Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 */
9
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/ptrace.h>
13#include <linux/seq_file.h>
14#include <linux/string.h>
15#include <linux/timer.h>
16#include <linux/major.h>
17#include <linux/fs.h>
18#include <linux/err.h>
19#include <linux/ioctl.h>
20#include <linux/init.h>
21#include <linux/of.h>
22#include <linux/proc_fs.h>
23#include <linux/idr.h>
24#include <linux/backing-dev.h>
25#include <linux/gfp.h>
26#include <linux/slab.h>
27#include <linux/reboot.h>
28#include <linux/leds.h>
29#include <linux/debugfs.h>
30#include <linux/nvmem-provider.h>
31
32#include <linux/mtd/mtd.h>
33#include <linux/mtd/partitions.h>
34
35#include "mtdcore.h"
36
37struct backing_dev_info *mtd_bdi;
38
39#ifdef CONFIG_PM_SLEEP
40
41static int mtd_cls_suspend(struct device *dev)
42{
43 struct mtd_info *mtd = dev_get_drvdata(dev);
44
45 return mtd ? mtd_suspend(mtd) : 0;
46}
47
48static int mtd_cls_resume(struct device *dev)
49{
50 struct mtd_info *mtd = dev_get_drvdata(dev);
51
52 if (mtd)
53 mtd_resume(mtd);
54 return 0;
55}
56
57static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59#else
60#define MTD_CLS_PM_OPS NULL
61#endif
62
63static struct class mtd_class = {
64 .name = "mtd",
65 .owner = THIS_MODULE,
66 .pm = MTD_CLS_PM_OPS,
67};
68
69static DEFINE_IDR(mtd_idr);
70
71/* These are exported solely for the purpose of mtd_blkdevs.c. You
72 should not use them for _anything_ else */
73DEFINE_MUTEX(mtd_table_mutex);
74EXPORT_SYMBOL_GPL(mtd_table_mutex);
75
76struct mtd_info *__mtd_next_device(int i)
77{
78 return idr_get_next(&mtd_idr, &i);
79}
80EXPORT_SYMBOL_GPL(__mtd_next_device);
81
82static LIST_HEAD(mtd_notifiers);
83
84
85#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86
87/* REVISIT once MTD uses the driver model better, whoever allocates
88 * the mtd_info will probably want to use the release() hook...
89 */
90static void mtd_release(struct device *dev)
91{
92 struct mtd_info *mtd = dev_get_drvdata(dev);
93 dev_t index = MTD_DEVT(mtd->index);
94
95 /* remove /dev/mtdXro node */
96 device_destroy(&mtd_class, index + 1);
97}
98
99#define MTD_DEVICE_ATTR_RO(name) \
100static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
101
102#define MTD_DEVICE_ATTR_RW(name) \
103static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
104
105static ssize_t mtd_type_show(struct device *dev,
106 struct device_attribute *attr, char *buf)
107{
108 struct mtd_info *mtd = dev_get_drvdata(dev);
109 char *type;
110
111 switch (mtd->type) {
112 case MTD_ABSENT:
113 type = "absent";
114 break;
115 case MTD_RAM:
116 type = "ram";
117 break;
118 case MTD_ROM:
119 type = "rom";
120 break;
121 case MTD_NORFLASH:
122 type = "nor";
123 break;
124 case MTD_NANDFLASH:
125 type = "nand";
126 break;
127 case MTD_DATAFLASH:
128 type = "dataflash";
129 break;
130 case MTD_UBIVOLUME:
131 type = "ubi";
132 break;
133 case MTD_MLCNANDFLASH:
134 type = "mlc-nand";
135 break;
136 default:
137 type = "unknown";
138 }
139
140 return sysfs_emit(buf, "%s\n", type);
141}
142MTD_DEVICE_ATTR_RO(type);
143
144static ssize_t mtd_flags_show(struct device *dev,
145 struct device_attribute *attr, char *buf)
146{
147 struct mtd_info *mtd = dev_get_drvdata(dev);
148
149 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
150}
151MTD_DEVICE_ATTR_RO(flags);
152
153static ssize_t mtd_size_show(struct device *dev,
154 struct device_attribute *attr, char *buf)
155{
156 struct mtd_info *mtd = dev_get_drvdata(dev);
157
158 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
159}
160MTD_DEVICE_ATTR_RO(size);
161
162static ssize_t mtd_erasesize_show(struct device *dev,
163 struct device_attribute *attr, char *buf)
164{
165 struct mtd_info *mtd = dev_get_drvdata(dev);
166
167 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
168}
169MTD_DEVICE_ATTR_RO(erasesize);
170
171static ssize_t mtd_writesize_show(struct device *dev,
172 struct device_attribute *attr, char *buf)
173{
174 struct mtd_info *mtd = dev_get_drvdata(dev);
175
176 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
177}
178MTD_DEVICE_ATTR_RO(writesize);
179
180static ssize_t mtd_subpagesize_show(struct device *dev,
181 struct device_attribute *attr, char *buf)
182{
183 struct mtd_info *mtd = dev_get_drvdata(dev);
184 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
185
186 return sysfs_emit(buf, "%u\n", subpagesize);
187}
188MTD_DEVICE_ATTR_RO(subpagesize);
189
190static ssize_t mtd_oobsize_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
192{
193 struct mtd_info *mtd = dev_get_drvdata(dev);
194
195 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
196}
197MTD_DEVICE_ATTR_RO(oobsize);
198
199static ssize_t mtd_oobavail_show(struct device *dev,
200 struct device_attribute *attr, char *buf)
201{
202 struct mtd_info *mtd = dev_get_drvdata(dev);
203
204 return sysfs_emit(buf, "%u\n", mtd->oobavail);
205}
206MTD_DEVICE_ATTR_RO(oobavail);
207
208static ssize_t mtd_numeraseregions_show(struct device *dev,
209 struct device_attribute *attr, char *buf)
210{
211 struct mtd_info *mtd = dev_get_drvdata(dev);
212
213 return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
214}
215MTD_DEVICE_ATTR_RO(numeraseregions);
216
217static ssize_t mtd_name_show(struct device *dev,
218 struct device_attribute *attr, char *buf)
219{
220 struct mtd_info *mtd = dev_get_drvdata(dev);
221
222 return sysfs_emit(buf, "%s\n", mtd->name);
223}
224MTD_DEVICE_ATTR_RO(name);
225
226static ssize_t mtd_ecc_strength_show(struct device *dev,
227 struct device_attribute *attr, char *buf)
228{
229 struct mtd_info *mtd = dev_get_drvdata(dev);
230
231 return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
232}
233MTD_DEVICE_ATTR_RO(ecc_strength);
234
235static ssize_t mtd_bitflip_threshold_show(struct device *dev,
236 struct device_attribute *attr,
237 char *buf)
238{
239 struct mtd_info *mtd = dev_get_drvdata(dev);
240
241 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
242}
243
244static ssize_t mtd_bitflip_threshold_store(struct device *dev,
245 struct device_attribute *attr,
246 const char *buf, size_t count)
247{
248 struct mtd_info *mtd = dev_get_drvdata(dev);
249 unsigned int bitflip_threshold;
250 int retval;
251
252 retval = kstrtouint(buf, 0, &bitflip_threshold);
253 if (retval)
254 return retval;
255
256 mtd->bitflip_threshold = bitflip_threshold;
257 return count;
258}
259MTD_DEVICE_ATTR_RW(bitflip_threshold);
260
261static ssize_t mtd_ecc_step_size_show(struct device *dev,
262 struct device_attribute *attr, char *buf)
263{
264 struct mtd_info *mtd = dev_get_drvdata(dev);
265
266 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
267
268}
269MTD_DEVICE_ATTR_RO(ecc_step_size);
270
271static ssize_t mtd_corrected_bits_show(struct device *dev,
272 struct device_attribute *attr, char *buf)
273{
274 struct mtd_info *mtd = dev_get_drvdata(dev);
275 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
276
277 return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
278}
279MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */
280
281static ssize_t mtd_ecc_failures_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283{
284 struct mtd_info *mtd = dev_get_drvdata(dev);
285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286
287 return sysfs_emit(buf, "%u\n", ecc_stats->failed);
288}
289MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */
290
291static ssize_t mtd_bad_blocks_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
293{
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296
297 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
298}
299MTD_DEVICE_ATTR_RO(bad_blocks);
300
301static ssize_t mtd_bbt_blocks_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
303{
304 struct mtd_info *mtd = dev_get_drvdata(dev);
305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306
307 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
308}
309MTD_DEVICE_ATTR_RO(bbt_blocks);
310
311static struct attribute *mtd_attrs[] = {
312 &dev_attr_type.attr,
313 &dev_attr_flags.attr,
314 &dev_attr_size.attr,
315 &dev_attr_erasesize.attr,
316 &dev_attr_writesize.attr,
317 &dev_attr_subpagesize.attr,
318 &dev_attr_oobsize.attr,
319 &dev_attr_oobavail.attr,
320 &dev_attr_numeraseregions.attr,
321 &dev_attr_name.attr,
322 &dev_attr_ecc_strength.attr,
323 &dev_attr_ecc_step_size.attr,
324 &dev_attr_corrected_bits.attr,
325 &dev_attr_ecc_failures.attr,
326 &dev_attr_bad_blocks.attr,
327 &dev_attr_bbt_blocks.attr,
328 &dev_attr_bitflip_threshold.attr,
329 NULL,
330};
331ATTRIBUTE_GROUPS(mtd);
332
333static const struct device_type mtd_devtype = {
334 .name = "mtd",
335 .groups = mtd_groups,
336 .release = mtd_release,
337};
338
339static bool mtd_expert_analysis_mode;
340
341#ifdef CONFIG_DEBUG_FS
342bool mtd_check_expert_analysis_mode(void)
343{
344 const char *mtd_expert_analysis_warning =
345 "Bad block checks have been entirely disabled.\n"
346 "This is only reserved for post-mortem forensics and debug purposes.\n"
347 "Never enable this mode if you do not know what you are doing!\n";
348
349 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
350}
351EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
352#endif
353
354static struct dentry *dfs_dir_mtd;
355
356static void mtd_debugfs_populate(struct mtd_info *mtd)
357{
358 struct device *dev = &mtd->dev;
359
360 if (IS_ERR_OR_NULL(dfs_dir_mtd))
361 return;
362
363 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
364}
365
366#ifndef CONFIG_MMU
367unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
368{
369 switch (mtd->type) {
370 case MTD_RAM:
371 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
372 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
373 case MTD_ROM:
374 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
375 NOMMU_MAP_READ;
376 default:
377 return NOMMU_MAP_COPY;
378 }
379}
380EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
381#endif
382
383static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
384 void *cmd)
385{
386 struct mtd_info *mtd;
387
388 mtd = container_of(n, struct mtd_info, reboot_notifier);
389 mtd->_reboot(mtd);
390
391 return NOTIFY_DONE;
392}
393
394/**
395 * mtd_wunit_to_pairing_info - get pairing information of a wunit
396 * @mtd: pointer to new MTD device info structure
397 * @wunit: write unit we are interested in
398 * @info: returned pairing information
399 *
400 * Retrieve pairing information associated to the wunit.
