Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3/*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13#ifndef _GNU_SOURCE
14#define _GNU_SOURCE
15#endif
16#include <stdlib.h>
17#include <stdio.h>
18#include <stdarg.h>
19#include <libgen.h>
20#include <inttypes.h>
21#include <limits.h>
22#include <string.h>
23#include <unistd.h>
24#include <endian.h>
25#include <fcntl.h>
26#include <errno.h>
27#include <ctype.h>
28#include <asm/unistd.h>
29#include <linux/err.h>
30#include <linux/kernel.h>
31#include <linux/bpf.h>
32#include <linux/btf.h>
33#include <linux/filter.h>
34#include <linux/limits.h>
35#include <linux/perf_event.h>
36#include <linux/ring_buffer.h>
37#include <linux/version.h>
38#include <sys/epoll.h>
39#include <sys/ioctl.h>
40#include <sys/mman.h>
41#include <sys/stat.h>
42#include <sys/types.h>
43#include <sys/vfs.h>
44#include <sys/utsname.h>
45#include <sys/resource.h>
46#include <libelf.h>
47#include <gelf.h>
48#include <zlib.h>
49
50#include "libbpf.h"
51#include "bpf.h"
52#include "btf.h"
53#include "str_error.h"
54#include "libbpf_internal.h"
55#include "hashmap.h"
56#include "bpf_gen_internal.h"
57
58#ifndef BPF_FS_MAGIC
59#define BPF_FS_MAGIC 0xcafe4a11
60#endif
61
62#define BPF_INSN_SZ (sizeof(struct bpf_insn))
63
64/* vsprintf() in __base_pr() uses nonliteral format string. It may break
65 * compilation if user enables corresponding warning. Disable it explicitly.
66 */
67#pragma GCC diagnostic ignored "-Wformat-nonliteral"
68
69#define __printf(a, b) __attribute__((format(printf, a, b)))
70
71static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73
74static const char * const attach_type_name[] = {
75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress",
77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release",
79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops",
80 [BPF_CGROUP_DEVICE] = "cgroup_device",
81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind",
82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind",
83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect",
84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect",
85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind",
86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind",
87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername",
88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername",
89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname",
90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname",
91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl",
94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt",
97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt",
98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser",
99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict",
101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict",
102 [BPF_LIRC_MODE2] = "lirc_mode2",
103 [BPF_FLOW_DISSECTOR] = "flow_dissector",
104 [BPF_TRACE_RAW_TP] = "trace_raw_tp",
105 [BPF_TRACE_FENTRY] = "trace_fentry",
106 [BPF_TRACE_FEXIT] = "trace_fexit",
107 [BPF_MODIFY_RETURN] = "modify_return",
108 [BPF_LSM_MAC] = "lsm_mac",
109 [BPF_LSM_CGROUP] = "lsm_cgroup",
110 [BPF_SK_LOOKUP] = "sk_lookup",
111 [BPF_TRACE_ITER] = "trace_iter",
112 [BPF_XDP_DEVMAP] = "xdp_devmap",
113 [BPF_XDP_CPUMAP] = "xdp_cpumap",
114 [BPF_XDP] = "xdp",
115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate",
117 [BPF_PERF_EVENT] = "perf_event",
118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi",
119};
120
121static const char * const link_type_name[] = {
122 [BPF_LINK_TYPE_UNSPEC] = "unspec",
123 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
124 [BPF_LINK_TYPE_TRACING] = "tracing",
125 [BPF_LINK_TYPE_CGROUP] = "cgroup",
126 [BPF_LINK_TYPE_ITER] = "iter",
127 [BPF_LINK_TYPE_NETNS] = "netns",
128 [BPF_LINK_TYPE_XDP] = "xdp",
129 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event",
130 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi",
131 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops",
132};
133
134static const char * const map_type_name[] = {
135 [BPF_MAP_TYPE_UNSPEC] = "unspec",
136 [BPF_MAP_TYPE_HASH] = "hash",
137 [BPF_MAP_TYPE_ARRAY] = "array",
138 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array",
139 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array",
140 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash",
141 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array",
142 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace",
143 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array",
144 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash",
145 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash",
146 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie",
147 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps",
148 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps",
149 [BPF_MAP_TYPE_DEVMAP] = "devmap",
150 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash",
151 [BPF_MAP_TYPE_SOCKMAP] = "sockmap",
152 [BPF_MAP_TYPE_CPUMAP] = "cpumap",
153 [BPF_MAP_TYPE_XSKMAP] = "xskmap",
154 [BPF_MAP_TYPE_SOCKHASH] = "sockhash",
155 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage",
156 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray",
157 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage",
158 [BPF_MAP_TYPE_QUEUE] = "queue",
159 [BPF_MAP_TYPE_STACK] = "stack",
160 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage",
161 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops",
162 [BPF_MAP_TYPE_RINGBUF] = "ringbuf",
163 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage",
164 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage",
165 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter",
166};
167
168static const char * const prog_type_name[] = {
169 [BPF_PROG_TYPE_UNSPEC] = "unspec",
170 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter",
171 [BPF_PROG_TYPE_KPROBE] = "kprobe",
172 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls",
173 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act",
174 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint",
175 [BPF_PROG_TYPE_XDP] = "xdp",
176 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event",
177 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb",
178 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock",
179 [BPF_PROG_TYPE_LWT_IN] = "lwt_in",
180 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out",
181 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit",
182 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops",
183 [BPF_PROG_TYPE_SK_SKB] = "sk_skb",
184 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device",
185 [BPF_PROG_TYPE_SK_MSG] = "sk_msg",
186 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
187 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr",
188 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local",
189 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2",
190 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport",
191 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector",
192 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl",
193 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
194 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt",
195 [BPF_PROG_TYPE_TRACING] = "tracing",
196 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops",
197 [BPF_PROG_TYPE_EXT] = "ext",
198 [BPF_PROG_TYPE_LSM] = "lsm",
199 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup",
200 [BPF_PROG_TYPE_SYSCALL] = "syscall",
201};
202
203static int __base_pr(enum libbpf_print_level level, const char *format,
204 va_list args)
205{
206 if (level == LIBBPF_DEBUG)
207 return 0;
208
209 return vfprintf(stderr, format, args);
210}
211
212static libbpf_print_fn_t __libbpf_pr = __base_pr;
213
214libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
215{
216 libbpf_print_fn_t old_print_fn = __libbpf_pr;
217
218 __libbpf_pr = fn;
219 return old_print_fn;
220}
221
222__printf(2, 3)
223void libbpf_print(enum libbpf_print_level level, const char *format, ...)
