Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "path.h"
20#include "srcline.h"
21#include "symbol.h"
22#include "sort.h"
23#include "strlist.h"
24#include "target.h"
25#include "thread.h"
26#include "util.h"
27#include "vdso.h"
28#include <stdbool.h>
29#include <sys/types.h>
30#include <sys/stat.h>
31#include <unistd.h>
32#include "unwind.h"
33#include "linux/hash.h"
34#include "asm/bug.h"
35#include "bpf-event.h"
36#include <internal/lib.h> // page_size
37#include "cgroup.h"
38#include "arm64-frame-pointer-unwind-support.h"
39
40#include <linux/ctype.h>
41#include <symbol/kallsyms.h>
42#include <linux/mman.h>
43#include <linux/string.h>
44#include <linux/zalloc.h>
45
46static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
47
48static struct dso *machine__kernel_dso(struct machine *machine)
49{
50 return machine->vmlinux_map->dso;
51}
52
53static void dsos__init(struct dsos *dsos)
54{
55 INIT_LIST_HEAD(&dsos->head);
56 dsos->root = RB_ROOT;
57 init_rwsem(&dsos->lock);
58}
59
60static void machine__threads_init(struct machine *machine)
61{
62 int i;
63
64 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
65 struct threads *threads = &machine->threads[i];
66 threads->entries = RB_ROOT_CACHED;
67 init_rwsem(&threads->lock);
68 threads->nr = 0;
69 INIT_LIST_HEAD(&threads->dead);
70 threads->last_match = NULL;
71 }
72}
73
74static int machine__set_mmap_name(struct machine *machine)
75{
76 if (machine__is_host(machine))
77 machine->mmap_name = strdup("[kernel.kallsyms]");
78 else if (machine__is_default_guest(machine))
79 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
80 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
81 machine->pid) < 0)
82 machine->mmap_name = NULL;
83
84 return machine->mmap_name ? 0 : -ENOMEM;
85}
86
87static void thread__set_guest_comm(struct thread *thread, pid_t pid)
88{
89 char comm[64];
90
91 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
92 thread__set_comm(thread, comm, 0);
93}
94
95int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
96{
97 int err = -ENOMEM;
98
99 memset(machine, 0, sizeof(*machine));
100 machine->kmaps = maps__new(machine);
101 if (machine->kmaps == NULL)
102 return -ENOMEM;
103
104 RB_CLEAR_NODE(&machine->rb_node);
105 dsos__init(&machine->dsos);
106
107 machine__threads_init(machine);
108
109 machine->vdso_info = NULL;
110 machine->env = NULL;
111
112 machine->pid = pid;
113
114 machine->id_hdr_size = 0;
115 machine->kptr_restrict_warned = false;
116 machine->comm_exec = false;
117 machine->kernel_start = 0;
118 machine->vmlinux_map = NULL;
119
120 machine->root_dir = strdup(root_dir);
121 if (machine->root_dir == NULL)
122 goto out;
123
124 if (machine__set_mmap_name(machine))
125 goto out;
126
127 if (pid != HOST_KERNEL_ID) {
128 struct thread *thread = machine__findnew_thread(machine, -1,
129 pid);
130
131 if (thread == NULL)
132 goto out;
133
134 thread__set_guest_comm(thread, pid);
135 thread__put(thread);
136 }
137
138 machine->current_tid = NULL;
139 err = 0;
140
141out:
142 if (err) {
143 zfree(&machine->kmaps);
144 zfree(&machine->root_dir);
145 zfree(&machine->mmap_name);
146 }
147 return 0;
148}
149
150struct machine *machine__new_host(void)
151{
152 struct machine *machine = malloc(sizeof(*machine));
153
154 if (machine != NULL) {
155 machine__init(machine, "", HOST_KERNEL_ID);
156
157 if (machine__create_kernel_maps(machine) < 0)
158 goto out_delete;
159 }
160
161 return machine;
162out_delete:
163 free(machine);
164 return NULL;
165}
166
167struct machine *machine__new_kallsyms(void)
168{
169 struct machine *machine = machine__new_host();
170 /*
171 * FIXME:
172 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
173 * ask for not using the kcore parsing code, once this one is fixed
174 * to create a map per module.
175 */
176 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
177 machine__delete(machine);
178 machine = NULL;
179 }
180
181 return machine;
182}
183
184static void dsos__purge(struct dsos *dsos)
185{
186 struct dso *pos, *n;
187
188 down_write(&dsos->lock);
189
190 list_for_each_entry_safe(pos, n, &dsos->head, node) {
191 RB_CLEAR_NODE(&pos->rb_node);
192 pos->root = NULL;
193 list_del_init(&pos->node);
194 dso__put(pos);
195 }
196
197 up_write(&dsos->lock);
198}
199
200static void dsos__exit(struct dsos *dsos)
201{
202 dsos__purge(dsos);
203 exit_rwsem(&dsos->lock);
204}
205
206void machine__delete_threads(struct machine *machine)
207{
208 struct rb_node *nd;
209 int i;
210
211 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
212 struct threads *threads = &machine->threads[i];
213 down_write(&threads->lock);
214 nd = rb_first_cached(&threads->entries);
215 while (nd) {
216 struct thread *t = rb_entry(nd, struct thread, rb_node);
217
218 nd = rb_next(nd);
219 __machine__remove_thread(machine, t, false);
220 }
221 up_write(&threads->lock);
222 }
223}
224
225void machine__exit(struct machine *machine)
226{
227 int i;
228
229 if (machine == NULL)
230 return;
231
232 machine__destroy_kernel_maps(machine);
233 maps__delete(machine->kmaps);
234 dsos__exit(&machine->dsos);
235 machine__exit_vdso(machine);
236 zfree(&machine->root_dir);
237 zfree(&machine->mmap_name);
238 zfree(&machine->current_tid);
239 zfree(&machine->kallsyms_filename);
240
241 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
242 struct threads *threads = &machine->threads[i];
243 struct thread *thread, *n;
244 /*
245 * Forget about the dead, at this point whatever threads were
246 * left in the dead lists better have a reference count taken
247 * by who is using them, and then, when they drop those references
248 * and it finally hits zero, thread__put() will check and see that
249 * its not in the dead threads list and will not try to remove it
250 * from there, just calling thread__delete() straight away.
251 */
252 list_for_each_entry_safe(thread, n, &threads->dead, node)
253 list_del_init(&thread->node);
254
255 exit_rwsem(&threads->lock);
256 }
257}
258
259void machine__delete(struct machine *machine)
260{
261 if (machine) {
262 machine__exit(machine);
263 free(machine);
264 }
265}
266
267void machines__init(struct machines *machines)
268{
269 machine__init(&machines->host, "", HOST_KERNEL_ID);
270 machines->guests = RB_ROOT_CACHED;
271}
272
273void machines__exit(struct machines *machines)
274{
275 machine__exit(&machines->host);
276 /* XXX exit guest */
277}
278
279struct machine *machines__add(struct machines *machines, pid_t pid,
280 const char *root_dir)
281{
282 struct rb_node **p = &machines->guests.rb_root.rb_node;
283 struct rb_node *parent = NULL;
284 struct machine *pos, *machine = malloc(sizeof(*machine));
285 bool leftmost = true;
286
287 if (machine == NULL)
288 return NULL;
289
290 if (machine__init(machine, root_dir, pid) != 0) {
291 free(machine);
292 return NULL;
293 }
294
295 while (*p != NULL) {
296 parent = *p;
297 pos = rb_entry(parent, struct machine, rb_node);
298 if (pid < pos->pid)
299 p = &(*p)->rb_left;
300 else {
301 p = &(*p)->rb_right;
302 leftmost = false;
303 }
304 }
305
306 rb_link_node(&machine->rb_node, parent, p);
307 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
308
309 machine->machines = machines;
310
311 return machine;
312}
313
314void machines__set_comm_exec(struct machines *machines, bool comm_exec)
315{
316 struct rb_node *nd;
317
318 machines->host.comm_exec = comm_exec;
319
320 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
321 struct machine *machine = rb_entry(nd, struct machine, rb_node);
322
323 machine->comm_exec = comm_exec;
324 }
325}
326
327struct machine *machines__find(struct machines *machines, pid_t pid)
328{
329 struct rb_node **p = &machines->guests.rb_root.rb_node;
330 struct rb_node *parent = NULL;
331 struct machine *machine;
332 struct machine *default_machine = NULL;
333
334 if (pid == HOST_KERNEL_ID)
335 return &machines->host;
336
337 while (*p != NULL) {
338 parent = *p;
339 machine = rb_entry(parent, struct machine, rb_node);
340 if (pid < machine->pid)
341 p = &(*p)->rb_left;
342 else if (pid > machine->pid)
343 p = &(*p)->rb_right;
344 else
345 return machine;
346 if (!machine->pid)
347 default_machine = machine;
348 }
349
350 return default_machine;
351}
352
353struct machine *machines__findnew(struct machines *machines, pid_t pid)
354{
355 char path[PATH_MAX];
356 const char *root_dir = "";
357 struct machine *machine = machines__find(machines, pid);
358
359 if (machine && (machine->pid == pid))
360 goto out;
361
362 if ((pid != HOST_KERNEL_ID) &&
363 (pid != DEFAULT_GUEST_KERNEL_ID) &&
364 (symbol_conf.guestmount)) {
365 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
366 if (access(path, R_OK)) {
367 static struct strlist *seen;
368
369 if (!seen)
370 seen = strlist__new(NULL, NULL);
371
372 if (!strlist__has_entry(seen, path)) {
373 pr_err("Can't access file %s\n", path);
374 strlist__add(seen, path);
375 }
376 machine = NULL;
377 goto out;
378 }
379 root_dir = path;
380 }
381
382 machine = machines__add(machines, pid, root_dir);
383out:
384 return machine;
385}
386
387struct machine *machines__find_guest(struct machines *machines, pid_t pid)
388{
389 struct machine *machine = machines__find(machines, pid);
390
391 if (!machine)
392 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
393 return machine;
394}
395
396/*
397 * A common case for KVM test programs is that the test program acts as the
398 * hypervisor, creating, running and destroying the virtual machine, and
399 * providing the guest object code from its own object code. In this case,
400 * the VM is not running an OS, but only the functions loaded into it by the
401 * hypervisor test program, and conveniently, loaded at the same virtual
402 * addresses.
403 *
404 * Normally to resolve addresses, MMAP events are needed to map addresses
405 * back to the object code and debug symbols for that object code.
406 *
407 * Currently, there is no way to get such mapping information from guests
408 * but, in the scenario described above, the guest has the same mappings
409 * as the hypervisor, so support for that scenario can be achieved.
410 *
411 * To support that, copy the host thread's maps to the guest thread's maps.
412 * Note, we do not discover the guest until we encounter a guest event,
413 * which works well because it is not until then that we know that the host
414 * thread's maps have been set up.
415 *
416 * This function returns the guest thread. Apart from keeping the data
417 * structures sane, using a thread belonging to the guest machine, instead
418 * of the host thread, allows it to have its own comm (refer
419 * thread__set_guest_comm()).
420 */
421static struct thread *findnew_guest_code(struct machine *machine,
422 struct machine *host_machine,
423 pid_t pid)
424{
425 struct thread *host_thread;
426 struct thread *thread;
427 int err;
428
429 if (!machine)
430 return NULL;
431
432 thread = machine__findnew_thread(machine, -1, pid);
433 if (!thread)
434 return NULL;
435
436 /* Assume maps are set up if there are any */
437 if (thread->maps->nr_maps)
438 return thread;
439
440 host_thread = machine__find_thread(host_machine, -1, pid);
441 if (!host_thread)
442 goto out_err;
443
444 thread__set_guest_comm(thread, pid);
445
446 /*
447 * Guest code can be found in hypervisor process at the same address
448 * so copy host maps.
