truesize = saved_truesize;
1834
1835 if (likely(skb_end_offset(skb) == saved_end_offset))
1836 return 0;
1837
1838 shinfo = skb_shinfo(skb);
1839
1840 /* We are about to change back skb->end,
1841 * we need to move skb_shinfo() to its new location.
1842 */
1843 memmove(skb->head + saved_end_offset,
1844 shinfo,
1845 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
1846
1847 skb_set_end_offset(skb, saved_end_offset);
1848
1849 return 0;
1850}
1851
1852/**
1853 * skb_expand_head - reallocate header of &sk_buff
1854 * @skb: buffer to reallocate
1855 * @headroom: needed headroom
1856 *
1857 * Unlike skb_realloc_headroom, this one does not allocate a new skb
1858 * if possible; copies skb->sk to new skb as needed
1859 * and frees original skb in case of failures.
1860 *
1861 * It expect increased headroom and generates warning otherwise.
1862 */
1863
1864struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1865{
1866 int delta = headroom - skb_headroom(skb);
1867 int osize = skb_end_offset(skb);
1868 struct sock *sk = skb->sk;
1869
1870 if (WARN_ONCE(delta <= 0,
1871 "%s is expecting an increase in the headroom", __func__))
1872 return skb;
1873
1874 delta = SKB_DATA_ALIGN(delta);
1875 /* pskb_expand_head() might crash, if skb is shared. */
1876 if (skb_shared(skb) || !is_skb_wmem(skb)) {
1877 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1878
1879 if (unlikely(!nskb))
1880 goto fail;
1881
1882 if (sk)
1883 skb_set_owner_w(nskb, sk);
1884 consume_skb(skb);
1885 skb = nskb;
1886 }
1887 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1888 goto fail;
1889
1890 if (sk && is_skb_wmem(skb)) {
1891 delta = skb_end_offset(skb) - osize;
1892 refcount_add(delta, &sk->sk_wmem_alloc);
1893 skb->truesize += delta;
1894 }
1895 return skb;
1896
1897fail:
1898 kfree_skb(skb);
1899 return NULL;
1900}
1901EXPORT_SYMBOL(skb_expand_head);
1902
1903/**
1904 * skb_copy_expand - copy and expand sk_buff
1905 * @skb: buffer to copy
1906 * @newheadroom: new free bytes at head
1907 * @newtailroom: new free bytes at tail
1908 * @gfp_mask: allocation priority
1909 *
1910 * Make a copy of both an &sk_buff and its data and while doing so
1911 * allocate additional space.
1912 *
1913 * This is used when the caller wishes to modify the data and needs a
1914 * private copy of the data to alter as well as more space for new fields.
1915 * Returns %NULL on failure or the pointer to the buffer
1916 * on success. The returned buffer has a reference count of 1.
1917 *
1918 * You must pass %GFP_ATOMIC as the allocation priority if this function
1919 * is called from an interrupt.
1920 */
1921struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1922 int newheadroom, int newtailroom,
1923 gfp_t gfp_mask)
1924{
1925 /*
1926 * Allocate the copy buffer
1927 */
1928 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1929 gfp_mask, skb_alloc_rx_flag(skb),
1930 NUMA_NO_NODE);
1931 int oldheadroom = skb_headroom(skb);
1932 int head_copy_len, head_copy_off;
1933
1934 if (!n)
1935 return NULL;
1936
1937 skb_reserve(n, newheadroom);
1938
1939 /* Set the tail pointer and length */
1940 skb_put(n, skb->len);
1941
1942 head_copy_len = oldheadroom;
1943 head_copy_off = 0;
1944 if (newheadroom <= head_copy_len)
1945 head_copy_len = newheadroom;
1946 else
1947 head_copy_off = newheadroom - head_copy_len;
1948
1949 /* Copy the linear header and data. */
1950 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1951 skb->len + head_copy_len));
1952
1953 skb_copy_header(n, skb);
1954
1955 skb_headers_offset_update(n, newheadroom - oldheadroom);
1956
1957 return n;
1958}
1959EXPORT_SYMBOL(skb_copy_expand);
1960
1961/**
1962 * __skb_pad - zero pad the tail of an skb
1963 * @skb: buffer to pad
1964 * @pad: space to pad
1965 * @free_on_error: free buffer on error
1966 *
1967 * Ensure that a buffer is followed by a padding area that is zero
1968 * filled. Used by network drivers which may DMA or transfer data
1969 * beyond the buffer end onto the wire.
1970 *
1971 * May return error in out of memory cases. The skb is freed on error
1972 * if @free_on_error is true.
1973 */
1974
1975int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1976{
1977 int err;
1978 int ntail;
1979
1980 /* If the skbuff is non linear tailroom is always zero.. */
1981 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1982 memset(skb->data+skb->len, 0, pad);
1983 return 0;
1984 }
1985
1986 ntail = skb->data_len + pad - (skb->end - skb->tail);
1987 if (likely(skb_cloned(skb) || ntail > 0)) {
1988 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1989 if (unlikely(err))
1990 goto free_skb;
1991 }
1992
1993 /* FIXME: The use of this function with non-linear skb's really needs
1994 * to be audited.
1995 */
1996 err = skb_linearize(skb);
1997 if (unlikely(err))
1998 goto free_skb;
1999
2000 memset(skb->data + skb->len, 0, pad);
2001 return 0;
2002
2003free_skb:
2004 if (free_on_error)
2005 kfree_skb(skb);
2006 return err;
2007}
2008EXPORT_SYMBOL(__skb_pad);
2009
2010/**
2011 * pskb_put - add data to the tail of a potentially fragmented buffer
2012 * @skb: start of the buffer to use
2013 * @tail: tail fragment of the buffer to use
2014 * @len: amount of data to add
2015 *
2016 * This function extends the used data area of the potentially
2017 * fragmented buffer. @tail must be the last fragment of @skb -- or
2018 * @skb itself. If this would exceed the total buffer size the kernel
2019 * will panic. A pointer to the first byte of the extra data is
2020 * returned.
2021 */
2022
2023void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2024{
2025 if (tail != skb) {
2026 skb->data_len += len;
2027 skb->len += len;
2028 }
2029 return skb_put(tail, len);
2030}
2031EXPORT_SYMBOL_GPL(pskb_put);
2032
2033/**
2034 * skb_put - add data to a buffer
2035 * @skb: buffer to use
2036 * @len: amount of data to add
2037 *
2038 * This function extends the used data area of the buffer. If this would
2039 * exceed the total buffer size the kernel will panic. A pointer to the
2040 * first byte of the extra data is returned.
2041 */
2042void *skb_put(struct sk_buff *skb, unsigned int len)
2043{
2044 void *tmp = skb_tail_pointer(skb);
2045 SKB_LINEAR_ASSERT(skb);
2046 skb->tail += len;
2047 skb->len += len;
2048 if (unlikely(skb->tail > skb->end))
2049 skb_over_panic(skb, len, __builtin_return_address(0));
2050 return tmp;
2051}
2052EXPORT_SYMBOL(skb_put);
2053
2054/**
2055 * skb_push - add data to the start of a buffer
2056 * @skb: buffer to use
2057 * @len: amount of data to add
2058 *
2059 * This function extends the used data area of the buffer at the buffer
2060 * start. If this would exceed the total buffer headroom the kernel will
2061 * panic. A pointer to the first byte of the extra data is returned.
2062 */
2063void *skb_push(struct sk_buff *skb, unsigned int len)
2064{
2065 skb->data -= len;
2066 skb->len += len;
2067 if (unlikely(skb->data < skb->head))
2068 skb_under_panic(skb, len, __builtin_return_address(0));
2069 return skb->data;
2070}
2071EXPORT_SYMBOL(skb_push);
2072
2073/**
2074 * skb_pull - remove data from the start of a buffer
2075 * @skb: buffer to use
2076 * @len: amount of data to remove
2077 *
2078 * This function removes data from the start of a buffer, returning
2079 * the memory to the headroom. A pointer to the next data in the buffer
2080 * is returned. Once the data has been pulled future pushes will overwrite
2081 * the old data.
2082 */
2083void *skb_pull(struct sk_buff *skb, unsigned int len)
2084{
2085 return skb_pull_inline(skb, len);
2086}
2087EXPORT_SYMBOL(skb_pull);
2088
2089/**
2090 * skb_pull_data - remove data from the start of a buffer returning its
2091 * original position.
2092 * @skb: buffer to use
2093 * @len: amount of data to remove
2094 *
2095 * This function removes data from the start of a buffer, returning
2096 * the memory to the headroom. A pointer to the original data in the buffer
2097 * is returned after checking if there is enough data to pull. Once the
2098 * data has been pulled future pushes will overwrite the old data.
2099 */
2100void *skb_pull_data(struct sk_buff *skb, size_t len)
2101{
2102 void *data = skb->data;
2103
2104 if (skb->len < len)
2105 return NULL;
2106
2107 skb_pull(skb, len);
2108
2109 return data;
2110}
2111EXPORT_SYMBOL(skb_pull_data);
2112
2113/**
2114 * skb_trim - remove end from a buffer
2115 * @skb: buffer to alter
2116 * @len: new length
2117 *
2118 * Cut the length of a buffer down by removing data from the tail. If
2119 * the buffer is already under the length specified it is not modified.
2120 * The skb must be linear.
2121 */
2122void skb_trim(struct sk_buff *skb, unsigned int len)
2123{
2124 if (skb->len > len)
2125 __skb_trim(skb, len);
2126}
2127EXPORT_SYMBOL(skb_trim);
2128
2129/* Trims skb to length len. It can change skb pointers.
2130 */
2131
2132int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2133{
2134 struct sk_buff **fragp;
2135 struct sk_buff *frag;
2136 int offset = skb_headlen(skb);
2137 int nfrags = skb_shinfo(skb)->nr_frags;
2138 int i;
2139 int err;
2140
2141 if (skb_cloned(skb) &&
2142 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2143 return err;
2144
2145 i = 0;
2146 if (offset >= len)
2147 goto drop_pages;
2148
2149 for (; i < nfrags; i++) {
2150 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2151
2152 if (end < len) {
2153 offset = end;
2154 continue;
2155 }
2156
2157 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2158
2159drop_pages:
2160 skb_shinfo(skb)->nr_frags = i;
2161
2162 for (; i < nfrags; i++)
2163 skb_frag_unref(skb, i);
2164
2165 if (skb_has_frag_list(skb))
2166 skb_drop_fraglist(skb);
2167 goto done;
2168 }
2169
2170 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2171 fragp = &frag->next) {
2172 int end = offset + frag->len;
2173
2174 if (skb_shared(frag)) {
2175 struct sk_buff *nfrag;
2176
2177 nfrag = skb_clone(frag, GFP_ATOMIC);
2178 if (unlikely(!nfrag))
2179 return -ENOMEM;
2180
2181 nfrag->next = frag->next;
2182 consume_skb(frag);
2183 frag = nfrag;
2184 *fragp = frag;
2185 }
2186
2187 if (end < len) {
2188 offset = end;
2189 continue;
2190 }
2191
2192 if (end > len &&
2193 unlikely((err = pskb_trim(frag, len - offset))))
2194 return err;
2195
2196 if (frag->next)
2197 skb_drop_list(&frag->next);
2198 break;
2199 }
2200
2201done:
2202 if (len > skb_headlen(skb)) {
2203 skb->data_len -= skb->len - len;
2204 skb->len = len;
2205 } else {
2206 skb->len = len;
2207 skb->data_len = 0;
2208 skb_set_tail_pointer(skb, len);
2209 }
2210
2211 if (!skb->sk || skb->destructor == sock_edemux)
2212 skb_condense(skb);
2213 return 0;
2214}
2215EXPORT_SYMBOL(___pskb_trim);
2216
2217/* Note : use pskb_trim_rcsum() instead of calling this directly
2218 */
2219int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2220{
2221 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2222 int delta = skb->len - len;
2223
2224 skb->csum = csum_block_sub(skb->csum,
2225 skb_checksum(skb, len, delta, 0),
2226 len);
2227 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2228 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2229 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2230
2231 if (offset + sizeof(__sum16) > hdlen)
2232 return -EINVAL;
2233 }
2234 return __pskb_trim(skb, len);
2235}
2236EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2237
2238/**
2239 * __pskb_pull_tail - advance tail of skb header
2240 * @skb: buffer to reallocate
2241 * @delta: number of bytes to advance tail
2242 *
2243 * The function makes a sense only on a fragmented &sk_buff,
2244 * it expands header moving its tail forward and copying necessary
2245 * data from fragmented part.
2246 *
2247 * &sk_buff MUST have reference count of 1.
2248 *
2249 * Returns %NULL (and &sk_buff does not change) if pull failed
2250 * or value of new tail of skb in the case of success.
2251 *
2252 * All the pointers pointing into skb header may change and must be
2253 * reloaded after call to this function.
2254 */
2255
2256/* Moves tail of skb head forward, copying data from fragmented part,
2257 * when it is necessary.
2258 * 1. It may fail due to malloc failure.
2259 * 2. It may change skb pointers.
2260 *
2261 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2262 */
2263void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2264{
2265 /* If skb has not enough free space at tail, get new one
2266 * plus 128 bytes for future expansions. If we have enough
2267 * room at tail, reallocate without expansion only if skb is cloned.
2268 */
2269 int i, k, eat = (skb->tail + delta) - skb->end;
2270
2271 if (eat > 0 || skb_cloned(skb)) {
2272 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2273 GFP_ATOMIC))
2274 return NULL;
2275 }
2276
2277 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2278 skb_tail_pointer(skb), delta));
2279
2280 /* Optimization: no fragments, no reasons to preestimate
2281 * size of pulled pages. Superb.
2282 */
2283 if (!skb_has_frag_list(skb))
2284 goto pull_pages;
2285
2286 /* Estimate size of pulled pages. */
2287 eat = delta;
2288 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2289 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2290
2291 if (size >= eat)
2292 goto pull_pages;
2293 eat -= size;
2294 }
2295
2296 /* If we need update frag list, we are in troubles.
2297 * Certainly, it is possible to add an offset to skb data,
2298 * but taking into account that pulling is expected to
2299 * be very rare operation, it is worth to fight against
2300 * further bloating skb head and crucify ourselves here instead.
2301 * Pure masohism, indeed. 8)8)
2302 */
2303 if (eat) {
2304 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2305 struct sk_buff *clone = NULL;
2306 struct sk_buff *insp = NULL;
2307
2308 do {
2309 if (list->len <= eat) {
2310 /* Eaten as whole. */
2311 eat -= list->len;
2312 list = list->next;
2313 insp = list;
2314 } else {
2315 /* Eaten partially. */
2316
2317 if (skb_shared(list)) {
2318 /* Sucks! We need to fork list. :-( */
2319 clone = skb_clone(list, GFP_ATOMIC);
2320 if (!clone)
2321 return NULL;
2322 insp = list->next;
2323 list = clone;
2324 } else {
2325 /* This may be pulled without
2326 * problems. */
2327 insp = list;
2328 }
2329 if (!pskb_pull(list, eat)) {
2330 kfree_skb(clone);
2331 return NULL;
2332 }
2333 break;
2334 }
2335 } while (eat);
2336
2337 /* Free pulled out fragments. */
2338 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2339 skb_shinfo(skb)->frag_list = list->next;
2340 consume_skb(list);
2341 }
2342 /* And insert new clone at head. */
2343 if (clone) {
2344 clone->next = list;
2345 skb_shinfo(skb)->frag_list = clone;
2346 }
2347 }
2348 /* Success! Now we may commit changes to skb data. */
2349
2350pull_pages:
2351 eat = delta;
2352 k = 0;
2353 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2354 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2355
2356 if (size <= eat) {
2357 skb_frag_unref(skb, i);
2358 eat -= size;
2359 } else {
2360 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2361
2362 *frag = skb_shinfo(skb)->frags[i];
2363 if (eat) {
2364 skb_frag_off_add(frag, eat);
2365 skb_frag_size_sub(frag, eat);
2366 if (!i)
2367 goto end;
2368 eat = 0;
2369 }
2370 k++;
2371 }
2372 }
2373 skb_shinfo(skb)->nr_frags = k;
2374
2375end:
2376 skb->tail += delta;
2377 skb->data_len -= delta;
2378
2379 if (!skb->data_len)
2380 skb_zcopy_clear(skb, false);
2381
2382 return skb_tail_pointer(skb);
2383}
2384EXPORT_SYMBOL(__pskb_pull_tail);
2385
2386/**
2387 * skb_copy_bits - copy bits from skb to kernel buffer
2388 * @skb: source skb
2389 * @offset: offset in source
2390 * @to: destination buffer
2391 * @len: number of bytes to copy
2392 *
2393 * Copy the specified number of bytes from the source skb to the
2394 * destination buffer.
2395 *
2396 * CAUTION ! :
2397 * If its prototype is ever changed,
2398 * check arch/{*}/net/{*}.S files,
2399 * since it is called from BPF assembly code.