224{
225 va_list args;
226
227 if (!__libbpf_pr)
228 return;
229
230 va_start(args, format);
231 __libbpf_pr(level, format, args);
232 va_end(args);
233}
234
235static void pr_perm_msg(int err)
236{
237 struct rlimit limit;
238 char buf[100];
239
240 if (err != -EPERM || geteuid() != 0)
241 return;
242
243 err = getrlimit(RLIMIT_MEMLOCK, &limit);
244 if (err)
245 return;
246
247 if (limit.rlim_cur == RLIM_INFINITY)
248 return;
249
250 if (limit.rlim_cur < 1024)
251 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
252 else if (limit.rlim_cur < 1024*1024)
253 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
254 else
255 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
256
257 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
258 buf);
259}
260
261#define STRERR_BUFSIZE 128
262
263/* Copied from tools/perf/util/util.h */
264#ifndef zfree
265# define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
266#endif
267
268#ifndef zclose
269# define zclose(fd) ({ \
270 int ___err = 0; \
271 if ((fd) >= 0) \
272 ___err = close((fd)); \
273 fd = -1; \
274 ___err; })
275#endif
276
277static inline __u64 ptr_to_u64(const void *ptr)
278{
279 return (__u64) (unsigned long) ptr;
280}
281
282int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
283{
284 /* as of v1.0 libbpf_set_strict_mode() is a no-op */
285 return 0;
286}
287
288__u32 libbpf_major_version(void)
289{
290 return LIBBPF_MAJOR_VERSION;
291}
292
293__u32 libbpf_minor_version(void)
294{
295 return LIBBPF_MINOR_VERSION;
296}
297
298const char *libbpf_version_string(void)
299{
300#define __S(X) #X
301#define _S(X) __S(X)
302 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
303#undef _S
304#undef __S
305}
306
307enum reloc_type {
308 RELO_LD64,
309 RELO_CALL,
310 RELO_DATA,
311 RELO_EXTERN_VAR,
312 RELO_EXTERN_FUNC,
313 RELO_SUBPROG_ADDR,
314 RELO_CORE,
315};
316
317struct reloc_desc {
318 enum reloc_type type;
319 int insn_idx;
320 union {
321 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
322 struct {
323 int map_idx;
324 int sym_off;
325 };
326 };
327};
328
329/* stored as sec_def->cookie for all libbpf-supported SEC()s */
330enum sec_def_flags {
331 SEC_NONE = 0,
332 /* expected_attach_type is optional, if kernel doesn't support that */
333 SEC_EXP_ATTACH_OPT = 1,
334 /* legacy, only used by libbpf_get_type_names() and
335 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
336 * This used to be associated with cgroup (and few other) BPF programs
337 * that were attachable through BPF_PROG_ATTACH command. Pretty
338 * meaningless nowadays, though.
339 */
340 SEC_ATTACHABLE = 2,
341 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
342 /* attachment target is specified through BTF ID in either kernel or
343 * other BPF program's BTF object */
344 SEC_ATTACH_BTF = 4,
345 /* BPF program type allows sleeping/blocking in kernel */
346 SEC_SLEEPABLE = 8,
347 /* BPF program support non-linear XDP buffer */
348 SEC_XDP_FRAGS = 16,
349};
350
351struct bpf_sec_def {
352 char *sec;
353 enum bpf_prog_type prog_type;
354 enum bpf_attach_type expected_attach_type;
355 long cookie;
356 int handler_id;
357
358 libbpf_prog_setup_fn_t prog_setup_fn;
359 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
360 libbpf_prog_attach_fn_t prog_attach_fn;
361};
362
363/*
364 * bpf_prog should be a better name but it has been used in
365 * linux/filter.h.
366 */
367struct bpf_program {
368 char *name;
369 char *sec_name;
370 size_t sec_idx;
371 const struct bpf_sec_def *sec_def;
372 /* this program's instruction offset (in number of instructions)
373 * within its containing ELF section
374 */
375 size_t sec_insn_off;
376 /* number of original instructions in ELF section belonging to this
377 * program, not taking into account subprogram instructions possible
378 * appended later during relocation
379 */
380 size_t sec_insn_cnt;
381 /* Offset (in number of instructions) of the start of instruction
382 * belonging to this BPF program within its containing main BPF
383 * program. For the entry-point (main) BPF program, this is always
384 * zero. For a sub-program, this gets reset before each of main BPF
385 * programs are processed and relocated and is used to determined
386 * whether sub-program was already appended to the main program, and
387 * if yes, at which instruction offset.
388 */
389 size_t sub_insn_off;
390
391 /* instructions that belong to BPF program; insns[0] is located at
392 * sec_insn_off instruction within its ELF section in ELF file, so
393 * when mapping ELF file instruction index to the local instruction,
394 * one needs to subtract sec_insn_off; and vice versa.
395 */
396 struct bpf_insn *insns;
397 /* actual number of instruction in this BPF program's image; for
398 * entry-point BPF programs this includes the size of main program
399 * itself plus all the used sub-programs, appended at the end
400 */
401 size_t insns_cnt;
402
403 struct reloc_desc *reloc_desc;
404 int nr_reloc;
405
406 /* BPF verifier log settings */
407 char *log_buf;
408 size_t log_size;
409 __u32 log_level;
410
411 struct bpf_object *obj;
412
413 int fd;
414 bool autoload;
415 bool mark_btf_static;
416 enum bpf_prog_type type;
417 enum bpf_attach_type expected_attach_type;
418
419 int prog_ifindex;
420 __u32 attach_btf_obj_fd;
421 __u32 attach_btf_id;
422 __u32 attach_prog_fd;
423
424 void *func_info;
425 __u32 func_info_rec_size;
426 __u32 func_info_cnt;
427
428 void *line_info;
429 __u32 line_info_rec_size;
430 __u32 line_info_cnt;
431 __u32 prog_flags;
432};
433
434struct bpf_struct_ops {
435 const char *tname;
436 const struct btf_type *type;
437 struct bpf_program **progs;
438 __u32 *kern_func_off;
439 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
440 void *data;
441 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
442 * btf_vmlinux's format.