449 */
450 err = maps__clone(thread, host_thread->maps);
451 thread__put(host_thread);
452 if (err)
453 goto out_err;
454
455 return thread;
456
457out_err:
458 thread__zput(thread);
459 return NULL;
460}
461
462struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
463{
464 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
465 struct machine *machine = machines__findnew(machines, pid);
466
467 return findnew_guest_code(machine, host_machine, pid);
468}
469
470struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
471{
472 struct machines *machines = machine->machines;
473 struct machine *host_machine;
474
475 if (!machines)
476 return NULL;
477
478 host_machine = machines__find(machines, HOST_KERNEL_ID);
479
480 return findnew_guest_code(machine, host_machine, pid);
481}
482
483void machines__process_guests(struct machines *machines,
484 machine__process_t process, void *data)
485{
486 struct rb_node *nd;
487
488 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
489 struct machine *pos = rb_entry(nd, struct machine, rb_node);
490 process(pos, data);
491 }
492}
493
494void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
495{
496 struct rb_node *node;
497 struct machine *machine;
498
499 machines->host.id_hdr_size = id_hdr_size;
500
501 for (node = rb_first_cached(&machines->guests); node;
502 node = rb_next(node)) {
503 machine = rb_entry(node, struct machine, rb_node);
504 machine->id_hdr_size = id_hdr_size;
505 }
506
507 return;
508}
509
510static void machine__update_thread_pid(struct machine *machine,
511 struct thread *th, pid_t pid)
512{
513 struct thread *leader;
514
515 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
516 return;
517
518 th->pid_ = pid;
519
520 if (th->pid_ == th->tid)
521 return;
522
523 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
524 if (!leader)
525 goto out_err;
526
527 if (!leader->maps)
528 leader->maps = maps__new(machine);
529
530 if (!leader->maps)
531 goto out_err;
532
533 if (th->maps == leader->maps)
534 return;
535
536 if (th->maps) {
537 /*
538 * Maps are created from MMAP events which provide the pid and
539 * tid. Consequently there never should be any maps on a thread
540 * with an unknown pid. Just print an error if there are.
541 */
542 if (!maps__empty(th->maps))
543 pr_err("Discarding thread maps for %d:%d\n",
544 th->pid_, th->tid);
545 maps__put(th->maps);
546 }
547
548 th->maps = maps__get(leader->maps);
549out_put:
550 thread__put(leader);
551 return;
552out_err:
553 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
554 goto out_put;
555}
556
557/*
558 * Front-end cache - TID lookups come in blocks,
559 * so most of the time we dont have to look up
560 * the full rbtree:
561 */
562static struct thread*
563__threads__get_last_match(struct threads *threads, struct machine *machine,
564 int pid, int tid)
565{
566 struct thread *th;
567
568 th = threads->last_match;
569 if (th != NULL) {
570 if (th->tid == tid) {
571 machine__update_thread_pid(machine, th, pid);
572 return thread__get(th);
573 }
574
575 threads->last_match = NULL;
576 }
577
578 return NULL;
579}
580
581static struct thread*
582threads__get_last_match(struct threads *threads, struct machine *machine,
583 int pid, int tid)
584{
585 struct thread *th = NULL;
586
587 if (perf_singlethreaded)
588 th = __threads__get_last_match(threads, machine, pid, tid);
589
590 return th;
591}
592
593static void
594__threads__set_last_match(struct threads *threads, struct thread *th)
595{
596 threads->last_match = th;
597}
598
599static void
600threads__set_last_match(struct threads *threads, struct thread *th)
601{
602 if (perf_singlethreaded)
603 __threads__set_last_match(threads, th);
604}
605
606/*
607 * Caller must eventually drop thread->refcnt returned with a successful
608 * lookup/new thread inserted.
609 */
610static struct thread *____machine__findnew_thread(struct machine *machine,
611 struct threads *threads,
612 pid_t pid, pid_t tid,
613 bool create)
614{
615 struct rb_node **p = &threads->entries.rb_root.rb_node;
616 struct rb_node *parent = NULL;
617 struct thread *th;
618 bool leftmost = true;
619
620 th = threads__get_last_match(threads, machine, pid, tid);
621 if (th)
622 return th;
623
624 while (*p != NULL) {
625 parent = *p;
626 th = rb_entry(parent, struct thread, rb_node);
627
628 if (th->tid == tid) {
629 threads__set_last_match(threads, th);
630 machine__update_thread_pid(machine, th, pid);
631 return thread__get(th);
632 }
633
634 if (tid < th->tid)
635 p = &(*p)->rb_left;
636 else {
637 p = &(*p)->rb_right;
638 leftmost = false;
639 }
640 }
641
642 if (!create)
643 return NULL;
644
645 th = thread__new(pid, tid);
646 if (th != NULL) {
647 rb_link_node(&th->rb_node, parent, p);
648 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
649
650 /*
651 * We have to initialize maps separately after rb tree is updated.
652 *
653 * The reason is that we call machine__findnew_thread
654 * within thread__init_maps to find the thread
655 * leader and that would screwed the rb tree.
656 */
657 if (thread__init_maps(th, machine)) {
658 rb_erase_cached(&th->rb_node, &threads->entries);
659 RB_CLEAR_NODE(&th->rb_node);
660 thread__put(th);
661 return NULL;
662 }
663 /*
664 * It is now in the rbtree, get a ref
665 */
666 thread__get(th);
667 threads__set_last_match(threads, th);
668 ++threads->nr;
669 }
670
671 return th;
672}
673
674struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
675{
676 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
677}
678
679struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
680 pid_t tid)
681{
682 struct threads *threads = machine__threads(machine, tid);
683 struct thread *th;
684
685 down_write(&threads->lock);
686 th = __machine__findnew_thread(machine, pid, tid);
687 up_write(&threads->lock);
688 return th;
689}
690
691struct thread *machine__find_thread(struct machine *machine, pid_t pid,
692 pid_t tid)
693{
694 struct threads *threads = machine__threads(machine, tid);
695 struct thread *th;
696
697 down_read(&threads->lock);
698 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
699 up_read(&threads->lock);
700 return th;
701}
702
703/*
704 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
705 * So here a single thread is created for that, but actually there is a separate
706 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
707 * is only 1. That causes problems for some tools, requiring workarounds. For
708 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
709 */
710struct thread *machine__idle_thread(struct machine *machine)
711{
712 struct thread *thread = machine__findnew_thread(machine, 0, 0);
713
714 if (!thread || thread__set_comm(thread, "swapper", 0) ||
715 thread__set_namespaces(thread, 0, NULL))
716 pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
717
718 return thread;
719}
720
721struct comm *machine__thread_exec_comm(struct machine *machine,
722 struct thread *thread)
723{
724 if (machine->comm_exec)
725 return thread__exec_comm(thread);
726 else
727 return thread__comm(thread);
728}
729
730int machine__process_comm_event(struct machine *machine, union perf_event *event,
731 struct perf_sample *sample)
732{
733 struct thread *thread = machine__findnew_thread(machine,
734 event->comm.pid,
735 event->comm.tid);
736 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
737 int err = 0;
738
739 if (exec)
740 machine->comm_exec = true;
741
742 if (dump_trace)
743 perf_event__fprintf_comm(event, stdout);
744
745 if (thread == NULL ||
746 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
747 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
748 err = -1;
749 }
750
751 thread__put(thread);
752
753 return err;
754}
755
756int machine__process_namespaces_event(struct machine *machine __maybe_unused,
757 union perf_event *event,
758 struct perf_sample *sample __maybe_unused)
759{
760 struct thread *thread = machine__findnew_thread(machine,
761 event->namespaces.pid,
762 event->namespaces.tid);
763 int err = 0;
764
765 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
766 "\nWARNING: kernel seems to support more namespaces than perf"
767 " tool.\nTry updating the perf tool..\n\n");
768
769 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
770 "\nWARNING: perf tool seems to support more namespaces than"
771 " the kernel.\nTry updating the kernel..\n\n");
772
773 if (dump_trace)
774 perf_event__fprintf_namespaces(event, stdout);
775
776 if (thread == NULL ||
777 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
778 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
779 err = -1;
780 }
781
782 thread__put(thread);
783
784 return err;
785}
786
787int machine__process_cgroup_event(struct machine *machine,
788 union perf_event *event,
789 struct perf_sample *sample __maybe_unused)
790{
791 struct cgroup *cgrp;
792
793 if (dump_trace)
794 perf_event__fprintf_cgroup(event, stdout);
795
796 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
797 if (cgrp == NULL)
798 return -ENOMEM;
799
800 return 0;
801}
802
803int machine__process_lost_event(struct machine *machine __maybe_unused,
804 union perf_event *event, struct perf_sample *sample __maybe_unused)
805{
806 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
807 event->lost.id, event->lost.lost);
808 return 0;
809}
810
811int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
812 union perf_event *event, struct perf_sample *sample)
813{
814 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
815 sample->id, event->lost_samples.lost);
816 return 0;
817}
818
819static struct dso *machine__findnew_module_dso(struct machine *machine,
820 struct kmod_path *m,
821 const char *filename)
822{
823 struct dso *dso;
824
825 down_write(&machine->dsos.lock);
826
827 dso = __dsos__find(&machine->dsos, m->name, true);
828 if (!dso) {
829 dso = __dsos__addnew(&machine->dsos, m->name);
830 if (dso == NULL)
831 goto out_unlock;
832
833 dso__set_module_info(dso, m, machine);
834 dso__set_long_name(dso, strdup(filename), true);
835 dso->kernel = DSO_SPACE__KERNEL;
836 }
837
838 dso__get(dso);
839out_unlock:
840 up_write(&machine->dsos.lock);
841 return dso;
842}
843
844int machine__process_aux_event(struct machine *machine __maybe_unused,
845 union perf_event *event)
846{
847 if (dump_trace)
848 perf_event__fprintf_aux(event, stdout);
849 return 0;
850}
851
852int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
853 union perf_event *event)
854{
855 if (dump_trace)
856 perf_event__fprintf_itrace_start(event, stdout);
857 return 0;
858}
859
860int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
861 union perf_event *event)
862{
863 if (dump_trace)
864 perf_event__fprintf_aux_output_hw_id(event, stdout);
865 return 0;
866}
867
868int machine__process_switch_event(struct machine *machine __maybe_unused,
869 union perf_event *event)
870{
871 if (dump_trace)
872 perf_event__fprintf_switch(event, stdout);
873 return 0;
874}
875
876static int machine__process_ksymbol_register(struct machine *machine,
877 union perf_event *event,
878 struct perf_sample *sample __maybe_unused)
879{
880 struct symbol *sym;
881 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
882
883 if (!map) {
884 struct dso *dso = dso__new(event->ksymbol.name);
885
886 if (dso) {
887 dso->kernel = DSO_SPACE__KERNEL;
888 map = map__new2(0, dso);
889 dso__put(dso);
890 }
891
892 if (!dso || !map) {
893 return -ENOMEM;
894 }
895
896 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
897 map->dso->binary_type = DSO_BINARY_TYPE__OOL;
898 map->dso->data.file_size = event->ksymbol.len;
899 dso__set_loaded(map->dso);
900 }
901
902 map->start = event->ksymbol.addr;
903 map->end = map->start + event->ksymbol.len;
904 maps__insert(machine__kernel_maps(machine), map);
905 map__put(map);
906 dso__set_loaded(dso);
907
908 if (is_bpf_image(event->ksymbol.name)) {
909 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
910 dso__set_long_name(dso, "", false);
911 }
912 }
913
914 sym = symbol__new(map->map_ip(map, map->start),
915 event->ksymbol.len,
916 0, 0, event->ksymbol.name);
917 if (!sym)
918 return -ENOMEM;
919 dso__insert_symbol(map->dso, sym);
920 return 0;
921}
922
923static int machine__process_ksymbol_unregister(struct machine *machine,
924 union perf_event *event,
925 struct perf_sample *sample __maybe_unused)
926{
927 struct symbol *sym;
928 struct map *map;
929
930 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
931 if (!map)
932 return 0;
933
934 if (map != machine->vmlinux_map)
935 maps__remove(machine__kernel_maps(machine), map);
936 else {
937 sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
938 if (sym)
939 dso__delete_symbol(map->dso, sym);
940 }
941
942 return 0;
943}
944
945int machine__process_ksymbol(struct machine *machine __maybe_unused,
946 union perf_event *event,
947 struct perf_sample *sample)
948{
949 if (dump_trace)
950 perf_event__fprintf_ksymbol(event, stdout);
951
952 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
953 return machine__process_ksymbol_unregister(machine, event,
954 sample);
955 return machine__process_ksymbol_register(machine, event, sample);
956}
957
958int machine__process_text_poke(struct machine *machine, union perf_event *event,
959 struct perf_sample *sample __maybe_unused)
960{
961 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
962 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
963
964 if (dump_trace)
965 perf_event__fprintf_text_poke(event, machine, stdout);
966
967 if (!event->text_poke.new_len)
968 return 0;
969
970 if (cpumode != PERF_RECORD_MISC_KERNEL) {
971 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
972 return 0;
973 }
974
975 if (map && map->dso) {
976 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
977 int ret;
978
979 /*
980 * Kernel maps might be changed when loading symbols so loading
981 * must be done prior to using kernel maps.