2400 */
2401int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2402{
2403 int start = skb_headlen(skb);
2404 struct sk_buff *frag_iter;
2405 int i, copy;
2406
2407 if (offset > (int)skb->len - len)
2408 goto fault;
2409
2410 /* Copy header. */
2411 if ((copy = start - offset) > 0) {
2412 if (copy > len)
2413 copy = len;
2414 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2415 if ((len -= copy) == 0)
2416 return 0;
2417 offset += copy;
2418 to += copy;
2419 }
2420
2421 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2422 int end;
2423 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2424
2425 WARN_ON(start > offset + len);
2426
2427 end = start + skb_frag_size(f);
2428 if ((copy = end - offset) > 0) {
2429 u32 p_off, p_len, copied;
2430 struct page *p;
2431 u8 *vaddr;
2432
2433 if (copy > len)
2434 copy = len;
2435
2436 skb_frag_foreach_page(f,
2437 skb_frag_off(f) + offset - start,
2438 copy, p, p_off, p_len, copied) {
2439 vaddr = kmap_atomic(p);
2440 memcpy(to + copied, vaddr + p_off, p_len);
2441 kunmap_atomic(vaddr);
2442 }
2443
2444 if ((len -= copy) == 0)
2445 return 0;
2446 offset += copy;
2447 to += copy;
2448 }
2449 start = end;
2450 }
2451
2452 skb_walk_frags(skb, frag_iter) {
2453 int end;
2454
2455 WARN_ON(start > offset + len);
2456
2457 end = start + frag_iter->len;
2458 if ((copy = end - offset) > 0) {
2459 if (copy > len)
2460 copy = len;
2461 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2462 goto fault;
2463 if ((len -= copy) == 0)
2464 return 0;
2465 offset += copy;
2466 to += copy;
2467 }
2468 start = end;
2469 }
2470
2471 if (!len)
2472 return 0;
2473
2474fault:
2475 return -EFAULT;
2476}
2477EXPORT_SYMBOL(skb_copy_bits);
2478
2479/*
2480 * Callback from splice_to_pipe(), if we need to release some pages
2481 * at the end of the spd in case we error'ed out in filling the pipe.
2482 */
2483static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2484{
2485 put_page(spd->pages[i]);
2486}
2487
2488static struct page *linear_to_page(struct page *page, unsigned int *len,
2489 unsigned int *offset,
2490 struct sock *sk)
2491{
2492 struct page_frag *pfrag = sk_page_frag(sk);
2493
2494 if (!sk_page_frag_refill(sk, pfrag))
2495 return NULL;
2496
2497 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2498
2499 memcpy(page_address(pfrag->page) + pfrag->offset,
2500 page_address(page) + *offset, *len);
2501 *offset = pfrag->offset;
2502 pfrag->offset += *len;
2503
2504 return pfrag->page;
2505}
2506
2507static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2508 struct page *page,
2509 unsigned int offset)
2510{
2511 return spd->nr_pages &&
2512 spd->pages[spd->nr_pages - 1] == page &&
2513 (spd->partial[spd->nr_pages - 1].offset +
2514 spd->partial[spd->nr_pages - 1].len == offset);
2515}
2516
2517/*
2518 * Fill page/offset/length into spd, if it can hold more pages.
2519 */
2520static bool spd_fill_page(struct splice_pipe_desc *spd,
2521 struct pipe_inode_info *pipe, struct page *page,
2522 unsigned int *len, unsigned int offset,
2523 bool linear,
2524 struct sock *sk)
2525{
2526 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2527 return true;
2528
2529 if (linear) {
2530 page = linear_to_page(page, len, &offset, sk);
2531 if (!page)
2532 return true;
2533 }
2534 if (spd_can_coalesce(spd, page, offset)) {
2535 spd->partial[spd->nr_pages - 1].len += *len;
2536 return false;
2537 }
2538 get_page(page);
2539 spd->pages[spd->nr_pages] = page;
2540 spd->partial[spd->nr_pages].len = *len;
2541 spd->partial[spd->nr_pages].offset = offset;
2542 spd->nr_pages++;
2543
2544 return false;
2545}
2546
2547static bool __splice_segment(struct page *page, unsigned int poff,
2548 unsigned int plen, unsigned int *off,
2549 unsigned int *len,
2550 struct splice_pipe_desc *spd, bool linear,
2551 struct sock *sk,
2552 struct pipe_inode_info *pipe)
2553{
2554 if (!*len)
2555 return true;
2556
2557 /* skip this segment if already processed */
2558 if (*off >= plen) {
2559 *off -= plen;
2560 return false;
2561 }
2562
2563 /* ignore any bits we already processed */
2564 poff += *off;
2565 plen -= *off;
2566 *off = 0;
2567
2568 do {
2569 unsigned int flen = min(*len, plen);
2570
2571 if (spd_fill_page(spd, pipe, page, &flen, poff,
2572 linear, sk))
2573 return true;
2574 poff += flen;
2575 plen -= flen;
2576 *len -= flen;
2577 } while (*len && plen);
2578
2579 return false;
2580}
2581
2582/*
2583 * Map linear and fragment data from the skb to spd. It reports true if the
2584 * pipe is full or if we already spliced the requested length.
2585 */
2586static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2587 unsigned int *offset, unsigned int *len,
2588 struct splice_pipe_desc *spd, struct sock *sk)
2589{
2590 int seg;
2591 struct sk_buff *iter;
2592
2593 /* map the linear part :
2594 * If skb->head_frag is set, this 'linear' part is backed by a
2595 * fragment, and if the head is not shared with any clones then
2596 * we can avoid a copy since we own the head portion of this page.
2597 */
2598 if (__splice_segment(virt_to_page(skb->data),
2599 (unsigned long) skb->data & (PAGE_SIZE - 1),
2600 skb_headlen(skb),
2601 offset, len, spd,
2602 skb_head_is_locked(skb),
2603 sk, pipe))
2604 return true;
2605
2606 /*
2607 * then map the fragments
2608 */
2609 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2610 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2611
2612 if (__splice_segment(skb_frag_page(f),
2613 skb_frag_off(f), skb_frag_size(f),
2614 offset, len, spd, false, sk, pipe))
2615 return true;
2616 }
2617
2618 skb_walk_frags(skb, iter) {
2619 if (*offset >= iter->len) {
2620 *offset -= iter->len;
2621 continue;
2622 }
2623 /* __skb_splice_bits() only fails if the output has no room
2624 * left, so no point in going over the frag_list for the error
2625 * case.
2626 */
2627 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2628 return true;
2629 }
2630
2631 return false;
2632}
2633
2634/*
2635 * Map data from the skb to a pipe. Should handle both the linear part,
2636 * the fragments, and the frag list.
2637 */
2638int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2639 struct pipe_inode_info *pipe, unsigned int tlen,
2640 unsigned int flags)
2641{
2642 struct partial_page partial[MAX_SKB_FRAGS];
2643 struct page *pages[MAX_SKB_FRAGS];
2644 struct splice_pipe_desc spd = {
2645 .pages = pages,
2646 .partial = partial,
2647 .nr_pages_max = MAX_SKB_FRAGS,
2648 .ops = &nosteal_pipe_buf_ops,
2649 .spd_release = sock_spd_release,
2650 };
2651 int ret = 0;
2652
2653 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2654
2655 if (spd.nr_pages)
2656 ret = splice_to_pipe(pipe, &spd);
2657
2658 return ret;
2659}
2660EXPORT_SYMBOL_GPL(skb_splice_bits);
2661
2662static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2663 struct kvec *vec, size_t num, size_t size)
2664{
2665 struct socket *sock = sk->sk_socket;
2666
2667 if (!sock)
2668 return -EINVAL;
2669 return kernel_sendmsg(sock, msg, vec, num, size);
2670}
2671
2672static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2673 size_t size, int flags)
2674{
2675 struct socket *sock = sk->sk_socket;
2676
2677 if (!sock)
2678 return -EINVAL;
2679 return kernel_sendpage(sock, page, offset, size, flags);
2680}
2681
2682typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2683 struct kvec *vec, size_t num, size_t size);
2684typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2685 size_t size, int flags);
2686static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2687 int len, sendmsg_func sendmsg, sendpage_func sendpage)
2688{
2689 unsigned int orig_len = len;
2690 struct sk_buff *head = skb;
2691 unsigned short fragidx;
2692 int slen, ret;
2693
2694do_frag_list:
2695
2696 /* Deal with head data */
2697 while (offset < skb_headlen(skb) && len) {
2698 struct kvec kv;
2699 struct msghdr msg;
2700
2701 slen = min_t(int, len, skb_headlen(skb) - offset);
2702 kv.iov_base = skb->data + offset;
2703 kv.iov_len = slen;
2704 memset(&msg, 0, sizeof(msg));
2705 msg.msg_flags = MSG_DONTWAIT;
2706
2707 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2708 sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2709 if (ret <= 0)
2710 goto error;
2711
2712 offset += ret;
2713 len -= ret;
2714 }
2715
2716 /* All the data was skb head? */
2717 if (!len)
2718 goto out;
2719
2720 /* Make offset relative to start of frags */
2721 offset -= skb_headlen(skb);
2722
2723 /* Find where we are in frag list */
2724 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2725 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2726
2727 if (offset < skb_frag_size(frag))
2728 break;
2729
2730 offset -= skb_frag_size(frag);
2731 }
2732
2733 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2734 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2735
2736 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2737
2738 while (slen) {
2739 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2740 sendpage_unlocked, sk,
2741 skb_frag_page(frag),
2742 skb_frag_off(frag) + offset,
2743 slen, MSG_DONTWAIT);
2744 if (ret <= 0)
2745 goto error;
2746
2747 len -= ret;
2748 offset += ret;
2749 slen -= ret;
2750 }
2751
2752 offset = 0;
2753 }
2754
2755 if (len) {
2756 /* Process any frag lists */
2757
2758 if (skb == head) {
2759 if (skb_has_frag_list(skb)) {
2760 skb = skb_shinfo(skb)->frag_list;
2761 goto do_frag_list;
2762 }
2763 } else if (skb->next) {
2764 skb = skb->next;
2765 goto do_frag_list;
2766 }
2767 }
2768
2769out:
2770 return orig_len - len;
2771
2772error:
2773 return orig_len == len ? ret : orig_len - len;
2774}
2775
2776/* Send skb data on a socket. Socket must be locked. */
2777int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2778 int len)
2779{
2780 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2781 kernel_sendpage_locked);
2782}
2783EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2784
2785/* Send skb data on a socket. Socket must be unlocked. */
2786int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2787{
2788 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2789 sendpage_unlocked);
2790}
2791
2792/**
2793 * skb_store_bits - store bits from kernel buffer to skb
2794 * @skb: destination buffer
2795 * @offset: offset in destination
2796 * @from: source buffer
2797 * @len: number of bytes to copy
2798 *
2799 * Copy the specified number of bytes from the source buffer to the
2800 * destination skb. This function handles all the messy bits of
2801 * traversing fragment lists and such.
2802 */
2803
2804int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2805{
2806 int start = skb_headlen(skb);
2807 struct sk_buff *frag_iter;
2808 int i, copy;
2809
2810 if (offset > (int)skb->len - len)
2811 goto fault;
2812
2813 if ((copy = start - offset) > 0) {
2814 if (copy > len)
2815 copy = len;
2816 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2817 if ((len -= copy) == 0)
2818 return 0;
2819 offset += copy;
2820 from += copy;
2821 }
2822
2823 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2824 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2825 int end;
2826
2827 WARN_ON(start > offset + len);
2828
2829 end = start + skb_frag_size(frag);
2830 if ((copy = end - offset) > 0) {
2831 u32 p_off, p_len, copied;
2832 struct page *p;
2833 u8 *vaddr;
2834
2835 if (copy > len)
2836 copy = len;
2837
2838 skb_frag_foreach_page(frag,
2839 skb_frag_off(frag) + offset - start,
2840 copy, p, p_off, p_len, copied) {
2841 vaddr = kmap_atomic(p);
2842 memcpy(vaddr + p_off, from + copied, p_len);
2843 kunmap_atomic(vaddr);
2844 }
2845
2846 if ((len -= copy) == 0)
2847 return 0;
2848 offset += copy;
2849 from += copy;
2850 }
2851 start = end;
2852 }
2853
2854 skb_walk_frags(skb, frag_iter) {
2855 int end;
2856
2857 WARN_ON(start > offset + len);
2858
2859 end = start + frag_iter->len;
2860 if ((copy = end - offset) > 0) {
2861 if (copy > len)
2862 copy = len;
2863 if (skb_store_bits(frag_iter, offset - start,
2864 from, copy))
2865 goto fault;
2866 if ((len -= copy) == 0)
2867 return 0;
2868 offset += copy;
2869 from += copy;
2870 }
2871 start = end;
2872 }
2873 if (!len)
2874 return 0;
2875
2876fault:
2877 return -EFAULT;
2878}
2879EXPORT_SYMBOL(skb_store_bits);
2880
2881/* Checksum skb data. */
2882__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2883 __wsum csum, const struct skb_checksum_ops *ops)
2884{
2885 int start = skb_headlen(skb);
2886 int i, copy = start - offset;
2887 struct sk_buff *frag_iter;
2888 int pos = 0;
2889
2890 /* Checksum header. */
2891 if (copy > 0) {
2892 if (copy > len)
2893 copy = len;
2894 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2895 skb->data + offset, copy, csum);
2896 if ((len -= copy) == 0)
2897 return csum;
2898 offset += copy;
2899 pos = copy;
2900 }
2901
2902 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2903 int end;
2904 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2905
2906 WARN_ON(start > offset + len);
2907
2908 end = start + skb_frag_size(frag);
2909 if ((copy = end - offset) > 0) {
2910 u32 p_off, p_len, copied;
2911 struct page *p;
2912 __wsum csum2;
2913 u8 *vaddr;
2914
2915 if (copy > len)
2916 copy = len;
2917
2918 skb_frag_foreach_page(frag,
2919 skb_frag_off(frag) + offset - start,
2920 copy, p, p_off, p_len, copied) {
2921 vaddr = kmap_atomic(p);
2922 csum2 = INDIRECT_CALL_1(ops->update,
2923 csum_partial_ext,
2924 vaddr + p_off, p_len, 0);
2925 kunmap_atomic(vaddr);
2926 csum = INDIRECT_CALL_1(ops->combine,
2927 csum_block_add_ext, csum,
2928 csum2, pos, p_len);
2929 pos += p_len;
2930 }
2931
2932 if (!(len -= copy))
2933 return csum;
2934 offset += copy;
2935 }
2936 start = end;
2937 }
2938
2939 skb_walk_frags(skb, frag_iter) {
2940 int end;
2941
2942 WARN_ON(start > offset + len);
2943
2944 end = start + frag_iter->len;
2945 if ((copy = end - offset) > 0) {
2946 __wsum csum2;
2947 if (copy > len)
2948 copy = len;
2949 csum2 = __skb_checksum(frag_iter, offset - start,
2950 copy, 0, ops);
2951 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2952 csum, csum2, pos, copy);
2953 if ((len -= copy) == 0)
2954 return csum;
2955 offset += copy;
2956 pos += copy;
2957 }
2958 start = end;
2959 }
2960 BUG_ON(len);
2961
2962 return csum;
2963}
2964EXPORT_SYMBOL(__skb_checksum);
2965
2966__wsum skb_checksum(const struct sk_buff *skb, int offset,
2967 int len, __wsum csum)
2968{
2969 const struct skb_checksum_ops ops = {
2970 .update = csum_partial_ext,
2971 .combine = csum_block_add_ext,
2972 };
2973
2974 return __skb_checksum(skb, offset, len, csum, &ops);
2975}
2976EXPORT_SYMBOL(skb_checksum);
2977
2978/* Both of above in one bottle. */
2979
2980__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2981 u8 *to, int len)
2982{
2983 int start = skb_headlen(skb);
2984 int i, copy = start - offset;
2985 struct sk_buff *frag_iter;
2986 int pos = 0;
2987 __wsum csum = 0;
2988
2989 /* Copy header. */
2990 if (copy > 0) {
2991 if (copy > len)
2992 copy = len;
2993 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2994 copy);
2995 if ((len -= copy) == 0)
2996 return csum;
2997 offset += copy;
2998 to += copy;
2999 pos = copy;
3000 }
3001
3002 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3003 int end;
3004
3005 WARN_ON(start > offset + len);
3006
3007 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3008 if ((copy = end - offset) > 0) {
3009 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3010 u32 p_off, p_len, copied;
3011 struct page *p;
3012 __wsum csum2;
3013 u8 *vaddr;
3014
3015 if (copy > len)
3016 copy = len;
3017
3018 skb_frag_foreach_page(frag,
3019 skb_frag_off(frag) + offset - start,
3020 copy, p, p_off, p_len, copied) {
3021 vaddr = kmap_atomic(p);
3022 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3023 to + copied,
3024 p_len);
3025 kunmap_atomic(vaddr);
3026 csum = csum_block_add(csum, csum2, pos);
3027 pos += p_len;
3028 }
3029
3030 if (!(len -= copy))
3031 return csum;
3032 offset += copy;
3033 to += copy;
3034 }
3035 start = end;
3036 }
3037
3038 skb_walk_frags(skb, frag_iter) {
3039 __wsum csum2;
3040 int end;
3041
3042 WARN_ON(start > offset + len);
3043
3044 end = start + frag_iter->len;
3045 if ((copy = end - offset) > 0) {
3046 if (copy > len)
3047 copy = len;
3048 csum2 = skb_copy_and_csum_bits(frag_iter,
3049 offset - start,
3050 to, copy);
3051 csum = csum_block_add(csum, csum2, pos);
3052 if ((len -= copy) == 0)
3053 return csum;
3054 offset += copy;
3055 to += copy;
3056 pos += copy;
3057 }
3058 start = end;
3059 }
3060 BUG_ON(len);
3061 return csum;
3062}
3063EXPORT_SYMBOL(skb_copy_and_csum_bits);
3064
3065__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3066{
3067 __sum16 sum;
3068
3069 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3070 /* See comments in __skb_checksum_complete(). */
3071 if (likely(!sum)) {
3072 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3073 !skb->csum_complete_sw)
3074 netdev_rx_csum_fault(skb->dev, skb);
3075 }
3076 if (!skb_shared(skb))
3077 skb->csum_valid = !sum;
3078 return sum;
3079}
3080EXPORT_SYMBOL(__skb_checksum_complete_head);
3081
3082/* This function assumes skb->csum already holds pseudo header's checksum,
3083 * which has been changed from the hardware checksum, for example, by
3084 * __skb_checksum_validate_complete(). And, the original skb->csum must
3085 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3086 *
3087 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3088 * zero. The new checksum is stored back into skb->csum unless the skb is
3089 * shared.