401 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
402 * paired together, and where programming a page may influence the page it is
403 * paired with.
404 * The notion of page is replaced by the term wunit (write-unit) to stay
405 * consistent with the ->writesize field.
406 *
407 * The @wunit argument can be extracted from an absolute offset using
408 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
409 * to @wunit.
410 *
411 * From the pairing info the MTD user can find all the wunits paired with
412 * @wunit using the following loop:
413 *
414 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
415 * info.pair = i;
416 * mtd_pairing_info_to_wunit(mtd, &info);
417 * ...
418 * }
419 */
420int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
421 struct mtd_pairing_info *info)
422{
423 struct mtd_info *master = mtd_get_master(mtd);
424 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
425
426 if (wunit < 0 || wunit >= npairs)
427 return -EINVAL;
428
429 if (master->pairing && master->pairing->get_info)
430 return master->pairing->get_info(master, wunit, info);
431
432 info->group = 0;
433 info->pair = wunit;
434
435 return 0;
436}
437EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
438
439/**
440 * mtd_pairing_info_to_wunit - get wunit from pairing information
441 * @mtd: pointer to new MTD device info structure
442 * @info: pairing information struct
443 *
444 * Returns a positive number representing the wunit associated to the info
445 * struct, or a negative error code.
446 *
447 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
448 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
449 * doc).
450 *
451 * It can also be used to only program the first page of each pair (i.e.
452 * page attached to group 0), which allows one to use an MLC NAND in
453 * software-emulated SLC mode:
454 *
455 * info.group = 0;
456 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
457 * for (info.pair = 0; info.pair < npairs; info.pair++) {
458 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
459 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
460 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
461 * }
462 */
463int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
464 const struct mtd_pairing_info *info)
465{
466 struct mtd_info *master = mtd_get_master(mtd);
467 int ngroups = mtd_pairing_groups(master);
468 int npairs = mtd_wunit_per_eb(master) / ngroups;
469
470 if (!info || info->pair < 0 || info->pair >= npairs ||
471 info->group < 0 || info->group >= ngroups)
472 return -EINVAL;
473
474 if (master->pairing && master->pairing->get_wunit)
475 return mtd->pairing->get_wunit(master, info);
476
477 return info->pair;
478}
479EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
480
481/**
482 * mtd_pairing_groups - get the number of pairing groups
483 * @mtd: pointer to new MTD device info structure
484 *
485 * Returns the number of pairing groups.
486 *
487 * This number is usually equal to the number of bits exposed by a single
488 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
489 * to iterate over all pages of a given pair.
490 */
491int mtd_pairing_groups(struct mtd_info *mtd)
492{
493 struct mtd_info *master = mtd_get_master(mtd);
494
495 if (!master->pairing || !master->pairing->ngroups)
496 return 1;
497
498 return master->pairing->ngroups;
499}
500EXPORT_SYMBOL_GPL(mtd_pairing_groups);
501
502static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
503 void *val, size_t bytes)
504{
505 struct mtd_info *mtd = priv;
506 size_t retlen;
507 int err;
508
509 err = mtd_read(mtd, offset, bytes, &retlen, val);
510 if (err && err != -EUCLEAN)
511 return err;
512
513 return retlen == bytes ? 0 : -EIO;
514}
515
516static int mtd_nvmem_add(struct mtd_info *mtd)
517{
518 struct device_node *node = mtd_get_of_node(mtd);
519 struct nvmem_config config = {};
520
521 config.id = -1;
522 config.dev = &mtd->dev;
523 config.name = dev_name(&mtd->dev);
524 config.owner = THIS_MODULE;
525 config.reg_read = mtd_nvmem_reg_read;
526 config.size = mtd->size;
527 config.word_size = 1;
528 config.stride = 1;
529 config.read_only = true;
530 config.root_only = true;
531 config.ignore_wp = true;
532 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
533 config.priv = mtd;
534
535 mtd->nvmem = nvmem_register(&config);
536 if (IS_ERR(mtd->nvmem)) {
537 /* Just ignore if there is no NVMEM support in the kernel */
538 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
539 mtd->nvmem = NULL;
540 } else {
541 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
542 return PTR_ERR(mtd->nvmem);
543 }
544 }
545
546 return 0;
547}
548
549static void mtd_check_of_node(struct mtd_info *mtd)
550{
551 struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
552 const char *pname, *prefix = "partition-";
553 int plen, mtd_name_len, offset, prefix_len;
554 struct mtd_info *parent;
555 bool found = false;
556
557 /* Check if MTD already has a device node */
558 if (dev_of_node(&mtd->dev))
559 return;
560
561 /* Check if a partitions node exist */
562 if (!mtd_is_partition(mtd))
563 return;
564 parent = mtd->parent;
565 parent_dn = dev_of_node(&parent->dev);
566 if (!parent_dn)
567 return;
568
569 partitions = of_get_child_by_name(parent_dn, "partitions");
570 if (!partitions)
571 goto exit_parent;
572
573 prefix_len = strlen(prefix);
574 mtd_name_len = strlen(mtd->name);
575
576 /* Search if a partition is defined with the same name */
577 for_each_child_of_node(partitions, mtd_dn) {
578 offset = 0;
579
580 /* Skip partition with no/wrong prefix */
581 if (!of_node_name_prefix(mtd_dn, "partition-"))
582 continue;
583
584 /* Label have priority. Check that first */
585 if (of_property_read_string(mtd_dn, "label", &pname)) {
586 of_property_read_string(mtd_dn, "name", &pname);
587 offset = prefix_len;
588 }
589
590 plen = strlen(pname) - offset;
591 if (plen == mtd_name_len &&
592 !strncmp(mtd->name, pname + offset, plen)) {
593 found = true;
594 break;
595 }
596 }
597
598 if (!found)
599 goto exit_partitions;
600
601 /* Set of_node only for nvmem */
602 if (of_device_is_compatible(mtd_dn, "nvmem-cells"))
603 mtd_set_of_node(mtd, mtd_dn);
604
605exit_partitions:
606 of_node_put(partitions);
607exit_parent:
608 of_node_put(parent_dn);
609}
610
611/**
612 * add_mtd_device - register an MTD device
613 * @mtd: pointer to new MTD device info structure
614 *
615 * Add a device to the list of MTD devices present in the system, and
616 * notify each currently active MTD 'user' of its arrival. Returns
617 * zero on success or non-zero on failure.