443 * struct bpf_struct_ops_tcp_congestion_ops {
444 * [... some other kernel fields ...]
445 * struct tcp_congestion_ops data;
446 * }
447 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
448 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
449 * from "data".
450 */
451 void *kern_vdata;
452 __u32 type_id;
453};
454
455#define DATA_SEC ".data"
456#define BSS_SEC ".bss"
457#define RODATA_SEC ".rodata"
458#define KCONFIG_SEC ".kconfig"
459#define KSYMS_SEC ".ksyms"
460#define STRUCT_OPS_SEC ".struct_ops"
461
462enum libbpf_map_type {
463 LIBBPF_MAP_UNSPEC,
464 LIBBPF_MAP_DATA,
465 LIBBPF_MAP_BSS,
466 LIBBPF_MAP_RODATA,
467 LIBBPF_MAP_KCONFIG,
468};
469
470struct bpf_map_def {
471 unsigned int type;
472 unsigned int key_size;
473 unsigned int value_size;
474 unsigned int max_entries;
475 unsigned int map_flags;
476};
477
478struct bpf_map {
479 struct bpf_object *obj;
480 char *name;
481 /* real_name is defined for special internal maps (.rodata*,
482 * .data*, .bss, .kconfig) and preserves their original ELF section
483 * name. This is important to be be able to find corresponding BTF
484 * DATASEC information.
485 */
486 char *real_name;
487 int fd;
488 int sec_idx;
489 size_t sec_offset;
490 int map_ifindex;
491 int inner_map_fd;
492 struct bpf_map_def def;
493 __u32 numa_node;
494 __u32 btf_var_idx;
495 __u32 btf_key_type_id;
496 __u32 btf_value_type_id;
497 __u32 btf_vmlinux_value_type_id;
498 enum libbpf_map_type libbpf_type;
499 void *mmaped;
500 struct bpf_struct_ops *st_ops;
501 struct bpf_map *inner_map;
502 void **init_slots;
503 int init_slots_sz;
504 char *pin_path;
505 bool pinned;
506 bool reused;
507 bool autocreate;
508 __u64 map_extra;
509};
510
511enum extern_type {
512 EXT_UNKNOWN,
513 EXT_KCFG,
514 EXT_KSYM,
515};
516
517enum kcfg_type {
518 KCFG_UNKNOWN,
519 KCFG_CHAR,
520 KCFG_BOOL,
521 KCFG_INT,
522 KCFG_TRISTATE,
523 KCFG_CHAR_ARR,
524};
525
526struct extern_desc {
527 enum extern_type type;
528 int sym_idx;
529 int btf_id;
530 int sec_btf_id;
531 const char *name;
532 bool is_set;
533 bool is_weak;
534 union {
535 struct {
536 enum kcfg_type type;
537 int sz;
538 int align;
539 int data_off;
540 bool is_signed;
541 } kcfg;
542 struct {
543 unsigned long long addr;
544
545 /* target btf_id of the corresponding kernel var. */
546 int kernel_btf_obj_fd;
547 int kernel_btf_id;
548
549 /* local btf_id of the ksym extern's type. */
550 __u32 type_id;
551 /* BTF fd index to be patched in for insn->off, this is
552 * 0 for vmlinux BTF, index in obj->fd_array for module
553 * BTF
554 */
555 __s16 btf_fd_idx;
556 } ksym;
557 };
558};
559
560struct module_btf {
561 struct btf *btf;
562 char *name;
563 __u32 id;
564 int fd;
565 int fd_array_idx;
566};
567
568enum sec_type {
569 SEC_UNUSED = 0,
570 SEC_RELO,
571 SEC_BSS,
572 SEC_DATA,
573 SEC_RODATA,
574};
575
576struct elf_sec_desc {
577 enum sec_type sec_type;
578 Elf64_Shdr *shdr;
579 Elf_Data *data;
580};
581
582struct elf_state {
583 int fd;
584 const void *obj_buf;
585 size_t obj_buf_sz;
586 Elf *elf;
587 Elf64_Ehdr *ehdr;
588 Elf_Data *symbols;
589 Elf_Data *st_ops_data;
590 size_t shstrndx; /* section index for section name strings */
591 size_t strtabidx;
592 struct elf_sec_desc *secs;
593 int sec_cnt;
594 int maps_shndx;
595 int btf_maps_shndx;
596 __u32 btf_maps_sec_btf_id;
597 int text_shndx;
598 int symbols_shndx;
599 int st_ops_shndx;
600};
601
602struct usdt_manager;
603
604struct bpf_object {
605 char name[BPF_OBJ_NAME_LEN];
606 char license[64];
607 __u32 kern_version;
608
609 struct bpf_program *programs;
610 size_t nr_programs;
611 struct bpf_map *maps;
612 size_t nr_maps;
613 size_t maps_cap;
614
615 char *kconfig;
616 struct extern_desc *externs;
617 int nr_extern;
618 int kconfig_map_idx;
619
620 bool loaded;
621 bool has_subcalls;
622 bool has_rodata;
623
624 struct bpf_gen *gen_loader;
625
626 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
627 struct elf_state efile;
628
629 struct btf *btf;
630 struct btf_ext *btf_ext;
631
632 /* Parse and load BTF vmlinux if any of the programs in the object need
633 * it at load time.
634 */
635 struct btf *btf_vmlinux;
636 /* Path to the custom BTF to be used for BPF CO-RE relocations as an
637 * override for vmlinux BTF.