3090 */
3091__sum16 __skb_checksum_complete(struct sk_buff *skb)
3092{
3093 __wsum csum;
3094 __sum16 sum;
3095
3096 csum = skb_checksum(skb, 0, skb->len, 0);
3097
3098 sum = csum_fold(csum_add(skb->csum, csum));
3099 /* This check is inverted, because we already knew the hardware
3100 * checksum is invalid before calling this function. So, if the
3101 * re-computed checksum is valid instead, then we have a mismatch
3102 * between the original skb->csum and skb_checksum(). This means either
3103 * the original hardware checksum is incorrect or we screw up skb->csum
3104 * when moving skb->data around.
3105 */
3106 if (likely(!sum)) {
3107 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3108 !skb->csum_complete_sw)
3109 netdev_rx_csum_fault(skb->dev, skb);
3110 }
3111
3112 if (!skb_shared(skb)) {
3113 /* Save full packet checksum */
3114 skb->csum = csum;
3115 skb->ip_summed = CHECKSUM_COMPLETE;
3116 skb->csum_complete_sw = 1;
3117 skb->csum_valid = !sum;
3118 }
3119
3120 return sum;
3121}
3122EXPORT_SYMBOL(__skb_checksum_complete);
3123
3124static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3125{
3126 net_warn_ratelimited(
3127 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3128 __func__);
3129 return 0;
3130}
3131
3132static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3133 int offset, int len)
3134{
3135 net_warn_ratelimited(
3136 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3137 __func__);
3138 return 0;
3139}
3140
3141static const struct skb_checksum_ops default_crc32c_ops = {
3142 .update = warn_crc32c_csum_update,
3143 .combine = warn_crc32c_csum_combine,
3144};
3145
3146const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3147 &default_crc32c_ops;
3148EXPORT_SYMBOL(crc32c_csum_stub);
3149
3150 /**
3151 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3152 * @from: source buffer
3153 *
3154 * Calculates the amount of linear headroom needed in the 'to' skb passed
3155 * into skb_zerocopy().
3156 */
3157unsigned int
3158skb_zerocopy_headlen(const struct sk_buff *from)
3159{
3160 unsigned int hlen = 0;
3161
3162 if (!from->head_frag ||
3163 skb_headlen(from) < L1_CACHE_BYTES ||
3164 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3165 hlen = skb_headlen(from);
3166 if (!hlen)
3167 hlen = from->len;
3168 }
3169
3170 if (skb_has_frag_list(from))
3171 hlen = from->len;
3172
3173 return hlen;
3174}
3175EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3176
3177/**
3178 * skb_zerocopy - Zero copy skb to skb
3179 * @to: destination buffer
3180 * @from: source buffer
3181 * @len: number of bytes to copy from source buffer
3182 * @hlen: size of linear headroom in destination buffer
3183 *
3184 * Copies up to `len` bytes from `from` to `to` by creating references
3185 * to the frags in the source buffer.
3186 *
3187 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3188 * headroom in the `to` buffer.
3189 *
3190 * Return value:
3191 * 0: everything is OK
3192 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3193 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3194 */
3195int
3196skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3197{
3198 int i, j = 0;
3199 int plen = 0; /* length of skb->head fragment */
3200 int ret;
3201 struct page *page;
3202 unsigned int offset;
3203
3204 BUG_ON(!from->head_frag && !hlen);
3205
3206 /* dont bother with small payloads */
3207 if (len <= skb_tailroom(to))
3208 return skb_copy_bits(from, 0, skb_put(to, len), len);
3209
3210 if (hlen) {
3211 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3212 if (unlikely(ret))
3213 return ret;
3214 len -= hlen;
3215 } else {
3216 plen = min_t(int, skb_headlen(from), len);
3217 if (plen) {
3218 page = virt_to_head_page(from->head);
3219 offset = from->data - (unsigned char *)page_address(page);
3220 __skb_fill_page_desc(to, 0, page, offset, plen);
3221 get_page(page);
3222 j = 1;
3223 len -= plen;
3224 }
3225 }
3226
3227 skb_len_add(to, len + plen);
3228
3229 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3230 skb_tx_error(from);
3231 return -ENOMEM;
3232 }
3233 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3234
3235 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3236 int size;
3237
3238 if (!len)
3239 break;
3240 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3241 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3242 len);
3243 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3244 len -= size;
3245 skb_frag_ref(to, j);
3246 j++;
3247 }
3248 skb_shinfo(to)->nr_frags = j;
3249
3250 return 0;
3251}
3252EXPORT_SYMBOL_GPL(skb_zerocopy);
3253
3254void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3255{
3256 __wsum csum;
3257 long csstart;
3258
3259 if (skb->ip_summed == CHECKSUM_PARTIAL)
3260 csstart = skb_checksum_start_offset(skb);
3261 else
3262 csstart = skb_headlen(skb);
3263
3264 BUG_ON(csstart > skb_headlen(skb));
3265
3266 skb_copy_from_linear_data(skb, to, csstart);
3267
3268 csum = 0;
3269 if (csstart != skb->len)
3270 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3271 skb->len - csstart);
3272
3273 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3274 long csstuff = csstart + skb->csum_offset;
3275
3276 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3277 }
3278}
3279EXPORT_SYMBOL(skb_copy_and_csum_dev);
3280
3281/**
3282 * skb_dequeue - remove from the head of the queue
3283 * @list: list to dequeue from
3284 *
3285 * Remove the head of the list. The list lock is taken so the function
3286 * may be used safely with other locking list functions. The head item is
3287 * returned or %NULL if the list is empty.
3288 */
3289
3290struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3291{
3292 unsigned long flags;
3293 struct sk_buff *result;
3294
3295 spin_lock_irqsave(&list->lock, flags);
3296 result = __skb_dequeue(list);
3297 spin_unlock_irqrestore(&list->lock, flags);
3298 return result;
3299}
3300EXPORT_SYMBOL(skb_dequeue);
3301
3302/**
3303 * skb_dequeue_tail - remove from the tail of the queue
3304 * @list: list to dequeue from
3305 *
3306 * Remove the tail of the list. The list lock is taken so the function
3307 * may be used safely with other locking list functions. The tail item is
3308 * returned or %NULL if the list is empty.
3309 */
3310struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3311{
3312 unsigned long flags;
3313 struct sk_buff *result;
3314
3315 spin_lock_irqsave(&list->lock, flags);
3316 result = __skb_dequeue_tail(list);
3317 spin_unlock_irqrestore(&list->lock, flags);
3318 return result;
3319}
3320EXPORT_SYMBOL(skb_dequeue_tail);
3321
3322/**
3323 * skb_queue_purge - empty a list
3324 * @list: list to empty
3325 *
3326 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3327 * the list and one reference dropped. This function takes the list
3328 * lock and is atomic with respect to other list locking functions.
3329 */
3330void skb_queue_purge(struct sk_buff_head *list)
3331{
3332 struct sk_buff *skb;
3333 while ((skb = skb_dequeue(list)) != NULL)
3334 kfree_skb(skb);
3335}
3336EXPORT_SYMBOL(skb_queue_purge);
3337
3338/**
3339 * skb_rbtree_purge - empty a skb rbtree
3340 * @root: root of the rbtree to empty
3341 * Return value: the sum of truesizes of all purged skbs.
3342 *
3343 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3344 * the list and one reference dropped. This function does not take
3345 * any lock. Synchronization should be handled by the caller (e.g., TCP
3346 * out-of-order queue is protected by the socket lock).
3347 */
3348unsigned int skb_rbtree_purge(struct rb_root *root)
3349{
3350 struct rb_node *p = rb_first(root);
3351 unsigned int sum = 0;
3352
3353 while (p) {
3354 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3355
3356 p = rb_next(p);
3357 rb_erase(&skb->rbnode, root);
3358 sum += skb->truesize;
3359 kfree_skb(skb);
3360 }
3361 return sum;
3362}
3363
3364/**
3365 * skb_queue_head - queue a buffer at the list head
3366 * @list: list to use
3367 * @newsk: buffer to queue
3368 *
3369 * Queue a buffer at the start of the list. This function takes the
3370 * list lock and can be used safely with other locking &sk_buff functions
3371 * safely.
3372 *
3373 * A buffer cannot be placed on two lists at the same time.
3374 */
3375void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3376{
3377 unsigned long flags;
3378
3379 spin_lock_irqsave(&list->lock, flags);
3380 __skb_queue_head(list, newsk);
3381 spin_unlock_irqrestore(&list->lock, flags);
3382}
3383EXPORT_SYMBOL(skb_queue_head);
3384
3385/**
3386 * skb_queue_tail - queue a buffer at the list tail
3387 * @list: list to use
3388 * @newsk: buffer to queue
3389 *
3390 * Queue a buffer at the tail of the list. This function takes the
3391 * list lock and can be used safely with other locking &sk_buff functions
3392 * safely.
3393 *
3394 * A buffer cannot be placed on two lists at the same time.
3395 */
3396void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3397{
3398 unsigned long flags;
3399
3400 spin_lock_irqsave(&list->lock, flags);
3401 __skb_queue_tail(list, newsk);
3402 spin_unlock_irqrestore(&list->lock, flags);
3403}
3404EXPORT_SYMBOL(skb_queue_tail);
3405
3406/**
3407 * skb_unlink - remove a buffer from a list
3408 * @skb: buffer to remove
3409 * @list: list to use
3410 *
3411 * Remove a packet from a list. The list locks are taken and this
3412 * function is atomic with respect to other list locked calls
3413 *
3414 * You must know what list the SKB is on.
3415 */
3416void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3417{
3418 unsigned long flags;
3419
3420 spin_lock_irqsave(&list->lock, flags);
3421 __skb_unlink(skb, list);
3422 spin_unlock_irqrestore(&list->lock, flags);
3423}
3424EXPORT_SYMBOL(skb_unlink);
3425
3426/**
3427 * skb_append - append a buffer
3428 * @old: buffer to insert after
3429 * @newsk: buffer to insert
3430 * @list: list to use
3431 *
3432 * Place a packet after a given packet in a list. The list locks are taken
3433 * and this function is atomic with respect to other list locked calls.
3434 * A buffer cannot be placed on two lists at the same time.
3435 */
3436void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3437{
3438 unsigned long flags;
3439
3440 spin_lock_irqsave(&list->lock, flags);
3441 __skb_queue_after(list, old, newsk);
3442 spin_unlock_irqrestore(&list->lock, flags);
3443}
3444EXPORT_SYMBOL(skb_append);
3445
3446static inline void skb_split_inside_header(struct sk_buff *skb,
3447 struct sk_buff* skb1,
3448 const u32 len, const int pos)
3449{
3450 int i;
3451
3452 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3453 pos - len);
3454 /* And move data appendix as is. */
3455 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3456 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3457
3458 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3459 skb_shinfo(skb)->nr_frags = 0;
3460 skb1->data_len = skb->data_len;
3461 skb1->len += skb1->data_len;
3462 skb->data_len = 0;
3463 skb->len = len;
3464 skb_set_tail_pointer(skb, len);
3465}
3466
3467static inline void skb_split_no_header(struct sk_buff *skb,
3468 struct sk_buff* skb1,
3469 const u32 len, int pos)
3470{
3471 int i, k = 0;
3472 const int nfrags = skb_shinfo(skb)->nr_frags;
3473
3474 skb_shinfo(skb)->nr_frags = 0;
3475 skb1->len = skb1->data_len = skb->len - len;
3476 skb->len = len;
3477 skb->data_len = len - pos;
3478
3479 for (i = 0; i < nfrags; i++) {
3480 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3481
3482 if (pos + size > len) {
3483 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3484
3485 if (pos < len) {
3486 /* Split frag.
3487 * We have two variants in this case:
3488 * 1. Move all the frag to the second
3489 * part, if it is possible. F.e.
3490 * this approach is mandatory for TUX,
3491 * where splitting is expensive.
3492 * 2. Split is accurately. We make this.
3493 */
3494 skb_frag_ref(skb, i);
3495 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3496 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3497 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3498 skb_shinfo(skb)->nr_frags++;
3499 }
3500 k++;
3501 } else
3502 skb_shinfo(skb)->nr_frags++;
3503 pos += size;
3504 }
3505 skb_shinfo(skb1)->nr_frags = k;
3506}
3507
3508/**
3509 * skb_split - Split fragmented skb to two parts at length len.
3510 * @skb: the buffer to split
3511 * @skb1: the buffer to receive the second part
3512 * @len: new length for skb
3513 */
3514void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3515{
3516 int pos = skb_headlen(skb);
3517 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3518
3519 skb_zcopy_downgrade_managed(skb);
3520
3521 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3522 skb_zerocopy_clone(skb1, skb, 0);
3523 if (len < pos) /* Split line is inside header. */
3524 skb_split_inside_header(skb, skb1, len, pos);
3525 else /* Second chunk has no header, nothing to copy. */
3526 skb_split_no_header(skb, skb1, len, pos);
3527}
3528EXPORT_SYMBOL(skb_split);
3529
3530/* Shifting from/to a cloned skb is a no-go.
3531 *
3532 * Caller cannot keep skb_shinfo related pointers past calling here!
3533 */
3534static int skb_prepare_for_shift(struct sk_buff *skb)
3535{
3536 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3537}
3538
3539/**
3540 * skb_shift - Shifts paged data partially from skb to another
3541 * @tgt: buffer into which tail data gets added
3542 * @skb: buffer from which the paged data comes from
3543 * @shiftlen: shift up to this many bytes
3544 *
3545 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3546 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3547 * It's up to caller to free skb if everything was shifted.
3548 *
3549 * If @tgt runs out of frags, the whole operation is aborted.
3550 *
3551 * Skb cannot include anything else but paged data while tgt is allowed
3552 * to have non-paged data as well.
3553 *
3554 * TODO: full sized shift could be optimized but that would need
3555 * specialized skb free'er to handle frags without up-to-date nr_frags.