618 */
619
620int add_mtd_device(struct mtd_info *mtd)
621{
622 struct device_node *np = mtd_get_of_node(mtd);
623 struct mtd_info *master = mtd_get_master(mtd);
624 struct mtd_notifier *not;
625 int i, error, ofidx;
626
627 /*
628 * May occur, for instance, on buggy drivers which call
629 * mtd_device_parse_register() multiple times on the same master MTD,
630 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
631 */
632 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
633 return -EEXIST;
634
635 BUG_ON(mtd->writesize == 0);
636
637 /*
638 * MTD drivers should implement ->_{write,read}() or
639 * ->_{write,read}_oob(), but not both.
640 */
641 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
642 (mtd->_read && mtd->_read_oob)))
643 return -EINVAL;
644
645 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
646 !(mtd->flags & MTD_NO_ERASE)))
647 return -EINVAL;
648
649 /*
650 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
651 * master is an MLC NAND and has a proper pairing scheme defined.
652 * We also reject masters that implement ->_writev() for now, because
653 * NAND controller drivers don't implement this hook, and adding the
654 * SLC -> MLC address/length conversion to this path is useless if we
655 * don't have a user.
656 */
657 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
658 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
659 !master->pairing || master->_writev))
660 return -EINVAL;
661
662 mutex_lock(&mtd_table_mutex);
663
664 ofidx = -1;
665 if (np)
666 ofidx = of_alias_get_id(np, "mtd");
667 if (ofidx >= 0)
668 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
669 else
670 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
671 if (i < 0) {
672 error = i;
673 goto fail_locked;
674 }
675
676 mtd->index = i;
677 mtd->usecount = 0;
678
679 /* default value if not set by driver */
680 if (mtd->bitflip_threshold == 0)
681 mtd->bitflip_threshold = mtd->ecc_strength;
682
683 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
684 int ngroups = mtd_pairing_groups(master);
685
686 mtd->erasesize /= ngroups;
687 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
688 mtd->erasesize;
689 }
690
691 if (is_power_of_2(mtd->erasesize))
692 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
693 else
694 mtd->erasesize_shift = 0;
695
696 if (is_power_of_2(mtd->writesize))
697 mtd->writesize_shift = ffs(mtd->writesize) - 1;
698 else
699 mtd->writesize_shift = 0;
700
701 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
702 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
703
704 /* Some chips always power up locked. Unlock them now */
705 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
706 error = mtd_unlock(mtd, 0, mtd->size);
707 if (error && error != -EOPNOTSUPP)
708 printk(KERN_WARNING
709 "%s: unlock failed, writes may not work\n",
710 mtd->name);
711 /* Ignore unlock failures? */
712 error = 0;
713 }
714
715 /* Caller should have set dev.parent to match the
716 * physical device, if appropriate.
717 */
718 mtd->dev.type = &mtd_devtype;
719 mtd->dev.class = &mtd_class;
720 mtd->dev.devt = MTD_DEVT(i);
721 dev_set_name(&mtd->dev, "mtd%d", i);
722 dev_set_drvdata(&mtd->dev, mtd);
723 mtd_check_of_node(mtd);
724 of_node_get(mtd_get_of_node(mtd));
725 error = device_register(&mtd->dev);
726 if (error)
727 goto fail_added;
728
729 /* Add the nvmem provider */
730 error = mtd_nvmem_add(mtd);
731 if (error)
732 goto fail_nvmem_add;
733
734 mtd_debugfs_populate(mtd);
735
736 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
737 "mtd%dro", i);
738
739 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
740 /* No need to get a refcount on the module containing
741 the notifier, since we hold the mtd_table_mutex */
742 list_for_each_entry(not, &mtd_notifiers, list)
743 not->add(mtd);
744
745 mutex_unlock(&mtd_table_mutex);
746 /* We _know_ we aren't being removed, because
747 our caller is still holding us here. So none
748 of this try_ nonsense, and no bitching about it
749 either. :) */
750 __module_get(THIS_MODULE);
751 return 0;
752
753fail_nvmem_add:
754 device_unregister(&mtd->dev);
755fail_added:
756 of_node_put(mtd_get_of_node(mtd));
757 idr_remove(&mtd_idr, i);
758fail_locked:
759 mutex_unlock(&mtd_table_mutex);
760 return error;
761}
762
763/**
764 * del_mtd_device - unregister an MTD device
765 * @mtd: pointer to MTD device info structure
766 *
767 * Remove a device from the list of MTD devices present in the system,
768 * and notify each currently active MTD 'user' of its departure.
769 * Returns zero on success or 1 on failure, which currently will happen
770 * if the requested device does not appear to be present in the list.
771 */
772
773int del_mtd_device(struct mtd_info *mtd)
774{
775 int ret;
776 struct mtd_notifier *not;
777
778 mutex_lock(&mtd_table_mutex);
779
780 if (idr_find(&mtd_idr, mtd->index) != mtd) {
781 ret = -ENODEV;
782 goto out_error;
783 }
784
785 /* No need to get a refcount on the module containing
786 the notifier, since we hold the mtd_table_mutex */
787 list_for_each_entry(not, &mtd_notifiers, list)
788 not->remove(mtd);
789
790 if (mtd->usecount) {
791 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
792 mtd->index, mtd->name, mtd->usecount);
793 ret = -EBUSY;
794 } else {
795 debugfs_remove_recursive(mtd->dbg.dfs_dir);
796
797 /* Try to remove the NVMEM provider */
798 nvmem_unregister(mtd->nvmem);
799
800 device_unregister(&mtd->dev);
801
802 /* Clear dev so mtd can be safely re-registered later if desired */
803 memset(&mtd->dev, 0, sizeof(mtd->dev));
804
805 idr_remove(&mtd_idr, mtd->index);
806 of_node_put(mtd_get_of_node(mtd));
807
808 module_put(THIS_MODULE);
809 ret = 0;
810 }
811
812out_error:
813 mutex_unlock(&mtd_table_mutex);
814 return ret;
815}
816
817/*
818 * Set a few defaults based on the parent devices, if not provided by the
819 * driver
820 */
821static void mtd_set_dev_defaults(struct mtd_info *mtd)
822{
823 if (mtd->dev.parent) {
824 if (!mtd->owner && mtd->dev.parent->driver)
825 mtd->owner = mtd->dev.parent->driver->owner;
826 if (!mtd->name)
827 mtd->name = dev_name(mtd->dev.parent);
828 } else {
829 pr_debug("mtd device won't show a device symlink in sysfs\n");
830 }
831
832 INIT_LIST_HEAD(&mtd->partitions);
833 mutex_init(&mtd->master.partitions_lock);
834 mutex_init(&mtd->master.chrdev_lock);
835}
836
837static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
838{
839 struct otp_info *info;
840 ssize_t size = 0;
841 unsigned int i;
842 size_t retlen;
843 int ret;
844
845 info = kmalloc(PAGE_SIZE, GFP_KERNEL);
846 if (!info)
847 return -ENOMEM;
848
849 if (is_user)
850 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
851 else
852 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
853 if (ret)
854 goto err;
855
856 for (i = 0; i < retlen / sizeof(*info); i++)
857 size += info[i].length;
858
859 kfree(info);
860 return size;
861
862err:
863 kfree(info);
864
865 /* ENODATA means there is no OTP region. */
866 return ret == -ENODATA ? 0 : ret;
867}
868
869static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
870 const char *compatible,
871 int size,
872 nvmem_reg_read_t reg_read)
873{
874 struct nvmem_device *nvmem = NULL;
875 struct nvmem_config config = {};
876 struct device_node *np;
877
878 /* DT binding is optional */
879 np = of_get_compatible_child(mtd->dev.of_node, compatible);
880
881 /* OTP nvmem will be registered on the physical device */
882 config.dev = mtd->dev.parent;
883 config.name = kasprintf(GFP_KERNEL, "%s-%s", dev_name(&mtd->dev), compatible);
884 config.id = NVMEM_DEVID_NONE;
885 config.owner = THIS_MODULE;
886 config.type = NVMEM_TYPE_OTP;
887 config.root_only = true;
888 config.ignore_wp = true;
889 config.reg_read = reg_read;
890 config.size = size;
891 config.of_node = np;
892 config.priv = mtd;
893
894 nvmem = nvmem_register(&config);
895 /* Just ignore if there is no NVMEM support in the kernel */
896 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
897 nvmem = NULL;
898
899 of_node_put(np);
900 kfree(config.name);
901
902 return nvmem;
903}
904
905static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
906 void *val, size_t bytes)
907{
908 struct mtd_info *mtd = priv;
909 size_t retlen;
910 int ret;
911
912 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
913 if (ret)
914 return ret;
915
916 return retlen == bytes ? 0 : -EIO;
917}
918
919static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
920 void *val, size_t bytes)
921{
922 struct mtd_info *mtd = priv;
923 size_t retlen;
924 int ret;
925
926 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
927 if (ret)
928 return ret;
929
930 return retlen == bytes ? 0 : -EIO;
931}
932
933static int mtd_otp_nvmem_add(struct mtd_info *mtd)
934{
935 struct nvmem_device *nvmem;
936 ssize_t size;
937 int err;
938
939 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
940 size = mtd_otp_size(mtd, true);
941 if (size < 0)
942 return size;
943
944 if (size > 0) {
945 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
946 mtd_nvmem_user_otp_reg_read);
947 if (IS_ERR(nvmem)) {
948 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
949 return PTR_ERR(nvmem);
950 }
951 mtd->otp_user_nvmem = nvmem;
952 }
953 }
954
955 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
956 size = mtd_otp_size(mtd, false);
957 if (size < 0) {
958 err = size;
959 goto err;
960 }
961
962 if (size > 0) {
963 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
964 mtd_nvmem_fact_otp_reg_read);
965 if (IS_ERR(nvmem)) {
966 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
967 err = PTR_ERR(nvmem);
968 goto err;
969 }
970 mtd->otp_factory_nvmem = nvmem;
971 }
972 }
973
974 return 0;
975
976err:
977 nvmem_unregister(mtd->otp_user_nvmem);
978 return err;
979}
980
981/**
982 * mtd_device_parse_register - parse partitions and register an MTD device.