638 */
639 char *btf_custom_path;
640 /* vmlinux BTF override for CO-RE relocations */
641 struct btf *btf_vmlinux_override;
642 /* Lazily initialized kernel module BTFs */
643 struct module_btf *btf_modules;
644 bool btf_modules_loaded;
645 size_t btf_module_cnt;
646 size_t btf_module_cap;
647
648 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
649 char *log_buf;
650 size_t log_size;
651 __u32 log_level;
652
653 int *fd_array;
654 size_t fd_array_cap;
655 size_t fd_array_cnt;
656
657 struct usdt_manager *usdt_man;
658
659 char path[];
660};
661
662static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
663static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
664static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
665static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
666static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
667static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
668static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
669static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
670static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
671
672void bpf_program__unload(struct bpf_program *prog)
673{
674 if (!prog)
675 return;
676
677 zclose(prog->fd);
678
679 zfree(&prog->func_info);
680 zfree(&prog->line_info);
681}
682
683static void bpf_program__exit(struct bpf_program *prog)
684{
685 if (!prog)
686 return;
687
688 bpf_program__unload(prog);
689 zfree(&prog->name);
690 zfree(&prog->sec_name);
691 zfree(&prog->insns);
692 zfree(&prog->reloc_desc);
693
694 prog->nr_reloc = 0;
695 prog->insns_cnt = 0;
696 prog->sec_idx = -1;
697}
698
699static bool insn_is_subprog_call(const struct bpf_insn *insn)
700{
701 return BPF_CLASS(insn->code) == BPF_JMP &&
702 BPF_OP(insn->code) == BPF_CALL &&
703 BPF_SRC(insn->code) == BPF_K &&
704 insn->src_reg == BPF_PSEUDO_CALL &&
705 insn->dst_reg == 0 &&
706 insn->off == 0;
707}
708
709static bool is_call_insn(const struct bpf_insn *insn)
710{
711 return insn->code == (BPF_JMP | BPF_CALL);
712}
713
714static bool insn_is_pseudo_func(struct bpf_insn *insn)
715{
716 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
717}
718
719static int
720bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
721 const char *name, size_t sec_idx, const char *sec_name,
722 size_t sec_off, void *insn_data, size_t insn_data_sz)
723{
724 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
725 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
726 sec_name, name, sec_off, insn_data_sz);
727 return -EINVAL;
728 }
729
730 memset(prog, 0, sizeof(*prog));
731 prog->obj = obj;
732
733 prog->sec_idx = sec_idx;
734 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
735 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
736 /* insns_cnt can later be increased by appending used subprograms */
737 prog->insns_cnt = prog->sec_insn_cnt;
738
739 prog->type = BPF_PROG_TYPE_UNSPEC;
740 prog->fd = -1;
741
742 /* libbpf's convention for SEC("?abc...") is that it's just like
743 * SEC("abc...") but the corresponding bpf_program starts out with
744 * autoload set to false.
745 */
746 if (sec_name[0] == '?') {
747 prog->autoload = false;
748 /* from now on forget there was ? in section name */
749 sec_name++;
750 } else {
751 prog->autoload = true;
752 }
753
754 /* inherit object's log_level */
755 prog->log_level = obj->log_level;
756
757 prog->sec_name = strdup(sec_name);
758 if (!prog->sec_name)
759 goto errout;
760
761 prog->name = strdup(name);
762 if (!prog->name)
763 goto errout;
764
765 prog->insns = malloc(insn_data_sz);
766 if (!prog->insns)
767 goto errout;
768 memcpy(prog->insns, insn_data, insn_data_sz);
769
770 return 0;
771errout:
772 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
773 bpf_program__exit(prog);
774 return -ENOMEM;
775}
776
777static int
778bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
779 const char *sec_name, int sec_idx)
780{
781 Elf_Data *symbols = obj->efile.symbols;
782 struct bpf_program *prog, *progs;
783 void *data = sec_data->d_buf;
784 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
785 int nr_progs, err, i;
786 const char *name;
787 Elf64_Sym *sym;
788
789 progs = obj->programs;
790 nr_progs = obj->nr_programs;
791 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
792 sec_off = 0;
793
794 for (i = 0; i < nr_syms; i++) {
795 sym = elf_sym_by_idx(obj, i);
796
797 if (sym->st_shndx != sec_idx)
798 continue;
799 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
800 continue;
801
802 prog_sz = sym->st_size;
803 sec_off = sym->st_value;
804
805 name = elf_sym_str(obj, sym->st_name);
806 if (!name) {
807 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
808 sec_name, sec_off);
809 return -LIBBPF_ERRNO__FORMAT;
810 }
811
812 if (sec_off + prog_sz > sec_sz) {
813 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
814 sec_name, sec_off);
815 return -LIBBPF_ERRNO__FORMAT;
816 }
817
818 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
819 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
820 return -ENOTSUP;
821 }
822
823 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
824 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
825
826 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
827 if (!progs) {
828 /*
829 * In this case the original obj->programs
830 * is still valid, so don't need special treat for
831 * bpf_close_object().
832 */
833 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
834 sec_name, name);
835 return -ENOMEM;
836 }
837 obj->programs = progs;
838
839 prog = &progs[nr_progs];
840
841 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
842 sec_off, data + sec_off, prog_sz);
843 if (err)
844 return err;
845
846 /* if function is a global/weak symbol, but has restricted
847 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
848 * as static to enable more permissive BPF verification mode
849 * with more outside context available to BPF verifier
850 */
851 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
852 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
853 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
854 prog->mark_btf_static = true;
855
856 nr_progs++;
857 obj->nr_programs = nr_progs;
858 }
859
860 return 0;
861}
862
863__u32 get_kernel_version(void)
864{
865 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release,
866 * but Ubuntu provides /proc/version_signature file, as described at
867 * https://ubuntu.com/kernel, with an example contents below, which we
868 * can use to get a proper LINUX_VERSION_CODE.
869 *
870 * Ubuntu 5.4.0-12.15-generic 5.4.8
871 *
872 * In the above, 5.4.8 is what kernel is actually expecting, while
873 * uname() call will return 5.4.0 in info.release.