3556 */
3557int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3558{
3559 int from, to, merge, todo;
3560 skb_frag_t *fragfrom, *fragto;
3561
3562 BUG_ON(shiftlen > skb->len);
3563
3564 if (skb_headlen(skb))
3565 return 0;
3566 if (skb_zcopy(tgt) || skb_zcopy(skb))
3567 return 0;
3568
3569 todo = shiftlen;
3570 from = 0;
3571 to = skb_shinfo(tgt)->nr_frags;
3572 fragfrom = &skb_shinfo(skb)->frags[from];
3573
3574 /* Actual merge is delayed until the point when we know we can
3575 * commit all, so that we don't have to undo partial changes
3576 */
3577 if (!to ||
3578 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3579 skb_frag_off(fragfrom))) {
3580 merge = -1;
3581 } else {
3582 merge = to - 1;
3583
3584 todo -= skb_frag_size(fragfrom);
3585 if (todo < 0) {
3586 if (skb_prepare_for_shift(skb) ||
3587 skb_prepare_for_shift(tgt))
3588 return 0;
3589
3590 /* All previous frag pointers might be stale! */
3591 fragfrom = &skb_shinfo(skb)->frags[from];
3592 fragto = &skb_shinfo(tgt)->frags[merge];
3593
3594 skb_frag_size_add(fragto, shiftlen);
3595 skb_frag_size_sub(fragfrom, shiftlen);
3596 skb_frag_off_add(fragfrom, shiftlen);
3597
3598 goto onlymerged;
3599 }
3600
3601 from++;
3602 }
3603
3604 /* Skip full, not-fitting skb to avoid expensive operations */
3605 if ((shiftlen == skb->len) &&
3606 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3607 return 0;
3608
3609 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3610 return 0;
3611
3612 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3613 if (to == MAX_SKB_FRAGS)
3614 return 0;
3615
3616 fragfrom = &skb_shinfo(skb)->frags[from];
3617 fragto = &skb_shinfo(tgt)->frags[to];
3618
3619 if (todo >= skb_frag_size(fragfrom)) {
3620 *fragto = *fragfrom;
3621 todo -= skb_frag_size(fragfrom);
3622 from++;
3623 to++;
3624
3625 } else {
3626 __skb_frag_ref(fragfrom);
3627 skb_frag_page_copy(fragto, fragfrom);
3628 skb_frag_off_copy(fragto, fragfrom);
3629 skb_frag_size_set(fragto, todo);
3630
3631 skb_frag_off_add(fragfrom, todo);
3632 skb_frag_size_sub(fragfrom, todo);
3633 todo = 0;
3634
3635 to++;
3636 break;
3637 }
3638 }
3639
3640 /* Ready to "commit" this state change to tgt */
3641 skb_shinfo(tgt)->nr_frags = to;
3642
3643 if (merge >= 0) {
3644 fragfrom = &skb_shinfo(skb)->frags[0];
3645 fragto = &skb_shinfo(tgt)->frags[merge];
3646
3647 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3648 __skb_frag_unref(fragfrom, skb->pp_recycle);
3649 }
3650
3651 /* Reposition in the original skb */
3652 to = 0;
3653 while (from < skb_shinfo(skb)->nr_frags)
3654 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3655 skb_shinfo(skb)->nr_frags = to;
3656
3657 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3658
3659onlymerged:
3660 /* Most likely the tgt won't ever need its checksum anymore, skb on
3661 * the other hand might need it if it needs to be resent
3662 */
3663 tgt->ip_summed = CHECKSUM_PARTIAL;
3664 skb->ip_summed = CHECKSUM_PARTIAL;
3665
3666 skb_len_add(skb, -shiftlen);
3667 skb_len_add(tgt, shiftlen);
3668
3669 return shiftlen;
3670}
3671
3672/**
3673 * skb_prepare_seq_read - Prepare a sequential read of skb data
3674 * @skb: the buffer to read
3675 * @from: lower offset of data to be read
3676 * @to: upper offset of data to be read
3677 * @st: state variable
3678 *
3679 * Initializes the specified state variable. Must be called before
3680 * invoking skb_seq_read() for the first time.
3681 */
3682void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3683 unsigned int to, struct skb_seq_state *st)
3684{
3685 st->lower_offset = from;
3686 st->upper_offset = to;
3687 st->root_skb = st->cur_skb = skb;
3688 st->frag_idx = st->stepped_offset = 0;
3689 st->frag_data = NULL;
3690 st->frag_off = 0;
3691}
3692EXPORT_SYMBOL(skb_prepare_seq_read);
3693
3694/**
3695 * skb_seq_read - Sequentially read skb data
3696 * @consumed: number of bytes consumed by the caller so far
3697 * @data: destination pointer for data to be returned
3698 * @st: state variable
3699 *
3700 * Reads a block of skb data at @consumed relative to the
3701 * lower offset specified to skb_prepare_seq_read(). Assigns
3702 * the head of the data block to @data and returns the length
3703 * of the block or 0 if the end of the skb data or the upper
3704 * offset has been reached.
3705 *
3706 * The caller is not required to consume all of the data
3707 * returned, i.e. @consumed is typically set to the number
3708 * of bytes already consumed and the next call to
3709 * skb_seq_read() will return the remaining part of the block.
3710 *
3711 * Note 1: The size of each block of data returned can be arbitrary,
3712 * this limitation is the cost for zerocopy sequential
3713 * reads of potentially non linear data.
3714 *
3715 * Note 2: Fragment lists within fragments are not implemented
3716 * at the moment, state->root_skb could be replaced with
3717 * a stack for this purpose.
3718 */
3719unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3720 struct skb_seq_state *st)
3721{
3722 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3723 skb_frag_t *frag;
3724
3725 if (unlikely(abs_offset >= st->upper_offset)) {
3726 if (st->frag_data) {
3727 kunmap_atomic(st->frag_data);
3728 st->frag_data = NULL;
3729 }
3730 return 0;
3731 }
3732
3733next_skb:
3734 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3735
3736 if (abs_offset < block_limit && !st->frag_data) {
3737 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3738 return block_limit - abs_offset;
3739 }
3740
3741 if (st->frag_idx == 0 && !st->frag_data)
3742 st->stepped_offset += skb_headlen(st->cur_skb);
3743
3744 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3745 unsigned int pg_idx, pg_off, pg_sz;
3746
3747 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3748
3749 pg_idx = 0;
3750 pg_off = skb_frag_off(frag);
3751 pg_sz = skb_frag_size(frag);
3752
3753 if (skb_frag_must_loop(skb_frag_page(frag))) {
3754 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3755 pg_off = offset_in_page(pg_off + st->frag_off);
3756 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3757 PAGE_SIZE - pg_off);
3758 }
3759
3760 block_limit = pg_sz + st->stepped_offset;
3761 if (abs_offset < block_limit) {
3762 if (!st->frag_data)
3763 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3764
3765 *data = (u8 *)st->frag_data + pg_off +
3766 (abs_offset - st->stepped_offset);
3767
3768 return block_limit - abs_offset;
3769 }
3770
3771 if (st->frag_data) {
3772 kunmap_atomic(st->frag_data);
3773 st->frag_data = NULL;
3774 }
3775
3776 st->stepped_offset += pg_sz;
3777 st->frag_off += pg_sz;
3778 if (st->frag_off == skb_frag_size(frag)) {
3779 st->frag_off = 0;
3780 st->frag_idx++;
3781 }
3782 }
3783
3784 if (st->frag_data) {
3785 kunmap_atomic(st->frag_data);
3786 st->frag_data = NULL;
3787 }
3788
3789 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3790 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3791 st->frag_idx = 0;
3792 goto next_skb;
3793 } else if (st->cur_skb->next) {
3794 st->cur_skb = st->cur_skb->next;
3795 st->frag_idx = 0;
3796 goto next_skb;
3797 }
3798
3799 return 0;
3800}
3801EXPORT_SYMBOL(skb_seq_read);
3802
3803/**
3804 * skb_abort_seq_read - Abort a sequential read of skb data
3805 * @st: state variable
3806 *
3807 * Must be called if skb_seq_read() was not called until it
3808 * returned 0.
3809 */
3810void skb_abort_seq_read(struct skb_seq_state *st)
3811{
3812 if (st->frag_data)
3813 kunmap_atomic(st->frag_data);
3814}
3815EXPORT_SYMBOL(skb_abort_seq_read);
3816
3817#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3818
3819static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3820 struct ts_config *conf,
3821 struct ts_state *state)
3822{
3823 return skb_seq_read(offset, text, TS_SKB_CB(state));
3824}
3825
3826static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3827{
3828 skb_abort_seq_read(TS_SKB_CB(state));
3829}
3830
3831/**
3832 * skb_find_text - Find a text pattern in skb data
3833 * @skb: the buffer to look in
3834 * @from: search offset
3835 * @to: search limit
3836 * @config: textsearch configuration
3837 *
3838 * Finds a pattern in the skb data according to the specified
3839 * textsearch configuration. Use textsearch_next() to retrieve
3840 * subsequent occurrences of the pattern. Returns the offset
3841 * to the first occurrence or UINT_MAX if no match was found.
3842 */
3843unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3844 unsigned int to, struct ts_config *config)
3845{
3846 struct ts_state state;
3847 unsigned int ret;
3848
3849 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3850
3851 config->get_next_block = skb_ts_get_next_block;
3852 config->finish = skb_ts_finish;
3853
3854 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3855
3856 ret = textsearch_find(config, &state);
3857 return (ret <= to - from ? ret : UINT_MAX);
3858}
3859EXPORT_SYMBOL(skb_find_text);
3860
3861int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3862 int offset, size_t size)
3863{
3864 int i = skb_shinfo(skb)->nr_frags;
3865
3866 if (skb_can_coalesce(skb, i, page, offset)) {
3867 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3868 } else if (i < MAX_SKB_FRAGS) {
3869 skb_zcopy_downgrade_managed(skb);
3870 get_page(page);
3871 skb_fill_page_desc(skb, i, page, offset, size);
3872 } else {
3873 return -EMSGSIZE;
3874 }
3875
3876 return 0;
3877}
3878EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3879
3880/**
3881 * skb_pull_rcsum - pull skb and update receive checksum
3882 * @skb: buffer to update
3883 * @len: length of data pulled
3884 *
3885 * This function performs an skb_pull on the packet and updates
3886 * the CHECKSUM_COMPLETE checksum. It should be used on
3887 * receive path processing instead of skb_pull unless you know
3888 * that the checksum difference is zero (e.g., a valid IP header)
3889 * or you are setting ip_summed to CHECKSUM_NONE.
3890 */
3891void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3892{
3893 unsigned char *data = skb->data;
3894
3895 BUG_ON(len > skb->len);
3896 __skb_pull(skb, len);
3897 skb_postpull_rcsum(skb, data, len);
3898 return skb->data;
3899}
3900EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3901
3902static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3903{
3904 skb_frag_t head_frag;
3905 struct page *page;
3906
3907 page = virt_to_head_page(frag_skb->head);
3908 __skb_frag_set_page(&head_frag, page);
3909 skb_frag_off_set(&head_frag, frag_skb->data -
3910 (unsigned char *)page_address(page));
3911 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3912 return head_frag;
3913}
3914
3915struct sk_buff *skb_segment_list(struct sk_buff *skb,
3916 netdev_features_t features,
3917 unsigned int offset)
3918{
3919 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3920 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3921 unsigned int delta_truesize = 0;
3922 unsigned int delta_len = 0;
3923 struct sk_buff *tail = NULL;
3924 struct sk_buff *nskb, *tmp;
3925 int len_diff, err;
3926
3927 skb_push(skb, -skb_network_offset(skb) + offset);
3928
3929 skb_shinfo(skb)->frag_list = NULL;
3930
3931 do {
3932 nskb = list_skb;
3933 list_skb = list_skb->next;
3934
3935 err = 0;
3936 delta_truesize += nskb->truesize;
3937 if (skb_shared(nskb)) {
3938 tmp = skb_clone(nskb, GFP_ATOMIC);
3939 if (tmp) {
3940 consume_skb(nskb);
3941 nskb = tmp;
3942 err = skb_unclone(nskb, GFP_ATOMIC);
3943 } else {
3944 err = -ENOMEM;
3945 }
3946 }
3947
3948 if (!tail)
3949 skb->next = nskb;
3950 else
3951 tail->next = nskb;
3952
3953 if (unlikely(err)) {
3954 nskb->next = list_skb;
3955 goto err_linearize;
3956 }
3957
3958 tail = nskb;
3959
3960 delta_len += nskb->len;
3961
3962 skb_push(nskb, -skb_network_offset(nskb) + offset);
3963
3964 skb_release_head_state(nskb);
3965 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
3966 __copy_skb_header(nskb, skb);
3967
3968 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3969 nskb->transport_header += len_diff;
3970 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3971 nskb->data - tnl_hlen,
3972 offset + tnl_hlen);
3973
3974 if (skb_needs_linearize(nskb, features) &&
3975 __skb_linearize(nskb))
3976 goto err_linearize;
3977
3978 } while (list_skb);
3979
3980 skb->truesize = skb->truesize - delta_truesize;
3981 skb->data_len = skb->data_len - delta_len;
3982 skb->len = skb->len - delta_len;
3983
3984 skb_gso_reset(skb);
3985
3986 skb->prev = tail;
3987
3988 if (skb_needs_linearize(skb, features) &&
3989 __skb_linearize(skb))
3990 goto err_linearize;
3991
3992 skb_get(skb);
3993
3994 return skb;
3995
3996err_linearize:
3997 kfree_skb_list(skb->next);
3998 skb->next = NULL;
3999 return ERR_PTR(-ENOMEM);
4000}
4001EXPORT_SYMBOL_GPL(skb_segment_list);
4002
4003/**
4004 * skb_segment - Perform protocol segmentation on skb.
4005 * @head_skb: buffer to segment
4006 * @features: features for the output path (see dev->features)
4007 *
4008 * This function performs segmentation on the given skb. It returns
4009 * a pointer to the first in a list of new skbs for the segments.
4010 * In case of error it returns ERR_PTR(err).
4011 */
4012struct sk_buff *skb_segment(struct sk_buff *head_skb,
4013 netdev_features_t features)
4014{
4015 struct sk_buff *segs = NULL;
4016 struct sk_buff *tail = NULL;
4017 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4018 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4019 unsigned int mss = skb_shinfo(head_skb)->gso_size;
4020 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4021 struct sk_buff *frag_skb = head_skb;
4022 unsigned int offset = doffset;
4023 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4024 unsigned int partial_segs = 0;
4025 unsigned int headroom;
4026 unsigned int len = head_skb->len;
4027 __be16 proto;
4028 bool csum, sg;
4029 int nfrags = skb_shinfo(head_skb)->nr_frags;
4030 int err = -ENOMEM;
4031 int i = 0;
4032 int pos;
4033
4034 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
4035 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
4036 /* gso_size is untrusted, and we have a frag_list with a linear
4037 * non head_frag head.
4038 *
4039 * (we assume checking the first list_skb member suffices;
4040 * i.e if either of the list_skb members have non head_frag
4041 * head, then the first one has too).
4042 *
4043 * If head_skb's headlen does not fit requested gso_size, it
4044 * means that the frag_list members do NOT terminate on exact
4045 * gso_size boundaries. Hence we cannot perform skb_frag_t page
4046 * sharing. Therefore we must fallback to copying the frag_list
4047 * skbs; we do so by disabling SG.
4048 */
4049 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
4050 features &= ~NETIF_F_SG;
4051 }
4052
4053 __skb_push(head_skb, doffset);
4054 proto = skb_network_protocol(head_skb, NULL);
4055 if (unlikely(!proto))
4056 return ERR_PTR(-EINVAL);
4057
4058 sg = !!(features & NETIF_F_SG);
4059 csum = !!can_checksum_protocol(features, proto);
4060
4061 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4062 if (!(features & NETIF_F_GSO_PARTIAL)) {
4063 struct sk_buff *iter;
4064 unsigned int frag_len;
4065
4066 if (!list_skb ||
4067 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4068 goto normal;
4069
4070 /* If we get here then all the required
4071 * GSO features except frag_list are supported.
4072 * Try to split the SKB to multiple GSO SKBs
4073 * with no frag_list.
4074 * Currently we can do that only when the buffers don't
4075 * have a linear part and all the buffers except
4076 * the last are of the same length.
4077 */
4078 frag_len = list_skb->len;
4079 skb_walk_frags(head_skb, iter) {
4080 if (frag_len != iter->len && iter->next)
4081 goto normal;
4082 if (skb_headlen(iter) && !iter->head_frag)
4083 goto normal;
4084
4085 len -= iter->len;
4086 }
4087
4088 if (len != frag_len)
4089 goto normal;
4090 }
4091
4092 /* GSO partial only requires that we trim off any excess that
4093 * doesn't fit into an MSS sized block, so take care of that
4094 * now.
