Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/pagewalk.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/vm_event_item.h>
37#include <linux/smp.h>
38#include <linux/page-flags.h>
39#include <linux/backing-dev.h>
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
42#include <linux/limits.h>
43#include <linux/export.h>
44#include <linux/mutex.h>
45#include <linux/rbtree.h>
46#include <linux/slab.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/spinlock.h>
50#include <linux/eventfd.h>
51#include <linux/poll.h>
52#include <linux/sort.h>
53#include <linux/fs.h>
54#include <linux/seq_file.h>
55#include <linux/vmpressure.h>
56#include <linux/memremap.h>
57#include <linux/mm_inline.h>
58#include <linux/swap_cgroup.h>
59#include <linux/cpu.h>
60#include <linux/oom.h>
61#include <linux/lockdep.h>
62#include <linux/file.h>
63#include <linux/resume_user_mode.h>
64#include <linux/psi.h>
65#include <linux/seq_buf.h>
66#include "internal.h"
67#include <net/sock.h>
68#include <net/ip.h>
69#include "slab.h"
70#include "swap.h"
71
72#include <linux/uaccess.h>
73
74#include <trace/events/vmscan.h>
75
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
78
79struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81/* Active memory cgroup to use from an interrupt context */
82DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
83EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
84
85/* Socket memory accounting disabled? */
86static bool cgroup_memory_nosocket __ro_after_init;
87
88/* Kernel memory accounting disabled? */
89static bool cgroup_memory_nokmem __ro_after_init;
90
91/* Whether the swap controller is active */
92#ifdef CONFIG_MEMCG_SWAP
93static bool cgroup_memory_noswap __ro_after_init;
94#else
95#define cgroup_memory_noswap 1
96#endif
97
98#ifdef CONFIG_CGROUP_WRITEBACK
99static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
100#endif
101
102/* Whether legacy memory+swap accounting is active */
103static bool do_memsw_account(void)
104{
105 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
106}
107
108#define THRESHOLDS_EVENTS_TARGET 128
109#define SOFTLIMIT_EVENTS_TARGET 1024
110
111/*
112 * Cgroups above their limits are maintained in a RB-Tree, independent of
113 * their hierarchy representation
114 */
115
116struct mem_cgroup_tree_per_node {
117 struct rb_root rb_root;
118 struct rb_node *rb_rightmost;
119 spinlock_t lock;
120};
121
122struct mem_cgroup_tree {
123 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
124};
125
126static struct mem_cgroup_tree soft_limit_tree __read_mostly;
127
128/* for OOM */
129struct mem_cgroup_eventfd_list {
130 struct list_head list;
131 struct eventfd_ctx *eventfd;
132};
133
134/*
135 * cgroup_event represents events which userspace want to receive.
136 */
137struct mem_cgroup_event {
138 /*
139 * memcg which the event belongs to.
140 */
141 struct mem_cgroup *memcg;
142 /*
143 * eventfd to signal userspace about the event.
144 */
145 struct eventfd_ctx *eventfd;
146 /*
147 * Each of these stored in a list by the cgroup.
148 */
149 struct list_head list;
150 /*
151 * register_event() callback will be used to add new userspace
152 * waiter for changes related to this event. Use eventfd_signal()
153 * on eventfd to send notification to userspace.
154 */
155 int (*register_event)(struct mem_cgroup *memcg,
156 struct eventfd_ctx *eventfd, const char *args);
157 /*
158 * unregister_event() callback will be called when userspace closes
159 * the eventfd or on cgroup removing. This callback must be set,
160 * if you want provide notification functionality.
161 */
162 void (*unregister_event)(struct mem_cgroup *memcg,
163 struct eventfd_ctx *eventfd);
164 /*
165 * All fields below needed to unregister event when
166 * userspace closes eventfd.
167 */
168 poll_table pt;
169 wait_queue_head_t *wqh;
170 wait_queue_entry_t wait;
171 struct work_struct remove;
172};
173
174static void mem_cgroup_threshold(struct mem_cgroup *memcg);
175static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
176
177/* Stuffs for move charges at task migration. */
178/*
179 * Types of charges to be moved.
180 */
181#define MOVE_ANON 0x1U
182#define MOVE_FILE 0x2U
183#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
184
185/* "mc" and its members are protected by cgroup_mutex */
186static struct move_charge_struct {
187 spinlock_t lock; /* for from, to */
188 struct mm_struct *mm;
189 struct mem_cgroup *from;
190 struct mem_cgroup *to;
191 unsigned long flags;
192 unsigned long precharge;
193 unsigned long moved_charge;
194 unsigned long moved_swap;
195 struct task_struct *moving_task; /* a task moving charges */
196 wait_queue_head_t waitq; /* a waitq for other context */
197} mc = {
198 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
199 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
200};
201
202/*
203 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
204 * limit reclaim to prevent infinite loops, if they ever occur.
205 */
206#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
207#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
208
209/* for encoding cft->private value on file */
210enum res_type {
211 _MEM,
212 _MEMSWAP,
213 _KMEM,
214 _TCP,
215};
216
217#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
218#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
219#define MEMFILE_ATTR(val) ((val) & 0xffff)
220
221/*
222 * Iteration constructs for visiting all cgroups (under a tree). If
223 * loops are exited prematurely (break), mem_cgroup_iter_break() must
224 * be used for reference counting.
225 */
226#define for_each_mem_cgroup_tree(iter, root) \
227 for (iter = mem_cgroup_iter(root, NULL, NULL); \
228 iter != NULL; \
229 iter = mem_cgroup_iter(root, iter, NULL))
230
231#define for_each_mem_cgroup(iter) \
232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
233 iter != NULL; \
234 iter = mem_cgroup_iter(NULL, iter, NULL))
235
236static inline bool task_is_dying(void)
237{
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
240}
241
242/* Some nice accessors for the vmpressure. */
243struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244{
245 if (!memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
248}
249
250struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
251{
252 return container_of(vmpr, struct mem_cgroup, vmpressure);
253}
254
255#ifdef CONFIG_MEMCG_KMEM
256static DEFINE_SPINLOCK(objcg_lock);
257
258bool mem_cgroup_kmem_disabled(void)
259{
260 return cgroup_memory_nokmem;
261}
262
263static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
264 unsigned int nr_pages);
265
266static void obj_cgroup_release(struct percpu_ref *ref)
267{
268 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
269 unsigned int nr_bytes;
270 unsigned int nr_pages;
271 unsigned long flags;
272
273 /*
274 * At this point all allocated objects are freed, and
275 * objcg->nr_charged_bytes can't have an arbitrary byte value.
276 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
277 *
278 * The following sequence can lead to it:
279 * 1) CPU0: objcg == stock->cached_objcg
280 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
281 * PAGE_SIZE bytes are charged
282 * 3) CPU1: a process from another memcg is allocating something,
283 * the stock if flushed,
284 * objcg->nr_charged_bytes = PAGE_SIZE - 92
285 * 5) CPU0: we do release this object,
286 * 92 bytes are added to stock->nr_bytes
287 * 6) CPU0: stock is flushed,
288 * 92 bytes are added to objcg->nr_charged_bytes
289 *
290 * In the result, nr_charged_bytes == PAGE_SIZE.
291 * This page will be uncharged in obj_cgroup_release().
292 */
293 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
294 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
295 nr_pages = nr_bytes >> PAGE_SHIFT;
296
297 if (nr_pages)
298 obj_cgroup_uncharge_pages(objcg, nr_pages);
299
300 spin_lock_irqsave(&objcg_lock, flags);
301 list_del(&objcg->list);
302 spin_unlock_irqrestore(&objcg_lock, flags);
303
304 percpu_ref_exit(ref);
305 kfree_rcu(objcg, rcu);
306}
307
308static struct obj_cgroup *obj_cgroup_alloc(void)
309{
310 struct obj_cgroup *objcg;
311 int ret;
312
313 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
314 if (!objcg)
315 return NULL;
316
317 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
318 GFP_KERNEL);
319 if (ret) {
320 kfree(objcg);
321 return NULL;
322 }
323 INIT_LIST_HEAD(&objcg->list);
324 return objcg;
325}
326
327static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
328 struct mem_cgroup *parent)
329{
330 struct obj_cgroup *objcg, *iter;
331
332 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
333
334 spin_lock_irq(&objcg_lock);
335
336 /* 1) Ready to reparent active objcg. */
337 list_add(&objcg->list, &memcg->objcg_list);
338 /* 2) Reparent active objcg and already reparented objcgs to parent. */
339 list_for_each_entry(iter, &memcg->objcg_list, list)
340 WRITE_ONCE(iter->memcg, parent);
341 /* 3) Move already reparented objcgs to the parent's list */
342 list_splice(&memcg->objcg_list, &parent->objcg_list);
343
344 spin_unlock_irq(&objcg_lock);
345
346 percpu_ref_kill(&objcg->refcnt);
347}
348
349/*
350 * A lot of the calls to the cache allocation functions are expected to be
351 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
352 * conditional to this static branch, we'll have to allow modules that does
353 * kmem_cache_alloc and the such to see this symbol as well
354 */
355DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
356EXPORT_SYMBOL(memcg_kmem_enabled_key);
357#endif
358
359/**
360 * mem_cgroup_css_from_page - css of the memcg associated with a page
361 * @page: page of interest
362 *
363 * If memcg is bound to the default hierarchy, css of the memcg associated
364 * with @page is returned. The returned css remains associated with @page
365 * until it is released.
366 *
367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368 * is returned.
369 */
370struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
371{
372 struct mem_cgroup *memcg;
373
374 memcg = page_memcg(page);
375
376 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
377 memcg = root_mem_cgroup;
378
379 return &memcg->css;
380}
381
382/**
383 * page_cgroup_ino - return inode number of the memcg a page is charged to
384 * @page: the page
385 *
386 * Look up the closest online ancestor of the memory cgroup @page is charged to
387 * and return its inode number or 0 if @page is not charged to any cgroup. It
388 * is safe to call this function without holding a reference to @page.
389 *
390 * Note, this function is inherently racy, because there is nothing to prevent
391 * the cgroup inode from getting torn down and potentially reallocated a moment
392 * after page_cgroup_ino() returns, so it only should be used by callers that
393 * do not care (such as procfs interfaces).
394 */
395ino_t page_cgroup_ino(struct page *page)
396{
397 struct mem_cgroup *memcg;
398 unsigned long ino = 0;
399
400 rcu_read_lock();
401 memcg = page_memcg_check(page);
402
403 while (memcg && !(memcg->css.flags & CSS_ONLINE))
404 memcg = parent_mem_cgroup(memcg);
405 if (memcg)
406 ino = cgroup_ino(memcg->css.cgroup);
407 rcu_read_unlock();
408 return ino;
409}
410
411static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
412 struct mem_cgroup_tree_per_node *mctz,
413 unsigned long new_usage_in_excess)
414{
415 struct rb_node **p = &mctz->rb_root.rb_node;
416 struct rb_node *parent = NULL;
417 struct mem_cgroup_per_node *mz_node;
418 bool rightmost = true;
419
420 if (mz->on_tree)
421 return;
422
423 mz->usage_in_excess = new_usage_in_excess;
424 if (!mz->usage_in_excess)
425 return;
426 while (*p) {
427 parent = *p;
428 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
429 tree_node);
430 if (mz->usage_in_excess < mz_node->usage_in_excess) {
431 p = &(*p)->rb_left;
432 rightmost = false;
433 } else {
434 p = &(*p)->rb_right;
435 }
436 }
437
438 if (rightmost)
439 mctz->rb_rightmost = &mz->tree_node;
440
441 rb_link_node(&mz->tree_node, parent, p);
442 rb_insert_color(&mz->tree_node, &mctz->rb_root);
443 mz->on_tree = true;
444}
445
446static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
447 struct mem_cgroup_tree_per_node *mctz)
448{
449 if (!mz->on_tree)
450 return;
451
452 if (&mz->tree_node == mctz->rb_rightmost)
453 mctz->rb_rightmost = rb_prev(&mz->tree_node);
454
455 rb_erase(&mz->tree_node, &mctz->rb_root);
456 mz->on_tree = false;
457}
458
459static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
460 struct mem_cgroup_tree_per_node *mctz)
461{
462 unsigned long flags;
463
464 spin_lock_irqsave(&mctz->lock, flags);
465 __mem_cgroup_remove_exceeded(mz, mctz);
466 spin_unlock_irqrestore(&mctz->lock, flags);
467}
468
469static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
470{
471 unsigned long nr_pages = page_counter_read(&memcg->memory);
472 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
473 unsigned long excess = 0;
474
475 if (nr_pages > soft_limit)
476 excess = nr_pages - soft_limit;
477
478 return excess;
479}
480
481static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
482{
483 unsigned long excess;
484 struct mem_cgroup_per_node *mz;
485 struct mem_cgroup_tree_per_node *mctz;
486
487 mctz = soft_limit_tree.rb_tree_per_node[nid];
488 if (!mctz)
489 return;
490 /*
491 * Necessary to update all ancestors when hierarchy is used.
492 * because their event counter is not touched.
493 */
494 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
495 mz = memcg->nodeinfo[nid];
496 excess = soft_limit_excess(memcg);
497 /*
498 * We have to update the tree if mz is on RB-tree or
499 * mem is over its softlimit.
500 */
501 if (excess || mz->on_tree) {
502 unsigned long flags;
503
504 spin_lock_irqsave(&mctz->lock, flags);
505 /* if on-tree, remove it */
506 if (mz->on_tree)
507 __mem_cgroup_remove_exceeded(mz, mctz);
508 /*
509 * Insert again. mz->usage_in_excess will be updated.
510 * If excess is 0, no tree ops.
511 */
512 __mem_cgroup_insert_exceeded(mz, mctz, excess);
513 spin_unlock_irqrestore(&mctz->lock, flags);
514 }
515 }
516}
517
518static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
519{
520 struct mem_cgroup_tree_per_node *mctz;
521 struct mem_cgroup_per_node *mz;
522 int nid;
523
524 for_each_node(nid) {
525 mz = memcg->nodeinfo[nid];
526 mctz = soft_limit_tree.rb_tree_per_node[nid];
527 if (mctz)
528 mem_cgroup_remove_exceeded(mz, mctz);
529 }
530}
531
532static struct mem_cgroup_per_node *
533__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534{
535 struct mem_cgroup_per_node *mz;
536
537retry:
538 mz = NULL;
539 if (!mctz->rb_rightmost)
540 goto done; /* Nothing to reclaim from */
541
542 mz = rb_entry(mctz->rb_rightmost,
543 struct mem_cgroup_per_node, tree_node);
544 /*
545 * Remove the node now but someone else can add it back,
546 * we will to add it back at the end of reclaim to its correct
547 * position in the tree.
548 */
549 __mem_cgroup_remove_exceeded(mz, mctz);
550 if (!soft_limit_excess(mz->memcg) ||
551 !css_tryget(&mz->memcg->css))
552 goto retry;
553done:
554 return mz;
555}
556
557static struct mem_cgroup_per_node *
558mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
559{
560 struct mem_cgroup_per_node *mz;
561
562 spin_lock_irq(&mctz->lock);
563 mz = __mem_cgroup_largest_soft_limit_node(mctz);
564 spin_unlock_irq(&mctz->lock);
565 return mz;
566}
567
568/*
569 * memcg and lruvec stats flushing
570 *
571 * Many codepaths leading to stats update or read are performance sensitive and
572 * adding stats flushing in such codepaths is not desirable. So, to optimize the
573 * flushing the kernel does:
574 *
575 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
576 * rstat update tree grow unbounded.
577 *
578 * 2) Flush the stats synchronously on reader side only when there are more than
579 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
580 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
581 * only for 2 seconds due to (1).
582 */
583static void flush_memcg_stats_dwork(struct work_struct *w);
584static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
585static DEFINE_SPINLOCK(stats_flush_lock);
586static DEFINE_PER_CPU(unsigned int, stats_updates);
587static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
588static u64 flush_next_time;
589
590#define FLUSH_TIME (2UL*HZ)
591
592/*
593 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
594 * not rely on this as part of an acquired spinlock_t lock. These functions are
595 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
596 * is sufficient.
597 */
598static void memcg_stats_lock(void)
599{
600#ifdef CONFIG_PREEMPT_RT
601 preempt_disable();
602#else
603 VM_BUG_ON(!irqs_disabled());
604#endif
605}
606
607static void __memcg_stats_lock(void)
608{
609#ifdef CONFIG_PREEMPT_RT
610 preempt_disable();
611#endif
612}
613
614static void memcg_stats_unlock(void)
615{
616#ifdef CONFIG_PREEMPT_RT
617 preempt_enable();
618#endif
619}
620
621static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
622{
623 unsigned int x;
624
625 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
626
627 x = __this_cpu_add_return(stats_updates, abs(val));
628 if (x > MEMCG_CHARGE_BATCH) {
629 /*
630 * If stats_flush_threshold exceeds the threshold
631 * (>num_online_cpus()), cgroup stats update will be triggered
632 * in __mem_cgroup_flush_stats(). Increasing this var further
633 * is redundant and simply adds overhead in atomic update.
634 */
635 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
636 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
637 __this_cpu_write(stats_updates, 0);
638 }
639}
640
641static void __mem_cgroup_flush_stats(void)
642{
643 unsigned long flag;
644
645 if (!spin_trylock_irqsave(&stats_flush_lock, flag))
646 return;
647
648 flush_next_time = jiffies_64 + 2*FLUSH_TIME;
649 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
650 atomic_set(&stats_flush_threshold, 0);
651 spin_unlock_irqrestore(&stats_flush_lock, flag);
652}
653
654void mem_cgroup_flush_stats(void)
655{
656 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
657 __mem_cgroup_flush_stats();
658}
659
660void mem_cgroup_flush_stats_delayed(void)
661{
662 if (time_after64(jiffies_64, flush_next_time))
663 mem_cgroup_flush_stats();
664}
665
666static void flush_memcg_stats_dwork(struct work_struct *w)
667{
668 __mem_cgroup_flush_stats();
669 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
670}
671
672/**
673 * __mod_memcg_state - update cgroup memory statistics
674 * @memcg: the memory cgroup
675 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
676 * @val: delta to add to the counter, can be negative
677 */
678void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
679{
680 if (mem_cgroup_disabled())
681 return;
682
683 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
684 memcg_rstat_updated(memcg, val);
685}
686
687/* idx can be of type enum memcg_stat_item or node_stat_item. */
688static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
689{
690 long x = 0;
691 int cpu;
692
693 for_each_possible_cpu(cpu)
694 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
695#ifdef CONFIG_SMP
696 if (x < 0)
697 x = 0;
698#endif
699 return x;
700}
701
702void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
703 int val)
704{
705 struct mem_cgroup_per_node *pn;
706 struct mem_cgroup *memcg;
707
708 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
709 memcg = pn->memcg;
710
711 /*
712 * The caller from rmap relay on disabled preemption becase they never
713 * update their counter from in-interrupt context. For these two
714 * counters we check that the update is never performed from an
715 * interrupt context while other caller need to have disabled interrupt.
716 */
717 __memcg_stats_lock();
718 if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) {
719 switch (idx) {
720 case NR_ANON_MAPPED:
721 case NR_FILE_MAPPED:
722 case NR_ANON_THPS:
723 case NR_SHMEM_PMDMAPPED:
724 case NR_FILE_PMDMAPPED:
725 WARN_ON_ONCE(!in_task());
726 break;
727 default:
728 WARN_ON_ONCE(!irqs_disabled());
729 }
730 }
731
732 /* Update memcg */
733 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
734
735 /* Update lruvec */
736 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
737
738 memcg_rstat_updated(memcg, val);
739 memcg_stats_unlock();
740}
741
742/**
743 * __mod_lruvec_state - update lruvec memory statistics
744 * @lruvec: the lruvec
745 * @idx: the stat item
746 * @val: delta to add to the counter, can be negative
747 *
748 * The lruvec is the intersection of the NUMA node and a cgroup. This
749 * function updates the all three counters that are affected by a
750 * change of state at this level: per-node, per-cgroup, per-lruvec.
751 */
752void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
753 int val)
754{
755 /* Update node */
756 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
757
758 /* Update memcg and lruvec */
759 if (!mem_cgroup_disabled())
760 __mod_memcg_lruvec_state(lruvec, idx, val);
761}
762
763void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
764 int val)
765{
766 struct page *head = compound_head(page); /* rmap on tail pages */
767 struct mem_cgroup *memcg;
768 pg_data_t *pgdat = page_pgdat(page);
769 struct lruvec *lruvec;
770
771 rcu_read_lock();
772 memcg = page_memcg(head);
773 /* Untracked pages have no memcg, no lruvec. Update only the node */
774 if (!memcg) {
775 rcu_read_unlock();
776 __mod_node_page_state(pgdat, idx, val);
777 return;
778 }
779
780 lruvec = mem_cgroup_lruvec(memcg, pgdat);
781 __mod_lruvec_state(lruvec, idx, val);
782 rcu_read_unlock();
783}
784EXPORT_SYMBOL(__mod_lruvec_page_state);
785
786void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
787{
788 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
789 struct mem_cgroup *memcg;
790 struct lruvec *lruvec;
791
792 rcu_read_lock();
793 memcg = mem_cgroup_from_slab_obj(p);
794
795 /*
796 * Untracked pages have no memcg, no lruvec. Update only the
797 * node. If we reparent the slab objects to the root memcg,
798 * when we free the slab object, we need to update the per-memcg
799 * vmstats to keep it correct for the root memcg.
800 */
801 if (!memcg) {
802 __mod_node_page_state(pgdat, idx, val);
803 } else {
804 lruvec = mem_cgroup_lruvec(memcg, pgdat);
805 __mod_lruvec_state(lruvec, idx, val);
806 }
807 rcu_read_unlock();
808}
809
810/**
811 * __count_memcg_events - account VM events in a cgroup
812 * @memcg: the memory cgroup
813 * @idx: the event item
814 * @count: the number of events that occurred
815 */
816void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
817 unsigned long count)
818{
819 if (mem_cgroup_disabled())
820 return;
821
822 memcg_stats_lock();
823 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
824 memcg_rstat_updated(memcg, count);
825 memcg_stats_unlock();
826}
827
828static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
829{
830 return READ_ONCE(memcg->vmstats.events[event]);
831}
832
833static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
834{
835 long x = 0;
836 int cpu;
837
838 for_each_possible_cpu(cpu)
839 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
840 return x;
841}
842
843static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
844 int nr_pages)
845{
846 /* pagein of a big page is an event. So, ignore page size */
847 if (nr_pages > 0)
848 __count_memcg_events(memcg, PGPGIN, 1);
849 else {
850 __count_memcg_events(memcg, PGPGOUT, 1);
851 nr_pages = -nr_pages; /* for event */
852 }
853
854 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
855}
856
857static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
858 enum mem_cgroup_events_target target)
859{
860 unsigned long val, next;
861
862 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
863 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
864 /* from time_after() in jiffies.h */
865 if ((long)(next - val) < 0) {
866 switch (target) {
867 case MEM_CGROUP_TARGET_THRESH:
868 next = val + THRESHOLDS_EVENTS_TARGET;
869 break;
870 case MEM_CGROUP_TARGET_SOFTLIMIT:
871 next = val + SOFTLIMIT_EVENTS_TARGET;
872 break;
873 default:
874 break;
875 }
876 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
877 return true;
878 }
879 return false;
880}
881
882/*
883 * Check events in order.
884 *
885 */
886static void memcg_check_events(struct mem_cgroup *memcg, int nid)
887{
888 if (IS_ENABLED(CONFIG_PREEMPT_RT))
889 return;
890
891 /* threshold event is triggered in finer grain than soft limit */
892 if (unlikely(mem_cgroup_event_ratelimit(memcg,
893 MEM_CGROUP_TARGET_THRESH))) {
894 bool do_softlimit;
895
896 do_softlimit = mem_cgroup_event_ratelimit(memcg,
897 MEM_CGROUP_TARGET_SOFTLIMIT);
898 mem_cgroup_threshold(memcg);
899 if (unlikely(do_softlimit))
900 mem_cgroup_update_tree(memcg, nid);
901 }
902}
903
904struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
905{
906 /*
907 * mm_update_next_owner() may clear mm->owner to NULL
908 * if it races with swapoff, page migration, etc.
909 * So this can be called with p == NULL.
910 */
911 if (unlikely(!p))
912 return NULL;
913
914 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
915}
916EXPORT_SYMBOL(mem_cgroup_from_task);
917
918static __always_inline struct mem_cgroup *active_memcg(void)
919{
920 if (!in_task())
921 return this_cpu_read(int_active_memcg);
922 else
923 return current->active_memcg;
924}
925
926/**
927 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
928 * @mm: mm from which memcg should be extracted. It can be NULL.
929 *
930 * Obtain a reference on mm->memcg and returns it if successful. If mm
931 * is NULL, then the memcg is chosen as follows:
932 * 1) The active memcg, if set.
933 * 2) current->mm->memcg, if available
934 * 3) root memcg
935 * If mem_cgroup is disabled, NULL is returned.
936 */
937struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
938{
939 struct mem_cgroup *memcg;
940
941 if (mem_cgroup_disabled())
942 return NULL;
943
944 /*
945 * Page cache insertions can happen without an
946 * actual mm context, e.g. during disk probing
947 * on boot, loopback IO, acct() writes etc.
948 *
949 * No need to css_get on root memcg as the reference
950 * counting is disabled on the root level in the
951 * cgroup core. See CSS_NO_REF.
952 */
953 if (unlikely(!mm)) {
954 memcg = active_memcg();
955 if (unlikely(memcg)) {
956 /* remote memcg must hold a ref */
957 css_get(&memcg->css);
958 return memcg;
959 }
960 mm = current->mm;
961 if (unlikely(!mm))
962 return root_mem_cgroup;
963 }
964
965 rcu_read_lock();
966 do {
967 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
968 if (unlikely(!memcg))
969 memcg = root_mem_cgroup;
970 } while (!css_tryget(&memcg->css));
971 rcu_read_unlock();
972 return memcg;
973}
974EXPORT_SYMBOL(get_mem_cgroup_from_mm);
975
976static __always_inline bool memcg_kmem_bypass(void)
977{
978 /* Allow remote memcg charging from any context. */
979 if (unlikely(active_memcg()))
980 return false;
981
982 /* Memcg to charge can't be determined. */
983 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
984 return true;
985
986 return false;
987}
988
989/**
990 * mem_cgroup_iter - iterate over memory cgroup hierarchy
991 * @root: hierarchy root
992 * @prev: previously returned memcg, NULL on first invocation
993 * @reclaim: cookie for shared reclaim walks, NULL for full walks
994 *
995 * Returns references to children of the hierarchy below @root, or
996 * @root itself, or %NULL after a full round-trip.
997 *
998 * Caller must pass the return value in @prev on subsequent
999 * invocations for reference counting, or use mem_cgroup_iter_break()
1000 * to cancel a hierarchy walk before the round-trip is complete.
1001 *
1002 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1003 * in the hierarchy among all concurrent reclaimers operating on the
1004 * same node.
1005 */
1006struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1007 struct mem_cgroup *prev,
1008 struct mem_cgroup_reclaim_cookie *reclaim)
1009{
1010 struct mem_cgroup_reclaim_iter *iter;
1011 struct cgroup_subsys_state *css = NULL;
1012 struct mem_cgroup *memcg = NULL;
1013 struct mem_cgroup *pos = NULL;
1014
1015 if (mem_cgroup_disabled())
1016 return NULL;
1017
1018 if (!root)
1019 root = root_mem_cgroup;
1020
1021 rcu_read_lock();
1022
1023 if (reclaim) {
1024 struct mem_cgroup_per_node *mz;
1025
1026 mz = root->nodeinfo[reclaim->pgdat->node_id];
1027 iter = &mz->iter;
1028
1029 /*
1030 * On start, join the current reclaim iteration cycle.