874 */
875 const char *ubuntu_kver_file = "/proc/version_signature";
876 __u32 major, minor, patch;
877 struct utsname info;
878
879 if (access(ubuntu_kver_file, R_OK) == 0) {
880 FILE *f;
881
882 f = fopen(ubuntu_kver_file, "r");
883 if (f) {
884 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) {
885 fclose(f);
886 return KERNEL_VERSION(major, minor, patch);
887 }
888 fclose(f);
889 }
890 /* something went wrong, fall back to uname() approach */
891 }
892
893 uname(&info);
894 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
895 return 0;
896 return KERNEL_VERSION(major, minor, patch);
897}
898
899static const struct btf_member *
900find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
901{
902 struct btf_member *m;
903 int i;
904
905 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
906 if (btf_member_bit_offset(t, i) == bit_offset)
907 return m;
908 }
909
910 return NULL;
911}
912
913static const struct btf_member *
914find_member_by_name(const struct btf *btf, const struct btf_type *t,
915 const char *name)
916{
917 struct btf_member *m;
918 int i;
919
920 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
921 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
922 return m;
923 }
924
925 return NULL;
926}
927
928#define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
929static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
930 const char *name, __u32 kind);
931
932static int
933find_struct_ops_kern_types(const struct btf *btf, const char *tname,
934 const struct btf_type **type, __u32 *type_id,
935 const struct btf_type **vtype, __u32 *vtype_id,
936 const struct btf_member **data_member)
937{
938 const struct btf_type *kern_type, *kern_vtype;
939 const struct btf_member *kern_data_member;
940 __s32 kern_vtype_id, kern_type_id;
941 __u32 i;
942
943 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
944 if (kern_type_id < 0) {
945 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
946 tname);
947 return kern_type_id;
948 }
949 kern_type = btf__type_by_id(btf, kern_type_id);
950
951 /* Find the corresponding "map_value" type that will be used
952 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
953 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
954 * btf_vmlinux.
955 */
956 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
957 tname, BTF_KIND_STRUCT);
958 if (kern_vtype_id < 0) {
959 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
960 STRUCT_OPS_VALUE_PREFIX, tname);
961 return kern_vtype_id;
962 }
963 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
964
965 /* Find "struct tcp_congestion_ops" from
966 * struct bpf_struct_ops_tcp_congestion_ops {
967 * [ ... ]
968 * struct tcp_congestion_ops data;
969 * }
970 */
971 kern_data_member = btf_members(kern_vtype);
972 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
973 if (kern_data_member->type == kern_type_id)
974 break;
975 }
976 if (i == btf_vlen(kern_vtype)) {
977 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
978 tname, STRUCT_OPS_VALUE_PREFIX, tname);
979 return -EINVAL;
980 }
981
982 *type = kern_type;
983 *type_id = kern_type_id;
984 *vtype = kern_vtype;
985 *vtype_id = kern_vtype_id;
986 *data_member = kern_data_member;
987
988 return 0;
989}
990
991static bool bpf_map__is_struct_ops(const struct bpf_map *map)
992{
993 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
994}
995
996/* Init the map's fields that depend on kern_btf */
997static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
998 const struct btf *btf,
999 const struct btf *kern_btf)
1000{
1001 const struct btf_member *member, *kern_member, *kern_data_member;
1002 const struct btf_type *type, *kern_type, *kern_vtype;
1003 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1004 struct bpf_struct_ops *st_ops;
1005 void *data, *kern_data;
1006 const char *tname;
1007 int err;
1008
1009 st_ops = map->st_ops;
1010 type = st_ops->type;
1011 tname = st_ops->tname;
1012 err = find_struct_ops_kern_types(kern_btf, tname,
1013 &kern_type, &kern_type_id,
1014 &kern_vtype, &kern_vtype_id,
1015 &kern_data_member);
1016 if (err)
1017 return err;
1018
1019 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1020 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1021
1022 map->def.value_size = kern_vtype->size;
1023 map->btf_vmlinux_value_type_id = kern_vtype_id;
1024
1025 st_ops->kern_vdata = calloc(1, kern_vtype->size);
1026 if (!st_ops->kern_vdata)
1027 return -ENOMEM;
1028
1029 data = st_ops->data;
1030 kern_data_off = kern_data_member->offset / 8;
1031 kern_data = st_ops->kern_vdata + kern_data_off;
1032
1033 member = btf_members(type);
1034 for (i = 0; i < btf_vlen(type); i++, member++) {
1035 const struct btf_type *mtype, *kern_mtype;
1036 __u32 mtype_id, kern_mtype_id;
1037 void *mdata, *kern_mdata;
1038 __s64 msize, kern_msize;
1039 __u32 moff, kern_moff;
1040 __u32 kern_member_idx;
1041 const char *mname;
1042
1043 mname = btf__name_by_offset(btf, member->name_off);
1044 kern_member = find_member_by_name(kern_btf, kern_type, mname);
1045 if (!kern_member) {
1046 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1047 map->name, mname);
1048 return -ENOTSUP;
1049 }
1050
1051 kern_member_idx = kern_member - btf_members(kern_type);
1052 if (btf_member_bitfield_size(type, i) ||
1053 btf_member_bitfield_size(kern_type, kern_member_idx)) {
1054 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1055 map->name, mname);
1056 return -ENOTSUP;
1057 }
1058
1059 moff = member->offset / 8;
1060 kern_moff = kern_member->offset / 8;
1061
1062 mdata = data + moff;
1063 kern_mdata = kern_data + kern_moff;
1064
1065 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1066 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1067 &kern_mtype_id);
1068 if (BTF_INFO_KIND(mtype->info) !=
1069 BTF_INFO_KIND(kern_mtype->info)) {
1070 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1071 map->name, mname, BTF_INFO_KIND(mtype->info),
1072 BTF_INFO_KIND(kern_mtype->info));
1073 return -ENOTSUP;
1074 }
1075
1076 if (btf_is_ptr(mtype)) {
1077 struct bpf_program *prog;
1078
1079 prog = st_ops->progs[i];
1080 if (!prog)
1081 continue;
1082
1083 kern_mtype = skip_mods_and_typedefs(kern_btf,
1084 kern_mtype->type,
1085 &kern_mtype_id);
1086
1087 /* mtype->type must be a func_proto which was
1088 * guaranteed in bpf_object__collect_st_ops_relos(),
1089 * so only check kern_mtype for func_proto here.