982 */
983 map__load(map);
984 ret = dso__data_write_cache_addr(map->dso, map, machine,
985 event->text_poke.addr,
986 new_bytes,
987 event->text_poke.new_len);
988 if (ret != event->text_poke.new_len)
989 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
990 event->text_poke.addr);
991 } else {
992 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
993 event->text_poke.addr);
994 }
995
996 return 0;
997}
998
999static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
1000 const char *filename)
1001{
1002 struct map *map = NULL;
1003 struct kmod_path m;
1004 struct dso *dso;
1005
1006 if (kmod_path__parse_name(&m, filename))
1007 return NULL;
1008
1009 dso = machine__findnew_module_dso(machine, &m, filename);
1010 if (dso == NULL)
1011 goto out;
1012
1013 map = map__new2(start, dso);
1014 if (map == NULL)
1015 goto out;
1016
1017 maps__insert(machine__kernel_maps(machine), map);
1018
1019 /* Put the map here because maps__insert already got it */
1020 map__put(map);
1021out:
1022 /* put the dso here, corresponding to machine__findnew_module_dso */
1023 dso__put(dso);
1024 zfree(&m.name);
1025 return map;
1026}
1027
1028size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1029{
1030 struct rb_node *nd;
1031 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1032
1033 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1034 struct machine *pos = rb_entry(nd, struct machine, rb_node);
1035 ret += __dsos__fprintf(&pos->dsos.head, fp);
1036 }
1037
1038 return ret;
1039}
1040
1041size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1042 bool (skip)(struct dso *dso, int parm), int parm)
1043{
1044 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1045}
1046
1047size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1048 bool (skip)(struct dso *dso, int parm), int parm)
1049{
1050 struct rb_node *nd;
1051 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1052
1053 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1054 struct machine *pos = rb_entry(nd, struct machine, rb_node);
1055 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1056 }
1057 return ret;
1058}
1059
1060size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1061{
1062 int i;
1063 size_t printed = 0;
1064 struct dso *kdso = machine__kernel_dso(machine);
1065
1066 if (kdso->has_build_id) {
1067 char filename[PATH_MAX];
1068 if (dso__build_id_filename(kdso, filename, sizeof(filename),
1069 false))
1070 printed += fprintf(fp, "[0] %s\n", filename);
1071 }
1072
1073 for (i = 0; i < vmlinux_path__nr_entries; ++i)
1074 printed += fprintf(fp, "[%d] %s\n",
1075 i + kdso->has_build_id, vmlinux_path[i]);
1076
1077 return printed;
1078}
1079
1080size_t machine__fprintf(struct machine *machine, FILE *fp)
1081{
1082 struct rb_node *nd;
1083 size_t ret;
1084 int i;
1085
1086 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1087 struct threads *threads = &machine->threads[i];
1088
1089 down_read(&threads->lock);
1090
1091 ret = fprintf(fp, "Threads: %u\n", threads->nr);
1092
1093 for (nd = rb_first_cached(&threads->entries); nd;
1094 nd = rb_next(nd)) {
1095 struct thread *pos = rb_entry(nd, struct thread, rb_node);
1096
1097 ret += thread__fprintf(pos, fp);
1098 }
1099
1100 up_read(&threads->lock);
1101 }
1102 return ret;
1103}
1104
1105static struct dso *machine__get_kernel(struct machine *machine)
1106{
1107 const char *vmlinux_name = machine->mmap_name;
1108 struct dso *kernel;
1109
1110 if (machine__is_host(machine)) {
1111 if (symbol_conf.vmlinux_name)
1112 vmlinux_name = symbol_conf.vmlinux_name;
1113
1114 kernel = machine__findnew_kernel(machine, vmlinux_name,
1115 "[kernel]", DSO_SPACE__KERNEL);
1116 } else {
1117 if (symbol_conf.default_guest_vmlinux_name)
1118 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1119
1120 kernel = machine__findnew_kernel(machine, vmlinux_name,
1121 "[guest.kernel]",
1122 DSO_SPACE__KERNEL_GUEST);
1123 }
1124
1125 if (kernel != NULL && (!kernel->has_build_id))
1126 dso__read_running_kernel_build_id(kernel, machine);
1127
1128 return kernel;
1129}
1130
1131struct process_args {
1132 u64 start;
1133};
1134
1135void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1136 size_t bufsz)
1137{
1138 if (machine__is_default_guest(machine))
1139 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1140 else
1141 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1142}
1143
1144const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1145
1146/* Figure out the start address of kernel map from /proc/kallsyms.
1147 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1148 * symbol_name if it's not that important.
1149 */
1150static int machine__get_running_kernel_start(struct machine *machine,
1151 const char **symbol_name,
1152 u64 *start, u64 *end)
1153{
1154 char filename[PATH_MAX];
1155 int i, err = -1;
1156 const char *name;
1157 u64 addr = 0;
1158
1159 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1160
1161 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1162 return 0;
1163
1164 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1165 err = kallsyms__get_function_start(filename, name, &addr);
1166 if (!err)
1167 break;
1168 }
1169
1170 if (err)
1171 return -1;
1172
1173 if (symbol_name)
1174 *symbol_name = name;
1175
1176 *start = addr;
1177
1178 err = kallsyms__get_function_start(filename, "_etext", &addr);
1179 if (!err)
1180 *end = addr;
1181
1182 return 0;
1183}
1184
1185int machine__create_extra_kernel_map(struct machine *machine,
1186 struct dso *kernel,
1187 struct extra_kernel_map *xm)
1188{
1189 struct kmap *kmap;
1190 struct map *map;
1191
1192 map = map__new2(xm->start, kernel);
1193 if (!map)
1194 return -1;
1195
1196 map->end = xm->end;
1197 map->pgoff = xm->pgoff;
1198
1199 kmap = map__kmap(map);
1200
1201 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1202
1203 maps__insert(machine__kernel_maps(machine), map);
1204
1205 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1206 kmap->name, map->start, map->end);
1207
1208 map__put(map);
1209
1210 return 0;
1211}
1212
1213static u64 find_entry_trampoline(struct dso *dso)
1214{
1215 /* Duplicates are removed so lookup all aliases */
1216 const char *syms[] = {
1217 "_entry_trampoline",
1218 "__entry_trampoline_start",
1219 "entry_SYSCALL_64_trampoline",
1220 };
1221 struct symbol *sym = dso__first_symbol(dso);
1222 unsigned int i;
1223
1224 for (; sym; sym = dso__next_symbol(sym)) {
1225 if (sym->binding != STB_GLOBAL)
1226 continue;
1227 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1228 if (!strcmp(sym->name, syms[i]))
1229 return sym->start;
1230 }
1231 }
1232
1233 return 0;
1234}
1235
1236/*
1237 * These values can be used for kernels that do not have symbols for the entry
1238 * trampolines in kallsyms.
1239 */
1240#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1241#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1242#define X86_64_ENTRY_TRAMPOLINE 0x6000
1243
1244/* Map x86_64 PTI entry trampolines */
1245int machine__map_x86_64_entry_trampolines(struct machine *machine,
1246 struct dso *kernel)
1247{
1248 struct maps *kmaps = machine__kernel_maps(machine);
1249 int nr_cpus_avail, cpu;
1250 bool found = false;
1251 struct map *map;
1252 u64 pgoff;
1253
1254 /*
1255 * In the vmlinux case, pgoff is a virtual address which must now be
1256 * mapped to a vmlinux offset.
1257 */
1258 maps__for_each_entry(kmaps, map) {
1259 struct kmap *kmap = __map__kmap(map);
1260 struct map *dest_map;
1261
1262 if (!kmap || !is_entry_trampoline(kmap->name))
1263 continue;
1264
1265 dest_map = maps__find(kmaps, map->pgoff);
1266 if (dest_map != map)
1267 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1268 found = true;
1269 }
1270 if (found || machine->trampolines_mapped)
1271 return 0;
1272
1273 pgoff = find_entry_trampoline(kernel);
1274 if (!pgoff)
1275 return 0;
1276
1277 nr_cpus_avail = machine__nr_cpus_avail(machine);
1278
1279 /* Add a 1 page map for each CPU's entry trampoline */
1280 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1281 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1282 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1283 X86_64_ENTRY_TRAMPOLINE;
1284 struct extra_kernel_map xm = {
1285 .start = va,
1286 .end = va + page_size,
1287 .pgoff = pgoff,
1288 };
1289
1290 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1291
1292 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1293 return -1;
1294 }
1295
1296 machine->trampolines_mapped = nr_cpus_avail;
1297
1298 return 0;
1299}
1300
1301int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1302 struct dso *kernel __maybe_unused)
1303{
1304 return 0;
1305}
1306
1307static int
1308__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1309{
1310 /* In case of renewal the kernel map, destroy previous one */
1311 machine__destroy_kernel_maps(machine);
1312
1313 machine->vmlinux_map = map__new2(0, kernel);
1314 if (machine->vmlinux_map == NULL)
1315 return -1;
1316
1317 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1318 maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1319 return 0;
1320}
1321
1322void machine__destroy_kernel_maps(struct machine *machine)
1323{
1324 struct kmap *kmap;
1325 struct map *map = machine__kernel_map(machine);
1326
1327 if (map == NULL)
1328 return;
1329
1330 kmap = map__kmap(map);
1331 maps__remove(machine__kernel_maps(machine), map);
1332 if (kmap && kmap->ref_reloc_sym) {
1333 zfree((char **)&kmap->ref_reloc_sym->name);
1334 zfree(&kmap->ref_reloc_sym);
1335 }
1336
1337 map__zput(machine->vmlinux_map);
1338}
1339
1340int machines__create_guest_kernel_maps(struct machines *machines)
1341{
1342 int ret = 0;
1343 struct dirent **namelist = NULL;
1344 int i, items = 0;
1345 char path[PATH_MAX];
1346 pid_t pid;
1347 char *endp;
1348
1349 if (symbol_conf.default_guest_vmlinux_name ||
1350 symbol_conf.default_guest_modules ||
1351 symbol_conf.default_guest_kallsyms) {
1352 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1353 }
1354
1355 if (symbol_conf.guestmount) {
1356 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1357 if (items <= 0)
1358 return -ENOENT;
1359 for (i = 0; i < items; i++) {
1360 if (!isdigit(namelist[i]->d_name[0])) {
1361 /* Filter out . and .. */
1362 continue;
1363 }
1364 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1365 if ((*endp != '\0') ||
1366 (endp == namelist[i]->d_name) ||
1367 (errno == ERANGE)) {
1368 pr_debug("invalid directory (%s). Skipping.\n",
1369 namelist[i]->d_name);
1370 continue;
1371 }
1372 sprintf(path, "%s/%s/proc/kallsyms",
1373 symbol_conf.guestmount,
1374 namelist[i]->d_name);
1375 ret = access(path, R_OK);
1376 if (ret) {
1377 pr_debug("Can't access file %s\n", path);
1378 goto failure;
1379 }
1380 machines__create_kernel_maps(machines, pid);
1381 }
1382failure:
1383 free(namelist);
1384 }
1385
1386 return ret;
1387}
1388
1389void machines__destroy_kernel_maps(struct machines *machines)
1390{
1391 struct rb_node *next = rb_first_cached(&machines->guests);
1392
1393 machine__destroy_kernel_maps(&machines->host);
1394
1395 while (next) {
1396 struct machine *pos = rb_entry(next, struct machine, rb_node);
1397
1398 next = rb_next(&pos->rb_node);
1399 rb_erase_cached(&pos->rb_node, &machines->guests);
1400 machine__delete(pos);
1401 }
1402}
1403
1404int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1405{
1406 struct machine *machine = machines__findnew(machines, pid);
1407
1408 if (machine == NULL)
1409 return -1;
1410
1411 return machine__create_kernel_maps(machine);
1412}
1413
1414int machine__load_kallsyms(struct machine *machine, const char *filename)
1415{
1416 struct map *map = machine__kernel_map(machine);
1417 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1418
1419 if (ret > 0) {
1420 dso__set_loaded(map->dso);
1421 /*
1422 * Since /proc/kallsyms will have multiple sessions for the
1423 * kernel, with modules between them, fixup the end of all
1424 * sections.