983 *
984 * @mtd: the MTD device to register
985 * @types: the list of MTD partition probes to try, see
986 * 'parse_mtd_partitions()' for more information
987 * @parser_data: MTD partition parser-specific data
988 * @parts: fallback partition information to register, if parsing fails;
989 * only valid if %nr_parts > %0
990 * @nr_parts: the number of partitions in parts, if zero then the full
991 * MTD device is registered if no partition info is found
992 *
993 * This function aggregates MTD partitions parsing (done by
994 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
995 * basically follows the most common pattern found in many MTD drivers:
996 *
997 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
998 * registered first.
999 * * Then It tries to probe partitions on MTD device @mtd using parsers
1000 * specified in @types (if @types is %NULL, then the default list of parsers
1001 * is used, see 'parse_mtd_partitions()' for more information). If none are
1002 * found this functions tries to fallback to information specified in
1003 * @parts/@nr_parts.
1004 * * If no partitions were found this function just registers the MTD device
1005 * @mtd and exits.
1006 *
1007 * Returns zero in case of success and a negative error code in case of failure.
1008 */
1009int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1010 struct mtd_part_parser_data *parser_data,
1011 const struct mtd_partition *parts,
1012 int nr_parts)
1013{
1014 int ret;
1015
1016 mtd_set_dev_defaults(mtd);
1017
1018 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1019 ret = add_mtd_device(mtd);
1020 if (ret)
1021 return ret;
1022 }
1023
1024 /* Prefer parsed partitions over driver-provided fallback */
1025 ret = parse_mtd_partitions(mtd, types, parser_data);
1026 if (ret == -EPROBE_DEFER)
1027 goto out;
1028
1029 if (ret > 0)
1030 ret = 0;
1031 else if (nr_parts)
1032 ret = add_mtd_partitions(mtd, parts, nr_parts);
1033 else if (!device_is_registered(&mtd->dev))
1034 ret = add_mtd_device(mtd);
1035 else
1036 ret = 0;
1037
1038 if (ret)
1039 goto out;
1040
1041 /*
1042 * FIXME: some drivers unfortunately call this function more than once.
1043 * So we have to check if we've already assigned the reboot notifier.
1044 *
1045 * Generally, we can make multiple calls work for most cases, but it
1046 * does cause problems with parse_mtd_partitions() above (e.g.,
1047 * cmdlineparts will register partitions more than once).
1048 */
1049 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1050 "MTD already registered\n");
1051 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1052 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1053 register_reboot_notifier(&mtd->reboot_notifier);
1054 }
1055
1056 ret = mtd_otp_nvmem_add(mtd);
1057
1058out:
1059 if (ret && device_is_registered(&mtd->dev))
1060 del_mtd_device(mtd);
1061
1062 return ret;
1063}
1064EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1065
1066/**
1067 * mtd_device_unregister - unregister an existing MTD device.
1068 *
1069 * @master: the MTD device to unregister. This will unregister both the master
1070 * and any partitions if registered.
1071 */
1072int mtd_device_unregister(struct mtd_info *master)
1073{
1074 int err;
1075
1076 if (master->_reboot) {
1077 unregister_reboot_notifier(&master->reboot_notifier);
1078 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1079 }
1080
1081 nvmem_unregister(master->otp_user_nvmem);
1082 nvmem_unregister(master->otp_factory_nvmem);
1083
1084 err = del_mtd_partitions(master);
1085 if (err)
1086 return err;
1087
1088 if (!device_is_registered(&master->dev))
1089 return 0;
1090
1091 return del_mtd_device(master);
1092}
1093EXPORT_SYMBOL_GPL(mtd_device_unregister);
1094
1095/**
1096 * register_mtd_user - register a 'user' of MTD devices.
1097 * @new: pointer to notifier info structure
1098 *
1099 * Registers a pair of callbacks function to be called upon addition
1100 * or removal of MTD devices. Causes the 'add' callback to be immediately
1101 * invoked for each MTD device currently present in the system.
1102 */
1103void register_mtd_user (struct mtd_notifier *new)
1104{
1105 struct mtd_info *mtd;
1106
1107 mutex_lock(&mtd_table_mutex);
1108
1109 list_add(&new->list, &mtd_notifiers);
1110
1111 __module_get(THIS_MODULE);
1112
1113 mtd_for_each_device(mtd)
1114 new->add(mtd);
1115
1116 mutex_unlock(&mtd_table_mutex);
1117}
1118EXPORT_SYMBOL_GPL(register_mtd_user);
1119
1120/**
1121 * unregister_mtd_user - unregister a 'user' of MTD devices.
1122 * @old: pointer to notifier info structure
1123 *
1124 * Removes a callback function pair from the list of 'users' to be
1125 * notified upon addition or removal of MTD devices. Causes the
1126 * 'remove' callback to be immediately invoked for each MTD device
1127 * currently present in the system.
1128 */
1129int unregister_mtd_user (struct mtd_notifier *old)
1130{
1131 struct mtd_info *mtd;
1132
1133 mutex_lock(&mtd_table_mutex);
1134
1135 module_put(THIS_MODULE);
1136
1137 mtd_for_each_device(mtd)
1138 old->remove(mtd);
1139
1140 list_del(&old->list);
1141 mutex_unlock(&mtd_table_mutex);
1142 return 0;
1143}
1144EXPORT_SYMBOL_GPL(unregister_mtd_user);
1145
1146/**
1147 * get_mtd_device - obtain a validated handle for an MTD device
1148 * @mtd: last known address of the required MTD device
1149 * @num: internal device number of the required MTD device
1150 *
1151 * Given a number and NULL address, return the num'th entry in the device
1152 * table, if any. Given an address and num == -1, search the device table
1153 * for a device with that address and return if it's still present. Given
1154 * both, return the num'th driver only if its address matches. Return
1155 * error code if not.
1156 */
1157struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1158{
1159 struct mtd_info *ret = NULL, *other;
1160 int err = -ENODEV;
1161
1162 mutex_lock(&mtd_table_mutex);
1163
1164 if (num == -1) {
1165 mtd_for_each_device(other) {
1166 if (other == mtd) {
1167 ret = mtd;
1168 break;
1169 }
1170 }
1171 } else if (num >= 0) {
1172 ret = idr_find(&mtd_idr, num);
1173 if (mtd && mtd != ret)
1174 ret = NULL;
1175 }
1176
1177 if (!ret) {
1178 ret = ERR_PTR(err);
1179 goto out;
1180 }
1181
1182 err = __get_mtd_device(ret);
1183 if (err)
1184 ret = ERR_PTR(err);
1185out:
1186 mutex_unlock(&mtd_table_mutex);
1187 return ret;
1188}
1189EXPORT_SYMBOL_GPL(get_mtd_device);
1190
1191
1192int __get_mtd_device(struct mtd_info *mtd)
1193{
1194 struct mtd_info *master = mtd_get_master(mtd);
1195 int err;
1196
1197 if (!try_module_get(master->owner))
1198 return -ENODEV;
1199
1200 if (master->_get_device) {
1201 err = master->_get_device(mtd);
1202
1203 if (err) {
1204 module_put(master->owner);
1205 return err;
1206 }
1207 }
1208
1209 master->usecount++;
1210
1211 while (mtd->parent) {
1212 mtd->usecount++;
1213 mtd = mtd->parent;
1214 }
1215
1216 return 0;
1217}
1218EXPORT_SYMBOL_GPL(__get_mtd_device);
1219
1220/**
1221 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1222 * device name
1223 * @name: MTD device name to open
1224 *
1225 * This function returns MTD device description structure in case of
1226 * success and an error code in case of failure.