4095 */
4096 partial_segs = len / mss;
4097 if (partial_segs > 1)
4098 mss *= partial_segs;
4099 else
4100 partial_segs = 0;
4101 }
4102
4103normal:
4104 headroom = skb_headroom(head_skb);
4105 pos = skb_headlen(head_skb);
4106
4107 do {
4108 struct sk_buff *nskb;
4109 skb_frag_t *nskb_frag;
4110 int hsize;
4111 int size;
4112
4113 if (unlikely(mss == GSO_BY_FRAGS)) {
4114 len = list_skb->len;
4115 } else {
4116 len = head_skb->len - offset;
4117 if (len > mss)
4118 len = mss;
4119 }
4120
4121 hsize = skb_headlen(head_skb) - offset;
4122
4123 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4124 (skb_headlen(list_skb) == len || sg)) {
4125 BUG_ON(skb_headlen(list_skb) > len);
4126
4127 i = 0;
4128 nfrags = skb_shinfo(list_skb)->nr_frags;
4129 frag = skb_shinfo(list_skb)->frags;
4130 frag_skb = list_skb;
4131 pos += skb_headlen(list_skb);
4132
4133 while (pos < offset + len) {
4134 BUG_ON(i >= nfrags);
4135
4136 size = skb_frag_size(frag);
4137 if (pos + size > offset + len)
4138 break;
4139
4140 i++;
4141 pos += size;
4142 frag++;
4143 }
4144
4145 nskb = skb_clone(list_skb, GFP_ATOMIC);
4146 list_skb = list_skb->next;
4147
4148 if (unlikely(!nskb))
4149 goto err;
4150
4151 if (unlikely(pskb_trim(nskb, len))) {
4152 kfree_skb(nskb);
4153 goto err;
4154 }
4155
4156 hsize = skb_end_offset(nskb);
4157 if (skb_cow_head(nskb, doffset + headroom)) {
4158 kfree_skb(nskb);
4159 goto err;
4160 }
4161
4162 nskb->truesize += skb_end_offset(nskb) - hsize;
4163 skb_release_head_state(nskb);
4164 __skb_push(nskb, doffset);
4165 } else {
4166 if (hsize < 0)
4167 hsize = 0;
4168 if (hsize > len || !sg)
4169 hsize = len;
4170
4171 nskb = __alloc_skb(hsize + doffset + headroom,
4172 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4173 NUMA_NO_NODE);
4174
4175 if (unlikely(!nskb))
4176 goto err;
4177
4178 skb_reserve(nskb, headroom);
4179 __skb_put(nskb, doffset);
4180 }
4181
4182 if (segs)
4183 tail->next = nskb;
4184 else
4185 segs = nskb;
4186 tail = nskb;
4187
4188 __copy_skb_header(nskb, head_skb);
4189
4190 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4191 skb_reset_mac_len(nskb);
4192
4193 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4194 nskb->data - tnl_hlen,
4195 doffset + tnl_hlen);
4196
4197 if (nskb->len == len + doffset)
4198 goto perform_csum_check;
4199
4200 if (!sg) {
4201 if (!csum) {
4202 if (!nskb->remcsum_offload)
4203 nskb->ip_summed = CHECKSUM_NONE;
4204 SKB_GSO_CB(nskb)->csum =
4205 skb_copy_and_csum_bits(head_skb, offset,
4206 skb_put(nskb,
4207 len),
4208 len);
4209 SKB_GSO_CB(nskb)->csum_start =
4210 skb_headroom(nskb) + doffset;
4211 } else {
4212 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4213 goto err;
4214 }
4215 continue;
4216 }
4217
4218 nskb_frag = skb_shinfo(nskb)->frags;
4219
4220 skb_copy_from_linear_data_offset(head_skb, offset,
4221 skb_put(nskb, hsize), hsize);
4222
4223 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4224 SKBFL_SHARED_FRAG;
4225
4226 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4227 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4228 goto err;
4229
4230 while (pos < offset + len) {
4231 if (i >= nfrags) {
4232 i = 0;
4233 nfrags = skb_shinfo(list_skb)->nr_frags;
4234 frag = skb_shinfo(list_skb)->frags;
4235 frag_skb = list_skb;
4236 if (!skb_headlen(list_skb)) {
4237 BUG_ON(!nfrags);
4238 } else {
4239 BUG_ON(!list_skb->head_frag);
4240
4241 /* to make room for head_frag. */
4242 i--;
4243 frag--;
4244 }
4245 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4246 skb_zerocopy_clone(nskb, frag_skb,
4247 GFP_ATOMIC))
4248 goto err;
4249
4250 list_skb = list_skb->next;
4251 }
4252
4253 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4254 MAX_SKB_FRAGS)) {
4255 net_warn_ratelimited(
4256 "skb_segment: too many frags: %u %u\n",
4257 pos, mss);
4258 err = -EINVAL;
4259 goto err;
4260 }
4261
4262 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4263 __skb_frag_ref(nskb_frag);
4264 size = skb_frag_size(nskb_frag);
4265
4266 if (pos < offset) {
4267 skb_frag_off_add(nskb_frag, offset - pos);
4268 skb_frag_size_sub(nskb_frag, offset - pos);
4269 }
4270
4271 skb_shinfo(nskb)->nr_frags++;
4272
4273 if (pos + size <= offset + len) {
4274 i++;
4275 frag++;
4276 pos += size;
4277 } else {
4278 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4279 goto skip_fraglist;
4280 }
4281
4282 nskb_frag++;
4283 }
4284
4285skip_fraglist:
4286 nskb->data_len = len - hsize;
4287 nskb->len += nskb->data_len;
4288 nskb->truesize += nskb->data_len;
4289
4290perform_csum_check:
4291 if (!csum) {
4292 if (skb_has_shared_frag(nskb) &&
4293 __skb_linearize(nskb))
4294 goto err;
4295
4296 if (!nskb->remcsum_offload)
4297 nskb->ip_summed = CHECKSUM_NONE;
4298 SKB_GSO_CB(nskb)->csum =
4299 skb_checksum(nskb, doffset,
4300 nskb->len - doffset, 0);
4301 SKB_GSO_CB(nskb)->csum_start =
4302 skb_headroom(nskb) + doffset;
4303 }
4304 } while ((offset += len) < head_skb->len);
4305
4306 /* Some callers want to get the end of the list.
4307 * Put it in segs->prev to avoid walking the list.
4308 * (see validate_xmit_skb_list() for example)
4309 */
4310 segs->prev = tail;
4311
4312 if (partial_segs) {
4313 struct sk_buff *iter;
4314 int type = skb_shinfo(head_skb)->gso_type;
4315 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4316
4317 /* Update type to add partial and then remove dodgy if set */
4318 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4319 type &= ~SKB_GSO_DODGY;
4320
4321 /* Update GSO info and prepare to start updating headers on
4322 * our way back down the stack of protocols.
4323 */
4324 for (iter = segs; iter; iter = iter->next) {
4325 skb_shinfo(iter)->gso_size = gso_size;
4326 skb_shinfo(iter)->gso_segs = partial_segs;
4327 skb_shinfo(iter)->gso_type = type;
4328 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4329 }
4330
4331 if (tail->len - doffset <= gso_size)
4332 skb_shinfo(tail)->gso_size = 0;
4333 else if (tail != segs)
4334 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4335 }
4336
4337 /* Following permits correct backpressure, for protocols
4338 * using skb_set_owner_w().
4339 * Idea is to tranfert ownership from head_skb to last segment.
4340 */
4341 if (head_skb->destructor == sock_wfree) {
4342 swap(tail->truesize, head_skb->truesize);
4343 swap(tail->destructor, head_skb->destructor);
4344 swap(tail->sk, head_skb->sk);
4345 }
4346 return segs;
4347
4348err:
4349 kfree_skb_list(segs);
4350 return ERR_PTR(err);
4351}
4352EXPORT_SYMBOL_GPL(skb_segment);
4353
4354#ifdef CONFIG_SKB_EXTENSIONS
4355#define SKB_EXT_ALIGN_VALUE 8
4356#define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4357
4358static const u8 skb_ext_type_len[] = {
4359#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4360 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4361#endif
4362#ifdef CONFIG_XFRM
4363 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4364#endif
4365#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4366 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4367#endif
4368#if IS_ENABLED(CONFIG_MPTCP)
4369 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4370#endif
4371#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4372 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4373#endif
4374};
4375
4376static __always_inline unsigned int skb_ext_total_length(void)
4377{
4378 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4379#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4380 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4381#endif
4382#ifdef CONFIG_XFRM
4383 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4384#endif
4385#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4386 skb_ext_type_len[TC_SKB_EXT] +
4387#endif
4388#if IS_ENABLED(CONFIG_MPTCP)
4389 skb_ext_type_len[SKB_EXT_MPTCP] +
4390#endif
4391#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4392 skb_ext_type_len[SKB_EXT_MCTP] +
4393#endif
4394 0;
4395}
4396
4397static void skb_extensions_init(void)
4398{
4399 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4400 BUILD_BUG_ON(skb_ext_total_length() > 255);
4401
4402 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4403 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4404 0,
4405 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4406 NULL);
4407}
4408#else
4409static void skb_extensions_init(void) {}
4410#endif
4411
4412void __init skb_init(void)
4413{
4414 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4415 sizeof(struct sk_buff),
4416 0,
4417 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4418 offsetof(struct sk_buff, cb),
4419 sizeof_field(struct sk_buff, cb),
4420 NULL);
4421 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4422 sizeof(struct sk_buff_fclones),
4423 0,
4424 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4425 NULL);
4426 skb_extensions_init();
4427}
4428
4429static int
4430__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4431 unsigned int recursion_level)
4432{
4433 int start = skb_headlen(skb);
4434 int i, copy = start - offset;
4435 struct sk_buff *frag_iter;
4436 int elt = 0;
4437
4438 if (unlikely(recursion_level >= 24))
4439 return -EMSGSIZE;
4440
4441 if (copy > 0) {
4442 if (copy > len)
4443 copy = len;
4444 sg_set_buf(sg, skb->data + offset, copy);
4445 elt++;
4446 if ((len -= copy) == 0)
4447 return elt;
4448 offset += copy;
4449 }
4450
4451 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4452 int end;
4453
4454 WARN_ON(start > offset + len);
4455
4456 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4457 if ((copy = end - offset) > 0) {
4458 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4459 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4460 return -EMSGSIZE;
4461
4462 if (copy > len)
4463 copy = len;
4464 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4465 skb_frag_off(frag) + offset - start);
4466 elt++;
4467 if (!(len -= copy))
4468 return elt;
4469 offset += copy;
4470 }
4471 start = end;
4472 }
4473
4474 skb_walk_frags(skb, frag_iter) {
4475 int end, ret;
4476
4477 WARN_ON(start > offset + len);
4478
4479 end = start + frag_iter->len;
4480 if ((copy = end - offset) > 0) {
4481 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4482 return -EMSGSIZE;
4483
4484 if (copy > len)
4485 copy = len;
4486 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4487 copy, recursion_level + 1);
4488 if (unlikely(ret < 0))
4489 return ret;
4490 elt += ret;
4491 if ((len -= copy) == 0)
4492 return elt;
4493 offset += copy;
4494 }
4495 start = end;
4496 }
4497 BUG_ON(len);
4498 return elt;
4499}
4500
4501/**
4502 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4503 * @skb: Socket buffer containing the buffers to be mapped
4504 * @sg: The scatter-gather list to map into
4505 * @offset: The offset into the buffer's contents to start mapping
4506 * @len: Length of buffer space to be mapped
4507 *
4508 * Fill the specified scatter-gather list with mappings/pointers into a
4509 * region of the buffer space attached to a socket buffer. Returns either
4510 * the number of scatterlist items used, or -EMSGSIZE if the contents
4511 * could not fit.
4512 */
4513int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4514{
4515 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4516
4517 if (nsg <= 0)
4518 return nsg;
4519
4520 sg_mark_end(&sg[nsg - 1]);
4521
4522 return nsg;
4523}
4524EXPORT_SYMBOL_GPL(skb_to_sgvec);
4525
4526/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4527 * sglist without mark the sg which contain last skb data as the end.
4528 * So the caller can mannipulate sg list as will when padding new data after
4529 * the first call without calling sg_unmark_end to expend sg list.
4530 *
4531 * Scenario to use skb_to_sgvec_nomark:
4532 * 1. sg_init_table
4533 * 2. skb_to_sgvec_nomark(payload1)
4534 * 3. skb_to_sgvec_nomark(payload2)
4535 *
4536 * This is equivalent to:
4537 * 1. sg_init_table
4538 * 2. skb_to_sgvec(payload1)
4539 * 3. sg_unmark_end
4540 * 4. skb_to_sgvec(payload2)
4541 *
4542 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4543 * is more preferable.
4544 */
4545int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4546 int offset, int len)
4547{
4548 return __skb_to_sgvec(skb, sg, offset, len, 0);
4549}
4550EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4551
4552
4553
4554/**
4555 * skb_cow_data - Check that a socket buffer's data buffers are writable
4556 * @skb: The socket buffer to check.
4557 * @tailbits: Amount of trailing space to be added
4558 * @trailer: Returned pointer to the skb where the @tailbits space begins
4559 *
4560 * Make sure that the data buffers attached to a socket buffer are
4561 * writable. If they are not, private copies are made of the data buffers
4562 * and the socket buffer is set to use these instead.
4563 *
4564 * If @tailbits is given, make sure that there is space to write @tailbits
4565 * bytes of data beyond current end of socket buffer. @trailer will be
4566 * set to point to the skb in which this space begins.
4567 *
4568 * The number of scatterlist elements required to completely map the
4569 * COW'd and extended socket buffer will be returned.
4570 */
4571int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4572{
4573 int copyflag;
4574 int elt;
4575 struct sk_buff *skb1, **skb_p;
4576
4577 /* If skb is cloned or its head is paged, reallocate
4578 * head pulling out all the pages (pages are considered not writable
4579 * at the moment even if they are anonymous).
4580 */
4581 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4582 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4583 return -ENOMEM;
4584
4585 /* Easy case. Most of packets will go this way. */
4586 if (!skb_has_frag_list(skb)) {
4587 /* A little of trouble, not enough of space for trailer.
4588 * This should not happen, when stack is tuned to generate
4589 * good frames. OK, on miss we reallocate and reserve even more
4590 * space, 128 bytes is fair. */
4591
4592 if (skb_tailroom(skb) < tailbits &&
4593 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4594 return -ENOMEM;
4595
4596 /* Voila! */
4597 *trailer = skb;
4598 return 1;
4599 }
4600
4601 /* Misery. We are in troubles, going to mincer fragments... */
4602
4603 elt = 1;
4604 skb_p = &skb_shinfo(skb)->frag_list;
4605 copyflag = 0;
4606
4607 while ((skb1 = *skb_p) != NULL) {
4608 int ntail = 0;
4609
4610 /* The fragment is partially pulled by someone,
4611 * this can happen on input. Copy it and everything
4612 * after it. */
4613
4614 if (skb_shared(skb1))
4615 copyflag = 1;
4616
4617 /* If the skb is the last, worry about trailer. */
4618
4619 if (skb1->next == NULL && tailbits) {
4620 if (skb_shinfo(skb1)->nr_frags ||
4621 skb_has_frag_list(skb1) ||
4622 skb_tailroom(skb1) < tailbits)
4623 ntail = tailbits + 128;
4624 }
4625
4626 if (copyflag ||
4627 skb_cloned(skb1) ||
4628 ntail ||
4629 skb_shinfo(skb1)->nr_frags ||
4630 skb_has_frag_list(skb1)) {
4631 struct sk_buff *skb2;
4632
4633 /* Fuck, we are miserable poor guys... */
4634 if (ntail == 0)
4635 skb2 = skb_copy(skb1, GFP_ATOMIC);
4636 else
4637 skb2 = skb_copy_expand(skb1,
4638 skb_headroom(skb1),
4639 ntail,
4640 GFP_ATOMIC);
4641 if (unlikely(skb2 == NULL))
4642 return -ENOMEM;
4643
4644 if (skb1->sk)
4645 skb_set_owner_w(skb2, skb1->sk);
4646
4647 /* Looking around. Are we still alive?
4648 * OK, link new skb, drop old one */
4649
4650 skb2->next = skb1->next;
4651 *skb_p = skb2;
4652 kfree_skb(skb1);
4653 skb1 = skb2;
4654 }
4655 elt++;
4656 *trailer = skb1;
4657 skb_p = &skb1->next;
4658 }
4659
4660 return elt;
4661}
4662EXPORT_SYMBOL_GPL(skb_cow_data);
4663
4664static void sock_rmem_free(struct sk_buff *skb)
4665{
4666 struct sock *sk = skb->sk;
4667
4668 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4669}
4670
4671static void skb_set_err_queue(struct sk_buff *skb)
4672{
4673 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4674 * So, it is safe to (mis)use it to mark skbs on the error queue.
4675 */
4676 skb->pkt_type = PACKET_OUTGOING;
4677 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4678}
4679
4680/*
4681 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4682 */
4683int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4684{
4685 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4686 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4687 return -ENOMEM;
4688
4689 skb_orphan(skb);
4690 skb->sk = sk;
4691 skb->destructor = sock_rmem_free;
4692 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4693 skb_set_err_queue(skb);
4694
4695 /* before exiting rcu section, make sure dst is refcounted */
4696 skb_dst_force(skb);
4697
4698 skb_queue_tail(&sk->sk_error_queue, skb);
4699 if (!sock_flag(sk, SOCK_DEAD))
4700 sk_error_report(sk);
4701 return 0;
4702}
4703EXPORT_SYMBOL(sock_queue_err_skb);
4704
4705static bool is_icmp_err_skb(const struct sk_buff *skb)
4706{
4707 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4708 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4709}
4710
4711struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4712{
4713 struct sk_buff_head *q = &sk->sk_error_queue;
4714 struct sk_buff *skb, *skb_next = NULL;
4715 bool icmp_next = false;
4716 unsigned long flags;
4717
4718 spin_lock_irqsave(&q->lock, flags);
4719 skb = __skb_dequeue(q);
4720 if (skb && (skb_next = skb_peek(q))) {
4721 icmp_next = is_icmp_err_skb(skb_next);
4722 if (icmp_next)
4723 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4724 }
4725 spin_unlock_irqrestore(&q->lock, flags);
4726
4727 if (is_icmp_err_skb(skb) && !icmp_next)
4728 sk->sk_err = 0;
4729
4730 if (skb_next)
4731 sk_error_report(sk);
4732
4733 return skb;
4734}
4735EXPORT_SYMBOL(sock_dequeue_err_skb);
4736
4737/**
4738 * skb_clone_sk - create clone of skb, and take reference to socket
4739 * @skb: the skb to clone
4740 *
4741 * This function creates a clone of a buffer that holds a reference on
4742 * sk_refcnt. Buffers created via this function are meant to be
4743 * returned using sock_queue_err_skb, or free via kfree_skb.