1090 */
1091 if (!btf_is_func_proto(kern_mtype)) {
1092 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1093 map->name, mname);
1094 return -ENOTSUP;
1095 }
1096
1097 prog->attach_btf_id = kern_type_id;
1098 prog->expected_attach_type = kern_member_idx;
1099
1100 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1101
1102 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1103 map->name, mname, prog->name, moff,
1104 kern_moff);
1105
1106 continue;
1107 }
1108
1109 msize = btf__resolve_size(btf, mtype_id);
1110 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1111 if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1112 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1113 map->name, mname, (ssize_t)msize,
1114 (ssize_t)kern_msize);
1115 return -ENOTSUP;
1116 }
1117
1118 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1119 map->name, mname, (unsigned int)msize,
1120 moff, kern_moff);
1121 memcpy(kern_mdata, mdata, msize);
1122 }
1123
1124 return 0;
1125}
1126
1127static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1128{
1129 struct bpf_map *map;
1130 size_t i;
1131 int err;
1132
1133 for (i = 0; i < obj->nr_maps; i++) {
1134 map = &obj->maps[i];
1135
1136 if (!bpf_map__is_struct_ops(map))
1137 continue;
1138
1139 err = bpf_map__init_kern_struct_ops(map, obj->btf,
1140 obj->btf_vmlinux);
1141 if (err)
1142 return err;
1143 }
1144
1145 return 0;
1146}
1147
1148static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
1149{
1150 const struct btf_type *type, *datasec;
1151 const struct btf_var_secinfo *vsi;
1152 struct bpf_struct_ops *st_ops;
1153 const char *tname, *var_name;
1154 __s32 type_id, datasec_id;
1155 const struct btf *btf;
1156 struct bpf_map *map;
1157 __u32 i;
1158
1159 if (obj->efile.st_ops_shndx == -1)
1160 return 0;
1161
1162 btf = obj->btf;
1163 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
1164 BTF_KIND_DATASEC);
1165 if (datasec_id < 0) {
1166 pr_warn("struct_ops init: DATASEC %s not found\n",
1167 STRUCT_OPS_SEC);
1168 return -EINVAL;
1169 }
1170
1171 datasec = btf__type_by_id(btf, datasec_id);
1172 vsi = btf_var_secinfos(datasec);
1173 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1174 type = btf__type_by_id(obj->btf, vsi->type);
1175 var_name = btf__name_by_offset(obj->btf, type->name_off);
1176
1177 type_id = btf__resolve_type(obj->btf, vsi->type);
1178 if (type_id < 0) {
1179 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1180 vsi->type, STRUCT_OPS_SEC);
1181 return -EINVAL;
1182 }
1183
1184 type = btf__type_by_id(obj->btf, type_id);
1185 tname = btf__name_by_offset(obj->btf, type->name_off);
1186 if (!tname[0]) {
1187 pr_warn("struct_ops init: anonymous type is not supported\n");
1188 return -ENOTSUP;
1189 }
1190 if (!btf_is_struct(type)) {
1191 pr_warn("struct_ops init: %s is not a struct\n", tname);
1192 return -EINVAL;
1193 }
1194
1195 map = bpf_object__add_map(obj);
1196 if (IS_ERR(map))
1197 return PTR_ERR(map);
1198
1199 map->sec_idx = obj->efile.st_ops_shndx;
1200 map->sec_offset = vsi->offset;
1201 map->name = strdup(var_name);
1202 if (!map->name)
1203 return -ENOMEM;
1204
1205 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1206 map->def.key_size = sizeof(int);
1207 map->def.value_size = type->size;
1208 map->def.max_entries = 1;
1209
1210 map->st_ops = calloc(1, sizeof(*map->st_ops));
1211 if (!map->st_ops)
1212 return -ENOMEM;
1213 st_ops = map->st_ops;
1214 st_ops->data = malloc(type->size);
1215 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1216 st_ops->kern_func_off = malloc(btf_vlen(type) *
1217 sizeof(*st_ops->kern_func_off));
1218 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1219 return -ENOMEM;
1220
1221 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1222 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1223 var_name, STRUCT_OPS_SEC);
1224 return -EINVAL;
1225 }
1226
1227 memcpy(st_ops->data,
1228 obj->efile.st_ops_data->d_buf + vsi->offset,
1229 type->size);
1230 st_ops->tname = tname;
1231 st_ops->type = type;
1232 st_ops->type_id = type_id;
1233
1234 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1235 tname, type_id, var_name, vsi->offset);
1236 }
1237
1238 return 0;
1239}
1240
1241static struct bpf_object *bpf_object__new(const char *path,
1242 const void *obj_buf,
1243 size_t obj_buf_sz,
1244 const char *obj_name)
1245{
1246 struct bpf_object *obj;
1247 char *end;
1248
1249 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1250 if (!obj) {
1251 pr_warn("alloc memory failed for %s\n", path);
1252 return ERR_PTR(-ENOMEM);
1253 }
1254
1255 strcpy(obj->path, path);
1256 if (obj_name) {
1257 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1258 } else {
1259 /* Using basename() GNU version which doesn't modify arg. */
1260 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1261 end = strchr(obj->name, '.');
1262 if (end)
1263 *end = 0;
1264 }
1265
1266 obj->efile.fd = -1;
1267 /*
1268 * Caller of this function should also call
1269 * bpf_object__elf_finish() after data collection to return
1270 * obj_buf to user. If not, we should duplicate the buffer to
1271 * avoid user freeing them before elf finish.