1227 */
1228struct mtd_info *get_mtd_device_nm(const char *name)
1229{
1230 int err = -ENODEV;
1231 struct mtd_info *mtd = NULL, *other;
1232
1233 mutex_lock(&mtd_table_mutex);
1234
1235 mtd_for_each_device(other) {
1236 if (!strcmp(name, other->name)) {
1237 mtd = other;
1238 break;
1239 }
1240 }
1241
1242 if (!mtd)
1243 goto out_unlock;
1244
1245 err = __get_mtd_device(mtd);
1246 if (err)
1247 goto out_unlock;
1248
1249 mutex_unlock(&mtd_table_mutex);
1250 return mtd;
1251
1252out_unlock:
1253 mutex_unlock(&mtd_table_mutex);
1254 return ERR_PTR(err);
1255}
1256EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1257
1258void put_mtd_device(struct mtd_info *mtd)
1259{
1260 mutex_lock(&mtd_table_mutex);
1261 __put_mtd_device(mtd);
1262 mutex_unlock(&mtd_table_mutex);
1263
1264}
1265EXPORT_SYMBOL_GPL(put_mtd_device);
1266
1267void __put_mtd_device(struct mtd_info *mtd)
1268{
1269 struct mtd_info *master = mtd_get_master(mtd);
1270
1271 while (mtd->parent) {
1272 --mtd->usecount;
1273 BUG_ON(mtd->usecount < 0);
1274 mtd = mtd->parent;
1275 }
1276
1277 master->usecount--;
1278
1279 if (master->_put_device)
1280 master->_put_device(master);
1281
1282 module_put(master->owner);
1283}
1284EXPORT_SYMBOL_GPL(__put_mtd_device);
1285
1286/*
1287 * Erase is an synchronous operation. Device drivers are epected to return a
1288 * negative error code if the operation failed and update instr->fail_addr
1289 * to point the portion that was not properly erased.
1290 */
1291int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1292{
1293 struct mtd_info *master = mtd_get_master(mtd);
1294 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1295 struct erase_info adjinstr;
1296 int ret;
1297
1298 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1299 adjinstr = *instr;
1300
1301 if (!mtd->erasesize || !master->_erase)
1302 return -ENOTSUPP;
1303
1304 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1305 return -EINVAL;
1306 if (!(mtd->flags & MTD_WRITEABLE))
1307 return -EROFS;
1308
1309 if (!instr->len)
1310 return 0;
1311
1312 ledtrig_mtd_activity();
1313
1314 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1315 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1316 master->erasesize;
1317 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1318 master->erasesize) -
1319 adjinstr.addr;
1320 }
1321
1322 adjinstr.addr += mst_ofs;
1323
1324 ret = master->_erase(master, &adjinstr);
1325
1326 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1327 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1328 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1329 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1330 master);
1331 instr->fail_addr *= mtd->erasesize;
1332 }
1333 }
1334
1335 return ret;
1336}
1337EXPORT_SYMBOL_GPL(mtd_erase);
1338
1339/*
1340 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1341 */
1342int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1343 void **virt, resource_size_t *phys)
1344{
1345 struct mtd_info *master = mtd_get_master(mtd);
1346
1347 *retlen = 0;
1348 *virt = NULL;
1349 if (phys)
1350 *phys = 0;
1351 if (!master->_point)
1352 return -EOPNOTSUPP;
1353 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1354 return -EINVAL;
1355 if (!len)
1356 return 0;
1357
1358 from = mtd_get_master_ofs(mtd, from);
1359 return master->_point(master, from, len, retlen, virt, phys);
1360}
1361EXPORT_SYMBOL_GPL(mtd_point);
1362
1363/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1364int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1365{
1366 struct mtd_info *master = mtd_get_master(mtd);
1367
1368 if (!master->_unpoint)
1369 return -EOPNOTSUPP;
1370 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1371 return -EINVAL;
1372 if (!len)
1373 return 0;
1374 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1375}
1376EXPORT_SYMBOL_GPL(mtd_unpoint);
1377
1378/*
1379 * Allow NOMMU mmap() to directly map the device (if not NULL)
1380 * - return the address to which the offset maps
1381 * - return -ENOSYS to indicate refusal to do the mapping
1382 */
1383unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1384 unsigned long offset, unsigned long flags)
1385{
1386 size_t retlen;
1387 void *virt;
1388 int ret;
1389
1390 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1391 if (ret)
1392 return ret;
1393 if (retlen != len) {
1394 mtd_unpoint(mtd, offset, retlen);
1395 return -ENOSYS;
1396 }
1397 return (unsigned long)virt;
1398}
1399EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1400
1401static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1402 const struct mtd_ecc_stats *old_stats)
1403{
1404 struct mtd_ecc_stats diff;
1405
1406 if (master == mtd)
1407 return;
1408
1409 diff = master->ecc_stats;
1410 diff.failed -= old_stats->failed;
1411 diff.corrected -= old_stats->corrected;
1412
1413 while (mtd->parent) {
1414 mtd->ecc_stats.failed += diff.failed;
1415 mtd->ecc_stats.corrected += diff.corrected;
1416 mtd = mtd->parent;
1417 }
1418}
1419
1420int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1421 u_char *buf)
1422{
1423 struct mtd_oob_ops ops = {
1424 .len = len,
1425 .datbuf = buf,
1426 };
1427 int ret;
1428
1429 ret = mtd_read_oob(mtd, from, &ops);
1430 *retlen = ops.retlen;
1431
1432 return ret;
1433}
1434EXPORT_SYMBOL_GPL(mtd_read);
1435
1436int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1437 const u_char *buf)
1438{
1439 struct mtd_oob_ops ops = {
1440 .len = len,
1441 .datbuf = (u8 *)buf,
1442 };
1443 int ret;
1444
1445 ret = mtd_write_oob(mtd, to, &ops);
1446 *retlen = ops.retlen;
1447
1448 return ret;
1449}
1450EXPORT_SYMBOL_GPL(mtd_write);
1451
1452/*
1453 * In blackbox flight recorder like scenarios we want to make successful writes
1454 * in interrupt context. panic_write() is only intended to be called when its
1455 * known the kernel is about to panic and we need the write to succeed. Since
1456 * the kernel is not going to be running for much longer, this function can
1457 * break locks and delay to ensure the write succeeds (but not sleep).
1458 */
1459int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1460 const u_char *buf)
1461{
1462 struct mtd_info *master = mtd_get_master(mtd);
1463
1464 *retlen = 0;
1465 if (!master->_panic_write)
1466 return -EOPNOTSUPP;
1467 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1468 return -EINVAL;
1469 if (!(mtd->flags & MTD_WRITEABLE))
1470 return -EROFS;
1471 if (!len)
1472 return 0;
1473 if (!master->oops_panic_write)
1474 master->oops_panic_write = true;
1475
1476 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1477 retlen, buf);
1478}
1479EXPORT_SYMBOL_GPL(mtd_panic_write);
1480
1481static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1482 struct mtd_oob_ops *ops)
1483{
1484 /*
1485 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1486 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1487 * this case.