1031 * Exit when a concurrent walker completes it.
1032 */
1033 if (!prev)
1034 reclaim->generation = iter->generation;
1035 else if (reclaim->generation != iter->generation)
1036 goto out_unlock;
1037
1038 while (1) {
1039 pos = READ_ONCE(iter->position);
1040 if (!pos || css_tryget(&pos->css))
1041 break;
1042 /*
1043 * css reference reached zero, so iter->position will
1044 * be cleared by ->css_released. However, we should not
1045 * rely on this happening soon, because ->css_released
1046 * is called from a work queue, and by busy-waiting we
1047 * might block it. So we clear iter->position right
1048 * away.
1049 */
1050 (void)cmpxchg(&iter->position, pos, NULL);
1051 }
1052 } else if (prev) {
1053 pos = prev;
1054 }
1055
1056 if (pos)
1057 css = &pos->css;
1058
1059 for (;;) {
1060 css = css_next_descendant_pre(css, &root->css);
1061 if (!css) {
1062 /*
1063 * Reclaimers share the hierarchy walk, and a
1064 * new one might jump in right at the end of
1065 * the hierarchy - make sure they see at least
1066 * one group and restart from the beginning.
1067 */
1068 if (!prev)
1069 continue;
1070 break;
1071 }
1072
1073 /*
1074 * Verify the css and acquire a reference. The root
1075 * is provided by the caller, so we know it's alive
1076 * and kicking, and don't take an extra reference.
1077 */
1078 if (css == &root->css || css_tryget(css)) {
1079 memcg = mem_cgroup_from_css(css);
1080 break;
1081 }
1082 }
1083
1084 if (reclaim) {
1085 /*
1086 * The position could have already been updated by a competing
1087 * thread, so check that the value hasn't changed since we read
1088 * it to avoid reclaiming from the same cgroup twice.
1089 */
1090 (void)cmpxchg(&iter->position, pos, memcg);
1091
1092 if (pos)
1093 css_put(&pos->css);
1094
1095 if (!memcg)
1096 iter->generation++;
1097 }
1098
1099out_unlock:
1100 rcu_read_unlock();
1101 if (prev && prev != root)
1102 css_put(&prev->css);
1103
1104 return memcg;
1105}
1106
1107/**
1108 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1109 * @root: hierarchy root
1110 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1111 */
1112void mem_cgroup_iter_break(struct mem_cgroup *root,
1113 struct mem_cgroup *prev)
1114{
1115 if (!root)
1116 root = root_mem_cgroup;
1117 if (prev && prev != root)
1118 css_put(&prev->css);
1119}
1120
1121static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1122 struct mem_cgroup *dead_memcg)
1123{
1124 struct mem_cgroup_reclaim_iter *iter;
1125 struct mem_cgroup_per_node *mz;
1126 int nid;
1127
1128 for_each_node(nid) {
1129 mz = from->nodeinfo[nid];
1130 iter = &mz->iter;
1131 cmpxchg(&iter->position, dead_memcg, NULL);
1132 }
1133}
1134
1135static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1136{
1137 struct mem_cgroup *memcg = dead_memcg;
1138 struct mem_cgroup *last;
1139
1140 do {
1141 __invalidate_reclaim_iterators(memcg, dead_memcg);
1142 last = memcg;
1143 } while ((memcg = parent_mem_cgroup(memcg)));
1144
1145 /*
1146 * When cgruop1 non-hierarchy mode is used,
1147 * parent_mem_cgroup() does not walk all the way up to the
1148 * cgroup root (root_mem_cgroup). So we have to handle
1149 * dead_memcg from cgroup root separately.
1150 */
1151 if (last != root_mem_cgroup)
1152 __invalidate_reclaim_iterators(root_mem_cgroup,
1153 dead_memcg);
1154}
1155
1156/**
1157 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1158 * @memcg: hierarchy root
1159 * @fn: function to call for each task
1160 * @arg: argument passed to @fn
1161 *
1162 * This function iterates over tasks attached to @memcg or to any of its
1163 * descendants and calls @fn for each task. If @fn returns a non-zero
1164 * value, the function breaks the iteration loop and returns the value.
1165 * Otherwise, it will iterate over all tasks and return 0.
1166 *
1167 * This function must not be called for the root memory cgroup.
1168 */
1169int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1170 int (*fn)(struct task_struct *, void *), void *arg)
1171{
1172 struct mem_cgroup *iter;
1173 int ret = 0;
1174
1175 BUG_ON(memcg == root_mem_cgroup);
1176
1177 for_each_mem_cgroup_tree(iter, memcg) {
1178 struct css_task_iter it;
1179 struct task_struct *task;
1180
1181 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1182 while (!ret && (task = css_task_iter_next(&it)))
1183 ret = fn(task, arg);
1184 css_task_iter_end(&it);
1185 if (ret) {
1186 mem_cgroup_iter_break(memcg, iter);
1187 break;
1188 }
1189 }
1190 return ret;
1191}
1192
1193#ifdef CONFIG_DEBUG_VM
1194void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1195{
1196 struct mem_cgroup *memcg;
1197
1198 if (mem_cgroup_disabled())
1199 return;
1200
1201 memcg = folio_memcg(folio);
1202
1203 if (!memcg)
1204 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1205 else
1206 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1207}
1208#endif
1209
1210/**
1211 * folio_lruvec_lock - Lock the lruvec for a folio.
1212 * @folio: Pointer to the folio.
1213 *
1214 * These functions are safe to use under any of the following conditions:
1215 * - folio locked
1216 * - folio_test_lru false
1217 * - folio_memcg_lock()
1218 * - folio frozen (refcount of 0)
1219 *
1220 * Return: The lruvec this folio is on with its lock held.
1221 */
1222struct lruvec *folio_lruvec_lock(struct folio *folio)
1223{
1224 struct lruvec *lruvec = folio_lruvec(folio);
1225
1226 spin_lock(&lruvec->lru_lock);
1227 lruvec_memcg_debug(lruvec, folio);
1228
1229 return lruvec;
1230}
1231
1232/**
1233 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1234 * @folio: Pointer to the folio.
1235 *
1236 * These functions are safe to use under any of the following conditions:
1237 * - folio locked
1238 * - folio_test_lru false
1239 * - folio_memcg_lock()
1240 * - folio frozen (refcount of 0)
1241 *
1242 * Return: The lruvec this folio is on with its lock held and interrupts
1243 * disabled.
1244 */
1245struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1246{
1247 struct lruvec *lruvec = folio_lruvec(folio);
1248
1249 spin_lock_irq(&lruvec->lru_lock);
1250 lruvec_memcg_debug(lruvec, folio);
1251
1252 return lruvec;
1253}
1254
1255/**
1256 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1257 * @folio: Pointer to the folio.
1258 * @flags: Pointer to irqsave flags.
1259 *
1260 * These functions are safe to use under any of the following conditions:
1261 * - folio locked
1262 * - folio_test_lru false
1263 * - folio_memcg_lock()
1264 * - folio frozen (refcount of 0)
1265 *
1266 * Return: The lruvec this folio is on with its lock held and interrupts
1267 * disabled.
1268 */
1269struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1270 unsigned long *flags)
1271{
1272 struct lruvec *lruvec = folio_lruvec(folio);
1273
1274 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1275 lruvec_memcg_debug(lruvec, folio);
1276
1277 return lruvec;
1278}
1279
1280/**
1281 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1282 * @lruvec: mem_cgroup per zone lru vector
1283 * @lru: index of lru list the page is sitting on
1284 * @zid: zone id of the accounted pages
1285 * @nr_pages: positive when adding or negative when removing
1286 *
1287 * This function must be called under lru_lock, just before a page is added
1288 * to or just after a page is removed from an lru list.
1289 */
1290void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1291 int zid, int nr_pages)
1292{
1293 struct mem_cgroup_per_node *mz;
1294 unsigned long *lru_size;
1295 long size;
1296
1297 if (mem_cgroup_disabled())
1298 return;
1299
1300 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1301 lru_size = &mz->lru_zone_size[zid][lru];
1302
1303 if (nr_pages < 0)
1304 *lru_size += nr_pages;
1305
1306 size = *lru_size;
1307 if (WARN_ONCE(size < 0,
1308 "%s(%p, %d, %d): lru_size %ld\n",
1309 __func__, lruvec, lru, nr_pages, size)) {
1310 VM_BUG_ON(1);
1311 *lru_size = 0;
1312 }
1313
1314 if (nr_pages > 0)
1315 *lru_size += nr_pages;
1316}
1317
1318/**
1319 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1320 * @memcg: the memory cgroup
1321 *
1322 * Returns the maximum amount of memory @mem can be charged with, in
1323 * pages.
1324 */
1325static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1326{
1327 unsigned long margin = 0;
1328 unsigned long count;
1329 unsigned long limit;
1330
1331 count = page_counter_read(&memcg->memory);
1332 limit = READ_ONCE(memcg->memory.max);
1333 if (count < limit)
1334 margin = limit - count;
1335
1336 if (do_memsw_account()) {
1337 count = page_counter_read(&memcg->memsw);
1338 limit = READ_ONCE(memcg->memsw.max);
1339 if (count < limit)
1340 margin = min(margin, limit - count);
1341 else
1342 margin = 0;
1343 }
1344
1345 return margin;
1346}
1347
1348/*
1349 * A routine for checking "mem" is under move_account() or not.
1350 *
1351 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1352 * moving cgroups. This is for waiting at high-memory pressure
1353 * caused by "move".
1354 */
1355static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1356{
1357 struct mem_cgroup *from;
1358 struct mem_cgroup *to;
1359 bool ret = false;
1360 /*
1361 * Unlike task_move routines, we access mc.to, mc.from not under
1362 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1363 */
1364 spin_lock(&mc.lock);
1365 from = mc.from;
1366 to = mc.to;
1367 if (!from)
1368 goto unlock;
1369
1370 ret = mem_cgroup_is_descendant(from, memcg) ||
1371 mem_cgroup_is_descendant(to, memcg);
1372unlock:
1373 spin_unlock(&mc.lock);
1374 return ret;
1375}
1376
1377static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1378{
1379 if (mc.moving_task && current != mc.moving_task) {
1380 if (mem_cgroup_under_move(memcg)) {
1381 DEFINE_WAIT(wait);
1382 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1383 /* moving charge context might have finished. */
1384 if (mc.moving_task)
1385 schedule();
1386 finish_wait(&mc.waitq, &wait);
1387 return true;
1388 }
1389 }
1390 return false;
1391}
1392
1393struct memory_stat {
1394 const char *name;
1395 unsigned int idx;
1396};
1397
1398static const struct memory_stat memory_stats[] = {
1399 { "anon", NR_ANON_MAPPED },
1400 { "file", NR_FILE_PAGES },
1401 { "kernel", MEMCG_KMEM },
1402 { "kernel_stack", NR_KERNEL_STACK_KB },
1403 { "pagetables", NR_PAGETABLE },
1404 { "percpu", MEMCG_PERCPU_B },
1405 { "sock", MEMCG_SOCK },
1406 { "vmalloc", MEMCG_VMALLOC },
1407 { "shmem", NR_SHMEM },
1408#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1409 { "zswap", MEMCG_ZSWAP_B },
1410 { "zswapped", MEMCG_ZSWAPPED },
1411#endif
1412 { "file_mapped", NR_FILE_MAPPED },
1413 { "file_dirty", NR_FILE_DIRTY },
1414 { "file_writeback", NR_WRITEBACK },
1415#ifdef CONFIG_SWAP
1416 { "swapcached", NR_SWAPCACHE },
1417#endif
1418#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1419 { "anon_thp", NR_ANON_THPS },
1420 { "file_thp", NR_FILE_THPS },
1421 { "shmem_thp", NR_SHMEM_THPS },
1422#endif
1423 { "inactive_anon", NR_INACTIVE_ANON },
1424 { "active_anon", NR_ACTIVE_ANON },
1425 { "inactive_file", NR_INACTIVE_FILE },
1426 { "active_file", NR_ACTIVE_FILE },
1427 { "unevictable", NR_UNEVICTABLE },
1428 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1429 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1430
1431 /* The memory events */
1432 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1433 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1434 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1435 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1436 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1437 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1438 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1439};
1440
1441/* Translate stat items to the correct unit for memory.stat output */
1442static int memcg_page_state_unit(int item)
1443{
1444 switch (item) {
1445 case MEMCG_PERCPU_B:
1446 case MEMCG_ZSWAP_B:
1447 case NR_SLAB_RECLAIMABLE_B:
1448 case NR_SLAB_UNRECLAIMABLE_B:
1449 case WORKINGSET_REFAULT_ANON:
1450 case WORKINGSET_REFAULT_FILE:
1451 case WORKINGSET_ACTIVATE_ANON:
1452 case WORKINGSET_ACTIVATE_FILE:
1453 case WORKINGSET_RESTORE_ANON:
1454 case WORKINGSET_RESTORE_FILE:
1455 case WORKINGSET_NODERECLAIM:
1456 return 1;
1457 case NR_KERNEL_STACK_KB:
1458 return SZ_1K;
1459 default:
1460 return PAGE_SIZE;
1461 }
1462}
1463
1464static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1465 int item)
1466{
1467 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1468}
1469
1470/* Subset of vm_event_item to report for memcg event stats */
1471static const unsigned int memcg_vm_event_stat[] = {
1472 PGSCAN_KSWAPD,
1473 PGSCAN_DIRECT,
1474 PGSTEAL_KSWAPD,
1475 PGSTEAL_DIRECT,
1476 PGFAULT,
1477 PGMAJFAULT,
1478 PGREFILL,
1479 PGACTIVATE,
1480 PGDEACTIVATE,
1481 PGLAZYFREE,
1482 PGLAZYFREED,
1483#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1484 ZSWPIN,
1485 ZSWPOUT,
1486#endif
1487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488 THP_FAULT_ALLOC,
1489 THP_COLLAPSE_ALLOC,
1490#endif
1491};
1492
1493static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
1494{
1495 struct seq_buf s;
1496 int i;
1497
1498 seq_buf_init(&s, buf, bufsize);
1499
1500 /*
1501 * Provide statistics on the state of the memory subsystem as
1502 * well as cumulative event counters that show past behavior.
1503 *
1504 * This list is ordered following a combination of these gradients:
1505 * 1) generic big picture -> specifics and details
1506 * 2) reflecting userspace activity -> reflecting kernel heuristics
1507 *
1508 * Current memory state:
1509 */
1510 mem_cgroup_flush_stats();
1511
1512 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1513 u64 size;
1514
1515 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1516 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1517
1518 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1519 size += memcg_page_state_output(memcg,
1520 NR_SLAB_RECLAIMABLE_B);
1521 seq_buf_printf(&s, "slab %llu\n", size);
1522 }
1523 }
1524
1525 /* Accumulated memory events */
1526 seq_buf_printf(&s, "pgscan %lu\n",
1527 memcg_events(memcg, PGSCAN_KSWAPD) +
1528 memcg_events(memcg, PGSCAN_DIRECT));
1529 seq_buf_printf(&s, "pgsteal %lu\n",
1530 memcg_events(memcg, PGSTEAL_KSWAPD) +
1531 memcg_events(memcg, PGSTEAL_DIRECT));
1532
1533 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++)
1534 seq_buf_printf(&s, "%s %lu\n",
1535 vm_event_name(memcg_vm_event_stat[i]),
1536 memcg_events(memcg, memcg_vm_event_stat[i]));
1537
1538 /* The above should easily fit into one page */
1539 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1540}
1541
1542#define K(x) ((x) << (PAGE_SHIFT-10))
1543/**
1544 * mem_cgroup_print_oom_context: Print OOM information relevant to
1545 * memory controller.
1546 * @memcg: The memory cgroup that went over limit
1547 * @p: Task that is going to be killed
1548 *
1549 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1550 * enabled
1551 */
1552void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1553{
1554 rcu_read_lock();
1555
1556 if (memcg) {
1557 pr_cont(",oom_memcg=");
1558 pr_cont_cgroup_path(memcg->css.cgroup);
1559 } else
1560 pr_cont(",global_oom");
1561 if (p) {
1562 pr_cont(",task_memcg=");
1563 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1564 }
1565 rcu_read_unlock();
1566}
1567
1568/**
1569 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1570 * memory controller.
1571 * @memcg: The memory cgroup that went over limit
1572 */
1573void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1574{
1575 /* Use static buffer, for the caller is holding oom_lock. */
1576 static char buf[PAGE_SIZE];
1577
1578 lockdep_assert_held(&oom_lock);
1579
1580 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1581 K((u64)page_counter_read(&memcg->memory)),
1582 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1583 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1584 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1585 K((u64)page_counter_read(&memcg->swap)),
1586 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1587 else {
1588 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1589 K((u64)page_counter_read(&memcg->memsw)),
1590 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1591 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1592 K((u64)page_counter_read(&memcg->kmem)),
1593 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1594 }
1595
1596 pr_info("Memory cgroup stats for ");
1597 pr_cont_cgroup_path(memcg->css.cgroup);
1598 pr_cont(":");
1599 memory_stat_format(memcg, buf, sizeof(buf));
1600 pr_info("%s", buf);
1601}
1602
1603/*
1604 * Return the memory (and swap, if configured) limit for a memcg.
1605 */
1606unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1607{
1608 unsigned long max = READ_ONCE(memcg->memory.max);
1609
1610 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1611 if (mem_cgroup_swappiness(memcg))
1612 max += min(READ_ONCE(memcg->swap.max),
1613 (unsigned long)total_swap_pages);
1614 } else { /* v1 */
1615 if (mem_cgroup_swappiness(memcg)) {
1616 /* Calculate swap excess capacity from memsw limit */
1617 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1618
1619 max += min(swap, (unsigned long)total_swap_pages);
1620 }
1621 }
1622 return max;
1623}
1624
1625unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1626{
1627 return page_counter_read(&memcg->memory);
1628}
1629
1630static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1631 int order)
1632{
1633 struct oom_control oc = {
1634 .zonelist = NULL,
1635 .nodemask = NULL,
1636 .memcg = memcg,
1637 .gfp_mask = gfp_mask,
1638 .order = order,
1639 };
1640 bool ret = true;
1641
1642 if (mutex_lock_killable(&oom_lock))
1643 return true;
1644
1645 if (mem_cgroup_margin(memcg) >= (1 << order))
1646 goto unlock;
1647
1648 /*
1649 * A few threads which were not waiting at mutex_lock_killable() can
1650 * fail to bail out. Therefore, check again after holding oom_lock.
1651 */
1652 ret = task_is_dying() || out_of_memory(&oc);
1653
1654unlock:
1655 mutex_unlock(&oom_lock);
1656 return ret;
1657}
1658
1659static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1660 pg_data_t *pgdat,
1661 gfp_t gfp_mask,
1662 unsigned long *total_scanned)
1663{
1664 struct mem_cgroup *victim = NULL;
1665 int total = 0;
1666 int loop = 0;
1667 unsigned long excess;
1668 unsigned long nr_scanned;
1669 struct mem_cgroup_reclaim_cookie reclaim = {
1670 .pgdat = pgdat,
1671 };
1672
1673 excess = soft_limit_excess(root_memcg);
1674
1675 while (1) {
1676 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1677 if (!victim) {
1678 loop++;
1679 if (loop >= 2) {
1680 /*
1681 * If we have not been able to reclaim
1682 * anything, it might because there are
1683 * no reclaimable pages under this hierarchy
1684 */
1685 if (!total)
1686 break;
1687 /*
1688 * We want to do more targeted reclaim.
1689 * excess >> 2 is not to excessive so as to
1690 * reclaim too much, nor too less that we keep
1691 * coming back to reclaim from this cgroup
1692 */
1693 if (total >= (excess >> 2) ||
1694 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1695 break;
1696 }
1697 continue;
1698 }
1699 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1700 pgdat, &nr_scanned);
1701 *total_scanned += nr_scanned;
1702 if (!soft_limit_excess(root_memcg))
1703 break;
1704 }
1705 mem_cgroup_iter_break(root_memcg, victim);
1706 return total;
1707}
1708
1709#ifdef CONFIG_LOCKDEP
1710static struct lockdep_map memcg_oom_lock_dep_map = {
1711 .name = "memcg_oom_lock",
1712};
1713#endif
1714
1715static DEFINE_SPINLOCK(memcg_oom_lock);
1716
1717/*
1718 * Check OOM-Killer is already running under our hierarchy.
1719 * If someone is running, return false.
1720 */
1721static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1722{
1723 struct mem_cgroup *iter, *failed = NULL;
1724
1725 spin_lock(&memcg_oom_lock);
1726
1727 for_each_mem_cgroup_tree(iter, memcg) {
1728 if (iter->oom_lock) {
1729 /*
1730 * this subtree of our hierarchy is already locked
1731 * so we cannot give a lock.
1732 */
1733 failed = iter;
1734 mem_cgroup_iter_break(memcg, iter);
1735 break;
1736 } else
1737 iter->oom_lock = true;
1738 }
1739
1740 if (failed) {
1741 /*
1742 * OK, we failed to lock the whole subtree so we have
1743 * to clean up what we set up to the failing subtree
1744 */
1745 for_each_mem_cgroup_tree(iter, memcg) {
1746 if (iter == failed) {
1747 mem_cgroup_iter_break(memcg, iter);
1748 break;
1749 }
1750 iter->oom_lock = false;
1751 }
1752 } else
1753 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1754
1755 spin_unlock(&memcg_oom_lock);
1756
1757 return !failed;
1758}
1759
1760static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1761{
1762 struct mem_cgroup *iter;
1763
1764 spin_lock(&memcg_oom_lock);
1765 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1766 for_each_mem_cgroup_tree(iter, memcg)
1767 iter->oom_lock = false;
1768 spin_unlock(&memcg_oom_lock);
1769}
1770
1771static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1772{
1773 struct mem_cgroup *iter;
1774
1775 spin_lock(&memcg_oom_lock);
1776 for_each_mem_cgroup_tree(iter, memcg)
1777 iter->under_oom++;
1778 spin_unlock(&memcg_oom_lock);
1779}
1780
1781static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1782{
1783 struct mem_cgroup *iter;
1784
1785 /*
1786 * Be careful about under_oom underflows because a child memcg
1787 * could have been added after mem_cgroup_mark_under_oom.
1788 */
1789 spin_lock(&memcg_oom_lock);
1790 for_each_mem_cgroup_tree(iter, memcg)
1791 if (iter->under_oom > 0)
1792 iter->under_oom--;
1793 spin_unlock(&memcg_oom_lock);
1794}
1795
1796static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1797
1798struct oom_wait_info {
1799 struct mem_cgroup *memcg;
1800 wait_queue_entry_t wait;
1801};
1802
1803static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1804 unsigned mode, int sync, void *arg)
1805{
1806 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1807 struct mem_cgroup *oom_wait_memcg;
1808 struct oom_wait_info *oom_wait_info;
1809
1810 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1811 oom_wait_memcg = oom_wait_info->memcg;
1812
1813 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1814 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1815 return 0;
1816 return autoremove_wake_function(wait, mode, sync, arg);
1817}
1818
1819static void memcg_oom_recover(struct mem_cgroup *memcg)
1820{
1821 /*
1822 * For the following lockless ->under_oom test, the only required
1823 * guarantee is that it must see the state asserted by an OOM when
1824 * this function is called as a result of userland actions
1825 * triggered by the notification of the OOM. This is trivially
1826 * achieved by invoking mem_cgroup_mark_under_oom() before
1827 * triggering notification.
1828 */
1829 if (memcg && memcg->under_oom)
1830 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1831}
1832
1833/*
1834 * Returns true if successfully killed one or more processes. Though in some
1835 * corner cases it can return true even without killing any process.
1836 */
1837static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1838{
1839 bool locked, ret;
1840
1841 if (order > PAGE_ALLOC_COSTLY_ORDER)
1842 return false;
1843
1844 memcg_memory_event(memcg, MEMCG_OOM);
1845
1846 /*
1847 * We are in the middle of the charge context here, so we
1848 * don't want to block when potentially sitting on a callstack
1849 * that holds all kinds of filesystem and mm locks.
1850 *
1851 * cgroup1 allows disabling the OOM killer and waiting for outside
1852 * handling until the charge can succeed; remember the context and put
1853 * the task to sleep at the end of the page fault when all locks are
1854 * released.
1855 *
1856 * On the other hand, in-kernel OOM killer allows for an async victim
1857 * memory reclaim (oom_reaper) and that means that we are not solely
1858 * relying on the oom victim to make a forward progress and we can
1859 * invoke the oom killer here.
1860 *
1861 * Please note that mem_cgroup_out_of_memory might fail to find a
1862 * victim and then we have to bail out from the charge path.
1863 */
1864 if (memcg->oom_kill_disable) {
1865 if (current->in_user_fault) {
1866 css_get(&memcg->css);
1867 current->memcg_in_oom = memcg;
1868 current->memcg_oom_gfp_mask = mask;
1869 current->memcg_oom_order = order;
1870 }
1871 return false;
1872 }
1873
1874 mem_cgroup_mark_under_oom(memcg);
1875
1876 locked = mem_cgroup_oom_trylock(memcg);
1877
1878 if (locked)
1879 mem_cgroup_oom_notify(memcg);
1880
1881 mem_cgroup_unmark_under_oom(memcg);
1882 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1883
1884 if (locked)
1885 mem_cgroup_oom_unlock(memcg);
1886
1887 return ret;
1888}
1889
1890/**
1891 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1892 * @handle: actually kill/wait or just clean up the OOM state
1893 *
1894 * This has to be called at the end of a page fault if the memcg OOM
1895 * handler was enabled.
1896 *
1897 * Memcg supports userspace OOM handling where failed allocations must
1898 * sleep on a waitqueue until the userspace task resolves the
1899 * situation. Sleeping directly in the charge context with all kinds
1900 * of locks held is not a good idea, instead we remember an OOM state
1901 * in the task and mem_cgroup_oom_synchronize() has to be called at
1902 * the end of the page fault to complete the OOM handling.
1903 *
1904 * Returns %true if an ongoing memcg OOM situation was detected and
1905 * completed, %false otherwise.
1906 */
1907bool mem_cgroup_oom_synchronize(bool handle)
1908{
1909 struct mem_cgroup *memcg = current->memcg_in_oom;
1910 struct oom_wait_info owait;
1911 bool locked;
1912
1913 /* OOM is global, do not handle */
1914 if (!memcg)
1915 return false;
1916
1917 if (!handle)
1918 goto cleanup;
1919
1920 owait.memcg = memcg;
1921 owait.wait.flags = 0;
1922 owait.wait.func = memcg_oom_wake_function;
1923 owait.wait.private = current;
1924 INIT_LIST_HEAD(&owait.wait.entry);
1925
1926 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1927 mem_cgroup_mark_under_oom(memcg);
1928
1929 locked = mem_cgroup_oom_trylock(memcg);
1930
1931 if (locked)
1932 mem_cgroup_oom_notify(memcg);
1933
1934 if (locked && !memcg->oom_kill_disable) {
1935 mem_cgroup_unmark_under_oom(memcg);
1936 finish_wait(&memcg_oom_waitq, &owait.wait);
1937 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1938 current->memcg_oom_order);
1939 } else {
1940 schedule();
1941 mem_cgroup_unmark_under_oom(memcg);
1942 finish_wait(&memcg_oom_waitq, &owait.wait);
1943 }
1944
1945 if (locked) {
1946 mem_cgroup_oom_unlock(memcg);
1947 /*
1948 * There is no guarantee that an OOM-lock contender
1949 * sees the wakeups triggered by the OOM kill
1950 * uncharges. Wake any sleepers explicitly.