1425 */
1426 maps__fixup_end(machine__kernel_maps(machine));
1427 }
1428
1429 return ret;
1430}
1431
1432int machine__load_vmlinux_path(struct machine *machine)
1433{
1434 struct map *map = machine__kernel_map(machine);
1435 int ret = dso__load_vmlinux_path(map->dso, map);
1436
1437 if (ret > 0)
1438 dso__set_loaded(map->dso);
1439
1440 return ret;
1441}
1442
1443static char *get_kernel_version(const char *root_dir)
1444{
1445 char version[PATH_MAX];
1446 FILE *file;
1447 char *name, *tmp;
1448 const char *prefix = "Linux version ";
1449
1450 sprintf(version, "%s/proc/version", root_dir);
1451 file = fopen(version, "r");
1452 if (!file)
1453 return NULL;
1454
1455 tmp = fgets(version, sizeof(version), file);
1456 fclose(file);
1457 if (!tmp)
1458 return NULL;
1459
1460 name = strstr(version, prefix);
1461 if (!name)
1462 return NULL;
1463 name += strlen(prefix);
1464 tmp = strchr(name, ' ');
1465 if (tmp)
1466 *tmp = '\0';
1467
1468 return strdup(name);
1469}
1470
1471static bool is_kmod_dso(struct dso *dso)
1472{
1473 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1474 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1475}
1476
1477static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1478{
1479 char *long_name;
1480 struct map *map = maps__find_by_name(maps, m->name);
1481
1482 if (map == NULL)
1483 return 0;
1484
1485 long_name = strdup(path);
1486 if (long_name == NULL)
1487 return -ENOMEM;
1488
1489 dso__set_long_name(map->dso, long_name, true);
1490 dso__kernel_module_get_build_id(map->dso, "");
1491
1492 /*
1493 * Full name could reveal us kmod compression, so
1494 * we need to update the symtab_type if needed.
1495 */
1496 if (m->comp && is_kmod_dso(map->dso)) {
1497 map->dso->symtab_type++;
1498 map->dso->comp = m->comp;
1499 }
1500
1501 return 0;
1502}
1503
1504static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1505{
1506 struct dirent *dent;
1507 DIR *dir = opendir(dir_name);
1508 int ret = 0;
1509
1510 if (!dir) {
1511 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1512 return -1;
1513 }
1514
1515 while ((dent = readdir(dir)) != NULL) {
1516 char path[PATH_MAX];
1517 struct stat st;
1518
1519 /*sshfs might return bad dent->d_type, so we have to stat*/
1520 path__join(path, sizeof(path), dir_name, dent->d_name);
1521 if (stat(path, &st))
1522 continue;
1523
1524 if (S_ISDIR(st.st_mode)) {
1525 if (!strcmp(dent->d_name, ".") ||
1526 !strcmp(dent->d_name, ".."))
1527 continue;
1528
1529 /* Do not follow top-level source and build symlinks */
1530 if (depth == 0) {
1531 if (!strcmp(dent->d_name, "source") ||
1532 !strcmp(dent->d_name, "build"))
1533 continue;
1534 }
1535
1536 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1537 if (ret < 0)
1538 goto out;
1539 } else {
1540 struct kmod_path m;
1541
1542 ret = kmod_path__parse_name(&m, dent->d_name);
1543 if (ret)
1544 goto out;
1545
1546 if (m.kmod)
1547 ret = maps__set_module_path(maps, path, &m);
1548
1549 zfree(&m.name);
1550
1551 if (ret)
1552 goto out;
1553 }
1554 }
1555
1556out:
1557 closedir(dir);
1558 return ret;
1559}
1560
1561static int machine__set_modules_path(struct machine *machine)
1562{
1563 char *version;
1564 char modules_path[PATH_MAX];
1565
1566 version = get_kernel_version(machine->root_dir);
1567 if (!version)
1568 return -1;
1569
1570 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1571 machine->root_dir, version);
1572 free(version);
1573
1574 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1575}
1576int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1577 u64 *size __maybe_unused,
1578 const char *name __maybe_unused)
1579{
1580 return 0;
1581}
1582
1583static int machine__create_module(void *arg, const char *name, u64 start,
1584 u64 size)
1585{
1586 struct machine *machine = arg;
1587 struct map *map;
1588
1589 if (arch__fix_module_text_start(&start, &size, name) < 0)
1590 return -1;
1591
1592 map = machine__addnew_module_map(machine, start, name);
1593 if (map == NULL)
1594 return -1;
1595 map->end = start + size;
1596
1597 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1598
1599 return 0;
1600}
1601
1602static int machine__create_modules(struct machine *machine)
1603{
1604 const char *modules;
1605 char path[PATH_MAX];
1606
1607 if (machine__is_default_guest(machine)) {
1608 modules = symbol_conf.default_guest_modules;
1609 } else {
1610 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1611 modules = path;
1612 }
1613
1614 if (symbol__restricted_filename(modules, "/proc/modules"))
1615 return -1;
1616
1617 if (modules__parse(modules, machine, machine__create_module))
1618 return -1;
1619
1620 if (!machine__set_modules_path(machine))
1621 return 0;
1622
1623 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1624
1625 return 0;
1626}
1627
1628static void machine__set_kernel_mmap(struct machine *machine,
1629 u64 start, u64 end)
1630{
1631 machine->vmlinux_map->start = start;
1632 machine->vmlinux_map->end = end;
1633 /*
1634 * Be a bit paranoid here, some perf.data file came with
1635 * a zero sized synthesized MMAP event for the kernel.
1636 */
1637 if (start == 0 && end == 0)
1638 machine->vmlinux_map->end = ~0ULL;
1639}
1640
1641static void machine__update_kernel_mmap(struct machine *machine,
1642 u64 start, u64 end)
1643{
1644 struct map *map = machine__kernel_map(machine);
1645
1646 map__get(map);
1647 maps__remove(machine__kernel_maps(machine), map);
1648
1649 machine__set_kernel_mmap(machine, start, end);
1650
1651 maps__insert(machine__kernel_maps(machine), map);
1652 map__put(map);
1653}
1654
1655int machine__create_kernel_maps(struct machine *machine)
1656{
1657 struct dso *kernel = machine__get_kernel(machine);
1658 const char *name = NULL;
1659 struct map *map;
1660 u64 start = 0, end = ~0ULL;
1661 int ret;
1662
1663 if (kernel == NULL)
1664 return -1;
1665
1666 ret = __machine__create_kernel_maps(machine, kernel);
1667 if (ret < 0)
1668 goto out_put;
1669
1670 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1671 if (machine__is_host(machine))
1672 pr_debug("Problems creating module maps, "
1673 "continuing anyway...\n");
1674 else
1675 pr_debug("Problems creating module maps for guest %d, "
1676 "continuing anyway...\n", machine->pid);
1677 }
1678
1679 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1680 if (name &&
1681 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1682 machine__destroy_kernel_maps(machine);
1683 ret = -1;
1684 goto out_put;
1685 }
1686
1687 /*
1688 * we have a real start address now, so re-order the kmaps
1689 * assume it's the last in the kmaps
1690 */
1691 machine__update_kernel_mmap(machine, start, end);
1692 }
1693
1694 if (machine__create_extra_kernel_maps(machine, kernel))
1695 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1696
1697 if (end == ~0ULL) {
1698 /* update end address of the kernel map using adjacent module address */
1699 map = map__next(machine__kernel_map(machine));
1700 if (map)
1701 machine__set_kernel_mmap(machine, start, map->start);
1702 }
1703
1704out_put:
1705 dso__put(kernel);
1706 return ret;
1707}
1708
1709static bool machine__uses_kcore(struct machine *machine)
1710{
1711 struct dso *dso;
1712
1713 list_for_each_entry(dso, &machine->dsos.head, node) {
1714 if (dso__is_kcore(dso))
1715 return true;
1716 }
1717
1718 return false;
1719}
1720
1721static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1722 struct extra_kernel_map *xm)
1723{
1724 return machine__is(machine, "x86_64") &&
1725 is_entry_trampoline(xm->name);
1726}
1727
1728static int machine__process_extra_kernel_map(struct machine *machine,
1729 struct extra_kernel_map *xm)
1730{
1731 struct dso *kernel = machine__kernel_dso(machine);
1732
1733 if (kernel == NULL)
1734 return -1;
1735
1736 return machine__create_extra_kernel_map(machine, kernel, xm);
1737}
1738
1739static int machine__process_kernel_mmap_event(struct machine *machine,
1740 struct extra_kernel_map *xm,
1741 struct build_id *bid)
1742{
1743 struct map *map;
1744 enum dso_space_type dso_space;
1745 bool is_kernel_mmap;
1746 const char *mmap_name = machine->mmap_name;
1747
1748 /* If we have maps from kcore then we do not need or want any others */
1749 if (machine__uses_kcore(machine))
1750 return 0;
1751
1752 if (machine__is_host(machine))
1753 dso_space = DSO_SPACE__KERNEL;
1754 else
1755 dso_space = DSO_SPACE__KERNEL_GUEST;
1756
1757 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1758 if (!is_kernel_mmap && !machine__is_host(machine)) {
1759 /*
1760 * If the event was recorded inside the guest and injected into
1761 * the host perf.data file, then it will match a host mmap_name,
1762 * so try that - see machine__set_mmap_name().