1488 */
1489 if (!ops->datbuf)
1490 ops->len = 0;
1491
1492 if (!ops->oobbuf)
1493 ops->ooblen = 0;
1494
1495 if (offs < 0 || offs + ops->len > mtd->size)
1496 return -EINVAL;
1497
1498 if (ops->ooblen) {
1499 size_t maxooblen;
1500
1501 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1502 return -EINVAL;
1503
1504 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1505 mtd_div_by_ws(offs, mtd)) *
1506 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1507 if (ops->ooblen > maxooblen)
1508 return -EINVAL;
1509 }
1510
1511 return 0;
1512}
1513
1514static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1515 struct mtd_oob_ops *ops)
1516{
1517 struct mtd_info *master = mtd_get_master(mtd);
1518 int ret;
1519
1520 from = mtd_get_master_ofs(mtd, from);
1521 if (master->_read_oob)
1522 ret = master->_read_oob(master, from, ops);
1523 else
1524 ret = master->_read(master, from, ops->len, &ops->retlen,
1525 ops->datbuf);
1526
1527 return ret;
1528}
1529
1530static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1531 struct mtd_oob_ops *ops)
1532{
1533 struct mtd_info *master = mtd_get_master(mtd);
1534 int ret;
1535
1536 to = mtd_get_master_ofs(mtd, to);
1537 if (master->_write_oob)
1538 ret = master->_write_oob(master, to, ops);
1539 else
1540 ret = master->_write(master, to, ops->len, &ops->retlen,
1541 ops->datbuf);
1542
1543 return ret;
1544}
1545
1546static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1547 struct mtd_oob_ops *ops)
1548{
1549 struct mtd_info *master = mtd_get_master(mtd);
1550 int ngroups = mtd_pairing_groups(master);
1551 int npairs = mtd_wunit_per_eb(master) / ngroups;
1552 struct mtd_oob_ops adjops = *ops;
1553 unsigned int wunit, oobavail;
1554 struct mtd_pairing_info info;
1555 int max_bitflips = 0;
1556 u32 ebofs, pageofs;
1557 loff_t base, pos;
1558
1559 ebofs = mtd_mod_by_eb(start, mtd);
1560 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1561 info.group = 0;
1562 info.pair = mtd_div_by_ws(ebofs, mtd);
1563 pageofs = mtd_mod_by_ws(ebofs, mtd);
1564 oobavail = mtd_oobavail(mtd, ops);
1565
1566 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1567 int ret;
1568
1569 if (info.pair >= npairs) {
1570 info.pair = 0;
1571 base += master->erasesize;
1572 }
1573
1574 wunit = mtd_pairing_info_to_wunit(master, &info);
1575 pos = mtd_wunit_to_offset(mtd, base, wunit);
1576
1577 adjops.len = ops->len - ops->retlen;
1578 if (adjops.len > mtd->writesize - pageofs)
1579 adjops.len = mtd->writesize - pageofs;
1580
1581 adjops.ooblen = ops->ooblen - ops->oobretlen;
1582 if (adjops.ooblen > oobavail - adjops.ooboffs)
1583 adjops.ooblen = oobavail - adjops.ooboffs;
1584
1585 if (read) {
1586 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1587 if (ret > 0)
1588 max_bitflips = max(max_bitflips, ret);
1589 } else {
1590 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1591 }
1592
1593 if (ret < 0)
1594 return ret;
1595
1596 max_bitflips = max(max_bitflips, ret);
1597 ops->retlen += adjops.retlen;
1598 ops->oobretlen += adjops.oobretlen;
1599 adjops.datbuf += adjops.retlen;
1600 adjops.oobbuf += adjops.oobretlen;
1601 adjops.ooboffs = 0;
1602 pageofs = 0;
1603 info.pair++;
1604 }
1605
1606 return max_bitflips;
1607}
1608
1609int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1610{
1611 struct mtd_info *master = mtd_get_master(mtd);
1612 struct mtd_ecc_stats old_stats = master->ecc_stats;
1613 int ret_code;
1614
1615 ops->retlen = ops->oobretlen = 0;
1616
1617 ret_code = mtd_check_oob_ops(mtd, from, ops);
1618 if (ret_code)
1619 return ret_code;
1620
1621 ledtrig_mtd_activity();
1622
1623 /* Check the validity of a potential fallback on mtd->_read */
1624 if (!master->_read_oob && (!master->_read || ops->oobbuf))
1625 return -EOPNOTSUPP;
1626
1627 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1628 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1629 else
1630 ret_code = mtd_read_oob_std(mtd, from, ops);
1631
1632 mtd_update_ecc_stats(mtd, master, &old_stats);
1633
1634 /*
1635 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1636 * similar to mtd->_read(), returning a non-negative integer
1637 * representing max bitflips. In other cases, mtd->_read_oob() may
1638 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1639 */
1640 if (unlikely(ret_code < 0))
1641 return ret_code;
1642 if (mtd->ecc_strength == 0)
1643 return 0; /* device lacks ecc */
1644 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1645}
1646EXPORT_SYMBOL_GPL(mtd_read_oob);
1647
1648int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1649 struct mtd_oob_ops *ops)
1650{
1651 struct mtd_info *master = mtd_get_master(mtd);
1652 int ret;
1653
1654 ops->retlen = ops->oobretlen = 0;
1655
1656 if (!(mtd->flags & MTD_WRITEABLE))
1657 return -EROFS;
1658
1659 ret = mtd_check_oob_ops(mtd, to, ops);
1660 if (ret)
1661 return ret;
1662
1663 ledtrig_mtd_activity();
1664
1665 /* Check the validity of a potential fallback on mtd->_write */
1666 if (!master->_write_oob && (!master->_write || ops->oobbuf))
1667 return -EOPNOTSUPP;
1668
1669 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1670 return mtd_io_emulated_slc(mtd, to, false, ops);
1671
1672 return mtd_write_oob_std(mtd, to, ops);
1673}
1674EXPORT_SYMBOL_GPL(mtd_write_oob);
1675
1676/**
1677 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1678 * @mtd: MTD device structure
1679 * @section: ECC section. Depending on the layout you may have all the ECC
1680 * bytes stored in a single contiguous section, or one section
1681 * per ECC chunk (and sometime several sections for a single ECC
1682 * ECC chunk)
1683 * @oobecc: OOB region struct filled with the appropriate ECC position
1684 * information
1685 *
1686 * This function returns ECC section information in the OOB area. If you want
1687 * to get all the ECC bytes information, then you should call
1688 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1689 *
1690 * Returns zero on success, a negative error code otherwise.
1691 */
1692int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1693 struct mtd_oob_region *oobecc)
1694{
1695 struct mtd_info *master = mtd_get_master(mtd);
1696
1697 memset(oobecc, 0, sizeof(*oobecc));
1698
1699 if (!master || section < 0)
1700 return -EINVAL;
1701
1702 if (!master->ooblayout || !master->ooblayout->ecc)
1703 return -ENOTSUPP;
1704
1705 return master->ooblayout->ecc(master, section, oobecc);
1706}
1707EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1708
1709/**
1710 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1711 * section
1712 * @mtd: MTD device structure
1713 * @section: Free section you are interested in. Depending on the layout
1714 * you may have all the free bytes stored in a single contiguous
1715 * section, or one section per ECC chunk plus an extra section
1716 * for the remaining bytes (or other funky layout).
1717 * @oobfree: OOB region struct filled with the appropriate free position
1718 * information
1719 *
1720 * This function returns free bytes position in the OOB area. If you want
1721 * to get all the free bytes information, then you should call
1722 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1723 *
1724 * Returns zero on success, a negative error code otherwise.
1725 */
1726int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1727 struct mtd_oob_region *oobfree)
1728{
1729 struct mtd_info *master = mtd_get_master(mtd);
1730
1731 memset(oobfree, 0, sizeof(*oobfree));
1732
1733 if (!master || section < 0)
1734 return -EINVAL;
1735
1736 if (!master->ooblayout || !master->ooblayout->free)
1737 return -ENOTSUPP;
1738
1739 return master->ooblayout->free(master, section, oobfree);
1740}
1741EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1742
1743/**
1744 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1745 * @mtd: mtd info structure
1746 * @byte: the byte we are searching for
1747 * @sectionp: pointer where the section id will be stored
1748 * @oobregion: used to retrieve the ECC position
1749 * @iter: iterator function. Should be either mtd_ooblayout_free or
1750 * mtd_ooblayout_ecc depending on the region type you're searching for
1751 *
1752 * This function returns the section id and oobregion information of a
1753 * specific byte. For example, say you want to know where the 4th ECC byte is
1754 * stored, you'll use:
1755 *
1756 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1757 *
1758 * Returns zero on success, a negative error code otherwise.
1759 */
1760static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1761 int *sectionp, struct mtd_oob_region *oobregion,
1762 int (*iter)(struct mtd_info *,
1763 int section,
1764 struct mtd_oob_region *oobregion))
1765{
1766 int pos = 0, ret, section = 0;
1767
1768 memset(oobregion, 0, sizeof(*oobregion));
1769
1770 while (1) {
1771 ret = iter(mtd, section, oobregion);
1772 if (ret)
1773 return ret;
1774
1775 if (pos + oobregion->length > byte)
1776 break;
1777
1778 pos += oobregion->length;
1779 section++;
1780 }
1781
1782 /*
1783 * Adjust region info to make it start at the beginning at the
1784 * 'start' ECC byte.
1785 */
1786 oobregion->offset += byte - pos;
1787 oobregion->length -= byte - pos;
1788 *sectionp = section;
1789
1790 return 0;
1791}
1792
1793/**
1794 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1795 * ECC byte
1796 * @mtd: mtd info structure
1797 * @eccbyte: the byte we are searching for
1798 * @section: pointer where the section id will be stored
1799 * @oobregion: OOB region information
1800 *
1801 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1802 * byte.
1803 *
1804 * Returns zero on success, a negative error code otherwise.
1805 */
1806int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1807 int *section,
1808 struct mtd_oob_region *oobregion)
1809{
1810 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1811 mtd_ooblayout_ecc);
1812}
1813EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1814
1815/**
1816 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1817 * @mtd: mtd info structure
1818 * @buf: destination buffer to store OOB bytes
1819 * @oobbuf: OOB buffer
1820 * @start: first byte to retrieve
1821 * @nbytes: number of bytes to retrieve
1822 * @iter: section iterator
1823 *
1824 * Extract bytes attached to a specific category (ECC or free)
1825 * from the OOB buffer and copy them into buf.