4744 *
4745 * When passing buffers allocated with this function to sock_queue_err_skb
4746 * it is necessary to wrap the call with sock_hold/sock_put in order to
4747 * prevent the socket from being released prior to being enqueued on
4748 * the sk_error_queue.
4749 */
4750struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4751{
4752 struct sock *sk = skb->sk;
4753 struct sk_buff *clone;
4754
4755 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4756 return NULL;
4757
4758 clone = skb_clone(skb, GFP_ATOMIC);
4759 if (!clone) {
4760 sock_put(sk);
4761 return NULL;
4762 }
4763
4764 clone->sk = sk;
4765 clone->destructor = sock_efree;
4766
4767 return clone;
4768}
4769EXPORT_SYMBOL(skb_clone_sk);
4770
4771static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4772 struct sock *sk,
4773 int tstype,
4774 bool opt_stats)
4775{
4776 struct sock_exterr_skb *serr;
4777 int err;
4778
4779 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4780
4781 serr = SKB_EXT_ERR(skb);
4782 memset(serr, 0, sizeof(*serr));
4783 serr->ee.ee_errno = ENOMSG;
4784 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4785 serr->ee.ee_info = tstype;
4786 serr->opt_stats = opt_stats;
4787 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4788 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4789 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4790 if (sk_is_tcp(sk))
4791 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4792 }
4793
4794 err = sock_queue_err_skb(sk, skb);
4795
4796 if (err)
4797 kfree_skb(skb);
4798}
4799
4800static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4801{
4802 bool ret;
4803
4804 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4805 return true;
4806
4807 read_lock_bh(&sk->sk_callback_lock);
4808 ret = sk->sk_socket && sk->sk_socket->file &&
4809 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4810 read_unlock_bh(&sk->sk_callback_lock);
4811 return ret;
4812}
4813
4814void skb_complete_tx_timestamp(struct sk_buff *skb,
4815 struct skb_shared_hwtstamps *hwtstamps)
4816{
4817 struct sock *sk = skb->sk;
4818
4819 if (!skb_may_tx_timestamp(sk, false))
4820 goto err;
4821
4822 /* Take a reference to prevent skb_orphan() from freeing the socket,
4823 * but only if the socket refcount is not zero.
4824 */
4825 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4826 *skb_hwtstamps(skb) = *hwtstamps;
4827 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4828 sock_put(sk);
4829 return;
4830 }
4831
4832err:
4833 kfree_skb(skb);
4834}
4835EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4836
4837void __skb_tstamp_tx(struct sk_buff *orig_skb,
4838 const struct sk_buff *ack_skb,
4839 struct skb_shared_hwtstamps *hwtstamps,
4840 struct sock *sk, int tstype)
4841{
4842 struct sk_buff *skb;
4843 bool tsonly, opt_stats = false;
4844
4845 if (!sk)
4846 return;
4847
4848 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4849 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4850 return;
4851
4852 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4853 if (!skb_may_tx_timestamp(sk, tsonly))
4854 return;
4855
4856 if (tsonly) {
4857#ifdef CONFIG_INET
4858 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4859 sk_is_tcp(sk)) {
4860 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4861 ack_skb);
4862 opt_stats = true;
4863 } else
4864#endif
4865 skb = alloc_skb(0, GFP_ATOMIC);
4866 } else {
4867 skb = skb_clone(orig_skb, GFP_ATOMIC);
4868 }
4869 if (!skb)
4870 return;
4871
4872 if (tsonly) {
4873 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4874 SKBTX_ANY_TSTAMP;
4875 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4876 }
4877
4878 if (hwtstamps)
4879 *skb_hwtstamps(skb) = *hwtstamps;
4880 else
4881 __net_timestamp(skb);
4882
4883 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4884}
4885EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4886
4887void skb_tstamp_tx(struct sk_buff *orig_skb,
4888 struct skb_shared_hwtstamps *hwtstamps)
4889{
4890 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4891 SCM_TSTAMP_SND);
4892}
4893EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4894
4895void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4896{
4897 struct sock *sk = skb->sk;
4898 struct sock_exterr_skb *serr;
4899 int err = 1;
4900
4901 skb->wifi_acked_valid = 1;
4902 skb->wifi_acked = acked;
4903
4904 serr = SKB_EXT_ERR(skb);
4905 memset(serr, 0, sizeof(*serr));
4906 serr->ee.ee_errno = ENOMSG;
4907 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4908
4909 /* Take a reference to prevent skb_orphan() from freeing the socket,
4910 * but only if the socket refcount is not zero.
4911 */
4912 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4913 err = sock_queue_err_skb(sk, skb);
4914 sock_put(sk);
4915 }
4916 if (err)
4917 kfree_skb(skb);
4918}
4919EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4920
4921/**
4922 * skb_partial_csum_set - set up and verify partial csum values for packet
4923 * @skb: the skb to set
4924 * @start: the number of bytes after skb->data to start checksumming.
4925 * @off: the offset from start to place the checksum.
4926 *
4927 * For untrusted partially-checksummed packets, we need to make sure the values
4928 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4929 *
4930 * This function checks and sets those values and skb->ip_summed: if this
4931 * returns false you should drop the packet.
4932 */
4933bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4934{
4935 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4936 u32 csum_start = skb_headroom(skb) + (u32)start;
4937
4938 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4939 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4940 start, off, skb_headroom(skb), skb_headlen(skb));
4941 return false;
4942 }
4943 skb->ip_summed = CHECKSUM_PARTIAL;
4944 skb->csum_start = csum_start;
4945 skb->csum_offset = off;
4946 skb_set_transport_header(skb, start);
4947 return true;
4948}
4949EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4950
4951static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4952 unsigned int max)
4953{
4954 if (skb_headlen(skb) >= len)
4955 return 0;
4956
4957 /* If we need to pullup then pullup to the max, so we
4958 * won't need to do it again.
4959 */
4960 if (max > skb->len)
4961 max = skb->len;
4962
4963 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4964 return -ENOMEM;
4965
4966 if (skb_headlen(skb) < len)
4967 return -EPROTO;
4968
4969 return 0;
4970}
4971
4972#define MAX_TCP_HDR_LEN (15 * 4)
4973
4974static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4975 typeof(IPPROTO_IP) proto,
4976 unsigned int off)
4977{
4978 int err;
4979
4980 switch (proto) {
4981 case IPPROTO_TCP:
4982 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4983 off + MAX_TCP_HDR_LEN);
4984 if (!err && !skb_partial_csum_set(skb, off,
4985 offsetof(struct tcphdr,
4986 check)))
4987 err = -EPROTO;
4988 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4989
4990 case IPPROTO_UDP:
4991 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4992 off + sizeof(struct udphdr));
4993 if (!err && !skb_partial_csum_set(skb, off,
4994 offsetof(struct udphdr,
4995 check)))
4996 err = -EPROTO;
4997 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4998 }
4999
5000 return ERR_PTR(-EPROTO);
5001}
5002
5003/* This value should be large enough to cover a tagged ethernet header plus
5004 * maximally sized IP and TCP or UDP headers.
5005 */
5006#define MAX_IP_HDR_LEN 128
5007
5008static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5009{
5010 unsigned int off;
5011 bool fragment;
5012 __sum16 *csum;
5013 int err;
5014
5015 fragment = false;
5016
5017 err = skb_maybe_pull_tail(skb,
5018 sizeof(struct iphdr),
5019 MAX_IP_HDR_LEN);
5020 if (err < 0)
5021 goto out;
5022
5023 if (ip_is_fragment(ip_hdr(skb)))
5024 fragment = true;
5025
5026 off = ip_hdrlen(skb);
5027
5028 err = -EPROTO;
5029
5030 if (fragment)
5031 goto out;
5032
5033 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5034 if (IS_ERR(csum))
5035 return PTR_ERR(csum);
5036
5037 if (recalculate)
5038 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5039 ip_hdr(skb)->daddr,
5040 skb->len - off,
5041 ip_hdr(skb)->protocol, 0);
5042 err = 0;
5043
5044out:
5045 return err;
5046}
5047
5048/* This value should be large enough to cover a tagged ethernet header plus
5049 * an IPv6 header, all options, and a maximal TCP or UDP header.
5050 */
5051#define MAX_IPV6_HDR_LEN 256
5052
5053#define OPT_HDR(type, skb, off) \
5054 (type *)(skb_network_header(skb) + (off))
5055
5056static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5057{
5058 int err;
5059 u8 nexthdr;
5060 unsigned int off;
5061 unsigned int len;
5062 bool fragment;
5063 bool done;
5064 __sum16 *csum;
5065
5066 fragment = false;
5067 done = false;
5068
5069 off = sizeof(struct ipv6hdr);
5070
5071 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5072 if (err < 0)
5073 goto out;
5074
5075 nexthdr = ipv6_hdr(skb)->nexthdr;
5076
5077 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5078 while (off <= len && !done) {
5079 switch (nexthdr) {
5080 case IPPROTO_DSTOPTS:
5081 case IPPROTO_HOPOPTS:
5082 case IPPROTO_ROUTING: {
5083 struct ipv6_opt_hdr *hp;
5084
5085 err = skb_maybe_pull_tail(skb,
5086 off +
5087 sizeof(struct ipv6_opt_hdr),
5088 MAX_IPV6_HDR_LEN);
5089 if (err < 0)
5090 goto out;
5091
5092 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5093 nexthdr = hp->nexthdr;
5094 off += ipv6_optlen(hp);
5095 break;
5096 }
5097 case IPPROTO_AH: {
5098 struct ip_auth_hdr *hp;
5099
5100 err = skb_maybe_pull_tail(skb,
5101 off +
5102 sizeof(struct ip_auth_hdr),
5103 MAX_IPV6_HDR_LEN);
5104 if (err < 0)
5105 goto out;
5106
5107 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5108 nexthdr = hp->nexthdr;
5109 off += ipv6_authlen(hp);
5110 break;
5111 }
5112 case IPPROTO_FRAGMENT: {
5113 struct frag_hdr *hp;
5114
5115 err = skb_maybe_pull_tail(skb,
5116 off +
5117 sizeof(struct frag_hdr),
5118 MAX_IPV6_HDR_LEN);
5119 if (err < 0)
5120 goto out;
5121
5122 hp = OPT_HDR(struct frag_hdr, skb, off);
5123
5124 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5125 fragment = true;
5126
5127 nexthdr = hp->nexthdr;
5128 off += sizeof(struct frag_hdr);
5129 break;
5130 }
5131 default:
5132 done = true;
5133 break;
5134 }
5135 }
5136
5137 err = -EPROTO;
5138
5139 if (!done || fragment)
5140 goto out;
5141
5142 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5143 if (IS_ERR(csum))
5144 return PTR_ERR(csum);
5145
5146 if (recalculate)
5147 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5148 &ipv6_hdr(skb)->daddr,
5149 skb->len - off, nexthdr, 0);
5150 err = 0;
5151
5152out:
5153 return err;
5154}
5155
5156/**
5157 * skb_checksum_setup - set up partial checksum offset
5158 * @skb: the skb to set up
5159 * @recalculate: if true the pseudo-header checksum will be recalculated
5160 */
5161int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5162{
5163 int err;
5164
5165 switch (skb->protocol) {
5166 case htons(ETH_P_IP):
5167 err = skb_checksum_setup_ipv4(skb, recalculate);
5168 break;
5169
5170 case htons(ETH_P_IPV6):
5171 err = skb_checksum_setup_ipv6(skb, recalculate);
5172 break;
5173
5174 default:
5175 err = -EPROTO;
5176 break;
5177 }
5178
5179 return err;
5180}
5181EXPORT_SYMBOL(skb_checksum_setup);
5182
5183/**
5184 * skb_checksum_maybe_trim - maybe trims the given skb
5185 * @skb: the skb to check
5186 * @transport_len: the data length beyond the network header
5187 *
5188 * Checks whether the given skb has data beyond the given transport length.
5189 * If so, returns a cloned skb trimmed to this transport length.
5190 * Otherwise returns the provided skb. Returns NULL in error cases
5191 * (e.g. transport_len exceeds skb length or out-of-memory).
5192 *
5193 * Caller needs to set the skb transport header and free any returned skb if it
5194 * differs from the provided skb.
5195 */
5196static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5197 unsigned int transport_len)
5198{
5199 struct sk_buff *skb_chk;
5200 unsigned int len = skb_transport_offset(skb) + transport_len;
5201 int ret;
5202
5203 if (skb->len < len)
5204 return NULL;
5205 else if (skb->len == len)
5206 return skb;
5207
5208 skb_chk = skb_clone(skb, GFP_ATOMIC);
5209 if (!skb_chk)
5210 return NULL;
5211
5212 ret = pskb_trim_rcsum(skb_chk, len);
5213 if (ret) {
5214 kfree_skb(skb_chk);
5215 return NULL;
5216 }
5217
5218 return skb_chk;
5219}
5220
5221/**
5222 * skb_checksum_trimmed - validate checksum of an skb
5223 * @skb: the skb to check
5224 * @transport_len: the data length beyond the network header
5225 * @skb_chkf: checksum function to use
5226 *
5227 * Applies the given checksum function skb_chkf to the provided skb.
5228 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5229 *
5230 * If the skb has data beyond the given transport length, then a
5231 * trimmed & cloned skb is checked and returned.
5232 *
5233 * Caller needs to set the skb transport header and free any returned skb if it
5234 * differs from the provided skb.
5235 */
5236struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5237 unsigned int transport_len,
5238 __sum16(*skb_chkf)(struct sk_buff *skb))
5239{
5240 struct sk_buff *skb_chk;
5241 unsigned int offset = skb_transport_offset(skb);
5242 __sum16 ret;
5243
5244 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5245 if (!skb_chk)
5246 goto err;
5247
5248 if (!pskb_may_pull(skb_chk, offset))
5249 goto err;
5250
5251 skb_pull_rcsum(skb_chk, offset);
5252 ret = skb_chkf(skb_chk);
5253 skb_push_rcsum(skb_chk, offset);
5254
5255 if (ret)
5256 goto err;
5257
5258 return skb_chk;
5259
5260err:
5261 if (skb_chk && skb_chk != skb)
5262 kfree_skb(skb_chk);
5263
5264 return NULL;
5265
5266}
5267EXPORT_SYMBOL(skb_checksum_trimmed);
5268
5269void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5270{
5271 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5272 skb->dev->name);
5273}
5274EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5275
5276void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5277{
5278 if (head_stolen) {
5279 skb_release_head_state(skb);
5280 kmem_cache_free(skbuff_head_cache, skb);
5281 } else {
5282 __kfree_skb(skb);
5283 }
5284}
5285EXPORT_SYMBOL(kfree_skb_partial);
5286
5287/**
5288 * skb_try_coalesce - try to merge skb to prior one
5289 * @to: prior buffer
5290 * @from: buffer to add
5291 * @fragstolen: pointer to boolean
5292 * @delta_truesize: how much more was allocated than was requested
5293 */
5294bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5295 bool *fragstolen, int *delta_truesize)
5296{
5297 struct skb_shared_info *to_shinfo, *from_shinfo;
5298 int i, delta, len = from->len;
5299
5300 *fragstolen = false;
5301
5302 if (skb_cloned(to))
5303 return false;
5304
5305 /* In general, avoid mixing slab allocated and page_pool allocated
5306 * pages within the same SKB. However when @to is not pp_recycle and
5307 * @from is cloned, we can transition frag pages from page_pool to
5308 * reference counted.
5309 *
5310 * On the other hand, don't allow coalescing two pp_recycle SKBs if
5311 * @from is cloned, in case the SKB is using page_pool fragment
5312 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5313 * references for cloned SKBs at the moment that would result in
5314 * inconsistent reference counts.
5315 */
5316 if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5317 return false;
5318
5319 if (len <= skb_tailroom(to)) {
5320 if (len)
5321 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5322 *delta_truesize = 0;
5323 return true;
5324 }
5325
5326 to_shinfo = skb_shinfo(to);
5327 from_shinfo = skb_shinfo(from);
5328 if (to_shinfo->frag_list || from_shinfo->frag_list)
5329 return false;
5330 if (skb_zcopy(to) || skb_zcopy(from))
5331 return false;
5332
5333 if (skb_headlen(from) != 0) {
5334 struct page *page;
5335 unsigned int offset;
5336
5337 if (to_shinfo->nr_frags +
5338 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5339 return false;
5340
5341 if (skb_head_is_locked(from))
5342 return false;
5343
5344 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5345
5346 page = virt_to_head_page(from->head);
5347 offset = from->data - (unsigned char *)page_address(page);
5348
5349 skb_fill_page_desc(to, to_shinfo->nr_frags,
5350 page, offset, skb_headlen(from));
5351 *fragstolen = true;
5352 } else {
5353 if (to_shinfo->nr_frags +
5354 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5355 return false;
5356
5357 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5358 }
5359
5360 WARN_ON_ONCE(delta < len);
5361
5362 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5363 from_shinfo->frags,
5364 from_shinfo->nr_frags * sizeof(skb_frag_t));
5365 to_shinfo->nr_frags += from_shinfo->nr_frags;
5366
5367 if (!skb_cloned(from))
5368 from_shinfo->nr_frags = 0;
5369
5370 /* if the skb is not cloned this does nothing
5371 * since we set nr_frags to 0.