1763 */
1764 mmap_name = "[kernel.kallsyms]";
1765 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1766 }
1767 if (xm->name[0] == '/' ||
1768 (!is_kernel_mmap && xm->name[0] == '[')) {
1769 map = machine__addnew_module_map(machine, xm->start,
1770 xm->name);
1771 if (map == NULL)
1772 goto out_problem;
1773
1774 map->end = map->start + xm->end - xm->start;
1775
1776 if (build_id__is_defined(bid))
1777 dso__set_build_id(map->dso, bid);
1778
1779 } else if (is_kernel_mmap) {
1780 const char *symbol_name = xm->name + strlen(mmap_name);
1781 /*
1782 * Should be there already, from the build-id table in
1783 * the header.
1784 */
1785 struct dso *kernel = NULL;
1786 struct dso *dso;
1787
1788 down_read(&machine->dsos.lock);
1789
1790 list_for_each_entry(dso, &machine->dsos.head, node) {
1791
1792 /*
1793 * The cpumode passed to is_kernel_module is not the
1794 * cpumode of *this* event. If we insist on passing
1795 * correct cpumode to is_kernel_module, we should
1796 * record the cpumode when we adding this dso to the
1797 * linked list.
1798 *
1799 * However we don't really need passing correct
1800 * cpumode. We know the correct cpumode must be kernel
1801 * mode (if not, we should not link it onto kernel_dsos
1802 * list).
1803 *
1804 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1805 * is_kernel_module() treats it as a kernel cpumode.
1806 */
1807
1808 if (!dso->kernel ||
1809 is_kernel_module(dso->long_name,
1810 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1811 continue;
1812
1813
1814 kernel = dso;
1815 break;
1816 }
1817
1818 up_read(&machine->dsos.lock);
1819
1820 if (kernel == NULL)
1821 kernel = machine__findnew_dso(machine, machine->mmap_name);
1822 if (kernel == NULL)
1823 goto out_problem;
1824
1825 kernel->kernel = dso_space;
1826 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1827 dso__put(kernel);
1828 goto out_problem;
1829 }
1830
1831 if (strstr(kernel->long_name, "vmlinux"))
1832 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1833
1834 machine__update_kernel_mmap(machine, xm->start, xm->end);
1835
1836 if (build_id__is_defined(bid))
1837 dso__set_build_id(kernel, bid);
1838
1839 /*
1840 * Avoid using a zero address (kptr_restrict) for the ref reloc
1841 * symbol. Effectively having zero here means that at record
1842 * time /proc/sys/kernel/kptr_restrict was non zero.
1843 */
1844 if (xm->pgoff != 0) {
1845 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1846 symbol_name,
1847 xm->pgoff);
1848 }
1849
1850 if (machine__is_default_guest(machine)) {
1851 /*
1852 * preload dso of guest kernel and modules
1853 */
1854 dso__load(kernel, machine__kernel_map(machine));
1855 }
1856 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1857 return machine__process_extra_kernel_map(machine, xm);
1858 }
1859 return 0;
1860out_problem:
1861 return -1;
1862}
1863
1864int machine__process_mmap2_event(struct machine *machine,
1865 union perf_event *event,
1866 struct perf_sample *sample)
1867{
1868 struct thread *thread;
1869 struct map *map;
1870 struct dso_id dso_id = {
1871 .maj = event->mmap2.maj,
1872 .min = event->mmap2.min,
1873 .ino = event->mmap2.ino,
1874 .ino_generation = event->mmap2.ino_generation,
1875 };
1876 struct build_id __bid, *bid = NULL;
1877 int ret = 0;
1878
1879 if (dump_trace)
1880 perf_event__fprintf_mmap2(event, stdout);
1881
1882 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1883 bid = &__bid;
1884 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1885 }
1886
1887 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1888 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1889 struct extra_kernel_map xm = {
1890 .start = event->mmap2.start,
1891 .end = event->mmap2.start + event->mmap2.len,
1892 .pgoff = event->mmap2.pgoff,
1893 };
1894
1895 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1896 ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1897 if (ret < 0)
1898 goto out_problem;
1899 return 0;
1900 }
1901
1902 thread = machine__findnew_thread(machine, event->mmap2.pid,
1903 event->mmap2.tid);
1904 if (thread == NULL)
1905 goto out_problem;
1906
1907 map = map__new(machine, event->mmap2.start,
1908 event->mmap2.len, event->mmap2.pgoff,
1909 &dso_id, event->mmap2.prot,
1910 event->mmap2.flags, bid,
1911 event->mmap2.filename, thread);
1912
1913 if (map == NULL)
1914 goto out_problem_map;
1915
1916 ret = thread__insert_map(thread, map);
1917 if (ret)
1918 goto out_problem_insert;
1919
1920 thread__put(thread);
1921 map__put(map);
1922 return 0;
1923
1924out_problem_insert:
1925 map__put(map);
1926out_problem_map:
1927 thread__put(thread);
1928out_problem:
1929 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1930 return 0;
1931}
1932
1933int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1934 struct perf_sample *sample)
1935{
1936 struct thread *thread;
1937 struct map *map;
1938 u32 prot = 0;
1939 int ret = 0;
1940
1941 if (dump_trace)
1942 perf_event__fprintf_mmap(event, stdout);
1943
1944 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1945 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1946 struct extra_kernel_map xm = {
1947 .start = event->mmap.start,
1948 .end = event->mmap.start + event->mmap.len,
1949 .pgoff = event->mmap.pgoff,
1950 };
1951
1952 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1953 ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1954 if (ret < 0)
1955 goto out_problem;
1956 return 0;
1957 }
1958
1959 thread = machine__findnew_thread(machine, event->mmap.pid,
1960 event->mmap.tid);
1961 if (thread == NULL)
1962 goto out_problem;
1963
1964 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1965 prot = PROT_EXEC;
1966
1967 map = map__new(machine, event->mmap.start,
1968 event->mmap.len, event->mmap.pgoff,
1969 NULL, prot, 0, NULL, event->mmap.filename, thread);
1970
1971 if (map == NULL)
1972 goto out_problem_map;
1973
1974 ret = thread__insert_map(thread, map);
1975 if (ret)
1976 goto out_problem_insert;
1977
1978 thread__put(thread);
1979 map__put(map);
1980 return 0;
1981
1982out_problem_insert:
1983 map__put(map);
1984out_problem_map:
1985 thread__put(thread);
1986out_problem:
1987 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1988 return 0;
1989}
1990
1991static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1992{
1993 struct threads *threads = machine__threads(machine, th->tid);
1994
1995 if (threads->last_match == th)
1996 threads__set_last_match(threads, NULL);
1997
1998 if (lock)
1999 down_write(&threads->lock);
2000
2001 BUG_ON(refcount_read(&th->refcnt) == 0);
2002
2003 rb_erase_cached(&th->rb_node, &threads->entries);
2004 RB_CLEAR_NODE(&th->rb_node);
2005 --threads->nr;
2006 /*
2007 * Move it first to the dead_threads list, then drop the reference,
2008 * if this is the last reference, then the thread__delete destructor
2009 * will be called and we will remove it from the dead_threads list.
2010 */
2011 list_add_tail(&th->node, &threads->dead);
2012
2013 /*
2014 * We need to do the put here because if this is the last refcount,
2015 * then we will be touching the threads->dead head when removing the
2016 * thread.
2017 */
2018 thread__put(th);
2019
2020 if (lock)
2021 up_write(&threads->lock);
2022}
2023
2024void machine__remove_thread(struct machine *machine, struct thread *th)
2025{
2026 return __machine__remove_thread(machine, th, true);
2027}
2028
2029int machine__process_fork_event(struct machine *machine, union perf_event *event,
2030 struct perf_sample *sample)
2031{
2032 struct thread *thread = machine__find_thread(machine,
2033 event->fork.pid,
2034 event->fork.tid);
2035 struct thread *parent = machine__findnew_thread(machine,
2036 event->fork.ppid,
2037 event->fork.ptid);
2038 bool do_maps_clone = true;
2039 int err = 0;
2040
2041 if (dump_trace)
2042 perf_event__fprintf_task(event, stdout);
2043
2044 /*
2045 * There may be an existing thread that is not actually the parent,
2046 * either because we are processing events out of order, or because the
2047 * (fork) event that would have removed the thread was lost. Assume the
2048 * latter case and continue on as best we can.
2049 */
2050 if (parent->pid_ != (pid_t)event->fork.ppid) {
2051 dump_printf("removing erroneous parent thread %d/%d\n",
2052 parent->pid_, parent->tid);
2053 machine__remove_thread(machine, parent);
2054 thread__put(parent);
2055 parent = machine__findnew_thread(machine, event->fork.ppid,
2056 event->fork.ptid);
2057 }
2058
2059 /* if a thread currently exists for the thread id remove it */
2060 if (thread != NULL) {
2061 machine__remove_thread(machine, thread);
2062 thread__put(thread);
2063 }
2064
2065 thread = machine__findnew_thread(machine, event->fork.pid,
2066 event->fork.tid);
2067 /*
2068 * When synthesizing FORK events, we are trying to create thread
2069 * objects for the already running tasks on the machine.
2070 *
2071 * Normally, for a kernel FORK event, we want to clone the parent's
2072 * maps because that is what the kernel just did.
2073 *
2074 * But when synthesizing, this should not be done. If we do, we end up
2075 * with overlapping maps as we process the synthesized MMAP2 events that
2076 * get delivered shortly thereafter.
2077 *
2078 * Use the FORK event misc flags in an internal way to signal this
2079 * situation, so we can elide the map clone when appropriate.
2080 */
2081 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2082 do_maps_clone = false;
2083
2084 if (thread == NULL || parent == NULL ||
2085 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2086 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2087 err = -1;
2088 }
2089 thread__put(thread);
2090 thread__put(parent);
2091
2092 return err;
2093}
2094
2095int machine__process_exit_event(struct machine *machine, union perf_event *event,
2096 struct perf_sample *sample __maybe_unused)
2097{
2098 struct thread *thread = machine__find_thread(machine,
2099 event->fork.pid,
2100 event->fork.tid);
2101
2102 if (dump_trace)
2103 perf_event__fprintf_task(event, stdout);
2104
2105 if (thread != NULL) {
2106 thread__exited(thread);
2107 thread__put(thread);
2108 }
2109
2110 return 0;
2111}
2112
2113int machine__process_event(struct machine *machine, union perf_event *event,
2114 struct perf_sample *sample)
2115{
2116 int ret;
2117
2118 switch (event->header.type) {
2119 case PERF_RECORD_COMM:
2120 ret = machine__process_comm_event(machine, event, sample); break;
2121 case PERF_RECORD_MMAP:
2122 ret = machine__process_mmap_event(machine, event, sample); break;
2123 case PERF_RECORD_NAMESPACES:
2124 ret = machine__process_namespaces_event(machine, event, sample); break;
2125 case PERF_RECORD_CGROUP:
2126 ret = machine__process_cgroup_event(machine, event, sample); break;
2127 case PERF_RECORD_MMAP2:
2128 ret = machine__process_mmap2_event(machine, event, sample); break;
2129 case PERF_RECORD_FORK:
2130 ret = machine__process_fork_event(machine, event, sample); break;
2131 case PERF_RECORD_EXIT:
2132 ret = machine__process_exit_event(machine, event, sample); break;
2133 case PERF_RECORD_LOST:
2134 ret = machine__process_lost_event(machine, event, sample); break;
2135 case PERF_RECORD_AUX:
2136 ret = machine__process_aux_event(machine, event); break;
2137 case PERF_RECORD_ITRACE_START:
2138 ret = machine__process_itrace_start_event(machine, event); break;
2139 case PERF_RECORD_LOST_SAMPLES:
2140 ret = machine__process_lost_samples_event(machine, event, sample); break;
2141 case PERF_RECORD_SWITCH:
2142 case PERF_RECORD_SWITCH_CPU_WIDE:
2143 ret = machine__process_switch_event(machine, event); break;
2144 case PERF_RECORD_KSYMBOL:
2145 ret = machine__process_ksymbol(machine, event, sample); break;
2146 case PERF_RECORD_BPF_EVENT:
2147 ret = machine__process_bpf(machine, event, sample); break;
2148 case PERF_RECORD_TEXT_POKE:
2149 ret = machine__process_text_poke(machine, event, sample); break;
2150 case PERF_RECORD_AUX_OUTPUT_HW_ID:
2151 ret = machine__process_aux_output_hw_id_event(machine, event); break;
2152 default:
2153 ret = -1;
2154 break;
2155 }
2156
2157 return ret;
2158}
2159
2160static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2161{
2162 if (!regexec(regex, sym->name, 0, NULL, 0))
2163 return true;
2164 return false;
2165}
2166
2167static void ip__resolve_ams(struct thread *thread,
2168 struct addr_map_symbol *ams,
2169 u64 ip)
2170{
2171 struct addr_location al;
2172
2173 memset(&al, 0, sizeof(al));
2174 /*
2175 * We cannot use the header.misc hint to determine whether a
2176 * branch stack address is user, kernel, guest, hypervisor.