1826 *
1827 * Returns zero on success, a negative error code otherwise.
1828 */
1829static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1830 const u8 *oobbuf, int start, int nbytes,
1831 int (*iter)(struct mtd_info *,
1832 int section,
1833 struct mtd_oob_region *oobregion))
1834{
1835 struct mtd_oob_region oobregion;
1836 int section, ret;
1837
1838 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1839 &oobregion, iter);
1840
1841 while (!ret) {
1842 int cnt;
1843
1844 cnt = min_t(int, nbytes, oobregion.length);
1845 memcpy(buf, oobbuf + oobregion.offset, cnt);
1846 buf += cnt;
1847 nbytes -= cnt;
1848
1849 if (!nbytes)
1850 break;
1851
1852 ret = iter(mtd, ++section, &oobregion);
1853 }
1854
1855 return ret;
1856}
1857
1858/**
1859 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1860 * @mtd: mtd info structure
1861 * @buf: source buffer to get OOB bytes from
1862 * @oobbuf: OOB buffer
1863 * @start: first OOB byte to set
1864 * @nbytes: number of OOB bytes to set
1865 * @iter: section iterator
1866 *
1867 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1868 * is selected by passing the appropriate iterator.
1869 *
1870 * Returns zero on success, a negative error code otherwise.
1871 */
1872static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1873 u8 *oobbuf, int start, int nbytes,
1874 int (*iter)(struct mtd_info *,
1875 int section,
1876 struct mtd_oob_region *oobregion))
1877{
1878 struct mtd_oob_region oobregion;
1879 int section, ret;
1880
1881 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1882 &oobregion, iter);
1883
1884 while (!ret) {
1885 int cnt;
1886
1887 cnt = min_t(int, nbytes, oobregion.length);
1888 memcpy(oobbuf + oobregion.offset, buf, cnt);
1889 buf += cnt;
1890 nbytes -= cnt;
1891
1892 if (!nbytes)
1893 break;
1894
1895 ret = iter(mtd, ++section, &oobregion);
1896 }
1897
1898 return ret;
1899}
1900
1901/**
1902 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1903 * @mtd: mtd info structure
1904 * @iter: category iterator
1905 *
1906 * Count the number of bytes in a given category.
1907 *
1908 * Returns a positive value on success, a negative error code otherwise.
1909 */
1910static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1911 int (*iter)(struct mtd_info *,
1912 int section,
1913 struct mtd_oob_region *oobregion))
1914{
1915 struct mtd_oob_region oobregion;
1916 int section = 0, ret, nbytes = 0;
1917
1918 while (1) {
1919 ret = iter(mtd, section++, &oobregion);
1920 if (ret) {
1921 if (ret == -ERANGE)
1922 ret = nbytes;
1923 break;
1924 }
1925
1926 nbytes += oobregion.length;
1927 }
1928
1929 return ret;
1930}
1931
1932/**
1933 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1934 * @mtd: mtd info structure
1935 * @eccbuf: destination buffer to store ECC bytes
1936 * @oobbuf: OOB buffer
1937 * @start: first ECC byte to retrieve
1938 * @nbytes: number of ECC bytes to retrieve
1939 *
1940 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1941 *
1942 * Returns zero on success, a negative error code otherwise.
1943 */
1944int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1945 const u8 *oobbuf, int start, int nbytes)
1946{
1947 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1948 mtd_ooblayout_ecc);
1949}
1950EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1951
1952/**
1953 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1954 * @mtd: mtd info structure
1955 * @eccbuf: source buffer to get ECC bytes from
1956 * @oobbuf: OOB buffer
1957 * @start: first ECC byte to set
1958 * @nbytes: number of ECC bytes to set
1959 *
1960 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1961 *
1962 * Returns zero on success, a negative error code otherwise.
1963 */
1964int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1965 u8 *oobbuf, int start, int nbytes)
1966{
1967 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1968 mtd_ooblayout_ecc);
1969}
1970EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1971
1972/**
1973 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1974 * @mtd: mtd info structure
1975 * @databuf: destination buffer to store ECC bytes
1976 * @oobbuf: OOB buffer
1977 * @start: first ECC byte to retrieve
1978 * @nbytes: number of ECC bytes to retrieve
1979 *
1980 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1981 *
1982 * Returns zero on success, a negative error code otherwise.
1983 */
1984int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1985 const u8 *oobbuf, int start, int nbytes)
1986{
1987 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1988 mtd_ooblayout_free);
1989}
1990EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1991
1992/**
1993 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1994 * @mtd: mtd info structure
1995 * @databuf: source buffer to get data bytes from
1996 * @oobbuf: OOB buffer
1997 * @start: first ECC byte to set
1998 * @nbytes: number of ECC bytes to set
1999 *
2000 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2001 *
2002 * Returns zero on success, a negative error code otherwise.
2003 */
2004int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2005 u8 *oobbuf, int start, int nbytes)
2006{
2007 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2008 mtd_ooblayout_free);
2009}
2010EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2011
2012/**
2013 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2014 * @mtd: mtd info structure
2015 *
2016 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2017 *
2018 * Returns zero on success, a negative error code otherwise.
2019 */
2020int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2021{
2022 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2023}
2024EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2025
2026/**
2027 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2028 * @mtd: mtd info structure
2029 *
2030 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2031 *
2032 * Returns zero on success, a negative error code otherwise.
2033 */
2034int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2035{
2036 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2037}
2038EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2039
2040/*
2041 * Method to access the protection register area, present in some flash
2042 * devices. The user data is one time programmable but the factory data is read
2043 * only.
2044 */
2045int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2046 struct otp_info *buf)
2047{
2048 struct mtd_info *master = mtd_get_master(mtd);
2049
2050 if (!master->_get_fact_prot_info)
2051 return -EOPNOTSUPP;
2052 if (!len)
2053 return 0;
2054 return master->_get_fact_prot_info(master, len, retlen, buf);
2055}
2056EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2057
2058int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2059 size_t *retlen, u_char *buf)
2060{
2061 struct mtd_info *master = mtd_get_master(mtd);
2062
2063 *retlen = 0;
2064 if (!master->_read_fact_prot_reg)
2065 return -EOPNOTSUPP;
2066 if (!len)
2067 return 0;
2068 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2069}
2070EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2071
2072int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2073 struct otp_info *buf)
2074{
2075 struct mtd_info *master = mtd_get_master(mtd);
2076
2077 if (!master->_get_user_prot_info)
2078 return -EOPNOTSUPP;
2079 if (!len)
2080 return 0;
2081 return master->_get_user_prot_info(master, len, retlen, buf);
2082}
2083EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2084
2085int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2086 size_t *retlen, u_char *buf)
2087{
2088 struct mtd_info *master = mtd_get_master(mtd);
2089
2090 *retlen = 0;
2091 if (!master->_read_user_prot_reg)
2092 return -EOPNOTSUPP;
2093 if (!len)
2094 return 0;
2095 return master->_read_user_prot_reg(master, from, len, retlen, buf);
2096}
2097EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2098
2099int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2100 size_t *retlen, const u_char *buf)
2101{
2102 struct mtd_info *master = mtd_get_master(mtd);
2103 int ret;
2104
2105 *retlen = 0;
2106 if (!master->_write_user_prot_reg)
2107 return -EOPNOTSUPP;
2108 if (!len)
2109 return 0;
2110 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2111 if (ret)
2112 return ret;
2113
2114 /*
2115 * If no data could be written at all, we are out of memory and
2116 * must return -ENOSPC.