1951 */
1952 memcg_oom_recover(memcg);
1953 }
1954cleanup:
1955 current->memcg_in_oom = NULL;
1956 css_put(&memcg->css);
1957 return true;
1958}
1959
1960/**
1961 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1962 * @victim: task to be killed by the OOM killer
1963 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1964 *
1965 * Returns a pointer to a memory cgroup, which has to be cleaned up
1966 * by killing all belonging OOM-killable tasks.
1967 *
1968 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1969 */
1970struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1971 struct mem_cgroup *oom_domain)
1972{
1973 struct mem_cgroup *oom_group = NULL;
1974 struct mem_cgroup *memcg;
1975
1976 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1977 return NULL;
1978
1979 if (!oom_domain)
1980 oom_domain = root_mem_cgroup;
1981
1982 rcu_read_lock();
1983
1984 memcg = mem_cgroup_from_task(victim);
1985 if (memcg == root_mem_cgroup)
1986 goto out;
1987
1988 /*
1989 * If the victim task has been asynchronously moved to a different
1990 * memory cgroup, we might end up killing tasks outside oom_domain.
1991 * In this case it's better to ignore memory.group.oom.
1992 */
1993 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1994 goto out;
1995
1996 /*
1997 * Traverse the memory cgroup hierarchy from the victim task's
1998 * cgroup up to the OOMing cgroup (or root) to find the
1999 * highest-level memory cgroup with oom.group set.
2000 */
2001 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2002 if (memcg->oom_group)
2003 oom_group = memcg;
2004
2005 if (memcg == oom_domain)
2006 break;
2007 }
2008
2009 if (oom_group)
2010 css_get(&oom_group->css);
2011out:
2012 rcu_read_unlock();
2013
2014 return oom_group;
2015}
2016
2017void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2018{
2019 pr_info("Tasks in ");
2020 pr_cont_cgroup_path(memcg->css.cgroup);
2021 pr_cont(" are going to be killed due to memory.oom.group set\n");
2022}
2023
2024/**
2025 * folio_memcg_lock - Bind a folio to its memcg.
2026 * @folio: The folio.
2027 *
2028 * This function prevents unlocked LRU folios from being moved to
2029 * another cgroup.
2030 *
2031 * It ensures lifetime of the bound memcg. The caller is responsible
2032 * for the lifetime of the folio.
2033 */
2034void folio_memcg_lock(struct folio *folio)
2035{
2036 struct mem_cgroup *memcg;
2037 unsigned long flags;
2038
2039 /*
2040 * The RCU lock is held throughout the transaction. The fast
2041 * path can get away without acquiring the memcg->move_lock
2042 * because page moving starts with an RCU grace period.
2043 */
2044 rcu_read_lock();
2045
2046 if (mem_cgroup_disabled())
2047 return;
2048again:
2049 memcg = folio_memcg(folio);
2050 if (unlikely(!memcg))
2051 return;
2052
2053#ifdef CONFIG_PROVE_LOCKING
2054 local_irq_save(flags);
2055 might_lock(&memcg->move_lock);
2056 local_irq_restore(flags);
2057#endif
2058
2059 if (atomic_read(&memcg->moving_account) <= 0)
2060 return;
2061
2062 spin_lock_irqsave(&memcg->move_lock, flags);
2063 if (memcg != folio_memcg(folio)) {
2064 spin_unlock_irqrestore(&memcg->move_lock, flags);
2065 goto again;
2066 }
2067
2068 /*
2069 * When charge migration first begins, we can have multiple
2070 * critical sections holding the fast-path RCU lock and one
2071 * holding the slowpath move_lock. Track the task who has the
2072 * move_lock for unlock_page_memcg().
2073 */
2074 memcg->move_lock_task = current;
2075 memcg->move_lock_flags = flags;
2076}
2077
2078void lock_page_memcg(struct page *page)
2079{
2080 folio_memcg_lock(page_folio(page));
2081}
2082
2083static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2084{
2085 if (memcg && memcg->move_lock_task == current) {
2086 unsigned long flags = memcg->move_lock_flags;
2087
2088 memcg->move_lock_task = NULL;
2089 memcg->move_lock_flags = 0;
2090
2091 spin_unlock_irqrestore(&memcg->move_lock, flags);
2092 }
2093
2094 rcu_read_unlock();
2095}
2096
2097/**
2098 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2099 * @folio: The folio.
2100 *
2101 * This releases the binding created by folio_memcg_lock(). This does
2102 * not change the accounting of this folio to its memcg, but it does
2103 * permit others to change it.
2104 */
2105void folio_memcg_unlock(struct folio *folio)
2106{
2107 __folio_memcg_unlock(folio_memcg(folio));
2108}
2109
2110void unlock_page_memcg(struct page *page)
2111{
2112 folio_memcg_unlock(page_folio(page));
2113}
2114
2115struct memcg_stock_pcp {
2116 local_lock_t stock_lock;
2117 struct mem_cgroup *cached; /* this never be root cgroup */
2118 unsigned int nr_pages;
2119
2120#ifdef CONFIG_MEMCG_KMEM
2121 struct obj_cgroup *cached_objcg;
2122 struct pglist_data *cached_pgdat;
2123 unsigned int nr_bytes;
2124 int nr_slab_reclaimable_b;
2125 int nr_slab_unreclaimable_b;
2126#endif
2127
2128 struct work_struct work;
2129 unsigned long flags;
2130#define FLUSHING_CACHED_CHARGE 0
2131};
2132static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2133 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2134};
2135static DEFINE_MUTEX(percpu_charge_mutex);
2136
2137#ifdef CONFIG_MEMCG_KMEM
2138static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2139static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2140 struct mem_cgroup *root_memcg);
2141static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2142
2143#else
2144static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2145{
2146 return NULL;
2147}
2148static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2149 struct mem_cgroup *root_memcg)
2150{
2151 return false;
2152}
2153static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2154{
2155}
2156#endif
2157
2158/**
2159 * consume_stock: Try to consume stocked charge on this cpu.
2160 * @memcg: memcg to consume from.
2161 * @nr_pages: how many pages to charge.
2162 *
2163 * The charges will only happen if @memcg matches the current cpu's memcg
2164 * stock, and at least @nr_pages are available in that stock. Failure to
2165 * service an allocation will refill the stock.
2166 *
2167 * returns true if successful, false otherwise.
2168 */
2169static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2170{
2171 struct memcg_stock_pcp *stock;
2172 unsigned long flags;
2173 bool ret = false;
2174
2175 if (nr_pages > MEMCG_CHARGE_BATCH)
2176 return ret;
2177
2178 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2179
2180 stock = this_cpu_ptr(&memcg_stock);
2181 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2182 stock->nr_pages -= nr_pages;
2183 ret = true;
2184 }
2185
2186 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2187
2188 return ret;
2189}
2190
2191/*
2192 * Returns stocks cached in percpu and reset cached information.
2193 */
2194static void drain_stock(struct memcg_stock_pcp *stock)
2195{
2196 struct mem_cgroup *old = stock->cached;
2197
2198 if (!old)
2199 return;
2200
2201 if (stock->nr_pages) {
2202 page_counter_uncharge(&old->memory, stock->nr_pages);
2203 if (do_memsw_account())
2204 page_counter_uncharge(&old->memsw, stock->nr_pages);
2205 stock->nr_pages = 0;
2206 }
2207
2208 css_put(&old->css);
2209 stock->cached = NULL;
2210}
2211
2212static void drain_local_stock(struct work_struct *dummy)
2213{
2214 struct memcg_stock_pcp *stock;
2215 struct obj_cgroup *old = NULL;
2216 unsigned long flags;
2217
2218 /*
2219 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2220 * drain_stock races is that we always operate on local CPU stock
2221 * here with IRQ disabled
2222 */
2223 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2224
2225 stock = this_cpu_ptr(&memcg_stock);
2226 old = drain_obj_stock(stock);
2227 drain_stock(stock);
2228 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2229
2230 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2231 if (old)
2232 obj_cgroup_put(old);
2233}
2234
2235/*
2236 * Cache charges(val) to local per_cpu area.
2237 * This will be consumed by consume_stock() function, later.
2238 */
2239static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2240{
2241 struct memcg_stock_pcp *stock;
2242
2243 stock = this_cpu_ptr(&memcg_stock);
2244 if (stock->cached != memcg) { /* reset if necessary */
2245 drain_stock(stock);
2246 css_get(&memcg->css);
2247 stock->cached = memcg;
2248 }
2249 stock->nr_pages += nr_pages;
2250
2251 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2252 drain_stock(stock);
2253}
2254
2255static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2256{
2257 unsigned long flags;
2258
2259 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2260 __refill_stock(memcg, nr_pages);
2261 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2262}
2263
2264/*
2265 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2266 * of the hierarchy under it.
2267 */
2268static void drain_all_stock(struct mem_cgroup *root_memcg)
2269{
2270 int cpu, curcpu;
2271
2272 /* If someone's already draining, avoid adding running more workers. */
2273 if (!mutex_trylock(&percpu_charge_mutex))
2274 return;
2275 /*
2276 * Notify other cpus that system-wide "drain" is running
2277 * We do not care about races with the cpu hotplug because cpu down
2278 * as well as workers from this path always operate on the local
2279 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2280 */
2281 migrate_disable();
2282 curcpu = smp_processor_id();
2283 for_each_online_cpu(cpu) {
2284 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2285 struct mem_cgroup *memcg;
2286 bool flush = false;
2287
2288 rcu_read_lock();
2289 memcg = stock->cached;
2290 if (memcg && stock->nr_pages &&
2291 mem_cgroup_is_descendant(memcg, root_memcg))
2292 flush = true;
2293 else if (obj_stock_flush_required(stock, root_memcg))
2294 flush = true;
2295 rcu_read_unlock();
2296
2297 if (flush &&
2298 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2299 if (cpu == curcpu)
2300 drain_local_stock(&stock->work);
2301 else
2302 schedule_work_on(cpu, &stock->work);
2303 }
2304 }
2305 migrate_enable();
2306 mutex_unlock(&percpu_charge_mutex);
2307}
2308
2309static int memcg_hotplug_cpu_dead(unsigned int cpu)
2310{
2311 struct memcg_stock_pcp *stock;
2312
2313 stock = &per_cpu(memcg_stock, cpu);
2314 drain_stock(stock);
2315
2316 return 0;
2317}
2318
2319static unsigned long reclaim_high(struct mem_cgroup *memcg,
2320 unsigned int nr_pages,
2321 gfp_t gfp_mask)
2322{
2323 unsigned long nr_reclaimed = 0;
2324
2325 do {
2326 unsigned long pflags;
2327
2328 if (page_counter_read(&memcg->memory) <=
2329 READ_ONCE(memcg->memory.high))
2330 continue;
2331
2332 memcg_memory_event(memcg, MEMCG_HIGH);
2333
2334 psi_memstall_enter(&pflags);
2335 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2336 gfp_mask,
2337 MEMCG_RECLAIM_MAY_SWAP);
2338 psi_memstall_leave(&pflags);
2339 } while ((memcg = parent_mem_cgroup(memcg)) &&
2340 !mem_cgroup_is_root(memcg));
2341
2342 return nr_reclaimed;
2343}
2344
2345static void high_work_func(struct work_struct *work)
2346{
2347 struct mem_cgroup *memcg;
2348
2349 memcg = container_of(work, struct mem_cgroup, high_work);
2350 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2351}
2352
2353/*
2354 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2355 * enough to still cause a significant slowdown in most cases, while still
2356 * allowing diagnostics and tracing to proceed without becoming stuck.
2357 */
2358#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2359
2360/*
2361 * When calculating the delay, we use these either side of the exponentiation to
2362 * maintain precision and scale to a reasonable number of jiffies (see the table
2363 * below.
2364 *
2365 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2366 * overage ratio to a delay.
2367 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2368 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2369 * to produce a reasonable delay curve.
2370 *
2371 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2372 * reasonable delay curve compared to precision-adjusted overage, not
2373 * penalising heavily at first, but still making sure that growth beyond the
2374 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2375 * example, with a high of 100 megabytes:
2376 *
2377 * +-------+------------------------+
2378 * | usage | time to allocate in ms |
2379 * +-------+------------------------+
2380 * | 100M | 0 |
2381 * | 101M | 6 |
2382 * | 102M | 25 |
2383 * | 103M | 57 |
2384 * | 104M | 102 |
2385 * | 105M | 159 |
2386 * | 106M | 230 |
2387 * | 107M | 313 |
2388 * | 108M | 409 |
2389 * | 109M | 518 |
2390 * | 110M | 639 |
2391 * | 111M | 774 |
2392 * | 112M | 921 |
2393 * | 113M | 1081 |
2394 * | 114M | 1254 |
2395 * | 115M | 1439 |
2396 * | 116M | 1638 |
2397 * | 117M | 1849 |
2398 * | 118M | 2000 |
2399 * | 119M | 2000 |
2400 * | 120M | 2000 |
2401 * +-------+------------------------+
2402 */
2403 #define MEMCG_DELAY_PRECISION_SHIFT 20
2404 #define MEMCG_DELAY_SCALING_SHIFT 14
2405
2406static u64 calculate_overage(unsigned long usage, unsigned long high)
2407{
2408 u64 overage;
2409
2410 if (usage <= high)
2411 return 0;
2412
2413 /*
2414 * Prevent division by 0 in overage calculation by acting as if
2415 * it was a threshold of 1 page
2416 */
2417 high = max(high, 1UL);
2418
2419 overage = usage - high;
2420 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2421 return div64_u64(overage, high);
2422}
2423
2424static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2425{
2426 u64 overage, max_overage = 0;
2427
2428 do {
2429 overage = calculate_overage(page_counter_read(&memcg->memory),
2430 READ_ONCE(memcg->memory.high));
2431 max_overage = max(overage, max_overage);
2432 } while ((memcg = parent_mem_cgroup(memcg)) &&
2433 !mem_cgroup_is_root(memcg));
2434
2435 return max_overage;
2436}
2437
2438static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2439{
2440 u64 overage, max_overage = 0;
2441
2442 do {
2443 overage = calculate_overage(page_counter_read(&memcg->swap),
2444 READ_ONCE(memcg->swap.high));
2445 if (overage)
2446 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2447 max_overage = max(overage, max_overage);
2448 } while ((memcg = parent_mem_cgroup(memcg)) &&
2449 !mem_cgroup_is_root(memcg));
2450
2451 return max_overage;
2452}
2453
2454/*
2455 * Get the number of jiffies that we should penalise a mischievous cgroup which
2456 * is exceeding its memory.high by checking both it and its ancestors.
2457 */
2458static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2459 unsigned int nr_pages,
2460 u64 max_overage)
2461{
2462 unsigned long penalty_jiffies;
2463
2464 if (!max_overage)
2465 return 0;
2466
2467 /*
2468 * We use overage compared to memory.high to calculate the number of
2469 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2470 * fairly lenient on small overages, and increasingly harsh when the
2471 * memcg in question makes it clear that it has no intention of stopping
2472 * its crazy behaviour, so we exponentially increase the delay based on
2473 * overage amount.
2474 */
2475 penalty_jiffies = max_overage * max_overage * HZ;
2476 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2477 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2478
2479 /*
2480 * Factor in the task's own contribution to the overage, such that four
2481 * N-sized allocations are throttled approximately the same as one
2482 * 4N-sized allocation.
2483 *
2484 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2485 * larger the current charge patch is than that.
2486 */
2487 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2488}
2489
2490/*
2491 * Scheduled by try_charge() to be executed from the userland return path
2492 * and reclaims memory over the high limit.
2493 */
2494void mem_cgroup_handle_over_high(void)
2495{
2496 unsigned long penalty_jiffies;
2497 unsigned long pflags;
2498 unsigned long nr_reclaimed;
2499 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2500 int nr_retries = MAX_RECLAIM_RETRIES;
2501 struct mem_cgroup *memcg;
2502 bool in_retry = false;
2503
2504 if (likely(!nr_pages))
2505 return;
2506
2507 memcg = get_mem_cgroup_from_mm(current->mm);
2508 current->memcg_nr_pages_over_high = 0;
2509
2510retry_reclaim:
2511 /*
2512 * The allocating task should reclaim at least the batch size, but for
2513 * subsequent retries we only want to do what's necessary to prevent oom
2514 * or breaching resource isolation.
2515 *
2516 * This is distinct from memory.max or page allocator behaviour because
2517 * memory.high is currently batched, whereas memory.max and the page
2518 * allocator run every time an allocation is made.
2519 */
2520 nr_reclaimed = reclaim_high(memcg,
2521 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2522 GFP_KERNEL);
2523
2524 /*
2525 * memory.high is breached and reclaim is unable to keep up. Throttle
2526 * allocators proactively to slow down excessive growth.
2527 */
2528 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2529 mem_find_max_overage(memcg));
2530
2531 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2532 swap_find_max_overage(memcg));
2533
2534 /*
2535 * Clamp the max delay per usermode return so as to still keep the
2536 * application moving forwards and also permit diagnostics, albeit
2537 * extremely slowly.
2538 */
2539 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2540
2541 /*
2542 * Don't sleep if the amount of jiffies this memcg owes us is so low
2543 * that it's not even worth doing, in an attempt to be nice to those who
2544 * go only a small amount over their memory.high value and maybe haven't
2545 * been aggressively reclaimed enough yet.
2546 */
2547 if (penalty_jiffies <= HZ / 100)
2548 goto out;
2549
2550 /*
2551 * If reclaim is making forward progress but we're still over
2552 * memory.high, we want to encourage that rather than doing allocator
2553 * throttling.
2554 */
2555 if (nr_reclaimed || nr_retries--) {
2556 in_retry = true;
2557 goto retry_reclaim;
2558 }
2559
2560 /*
2561 * If we exit early, we're guaranteed to die (since
2562 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2563 * need to account for any ill-begotten jiffies to pay them off later.
2564 */
2565 psi_memstall_enter(&pflags);
2566 schedule_timeout_killable(penalty_jiffies);
2567 psi_memstall_leave(&pflags);
2568
2569out:
2570 css_put(&memcg->css);
2571}
2572
2573static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2574 unsigned int nr_pages)
2575{
2576 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2577 int nr_retries = MAX_RECLAIM_RETRIES;
2578 struct mem_cgroup *mem_over_limit;
2579 struct page_counter *counter;
2580 unsigned long nr_reclaimed;
2581 bool passed_oom = false;
2582 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2583 bool drained = false;
2584 bool raised_max_event = false;
2585 unsigned long pflags;
2586
2587retry:
2588 if (consume_stock(memcg, nr_pages))
2589 return 0;
2590
2591 if (!do_memsw_account() ||
2592 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2593 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2594 goto done_restock;
2595 if (do_memsw_account())
2596 page_counter_uncharge(&memcg->memsw, batch);
2597 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2598 } else {
2599 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2600 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2601 }
2602
2603 if (batch > nr_pages) {
2604 batch = nr_pages;
2605 goto retry;
2606 }
2607
2608 /*
2609 * Prevent unbounded recursion when reclaim operations need to
2610 * allocate memory. This might exceed the limits temporarily,
2611 * but we prefer facilitating memory reclaim and getting back
2612 * under the limit over triggering OOM kills in these cases.
2613 */
2614 if (unlikely(current->flags & PF_MEMALLOC))
2615 goto force;
2616
2617 if (unlikely(task_in_memcg_oom(current)))
2618 goto nomem;
2619
2620 if (!gfpflags_allow_blocking(gfp_mask))
2621 goto nomem;
2622
2623 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2624 raised_max_event = true;
2625
2626 psi_memstall_enter(&pflags);
2627 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2628 gfp_mask, reclaim_options);
2629 psi_memstall_leave(&pflags);
2630
2631 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2632 goto retry;
2633
2634 if (!drained) {
2635 drain_all_stock(mem_over_limit);
2636 drained = true;
2637 goto retry;
2638 }
2639
2640 if (gfp_mask & __GFP_NORETRY)
2641 goto nomem;
2642 /*
2643 * Even though the limit is exceeded at this point, reclaim
2644 * may have been able to free some pages. Retry the charge
2645 * before killing the task.
2646 *
2647 * Only for regular pages, though: huge pages are rather
2648 * unlikely to succeed so close to the limit, and we fall back
2649 * to regular pages anyway in case of failure.
2650 */
2651 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2652 goto retry;
2653 /*
2654 * At task move, charge accounts can be doubly counted. So, it's
2655 * better to wait until the end of task_move if something is going on.
2656 */
2657 if (mem_cgroup_wait_acct_move(mem_over_limit))
2658 goto retry;
2659
2660 if (nr_retries--)
2661 goto retry;
2662
2663 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2664 goto nomem;
2665
2666 /* Avoid endless loop for tasks bypassed by the oom killer */
2667 if (passed_oom && task_is_dying())
2668 goto nomem;
2669
2670 /*
2671 * keep retrying as long as the memcg oom killer is able to make
2672 * a forward progress or bypass the charge if the oom killer
2673 * couldn't make any progress.
2674 */
2675 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2676 get_order(nr_pages * PAGE_SIZE))) {
2677 passed_oom = true;
2678 nr_retries = MAX_RECLAIM_RETRIES;
2679 goto retry;
2680 }
2681nomem:
2682 /*
2683 * Memcg doesn't have a dedicated reserve for atomic
2684 * allocations. But like the global atomic pool, we need to
2685 * put the burden of reclaim on regular allocation requests
2686 * and let these go through as privileged allocations.
2687 */
2688 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2689 return -ENOMEM;
2690force:
2691 /*
2692 * If the allocation has to be enforced, don't forget to raise
2693 * a MEMCG_MAX event.
2694 */
2695 if (!raised_max_event)
2696 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2697
2698 /*
2699 * The allocation either can't fail or will lead to more memory
2700 * being freed very soon. Allow memory usage go over the limit
2701 * temporarily by force charging it.
2702 */
2703 page_counter_charge(&memcg->memory, nr_pages);
2704 if (do_memsw_account())
2705 page_counter_charge(&memcg->memsw, nr_pages);
2706
2707 return 0;
2708
2709done_restock:
2710 if (batch > nr_pages)
2711 refill_stock(memcg, batch - nr_pages);
2712
2713 /*
2714 * If the hierarchy is above the normal consumption range, schedule
2715 * reclaim on returning to userland. We can perform reclaim here
2716 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2717 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2718 * not recorded as it most likely matches current's and won't
2719 * change in the meantime. As high limit is checked again before
2720 * reclaim, the cost of mismatch is negligible.
2721 */
2722 do {
2723 bool mem_high, swap_high;
2724
2725 mem_high = page_counter_read(&memcg->memory) >
2726 READ_ONCE(memcg->memory.high);
2727 swap_high = page_counter_read(&memcg->swap) >
2728 READ_ONCE(memcg->swap.high);
2729
2730 /* Don't bother a random interrupted task */
2731 if (!in_task()) {
2732 if (mem_high) {
2733 schedule_work(&memcg->high_work);
2734 break;
2735 }
2736 continue;
2737 }
2738
2739 if (mem_high || swap_high) {
2740 /*
2741 * The allocating tasks in this cgroup will need to do
2742 * reclaim or be throttled to prevent further growth
2743 * of the memory or swap footprints.
2744 *
2745 * Target some best-effort fairness between the tasks,
2746 * and distribute reclaim work and delay penalties
2747 * based on how much each task is actually allocating.
2748 */
2749 current->memcg_nr_pages_over_high += batch;
2750 set_notify_resume(current);
2751 break;
2752 }
2753 } while ((memcg = parent_mem_cgroup(memcg)));
2754
2755 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2756 !(current->flags & PF_MEMALLOC) &&
2757 gfpflags_allow_blocking(gfp_mask)) {
2758 mem_cgroup_handle_over_high();
2759 }
2760 return 0;
2761}
2762
2763static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2764 unsigned int nr_pages)
2765{
2766 if (mem_cgroup_is_root(memcg))
2767 return 0;
2768
2769 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2770}
2771
2772static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2773{
2774 if (mem_cgroup_is_root(memcg))
2775 return;
2776
2777 page_counter_uncharge(&memcg->memory, nr_pages);
2778 if (do_memsw_account())
2779 page_counter_uncharge(&memcg->memsw, nr_pages);
2780}
2781
2782static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2783{
2784 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2785 /*
2786 * Any of the following ensures page's memcg stability:
2787 *
2788 * - the page lock
2789 * - LRU isolation
2790 * - lock_page_memcg()
2791 * - exclusive reference
2792 */
2793 folio->memcg_data = (unsigned long)memcg;
2794}
2795
2796#ifdef CONFIG_MEMCG_KMEM
2797/*
2798 * The allocated objcg pointers array is not accounted directly.
2799 * Moreover, it should not come from DMA buffer and is not readily
2800 * reclaimable. So those GFP bits should be masked off.
2801 */
2802#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2803
2804/*
2805 * mod_objcg_mlstate() may be called with irq enabled, so
2806 * mod_memcg_lruvec_state() should be used.
2807 */
2808static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2809 struct pglist_data *pgdat,
2810 enum node_stat_item idx, int nr)
2811{
2812 struct mem_cgroup *memcg;
2813 struct lruvec *lruvec;
2814
2815 rcu_read_lock();
2816 memcg = obj_cgroup_memcg(objcg);
2817 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2818 mod_memcg_lruvec_state(lruvec, idx, nr);
2819 rcu_read_unlock();
2820}
2821
2822int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2823 gfp_t gfp, bool new_slab)
2824{
2825 unsigned int objects = objs_per_slab(s, slab);
2826 unsigned long memcg_data;
2827 void *vec;
2828
2829 gfp &= ~OBJCGS_CLEAR_MASK;
2830 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2831 slab_nid(slab));
2832 if (!vec)
2833 return -ENOMEM;
2834
2835 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2836 if (new_slab) {
2837 /*
2838 * If the slab is brand new and nobody can yet access its
2839 * memcg_data, no synchronization is required and memcg_data can
2840 * be simply assigned.
2841 */
2842 slab->memcg_data = memcg_data;
2843 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2844 /*
2845 * If the slab is already in use, somebody can allocate and
2846 * assign obj_cgroups in parallel. In this case the existing
2847 * objcg vector should be reused.
2848 */
2849 kfree(vec);
2850 return 0;
2851 }
2852
2853 kmemleak_not_leak(vec);
2854 return 0;
2855}
2856
2857static __always_inline
2858struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2859{
2860 /*
2861 * Slab objects are accounted individually, not per-page.
2862 * Memcg membership data for each individual object is saved in
2863 * slab->memcg_data.
2864 */
2865 if (folio_test_slab(folio)) {
2866 struct obj_cgroup **objcgs;
2867 struct slab *slab;
2868 unsigned int off;
2869
2870 slab = folio_slab(folio);
2871 objcgs = slab_objcgs(slab);
2872 if (!objcgs)
2873 return NULL;
2874
2875 off = obj_to_index(slab->slab_cache, slab, p);
2876 if (objcgs[off])
2877 return obj_cgroup_memcg(objcgs[off]);
2878
2879 return NULL;
2880 }
2881
2882 /*
2883 * page_memcg_check() is used here, because in theory we can encounter
2884 * a folio where the slab flag has been cleared already, but
2885 * slab->memcg_data has not been freed yet
2886 * page_memcg_check(page) will guarantee that a proper memory
2887 * cgroup pointer or NULL will be returned.