1272 */
1273 obj->efile.obj_buf = obj_buf;
1274 obj->efile.obj_buf_sz = obj_buf_sz;
1275 obj->efile.maps_shndx = -1;
1276 obj->efile.btf_maps_shndx = -1;
1277 obj->efile.st_ops_shndx = -1;
1278 obj->kconfig_map_idx = -1;
1279
1280 obj->kern_version = get_kernel_version();
1281 obj->loaded = false;
1282
1283 return obj;
1284}
1285
1286static void bpf_object__elf_finish(struct bpf_object *obj)
1287{
1288 if (!obj->efile.elf)
1289 return;
1290
1291 elf_end(obj->efile.elf);
1292 obj->efile.elf = NULL;
1293 obj->efile.symbols = NULL;
1294 obj->efile.st_ops_data = NULL;
1295
1296 zfree(&obj->efile.secs);
1297 obj->efile.sec_cnt = 0;
1298 zclose(obj->efile.fd);
1299 obj->efile.obj_buf = NULL;
1300 obj->efile.obj_buf_sz = 0;
1301}
1302
1303static int bpf_object__elf_init(struct bpf_object *obj)
1304{
1305 Elf64_Ehdr *ehdr;
1306 int err = 0;
1307 Elf *elf;
1308
1309 if (obj->efile.elf) {
1310 pr_warn("elf: init internal error\n");
1311 return -LIBBPF_ERRNO__LIBELF;
1312 }
1313
1314 if (obj->efile.obj_buf_sz > 0) {
1315 /* obj_buf should have been validated by bpf_object__open_mem(). */
1316 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1317 } else {
1318 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1319 if (obj->efile.fd < 0) {
1320 char errmsg[STRERR_BUFSIZE], *cp;
1321
1322 err = -errno;
1323 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1324 pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1325 return err;
1326 }
1327
1328 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1329 }
1330
1331 if (!elf) {
1332 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1333 err = -LIBBPF_ERRNO__LIBELF;
1334 goto errout;
1335 }
1336
1337 obj->efile.elf = elf;
1338
1339 if (elf_kind(elf) != ELF_K_ELF) {
1340 err = -LIBBPF_ERRNO__FORMAT;
1341 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1342 goto errout;
1343 }
1344
1345 if (gelf_getclass(elf) != ELFCLASS64) {
1346 err = -LIBBPF_ERRNO__FORMAT;
1347 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1348 goto errout;
1349 }
1350
1351 obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1352 if (!obj->efile.ehdr) {
1353 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1354 err = -LIBBPF_ERRNO__FORMAT;
1355 goto errout;
1356 }
1357
1358 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1359 pr_warn("elf: failed to get section names section index for %s: %s\n",
1360 obj->path, elf_errmsg(-1));
1361 err = -LIBBPF_ERRNO__FORMAT;
1362 goto errout;
1363 }
1364
1365 /* Elf is corrupted/truncated, avoid calling elf_strptr. */
1366 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1367 pr_warn("elf: failed to get section names strings from %s: %s\n",
1368 obj->path, elf_errmsg(-1));
1369 err = -LIBBPF_ERRNO__FORMAT;
1370 goto errout;
1371 }
1372
1373 /* Old LLVM set e_machine to EM_NONE */
1374 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1375 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1376 err = -LIBBPF_ERRNO__FORMAT;
1377 goto errout;
1378 }
1379
1380 return 0;
1381errout:
1382 bpf_object__elf_finish(obj);
1383 return err;
1384}
1385
1386static int bpf_object__check_endianness(struct bpf_object *obj)
1387{
1388#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1389 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1390 return 0;
1391#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1392 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1393 return 0;
1394#else
1395# error "Unrecognized __BYTE_ORDER__"
1396#endif
1397 pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1398 return -LIBBPF_ERRNO__ENDIAN;
1399}
1400
1401static int
1402bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1403{
1404 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1405 * go over allowed ELF data section buffer
1406 */
1407 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1408 pr_debug("license of %s is %s\n", obj->path, obj->license);
1409 return 0;
1410}
1411
1412static int
1413bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1414{
1415 __u32 kver;
1416
1417 if (size != sizeof(kver)) {
1418 pr_warn("invalid kver section in %s\n", obj->path);
1419 return -LIBBPF_ERRNO__FORMAT;
1420 }
1421 memcpy(&kver, data, sizeof(kver));
1422 obj->kern_version = kver;
1423 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1424 return 0;
1425}
1426
1427static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1428{
1429 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1430 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1431 return true;
1432 return false;
1433}
1434
1435static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1436{
1437 Elf_Data *data;
1438 Elf_Scn *scn;
1439
1440 if (!name)
1441 return -EINVAL;
1442
1443 scn = elf_sec_by_name(obj, name);
1444 data = elf_sec_data(obj, scn);
1445 if (data) {
1446 *size = data->d_size;
1447 return 0; /* found it */
1448 }
1449
1450 return -ENOENT;
1451}
1452
1453static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off)
1454{
1455 Elf_Data *symbols = obj->efile.symbols;
1456 const char *sname;
1457 size_t si;
1458
1459 if (!name || !off)
1460 return -EINVAL;
1461
1462 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1463 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1464
1465 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1466 continue;
1467
1468 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1469 ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1470 continue;
1471
1472 sname = elf_sym_str(obj, sym->st_name);
1473 if (!sname) {
1474 pr_warn("failed to get sym name string for var %s\n", name);
1475 return -EIO;
1476 }
1477 if (strcmp(name, sname) == 0) {
1478 *off = sym->st_value;
1479 return 0;
1480 }
1481 }
1482
1483 return -ENOENT;
1484}
1485
1486static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1487{
1488 struct bpf_map *map;
1489 int err;
1490
1491 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1492 sizeof(*obj->maps), obj->nr_maps + 1);
1493 if (err)
1494 return ERR_PTR(err);
1495
1496 map = &obj->maps[obj->nr_maps++];
1497 map->obj = obj;
1498 map->fd = -1;
1499 map->inner_map_fd = -1;
1500 map->autocreate = true;
1501
1502 return map;
1503}
1504
1505static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1506{
1507 long page_sz = sysconf(_SC_PAGE_SIZE);
1508 size_t map_sz;
1509
1510 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1511 map_sz = roundup(map_sz, page_sz);
1512 return map_sz;
1513}
1514
1515static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1516{
1517 char map_name[BPF_OBJ_NAME_LEN], *p;
1518 int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1519
1520 /* This is one of the more confusing parts of libbpf for various
1521 * reasons, some of which are historical. The original idea for naming
1522 * internal names was to include as much of BPF object name prefix as
1523 * possible, so that it can be distinguished from similar internal
1524 * maps of a different BPF object.