2177 * Branches may straddle the kernel/user/hypervisor boundaries.
2178 * Thus, we have to try consecutively until we find a match
2179 * or else, the symbol is unknown
2180 */
2181 thread__find_cpumode_addr_location(thread, ip, &al);
2182
2183 ams->addr = ip;
2184 ams->al_addr = al.addr;
2185 ams->al_level = al.level;
2186 ams->ms.maps = al.maps;
2187 ams->ms.sym = al.sym;
2188 ams->ms.map = al.map;
2189 ams->phys_addr = 0;
2190 ams->data_page_size = 0;
2191}
2192
2193static void ip__resolve_data(struct thread *thread,
2194 u8 m, struct addr_map_symbol *ams,
2195 u64 addr, u64 phys_addr, u64 daddr_page_size)
2196{
2197 struct addr_location al;
2198
2199 memset(&al, 0, sizeof(al));
2200
2201 thread__find_symbol(thread, m, addr, &al);
2202
2203 ams->addr = addr;
2204 ams->al_addr = al.addr;
2205 ams->al_level = al.level;
2206 ams->ms.maps = al.maps;
2207 ams->ms.sym = al.sym;
2208 ams->ms.map = al.map;
2209 ams->phys_addr = phys_addr;
2210 ams->data_page_size = daddr_page_size;
2211}
2212
2213struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2214 struct addr_location *al)
2215{
2216 struct mem_info *mi = mem_info__new();
2217
2218 if (!mi)
2219 return NULL;
2220
2221 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2222 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2223 sample->addr, sample->phys_addr,
2224 sample->data_page_size);
2225 mi->data_src.val = sample->data_src;
2226
2227 return mi;
2228}
2229
2230static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2231{
2232 struct map *map = ms->map;
2233 char *srcline = NULL;
2234
2235 if (!map || callchain_param.key == CCKEY_FUNCTION)
2236 return srcline;
2237
2238 srcline = srcline__tree_find(&map->dso->srclines, ip);
2239 if (!srcline) {
2240 bool show_sym = false;
2241 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2242
2243 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2244 ms->sym, show_sym, show_addr, ip);
2245 srcline__tree_insert(&map->dso->srclines, ip, srcline);
2246 }
2247
2248 return srcline;
2249}
2250
2251struct iterations {
2252 int nr_loop_iter;
2253 u64 cycles;
2254};
2255
2256static int add_callchain_ip(struct thread *thread,
2257 struct callchain_cursor *cursor,
2258 struct symbol **parent,
2259 struct addr_location *root_al,
2260 u8 *cpumode,
2261 u64 ip,
2262 bool branch,
2263 struct branch_flags *flags,
2264 struct iterations *iter,
2265 u64 branch_from)
2266{
2267 struct map_symbol ms;
2268 struct addr_location al;
2269 int nr_loop_iter = 0;
2270 u64 iter_cycles = 0;
2271 const char *srcline = NULL;
2272
2273 al.filtered = 0;
2274 al.sym = NULL;
2275 al.srcline = NULL;
2276 if (!cpumode) {
2277 thread__find_cpumode_addr_location(thread, ip, &al);
2278 } else {
2279 if (ip >= PERF_CONTEXT_MAX) {
2280 switch (ip) {
2281 case PERF_CONTEXT_HV:
2282 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2283 break;
2284 case PERF_CONTEXT_KERNEL:
2285 *cpumode = PERF_RECORD_MISC_KERNEL;
2286 break;
2287 case PERF_CONTEXT_USER:
2288 *cpumode = PERF_RECORD_MISC_USER;
2289 break;
2290 default:
2291 pr_debug("invalid callchain context: "
2292 "%"PRId64"\n", (s64) ip);
2293 /*
2294 * It seems the callchain is corrupted.
2295 * Discard all.
2296 */
2297 callchain_cursor_reset(cursor);
2298 return 1;
2299 }
2300 return 0;
2301 }
2302 thread__find_symbol(thread, *cpumode, ip, &al);
2303 }
2304
2305 if (al.sym != NULL) {
2306 if (perf_hpp_list.parent && !*parent &&
2307 symbol__match_regex(al.sym, &parent_regex))
2308 *parent = al.sym;
2309 else if (have_ignore_callees && root_al &&
2310 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2311 /* Treat this symbol as the root,
2312 forgetting its callees. */
2313 *root_al = al;
2314 callchain_cursor_reset(cursor);
2315 }
2316 }
2317
2318 if (symbol_conf.hide_unresolved && al.sym == NULL)
2319 return 0;
2320
2321 if (iter) {
2322 nr_loop_iter = iter->nr_loop_iter;
2323 iter_cycles = iter->cycles;
2324 }
2325
2326 ms.maps = al.maps;
2327 ms.map = al.map;
2328 ms.sym = al.sym;
2329 srcline = callchain_srcline(&ms, al.addr);
2330 return callchain_cursor_append(cursor, ip, &ms,
2331 branch, flags, nr_loop_iter,
2332 iter_cycles, branch_from, srcline);
2333}
2334
2335struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2336 struct addr_location *al)
2337{
2338 unsigned int i;
2339 const struct branch_stack *bs = sample->branch_stack;
2340 struct branch_entry *entries = perf_sample__branch_entries(sample);
2341 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2342
2343 if (!bi)
2344 return NULL;
2345
2346 for (i = 0; i < bs->nr; i++) {
2347 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2348 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2349 bi[i].flags = entries[i].flags;
2350 }
2351 return bi;
2352}
2353
2354static void save_iterations(struct iterations *iter,
2355 struct branch_entry *be, int nr)
2356{
2357 int i;
2358
2359 iter->nr_loop_iter++;
2360 iter->cycles = 0;
2361
2362 for (i = 0; i < nr; i++)
2363 iter->cycles += be[i].flags.cycles;
2364}
2365
2366#define CHASHSZ 127
2367#define CHASHBITS 7
2368#define NO_ENTRY 0xff
2369
2370#define PERF_MAX_BRANCH_DEPTH 127
2371
2372/* Remove loops. */
2373static int remove_loops(struct branch_entry *l, int nr,
2374 struct iterations *iter)
2375{
2376 int i, j, off;
2377 unsigned char chash[CHASHSZ];
2378
2379 memset(chash, NO_ENTRY, sizeof(chash));
2380
2381 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2382
2383 for (i = 0; i < nr; i++) {
2384 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2385
2386 /* no collision handling for now */
2387 if (chash[h] == NO_ENTRY) {
2388 chash[h] = i;
2389 } else if (l[chash[h]].from == l[i].from) {
2390 bool is_loop = true;
2391 /* check if it is a real loop */
2392 off = 0;
2393 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2394 if (l[j].from != l[i + off].from) {
2395 is_loop = false;
2396 break;
2397 }
2398 if (is_loop) {
2399 j = nr - (i + off);
2400 if (j > 0) {
2401 save_iterations(iter + i + off,
2402 l + i, off);
2403
2404 memmove(iter + i, iter + i + off,
2405 j * sizeof(*iter));
2406
2407 memmove(l + i, l + i + off,
2408 j * sizeof(*l));
2409 }
2410
2411 nr -= off;
2412 }
2413 }
2414 }
2415 return nr;
2416}
2417
2418static int lbr_callchain_add_kernel_ip(struct thread *thread,
2419 struct callchain_cursor *cursor,
2420 struct perf_sample *sample,
2421 struct symbol **parent,
2422 struct addr_location *root_al,
2423 u64 branch_from,
2424 bool callee, int end)
2425{
2426 struct ip_callchain *chain = sample->callchain;
2427 u8 cpumode = PERF_RECORD_MISC_USER;
2428 int err, i;
2429
2430 if (callee) {
2431 for (i = 0; i < end + 1; i++) {
2432 err = add_callchain_ip(thread, cursor, parent,
2433 root_al, &cpumode, chain->ips[i],
2434 false, NULL, NULL, branch_from);
2435 if (err)
2436 return err;
2437 }
2438 return 0;
2439 }
2440
2441 for (i = end; i >= 0; i--) {
2442 err = add_callchain_ip(thread, cursor, parent,
2443 root_al, &cpumode, chain->ips[i],
2444 false, NULL, NULL, branch_from);
2445 if (err)
2446 return err;
2447 }
2448
2449 return 0;
2450}
2451
2452static void save_lbr_cursor_node(struct thread *thread,
2453 struct callchain_cursor *cursor,
2454 int idx)
2455{
2456 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2457
2458 if (!lbr_stitch)
2459 return;
2460
2461 if (cursor->pos == cursor->nr) {
2462 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2463 return;
2464 }
2465
2466 if (!cursor->curr)
2467 cursor->curr = cursor->first;
2468 else
2469 cursor->curr = cursor->curr->next;
2470 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2471 sizeof(struct callchain_cursor_node));
2472
2473 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2474 cursor->pos++;
2475}
2476
2477static int lbr_callchain_add_lbr_ip(struct thread *thread,
2478 struct callchain_cursor *cursor,
2479 struct perf_sample *sample,
2480 struct symbol **parent,
2481 struct addr_location *root_al,
2482 u64 *branch_from,
2483 bool callee)
2484{
2485 struct branch_stack *lbr_stack = sample->branch_stack;
2486 struct branch_entry *entries = perf_sample__branch_entries(sample);
2487 u8 cpumode = PERF_RECORD_MISC_USER;
2488 int lbr_nr = lbr_stack->nr;
2489 struct branch_flags *flags;
2490 int err, i;
2491 u64 ip;
2492
2493 /*
2494 * The curr and pos are not used in writing session. They are cleared
2495 * in callchain_cursor_commit() when the writing session is closed.
2496 * Using curr and pos to track the current cursor node.
2497 */
2498 if (thread->lbr_stitch) {
2499 cursor->curr = NULL;
2500 cursor->pos = cursor->nr;
2501 if (cursor->nr) {
2502 cursor->curr = cursor->first;
2503 for (i = 0; i < (int)(cursor->nr - 1); i++)
2504 cursor->curr = cursor->curr->next;
2505 }
2506 }
2507
2508 if (callee) {
2509 /* Add LBR ip from first entries.to */
2510 ip = entries[0].to;
2511 flags = &entries[0].flags;
2512 *branch_from = entries[0].from;
2513 err = add_callchain_ip(thread, cursor, parent,
2514 root_al, &cpumode, ip,
2515 true, flags, NULL,
2516 *branch_from);
2517 if (err)
2518 return err;
2519
2520 /*
2521 * The number of cursor node increases.