2888 */
2889 return page_memcg_check(folio_page(folio, 0));
2890}
2891
2892/*
2893 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2894 *
2895 * A passed kernel object can be a slab object, vmalloc object or a generic
2896 * kernel page, so different mechanisms for getting the memory cgroup pointer
2897 * should be used.
2898 *
2899 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2900 * can not know for sure how the kernel object is implemented.
2901 * mem_cgroup_from_obj() can be safely used in such cases.
2902 *
2903 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2904 * cgroup_mutex, etc.
2905 */
2906struct mem_cgroup *mem_cgroup_from_obj(void *p)
2907{
2908 struct folio *folio;
2909
2910 if (mem_cgroup_disabled())
2911 return NULL;
2912
2913 if (unlikely(is_vmalloc_addr(p)))
2914 folio = page_folio(vmalloc_to_page(p));
2915 else
2916 folio = virt_to_folio(p);
2917
2918 return mem_cgroup_from_obj_folio(folio, p);
2919}
2920
2921/*
2922 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2923 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2924 * allocated using vmalloc().
2925 *
2926 * A passed kernel object must be a slab object or a generic kernel page.
2927 *
2928 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2929 * cgroup_mutex, etc.
2930 */
2931struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2932{
2933 if (mem_cgroup_disabled())
2934 return NULL;
2935
2936 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2937}
2938
2939static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2940{
2941 struct obj_cgroup *objcg = NULL;
2942
2943 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2944 objcg = rcu_dereference(memcg->objcg);
2945 if (objcg && obj_cgroup_tryget(objcg))
2946 break;
2947 objcg = NULL;
2948 }
2949 return objcg;
2950}
2951
2952__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2953{
2954 struct obj_cgroup *objcg = NULL;
2955 struct mem_cgroup *memcg;
2956
2957 if (memcg_kmem_bypass())
2958 return NULL;
2959
2960 rcu_read_lock();
2961 if (unlikely(active_memcg()))
2962 memcg = active_memcg();
2963 else
2964 memcg = mem_cgroup_from_task(current);
2965 objcg = __get_obj_cgroup_from_memcg(memcg);
2966 rcu_read_unlock();
2967 return objcg;
2968}
2969
2970struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
2971{
2972 struct obj_cgroup *objcg;
2973
2974 if (!memcg_kmem_enabled() || memcg_kmem_bypass())
2975 return NULL;
2976
2977 if (PageMemcgKmem(page)) {
2978 objcg = __folio_objcg(page_folio(page));
2979 obj_cgroup_get(objcg);
2980 } else {
2981 struct mem_cgroup *memcg;
2982
2983 rcu_read_lock();
2984 memcg = __folio_memcg(page_folio(page));
2985 if (memcg)
2986 objcg = __get_obj_cgroup_from_memcg(memcg);
2987 else
2988 objcg = NULL;
2989 rcu_read_unlock();
2990 }
2991 return objcg;
2992}
2993
2994static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2995{
2996 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2997 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2998 if (nr_pages > 0)
2999 page_counter_charge(&memcg->kmem, nr_pages);
3000 else
3001 page_counter_uncharge(&memcg->kmem, -nr_pages);
3002 }
3003}
3004
3005
3006/*
3007 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3008 * @objcg: object cgroup to uncharge
3009 * @nr_pages: number of pages to uncharge
3010 */
3011static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3012 unsigned int nr_pages)
3013{
3014 struct mem_cgroup *memcg;
3015
3016 memcg = get_mem_cgroup_from_objcg(objcg);
3017
3018 memcg_account_kmem(memcg, -nr_pages);
3019 refill_stock(memcg, nr_pages);
3020
3021 css_put(&memcg->css);
3022}
3023
3024/*
3025 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3026 * @objcg: object cgroup to charge
3027 * @gfp: reclaim mode
3028 * @nr_pages: number of pages to charge
3029 *
3030 * Returns 0 on success, an error code on failure.
3031 */
3032static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3033 unsigned int nr_pages)
3034{
3035 struct mem_cgroup *memcg;
3036 int ret;
3037
3038 memcg = get_mem_cgroup_from_objcg(objcg);
3039
3040 ret = try_charge_memcg(memcg, gfp, nr_pages);
3041 if (ret)
3042 goto out;
3043
3044 memcg_account_kmem(memcg, nr_pages);
3045out:
3046 css_put(&memcg->css);
3047
3048 return ret;
3049}
3050
3051/**
3052 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3053 * @page: page to charge
3054 * @gfp: reclaim mode
3055 * @order: allocation order
3056 *
3057 * Returns 0 on success, an error code on failure.
3058 */
3059int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3060{
3061 struct obj_cgroup *objcg;
3062 int ret = 0;
3063
3064 objcg = get_obj_cgroup_from_current();
3065 if (objcg) {
3066 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3067 if (!ret) {
3068 page->memcg_data = (unsigned long)objcg |
3069 MEMCG_DATA_KMEM;
3070 return 0;
3071 }
3072 obj_cgroup_put(objcg);
3073 }
3074 return ret;
3075}
3076
3077/**
3078 * __memcg_kmem_uncharge_page: uncharge a kmem page
3079 * @page: page to uncharge
3080 * @order: allocation order
3081 */
3082void __memcg_kmem_uncharge_page(struct page *page, int order)
3083{
3084 struct folio *folio = page_folio(page);
3085 struct obj_cgroup *objcg;
3086 unsigned int nr_pages = 1 << order;
3087
3088 if (!folio_memcg_kmem(folio))
3089 return;
3090
3091 objcg = __folio_objcg(folio);
3092 obj_cgroup_uncharge_pages(objcg, nr_pages);
3093 folio->memcg_data = 0;
3094 obj_cgroup_put(objcg);
3095}
3096
3097void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3098 enum node_stat_item idx, int nr)
3099{
3100 struct memcg_stock_pcp *stock;
3101 struct obj_cgroup *old = NULL;
3102 unsigned long flags;
3103 int *bytes;
3104
3105 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3106 stock = this_cpu_ptr(&memcg_stock);
3107
3108 /*
3109 * Save vmstat data in stock and skip vmstat array update unless
3110 * accumulating over a page of vmstat data or when pgdat or idx
3111 * changes.
3112 */
3113 if (stock->cached_objcg != objcg) {
3114 old = drain_obj_stock(stock);
3115 obj_cgroup_get(objcg);
3116 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3117 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3118 stock->cached_objcg = objcg;
3119 stock->cached_pgdat = pgdat;
3120 } else if (stock->cached_pgdat != pgdat) {
3121 /* Flush the existing cached vmstat data */
3122 struct pglist_data *oldpg = stock->cached_pgdat;
3123
3124 if (stock->nr_slab_reclaimable_b) {
3125 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3126 stock->nr_slab_reclaimable_b);
3127 stock->nr_slab_reclaimable_b = 0;
3128 }
3129 if (stock->nr_slab_unreclaimable_b) {
3130 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3131 stock->nr_slab_unreclaimable_b);
3132 stock->nr_slab_unreclaimable_b = 0;
3133 }
3134 stock->cached_pgdat = pgdat;
3135 }
3136
3137 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3138 : &stock->nr_slab_unreclaimable_b;
3139 /*
3140 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3141 * cached locally at least once before pushing it out.
3142 */
3143 if (!*bytes) {
3144 *bytes = nr;
3145 nr = 0;
3146 } else {
3147 *bytes += nr;
3148 if (abs(*bytes) > PAGE_SIZE) {
3149 nr = *bytes;
3150 *bytes = 0;
3151 } else {
3152 nr = 0;
3153 }
3154 }
3155 if (nr)
3156 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3157
3158 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3159 if (old)
3160 obj_cgroup_put(old);
3161}
3162
3163static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3164{
3165 struct memcg_stock_pcp *stock;
3166 unsigned long flags;
3167 bool ret = false;
3168
3169 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3170
3171 stock = this_cpu_ptr(&memcg_stock);
3172 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3173 stock->nr_bytes -= nr_bytes;
3174 ret = true;
3175 }
3176
3177 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3178
3179 return ret;
3180}
3181
3182static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3183{
3184 struct obj_cgroup *old = stock->cached_objcg;
3185
3186 if (!old)
3187 return NULL;
3188
3189 if (stock->nr_bytes) {
3190 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3191 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3192
3193 if (nr_pages) {
3194 struct mem_cgroup *memcg;
3195
3196 memcg = get_mem_cgroup_from_objcg(old);
3197
3198 memcg_account_kmem(memcg, -nr_pages);
3199 __refill_stock(memcg, nr_pages);
3200
3201 css_put(&memcg->css);
3202 }
3203
3204 /*
3205 * The leftover is flushed to the centralized per-memcg value.
3206 * On the next attempt to refill obj stock it will be moved
3207 * to a per-cpu stock (probably, on an other CPU), see
3208 * refill_obj_stock().
3209 *
3210 * How often it's flushed is a trade-off between the memory
3211 * limit enforcement accuracy and potential CPU contention,
3212 * so it might be changed in the future.
3213 */
3214 atomic_add(nr_bytes, &old->nr_charged_bytes);
3215 stock->nr_bytes = 0;
3216 }
3217
3218 /*
3219 * Flush the vmstat data in current stock
3220 */
3221 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3222 if (stock->nr_slab_reclaimable_b) {
3223 mod_objcg_mlstate(old, stock->cached_pgdat,
3224 NR_SLAB_RECLAIMABLE_B,
3225 stock->nr_slab_reclaimable_b);
3226 stock->nr_slab_reclaimable_b = 0;
3227 }
3228 if (stock->nr_slab_unreclaimable_b) {
3229 mod_objcg_mlstate(old, stock->cached_pgdat,
3230 NR_SLAB_UNRECLAIMABLE_B,
3231 stock->nr_slab_unreclaimable_b);
3232 stock->nr_slab_unreclaimable_b = 0;
3233 }
3234 stock->cached_pgdat = NULL;
3235 }
3236
3237 stock->cached_objcg = NULL;
3238 /*
3239 * The `old' objects needs to be released by the caller via
3240 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3241 */
3242 return old;
3243}
3244
3245static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3246 struct mem_cgroup *root_memcg)
3247{
3248 struct mem_cgroup *memcg;
3249
3250 if (stock->cached_objcg) {
3251 memcg = obj_cgroup_memcg(stock->cached_objcg);
3252 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3253 return true;
3254 }
3255
3256 return false;
3257}
3258
3259static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3260 bool allow_uncharge)
3261{
3262 struct memcg_stock_pcp *stock;
3263 struct obj_cgroup *old = NULL;
3264 unsigned long flags;
3265 unsigned int nr_pages = 0;
3266
3267 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3268
3269 stock = this_cpu_ptr(&memcg_stock);
3270 if (stock->cached_objcg != objcg) { /* reset if necessary */
3271 old = drain_obj_stock(stock);
3272 obj_cgroup_get(objcg);
3273 stock->cached_objcg = objcg;
3274 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3275 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3276 allow_uncharge = true; /* Allow uncharge when objcg changes */
3277 }
3278 stock->nr_bytes += nr_bytes;
3279
3280 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3281 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3282 stock->nr_bytes &= (PAGE_SIZE - 1);
3283 }
3284
3285 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3286 if (old)
3287 obj_cgroup_put(old);
3288
3289 if (nr_pages)
3290 obj_cgroup_uncharge_pages(objcg, nr_pages);
3291}
3292
3293int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3294{
3295 unsigned int nr_pages, nr_bytes;
3296 int ret;
3297
3298 if (consume_obj_stock(objcg, size))
3299 return 0;
3300
3301 /*
3302 * In theory, objcg->nr_charged_bytes can have enough
3303 * pre-charged bytes to satisfy the allocation. However,
3304 * flushing objcg->nr_charged_bytes requires two atomic
3305 * operations, and objcg->nr_charged_bytes can't be big.
3306 * The shared objcg->nr_charged_bytes can also become a
3307 * performance bottleneck if all tasks of the same memcg are
3308 * trying to update it. So it's better to ignore it and try
3309 * grab some new pages. The stock's nr_bytes will be flushed to
3310 * objcg->nr_charged_bytes later on when objcg changes.
3311 *
3312 * The stock's nr_bytes may contain enough pre-charged bytes
3313 * to allow one less page from being charged, but we can't rely
3314 * on the pre-charged bytes not being changed outside of
3315 * consume_obj_stock() or refill_obj_stock(). So ignore those
3316 * pre-charged bytes as well when charging pages. To avoid a
3317 * page uncharge right after a page charge, we set the
3318 * allow_uncharge flag to false when calling refill_obj_stock()
3319 * to temporarily allow the pre-charged bytes to exceed the page
3320 * size limit. The maximum reachable value of the pre-charged
3321 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3322 * race.
3323 */
3324 nr_pages = size >> PAGE_SHIFT;
3325 nr_bytes = size & (PAGE_SIZE - 1);
3326
3327 if (nr_bytes)
3328 nr_pages += 1;
3329
3330 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3331 if (!ret && nr_bytes)
3332 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3333
3334 return ret;
3335}
3336
3337void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3338{
3339 refill_obj_stock(objcg, size, true);
3340}
3341
3342#endif /* CONFIG_MEMCG_KMEM */
3343
3344/*
3345 * Because page_memcg(head) is not set on tails, set it now.
3346 */
3347void split_page_memcg(struct page *head, unsigned int nr)
3348{
3349 struct folio *folio = page_folio(head);
3350 struct mem_cgroup *memcg = folio_memcg(folio);
3351 int i;
3352
3353 if (mem_cgroup_disabled() || !memcg)
3354 return;
3355
3356 for (i = 1; i < nr; i++)
3357 folio_page(folio, i)->memcg_data = folio->memcg_data;
3358
3359 if (folio_memcg_kmem(folio))
3360 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3361 else
3362 css_get_many(&memcg->css, nr - 1);
3363}
3364
3365#ifdef CONFIG_MEMCG_SWAP
3366/**
3367 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3368 * @entry: swap entry to be moved
3369 * @from: mem_cgroup which the entry is moved from
3370 * @to: mem_cgroup which the entry is moved to
3371 *
3372 * It succeeds only when the swap_cgroup's record for this entry is the same
3373 * as the mem_cgroup's id of @from.
3374 *
3375 * Returns 0 on success, -EINVAL on failure.
3376 *
3377 * The caller must have charged to @to, IOW, called page_counter_charge() about
3378 * both res and memsw, and called css_get().
3379 */
3380static int mem_cgroup_move_swap_account(swp_entry_t entry,
3381 struct mem_cgroup *from, struct mem_cgroup *to)
3382{
3383 unsigned short old_id, new_id;
3384
3385 old_id = mem_cgroup_id(from);
3386 new_id = mem_cgroup_id(to);
3387
3388 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3389 mod_memcg_state(from, MEMCG_SWAP, -1);
3390 mod_memcg_state(to, MEMCG_SWAP, 1);
3391 return 0;
3392 }
3393 return -EINVAL;
3394}
3395#else
3396static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3397 struct mem_cgroup *from, struct mem_cgroup *to)
3398{
3399 return -EINVAL;
3400}
3401#endif
3402
3403static DEFINE_MUTEX(memcg_max_mutex);
3404
3405static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3406 unsigned long max, bool memsw)
3407{
3408 bool enlarge = false;
3409 bool drained = false;
3410 int ret;
3411 bool limits_invariant;
3412 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3413
3414 do {
3415 if (signal_pending(current)) {
3416 ret = -EINTR;
3417 break;
3418 }
3419
3420 mutex_lock(&memcg_max_mutex);
3421 /*
3422 * Make sure that the new limit (memsw or memory limit) doesn't
3423 * break our basic invariant rule memory.max <= memsw.max.
3424 */
3425 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3426 max <= memcg->memsw.max;
3427 if (!limits_invariant) {
3428 mutex_unlock(&memcg_max_mutex);
3429 ret = -EINVAL;
3430 break;
3431 }
3432 if (max > counter->max)
3433 enlarge = true;
3434 ret = page_counter_set_max(counter, max);
3435 mutex_unlock(&memcg_max_mutex);
3436
3437 if (!ret)
3438 break;
3439
3440 if (!drained) {
3441 drain_all_stock(memcg);
3442 drained = true;
3443 continue;
3444 }
3445
3446 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3447 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3448 ret = -EBUSY;
3449 break;
3450 }
3451 } while (true);
3452
3453 if (!ret && enlarge)
3454 memcg_oom_recover(memcg);
3455
3456 return ret;
3457}
3458
3459unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3460 gfp_t gfp_mask,
3461 unsigned long *total_scanned)
3462{
3463 unsigned long nr_reclaimed = 0;
3464 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3465 unsigned long reclaimed;
3466 int loop = 0;
3467 struct mem_cgroup_tree_per_node *mctz;
3468 unsigned long excess;
3469
3470 if (order > 0)
3471 return 0;
3472
3473 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3474
3475 /*
3476 * Do not even bother to check the largest node if the root
3477 * is empty. Do it lockless to prevent lock bouncing. Races
3478 * are acceptable as soft limit is best effort anyway.
3479 */
3480 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3481 return 0;
3482
3483 /*
3484 * This loop can run a while, specially if mem_cgroup's continuously
3485 * keep exceeding their soft limit and putting the system under
3486 * pressure
3487 */
3488 do {
3489 if (next_mz)
3490 mz = next_mz;
3491 else
3492 mz = mem_cgroup_largest_soft_limit_node(mctz);
3493 if (!mz)
3494 break;
3495
3496 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3497 gfp_mask, total_scanned);
3498 nr_reclaimed += reclaimed;
3499 spin_lock_irq(&mctz->lock);
3500
3501 /*
3502 * If we failed to reclaim anything from this memory cgroup
3503 * it is time to move on to the next cgroup
3504 */
3505 next_mz = NULL;
3506 if (!reclaimed)
3507 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3508
3509 excess = soft_limit_excess(mz->memcg);
3510 /*
3511 * One school of thought says that we should not add
3512 * back the node to the tree if reclaim returns 0.
3513 * But our reclaim could return 0, simply because due
3514 * to priority we are exposing a smaller subset of
3515 * memory to reclaim from. Consider this as a longer
3516 * term TODO.
3517 */
3518 /* If excess == 0, no tree ops */
3519 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3520 spin_unlock_irq(&mctz->lock);
3521 css_put(&mz->memcg->css);
3522 loop++;
3523 /*
3524 * Could not reclaim anything and there are no more
3525 * mem cgroups to try or we seem to be looping without
3526 * reclaiming anything.
3527 */
3528 if (!nr_reclaimed &&
3529 (next_mz == NULL ||
3530 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3531 break;
3532 } while (!nr_reclaimed);
3533 if (next_mz)
3534 css_put(&next_mz->memcg->css);
3535 return nr_reclaimed;
3536}
3537
3538/*
3539 * Reclaims as many pages from the given memcg as possible.
3540 *
3541 * Caller is responsible for holding css reference for memcg.
3542 */
3543static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3544{
3545 int nr_retries = MAX_RECLAIM_RETRIES;
3546
3547 /* we call try-to-free pages for make this cgroup empty */
3548 lru_add_drain_all();
3549
3550 drain_all_stock(memcg);
3551
3552 /* try to free all pages in this cgroup */
3553 while (nr_retries && page_counter_read(&memcg->memory)) {
3554 if (signal_pending(current))
3555 return -EINTR;
3556
3557 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3558 MEMCG_RECLAIM_MAY_SWAP))
3559 nr_retries--;
3560 }
3561
3562 return 0;
3563}
3564
3565static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3566 char *buf, size_t nbytes,
3567 loff_t off)
3568{
3569 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3570
3571 if (mem_cgroup_is_root(memcg))
3572 return -EINVAL;
3573 return mem_cgroup_force_empty(memcg) ?: nbytes;
3574}
3575
3576static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3577 struct cftype *cft)
3578{
3579 return 1;
3580}
3581
3582static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3583 struct cftype *cft, u64 val)
3584{
3585 if (val == 1)
3586 return 0;
3587
3588 pr_warn_once("Non-hierarchical mode is deprecated. "
3589 "Please report your usecase to linux-mm@kvack.org if you "
3590 "depend on this functionality.\n");
3591
3592 return -EINVAL;
3593}
3594
3595static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3596{
3597 unsigned long val;
3598
3599 if (mem_cgroup_is_root(memcg)) {
3600 mem_cgroup_flush_stats();
3601 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3602 memcg_page_state(memcg, NR_ANON_MAPPED);
3603 if (swap)
3604 val += memcg_page_state(memcg, MEMCG_SWAP);
3605 } else {
3606 if (!swap)
3607 val = page_counter_read(&memcg->memory);
3608 else
3609 val = page_counter_read(&memcg->memsw);
3610 }
3611 return val;
3612}
3613
3614enum {
3615 RES_USAGE,
3616 RES_LIMIT,
3617 RES_MAX_USAGE,
3618 RES_FAILCNT,
3619 RES_SOFT_LIMIT,
3620};
3621
3622static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3623 struct cftype *cft)
3624{
3625 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3626 struct page_counter *counter;
3627
3628 switch (MEMFILE_TYPE(cft->private)) {
3629 case _MEM:
3630 counter = &memcg->memory;
3631 break;
3632 case _MEMSWAP:
3633 counter = &memcg->memsw;
3634 break;
3635 case _KMEM:
3636 counter = &memcg->kmem;
3637 break;
3638 case _TCP:
3639 counter = &memcg->tcpmem;
3640 break;
3641 default:
3642 BUG();
3643 }
3644
3645 switch (MEMFILE_ATTR(cft->private)) {
3646 case RES_USAGE:
3647 if (counter == &memcg->memory)
3648 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3649 if (counter == &memcg->memsw)
3650 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3651 return (u64)page_counter_read(counter) * PAGE_SIZE;
3652 case RES_LIMIT:
3653 return (u64)counter->max * PAGE_SIZE;
3654 case RES_MAX_USAGE:
3655 return (u64)counter->watermark * PAGE_SIZE;
3656 case RES_FAILCNT:
3657 return counter->failcnt;
3658 case RES_SOFT_LIMIT:
3659 return (u64)memcg->soft_limit * PAGE_SIZE;
3660 default:
3661 BUG();
3662 }
3663}
3664
3665#ifdef CONFIG_MEMCG_KMEM
3666static int memcg_online_kmem(struct mem_cgroup *memcg)
3667{
3668 struct obj_cgroup *objcg;
3669
3670 if (mem_cgroup_kmem_disabled())
3671 return 0;
3672
3673 if (unlikely(mem_cgroup_is_root(memcg)))
3674 return 0;
3675
3676 objcg = obj_cgroup_alloc();
3677 if (!objcg)
3678 return -ENOMEM;
3679
3680 objcg->memcg = memcg;
3681 rcu_assign_pointer(memcg->objcg, objcg);
3682
3683 static_branch_enable(&memcg_kmem_enabled_key);
3684
3685 memcg->kmemcg_id = memcg->id.id;
3686
3687 return 0;
3688}
3689
3690static void memcg_offline_kmem(struct mem_cgroup *memcg)
3691{
3692 struct mem_cgroup *parent;
3693
3694 if (mem_cgroup_kmem_disabled())
3695 return;
3696
3697 if (unlikely(mem_cgroup_is_root(memcg)))
3698 return;
3699
3700 parent = parent_mem_cgroup(memcg);
3701 if (!parent)
3702 parent = root_mem_cgroup;
3703
3704 memcg_reparent_objcgs(memcg, parent);
3705
3706 /*
3707 * After we have finished memcg_reparent_objcgs(), all list_lrus
3708 * corresponding to this cgroup are guaranteed to remain empty.
3709 * The ordering is imposed by list_lru_node->lock taken by
3710 * memcg_reparent_list_lrus().
3711 */
3712 memcg_reparent_list_lrus(memcg, parent);
3713}
3714#else
3715static int memcg_online_kmem(struct mem_cgroup *memcg)
3716{
3717 return 0;
3718}
3719static void memcg_offline_kmem(struct mem_cgroup *memcg)
3720{
3721}
3722#endif /* CONFIG_MEMCG_KMEM */
3723
3724static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3725{
3726 int ret;
3727
3728 mutex_lock(&memcg_max_mutex);
3729
3730 ret = page_counter_set_max(&memcg->tcpmem, max);
3731 if (ret)
3732 goto out;
3733
3734 if (!memcg->tcpmem_active) {
3735 /*
3736 * The active flag needs to be written after the static_key
3737 * update. This is what guarantees that the socket activation
3738 * function is the last one to run. See mem_cgroup_sk_alloc()
3739 * for details, and note that we don't mark any socket as
3740 * belonging to this memcg until that flag is up.
3741 *
3742 * We need to do this, because static_keys will span multiple
3743 * sites, but we can't control their order. If we mark a socket
3744 * as accounted, but the accounting functions are not patched in
3745 * yet, we'll lose accounting.
3746 *
3747 * We never race with the readers in mem_cgroup_sk_alloc(),
3748 * because when this value change, the code to process it is not
3749 * patched in yet.
3750 */
3751 static_branch_inc(&memcg_sockets_enabled_key);
3752 memcg->tcpmem_active = true;
3753 }
3754out:
3755 mutex_unlock(&memcg_max_mutex);
3756 return ret;
3757}
3758
3759/*
3760 * The user of this function is...
3761 * RES_LIMIT.
3762 */
3763static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3764 char *buf, size_t nbytes, loff_t off)
3765{
3766 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3767 unsigned long nr_pages;
3768 int ret;
3769
3770 buf = strstrip(buf);
3771 ret = page_counter_memparse(buf, "-1", &nr_pages);
3772 if (ret)
3773 return ret;
3774
3775 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3776 case RES_LIMIT:
3777 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3778 ret = -EINVAL;
3779 break;
3780 }
3781 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3782 case _MEM:
3783 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3784 break;
3785 case _MEMSWAP:
3786 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3787 break;
3788 case _KMEM:
3789 /* kmem.limit_in_bytes is deprecated. */
3790 ret = -EOPNOTSUPP;
3791 break;
3792 case _TCP:
3793 ret = memcg_update_tcp_max(memcg, nr_pages);
3794 break;
3795 }
3796 break;
3797 case RES_SOFT_LIMIT:
3798 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3799 ret = -EOPNOTSUPP;
3800 } else {
3801 memcg->soft_limit = nr_pages;
3802 ret = 0;
3803 }
3804 break;
3805 }
3806 return ret ?: nbytes;
3807}
3808
3809static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3810 size_t nbytes, loff_t off)
3811{
3812 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3813 struct page_counter *counter;
3814
3815 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3816 case _MEM:
3817 counter = &memcg->memory;
3818 break;
3819 case _MEMSWAP:
3820 counter = &memcg->memsw;
3821 break;
3822 case _KMEM:
3823 counter = &memcg->kmem;
3824 break;
3825 case _TCP:
3826 counter = &memcg->tcpmem;
3827 break;
3828 default:
3829 BUG();
3830 }
3831
3832 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3833 case RES_MAX_USAGE:
3834 page_counter_reset_watermark(counter);
3835 break;
3836 case RES_FAILCNT:
3837 counter->failcnt = 0;
3838 break;
3839 default:
3840 BUG();
3841 }
3842
3843 return nbytes;
3844}
3845
3846static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3847 struct cftype *cft)
3848{
3849 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3850}
3851
3852#ifdef CONFIG_MMU
3853static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3854 struct cftype *cft, u64 val)
3855{
3856 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3857
3858 if (val & ~MOVE_MASK)
3859 return -EINVAL;
3860
3861 /*
3862 * No kind of locking is needed in here, because ->can_attach() will
3863 * check this value once in the beginning of the process, and then carry
3864 * on with stale data. This means that changes to this value will only
3865 * affect task migrations starting after the change.