5372 */
5373 for (i = 0; i < from_shinfo->nr_frags; i++)
5374 __skb_frag_ref(&from_shinfo->frags[i]);
5375
5376 to->truesize += delta;
5377 to->len += len;
5378 to->data_len += len;
5379
5380 *delta_truesize = delta;
5381 return true;
5382}
5383EXPORT_SYMBOL(skb_try_coalesce);
5384
5385/**
5386 * skb_scrub_packet - scrub an skb
5387 *
5388 * @skb: buffer to clean
5389 * @xnet: packet is crossing netns
5390 *
5391 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5392 * into/from a tunnel. Some information have to be cleared during these
5393 * operations.
5394 * skb_scrub_packet can also be used to clean a skb before injecting it in
5395 * another namespace (@xnet == true). We have to clear all information in the
5396 * skb that could impact namespace isolation.
5397 */
5398void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5399{
5400 skb->pkt_type = PACKET_HOST;
5401 skb->skb_iif = 0;
5402 skb->ignore_df = 0;
5403 skb_dst_drop(skb);
5404 skb_ext_reset(skb);
5405 nf_reset_ct(skb);
5406 nf_reset_trace(skb);
5407
5408#ifdef CONFIG_NET_SWITCHDEV
5409 skb->offload_fwd_mark = 0;
5410 skb->offload_l3_fwd_mark = 0;
5411#endif
5412
5413 if (!xnet)
5414 return;
5415
5416 ipvs_reset(skb);
5417 skb->mark = 0;
5418 skb_clear_tstamp(skb);
5419}
5420EXPORT_SYMBOL_GPL(skb_scrub_packet);
5421
5422/**
5423 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5424 *
5425 * @skb: GSO skb
5426 *
5427 * skb_gso_transport_seglen is used to determine the real size of the
5428 * individual segments, including Layer4 headers (TCP/UDP).
5429 *
5430 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5431 */
5432static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5433{
5434 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5435 unsigned int thlen = 0;
5436
5437 if (skb->encapsulation) {
5438 thlen = skb_inner_transport_header(skb) -
5439 skb_transport_header(skb);
5440
5441 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5442 thlen += inner_tcp_hdrlen(skb);
5443 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5444 thlen = tcp_hdrlen(skb);
5445 } else if (unlikely(skb_is_gso_sctp(skb))) {
5446 thlen = sizeof(struct sctphdr);
5447 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5448 thlen = sizeof(struct udphdr);
5449 }
5450 /* UFO sets gso_size to the size of the fragmentation
5451 * payload, i.e. the size of the L4 (UDP) header is already
5452 * accounted for.
5453 */
5454 return thlen + shinfo->gso_size;
5455}
5456
5457/**
5458 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5459 *
5460 * @skb: GSO skb
5461 *
5462 * skb_gso_network_seglen is used to determine the real size of the
5463 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5464 *
5465 * The MAC/L2 header is not accounted for.
5466 */
5467static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5468{
5469 unsigned int hdr_len = skb_transport_header(skb) -
5470 skb_network_header(skb);
5471
5472 return hdr_len + skb_gso_transport_seglen(skb);
5473}
5474
5475/**
5476 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5477 *
5478 * @skb: GSO skb
5479 *
5480 * skb_gso_mac_seglen is used to determine the real size of the
5481 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5482 * headers (TCP/UDP).
5483 */
5484static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5485{
5486 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5487
5488 return hdr_len + skb_gso_transport_seglen(skb);
5489}
5490
5491/**
5492 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5493 *
5494 * There are a couple of instances where we have a GSO skb, and we
5495 * want to determine what size it would be after it is segmented.
5496 *
5497 * We might want to check:
5498 * - L3+L4+payload size (e.g. IP forwarding)
5499 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5500 *
5501 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5502 *
5503 * @skb: GSO skb
5504 *
5505 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5506 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5507 *
5508 * @max_len: The maximum permissible length.
5509 *
5510 * Returns true if the segmented length <= max length.
5511 */
5512static inline bool skb_gso_size_check(const struct sk_buff *skb,
5513 unsigned int seg_len,
5514 unsigned int max_len) {
5515 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5516 const struct sk_buff *iter;
5517
5518 if (shinfo->gso_size != GSO_BY_FRAGS)
5519 return seg_len <= max_len;
5520
5521 /* Undo this so we can re-use header sizes */
5522 seg_len -= GSO_BY_FRAGS;
5523
5524 skb_walk_frags(skb, iter) {
5525 if (seg_len + skb_headlen(iter) > max_len)
5526 return false;
5527 }
5528
5529 return true;
5530}
5531
5532/**
5533 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5534 *
5535 * @skb: GSO skb
5536 * @mtu: MTU to validate against
5537 *
5538 * skb_gso_validate_network_len validates if a given skb will fit a
5539 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5540 * payload.
5541 */
5542bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5543{
5544 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5545}
5546EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5547
5548/**
5549 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5550 *
5551 * @skb: GSO skb
5552 * @len: length to validate against
5553 *
5554 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5555 * length once split, including L2, L3 and L4 headers and the payload.
5556 */
5557bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5558{
5559 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5560}
5561EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5562
5563static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5564{
5565 int mac_len, meta_len;
5566 void *meta;
5567
5568 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5569 kfree_skb(skb);
5570 return NULL;
5571 }
5572
5573 mac_len = skb->data - skb_mac_header(skb);
5574 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5575 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5576 mac_len - VLAN_HLEN - ETH_TLEN);
5577 }
5578
5579 meta_len = skb_metadata_len(skb);
5580 if (meta_len) {
5581 meta = skb_metadata_end(skb) - meta_len;
5582 memmove(meta + VLAN_HLEN, meta, meta_len);
5583 }
5584
5585 skb->mac_header += VLAN_HLEN;
5586 return skb;
5587}
5588
5589struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5590{
5591 struct vlan_hdr *vhdr;
5592 u16 vlan_tci;
5593
5594 if (unlikely(skb_vlan_tag_present(skb))) {
5595 /* vlan_tci is already set-up so leave this for another time */
5596 return skb;
5597 }
5598
5599 skb = skb_share_check(skb, GFP_ATOMIC);
5600 if (unlikely(!skb))
5601 goto err_free;
5602 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5603 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5604 goto err_free;
5605
5606 vhdr = (struct vlan_hdr *)skb->data;
5607 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5608 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5609
5610 skb_pull_rcsum(skb, VLAN_HLEN);
5611 vlan_set_encap_proto(skb, vhdr);
5612
5613 skb = skb_reorder_vlan_header(skb);
5614 if (unlikely(!skb))
5615 goto err_free;
5616
5617 skb_reset_network_header(skb);
5618 if (!skb_transport_header_was_set(skb))
5619 skb_reset_transport_header(skb);
5620 skb_reset_mac_len(skb);
5621
5622 return skb;
5623
5624err_free:
5625 kfree_skb(skb);
5626 return NULL;
5627}
5628EXPORT_SYMBOL(skb_vlan_untag);
5629
5630int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5631{
5632 if (!pskb_may_pull(skb, write_len))
5633 return -ENOMEM;
5634
5635 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5636 return 0;
5637
5638 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5639}
5640EXPORT_SYMBOL(skb_ensure_writable);
5641
5642/* remove VLAN header from packet and update csum accordingly.
5643 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5644 */
5645int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5646{
5647 struct vlan_hdr *vhdr;
5648 int offset = skb->data - skb_mac_header(skb);
5649 int err;
5650
5651 if (WARN_ONCE(offset,
5652 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5653 offset)) {
5654 return -EINVAL;
5655 }
5656
5657 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5658 if (unlikely(err))
5659 return err;
5660
5661 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5662
5663 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5664 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5665
5666 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5667 __skb_pull(skb, VLAN_HLEN);
5668
5669 vlan_set_encap_proto(skb, vhdr);
5670 skb->mac_header += VLAN_HLEN;
5671
5672 if (skb_network_offset(skb) < ETH_HLEN)
5673 skb_set_network_header(skb, ETH_HLEN);
5674
5675 skb_reset_mac_len(skb);
5676
5677 return err;
5678}
5679EXPORT_SYMBOL(__skb_vlan_pop);
5680
5681/* Pop a vlan tag either from hwaccel or from payload.
5682 * Expects skb->data at mac header.
5683 */
5684int skb_vlan_pop(struct sk_buff *skb)
5685{
5686 u16 vlan_tci;
5687 __be16 vlan_proto;
5688 int err;
5689
5690 if (likely(skb_vlan_tag_present(skb))) {
5691 __vlan_hwaccel_clear_tag(skb);
5692 } else {
5693 if (unlikely(!eth_type_vlan(skb->protocol)))
5694 return 0;
5695
5696 err = __skb_vlan_pop(skb, &vlan_tci);
5697 if (err)
5698 return err;
5699 }
5700 /* move next vlan tag to hw accel tag */
5701 if (likely(!eth_type_vlan(skb->protocol)))
5702 return 0;
5703
5704 vlan_proto = skb->protocol;
5705 err = __skb_vlan_pop(skb, &vlan_tci);
5706 if (unlikely(err))
5707 return err;
5708
5709 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5710 return 0;
5711}
5712EXPORT_SYMBOL(skb_vlan_pop);
5713
5714/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5715 * Expects skb->data at mac header.
5716 */
5717int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5718{
5719 if (skb_vlan_tag_present(skb)) {
5720 int offset = skb->data - skb_mac_header(skb);
5721 int err;
5722
5723 if (WARN_ONCE(offset,
5724 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5725 offset)) {
5726 return -EINVAL;
5727 }
5728
5729 err = __vlan_insert_tag(skb, skb->vlan_proto,
5730 skb_vlan_tag_get(skb));
5731 if (err)
5732 return err;
5733
5734 skb->protocol = skb->vlan_proto;
5735 skb->mac_len += VLAN_HLEN;
5736
5737 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5738 }
5739 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5740 return 0;
5741}
5742EXPORT_SYMBOL(skb_vlan_push);
5743
5744/**
5745 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5746 *
5747 * @skb: Socket buffer to modify
5748 *
5749 * Drop the Ethernet header of @skb.
5750 *
5751 * Expects that skb->data points to the mac header and that no VLAN tags are
5752 * present.
5753 *
5754 * Returns 0 on success, -errno otherwise.
5755 */
5756int skb_eth_pop(struct sk_buff *skb)
5757{
5758 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5759 skb_network_offset(skb) < ETH_HLEN)
5760 return -EPROTO;
5761
5762 skb_pull_rcsum(skb, ETH_HLEN);
5763 skb_reset_mac_header(skb);
5764 skb_reset_mac_len(skb);
5765
5766 return 0;
5767}
5768EXPORT_SYMBOL(skb_eth_pop);
5769
5770/**
5771 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5772 *
5773 * @skb: Socket buffer to modify
5774 * @dst: Destination MAC address of the new header
5775 * @src: Source MAC address of the new header
5776 *
5777 * Prepend @skb with a new Ethernet header.
5778 *
5779 * Expects that skb->data points to the mac header, which must be empty.
5780 *
5781 * Returns 0 on success, -errno otherwise.
5782 */
5783int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5784 const unsigned char *src)
5785{
5786 struct ethhdr *eth;
5787 int err;
5788
5789 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5790 return -EPROTO;
5791
5792 err = skb_cow_head(skb, sizeof(*eth));
5793 if (err < 0)
5794 return err;
5795
5796 skb_push(skb, sizeof(*eth));
5797 skb_reset_mac_header(skb);
5798 skb_reset_mac_len(skb);
5799
5800 eth = eth_hdr(skb);
5801 ether_addr_copy(eth->h_dest, dst);
5802 ether_addr_copy(eth->h_source, src);
5803 eth->h_proto = skb->protocol;
5804
5805 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5806
5807 return 0;
5808}
5809EXPORT_SYMBOL(skb_eth_push);
5810
5811/* Update the ethertype of hdr and the skb csum value if required. */
5812static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5813 __be16 ethertype)
5814{
5815 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5816 __be16 diff[] = { ~hdr->h_proto, ethertype };
5817
5818 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5819 }
5820
5821 hdr->h_proto = ethertype;
5822}
5823
5824/**
5825 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5826 * the packet
5827 *
5828 * @skb: buffer
5829 * @mpls_lse: MPLS label stack entry to push
5830 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5831 * @mac_len: length of the MAC header
5832 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5833 * ethernet
5834 *
5835 * Expects skb->data at mac header.
5836 *
5837 * Returns 0 on success, -errno otherwise.
5838 */
5839int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5840 int mac_len, bool ethernet)
5841{
5842 struct mpls_shim_hdr *lse;
5843 int err;
5844
5845 if (unlikely(!eth_p_mpls(mpls_proto)))
5846 return -EINVAL;
5847
5848 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5849 if (skb->encapsulation)
5850 return -EINVAL;
5851
5852 err = skb_cow_head(skb, MPLS_HLEN);
5853 if (unlikely(err))
5854 return err;
5855
5856 if (!skb->inner_protocol) {
5857 skb_set_inner_network_header(skb, skb_network_offset(skb));
5858 skb_set_inner_protocol(skb, skb->protocol);
5859 }
5860
5861 skb_push(skb, MPLS_HLEN);
5862 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5863 mac_len);
5864 skb_reset_mac_header(skb);
5865 skb_set_network_header(skb, mac_len);
5866 skb_reset_mac_len(skb);
5867
5868 lse = mpls_hdr(skb);
5869 lse->label_stack_entry = mpls_lse;
5870 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5871
5872 if (ethernet && mac_len >= ETH_HLEN)
5873 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5874 skb->protocol = mpls_proto;
5875
5876 return 0;
5877}
5878EXPORT_SYMBOL_GPL(skb_mpls_push);
5879
5880/**
5881 * skb_mpls_pop() - pop the outermost MPLS header
5882 *
5883 * @skb: buffer
5884 * @next_proto: ethertype of header after popped MPLS header
5885 * @mac_len: length of the MAC header
5886 * @ethernet: flag to indicate if the packet is ethernet
5887 *
5888 * Expects skb->data at mac header.
5889 *
5890 * Returns 0 on success, -errno otherwise.
5891 */
5892int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5893 bool ethernet)
5894{
5895 int err;
5896
5897 if (unlikely(!eth_p_mpls(skb->protocol)))
5898 return 0;
5899
5900 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5901 if (unlikely(err))
5902 return err;
5903
5904 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5905 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5906 mac_len);
5907
5908 __skb_pull(skb, MPLS_HLEN);
5909 skb_reset_mac_header(skb);
5910 skb_set_network_header(skb, mac_len);
5911
5912 if (ethernet && mac_len >= ETH_HLEN) {
5913 struct ethhdr *hdr;
5914
5915 /* use mpls_hdr() to get ethertype to account for VLANs. */
5916 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5917 skb_mod_eth_type(skb, hdr, next_proto);
5918 }
5919 skb->protocol = next_proto;
5920
5921 return 0;
5922}
5923EXPORT_SYMBOL_GPL(skb_mpls_pop);
5924
5925/**
5926 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5927 *
5928 * @skb: buffer
5929 * @mpls_lse: new MPLS label stack entry to update to
5930 *
5931 * Expects skb->data at mac header.
5932 *
5933 * Returns 0 on success, -errno otherwise.
5934 */
5935int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5936{
5937 int err;
5938
5939 if (unlikely(!eth_p_mpls(skb->protocol)))
5940 return -EINVAL;
5941
5942 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5943 if (unlikely(err))
5944 return err;
5945
5946 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5947 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5948
5949 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5950 }
5951
5952 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5953
5954 return 0;
5955}
5956EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5957
5958/**
5959 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5960 *
5961 * @skb: buffer
5962 *
5963 * Expects skb->data at mac header.
5964 *
5965 * Returns 0 on success, -errno otherwise.
5966 */
5967int skb_mpls_dec_ttl(struct sk_buff *skb)
5968{
5969 u32 lse;
5970 u8 ttl;
5971
5972 if (unlikely(!eth_p_mpls(skb->protocol)))
5973 return -EINVAL;
5974
5975 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5976 return -ENOMEM;
5977
5978 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5979 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5980 if (!--ttl)
5981 return -EINVAL;
5982
5983 lse &= ~MPLS_LS_TTL_MASK;
5984 lse |= ttl << MPLS_LS_TTL_SHIFT;
5985
5986 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5987}
5988EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5989
5990/**
5991 * alloc_skb_with_frags - allocate skb with page frags
5992 *
5993 * @header_len: size of linear part
5994 * @data_len: needed length in frags
5995 * @max_page_order: max page order desired.
5996 * @errcode: pointer to error code if any
5997 * @gfp_mask: allocation mask
5998 *
5999 * This can be used to allocate a paged skb, given a maximal order for frags.