2117 */
2118 return (*retlen) ? 0 : -ENOSPC;
2119}
2120EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2121
2122int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2123{
2124 struct mtd_info *master = mtd_get_master(mtd);
2125
2126 if (!master->_lock_user_prot_reg)
2127 return -EOPNOTSUPP;
2128 if (!len)
2129 return 0;
2130 return master->_lock_user_prot_reg(master, from, len);
2131}
2132EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2133
2134int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2135{
2136 struct mtd_info *master = mtd_get_master(mtd);
2137
2138 if (!master->_erase_user_prot_reg)
2139 return -EOPNOTSUPP;
2140 if (!len)
2141 return 0;
2142 return master->_erase_user_prot_reg(master, from, len);
2143}
2144EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2145
2146/* Chip-supported device locking */
2147int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2148{
2149 struct mtd_info *master = mtd_get_master(mtd);
2150
2151 if (!master->_lock)
2152 return -EOPNOTSUPP;
2153 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2154 return -EINVAL;
2155 if (!len)
2156 return 0;
2157
2158 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2159 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2160 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2161 }
2162
2163 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2164}
2165EXPORT_SYMBOL_GPL(mtd_lock);
2166
2167int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2168{
2169 struct mtd_info *master = mtd_get_master(mtd);
2170
2171 if (!master->_unlock)
2172 return -EOPNOTSUPP;
2173 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2174 return -EINVAL;
2175 if (!len)
2176 return 0;
2177
2178 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2179 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2180 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2181 }
2182
2183 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2184}
2185EXPORT_SYMBOL_GPL(mtd_unlock);
2186
2187int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2188{
2189 struct mtd_info *master = mtd_get_master(mtd);
2190
2191 if (!master->_is_locked)
2192 return -EOPNOTSUPP;
2193 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2194 return -EINVAL;
2195 if (!len)
2196 return 0;
2197
2198 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2199 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2200 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2201 }
2202
2203 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2204}
2205EXPORT_SYMBOL_GPL(mtd_is_locked);
2206
2207int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2208{
2209 struct mtd_info *master = mtd_get_master(mtd);
2210
2211 if (ofs < 0 || ofs >= mtd->size)
2212 return -EINVAL;
2213 if (!master->_block_isreserved)
2214 return 0;
2215
2216 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2217 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2218
2219 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2220}
2221EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2222
2223int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2224{
2225 struct mtd_info *master = mtd_get_master(mtd);
2226
2227 if (ofs < 0 || ofs >= mtd->size)
2228 return -EINVAL;
2229 if (!master->_block_isbad)
2230 return 0;
2231
2232 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2233 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2234
2235 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2236}
2237EXPORT_SYMBOL_GPL(mtd_block_isbad);
2238
2239int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2240{
2241 struct mtd_info *master = mtd_get_master(mtd);
2242 int ret;
2243
2244 if (!master->_block_markbad)
2245 return -EOPNOTSUPP;
2246 if (ofs < 0 || ofs >= mtd->size)
2247 return -EINVAL;
2248 if (!(mtd->flags & MTD_WRITEABLE))
2249 return -EROFS;
2250
2251 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2252 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2253
2254 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2255 if (ret)
2256 return ret;
2257
2258 while (mtd->parent) {
2259 mtd->ecc_stats.badblocks++;
2260 mtd = mtd->parent;
2261 }
2262
2263 return 0;
2264}
2265EXPORT_SYMBOL_GPL(mtd_block_markbad);
2266
2267/*
2268 * default_mtd_writev - the default writev method
2269 * @mtd: mtd device description object pointer
2270 * @vecs: the vectors to write
2271 * @count: count of vectors in @vecs
2272 * @to: the MTD device offset to write to
2273 * @retlen: on exit contains the count of bytes written to the MTD device.
2274 *
2275 * This function returns zero in case of success and a negative error code in
2276 * case of failure.
2277 */
2278static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2279 unsigned long count, loff_t to, size_t *retlen)
2280{
2281 unsigned long i;
2282 size_t totlen = 0, thislen;
2283 int ret = 0;
2284
2285 for (i = 0; i < count; i++) {
2286 if (!vecs[i].iov_len)
2287 continue;
2288 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2289 vecs[i].iov_base);
2290 totlen += thislen;
2291 if (ret || thislen != vecs[i].iov_len)
2292 break;
2293 to += vecs[i].iov_len;
2294 }
2295 *retlen = totlen;
2296 return ret;
2297}
2298
2299/*
2300 * mtd_writev - the vector-based MTD write method
2301 * @mtd: mtd device description object pointer
2302 * @vecs: the vectors to write
2303 * @count: count of vectors in @vecs
2304 * @to: the MTD device offset to write to
2305 * @retlen: on exit contains the count of bytes written to the MTD device.
2306 *
2307 * This function returns zero in case of success and a negative error code in
2308 * case of failure.
2309 */
2310int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2311 unsigned long count, loff_t to, size_t *retlen)
2312{
2313 struct mtd_info *master = mtd_get_master(mtd);
2314
2315 *retlen = 0;
2316 if (!(mtd->flags & MTD_WRITEABLE))
2317 return -EROFS;
2318
2319 if (!master->_writev)
2320 return default_mtd_writev(mtd, vecs, count, to, retlen);
2321
2322 return master->_writev(master, vecs, count,
2323 mtd_get_master_ofs(mtd, to), retlen);
2324}
2325EXPORT_SYMBOL_GPL(mtd_writev);
2326
2327/**
2328 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2329 * @mtd: mtd device description object pointer
2330 * @size: a pointer to the ideal or maximum size of the allocation, points
2331 * to the actual allocation size on success.
2332 *
2333 * This routine attempts to allocate a contiguous kernel buffer up to
2334 * the specified size, backing off the size of the request exponentially
2335 * until the request succeeds or until the allocation size falls below
2336 * the system page size. This attempts to make sure it does not adversely
2337 * impact system performance, so when allocating more than one page, we
2338 * ask the memory allocator to avoid re-trying, swapping, writing back
2339 * or performing I/O.
2340 *
2341 * Note, this function also makes sure that the allocated buffer is aligned to
2342 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2343 *
2344 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2345 * to handle smaller (i.e. degraded) buffer allocations under low- or
2346 * fragmented-memory situations where such reduced allocations, from a
2347 * requested ideal, are allowed.
2348 *
2349 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2350 */
2351void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2352{
2353 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2354 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2355 void *kbuf;
2356
2357 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2358
2359 while (*size > min_alloc) {
2360 kbuf = kmalloc(*size, flags);
2361 if (kbuf)
2362 return kbuf;
2363
2364 *size >>= 1;
2365 *size = ALIGN(*size, mtd->writesize);
2366 }
2367
2368 /*
2369 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2370 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2371 */
2372 return kmalloc(*size, GFP_KERNEL);
2373}
2374EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2375
2376#ifdef CONFIG_PROC_FS
2377
2378/*====================================================================*/
2379/* Support for /proc/mtd */
2380
2381static int mtd_proc_show(struct seq_file *m, void *v)
2382{
2383 struct mtd_info *mtd;
2384
2385 seq_puts(m, "dev: size erasesize name\n");
2386 mutex_lock(&mtd_table_mutex);
2387 mtd_for_each_device(mtd) {
2388 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2389 mtd->index, (unsigned long long)mtd->size,
2390 mtd->erasesize, mtd->name);
2391 }
2392 mutex_unlock(&mtd_table_mutex);
2393 return 0;
2394}
2395#endif /* CONFIG_PROC_FS */
2396
2397/*====================================================================*/
2398/* Init code */
2399
2400static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2401{
2402 struct backing_dev_info *bdi;
2403 int ret;
2404
2405 bdi = bdi_alloc(NUMA_NO_NODE);
2406 if (!bdi)
2407 return ERR_PTR(-ENOMEM);
2408 bdi->ra_pages = 0;
2409 bdi->io_pages = 0;
2410
2411 /*
2412 * We put '-0' suffix to the name to get the same name format as we
2413 * used to get. Since this is called only once, we get a unique name.
2414 */
2415 ret = bdi_register(bdi, "%.28s-0", name);
2416 if (ret)
2417 bdi_put(bdi);
2418
2419 return ret ? ERR_PTR(ret) : bdi;
2420}
2421
2422static struct proc_dir_entry *proc_mtd;
2423
2424static int __init init_mtd(void)
2425{
2426 int ret;
2427
2428 ret = class_register(&mtd_class);
2429 if (ret)
2430 goto err_reg;
2431
2432 mtd_bdi = mtd_bdi_init("mtd");
2433 if (IS_ERR(mtd_bdi)) {
2434 ret = PTR_ERR(mtd_bdi);
2435 goto err_bdi;
2436 }
2437
2438 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2439
2440 ret = init_mtdchar();
2441 if (ret)
2442 goto out_procfs;
2443
2444 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2445 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2446 &mtd_expert_analysis_mode);
2447
2448 return 0;
2449
2450out_procfs:
2451 if (proc_mtd)
2452 remove_proc_entry("mtd", NULL);
2453 bdi_put(mtd_bdi);
2454err_bdi:
2455 class_unregister(&mtd_class);
2456err_reg:
2457 pr_err("Error registering mtd class or bdi: %d\n", ret);
2458 return ret;
2459}
2460
2461static void __exit cleanup_mtd(void)
2462{
2463 debugfs_remove_recursive(dfs_dir_mtd);
2464 cleanup_mtdchar();
2465 if (proc_mtd)
2466 remove_proc_entry("mtd", NULL);
2467 class_unregister(&mtd_class);
2468 bdi_unregister(mtd_bdi);
2469 bdi_put(mtd_bdi);
2470 idr_destroy(&mtd_idr);
2471}
2472
2473module_init(init_mtd);
2474module_exit(cleanup_mtd);
2475
2476MODULE_LICENSE("GPL");
2477MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2478MODULE_DESCRIPTION("Core MTD registration and access routines");