3866 */
3867 memcg->move_charge_at_immigrate = val;
3868 return 0;
3869}
3870#else
3871static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3872 struct cftype *cft, u64 val)
3873{
3874 return -ENOSYS;
3875}
3876#endif
3877
3878#ifdef CONFIG_NUMA
3879
3880#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3881#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3882#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3883
3884static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3885 int nid, unsigned int lru_mask, bool tree)
3886{
3887 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3888 unsigned long nr = 0;
3889 enum lru_list lru;
3890
3891 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3892
3893 for_each_lru(lru) {
3894 if (!(BIT(lru) & lru_mask))
3895 continue;
3896 if (tree)
3897 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3898 else
3899 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3900 }
3901 return nr;
3902}
3903
3904static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3905 unsigned int lru_mask,
3906 bool tree)
3907{
3908 unsigned long nr = 0;
3909 enum lru_list lru;
3910
3911 for_each_lru(lru) {
3912 if (!(BIT(lru) & lru_mask))
3913 continue;
3914 if (tree)
3915 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3916 else
3917 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3918 }
3919 return nr;
3920}
3921
3922static int memcg_numa_stat_show(struct seq_file *m, void *v)
3923{
3924 struct numa_stat {
3925 const char *name;
3926 unsigned int lru_mask;
3927 };
3928
3929 static const struct numa_stat stats[] = {
3930 { "total", LRU_ALL },
3931 { "file", LRU_ALL_FILE },
3932 { "anon", LRU_ALL_ANON },
3933 { "unevictable", BIT(LRU_UNEVICTABLE) },
3934 };
3935 const struct numa_stat *stat;
3936 int nid;
3937 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3938
3939 mem_cgroup_flush_stats();
3940
3941 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3942 seq_printf(m, "%s=%lu", stat->name,
3943 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3944 false));
3945 for_each_node_state(nid, N_MEMORY)
3946 seq_printf(m, " N%d=%lu", nid,
3947 mem_cgroup_node_nr_lru_pages(memcg, nid,
3948 stat->lru_mask, false));
3949 seq_putc(m, '\n');
3950 }
3951
3952 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3953
3954 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3955 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3956 true));
3957 for_each_node_state(nid, N_MEMORY)
3958 seq_printf(m, " N%d=%lu", nid,
3959 mem_cgroup_node_nr_lru_pages(memcg, nid,
3960 stat->lru_mask, true));
3961 seq_putc(m, '\n');
3962 }
3963
3964 return 0;
3965}
3966#endif /* CONFIG_NUMA */
3967
3968static const unsigned int memcg1_stats[] = {
3969 NR_FILE_PAGES,
3970 NR_ANON_MAPPED,
3971#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3972 NR_ANON_THPS,
3973#endif
3974 NR_SHMEM,
3975 NR_FILE_MAPPED,
3976 NR_FILE_DIRTY,
3977 NR_WRITEBACK,
3978 MEMCG_SWAP,
3979};
3980
3981static const char *const memcg1_stat_names[] = {
3982 "cache",
3983 "rss",
3984#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3985 "rss_huge",
3986#endif
3987 "shmem",
3988 "mapped_file",
3989 "dirty",
3990 "writeback",
3991 "swap",
3992};
3993
3994/* Universal VM events cgroup1 shows, original sort order */
3995static const unsigned int memcg1_events[] = {
3996 PGPGIN,
3997 PGPGOUT,
3998 PGFAULT,
3999 PGMAJFAULT,
4000};
4001
4002static int memcg_stat_show(struct seq_file *m, void *v)
4003{
4004 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4005 unsigned long memory, memsw;
4006 struct mem_cgroup *mi;
4007 unsigned int i;
4008
4009 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4010
4011 mem_cgroup_flush_stats();
4012
4013 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4014 unsigned long nr;
4015
4016 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4017 continue;
4018 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4019 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4020 }
4021
4022 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4023 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4024 memcg_events_local(memcg, memcg1_events[i]));
4025
4026 for (i = 0; i < NR_LRU_LISTS; i++)
4027 seq_printf(m, "%s %lu\n", lru_list_name(i),
4028 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4029 PAGE_SIZE);
4030
4031 /* Hierarchical information */
4032 memory = memsw = PAGE_COUNTER_MAX;
4033 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4034 memory = min(memory, READ_ONCE(mi->memory.max));
4035 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4036 }
4037 seq_printf(m, "hierarchical_memory_limit %llu\n",
4038 (u64)memory * PAGE_SIZE);
4039 if (do_memsw_account())
4040 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4041 (u64)memsw * PAGE_SIZE);
4042
4043 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4044 unsigned long nr;
4045
4046 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4047 continue;
4048 nr = memcg_page_state(memcg, memcg1_stats[i]);
4049 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4050 (u64)nr * PAGE_SIZE);
4051 }
4052
4053 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4054 seq_printf(m, "total_%s %llu\n",
4055 vm_event_name(memcg1_events[i]),
4056 (u64)memcg_events(memcg, memcg1_events[i]));
4057
4058 for (i = 0; i < NR_LRU_LISTS; i++)
4059 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4060 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4061 PAGE_SIZE);
4062
4063#ifdef CONFIG_DEBUG_VM
4064 {
4065 pg_data_t *pgdat;
4066 struct mem_cgroup_per_node *mz;
4067 unsigned long anon_cost = 0;
4068 unsigned long file_cost = 0;
4069
4070 for_each_online_pgdat(pgdat) {
4071 mz = memcg->nodeinfo[pgdat->node_id];
4072
4073 anon_cost += mz->lruvec.anon_cost;
4074 file_cost += mz->lruvec.file_cost;
4075 }
4076 seq_printf(m, "anon_cost %lu\n", anon_cost);
4077 seq_printf(m, "file_cost %lu\n", file_cost);
4078 }
4079#endif
4080
4081 return 0;
4082}
4083
4084static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4085 struct cftype *cft)
4086{
4087 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4088
4089 return mem_cgroup_swappiness(memcg);
4090}
4091
4092static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4093 struct cftype *cft, u64 val)
4094{
4095 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4096
4097 if (val > 200)
4098 return -EINVAL;
4099
4100 if (!mem_cgroup_is_root(memcg))
4101 memcg->swappiness = val;
4102 else
4103 vm_swappiness = val;
4104
4105 return 0;
4106}
4107
4108static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4109{
4110 struct mem_cgroup_threshold_ary *t;
4111 unsigned long usage;
4112 int i;
4113
4114 rcu_read_lock();
4115 if (!swap)
4116 t = rcu_dereference(memcg->thresholds.primary);
4117 else
4118 t = rcu_dereference(memcg->memsw_thresholds.primary);
4119
4120 if (!t)
4121 goto unlock;
4122
4123 usage = mem_cgroup_usage(memcg, swap);
4124
4125 /*
4126 * current_threshold points to threshold just below or equal to usage.
4127 * If it's not true, a threshold was crossed after last
4128 * call of __mem_cgroup_threshold().
4129 */
4130 i = t->current_threshold;
4131
4132 /*
4133 * Iterate backward over array of thresholds starting from
4134 * current_threshold and check if a threshold is crossed.
4135 * If none of thresholds below usage is crossed, we read
4136 * only one element of the array here.
4137 */
4138 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4139 eventfd_signal(t->entries[i].eventfd, 1);
4140
4141 /* i = current_threshold + 1 */
4142 i++;
4143
4144 /*
4145 * Iterate forward over array of thresholds starting from
4146 * current_threshold+1 and check if a threshold is crossed.
4147 * If none of thresholds above usage is crossed, we read
4148 * only one element of the array here.
4149 */
4150 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4151 eventfd_signal(t->entries[i].eventfd, 1);
4152
4153 /* Update current_threshold */
4154 t->current_threshold = i - 1;
4155unlock:
4156 rcu_read_unlock();
4157}
4158
4159static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4160{
4161 while (memcg) {
4162 __mem_cgroup_threshold(memcg, false);
4163 if (do_memsw_account())
4164 __mem_cgroup_threshold(memcg, true);
4165
4166 memcg = parent_mem_cgroup(memcg);
4167 }
4168}
4169
4170static int compare_thresholds(const void *a, const void *b)
4171{
4172 const struct mem_cgroup_threshold *_a = a;
4173 const struct mem_cgroup_threshold *_b = b;
4174
4175 if (_a->threshold > _b->threshold)
4176 return 1;
4177
4178 if (_a->threshold < _b->threshold)
4179 return -1;
4180
4181 return 0;
4182}
4183
4184static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4185{
4186 struct mem_cgroup_eventfd_list *ev;
4187
4188 spin_lock(&memcg_oom_lock);
4189
4190 list_for_each_entry(ev, &memcg->oom_notify, list)
4191 eventfd_signal(ev->eventfd, 1);
4192
4193 spin_unlock(&memcg_oom_lock);
4194 return 0;
4195}
4196
4197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4198{
4199 struct mem_cgroup *iter;
4200
4201 for_each_mem_cgroup_tree(iter, memcg)
4202 mem_cgroup_oom_notify_cb(iter);
4203}
4204
4205static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4206 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4207{
4208 struct mem_cgroup_thresholds *thresholds;
4209 struct mem_cgroup_threshold_ary *new;
4210 unsigned long threshold;
4211 unsigned long usage;
4212 int i, size, ret;
4213
4214 ret = page_counter_memparse(args, "-1", &threshold);
4215 if (ret)
4216 return ret;
4217
4218 mutex_lock(&memcg->thresholds_lock);
4219
4220 if (type == _MEM) {
4221 thresholds = &memcg->thresholds;
4222 usage = mem_cgroup_usage(memcg, false);
4223 } else if (type == _MEMSWAP) {
4224 thresholds = &memcg->memsw_thresholds;
4225 usage = mem_cgroup_usage(memcg, true);
4226 } else
4227 BUG();
4228
4229 /* Check if a threshold crossed before adding a new one */
4230 if (thresholds->primary)
4231 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4232
4233 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4234
4235 /* Allocate memory for new array of thresholds */
4236 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4237 if (!new) {
4238 ret = -ENOMEM;
4239 goto unlock;
4240 }
4241 new->size = size;
4242
4243 /* Copy thresholds (if any) to new array */
4244 if (thresholds->primary)
4245 memcpy(new->entries, thresholds->primary->entries,
4246 flex_array_size(new, entries, size - 1));
4247
4248 /* Add new threshold */
4249 new->entries[size - 1].eventfd = eventfd;
4250 new->entries[size - 1].threshold = threshold;
4251
4252 /* Sort thresholds. Registering of new threshold isn't time-critical */
4253 sort(new->entries, size, sizeof(*new->entries),
4254 compare_thresholds, NULL);
4255
4256 /* Find current threshold */
4257 new->current_threshold = -1;
4258 for (i = 0; i < size; i++) {
4259 if (new->entries[i].threshold <= usage) {
4260 /*
4261 * new->current_threshold will not be used until
4262 * rcu_assign_pointer(), so it's safe to increment
4263 * it here.
4264 */
4265 ++new->current_threshold;
4266 } else
4267 break;
4268 }
4269
4270 /* Free old spare buffer and save old primary buffer as spare */
4271 kfree(thresholds->spare);
4272 thresholds->spare = thresholds->primary;
4273
4274 rcu_assign_pointer(thresholds->primary, new);
4275
4276 /* To be sure that nobody uses thresholds */
4277 synchronize_rcu();
4278
4279unlock:
4280 mutex_unlock(&memcg->thresholds_lock);
4281
4282 return ret;
4283}
4284
4285static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4286 struct eventfd_ctx *eventfd, const char *args)
4287{
4288 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4289}
4290
4291static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4292 struct eventfd_ctx *eventfd, const char *args)
4293{
4294 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4295}
4296
4297static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4298 struct eventfd_ctx *eventfd, enum res_type type)
4299{
4300 struct mem_cgroup_thresholds *thresholds;
4301 struct mem_cgroup_threshold_ary *new;
4302 unsigned long usage;
4303 int i, j, size, entries;
4304
4305 mutex_lock(&memcg->thresholds_lock);
4306
4307 if (type == _MEM) {
4308 thresholds = &memcg->thresholds;
4309 usage = mem_cgroup_usage(memcg, false);
4310 } else if (type == _MEMSWAP) {
4311 thresholds = &memcg->memsw_thresholds;
4312 usage = mem_cgroup_usage(memcg, true);
4313 } else
4314 BUG();
4315
4316 if (!thresholds->primary)
4317 goto unlock;
4318
4319 /* Check if a threshold crossed before removing */
4320 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4321
4322 /* Calculate new number of threshold */
4323 size = entries = 0;
4324 for (i = 0; i < thresholds->primary->size; i++) {
4325 if (thresholds->primary->entries[i].eventfd != eventfd)
4326 size++;
4327 else
4328 entries++;
4329 }
4330
4331 new = thresholds->spare;
4332
4333 /* If no items related to eventfd have been cleared, nothing to do */
4334 if (!entries)
4335 goto unlock;
4336
4337 /* Set thresholds array to NULL if we don't have thresholds */
4338 if (!size) {
4339 kfree(new);
4340 new = NULL;
4341 goto swap_buffers;
4342 }
4343
4344 new->size = size;
4345
4346 /* Copy thresholds and find current threshold */
4347 new->current_threshold = -1;
4348 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4349 if (thresholds->primary->entries[i].eventfd == eventfd)
4350 continue;
4351
4352 new->entries[j] = thresholds->primary->entries[i];
4353 if (new->entries[j].threshold <= usage) {
4354 /*
4355 * new->current_threshold will not be used
4356 * until rcu_assign_pointer(), so it's safe to increment
4357 * it here.
4358 */
4359 ++new->current_threshold;
4360 }
4361 j++;
4362 }
4363
4364swap_buffers:
4365 /* Swap primary and spare array */
4366 thresholds->spare = thresholds->primary;
4367
4368 rcu_assign_pointer(thresholds->primary, new);
4369
4370 /* To be sure that nobody uses thresholds */
4371 synchronize_rcu();
4372
4373 /* If all events are unregistered, free the spare array */
4374 if (!new) {
4375 kfree(thresholds->spare);
4376 thresholds->spare = NULL;
4377 }
4378unlock:
4379 mutex_unlock(&memcg->thresholds_lock);
4380}
4381
4382static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4383 struct eventfd_ctx *eventfd)
4384{
4385 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4386}
4387
4388static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4389 struct eventfd_ctx *eventfd)
4390{
4391 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4392}
4393
4394static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4395 struct eventfd_ctx *eventfd, const char *args)
4396{
4397 struct mem_cgroup_eventfd_list *event;
4398
4399 event = kmalloc(sizeof(*event), GFP_KERNEL);
4400 if (!event)
4401 return -ENOMEM;
4402
4403 spin_lock(&memcg_oom_lock);
4404
4405 event->eventfd = eventfd;
4406 list_add(&event->list, &memcg->oom_notify);
4407
4408 /* already in OOM ? */
4409 if (memcg->under_oom)
4410 eventfd_signal(eventfd, 1);
4411 spin_unlock(&memcg_oom_lock);
4412
4413 return 0;
4414}
4415
4416static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4417 struct eventfd_ctx *eventfd)
4418{
4419 struct mem_cgroup_eventfd_list *ev, *tmp;
4420
4421 spin_lock(&memcg_oom_lock);
4422
4423 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4424 if (ev->eventfd == eventfd) {
4425 list_del(&ev->list);
4426 kfree(ev);
4427 }
4428 }
4429
4430 spin_unlock(&memcg_oom_lock);
4431}
4432
4433static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4434{
4435 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4436
4437 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4438 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4439 seq_printf(sf, "oom_kill %lu\n",
4440 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4441 return 0;
4442}
4443
4444static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4445 struct cftype *cft, u64 val)
4446{
4447 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4448
4449 /* cannot set to root cgroup and only 0 and 1 are allowed */
4450 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4451 return -EINVAL;
4452
4453 memcg->oom_kill_disable = val;
4454 if (!val)
4455 memcg_oom_recover(memcg);
4456
4457 return 0;
4458}
4459
4460#ifdef CONFIG_CGROUP_WRITEBACK
4461
4462#include <trace/events/writeback.h>
4463
4464static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4465{
4466 return wb_domain_init(&memcg->cgwb_domain, gfp);
4467}
4468
4469static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4470{
4471 wb_domain_exit(&memcg->cgwb_domain);
4472}
4473
4474static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4475{
4476 wb_domain_size_changed(&memcg->cgwb_domain);
4477}
4478
4479struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4480{
4481 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4482
4483 if (!memcg->css.parent)
4484 return NULL;
4485
4486 return &memcg->cgwb_domain;
4487}
4488
4489/**
4490 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4491 * @wb: bdi_writeback in question
4492 * @pfilepages: out parameter for number of file pages
4493 * @pheadroom: out parameter for number of allocatable pages according to memcg
4494 * @pdirty: out parameter for number of dirty pages
4495 * @pwriteback: out parameter for number of pages under writeback
4496 *
4497 * Determine the numbers of file, headroom, dirty, and writeback pages in
4498 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4499 * is a bit more involved.
4500 *
4501 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4502 * headroom is calculated as the lowest headroom of itself and the
4503 * ancestors. Note that this doesn't consider the actual amount of
4504 * available memory in the system. The caller should further cap
4505 * *@pheadroom accordingly.
4506 */
4507void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4508 unsigned long *pheadroom, unsigned long *pdirty,
4509 unsigned long *pwriteback)
4510{
4511 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4512 struct mem_cgroup *parent;
4513
4514 mem_cgroup_flush_stats();
4515
4516 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4517 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4518 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4519 memcg_page_state(memcg, NR_ACTIVE_FILE);
4520
4521 *pheadroom = PAGE_COUNTER_MAX;
4522 while ((parent = parent_mem_cgroup(memcg))) {
4523 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4524 READ_ONCE(memcg->memory.high));
4525 unsigned long used = page_counter_read(&memcg->memory);
4526
4527 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4528 memcg = parent;
4529 }
4530}
4531
4532/*
4533 * Foreign dirty flushing
4534 *
4535 * There's an inherent mismatch between memcg and writeback. The former
4536 * tracks ownership per-page while the latter per-inode. This was a
4537 * deliberate design decision because honoring per-page ownership in the
4538 * writeback path is complicated, may lead to higher CPU and IO overheads
4539 * and deemed unnecessary given that write-sharing an inode across
4540 * different cgroups isn't a common use-case.
4541 *
4542 * Combined with inode majority-writer ownership switching, this works well
4543 * enough in most cases but there are some pathological cases. For
4544 * example, let's say there are two cgroups A and B which keep writing to
4545 * different but confined parts of the same inode. B owns the inode and
4546 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4547 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4548 * triggering background writeback. A will be slowed down without a way to
4549 * make writeback of the dirty pages happen.
4550 *
4551 * Conditions like the above can lead to a cgroup getting repeatedly and
4552 * severely throttled after making some progress after each
4553 * dirty_expire_interval while the underlying IO device is almost
4554 * completely idle.
4555 *
4556 * Solving this problem completely requires matching the ownership tracking
4557 * granularities between memcg and writeback in either direction. However,
4558 * the more egregious behaviors can be avoided by simply remembering the
4559 * most recent foreign dirtying events and initiating remote flushes on
4560 * them when local writeback isn't enough to keep the memory clean enough.
4561 *
4562 * The following two functions implement such mechanism. When a foreign
4563 * page - a page whose memcg and writeback ownerships don't match - is
4564 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4565 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4566 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4567 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4568 * foreign bdi_writebacks which haven't expired. Both the numbers of
4569 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4570 * limited to MEMCG_CGWB_FRN_CNT.
4571 *
4572 * The mechanism only remembers IDs and doesn't hold any object references.
4573 * As being wrong occasionally doesn't matter, updates and accesses to the
4574 * records are lockless and racy.
4575 */
4576void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4577 struct bdi_writeback *wb)
4578{
4579 struct mem_cgroup *memcg = folio_memcg(folio);
4580 struct memcg_cgwb_frn *frn;
4581 u64 now = get_jiffies_64();
4582 u64 oldest_at = now;
4583 int oldest = -1;
4584 int i;
4585
4586 trace_track_foreign_dirty(folio, wb);
4587
4588 /*
4589 * Pick the slot to use. If there is already a slot for @wb, keep
4590 * using it. If not replace the oldest one which isn't being
4591 * written out.
4592 */
4593 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4594 frn = &memcg->cgwb_frn[i];
4595 if (frn->bdi_id == wb->bdi->id &&
4596 frn->memcg_id == wb->memcg_css->id)
4597 break;
4598 if (time_before64(frn->at, oldest_at) &&
4599 atomic_read(&frn->done.cnt) == 1) {
4600 oldest = i;
4601 oldest_at = frn->at;
4602 }
4603 }
4604
4605 if (i < MEMCG_CGWB_FRN_CNT) {
4606 /*
4607 * Re-using an existing one. Update timestamp lazily to
4608 * avoid making the cacheline hot. We want them to be
4609 * reasonably up-to-date and significantly shorter than
4610 * dirty_expire_interval as that's what expires the record.
4611 * Use the shorter of 1s and dirty_expire_interval / 8.
4612 */
4613 unsigned long update_intv =
4614 min_t(unsigned long, HZ,
4615 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4616
4617 if (time_before64(frn->at, now - update_intv))
4618 frn->at = now;
4619 } else if (oldest >= 0) {
4620 /* replace the oldest free one */
4621 frn = &memcg->cgwb_frn[oldest];
4622 frn->bdi_id = wb->bdi->id;
4623 frn->memcg_id = wb->memcg_css->id;
4624 frn->at = now;
4625 }
4626}
4627
4628/* issue foreign writeback flushes for recorded foreign dirtying events */
4629void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4630{
4631 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4632 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4633 u64 now = jiffies_64;
4634 int i;
4635
4636 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4637 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4638
4639 /*
4640 * If the record is older than dirty_expire_interval,
4641 * writeback on it has already started. No need to kick it
4642 * off again. Also, don't start a new one if there's
4643 * already one in flight.
4644 */
4645 if (time_after64(frn->at, now - intv) &&
4646 atomic_read(&frn->done.cnt) == 1) {
4647 frn->at = 0;
4648 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4649 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4650 WB_REASON_FOREIGN_FLUSH,
4651 &frn->done);
4652 }
4653 }
4654}
4655
4656#else /* CONFIG_CGROUP_WRITEBACK */
4657
4658static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4659{
4660 return 0;
4661}
4662
4663static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4664{
4665}
4666
4667static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4668{
4669}
4670
4671#endif /* CONFIG_CGROUP_WRITEBACK */
4672
4673/*
4674 * DO NOT USE IN NEW FILES.
4675 *
4676 * "cgroup.event_control" implementation.
4677 *
4678 * This is way over-engineered. It tries to support fully configurable
4679 * events for each user. Such level of flexibility is completely
4680 * unnecessary especially in the light of the planned unified hierarchy.
4681 *
4682 * Please deprecate this and replace with something simpler if at all
4683 * possible.
4684 */
4685
4686/*
4687 * Unregister event and free resources.
4688 *
4689 * Gets called from workqueue.
4690 */
4691static void memcg_event_remove(struct work_struct *work)
4692{
4693 struct mem_cgroup_event *event =
4694 container_of(work, struct mem_cgroup_event, remove);
4695 struct mem_cgroup *memcg = event->memcg;
4696
4697 remove_wait_queue(event->wqh, &event->wait);
4698
4699 event->unregister_event(memcg, event->eventfd);
4700
4701 /* Notify userspace the event is going away. */
4702 eventfd_signal(event->eventfd, 1);
4703
4704 eventfd_ctx_put(event->eventfd);
4705 kfree(event);
4706 css_put(&memcg->css);
4707}
4708
4709/*
4710 * Gets called on EPOLLHUP on eventfd when user closes it.
4711 *
4712 * Called with wqh->lock held and interrupts disabled.
4713 */
4714static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4715 int sync, void *key)
4716{
4717 struct mem_cgroup_event *event =
4718 container_of(wait, struct mem_cgroup_event, wait);
4719 struct mem_cgroup *memcg = event->memcg;
4720 __poll_t flags = key_to_poll(key);
4721
4722 if (flags & EPOLLHUP) {
4723 /*
4724 * If the event has been detached at cgroup removal, we
4725 * can simply return knowing the other side will cleanup
4726 * for us.
4727 *
4728 * We can't race against event freeing since the other
4729 * side will require wqh->lock via remove_wait_queue(),
4730 * which we hold.
4731 */
4732 spin_lock(&memcg->event_list_lock);
4733 if (!list_empty(&event->list)) {
4734 list_del_init(&event->list);
4735 /*
4736 * We are in atomic context, but cgroup_event_remove()
4737 * may sleep, so we have to call it in workqueue.
4738 */
4739 schedule_work(&event->remove);
4740 }
4741 spin_unlock(&memcg->event_list_lock);
4742 }
4743
4744 return 0;
4745}
4746
4747static void memcg_event_ptable_queue_proc(struct file *file,
4748 wait_queue_head_t *wqh, poll_table *pt)
4749{
4750 struct mem_cgroup_event *event =
4751 container_of(pt, struct mem_cgroup_event, pt);
4752
4753 event->wqh = wqh;
4754 add_wait_queue(wqh, &event->wait);
4755}
4756
4757/*
4758 * DO NOT USE IN NEW FILES.
4759 *
4760 * Parse input and register new cgroup event handler.
4761 *
4762 * Input must be in format '<event_fd> <control_fd> <args>'.
4763 * Interpretation of args is defined by control file implementation.
4764 */
4765static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4766 char *buf, size_t nbytes, loff_t off)
4767{
4768 struct cgroup_subsys_state *css = of_css(of);
4769 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4770 struct mem_cgroup_event *event;
4771 struct cgroup_subsys_state *cfile_css;
4772 unsigned int efd, cfd;
4773 struct fd efile;
4774 struct fd cfile;
4775 const char *name;
4776 char *endp;
4777 int ret;
4778
4779 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4780 return -EOPNOTSUPP;
4781
4782 buf = strstrip(buf);
4783
4784 efd = simple_strtoul(buf, &endp, 10);
4785 if (*endp != ' ')
4786 return -EINVAL;
4787 buf = endp + 1;
4788
4789 cfd = simple_strtoul(buf, &endp, 10);
4790 if ((*endp != ' ') && (*endp != '\0'))
4791 return -EINVAL;
4792 buf = endp + 1;
4793
4794 event = kzalloc(sizeof(*event), GFP_KERNEL);
4795 if (!event)
4796 return -ENOMEM;
4797
4798 event->memcg = memcg;
4799 INIT_LIST_HEAD(&event->list);
4800 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4801 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4802 INIT_WORK(&event->remove, memcg_event_remove);
4803
4804 efile = fdget(efd);
4805 if (!efile.file) {
4806 ret = -EBADF;
4807 goto out_kfree;
4808 }
4809
4810 event->eventfd = eventfd_ctx_fileget(efile.file);
4811 if (IS_ERR(event->eventfd)) {
4812 ret = PTR_ERR(event->eventfd);
4813 goto out_put_efile;
4814 }
4815
4816 cfile = fdget(cfd);
4817 if (!cfile.file) {
4818 ret = -EBADF;
4819 goto out_put_eventfd;
4820 }
4821
4822 /* the process need read permission on control file */
4823 /* AV: shouldn't we check that it's been opened for read instead? */
4824 ret = file_permission(cfile.file, MAY_READ);
4825 if (ret < 0)
4826 goto out_put_cfile;
4827
4828 /*
4829 * Determine the event callbacks and set them in @event. This used
4830 * to be done via struct cftype but cgroup core no longer knows
4831 * about these events. The following is crude but the whole thing
4832 * is for compatibility anyway.