6000 */
6001struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6002 unsigned long data_len,
6003 int max_page_order,
6004 int *errcode,
6005 gfp_t gfp_mask)
6006{
6007 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6008 unsigned long chunk;
6009 struct sk_buff *skb;
6010 struct page *page;
6011 int i;
6012
6013 *errcode = -EMSGSIZE;
6014 /* Note this test could be relaxed, if we succeed to allocate
6015 * high order pages...
6016 */
6017 if (npages > MAX_SKB_FRAGS)
6018 return NULL;
6019
6020 *errcode = -ENOBUFS;
6021 skb = alloc_skb(header_len, gfp_mask);
6022 if (!skb)
6023 return NULL;
6024
6025 skb->truesize += npages << PAGE_SHIFT;
6026
6027 for (i = 0; npages > 0; i++) {
6028 int order = max_page_order;
6029
6030 while (order) {
6031 if (npages >= 1 << order) {
6032 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6033 __GFP_COMP |
6034 __GFP_NOWARN,
6035 order);
6036 if (page)
6037 goto fill_page;
6038 /* Do not retry other high order allocations */
6039 order = 1;
6040 max_page_order = 0;
6041 }
6042 order--;
6043 }
6044 page = alloc_page(gfp_mask);
6045 if (!page)
6046 goto failure;
6047fill_page:
6048 chunk = min_t(unsigned long, data_len,
6049 PAGE_SIZE << order);
6050 skb_fill_page_desc(skb, i, page, 0, chunk);
6051 data_len -= chunk;
6052 npages -= 1 << order;
6053 }
6054 return skb;
6055
6056failure:
6057 kfree_skb(skb);
6058 return NULL;
6059}
6060EXPORT_SYMBOL(alloc_skb_with_frags);
6061
6062/* carve out the first off bytes from skb when off < headlen */
6063static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6064 const int headlen, gfp_t gfp_mask)
6065{
6066 int i;
6067 int size = skb_end_offset(skb);
6068 int new_hlen = headlen - off;
6069 u8 *data;
6070
6071 size = SKB_DATA_ALIGN(size);
6072
6073 if (skb_pfmemalloc(skb))
6074 gfp_mask |= __GFP_MEMALLOC;
6075 data = kmalloc_reserve(size +
6076 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6077 gfp_mask, NUMA_NO_NODE, NULL);
6078 if (!data)
6079 return -ENOMEM;
6080
6081 size = SKB_WITH_OVERHEAD(ksize(data));
6082
6083 /* Copy real data, and all frags */
6084 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6085 skb->len -= off;
6086
6087 memcpy((struct skb_shared_info *)(data + size),
6088 skb_shinfo(skb),
6089 offsetof(struct skb_shared_info,
6090 frags[skb_shinfo(skb)->nr_frags]));
6091 if (skb_cloned(skb)) {
6092 /* drop the old head gracefully */
6093 if (skb_orphan_frags(skb, gfp_mask)) {
6094 kfree(data);
6095 return -ENOMEM;
6096 }
6097 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6098 skb_frag_ref(skb, i);
6099 if (skb_has_frag_list(skb))
6100 skb_clone_fraglist(skb);
6101 skb_release_data(skb);
6102 } else {
6103 /* we can reuse existing recount- all we did was
6104 * relocate values
6105 */
6106 skb_free_head(skb);
6107 }
6108
6109 skb->head = data;
6110 skb->data = data;
6111 skb->head_frag = 0;
6112 skb_set_end_offset(skb, size);
6113 skb_set_tail_pointer(skb, skb_headlen(skb));
6114 skb_headers_offset_update(skb, 0);
6115 skb->cloned = 0;
6116 skb->hdr_len = 0;
6117 skb->nohdr = 0;
6118 atomic_set(&skb_shinfo(skb)->dataref, 1);
6119
6120 return 0;
6121}
6122
6123static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6124
6125/* carve out the first eat bytes from skb's frag_list. May recurse into
6126 * pskb_carve()
6127 */
6128static int pskb_carve_frag_list(struct sk_buff *skb,
6129 struct skb_shared_info *shinfo, int eat,
6130 gfp_t gfp_mask)
6131{
6132 struct sk_buff *list = shinfo->frag_list;
6133 struct sk_buff *clone = NULL;
6134 struct sk_buff *insp = NULL;
6135
6136 do {
6137 if (!list) {
6138 pr_err("Not enough bytes to eat. Want %d\n", eat);
6139 return -EFAULT;
6140 }
6141 if (list->len <= eat) {
6142 /* Eaten as whole. */
6143 eat -= list->len;
6144 list = list->next;
6145 insp = list;
6146 } else {
6147 /* Eaten partially. */
6148 if (skb_shared(list)) {
6149 clone = skb_clone(list, gfp_mask);
6150 if (!clone)
6151 return -ENOMEM;
6152 insp = list->next;
6153 list = clone;
6154 } else {
6155 /* This may be pulled without problems. */
6156 insp = list;
6157 }
6158 if (pskb_carve(list, eat, gfp_mask) < 0) {
6159 kfree_skb(clone);
6160 return -ENOMEM;
6161 }
6162 break;
6163 }
6164 } while (eat);
6165
6166 /* Free pulled out fragments. */
6167 while ((list = shinfo->frag_list) != insp) {
6168 shinfo->frag_list = list->next;
6169 consume_skb(list);
6170 }
6171 /* And insert new clone at head. */
6172 if (clone) {
6173 clone->next = list;
6174 shinfo->frag_list = clone;
6175 }
6176 return 0;
6177}
6178
6179/* carve off first len bytes from skb. Split line (off) is in the
6180 * non-linear part of skb
6181 */
6182static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6183 int pos, gfp_t gfp_mask)
6184{
6185 int i, k = 0;
6186 int size = skb_end_offset(skb);
6187 u8 *data;
6188 const int nfrags = skb_shinfo(skb)->nr_frags;
6189 struct skb_shared_info *shinfo;
6190
6191 size = SKB_DATA_ALIGN(size);
6192
6193 if (skb_pfmemalloc(skb))
6194 gfp_mask |= __GFP_MEMALLOC;
6195 data = kmalloc_reserve(size +
6196 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6197 gfp_mask, NUMA_NO_NODE, NULL);
6198 if (!data)
6199 return -ENOMEM;
6200
6201 size = SKB_WITH_OVERHEAD(ksize(data));
6202
6203 memcpy((struct skb_shared_info *)(data + size),
6204 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6205 if (skb_orphan_frags(skb, gfp_mask)) {
6206 kfree(data);
6207 return -ENOMEM;
6208 }
6209 shinfo = (struct skb_shared_info *)(data + size);
6210 for (i = 0; i < nfrags; i++) {
6211 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6212
6213 if (pos + fsize > off) {
6214 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6215
6216 if (pos < off) {
6217 /* Split frag.
6218 * We have two variants in this case:
6219 * 1. Move all the frag to the second
6220 * part, if it is possible. F.e.
6221 * this approach is mandatory for TUX,
6222 * where splitting is expensive.
6223 * 2. Split is accurately. We make this.
6224 */
6225 skb_frag_off_add(&shinfo->frags[0], off - pos);
6226 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6227 }
6228 skb_frag_ref(skb, i);
6229 k++;
6230 }
6231 pos += fsize;
6232 }
6233 shinfo->nr_frags = k;
6234 if (skb_has_frag_list(skb))
6235 skb_clone_fraglist(skb);
6236
6237 /* split line is in frag list */
6238 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6239 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6240 if (skb_has_frag_list(skb))
6241 kfree_skb_list(skb_shinfo(skb)->frag_list);
6242 kfree(data);
6243 return -ENOMEM;
6244 }
6245 skb_release_data(skb);
6246
6247 skb->head = data;
6248 skb->head_frag = 0;
6249 skb->data = data;
6250 skb_set_end_offset(skb, size);
6251 skb_reset_tail_pointer(skb);
6252 skb_headers_offset_update(skb, 0);
6253 skb->cloned = 0;
6254 skb->hdr_len = 0;
6255 skb->nohdr = 0;
6256 skb->len -= off;
6257 skb->data_len = skb->len;
6258 atomic_set(&skb_shinfo(skb)->dataref, 1);
6259 return 0;
6260}
6261
6262/* remove len bytes from the beginning of the skb */
6263static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6264{
6265 int headlen = skb_headlen(skb);
6266
6267 if (len < headlen)
6268 return pskb_carve_inside_header(skb, len, headlen, gfp);
6269 else
6270 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6271}
6272
6273/* Extract to_copy bytes starting at off from skb, and return this in
6274 * a new skb
6275 */
6276struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6277 int to_copy, gfp_t gfp)
6278{
6279 struct sk_buff *clone = skb_clone(skb, gfp);
6280
6281 if (!clone)
6282 return NULL;
6283
6284 if (pskb_carve(clone, off, gfp) < 0 ||
6285 pskb_trim(clone, to_copy)) {
6286 kfree_skb(clone);
6287 return NULL;
6288 }
6289 return clone;
6290}
6291EXPORT_SYMBOL(pskb_extract);
6292
6293/**
6294 * skb_condense - try to get rid of fragments/frag_list if possible
6295 * @skb: buffer
6296 *
6297 * Can be used to save memory before skb is added to a busy queue.
6298 * If packet has bytes in frags and enough tail room in skb->head,
6299 * pull all of them, so that we can free the frags right now and adjust
6300 * truesize.
6301 * Notes:
6302 * We do not reallocate skb->head thus can not fail.
6303 * Caller must re-evaluate skb->truesize if needed.
6304 */
6305void skb_condense(struct sk_buff *skb)
6306{
6307 if (skb->data_len) {
6308 if (skb->data_len > skb->end - skb->tail ||
6309 skb_cloned(skb))
6310 return;
6311
6312 /* Nice, we can free page frag(s) right now */
6313 __pskb_pull_tail(skb, skb->data_len);
6314 }
6315 /* At this point, skb->truesize might be over estimated,
6316 * because skb had a fragment, and fragments do not tell
6317 * their truesize.
6318 * When we pulled its content into skb->head, fragment
6319 * was freed, but __pskb_pull_tail() could not possibly
6320 * adjust skb->truesize, not knowing the frag truesize.
6321 */
6322 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6323}
6324
6325#ifdef CONFIG_SKB_EXTENSIONS
6326static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6327{
6328 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6329}
6330
6331/**
6332 * __skb_ext_alloc - allocate a new skb extensions storage
6333 *
6334 * @flags: See kmalloc().
6335 *
6336 * Returns the newly allocated pointer. The pointer can later attached to a
6337 * skb via __skb_ext_set().
6338 * Note: caller must handle the skb_ext as an opaque data.
6339 */
6340struct skb_ext *__skb_ext_alloc(gfp_t flags)
6341{
6342 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6343
6344 if (new) {
6345 memset(new->offset, 0, sizeof(new->offset));
6346 refcount_set(&new->refcnt, 1);
6347 }
6348
6349 return new;
6350}
6351
6352static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6353 unsigned int old_active)
6354{
6355 struct skb_ext *new;
6356
6357 if (refcount_read(&old->refcnt) == 1)
6358 return old;
6359
6360 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6361 if (!new)
6362 return NULL;
6363
6364 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6365 refcount_set(&new->refcnt, 1);
6366
6367#ifdef CONFIG_XFRM
6368 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6369 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6370 unsigned int i;
6371
6372 for (i = 0; i < sp->len; i++)
6373 xfrm_state_hold(sp->xvec[i]);
6374 }
6375#endif
6376 __skb_ext_put(old);
6377 return new;
6378}
6379
6380/**
6381 * __skb_ext_set - attach the specified extension storage to this skb
6382 * @skb: buffer
6383 * @id: extension id
6384 * @ext: extension storage previously allocated via __skb_ext_alloc()
6385 *
6386 * Existing extensions, if any, are cleared.
6387 *
6388 * Returns the pointer to the extension.
6389 */
6390void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6391 struct skb_ext *ext)
6392{
6393 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6394
6395 skb_ext_put(skb);
6396 newlen = newoff + skb_ext_type_len[id];
6397 ext->chunks = newlen;
6398 ext->offset[id] = newoff;
6399 skb->extensions = ext;
6400 skb->active_extensions = 1 << id;
6401 return skb_ext_get_ptr(ext, id);
6402}
6403
6404/**
6405 * skb_ext_add - allocate space for given extension, COW if needed
6406 * @skb: buffer
6407 * @id: extension to allocate space for
6408 *
6409 * Allocates enough space for the given extension.
6410 * If the extension is already present, a pointer to that extension
6411 * is returned.
6412 *
6413 * If the skb was cloned, COW applies and the returned memory can be
6414 * modified without changing the extension space of clones buffers.
6415 *
6416 * Returns pointer to the extension or NULL on allocation failure.
6417 */
6418void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6419{
6420 struct skb_ext *new, *old = NULL;
6421 unsigned int newlen, newoff;
6422
6423 if (skb->active_extensions) {
6424 old = skb->extensions;
6425
6426 new = skb_ext_maybe_cow(old, skb->active_extensions);
6427 if (!new)
6428 return NULL;
6429
6430 if (__skb_ext_exist(new, id))
6431 goto set_active;
6432
6433 newoff = new->chunks;
6434 } else {
6435 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6436
6437 new = __skb_ext_alloc(GFP_ATOMIC);
6438 if (!new)
6439 return NULL;
6440 }
6441
6442 newlen = newoff + skb_ext_type_len[id];
6443 new->chunks = newlen;
6444 new->offset[id] = newoff;
6445set_active:
6446 skb->slow_gro = 1;
6447 skb->extensions = new;
6448 skb->active_extensions |= 1 << id;
6449 return skb_ext_get_ptr(new, id);
6450}
6451EXPORT_SYMBOL(skb_ext_add);
6452
6453#ifdef CONFIG_XFRM
6454static void skb_ext_put_sp(struct sec_path *sp)
6455{
6456 unsigned int i;
6457
6458 for (i = 0; i < sp->len; i++)
6459 xfrm_state_put(sp->xvec[i]);
6460}
6461#endif
6462
6463#ifdef CONFIG_MCTP_FLOWS
6464static void skb_ext_put_mctp(struct mctp_flow *flow)
6465{
6466 if (flow->key)
6467 mctp_key_unref(flow->key);
6468}
6469#endif
6470
6471void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6472{
6473 struct skb_ext *ext = skb->extensions;
6474
6475 skb->active_extensions &= ~(1 << id);
6476 if (skb->active_extensions == 0) {
6477 skb->extensions = NULL;
6478 __skb_ext_put(ext);
6479#ifdef CONFIG_XFRM
6480 } else if (id == SKB_EXT_SEC_PATH &&
6481 refcount_read(&ext->refcnt) == 1) {
6482 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6483
6484 skb_ext_put_sp(sp);
6485 sp->len = 0;
6486#endif
6487 }
6488}
6489EXPORT_SYMBOL(__skb_ext_del);
6490
6491void __skb_ext_put(struct skb_ext *ext)
6492{
6493 /* If this is last clone, nothing can increment
6494 * it after check passes. Avoids one atomic op.
6495 */
6496 if (refcount_read(&ext->refcnt) == 1)
6497 goto free_now;
6498
6499 if (!refcount_dec_and_test(&ext->refcnt))
6500 return;
6501free_now:
6502#ifdef CONFIG_XFRM
6503 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6504 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6505#endif
6506#ifdef CONFIG_MCTP_FLOWS
6507 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6508 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6509#endif
6510
6511 kmem_cache_free(skbuff_ext_cache, ext);
6512}
6513EXPORT_SYMBOL(__skb_ext_put);
6514#endif /* CONFIG_SKB_EXTENSIONS */
6515
6516/**
6517 * skb_attempt_defer_free - queue skb for remote freeing
6518 * @skb: buffer
6519 *
6520 * Put @skb in a per-cpu list, using the cpu which
6521 * allocated the skb/pages to reduce false sharing
6522 * and memory zone spinlock contention.
6523 */
6524void skb_attempt_defer_free(struct sk_buff *skb)
6525{
6526 int cpu = skb->alloc_cpu;
6527 struct softnet_data *sd;
6528 unsigned long flags;
6529 unsigned int defer_max;
6530 bool kick;
6531
6532 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6533 !cpu_online(cpu) ||
6534 cpu == raw_smp_processor_id()) {
6535nodefer: __kfree_skb(skb);
6536 return;
6537 }
6538
6539 sd = &per_cpu(softnet_data, cpu);
6540 defer_max = READ_ONCE(sysctl_skb_defer_max);
6541 if (READ_ONCE(sd->defer_count) >= defer_max)
6542 goto nodefer;
6543
6544 spin_lock_irqsave(&sd->defer_lock, flags);
6545 /* Send an IPI every time queue reaches half capacity. */
6546 kick = sd->defer_count == (defer_max >> 1);
6547 /* Paired with the READ_ONCE() few lines above */
6548 WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6549
6550 skb->next = sd->defer_list;
6551 /* Paired with READ_ONCE() in skb_defer_free_flush() */
6552 WRITE_ONCE(sd->defer_list, skb);
6553 spin_unlock_irqrestore(&sd->defer_lock, flags);
6554
6555 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6556 * if we are unlucky enough (this seems very unlikely).
6557 */
6558 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6559 smp_call_function_single_async(cpu, &sd->defer_csd);
6560}