2522 * Move the current cursor node.
2523 * But does not need to save current cursor node for entry 0.
2524 * It's impossible to stitch the whole LBRs of previous sample.
2525 */
2526 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2527 if (!cursor->curr)
2528 cursor->curr = cursor->first;
2529 else
2530 cursor->curr = cursor->curr->next;
2531 cursor->pos++;
2532 }
2533
2534 /* Add LBR ip from entries.from one by one. */
2535 for (i = 0; i < lbr_nr; i++) {
2536 ip = entries[i].from;
2537 flags = &entries[i].flags;
2538 err = add_callchain_ip(thread, cursor, parent,
2539 root_al, &cpumode, ip,
2540 true, flags, NULL,
2541 *branch_from);
2542 if (err)
2543 return err;
2544 save_lbr_cursor_node(thread, cursor, i);
2545 }
2546 return 0;
2547 }
2548
2549 /* Add LBR ip from entries.from one by one. */
2550 for (i = lbr_nr - 1; i >= 0; i--) {
2551 ip = entries[i].from;
2552 flags = &entries[i].flags;
2553 err = add_callchain_ip(thread, cursor, parent,
2554 root_al, &cpumode, ip,
2555 true, flags, NULL,
2556 *branch_from);
2557 if (err)
2558 return err;
2559 save_lbr_cursor_node(thread, cursor, i);
2560 }
2561
2562 /* Add LBR ip from first entries.to */
2563 ip = entries[0].to;
2564 flags = &entries[0].flags;
2565 *branch_from = entries[0].from;
2566 err = add_callchain_ip(thread, cursor, parent,
2567 root_al, &cpumode, ip,
2568 true, flags, NULL,
2569 *branch_from);
2570 if (err)
2571 return err;
2572
2573 return 0;
2574}
2575
2576static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2577 struct callchain_cursor *cursor)
2578{
2579 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2580 struct callchain_cursor_node *cnode;
2581 struct stitch_list *stitch_node;
2582 int err;
2583
2584 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2585 cnode = &stitch_node->cursor;
2586
2587 err = callchain_cursor_append(cursor, cnode->ip,
2588 &cnode->ms,
2589 cnode->branch,
2590 &cnode->branch_flags,
2591 cnode->nr_loop_iter,
2592 cnode->iter_cycles,
2593 cnode->branch_from,
2594 cnode->srcline);
2595 if (err)
2596 return err;
2597 }
2598 return 0;
2599}
2600
2601static struct stitch_list *get_stitch_node(struct thread *thread)
2602{
2603 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2604 struct stitch_list *stitch_node;
2605
2606 if (!list_empty(&lbr_stitch->free_lists)) {
2607 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2608 struct stitch_list, node);
2609 list_del(&stitch_node->node);
2610
2611 return stitch_node;
2612 }
2613
2614 return malloc(sizeof(struct stitch_list));
2615}
2616
2617static bool has_stitched_lbr(struct thread *thread,
2618 struct perf_sample *cur,
2619 struct perf_sample *prev,
2620 unsigned int max_lbr,
2621 bool callee)
2622{
2623 struct branch_stack *cur_stack = cur->branch_stack;
2624 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2625 struct branch_stack *prev_stack = prev->branch_stack;
2626 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2627 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2628 int i, j, nr_identical_branches = 0;
2629 struct stitch_list *stitch_node;
2630 u64 cur_base, distance;
2631
2632 if (!cur_stack || !prev_stack)
2633 return false;
2634
2635 /* Find the physical index of the base-of-stack for current sample. */
2636 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2637
2638 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2639 (max_lbr + prev_stack->hw_idx - cur_base);
2640 /* Previous sample has shorter stack. Nothing can be stitched. */
2641 if (distance + 1 > prev_stack->nr)
2642 return false;
2643
2644 /*
2645 * Check if there are identical LBRs between two samples.
2646 * Identical LBRs must have same from, to and flags values. Also,
2647 * they have to be saved in the same LBR registers (same physical
2648 * index).
2649 *
2650 * Starts from the base-of-stack of current sample.
2651 */
2652 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2653 if ((prev_entries[i].from != cur_entries[j].from) ||
2654 (prev_entries[i].to != cur_entries[j].to) ||
2655 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2656 break;
2657 nr_identical_branches++;
2658 }
2659
2660 if (!nr_identical_branches)
2661 return false;
2662
2663 /*
2664 * Save the LBRs between the base-of-stack of previous sample
2665 * and the base-of-stack of current sample into lbr_stitch->lists.
2666 * These LBRs will be stitched later.
2667 */
2668 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2669
2670 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2671 continue;
2672
2673 stitch_node = get_stitch_node(thread);
2674 if (!stitch_node)
2675 return false;
2676
2677 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2678 sizeof(struct callchain_cursor_node));
2679
2680 if (callee)
2681 list_add(&stitch_node->node, &lbr_stitch->lists);
2682 else
2683 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2684 }
2685
2686 return true;
2687}
2688
2689static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2690{
2691 if (thread->lbr_stitch)
2692 return true;
2693
2694 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2695 if (!thread->lbr_stitch)
2696 goto err;
2697
2698 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2699 if (!thread->lbr_stitch->prev_lbr_cursor)
2700 goto free_lbr_stitch;
2701
2702 INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2703 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2704
2705 return true;
2706
2707free_lbr_stitch:
2708 zfree(&thread->lbr_stitch);
2709err:
2710 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2711 thread->lbr_stitch_enable = false;
2712 return false;
2713}
2714
2715/*
2716 * Resolve LBR callstack chain sample
2717 * Return:
2718 * 1 on success get LBR callchain information
2719 * 0 no available LBR callchain information, should try fp
2720 * negative error code on other errors.
2721 */
2722static int resolve_lbr_callchain_sample(struct thread *thread,
2723 struct callchain_cursor *cursor,
2724 struct perf_sample *sample,
2725 struct symbol **parent,
2726 struct addr_location *root_al,
2727 int max_stack,
2728 unsigned int max_lbr)
2729{
2730 bool callee = (callchain_param.order == ORDER_CALLEE);
2731 struct ip_callchain *chain = sample->callchain;
2732 int chain_nr = min(max_stack, (int)chain->nr), i;
2733 struct lbr_stitch *lbr_stitch;
2734 bool stitched_lbr = false;
2735 u64 branch_from = 0;
2736 int err;
2737
2738 for (i = 0; i < chain_nr; i++) {
2739 if (chain->ips[i] == PERF_CONTEXT_USER)
2740 break;
2741 }
2742
2743 /* LBR only affects the user callchain */
2744 if (i == chain_nr)
2745 return 0;
2746
2747 if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2748 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2749 lbr_stitch = thread->lbr_stitch;
2750
2751 stitched_lbr = has_stitched_lbr(thread, sample,
2752 &lbr_stitch->prev_sample,
2753 max_lbr, callee);
2754
2755 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2756 list_replace_init(&lbr_stitch->lists,
2757 &lbr_stitch->free_lists);
2758 }
2759 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2760 }
2761
2762 if (callee) {
2763 /* Add kernel ip */
2764 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2765 parent, root_al, branch_from,
2766 true, i);
2767 if (err)
2768 goto error;
2769
2770 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2771 root_al, &branch_from, true);
2772 if (err)
2773 goto error;
2774
2775 if (stitched_lbr) {
2776 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2777 if (err)
2778 goto error;
2779 }
2780
2781 } else {
2782 if (stitched_lbr) {
2783 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2784 if (err)
2785 goto error;
2786 }
2787 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2788 root_al, &branch_from, false);
2789 if (err)
2790 goto error;
2791
2792 /* Add kernel ip */
2793 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2794 parent, root_al, branch_from,
2795 false, i);
2796 if (err)
2797 goto error;
2798 }
2799 return 1;
2800
2801error:
2802 return (err < 0) ? err : 0;
2803}
2804
2805static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2806 struct callchain_cursor *cursor,
2807 struct symbol **parent,
2808 struct addr_location *root_al,
2809 u8 *cpumode, int ent)
2810{
2811 int err = 0;
2812
2813 while (--ent >= 0) {
2814 u64 ip = chain->ips[ent];
2815
2816 if (ip >= PERF_CONTEXT_MAX) {
2817 err = add_callchain_ip(thread, cursor, parent,
2818 root_al, cpumode, ip,
2819 false, NULL, NULL, 0);
2820 break;
2821 }
2822 }
2823 return err;
2824}
2825
2826static u64 get_leaf_frame_caller(struct perf_sample *sample,
2827 struct thread *thread, int usr_idx)
2828{
2829 if (machine__normalized_is(thread->maps->machine, "arm64"))
2830 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2831 else
2832 return 0;
2833}
2834
2835static int thread__resolve_callchain_sample(struct thread *thread,
2836 struct callchain_cursor *cursor,
2837 struct evsel *evsel,
2838 struct perf_sample *sample,
2839 struct symbol **parent,
2840 struct addr_location *root_al,
2841 int max_stack)
2842{
2843 struct branch_stack *branch = sample->branch_stack;
2844 struct branch_entry *entries = perf_sample__branch_entries(sample);
2845 struct ip_callchain *chain = sample->callchain;
2846 int chain_nr = 0;
2847 u8 cpumode = PERF_RECORD_MISC_USER;
2848 int i, j, err, nr_entries, usr_idx;
2849 int skip_idx = -1;
2850 int first_call = 0;
2851 u64 leaf_frame_caller;
2852
2853 if (chain)
2854 chain_nr = chain->nr;
2855
2856 if (evsel__has_branch_callstack(evsel)) {
2857 struct perf_env *env = evsel__env(evsel);
2858
2859 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2860 root_al, max_stack,
2861 !env ? 0 : env->max_branches);
2862 if (err)
2863 return (err < 0) ? err : 0;
2864 }
2865
2866 /*
2867 * Based on DWARF debug information, some architectures skip
2868 * a callchain entry saved by the kernel.
2869 */
2870 skip_idx = arch_skip_callchain_idx(thread, chain);
2871
2872 /*
2873 * Add branches to call stack for easier browsing. This gives
2874 * more context for a sample than just the callers.
2875 *
2876 * This uses individual histograms of paths compared to the
2877 * aggregated histograms the normal LBR mode uses.
2878 *
2879 * Limitations for now:
2880 * - No extra filters
2881 * - No annotations (should annotate somehow)
2882 */
2883
2884 if (branch && callchain_param.branch_callstack) {
2885 int nr = min(max_stack, (int)branch->nr);
2886 struct branch_entry be[nr];
2887 struct iterations iter[nr];
2888
2889 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2890 pr_warning("corrupted branch chain. skipping...\n");
2891 goto check_calls;
2892 }
2893
2894 for (i = 0; i < nr; i++) {
2895 if (callchain_param.order == ORDER_CALLEE) {
2896 be[i] = entries[i];
2897
2898 if (chain == NULL)
2899 continue;
2900
2901 /*
2902 * Check for overlap into the callchain.
2903 * The return address is one off compared to
2904 * the branch entry. To adjust for this
2905 * assume the calling instruction is not longer
2906 * than 8 bytes.