4833 *
4834 * DO NOT ADD NEW FILES.
4835 */
4836 name = cfile.file->f_path.dentry->d_name.name;
4837
4838 if (!strcmp(name, "memory.usage_in_bytes")) {
4839 event->register_event = mem_cgroup_usage_register_event;
4840 event->unregister_event = mem_cgroup_usage_unregister_event;
4841 } else if (!strcmp(name, "memory.oom_control")) {
4842 event->register_event = mem_cgroup_oom_register_event;
4843 event->unregister_event = mem_cgroup_oom_unregister_event;
4844 } else if (!strcmp(name, "memory.pressure_level")) {
4845 event->register_event = vmpressure_register_event;
4846 event->unregister_event = vmpressure_unregister_event;
4847 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4848 event->register_event = memsw_cgroup_usage_register_event;
4849 event->unregister_event = memsw_cgroup_usage_unregister_event;
4850 } else {
4851 ret = -EINVAL;
4852 goto out_put_cfile;
4853 }
4854
4855 /*
4856 * Verify @cfile should belong to @css. Also, remaining events are
4857 * automatically removed on cgroup destruction but the removal is
4858 * asynchronous, so take an extra ref on @css.
4859 */
4860 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4861 &memory_cgrp_subsys);
4862 ret = -EINVAL;
4863 if (IS_ERR(cfile_css))
4864 goto out_put_cfile;
4865 if (cfile_css != css) {
4866 css_put(cfile_css);
4867 goto out_put_cfile;
4868 }
4869
4870 ret = event->register_event(memcg, event->eventfd, buf);
4871 if (ret)
4872 goto out_put_css;
4873
4874 vfs_poll(efile.file, &event->pt);
4875
4876 spin_lock_irq(&memcg->event_list_lock);
4877 list_add(&event->list, &memcg->event_list);
4878 spin_unlock_irq(&memcg->event_list_lock);
4879
4880 fdput(cfile);
4881 fdput(efile);
4882
4883 return nbytes;
4884
4885out_put_css:
4886 css_put(css);
4887out_put_cfile:
4888 fdput(cfile);
4889out_put_eventfd:
4890 eventfd_ctx_put(event->eventfd);
4891out_put_efile:
4892 fdput(efile);
4893out_kfree:
4894 kfree(event);
4895
4896 return ret;
4897}
4898
4899#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4900static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4901{
4902 /*
4903 * Deprecated.
4904 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
4905 */
4906 return 0;
4907}
4908#endif
4909
4910static struct cftype mem_cgroup_legacy_files[] = {
4911 {
4912 .name = "usage_in_bytes",
4913 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4914 .read_u64 = mem_cgroup_read_u64,
4915 },
4916 {
4917 .name = "max_usage_in_bytes",
4918 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4919 .write = mem_cgroup_reset,
4920 .read_u64 = mem_cgroup_read_u64,
4921 },
4922 {
4923 .name = "limit_in_bytes",
4924 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4925 .write = mem_cgroup_write,
4926 .read_u64 = mem_cgroup_read_u64,
4927 },
4928 {
4929 .name = "soft_limit_in_bytes",
4930 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4931 .write = mem_cgroup_write,
4932 .read_u64 = mem_cgroup_read_u64,
4933 },
4934 {
4935 .name = "failcnt",
4936 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4937 .write = mem_cgroup_reset,
4938 .read_u64 = mem_cgroup_read_u64,
4939 },
4940 {
4941 .name = "stat",
4942 .seq_show = memcg_stat_show,
4943 },
4944 {
4945 .name = "force_empty",
4946 .write = mem_cgroup_force_empty_write,
4947 },
4948 {
4949 .name = "use_hierarchy",
4950 .write_u64 = mem_cgroup_hierarchy_write,
4951 .read_u64 = mem_cgroup_hierarchy_read,
4952 },
4953 {
4954 .name = "cgroup.event_control", /* XXX: for compat */
4955 .write = memcg_write_event_control,
4956 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4957 },
4958 {
4959 .name = "swappiness",
4960 .read_u64 = mem_cgroup_swappiness_read,
4961 .write_u64 = mem_cgroup_swappiness_write,
4962 },
4963 {
4964 .name = "move_charge_at_immigrate",
4965 .read_u64 = mem_cgroup_move_charge_read,
4966 .write_u64 = mem_cgroup_move_charge_write,
4967 },
4968 {
4969 .name = "oom_control",
4970 .seq_show = mem_cgroup_oom_control_read,
4971 .write_u64 = mem_cgroup_oom_control_write,
4972 },
4973 {
4974 .name = "pressure_level",
4975 },
4976#ifdef CONFIG_NUMA
4977 {
4978 .name = "numa_stat",
4979 .seq_show = memcg_numa_stat_show,
4980 },
4981#endif
4982 {
4983 .name = "kmem.limit_in_bytes",
4984 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4985 .write = mem_cgroup_write,
4986 .read_u64 = mem_cgroup_read_u64,
4987 },
4988 {
4989 .name = "kmem.usage_in_bytes",
4990 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4991 .read_u64 = mem_cgroup_read_u64,
4992 },
4993 {
4994 .name = "kmem.failcnt",
4995 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4996 .write = mem_cgroup_reset,
4997 .read_u64 = mem_cgroup_read_u64,
4998 },
4999 {
5000 .name = "kmem.max_usage_in_bytes",
5001 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5002 .write = mem_cgroup_reset,
5003 .read_u64 = mem_cgroup_read_u64,
5004 },
5005#if defined(CONFIG_MEMCG_KMEM) && \
5006 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5007 {
5008 .name = "kmem.slabinfo",
5009 .seq_show = mem_cgroup_slab_show,
5010 },
5011#endif
5012 {
5013 .name = "kmem.tcp.limit_in_bytes",
5014 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5015 .write = mem_cgroup_write,
5016 .read_u64 = mem_cgroup_read_u64,
5017 },
5018 {
5019 .name = "kmem.tcp.usage_in_bytes",
5020 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5021 .read_u64 = mem_cgroup_read_u64,
5022 },
5023 {
5024 .name = "kmem.tcp.failcnt",
5025 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5026 .write = mem_cgroup_reset,
5027 .read_u64 = mem_cgroup_read_u64,
5028 },
5029 {
5030 .name = "kmem.tcp.max_usage_in_bytes",
5031 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5032 .write = mem_cgroup_reset,
5033 .read_u64 = mem_cgroup_read_u64,
5034 },
5035 { }, /* terminate */
5036};
5037
5038/*
5039 * Private memory cgroup IDR
5040 *
5041 * Swap-out records and page cache shadow entries need to store memcg
5042 * references in constrained space, so we maintain an ID space that is
5043 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5044 * memory-controlled cgroups to 64k.
5045 *
5046 * However, there usually are many references to the offline CSS after
5047 * the cgroup has been destroyed, such as page cache or reclaimable
5048 * slab objects, that don't need to hang on to the ID. We want to keep
5049 * those dead CSS from occupying IDs, or we might quickly exhaust the
5050 * relatively small ID space and prevent the creation of new cgroups
5051 * even when there are much fewer than 64k cgroups - possibly none.
5052 *
5053 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5054 * be freed and recycled when it's no longer needed, which is usually
5055 * when the CSS is offlined.
5056 *
5057 * The only exception to that are records of swapped out tmpfs/shmem
5058 * pages that need to be attributed to live ancestors on swapin. But
5059 * those references are manageable from userspace.
5060 */
5061
5062static DEFINE_IDR(mem_cgroup_idr);
5063
5064static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5065{
5066 if (memcg->id.id > 0) {
5067 idr_remove(&mem_cgroup_idr, memcg->id.id);
5068 memcg->id.id = 0;
5069 }
5070}
5071
5072static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5073 unsigned int n)
5074{
5075 refcount_add(n, &memcg->id.ref);
5076}
5077
5078static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5079{
5080 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5081 mem_cgroup_id_remove(memcg);
5082
5083 /* Memcg ID pins CSS */
5084 css_put(&memcg->css);
5085 }
5086}
5087
5088static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5089{
5090 mem_cgroup_id_put_many(memcg, 1);
5091}
5092
5093/**
5094 * mem_cgroup_from_id - look up a memcg from a memcg id
5095 * @id: the memcg id to look up
5096 *
5097 * Caller must hold rcu_read_lock().
5098 */
5099struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5100{
5101 WARN_ON_ONCE(!rcu_read_lock_held());
5102 return idr_find(&mem_cgroup_idr, id);
5103}
5104
5105#ifdef CONFIG_SHRINKER_DEBUG
5106struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5107{
5108 struct cgroup *cgrp;
5109 struct cgroup_subsys_state *css;
5110 struct mem_cgroup *memcg;
5111
5112 cgrp = cgroup_get_from_id(ino);
5113 if (!cgrp)
5114 return ERR_PTR(-ENOENT);
5115
5116 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5117 if (css)
5118 memcg = container_of(css, struct mem_cgroup, css);
5119 else
5120 memcg = ERR_PTR(-ENOENT);
5121
5122 cgroup_put(cgrp);
5123
5124 return memcg;
5125}
5126#endif
5127
5128static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5129{
5130 struct mem_cgroup_per_node *pn;
5131
5132 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5133 if (!pn)
5134 return 1;
5135
5136 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5137 GFP_KERNEL_ACCOUNT);
5138 if (!pn->lruvec_stats_percpu) {
5139 kfree(pn);
5140 return 1;
5141 }
5142
5143 lruvec_init(&pn->lruvec);
5144 pn->memcg = memcg;
5145
5146 memcg->nodeinfo[node] = pn;
5147 return 0;
5148}
5149
5150static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5151{
5152 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5153
5154 if (!pn)
5155 return;
5156
5157 free_percpu(pn->lruvec_stats_percpu);
5158 kfree(pn);
5159}
5160
5161static void __mem_cgroup_free(struct mem_cgroup *memcg)
5162{
5163 int node;
5164
5165 for_each_node(node)
5166 free_mem_cgroup_per_node_info(memcg, node);
5167 free_percpu(memcg->vmstats_percpu);
5168 kfree(memcg);
5169}
5170
5171static void mem_cgroup_free(struct mem_cgroup *memcg)
5172{
5173 memcg_wb_domain_exit(memcg);
5174 __mem_cgroup_free(memcg);
5175}
5176
5177static struct mem_cgroup *mem_cgroup_alloc(void)
5178{
5179 struct mem_cgroup *memcg;
5180 int node;
5181 int __maybe_unused i;
5182 long error = -ENOMEM;
5183
5184 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5185 if (!memcg)
5186 return ERR_PTR(error);
5187
5188 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5189 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5190 if (memcg->id.id < 0) {
5191 error = memcg->id.id;
5192 goto fail;
5193 }
5194
5195 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5196 GFP_KERNEL_ACCOUNT);
5197 if (!memcg->vmstats_percpu)
5198 goto fail;
5199
5200 for_each_node(node)
5201 if (alloc_mem_cgroup_per_node_info(memcg, node))
5202 goto fail;
5203
5204 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5205 goto fail;
5206
5207 INIT_WORK(&memcg->high_work, high_work_func);
5208 INIT_LIST_HEAD(&memcg->oom_notify);
5209 mutex_init(&memcg->thresholds_lock);
5210 spin_lock_init(&memcg->move_lock);
5211 vmpressure_init(&memcg->vmpressure);
5212 INIT_LIST_HEAD(&memcg->event_list);
5213 spin_lock_init(&memcg->event_list_lock);
5214 memcg->socket_pressure = jiffies;
5215#ifdef CONFIG_MEMCG_KMEM
5216 memcg->kmemcg_id = -1;
5217 INIT_LIST_HEAD(&memcg->objcg_list);
5218#endif
5219#ifdef CONFIG_CGROUP_WRITEBACK
5220 INIT_LIST_HEAD(&memcg->cgwb_list);
5221 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5222 memcg->cgwb_frn[i].done =
5223 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5224#endif
5225#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5226 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5227 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5228 memcg->deferred_split_queue.split_queue_len = 0;
5229#endif
5230 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5231 return memcg;
5232fail:
5233 mem_cgroup_id_remove(memcg);
5234 __mem_cgroup_free(memcg);
5235 return ERR_PTR(error);
5236}
5237
5238static struct cgroup_subsys_state * __ref
5239mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5240{
5241 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5242 struct mem_cgroup *memcg, *old_memcg;
5243
5244 old_memcg = set_active_memcg(parent);
5245 memcg = mem_cgroup_alloc();
5246 set_active_memcg(old_memcg);
5247 if (IS_ERR(memcg))
5248 return ERR_CAST(memcg);
5249
5250 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5251 memcg->soft_limit = PAGE_COUNTER_MAX;
5252#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5253 memcg->zswap_max = PAGE_COUNTER_MAX;
5254#endif
5255 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5256 if (parent) {
5257 memcg->swappiness = mem_cgroup_swappiness(parent);
5258 memcg->oom_kill_disable = parent->oom_kill_disable;
5259
5260 page_counter_init(&memcg->memory, &parent->memory);
5261 page_counter_init(&memcg->swap, &parent->swap);
5262 page_counter_init(&memcg->kmem, &parent->kmem);
5263 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5264 } else {
5265 page_counter_init(&memcg->memory, NULL);
5266 page_counter_init(&memcg->swap, NULL);
5267 page_counter_init(&memcg->kmem, NULL);
5268 page_counter_init(&memcg->tcpmem, NULL);
5269
5270 root_mem_cgroup = memcg;
5271 return &memcg->css;
5272 }
5273
5274 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5275 static_branch_inc(&memcg_sockets_enabled_key);
5276
5277 return &memcg->css;
5278}
5279
5280static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5281{
5282 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5283
5284 if (memcg_online_kmem(memcg))
5285 goto remove_id;
5286
5287 /*
5288 * A memcg must be visible for expand_shrinker_info()
5289 * by the time the maps are allocated. So, we allocate maps
5290 * here, when for_each_mem_cgroup() can't skip it.
5291 */
5292 if (alloc_shrinker_info(memcg))
5293 goto offline_kmem;
5294
5295 /* Online state pins memcg ID, memcg ID pins CSS */
5296 refcount_set(&memcg->id.ref, 1);
5297 css_get(css);
5298
5299 if (unlikely(mem_cgroup_is_root(memcg)))
5300 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5301 2UL*HZ);
5302 return 0;
5303offline_kmem:
5304 memcg_offline_kmem(memcg);
5305remove_id:
5306 mem_cgroup_id_remove(memcg);
5307 return -ENOMEM;
5308}
5309
5310static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5311{
5312 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5313 struct mem_cgroup_event *event, *tmp;
5314
5315 /*
5316 * Unregister events and notify userspace.
5317 * Notify userspace about cgroup removing only after rmdir of cgroup
5318 * directory to avoid race between userspace and kernelspace.
5319 */
5320 spin_lock_irq(&memcg->event_list_lock);
5321 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5322 list_del_init(&event->list);
5323 schedule_work(&event->remove);
5324 }
5325 spin_unlock_irq(&memcg->event_list_lock);
5326
5327 page_counter_set_min(&memcg->memory, 0);
5328 page_counter_set_low(&memcg->memory, 0);
5329
5330 memcg_offline_kmem(memcg);
5331 reparent_shrinker_deferred(memcg);
5332 wb_memcg_offline(memcg);
5333
5334 drain_all_stock(memcg);
5335
5336 mem_cgroup_id_put(memcg);
5337}
5338
5339static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5340{
5341 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5342
5343 invalidate_reclaim_iterators(memcg);
5344}
5345
5346static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5347{
5348 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5349 int __maybe_unused i;
5350
5351#ifdef CONFIG_CGROUP_WRITEBACK
5352 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5353 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5354#endif
5355 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5356 static_branch_dec(&memcg_sockets_enabled_key);
5357
5358 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5359 static_branch_dec(&memcg_sockets_enabled_key);
5360
5361 vmpressure_cleanup(&memcg->vmpressure);
5362 cancel_work_sync(&memcg->high_work);
5363 mem_cgroup_remove_from_trees(memcg);
5364 free_shrinker_info(memcg);
5365 mem_cgroup_free(memcg);
5366}
5367
5368/**
5369 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5370 * @css: the target css
5371 *
5372 * Reset the states of the mem_cgroup associated with @css. This is
5373 * invoked when the userland requests disabling on the default hierarchy
5374 * but the memcg is pinned through dependency. The memcg should stop
5375 * applying policies and should revert to the vanilla state as it may be
5376 * made visible again.
5377 *
5378 * The current implementation only resets the essential configurations.
5379 * This needs to be expanded to cover all the visible parts.
5380 */
5381static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5382{
5383 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5384
5385 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5386 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5387 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5388 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5389 page_counter_set_min(&memcg->memory, 0);
5390 page_counter_set_low(&memcg->memory, 0);
5391 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5392 memcg->soft_limit = PAGE_COUNTER_MAX;
5393 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5394 memcg_wb_domain_size_changed(memcg);
5395}
5396
5397static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5398{
5399 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5400 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5401 struct memcg_vmstats_percpu *statc;
5402 long delta, v;
5403 int i, nid;
5404
5405 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5406
5407 for (i = 0; i < MEMCG_NR_STAT; i++) {
5408 /*
5409 * Collect the aggregated propagation counts of groups
5410 * below us. We're in a per-cpu loop here and this is
5411 * a global counter, so the first cycle will get them.
5412 */
5413 delta = memcg->vmstats.state_pending[i];
5414 if (delta)
5415 memcg->vmstats.state_pending[i] = 0;
5416
5417 /* Add CPU changes on this level since the last flush */
5418 v = READ_ONCE(statc->state[i]);
5419 if (v != statc->state_prev[i]) {
5420 delta += v - statc->state_prev[i];
5421 statc->state_prev[i] = v;
5422 }
5423
5424 if (!delta)
5425 continue;
5426
5427 /* Aggregate counts on this level and propagate upwards */
5428 memcg->vmstats.state[i] += delta;
5429 if (parent)
5430 parent->vmstats.state_pending[i] += delta;
5431 }
5432
5433 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5434 delta = memcg->vmstats.events_pending[i];
5435 if (delta)
5436 memcg->vmstats.events_pending[i] = 0;
5437
5438 v = READ_ONCE(statc->events[i]);
5439 if (v != statc->events_prev[i]) {
5440 delta += v - statc->events_prev[i];
5441 statc->events_prev[i] = v;
5442 }
5443
5444 if (!delta)
5445 continue;
5446
5447 memcg->vmstats.events[i] += delta;
5448 if (parent)
5449 parent->vmstats.events_pending[i] += delta;
5450 }
5451
5452 for_each_node_state(nid, N_MEMORY) {
5453 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5454 struct mem_cgroup_per_node *ppn = NULL;
5455 struct lruvec_stats_percpu *lstatc;
5456
5457 if (parent)
5458 ppn = parent->nodeinfo[nid];
5459
5460 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5461
5462 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5463 delta = pn->lruvec_stats.state_pending[i];
5464 if (delta)
5465 pn->lruvec_stats.state_pending[i] = 0;
5466
5467 v = READ_ONCE(lstatc->state[i]);
5468 if (v != lstatc->state_prev[i]) {
5469 delta += v - lstatc->state_prev[i];
5470 lstatc->state_prev[i] = v;
5471 }
5472
5473 if (!delta)
5474 continue;
5475
5476 pn->lruvec_stats.state[i] += delta;
5477 if (ppn)
5478 ppn->lruvec_stats.state_pending[i] += delta;
5479 }
5480 }
5481}
5482
5483#ifdef CONFIG_MMU
5484/* Handlers for move charge at task migration. */
5485static int mem_cgroup_do_precharge(unsigned long count)
5486{
5487 int ret;
5488
5489 /* Try a single bulk charge without reclaim first, kswapd may wake */
5490 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5491 if (!ret) {
5492 mc.precharge += count;
5493 return ret;
5494 }
5495
5496 /* Try charges one by one with reclaim, but do not retry */
5497 while (count--) {
5498 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5499 if (ret)
5500 return ret;
5501 mc.precharge++;
5502 cond_resched();
5503 }
5504 return 0;
5505}
5506
5507union mc_target {
5508 struct page *page;
5509 swp_entry_t ent;
5510};
5511
5512enum mc_target_type {
5513 MC_TARGET_NONE = 0,
5514 MC_TARGET_PAGE,
5515 MC_TARGET_SWAP,
5516 MC_TARGET_DEVICE,
5517};
5518
5519static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5520 unsigned long addr, pte_t ptent)
5521{
5522 struct page *page = vm_normal_page(vma, addr, ptent);
5523
5524 if (!page || !page_mapped(page))
5525 return NULL;
5526 if (PageAnon(page)) {
5527 if (!(mc.flags & MOVE_ANON))
5528 return NULL;
5529 } else {
5530 if (!(mc.flags & MOVE_FILE))
5531 return NULL;
5532 }
5533 if (!get_page_unless_zero(page))
5534 return NULL;
5535
5536 return page;
5537}
5538
5539#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5540static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5541 pte_t ptent, swp_entry_t *entry)
5542{
5543 struct page *page = NULL;
5544 swp_entry_t ent = pte_to_swp_entry(ptent);
5545
5546 if (!(mc.flags & MOVE_ANON))
5547 return NULL;
5548
5549 /*
5550 * Handle device private pages that are not accessible by the CPU, but
5551 * stored as special swap entries in the page table.
5552 */
5553 if (is_device_private_entry(ent)) {
5554 page = pfn_swap_entry_to_page(ent);
5555 if (!get_page_unless_zero(page))
5556 return NULL;
5557 return page;
5558 }
5559
5560 if (non_swap_entry(ent))
5561 return NULL;
5562
5563 /*
5564 * Because lookup_swap_cache() updates some statistics counter,
5565 * we call find_get_page() with swapper_space directly.
5566 */
5567 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5568 entry->val = ent.val;
5569
5570 return page;
5571}
5572#else
5573static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5574 pte_t ptent, swp_entry_t *entry)
5575{
5576 return NULL;
5577}
5578#endif
5579
5580static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5581 unsigned long addr, pte_t ptent)
5582{
5583 if (!vma->vm_file) /* anonymous vma */
5584 return NULL;
5585 if (!(mc.flags & MOVE_FILE))
5586 return NULL;
5587
5588 /* page is moved even if it's not RSS of this task(page-faulted). */
5589 /* shmem/tmpfs may report page out on swap: account for that too. */
5590 return find_get_incore_page(vma->vm_file->f_mapping,
5591 linear_page_index(vma, addr));
5592}
5593
5594/**
5595 * mem_cgroup_move_account - move account of the page
5596 * @page: the page
5597 * @compound: charge the page as compound or small page
5598 * @from: mem_cgroup which the page is moved from.
5599 * @to: mem_cgroup which the page is moved to. @from != @to.
5600 *
5601 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5602 *
5603 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5604 * from old cgroup.
5605 */
5606static int mem_cgroup_move_account(struct page *page,
5607 bool compound,
5608 struct mem_cgroup *from,
5609 struct mem_cgroup *to)
5610{
5611 struct folio *folio = page_folio(page);
5612 struct lruvec *from_vec, *to_vec;
5613 struct pglist_data *pgdat;
5614 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5615 int nid, ret;
5616
5617 VM_BUG_ON(from == to);
5618 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5619 VM_BUG_ON(compound && !folio_test_large(folio));
5620
5621 /*
5622 * Prevent mem_cgroup_migrate() from looking at
5623 * page's memory cgroup of its source page while we change it.
5624 */
5625 ret = -EBUSY;
5626 if (!folio_trylock(folio))
5627 goto out;
5628
5629 ret = -EINVAL;
5630 if (folio_memcg(folio) != from)
5631 goto out_unlock;
5632
5633 pgdat = folio_pgdat(folio);
5634 from_vec = mem_cgroup_lruvec(from, pgdat);
5635 to_vec = mem_cgroup_lruvec(to, pgdat);
5636
5637 folio_memcg_lock(folio);
5638
5639 if (folio_test_anon(folio)) {
5640 if (folio_mapped(folio)) {
5641 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5642 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5643 if (folio_test_transhuge(folio)) {
5644 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5645 -nr_pages);
5646 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5647 nr_pages);
5648 }
5649 }
5650 } else {
5651 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5652 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5653
5654 if (folio_test_swapbacked(folio)) {
5655 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5656 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5657 }
5658
5659 if (folio_mapped(folio)) {
5660 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5661 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5662 }
5663
5664 if (folio_test_dirty(folio)) {
5665 struct address_space *mapping = folio_mapping(folio);
5666
5667 if (mapping_can_writeback(mapping)) {
5668 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5669 -nr_pages);
5670 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5671 nr_pages);
5672 }
5673 }
5674 }
5675
5676 if (folio_test_writeback(folio)) {
5677 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5678 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5679 }
5680
5681 /*
5682 * All state has been migrated, let's switch to the new memcg.
5683 *
5684 * It is safe to change page's memcg here because the page
5685 * is referenced, charged, isolated, and locked: we can't race
5686 * with (un)charging, migration, LRU putback, or anything else
5687 * that would rely on a stable page's memory cgroup.
5688 *
5689 * Note that lock_page_memcg is a memcg lock, not a page lock,
5690 * to save space. As soon as we switch page's memory cgroup to a
5691 * new memcg that isn't locked, the above state can change
5692 * concurrently again. Make sure we're truly done with it.
5693 */
5694 smp_mb();
5695
5696 css_get(&to->css);
5697 css_put(&from->css);
5698
5699 folio->memcg_data = (unsigned long)to;
5700
5701 __folio_memcg_unlock(from);
5702
5703 ret = 0;
5704 nid = folio_nid(folio);
5705
5706 local_irq_disable();
5707 mem_cgroup_charge_statistics(to, nr_pages);
5708 memcg_check_events(to, nid);
5709 mem_cgroup_charge_statistics(from, -nr_pages);
5710 memcg_check_events(from, nid);
5711 local_irq_enable();
5712out_unlock:
5713 folio_unlock(folio);
5714out:
5715 return ret;
5716}
5717
5718/**
5719 * get_mctgt_type - get target type of moving charge
5720 * @vma: the vma the pte to be checked belongs
5721 * @addr: the address corresponding to the pte to be checked
5722 * @ptent: the pte to be checked
5723 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5724 *
5725 * Returns
5726 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5727 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5728 * move charge. if @target is not NULL, the page is stored in target->page
5729 * with extra refcnt got(Callers should handle it).
5730 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5731 * target for charge migration. if @target is not NULL, the entry is stored
5732 * in target->ent.
5733 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and
5734 * thus not on the lru.
5735 * For now we such page is charge like a regular page would be as for all
5736 * intent and purposes it is just special memory taking the place of a
5737 * regular page.
5738 *
5739 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5740 *
5741 * Called with pte lock held.
5742 */
5743
5744static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5745 unsigned long addr, pte_t ptent, union mc_target *target)
5746{
5747 struct page *page = NULL;
5748 enum mc_target_type ret = MC_TARGET_NONE;
5749 swp_entry_t ent = { .val = 0 };
5750
5751 if (pte_present(ptent))
5752 page = mc_handle_present_pte(vma, addr, ptent);
5753 else if (pte_none_mostly(ptent))
5754 /*
5755 * PTE markers should be treated as a none pte here, separated
5756 * from other swap handling below.
5757 */
5758 page = mc_handle_file_pte(vma, addr, ptent);
5759 else if (is_swap_pte(ptent))
5760 page = mc_handle_swap_pte(vma, ptent, &ent);
5761
5762 if (!page && !ent.val)
5763 return ret;
5764 if (page) {
5765 /*
5766 * Do only loose check w/o serialization.
5767 * mem_cgroup_move_account() checks the page is valid or
5768 * not under LRU exclusion.
5769 */
5770 if (page_memcg(page) == mc.from) {
5771 ret = MC_TARGET_PAGE;
5772 if (is_device_private_page(page) ||
5773 is_device_coherent_page(page))
5774 ret = MC_TARGET_DEVICE;
5775 if (target)
5776 target->page = page;
5777 }
5778 if (!ret || !target)
5779 put_page(page);
5780 }
5781 /*
5782 * There is a swap entry and a page doesn't exist or isn't charged.
5783 * But we cannot move a tail-page in a THP.
5784 */
5785 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5786 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5787 ret = MC_TARGET_SWAP;
5788 if (target)
5789 target->ent = ent;
5790 }
5791 return ret;
5792}
5793
5794#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5795/*
5796 * We don't consider PMD mapped swapping or file mapped pages because THP does
5797 * not support them for now.
5798 * Caller should make sure that pmd_trans_huge(pmd) is true.
5799 */
5800static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5801 unsigned long addr, pmd_t pmd, union mc_target *target)
5802{
5803 struct page *page = NULL;
5804 enum mc_target_type ret = MC_TARGET_NONE;
5805
5806 if (unlikely(is_swap_pmd(pmd))) {
5807 VM_BUG_ON(thp_migration_supported() &&
5808 !is_pmd_migration_entry(pmd));
5809 return ret;
5810 }
5811 page = pmd_page(pmd);
5812 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5813 if (!(mc.flags & MOVE_ANON))
5814 return ret;
5815 if (page_memcg(page) == mc.from) {
5816 ret = MC_TARGET_PAGE;
5817 if (target) {
5818 get_page(page);
5819 target->page = page;
5820 }
5821 }
5822 return ret;
5823}
5824#else
5825static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5826 unsigned long addr, pmd_t pmd, union mc_target *target)
5827{
5828 return MC_TARGET_NONE;
5829}
5830#endif
5831
5832static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5833 unsigned long addr, unsigned long end,
5834 struct mm_walk *walk)
5835{
5836 struct vm_area_struct *vma = walk->vma;
5837 pte_t *pte;
5838 spinlock_t *ptl;
5839
5840 ptl = pmd_trans_huge_lock(pmd, vma);
5841 if (ptl) {
5842 /*
5843 * Note their can not be MC_TARGET_DEVICE for now as we do not
5844 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5845 * this might change.
5846 */
5847 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5848 mc.precharge += HPAGE_PMD_NR;
5849 spin_unlock(ptl);
5850 return 0;
5851 }
5852
5853 if (pmd_trans_unstable(pmd))
5854 return 0;
5855 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5856 for (; addr != end; pte++, addr += PAGE_SIZE)
5857 if (get_mctgt_type(vma, addr, *pte, NULL))
5858 mc.precharge++; /* increment precharge temporarily */
5859 pte_unmap_unlock(pte - 1, ptl);
5860 cond_resched();
5861
5862 return 0;
5863}
5864
5865static const struct mm_walk_ops precharge_walk_ops = {
5866 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5867};
5868
5869static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5870{
5871 unsigned long precharge;
5872
5873 mmap_read_lock(mm);
5874 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5875 mmap_read_unlock(mm);
5876
5877 precharge = mc.precharge;
5878 mc.precharge = 0;
5879
5880 return precharge;
5881}
5882
5883static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5884{
5885 unsigned long precharge = mem_cgroup_count_precharge(mm);
5886
5887 VM_BUG_ON(mc.moving_task);
5888 mc.moving_task = current;
5889 return mem_cgroup_do_precharge(precharge);
5890}
5891
5892/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5893static void __mem_cgroup_clear_mc(void)
5894{
5895 struct mem_cgroup *from = mc.from;
5896 struct mem_cgroup *to = mc.to;
5897
5898 /* we must uncharge all the leftover precharges from mc.to */
5899 if (mc.precharge) {
5900 cancel_charge(mc.to, mc.precharge);
5901 mc.precharge = 0;
5902 }
5903 /*
5904 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5905 * we must uncharge here.
5906 */
5907 if (mc.moved_charge) {
5908 cancel_charge(mc.from, mc.moved_charge);
5909 mc.moved_charge = 0;
5910 }
5911 /* we must fixup refcnts and charges */
5912 if (mc.moved_swap) {
5913 /* uncharge swap account from the old cgroup */
5914 if (!mem_cgroup_is_root(mc.from))
5915 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5916
5917 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5918
5919 /*
5920 * we charged both to->memory and to->memsw, so we
5921 * should uncharge to->memory.
5922 */
5923 if (!mem_cgroup_is_root(mc.to))
5924 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5925
5926 mc.moved_swap = 0;
5927 }
5928 memcg_oom_recover(from);
5929 memcg_oom_recover(to);
5930 wake_up_all(&mc.waitq);
5931}
5932
5933static void mem_cgroup_clear_mc(void)
5934{
5935 struct mm_struct *mm = mc.mm;
5936
5937 /*
5938 * we must clear moving_task before waking up waiters at the end of
5939 * task migration.
5940 */
5941 mc.moving_task = NULL;
5942 __mem_cgroup_clear_mc();
5943 spin_lock(&mc.lock);
5944 mc.from = NULL;
5945 mc.to = NULL;
5946 mc.mm = NULL;
5947 spin_unlock(&mc.lock);
5948
5949 mmput(mm);
5950}
5951
5952static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5953{
5954 struct cgroup_subsys_state *css;
5955 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5956 struct mem_cgroup *from;
5957 struct task_struct *leader, *p;
5958 struct mm_struct *mm;
5959 unsigned long move_flags;
5960 int ret = 0;
5961
5962 /* charge immigration isn't supported on the default hierarchy */
5963 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5964 return 0;
5965
5966 /*
5967 * Multi-process migrations only happen on the default hierarchy
5968 * where charge immigration is not used. Perform charge
5969 * immigration if @tset contains a leader and whine if there are
5970 * multiple.
5971 */
5972 p = NULL;
5973 cgroup_taskset_for_each_leader(leader, css, tset) {
5974 WARN_ON_ONCE(p);
5975 p = leader;
5976 memcg = mem_cgroup_from_css(css);
5977 }
5978 if (!p)
5979 return 0;
5980
5981 /*
5982 * We are now committed to this value whatever it is. Changes in this
5983 * tunable will only affect upcoming migrations, not the current one.
5984 * So we need to save it, and keep it going.
5985 */
5986 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5987 if (!move_flags)
5988 return 0;
5989
5990 from = mem_cgroup_from_task(p);
5991
5992 VM_BUG_ON(from == memcg);
5993
5994 mm = get_task_mm(p);
5995 if (!mm)
5996 return 0;
5997 /* We move charges only when we move a owner of the mm */
5998 if (mm->owner == p) {
5999 VM_BUG_ON(mc.from);
6000 VM_BUG_ON(mc.to);
6001 VM_BUG_ON(mc.precharge);
6002 VM_BUG_ON(mc.moved_charge);
6003 VM_BUG_ON(mc.moved_swap);
6004
6005 spin_lock(&mc.lock);
6006 mc.mm = mm;
6007 mc.from = from;
6008 mc.to = memcg;
6009 mc.flags = move_flags;
6010 spin_unlock(&mc.lock);
6011 /* We set mc.moving_task later */
6012
6013 ret = mem_cgroup_precharge_mc(mm);
6014 if (ret)
6015 mem_cgroup_clear_mc();
6016 } else {
6017 mmput(mm);
6018 }
6019 return ret;
6020}
6021
6022static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6023{
6024 if (mc.to)
6025 mem_cgroup_clear_mc();
6026}
6027
6028static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6029 unsigned long addr, unsigned long end,
6030 struct mm_walk *walk)
6031{
6032 int ret = 0;
6033 struct vm_area_struct *vma = walk->vma;
6034 pte_t *pte;
6035 spinlock_t *ptl;
6036 enum mc_target_type target_type;
6037 union mc_target target;
6038 struct page *page;
6039
6040 ptl = pmd_trans_huge_lock(pmd, vma);
6041 if (ptl) {
6042 if (mc.precharge < HPAGE_PMD_NR) {
6043 spin_unlock(ptl);
6044 return 0;
6045 }
6046 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6047 if (target_type == MC_TARGET_PAGE) {
6048 page = target.page;
6049 if (!isolate_lru_page(page)) {
6050 if (!mem_cgroup_move_account(page, true,
6051 mc.from, mc.to)) {
6052 mc.precharge -= HPAGE_PMD_NR;
6053 mc.moved_charge += HPAGE_PMD_NR;
6054 }
6055 putback_lru_page(page);
6056 }
6057 put_page(page);
6058 } else if (target_type == MC_TARGET_DEVICE) {
6059 page = target.page;
6060 if (!mem_cgroup_move_account(page, true,
6061 mc.from, mc.to)) {
6062 mc.precharge -= HPAGE_PMD_NR;
6063 mc.moved_charge += HPAGE_PMD_NR;
6064 }
6065 put_page(page);
6066 }
6067 spin_unlock(ptl);
6068 return 0;
6069 }
6070
6071 if (pmd_trans_unstable(pmd))
6072 return 0;
6073retry:
6074 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6075 for (; addr != end; addr += PAGE_SIZE) {
6076 pte_t ptent = *(pte++);
6077 bool device = false;
6078 swp_entry_t ent;
6079
6080 if (!mc.precharge)
6081 break;
6082
6083 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6084 case MC_TARGET_DEVICE:
6085 device = true;
6086 fallthrough;
6087 case MC_TARGET_PAGE:
6088 page = target.page;
6089 /*
6090 * We can have a part of the split pmd here. Moving it
6091 * can be done but it would be too convoluted so simply
6092 * ignore such a partial THP and keep it in original
6093 * memcg. There should be somebody mapping the head.
6094 */
6095 if (PageTransCompound(page))
6096 goto put;
6097 if (!device && isolate_lru_page(page))
6098 goto put;
6099 if (!mem_cgroup_move_account(page, false,
6100 mc.from, mc.to)) {
6101 mc.precharge--;
6102 /* we uncharge from mc.from later. */
6103 mc.moved_charge++;
6104 }
6105 if (!device)
6106 putback_lru_page(page);
6107put: /* get_mctgt_type() gets the page */
6108 put_page(page);
6109 break;
6110 case MC_TARGET_SWAP:
6111 ent = target.ent;
6112 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6113 mc.precharge--;
6114 mem_cgroup_id_get_many(mc.to, 1);
6115 /* we fixup other refcnts and charges later. */
6116 mc.moved_swap++;
6117 }
6118 break;
6119 default:
6120 break;
6121 }
6122 }
6123 pte_unmap_unlock(pte - 1, ptl);
6124 cond_resched();
6125
6126 if (addr != end) {
6127 /*
6128 * We have consumed all precharges we got in can_attach().
6129 * We try charge one by one, but don't do any additional
6130 * charges to mc.to if we have failed in charge once in attach()
6131 * phase.
6132 */
6133 ret = mem_cgroup_do_precharge(1);
6134 if (!ret)
6135 goto retry;
6136 }
6137
6138 return ret;
6139}
6140
6141static const struct mm_walk_ops charge_walk_ops = {
6142 .pmd_entry = mem_cgroup_move_charge_pte_range,
6143};
6144
6145static void mem_cgroup_move_charge(void)
6146{
6147 lru_add_drain_all();
6148 /*
6149 * Signal lock_page_memcg() to take the memcg's move_lock
6150 * while we're moving its pages to another memcg. Then wait
6151 * for already started RCU-only updates to finish.
6152 */
6153 atomic_inc(&mc.from->moving_account);
6154 synchronize_rcu();
6155retry:
6156 if (unlikely(!mmap_read_trylock(mc.mm))) {
6157 /*
6158 * Someone who are holding the mmap_lock might be waiting in
6159 * waitq. So we cancel all extra charges, wake up all waiters,
6160 * and retry. Because we cancel precharges, we might not be able
6161 * to move enough charges, but moving charge is a best-effort
6162 * feature anyway, so it wouldn't be a big problem.
6163 */
6164 __mem_cgroup_clear_mc();
6165 cond_resched();
6166 goto retry;
6167 }
6168 /*
6169 * When we have consumed all precharges and failed in doing
6170 * additional charge, the page walk just aborts.
6171 */
6172 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6173 NULL);
6174
6175 mmap_read_unlock(mc.mm);
6176 atomic_dec(&mc.from->moving_account);
6177}
6178
6179static void mem_cgroup_move_task(void)
6180{
6181 if (mc.to) {
6182 mem_cgroup_move_charge();
6183 mem_cgroup_clear_mc();
6184 }
6185}
6186#else /* !CONFIG_MMU */
6187static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6188{
6189 return 0;
6190}
6191static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6192{
6193}
6194static void mem_cgroup_move_task(void)
6195{
6196}
6197#endif
6198
6199static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6200{
6201 if (value == PAGE_COUNTER_MAX)
6202 seq_puts(m, "max\n");
6203 else
6204 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6205
6206 return 0;
6207}
6208
6209static u64 memory_current_read(struct cgroup_subsys_state *css,
6210 struct cftype *cft)
6211{
6212 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6213
6214 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6215}
6216
6217static u64 memory_peak_read(struct cgroup_subsys_state *css,
6218 struct cftype *cft)
6219{
6220 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6221
6222 return (u64)memcg->memory.watermark * PAGE_SIZE;
6223}
6224
6225static int memory_min_show(struct seq_file *m, void *v)
6226{
6227 return seq_puts_memcg_tunable(m,
6228 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6229}
6230
6231static ssize_t memory_min_write(struct kernfs_open_file *of,
6232 char *buf, size_t nbytes, loff_t off)
6233{
6234 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6235 unsigned long min;
6236 int err;
6237
6238 buf = strstrip(buf);
6239 err = page_counter_memparse(buf, "max", &min);
6240 if (err)
6241 return err;
6242
6243 page_counter_set_min(&memcg->memory, min);
6244
6245 return nbytes;
6246}
6247
6248static int memory_low_show(struct seq_file *m, void *v)
6249{
6250 return seq_puts_memcg_tunable(m,
6251 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6252}
6253
6254static ssize_t memory_low_write(struct kernfs_open_file *of,
6255 char *buf, size_t nbytes, loff_t off)
6256{
6257 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6258 unsigned long low;
6259 int err;
6260
6261 buf = strstrip(buf);
6262 err = page_counter_memparse(buf, "max", &low);
6263 if (err)
6264 return err;
6265
6266 page_counter_set_low(&memcg->memory, low);
6267
6268 return nbytes;
6269}
6270
6271static int memory_high_show(struct seq_file *m, void *v)
6272{
6273 return seq_puts_memcg_tunable(m,
6274 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6275}
6276
6277static ssize_t memory_high_write(struct kernfs_open_file *of,
6278 char *buf, size_t nbytes, loff_t off)
6279{
6280 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6281 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6282 bool drained = false;
6283 unsigned long high;
6284 int err;
6285
6286 buf = strstrip(buf);
6287 err = page_counter_memparse(buf, "max", &high);
6288 if (err)
6289 return err;
6290
6291 page_counter_set_high(&memcg->memory, high);
6292
6293 for (;;) {
6294 unsigned long nr_pages = page_counter_read(&memcg->memory);
6295 unsigned long reclaimed;
6296
6297 if (nr_pages <= high)
6298 break;
6299
6300 if (signal_pending(current))
6301 break;
6302
6303 if (!drained) {
6304 drain_all_stock(memcg);
6305 drained = true;
6306 continue;
6307 }
6308
6309 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6310 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6311
6312 if (!reclaimed && !nr_retries--)
6313 break;
6314 }
6315
6316 memcg_wb_domain_size_changed(memcg);
6317 return nbytes;
6318}
6319
6320static int memory_max_show(struct seq_file *m, void *v)
6321{
6322 return seq_puts_memcg_tunable(m,
6323 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6324}
6325
6326static ssize_t memory_max_write(struct kernfs_open_file *of,
6327 char *buf, size_t nbytes, loff_t off)
6328{
6329 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6330 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6331 bool drained = false;
6332 unsigned long max;
6333 int err;
6334
6335 buf = strstrip(buf);
6336 err = page_counter_memparse(buf, "max", &max);
6337 if (err)
6338 return err;
6339
6340 xchg(&memcg->memory.max, max);
6341
6342 for (;;) {
6343 unsigned long nr_pages = page_counter_read(&memcg->memory);
6344
6345 if (nr_pages <= max)
6346 break;
6347
6348 if (signal_pending(current))
6349 break;
6350
6351 if (!drained) {
6352 drain_all_stock(memcg);
6353 drained = true;
6354 continue;
6355 }
6356
6357 if (nr_reclaims) {
6358 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6359 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6360 nr_reclaims--;
6361 continue;
6362 }
6363
6364 memcg_memory_event(memcg, MEMCG_OOM);
6365 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6366 break;
6367 }
6368
6369 memcg_wb_domain_size_changed(memcg);
6370 return nbytes;
6371}
6372
6373static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6374{
6375 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6376 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6377 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6378 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6379 seq_printf(m, "oom_kill %lu\n",
6380 atomic_long_read(&events[MEMCG_OOM_KILL]));
6381 seq_printf(m, "oom_group_kill %lu\n",
6382 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6383}
6384
6385static int memory_events_show(struct seq_file *m, void *v)
6386{
6387 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6388
6389 __memory_events_show(m, memcg->memory_events);
6390 return 0;
6391}
6392
6393static int memory_events_local_show(struct seq_file *m, void *v)
6394{
6395 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6396
6397 __memory_events_show(m, memcg->memory_events_local);
6398 return 0;
6399}
6400
6401static int memory_stat_show(struct seq_file *m, void *v)
6402{
6403 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6404 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6405
6406 if (!buf)
6407 return -ENOMEM;
6408 memory_stat_format(memcg, buf, PAGE_SIZE);
6409 seq_puts(m, buf);
6410 kfree(buf);
6411 return 0;
6412}
6413
6414#ifdef CONFIG_NUMA
6415static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6416 int item)
6417{
6418 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6419}
6420
6421static int memory_numa_stat_show(struct seq_file *m, void *v)
6422{
6423 int i;
6424 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6425
6426 mem_cgroup_flush_stats();
6427
6428 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6429 int nid;
6430
6431 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6432 continue;
6433
6434 seq_printf(m, "%s", memory_stats[i].name);
6435 for_each_node_state(nid, N_MEMORY) {
6436 u64 size;
6437 struct lruvec *lruvec;
6438
6439 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6440 size = lruvec_page_state_output(lruvec,
6441 memory_stats[i].idx);
6442 seq_printf(m, " N%d=%llu", nid, size);
6443 }
6444 seq_putc(m, '\n');
6445 }
6446
6447 return 0;
6448}
6449#endif
6450
6451static int memory_oom_group_show(struct seq_file *m, void *v)
6452{
6453 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6454
6455 seq_printf(m, "%d\n", memcg->oom_group);
6456
6457 return 0;
6458}
6459
6460static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6461 char *buf, size_t nbytes, loff_t off)
6462{
6463 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6464 int ret, oom_group;
6465
6466 buf = strstrip(buf);
6467 if (!buf)
6468 return -EINVAL;
6469
6470 ret = kstrtoint(buf, 0, &oom_group);
6471 if (ret)
6472 return ret;
6473
6474 if (oom_group != 0 && oom_group != 1)
6475 return -EINVAL;
6476
6477 memcg->oom_group = oom_group;
6478
6479 return nbytes;
6480}
6481
6482static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6483 size_t nbytes, loff_t off)
6484{
6485 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6486 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6487 unsigned long nr_to_reclaim, nr_reclaimed = 0;
6488 unsigned int reclaim_options;
6489 int err;
6490
6491 buf = strstrip(buf);
6492 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6493 if (err)
6494 return err;
6495
6496 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6497 while (nr_reclaimed < nr_to_reclaim) {
6498 unsigned long reclaimed;
6499
6500 if (signal_pending(current))
6501 return -EINTR;
6502
6503 /*
6504 * This is the final attempt, drain percpu lru caches in the
6505 * hope of introducing more evictable pages for
6506 * try_to_free_mem_cgroup_pages().
6507 */
6508 if (!nr_retries)
6509 lru_add_drain_all();
6510
6511 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6512 nr_to_reclaim - nr_reclaimed,
6513 GFP_KERNEL, reclaim_options);
6514
6515 if (!reclaimed && !nr_retries--)
6516 return -EAGAIN;
6517
6518 nr_reclaimed += reclaimed;
6519 }
6520
6521 return nbytes;
6522}
6523
6524static struct cftype memory_files[] = {
6525 {
6526 .name = "current",
6527 .flags = CFTYPE_NOT_ON_ROOT,
6528 .read_u64 = memory_current_read,
6529 },
6530 {
6531 .name = "peak",
6532 .flags = CFTYPE_NOT_ON_ROOT,
6533 .read_u64 = memory_peak_read,
6534 },
6535 {
6536 .name = "min",
6537 .flags = CFTYPE_NOT_ON_ROOT,
6538 .seq_show = memory_min_show,
6539 .write = memory_min_write,
6540 },
6541 {
6542 .name = "low",
6543 .flags = CFTYPE_NOT_ON_ROOT,
6544 .seq_show = memory_low_show,
6545 .write = memory_low_write,
6546 },
6547 {
6548 .name = "high",
6549 .flags = CFTYPE_NOT_ON_ROOT,
6550 .seq_show = memory_high_show,
6551 .write = memory_high_write,
6552 },
6553 {
6554 .name = "max",
6555 .flags = CFTYPE_NOT_ON_ROOT,
6556 .seq_show = memory_max_show,
6557 .write = memory_max_write,
6558 },
6559 {
6560 .name = "events",
6561 .flags = CFTYPE_NOT_ON_ROOT,
6562 .file_offset = offsetof(struct mem_cgroup, events_file),
6563 .seq_show = memory_events_show,
6564 },
6565 {
6566 .name = "events.local",
6567 .flags = CFTYPE_NOT_ON_ROOT,
6568 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6569 .seq_show = memory_events_local_show,
6570 },
6571 {
6572 .name = "stat",
6573 .seq_show = memory_stat_show,
6574 },
6575#ifdef CONFIG_NUMA
6576 {
6577 .name = "numa_stat",
6578 .seq_show = memory_numa_stat_show,
6579 },
6580#endif
6581 {
6582 .name = "oom.group",
6583 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6584 .seq_show = memory_oom_group_show,
6585 .write = memory_oom_group_write,
6586 },
6587 {
6588 .name = "reclaim",
6589 .flags = CFTYPE_NS_DELEGATABLE,
6590 .write = memory_reclaim,
6591 },
6592 { } /* terminate */
6593};
6594
6595struct cgroup_subsys memory_cgrp_subsys = {
6596 .css_alloc = mem_cgroup_css_alloc,
6597 .css_online = mem_cgroup_css_online,
6598 .css_offline = mem_cgroup_css_offline,
6599 .css_released = mem_cgroup_css_released,
6600 .css_free = mem_cgroup_css_free,
6601 .css_reset = mem_cgroup_css_reset,
6602 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6603 .can_attach = mem_cgroup_can_attach,
6604 .cancel_attach = mem_cgroup_cancel_attach,
6605 .post_attach = mem_cgroup_move_task,
6606 .dfl_cftypes = memory_files,
6607 .legacy_cftypes = mem_cgroup_legacy_files,
6608 .early_init = 0,
6609};
6610
6611/*
6612 * This function calculates an individual cgroup's effective
6613 * protection which is derived from its own memory.min/low, its
6614 * parent's and siblings' settings, as well as the actual memory
6615 * distribution in the tree.
6616 *
6617 * The following rules apply to the effective protection values:
6618 *
6619 * 1. At the first level of reclaim, effective protection is equal to
6620 * the declared protection in memory.min and memory.low.
6621 *
6622 * 2. To enable safe delegation of the protection configuration, at
6623 * subsequent levels the effective protection is capped to the
6624 * parent's effective protection.
6625 *
6626 * 3. To make complex and dynamic subtrees easier to configure, the
6627 * user is allowed to overcommit the declared protection at a given
6628 * level. If that is the case, the parent's effective protection is
6629 * distributed to the children in proportion to how much protection
6630 * they have declared and how much of it they are utilizing.
6631 *
6632 * This makes distribution proportional, but also work-conserving:
6633 * if one cgroup claims much more protection than it uses memory,
6634 * the unused remainder is available to its siblings.
6635 *
6636 * 4. Conversely, when the declared protection is undercommitted at a
6637 * given level, the distribution of the larger parental protection
6638 * budget is NOT proportional. A cgroup's protection from a sibling
6639 * is capped to its own memory.min/low setting.
6640 *
6641 * 5. However, to allow protecting recursive subtrees from each other
6642 * without having to declare each individual cgroup's fixed share
6643 * of the ancestor's claim to protection, any unutilized -
6644 * "floating" - protection from up the tree is distributed in
6645 * proportion to each cgroup's *usage*. This makes the protection
6646 * neutral wrt sibling cgroups and lets them compete freely over
6647 * the shared parental protection budget, but it protects the
6648 * subtree as a whole from neighboring subtrees.
6649 *
6650 * Note that 4. and 5. are not in conflict: 4. is about protecting
6651 * against immediate siblings whereas 5. is about protecting against
6652 * neighboring subtrees.
6653 */
6654static unsigned long effective_protection(unsigned long usage,
6655 unsigned long parent_usage,
6656 unsigned long setting,
6657 unsigned long parent_effective,
6658 unsigned long siblings_protected)
6659{
6660 unsigned long protected;
6661 unsigned long ep;
6662
6663 protected = min(usage, setting);
6664 /*
6665 * If all cgroups at this level combined claim and use more
6666 * protection then what the parent affords them, distribute
6667 * shares in proportion to utilization.
6668 *
6669 * We are using actual utilization rather than the statically
6670 * claimed protection in order to be work-conserving: claimed
6671 * but unused protection is available to siblings that would
6672 * otherwise get a smaller chunk than what they claimed.
6673 */
6674 if (siblings_protected > parent_effective)
6675 return protected * parent_effective / siblings_protected;
6676
6677 /*
6678 * Ok, utilized protection of all children is within what the
6679 * parent affords them, so we know whatever this child claims
6680 * and utilizes is effectively protected.
6681 *
6682 * If there is unprotected usage beyond this value, reclaim
6683 * will apply pressure in proportion to that amount.
6684 *
6685 * If there is unutilized protection, the cgroup will be fully
6686 * shielded from reclaim, but we do return a smaller value for
6687 * protection than what the group could enjoy in theory. This
6688 * is okay. With the overcommit distribution above, effective
6689 * protection is always dependent on how memory is actually
6690 * consumed among the siblings anyway.
6691 */
6692 ep = protected;
6693
6694 /*
6695 * If the children aren't claiming (all of) the protection
6696 * afforded to them by the parent, distribute the remainder in
6697 * proportion to the (unprotected) memory of each cgroup. That
6698 * way, cgroups that aren't explicitly prioritized wrt each
6699 * other compete freely over the allowance, but they are
6700 * collectively protected from neighboring trees.
6701 *
6702 * We're using unprotected memory for the weight so that if
6703 * some cgroups DO claim explicit protection, we don't protect
6704 * the same bytes twice.
6705 *
6706 * Check both usage and parent_usage against the respective
6707 * protected values. One should imply the other, but they
6708 * aren't read atomically - make sure the division is sane.