2907 */
2908 if (i == skip_idx ||
2909 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2910 first_call++;
2911 else if (be[i].from < chain->ips[first_call] &&
2912 be[i].from >= chain->ips[first_call] - 8)
2913 first_call++;
2914 } else
2915 be[i] = entries[branch->nr - i - 1];
2916 }
2917
2918 memset(iter, 0, sizeof(struct iterations) * nr);
2919 nr = remove_loops(be, nr, iter);
2920
2921 for (i = 0; i < nr; i++) {
2922 err = add_callchain_ip(thread, cursor, parent,
2923 root_al,
2924 NULL, be[i].to,
2925 true, &be[i].flags,
2926 NULL, be[i].from);
2927
2928 if (!err)
2929 err = add_callchain_ip(thread, cursor, parent, root_al,
2930 NULL, be[i].from,
2931 true, &be[i].flags,
2932 &iter[i], 0);
2933 if (err == -EINVAL)
2934 break;
2935 if (err)
2936 return err;
2937 }
2938
2939 if (chain_nr == 0)
2940 return 0;
2941
2942 chain_nr -= nr;
2943 }
2944
2945check_calls:
2946 if (chain && callchain_param.order != ORDER_CALLEE) {
2947 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2948 &cpumode, chain->nr - first_call);
2949 if (err)
2950 return (err < 0) ? err : 0;
2951 }
2952 for (i = first_call, nr_entries = 0;
2953 i < chain_nr && nr_entries < max_stack; i++) {
2954 u64 ip;
2955
2956 if (callchain_param.order == ORDER_CALLEE)
2957 j = i;
2958 else
2959 j = chain->nr - i - 1;
2960
2961#ifdef HAVE_SKIP_CALLCHAIN_IDX
2962 if (j == skip_idx)
2963 continue;
2964#endif
2965 ip = chain->ips[j];
2966 if (ip < PERF_CONTEXT_MAX)
2967 ++nr_entries;
2968 else if (callchain_param.order != ORDER_CALLEE) {
2969 err = find_prev_cpumode(chain, thread, cursor, parent,
2970 root_al, &cpumode, j);
2971 if (err)
2972 return (err < 0) ? err : 0;
2973 continue;
2974 }
2975
2976 /*
2977 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2978 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2979 * the index will be different in order to add the missing frame
2980 * at the right place.
2981 */
2982
2983 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2984
2985 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2986
2987 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2988
2989 /*
2990 * check if leaf_frame_Caller != ip to not add the same
2991 * value twice.
2992 */
2993
2994 if (leaf_frame_caller && leaf_frame_caller != ip) {
2995
2996 err = add_callchain_ip(thread, cursor, parent,
2997 root_al, &cpumode, leaf_frame_caller,
2998 false, NULL, NULL, 0);
2999 if (err)
3000 return (err < 0) ? err : 0;
3001 }
3002 }
3003
3004 err = add_callchain_ip(thread, cursor, parent,
3005 root_al, &cpumode, ip,
3006 false, NULL, NULL, 0);
3007
3008 if (err)
3009 return (err < 0) ? err : 0;
3010 }
3011
3012 return 0;
3013}
3014
3015static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
3016{
3017 struct symbol *sym = ms->sym;
3018 struct map *map = ms->map;
3019 struct inline_node *inline_node;
3020 struct inline_list *ilist;
3021 u64 addr;
3022 int ret = 1;
3023
3024 if (!symbol_conf.inline_name || !map || !sym)
3025 return ret;
3026
3027 addr = map__map_ip(map, ip);
3028 addr = map__rip_2objdump(map, addr);
3029
3030 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
3031 if (!inline_node) {
3032 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
3033 if (!inline_node)
3034 return ret;
3035 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
3036 }
3037
3038 list_for_each_entry(ilist, &inline_node->val, list) {
3039 struct map_symbol ilist_ms = {
3040 .maps = ms->maps,
3041 .map = map,
3042 .sym = ilist->symbol,
3043 };
3044 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3045 NULL, 0, 0, 0, ilist->srcline);
3046
3047 if (ret != 0)
3048 return ret;
3049 }
3050
3051 return ret;
3052}
3053
3054static int unwind_entry(struct unwind_entry *entry, void *arg)
3055{
3056 struct callchain_cursor *cursor = arg;
3057 const char *srcline = NULL;
3058 u64 addr = entry->ip;
3059
3060 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3061 return 0;
3062
3063 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3064 return 0;
3065
3066 /*
3067 * Convert entry->ip from a virtual address to an offset in
3068 * its corresponding binary.
3069 */
3070 if (entry->ms.map)
3071 addr = map__map_ip(entry->ms.map, entry->ip);
3072
3073 srcline = callchain_srcline(&entry->ms, addr);
3074 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
3075 false, NULL, 0, 0, 0, srcline);
3076}
3077
3078static int thread__resolve_callchain_unwind(struct thread *thread,
3079 struct callchain_cursor *cursor,
3080 struct evsel *evsel,
3081 struct perf_sample *sample,
3082 int max_stack)
3083{
3084 /* Can we do dwarf post unwind? */
3085 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3086 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3087 return 0;
3088
3089 /* Bail out if nothing was captured. */
3090 if ((!sample->user_regs.regs) ||
3091 (!sample->user_stack.size))
3092 return 0;
3093
3094 return unwind__get_entries(unwind_entry, cursor,
3095 thread, sample, max_stack, false);
3096}
3097
3098int thread__resolve_callchain(struct thread *thread,
3099 struct callchain_cursor *cursor,
3100 struct evsel *evsel,
3101 struct perf_sample *sample,
3102 struct symbol **parent,
3103 struct addr_location *root_al,
3104 int max_stack)
3105{
3106 int ret = 0;
3107
3108 callchain_cursor_reset(cursor);
3109
3110 if (callchain_param.order == ORDER_CALLEE) {
3111 ret = thread__resolve_callchain_sample(thread, cursor,
3112 evsel, sample,
3113 parent, root_al,
3114 max_stack);
3115 if (ret)
3116 return ret;
3117 ret = thread__resolve_callchain_unwind(thread, cursor,
3118 evsel, sample,
3119 max_stack);
3120 } else {
3121 ret = thread__resolve_callchain_unwind(thread, cursor,
3122 evsel, sample,
3123 max_stack);
3124 if (ret)
3125 return ret;
3126 ret = thread__resolve_callchain_sample(thread, cursor,
3127 evsel, sample,
3128 parent, root_al,
3129 max_stack);
3130 }
3131
3132 return ret;
3133}
3134
3135int machine__for_each_thread(struct machine *machine,
3136 int (*fn)(struct thread *thread, void *p),
3137 void *priv)
3138{
3139 struct threads *threads;
3140 struct rb_node *nd;
3141 struct thread *thread;
3142 int rc = 0;
3143 int i;
3144
3145 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3146 threads = &machine->threads[i];
3147 for (nd = rb_first_cached(&threads->entries); nd;
3148 nd = rb_next(nd)) {
3149 thread = rb_entry(nd, struct thread, rb_node);
3150 rc = fn(thread, priv);
3151 if (rc != 0)
3152 return rc;
3153 }
3154
3155 list_for_each_entry(thread, &threads->dead, node) {
3156 rc = fn(thread, priv);
3157 if (rc != 0)
3158 return rc;
3159 }
3160 }
3161 return rc;
3162}
3163
3164int machines__for_each_thread(struct machines *machines,
3165 int (*fn)(struct thread *thread, void *p),
3166 void *priv)
3167{
3168 struct rb_node *nd;
3169 int rc = 0;
3170
3171 rc = machine__for_each_thread(&machines->host, fn, priv);
3172 if (rc != 0)
3173 return rc;
3174
3175 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3176 struct machine *machine = rb_entry(nd, struct machine, rb_node);
3177
3178 rc = machine__for_each_thread(machine, fn, priv);
3179 if (rc != 0)
3180 return rc;
3181 }
3182 return rc;
3183}
3184
3185pid_t machine__get_current_tid(struct machine *machine, int cpu)
3186{
3187 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3188 return -1;
3189
3190 return machine->current_tid[cpu];
3191}
3192
3193int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3194 pid_t tid)
3195{
3196 struct thread *thread;
3197 const pid_t init_val = -1;
3198
3199 if (cpu < 0)
3200 return -EINVAL;
3201
3202 if (realloc_array_as_needed(machine->current_tid,
3203 machine->current_tid_sz,
3204 (unsigned int)cpu,
3205 &init_val))
3206 return -ENOMEM;
3207
3208 machine->current_tid[cpu] = tid;
3209
3210 thread = machine__findnew_thread(machine, pid, tid);
3211 if (!thread)
3212 return -ENOMEM;
3213
3214 thread->cpu = cpu;
3215 thread__put(thread);
3216
3217 return 0;
3218}
3219
3220/*
3221 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3222 * machine__normalized_is() if a normalized arch is needed.
3223 */
3224bool machine__is(struct machine *machine, const char *arch)
3225{
3226 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3227}
3228
3229bool machine__normalized_is(struct machine *machine, const char *arch)
3230{
3231 return machine && !strcmp(perf_env__arch(machine->env), arch);
3232}
3233
3234int machine__nr_cpus_avail(struct machine *machine)
3235{
3236 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3237}
3238
3239int machine__get_kernel_start(struct machine *machine)
3240{
3241 struct map *map = machine__kernel_map(machine);
3242 int err = 0;
3243
3244 /*
3245 * The only addresses above 2^63 are kernel addresses of a 64-bit
3246 * kernel. Note that addresses are unsigned so that on a 32-bit system
3247 * all addresses including kernel addresses are less than 2^32. In
3248 * that case (32-bit system), if the kernel mapping is unknown, all
3249 * addresses will be assumed to be in user space - see
3250 * machine__kernel_ip().
3251 */
3252 machine->kernel_start = 1ULL << 63;
3253 if (map) {
3254 err = map__load(map);
3255 /*
3256 * On x86_64, PTI entry trampolines are less than the
3257 * start of kernel text, but still above 2^63. So leave
3258 * kernel_start = 1ULL << 63 for x86_64.
3259 */
3260 if (!err && !machine__is(machine, "x86_64"))
3261 machine->kernel_start = map->start;
3262 }
3263 return err;
3264}
3265
3266u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3267{
3268 u8 addr_cpumode = cpumode;
3269 bool kernel_ip;
3270
3271 if (!machine->single_address_space)
3272 goto out;
3273
3274 kernel_ip = machine__kernel_ip(machine, addr);
3275 switch (cpumode) {
3276 case PERF_RECORD_MISC_KERNEL:
3277 case PERF_RECORD_MISC_USER:
3278 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3279 PERF_RECORD_MISC_USER;
3280 break;
3281 case PERF_RECORD_MISC_GUEST_KERNEL:
3282 case PERF_RECORD_MISC_GUEST_USER:
3283 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3284 PERF_RECORD_MISC_GUEST_USER;
3285 break;
3286 default:
3287 break;
3288 }
3289out:
3290 return addr_cpumode;
3291}
3292
3293struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3294{
3295 return dsos__findnew_id(&machine->dsos, filename, id);
3296}
3297
3298struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3299{
3300 return machine__findnew_dso_id(machine, filename, NULL);
3301}
3302
3303char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3304{
3305 struct machine *machine = vmachine;
3306 struct map *map;
3307 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3308
3309 if (sym == NULL)
3310 return NULL;
3311
3312 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3313 *addrp = map->unmap_ip(map, sym->start);
3314 return sym->name;
3315}
3316
3317int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3318{
3319 struct dso *pos;
3320 int err = 0;
3321
3322 list_for_each_entry(pos, &machine->dsos.head, node) {
3323 if (fn(pos, machine, priv))
3324 err = -1;
3325 }
3326 return err;
3327}
3328
3329int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3330{
3331 struct maps *maps = machine__kernel_maps(machine);
3332 struct map *map;
3333 int err = 0;
3334
3335 for (map = maps__first(maps); map != NULL; map = map__next(map)) {
3336 err = fn(map, priv);
3337 if (err != 0) {
3338 break;
3339 }
3340 }
3341 return err;
3342}