6709 */
6710 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6711 return ep;
6712 if (parent_effective > siblings_protected &&
6713 parent_usage > siblings_protected &&
6714 usage > protected) {
6715 unsigned long unclaimed;
6716
6717 unclaimed = parent_effective - siblings_protected;
6718 unclaimed *= usage - protected;
6719 unclaimed /= parent_usage - siblings_protected;
6720
6721 ep += unclaimed;
6722 }
6723
6724 return ep;
6725}
6726
6727/**
6728 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6729 * @root: the top ancestor of the sub-tree being checked
6730 * @memcg: the memory cgroup to check
6731 *
6732 * WARNING: This function is not stateless! It can only be used as part
6733 * of a top-down tree iteration, not for isolated queries.
6734 */
6735void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6736 struct mem_cgroup *memcg)
6737{
6738 unsigned long usage, parent_usage;
6739 struct mem_cgroup *parent;
6740
6741 if (mem_cgroup_disabled())
6742 return;
6743
6744 if (!root)
6745 root = root_mem_cgroup;
6746
6747 /*
6748 * Effective values of the reclaim targets are ignored so they
6749 * can be stale. Have a look at mem_cgroup_protection for more
6750 * details.
6751 * TODO: calculation should be more robust so that we do not need
6752 * that special casing.
6753 */
6754 if (memcg == root)
6755 return;
6756
6757 usage = page_counter_read(&memcg->memory);
6758 if (!usage)
6759 return;
6760
6761 parent = parent_mem_cgroup(memcg);
6762
6763 if (parent == root) {
6764 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6765 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6766 return;
6767 }
6768
6769 parent_usage = page_counter_read(&parent->memory);
6770
6771 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6772 READ_ONCE(memcg->memory.min),
6773 READ_ONCE(parent->memory.emin),
6774 atomic_long_read(&parent->memory.children_min_usage)));
6775
6776 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6777 READ_ONCE(memcg->memory.low),
6778 READ_ONCE(parent->memory.elow),
6779 atomic_long_read(&parent->memory.children_low_usage)));
6780}
6781
6782static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6783 gfp_t gfp)
6784{
6785 long nr_pages = folio_nr_pages(folio);
6786 int ret;
6787
6788 ret = try_charge(memcg, gfp, nr_pages);
6789 if (ret)
6790 goto out;
6791
6792 css_get(&memcg->css);
6793 commit_charge(folio, memcg);
6794
6795 local_irq_disable();
6796 mem_cgroup_charge_statistics(memcg, nr_pages);
6797 memcg_check_events(memcg, folio_nid(folio));
6798 local_irq_enable();
6799out:
6800 return ret;
6801}
6802
6803int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6804{
6805 struct mem_cgroup *memcg;
6806 int ret;
6807
6808 memcg = get_mem_cgroup_from_mm(mm);
6809 ret = charge_memcg(folio, memcg, gfp);
6810 css_put(&memcg->css);
6811
6812 return ret;
6813}
6814
6815/**
6816 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6817 * @page: page to charge
6818 * @mm: mm context of the victim
6819 * @gfp: reclaim mode
6820 * @entry: swap entry for which the page is allocated
6821 *
6822 * This function charges a page allocated for swapin. Please call this before
6823 * adding the page to the swapcache.
6824 *
6825 * Returns 0 on success. Otherwise, an error code is returned.
6826 */
6827int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6828 gfp_t gfp, swp_entry_t entry)
6829{
6830 struct folio *folio = page_folio(page);
6831 struct mem_cgroup *memcg;
6832 unsigned short id;
6833 int ret;
6834
6835 if (mem_cgroup_disabled())
6836 return 0;
6837
6838 id = lookup_swap_cgroup_id(entry);
6839 rcu_read_lock();
6840 memcg = mem_cgroup_from_id(id);
6841 if (!memcg || !css_tryget_online(&memcg->css))
6842 memcg = get_mem_cgroup_from_mm(mm);
6843 rcu_read_unlock();
6844
6845 ret = charge_memcg(folio, memcg, gfp);
6846
6847 css_put(&memcg->css);
6848 return ret;
6849}
6850
6851/*
6852 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6853 * @entry: swap entry for which the page is charged
6854 *
6855 * Call this function after successfully adding the charged page to swapcache.
6856 *
6857 * Note: This function assumes the page for which swap slot is being uncharged
6858 * is order 0 page.
6859 */
6860void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6861{
6862 /*
6863 * Cgroup1's unified memory+swap counter has been charged with the
6864 * new swapcache page, finish the transfer by uncharging the swap
6865 * slot. The swap slot would also get uncharged when it dies, but
6866 * it can stick around indefinitely and we'd count the page twice
6867 * the entire time.
6868 *
6869 * Cgroup2 has separate resource counters for memory and swap,
6870 * so this is a non-issue here. Memory and swap charge lifetimes
6871 * correspond 1:1 to page and swap slot lifetimes: we charge the
6872 * page to memory here, and uncharge swap when the slot is freed.
6873 */
6874 if (!mem_cgroup_disabled() && do_memsw_account()) {
6875 /*
6876 * The swap entry might not get freed for a long time,
6877 * let's not wait for it. The page already received a
6878 * memory+swap charge, drop the swap entry duplicate.
6879 */
6880 mem_cgroup_uncharge_swap(entry, 1);
6881 }
6882}
6883
6884struct uncharge_gather {
6885 struct mem_cgroup *memcg;
6886 unsigned long nr_memory;
6887 unsigned long pgpgout;
6888 unsigned long nr_kmem;
6889 int nid;
6890};
6891
6892static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6893{
6894 memset(ug, 0, sizeof(*ug));
6895}
6896
6897static void uncharge_batch(const struct uncharge_gather *ug)
6898{
6899 unsigned long flags;
6900
6901 if (ug->nr_memory) {
6902 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6903 if (do_memsw_account())
6904 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6905 if (ug->nr_kmem)
6906 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
6907 memcg_oom_recover(ug->memcg);
6908 }
6909
6910 local_irq_save(flags);
6911 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6912 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6913 memcg_check_events(ug->memcg, ug->nid);
6914 local_irq_restore(flags);
6915
6916 /* drop reference from uncharge_folio */
6917 css_put(&ug->memcg->css);
6918}
6919
6920static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6921{
6922 long nr_pages;
6923 struct mem_cgroup *memcg;
6924 struct obj_cgroup *objcg;
6925
6926 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6927
6928 /*
6929 * Nobody should be changing or seriously looking at
6930 * folio memcg or objcg at this point, we have fully
6931 * exclusive access to the folio.
6932 */
6933 if (folio_memcg_kmem(folio)) {
6934 objcg = __folio_objcg(folio);
6935 /*
6936 * This get matches the put at the end of the function and
6937 * kmem pages do not hold memcg references anymore.
6938 */
6939 memcg = get_mem_cgroup_from_objcg(objcg);
6940 } else {
6941 memcg = __folio_memcg(folio);
6942 }
6943
6944 if (!memcg)
6945 return;
6946
6947 if (ug->memcg != memcg) {
6948 if (ug->memcg) {
6949 uncharge_batch(ug);
6950 uncharge_gather_clear(ug);
6951 }
6952 ug->memcg = memcg;
6953 ug->nid = folio_nid(folio);
6954
6955 /* pairs with css_put in uncharge_batch */
6956 css_get(&memcg->css);
6957 }
6958
6959 nr_pages = folio_nr_pages(folio);
6960
6961 if (folio_memcg_kmem(folio)) {
6962 ug->nr_memory += nr_pages;
6963 ug->nr_kmem += nr_pages;
6964
6965 folio->memcg_data = 0;
6966 obj_cgroup_put(objcg);
6967 } else {
6968 /* LRU pages aren't accounted at the root level */
6969 if (!mem_cgroup_is_root(memcg))
6970 ug->nr_memory += nr_pages;
6971 ug->pgpgout++;
6972
6973 folio->memcg_data = 0;
6974 }
6975
6976 css_put(&memcg->css);
6977}
6978
6979void __mem_cgroup_uncharge(struct folio *folio)
6980{
6981 struct uncharge_gather ug;
6982
6983 /* Don't touch folio->lru of any random page, pre-check: */
6984 if (!folio_memcg(folio))
6985 return;
6986
6987 uncharge_gather_clear(&ug);
6988 uncharge_folio(folio, &ug);
6989 uncharge_batch(&ug);
6990}
6991
6992/**
6993 * __mem_cgroup_uncharge_list - uncharge a list of page
6994 * @page_list: list of pages to uncharge
6995 *
6996 * Uncharge a list of pages previously charged with
6997 * __mem_cgroup_charge().
6998 */
6999void __mem_cgroup_uncharge_list(struct list_head *page_list)
7000{
7001 struct uncharge_gather ug;
7002 struct folio *folio;
7003
7004 uncharge_gather_clear(&ug);
7005 list_for_each_entry(folio, page_list, lru)
7006 uncharge_folio(folio, &ug);
7007 if (ug.memcg)
7008 uncharge_batch(&ug);
7009}
7010
7011/**
7012 * mem_cgroup_migrate - Charge a folio's replacement.
7013 * @old: Currently circulating folio.
7014 * @new: Replacement folio.
7015 *
7016 * Charge @new as a replacement folio for @old. @old will
7017 * be uncharged upon free.
7018 *
7019 * Both folios must be locked, @new->mapping must be set up.
7020 */
7021void mem_cgroup_migrate(struct folio *old, struct folio *new)
7022{
7023 struct mem_cgroup *memcg;
7024 long nr_pages = folio_nr_pages(new);
7025 unsigned long flags;
7026
7027 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7028 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7029 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7030 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7031
7032 if (mem_cgroup_disabled())
7033 return;
7034
7035 /* Page cache replacement: new folio already charged? */
7036 if (folio_memcg(new))
7037 return;
7038
7039 memcg = folio_memcg(old);
7040 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7041 if (!memcg)
7042 return;
7043
7044 /* Force-charge the new page. The old one will be freed soon */
7045 if (!mem_cgroup_is_root(memcg)) {
7046 page_counter_charge(&memcg->memory, nr_pages);
7047 if (do_memsw_account())
7048 page_counter_charge(&memcg->memsw, nr_pages);
7049 }
7050
7051 css_get(&memcg->css);
7052 commit_charge(new, memcg);
7053
7054 local_irq_save(flags);
7055 mem_cgroup_charge_statistics(memcg, nr_pages);
7056 memcg_check_events(memcg, folio_nid(new));
7057 local_irq_restore(flags);
7058}
7059
7060DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7061EXPORT_SYMBOL(memcg_sockets_enabled_key);
7062
7063void mem_cgroup_sk_alloc(struct sock *sk)
7064{
7065 struct mem_cgroup *memcg;
7066
7067 if (!mem_cgroup_sockets_enabled)
7068 return;
7069
7070 /* Do not associate the sock with unrelated interrupted task's memcg. */
7071 if (!in_task())
7072 return;
7073
7074 rcu_read_lock();
7075 memcg = mem_cgroup_from_task(current);
7076 if (memcg == root_mem_cgroup)
7077 goto out;
7078 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7079 goto out;
7080 if (css_tryget(&memcg->css))
7081 sk->sk_memcg = memcg;
7082out:
7083 rcu_read_unlock();
7084}
7085
7086void mem_cgroup_sk_free(struct sock *sk)
7087{
7088 if (sk->sk_memcg)
7089 css_put(&sk->sk_memcg->css);
7090}
7091
7092/**
7093 * mem_cgroup_charge_skmem - charge socket memory
7094 * @memcg: memcg to charge
7095 * @nr_pages: number of pages to charge
7096 * @gfp_mask: reclaim mode
7097 *
7098 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7099 * @memcg's configured limit, %false if it doesn't.
7100 */
7101bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7102 gfp_t gfp_mask)
7103{
7104 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7105 struct page_counter *fail;
7106
7107 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7108 memcg->tcpmem_pressure = 0;
7109 return true;
7110 }
7111 memcg->tcpmem_pressure = 1;
7112 if (gfp_mask & __GFP_NOFAIL) {
7113 page_counter_charge(&memcg->tcpmem, nr_pages);
7114 return true;
7115 }
7116 return false;
7117 }
7118
7119 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7120 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7121 return true;
7122 }
7123
7124 return false;
7125}
7126
7127/**
7128 * mem_cgroup_uncharge_skmem - uncharge socket memory
7129 * @memcg: memcg to uncharge
7130 * @nr_pages: number of pages to uncharge
7131 */
7132void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7133{
7134 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7135 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7136 return;
7137 }
7138
7139 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7140
7141 refill_stock(memcg, nr_pages);
7142}
7143
7144static int __init cgroup_memory(char *s)
7145{
7146 char *token;
7147
7148 while ((token = strsep(&s, ",")) != NULL) {
7149 if (!*token)
7150 continue;
7151 if (!strcmp(token, "nosocket"))
7152 cgroup_memory_nosocket = true;
7153 if (!strcmp(token, "nokmem"))
7154 cgroup_memory_nokmem = true;
7155 }
7156 return 1;
7157}
7158__setup("cgroup.memory=", cgroup_memory);
7159
7160/*
7161 * subsys_initcall() for memory controller.
7162 *
7163 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7164 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7165 * basically everything that doesn't depend on a specific mem_cgroup structure
7166 * should be initialized from here.
7167 */
7168static int __init mem_cgroup_init(void)
7169{
7170 int cpu, node;
7171
7172 /*
7173 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7174 * used for per-memcg-per-cpu caching of per-node statistics. In order
7175 * to work fine, we should make sure that the overfill threshold can't
7176 * exceed S32_MAX / PAGE_SIZE.
7177 */
7178 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7179
7180 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7181 memcg_hotplug_cpu_dead);
7182
7183 for_each_possible_cpu(cpu)
7184 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7185 drain_local_stock);
7186
7187 for_each_node(node) {
7188 struct mem_cgroup_tree_per_node *rtpn;
7189
7190 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7191 node_online(node) ? node : NUMA_NO_NODE);
7192
7193 rtpn->rb_root = RB_ROOT;
7194 rtpn->rb_rightmost = NULL;
7195 spin_lock_init(&rtpn->lock);
7196 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7197 }
7198
7199 return 0;
7200}
7201subsys_initcall(mem_cgroup_init);
7202
7203#ifdef CONFIG_MEMCG_SWAP
7204static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7205{
7206 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7207 /*
7208 * The root cgroup cannot be destroyed, so it's refcount must
7209 * always be >= 1.
7210 */
7211 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7212 VM_BUG_ON(1);
7213 break;
7214 }
7215 memcg = parent_mem_cgroup(memcg);
7216 if (!memcg)
7217 memcg = root_mem_cgroup;
7218 }
7219 return memcg;
7220}
7221
7222/**
7223 * mem_cgroup_swapout - transfer a memsw charge to swap
7224 * @folio: folio whose memsw charge to transfer
7225 * @entry: swap entry to move the charge to
7226 *
7227 * Transfer the memsw charge of @folio to @entry.
7228 */
7229void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7230{
7231 struct mem_cgroup *memcg, *swap_memcg;
7232 unsigned int nr_entries;
7233 unsigned short oldid;
7234
7235 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7236 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7237
7238 if (mem_cgroup_disabled())
7239 return;
7240
7241 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7242 return;
7243
7244 memcg = folio_memcg(folio);
7245
7246 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7247 if (!memcg)
7248 return;
7249
7250 /*
7251 * In case the memcg owning these pages has been offlined and doesn't
7252 * have an ID allocated to it anymore, charge the closest online
7253 * ancestor for the swap instead and transfer the memory+swap charge.
7254 */
7255 swap_memcg = mem_cgroup_id_get_online(memcg);
7256 nr_entries = folio_nr_pages(folio);
7257 /* Get references for the tail pages, too */
7258 if (nr_entries > 1)
7259 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7260 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7261 nr_entries);
7262 VM_BUG_ON_FOLIO(oldid, folio);
7263 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7264
7265 folio->memcg_data = 0;
7266
7267 if (!mem_cgroup_is_root(memcg))
7268 page_counter_uncharge(&memcg->memory, nr_entries);
7269
7270 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7271 if (!mem_cgroup_is_root(swap_memcg))
7272 page_counter_charge(&swap_memcg->memsw, nr_entries);
7273 page_counter_uncharge(&memcg->memsw, nr_entries);
7274 }
7275
7276 /*
7277 * Interrupts should be disabled here because the caller holds the
7278 * i_pages lock which is taken with interrupts-off. It is
7279 * important here to have the interrupts disabled because it is the
7280 * only synchronisation we have for updating the per-CPU variables.
7281 */
7282 memcg_stats_lock();
7283 mem_cgroup_charge_statistics(memcg, -nr_entries);
7284 memcg_stats_unlock();
7285 memcg_check_events(memcg, folio_nid(folio));
7286
7287 css_put(&memcg->css);
7288}
7289
7290/**
7291 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7292 * @folio: folio being added to swap
7293 * @entry: swap entry to charge
7294 *
7295 * Try to charge @folio's memcg for the swap space at @entry.
7296 *
7297 * Returns 0 on success, -ENOMEM on failure.
7298 */
7299int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7300{
7301 unsigned int nr_pages = folio_nr_pages(folio);
7302 struct page_counter *counter;
7303 struct mem_cgroup *memcg;
7304 unsigned short oldid;
7305
7306 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7307 return 0;
7308
7309 memcg = folio_memcg(folio);
7310
7311 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7312 if (!memcg)
7313 return 0;
7314
7315 if (!entry.val) {
7316 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7317 return 0;
7318 }
7319
7320 memcg = mem_cgroup_id_get_online(memcg);
7321
7322 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7323 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7324 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7325 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7326 mem_cgroup_id_put(memcg);
7327 return -ENOMEM;
7328 }
7329
7330 /* Get references for the tail pages, too */
7331 if (nr_pages > 1)
7332 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7333 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7334 VM_BUG_ON_FOLIO(oldid, folio);
7335 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7336
7337 return 0;
7338}
7339
7340/**
7341 * __mem_cgroup_uncharge_swap - uncharge swap space
7342 * @entry: swap entry to uncharge
7343 * @nr_pages: the amount of swap space to uncharge
7344 */
7345void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7346{
7347 struct mem_cgroup *memcg;
7348 unsigned short id;
7349
7350 id = swap_cgroup_record(entry, 0, nr_pages);
7351 rcu_read_lock();
7352 memcg = mem_cgroup_from_id(id);
7353 if (memcg) {
7354 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7355 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7356 page_counter_uncharge(&memcg->swap, nr_pages);
7357 else
7358 page_counter_uncharge(&memcg->memsw, nr_pages);
7359 }
7360 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7361 mem_cgroup_id_put_many(memcg, nr_pages);
7362 }
7363 rcu_read_unlock();
7364}
7365
7366long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7367{
7368 long nr_swap_pages = get_nr_swap_pages();
7369
7370 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7371 return nr_swap_pages;
7372 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7373 nr_swap_pages = min_t(long, nr_swap_pages,
7374 READ_ONCE(memcg->swap.max) -
7375 page_counter_read(&memcg->swap));
7376 return nr_swap_pages;
7377}
7378
7379bool mem_cgroup_swap_full(struct page *page)
7380{
7381 struct mem_cgroup *memcg;
7382
7383 VM_BUG_ON_PAGE(!PageLocked(page), page);
7384
7385 if (vm_swap_full())
7386 return true;
7387 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7388 return false;
7389
7390 memcg = page_memcg(page);
7391 if (!memcg)
7392 return false;
7393
7394 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7395 unsigned long usage = page_counter_read(&memcg->swap);
7396
7397 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7398 usage * 2 >= READ_ONCE(memcg->swap.max))
7399 return true;
7400 }
7401
7402 return false;
7403}
7404
7405static int __init setup_swap_account(char *s)
7406{
7407 if (!strcmp(s, "1"))
7408 cgroup_memory_noswap = false;
7409 else if (!strcmp(s, "0"))
7410 cgroup_memory_noswap = true;
7411 return 1;
7412}
7413__setup("swapaccount=", setup_swap_account);
7414
7415static u64 swap_current_read(struct cgroup_subsys_state *css,
7416 struct cftype *cft)
7417{
7418 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7419
7420 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7421}
7422
7423static int swap_high_show(struct seq_file *m, void *v)
7424{
7425 return seq_puts_memcg_tunable(m,
7426 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7427}
7428
7429static ssize_t swap_high_write(struct kernfs_open_file *of,
7430 char *buf, size_t nbytes, loff_t off)
7431{
7432 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7433 unsigned long high;
7434 int err;
7435
7436 buf = strstrip(buf);
7437 err = page_counter_memparse(buf, "max", &high);
7438 if (err)
7439 return err;
7440
7441 page_counter_set_high(&memcg->swap, high);
7442
7443 return nbytes;
7444}
7445
7446static int swap_max_show(struct seq_file *m, void *v)
7447{
7448 return seq_puts_memcg_tunable(m,
7449 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7450}
7451
7452static ssize_t swap_max_write(struct kernfs_open_file *of,
7453 char *buf, size_t nbytes, loff_t off)
7454{
7455 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7456 unsigned long max;
7457 int err;
7458
7459 buf = strstrip(buf);
7460 err = page_counter_memparse(buf, "max", &max);
7461 if (err)
7462 return err;
7463
7464 xchg(&memcg->swap.max, max);
7465
7466 return nbytes;
7467}
7468
7469static int swap_events_show(struct seq_file *m, void *v)
7470{
7471 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7472
7473 seq_printf(m, "high %lu\n",
7474 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7475 seq_printf(m, "max %lu\n",
7476 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7477 seq_printf(m, "fail %lu\n",
7478 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7479
7480 return 0;
7481}
7482
7483static struct cftype swap_files[] = {
7484 {
7485 .name = "swap.current",
7486 .flags = CFTYPE_NOT_ON_ROOT,
7487 .read_u64 = swap_current_read,
7488 },
7489 {
7490 .name = "swap.high",
7491 .flags = CFTYPE_NOT_ON_ROOT,
7492 .seq_show = swap_high_show,
7493 .write = swap_high_write,
7494 },
7495 {
7496 .name = "swap.max",
7497 .flags = CFTYPE_NOT_ON_ROOT,
7498 .seq_show = swap_max_show,
7499 .write = swap_max_write,
7500 },
7501 {
7502 .name = "swap.events",
7503 .flags = CFTYPE_NOT_ON_ROOT,
7504 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7505 .seq_show = swap_events_show,
7506 },
7507 { } /* terminate */
7508};
7509
7510static struct cftype memsw_files[] = {
7511 {
7512 .name = "memsw.usage_in_bytes",
7513 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7514 .read_u64 = mem_cgroup_read_u64,
7515 },
7516 {
7517 .name = "memsw.max_usage_in_bytes",
7518 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7519 .write = mem_cgroup_reset,
7520 .read_u64 = mem_cgroup_read_u64,
7521 },
7522 {
7523 .name = "memsw.limit_in_bytes",
7524 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7525 .write = mem_cgroup_write,
7526 .read_u64 = mem_cgroup_read_u64,
7527 },
7528 {
7529 .name = "memsw.failcnt",
7530 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7531 .write = mem_cgroup_reset,
7532 .read_u64 = mem_cgroup_read_u64,
7533 },
7534 { }, /* terminate */
7535};
7536
7537#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7538/**
7539 * obj_cgroup_may_zswap - check if this cgroup can zswap
7540 * @objcg: the object cgroup
7541 *
7542 * Check if the hierarchical zswap limit has been reached.
7543 *
7544 * This doesn't check for specific headroom, and it is not atomic
7545 * either. But with zswap, the size of the allocation is only known
7546 * once compression has occured, and this optimistic pre-check avoids
7547 * spending cycles on compression when there is already no room left
7548 * or zswap is disabled altogether somewhere in the hierarchy.
7549 */
7550bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7551{
7552 struct mem_cgroup *memcg, *original_memcg;
7553 bool ret = true;
7554
7555 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7556 return true;
7557
7558 original_memcg = get_mem_cgroup_from_objcg(objcg);
7559 for (memcg = original_memcg; memcg != root_mem_cgroup;
7560 memcg = parent_mem_cgroup(memcg)) {
7561 unsigned long max = READ_ONCE(memcg->zswap_max);
7562 unsigned long pages;
7563
7564 if (max == PAGE_COUNTER_MAX)
7565 continue;
7566 if (max == 0) {
7567 ret = false;
7568 break;
7569 }
7570
7571 cgroup_rstat_flush(memcg->css.cgroup);
7572 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7573 if (pages < max)
7574 continue;
7575 ret = false;
7576 break;
7577 }
7578 mem_cgroup_put(original_memcg);
7579 return ret;
7580}
7581
7582/**
7583 * obj_cgroup_charge_zswap - charge compression backend memory
7584 * @objcg: the object cgroup
7585 * @size: size of compressed object
7586 *
7587 * This forces the charge after obj_cgroup_may_swap() allowed
7588 * compression and storage in zwap for this cgroup to go ahead.
7589 */
7590void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7591{
7592 struct mem_cgroup *memcg;
7593
7594 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7595 return;
7596
7597 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7598
7599 /* PF_MEMALLOC context, charging must succeed */
7600 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7601 VM_WARN_ON_ONCE(1);
7602
7603 rcu_read_lock();
7604 memcg = obj_cgroup_memcg(objcg);
7605 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7606 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7607 rcu_read_unlock();
7608}
7609
7610/**
7611 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7612 * @objcg: the object cgroup
7613 * @size: size of compressed object
7614 *
7615 * Uncharges zswap memory on page in.
7616 */
7617void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7618{
7619 struct mem_cgroup *memcg;
7620
7621 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7622 return;
7623
7624 obj_cgroup_uncharge(objcg, size);
7625
7626 rcu_read_lock();
7627 memcg = obj_cgroup_memcg(objcg);
7628 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7629 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7630 rcu_read_unlock();
7631}
7632
7633static u64 zswap_current_read(struct cgroup_subsys_state *css,
7634 struct cftype *cft)
7635{
7636 cgroup_rstat_flush(css->cgroup);
7637 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7638}
7639
7640static int zswap_max_show(struct seq_file *m, void *v)
7641{
7642 return seq_puts_memcg_tunable(m,
7643 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7644}
7645
7646static ssize_t zswap_max_write(struct kernfs_open_file *of,
7647 char *buf, size_t nbytes, loff_t off)
7648{
7649 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7650 unsigned long max;
7651 int err;
7652
7653 buf = strstrip(buf);
7654 err = page_counter_memparse(buf, "max", &max);
7655 if (err)
7656 return err;
7657
7658 xchg(&memcg->zswap_max, max);
7659
7660 return nbytes;
7661}
7662
7663static struct cftype zswap_files[] = {
7664 {
7665 .name = "zswap.current",
7666 .flags = CFTYPE_NOT_ON_ROOT,
7667 .read_u64 = zswap_current_read,
7668 },
7669 {
7670 .name = "zswap.max",
7671 .flags = CFTYPE_NOT_ON_ROOT,
7672 .seq_show = zswap_max_show,
7673 .write = zswap_max_write,
7674 },
7675 { } /* terminate */
7676};
7677#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7678
7679/*
7680 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7681 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7682 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7683 * boot parameter. This may result in premature OOPS inside
7684 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7685 */
7686static int __init mem_cgroup_swap_init(void)
7687{
7688 /* No memory control -> no swap control */
7689 if (mem_cgroup_disabled())
7690 cgroup_memory_noswap = true;
7691
7692 if (cgroup_memory_noswap)
7693 return 0;
7694
7695 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7696 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7697#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7698 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7699#endif
7700 return 0;
7701}
7702core_initcall(mem_cgroup_swap_init);
7703
7704#endif /* CONFIG_MEMCG_SWAP */