1525 * As an example, let's say we have bpf_object named 'my_object_name'
1526 * and internal map corresponding to '.rodata' ELF section. The final
1527 * map name advertised to user and to the kernel will be
1528 * 'my_objec.rodata', taking first 8 characters of object name and
1529 * entire 7 characters of '.rodata'.
1530 * Somewhat confusingly, if internal map ELF section name is shorter
1531 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1532 * for the suffix, even though we only have 4 actual characters, and
1533 * resulting map will be called 'my_objec.bss', not even using all 15
1534 * characters allowed by the kernel. Oh well, at least the truncated
1535 * object name is somewhat consistent in this case. But if the map
1536 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1537 * (8 chars) and thus will be left with only first 7 characters of the
1538 * object name ('my_obje'). Happy guessing, user, that the final map
1539 * name will be "my_obje.kconfig".
1540 * Now, with libbpf starting to support arbitrarily named .rodata.*
1541 * and .data.* data sections, it's possible that ELF section name is
1542 * longer than allowed 15 chars, so we now need to be careful to take
1543 * only up to 15 first characters of ELF name, taking no BPF object
1544 * name characters at all. So '.rodata.abracadabra' will result in
1545 * '.rodata.abracad' kernel and user-visible name.
1546 * We need to keep this convoluted logic intact for .data, .bss and
1547 * .rodata maps, but for new custom .data.custom and .rodata.custom
1548 * maps we use their ELF names as is, not prepending bpf_object name
1549 * in front. We still need to truncate them to 15 characters for the
1550 * kernel. Full name can be recovered for such maps by using DATASEC
1551 * BTF type associated with such map's value type, though.
1552 */
1553 if (sfx_len >= BPF_OBJ_NAME_LEN)
1554 sfx_len = BPF_OBJ_NAME_LEN - 1;
1555
1556 /* if there are two or more dots in map name, it's a custom dot map */
1557 if (strchr(real_name + 1, '.') != NULL)
1558 pfx_len = 0;
1559 else
1560 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1561
1562 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1563 sfx_len, real_name);
1564
1565 /* sanitise map name to characters allowed by kernel */
1566 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1567 if (!isalnum(*p) && *p != '_' && *p != '.')
1568 *p = '_';
1569
1570 return strdup(map_name);
1571}
1572
1573static int
1574bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map);
1575
1576static int
1577bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1578 const char *real_name, int sec_idx, void *data, size_t data_sz)
1579{
1580 struct bpf_map_def *def;
1581 struct bpf_map *map;
1582 int err;
1583
1584 map = bpf_object__add_map(obj);
1585 if (IS_ERR(map))
1586 return PTR_ERR(map);
1587
1588 map->libbpf_type = type;
1589 map->sec_idx = sec_idx;
1590 map->sec_offset = 0;
1591 map->real_name = strdup(real_name);
1592 map->name = internal_map_name(obj, real_name);
1593 if (!map->real_name || !map->name) {
1594 zfree(&map->real_name);
1595 zfree(&map->name);
1596 return -ENOMEM;
1597 }
1598
1599 def = &map->def;
1600 def->type = BPF_MAP_TYPE_ARRAY;
1601 def->key_size = sizeof(int);
1602 def->value_size = data_sz;
1603 def->max_entries = 1;
1604 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1605 ? BPF_F_RDONLY_PROG : 0;
1606 def->map_flags |= BPF_F_MMAPABLE;
1607
1608 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1609 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1610
1611 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1612 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1613 if (map->mmaped == MAP_FAILED) {
1614 err = -errno;
1615 map->mmaped = NULL;
1616 pr_warn("failed to alloc map '%s' content buffer: %d\n",
1617 map->name, err);
1618 zfree(&map->real_name);
1619 zfree(&map->name);
1620 return err;
1621 }
1622
1623 /* failures are fine because of maps like .rodata.str1.1 */
1624 (void) bpf_map_find_btf_info(obj, map);
1625
1626 if (data)
1627 memcpy(map->mmaped, data, data_sz);
1628
1629 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1630 return 0;
1631}
1632
1633static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1634{
1635 struct elf_sec_desc *sec_desc;
1636 const char *sec_name;
1637 int err = 0, sec_idx;
1638
1639 /*
1640 * Populate obj->maps with libbpf internal maps.
1641 */
1642 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1643 sec_desc = &obj->efile.secs[sec_idx];
1644
1645 switch (sec_desc->sec_type) {
1646 case SEC_DATA:
1647 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1648 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1649 sec_name, sec_idx,
1650 sec_desc->data->d_buf,
1651 sec_desc->data->d_size);
1652 break;
1653 case SEC_RODATA:
1654 obj->has_rodata = true;
1655 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1656 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1657 sec_name, sec_idx,
1658 sec_desc->data->d_buf,
1659 sec_desc->data->d_size);
1660 break;
1661 case SEC_BSS:
1662 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1663 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1664 sec_name, sec_idx,
1665 NULL,
1666 sec_desc->data->d_size);
1667 break;
1668 default:
1669 /* skip */
1670 break;
1671 }
1672 if (err)
1673 return err;
1674 }
1675 return 0;
1676}
1677
1678
1679static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1680 const void *name)
1681{
1682 int i;
1683
1684 for (i = 0; i < obj->nr_extern; i++) {
1685 if (strcmp(obj->externs[i].name, name) == 0)
1686 return &obj->externs[i];
1687 }
1688 return NULL;
1689}
1690
1691static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1692 char value)
1693{
1694 switch (ext->kcfg.type) {
1695 case KCFG_BOOL:
1696 if (value == 'm') {
1697 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1698 ext->name, value);
1699 return -EINVAL;
1700 }
1701 *(bool *)ext_val = value == 'y' ? true : false;
1702 break;
1703 case KCFG_TRISTATE:
1704 if (value == 'y')
1705 *(enum libbpf_tristate *)ext_val = TRI_YES;
1706 else if (value == 'm')
1707 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1708 else /* value == 'n' */
1709 *(enum libbpf_tristate *)ext_val = TRI_NO;
1710 break;
1711 case KCFG_CHAR:
1712 *(char *)ext_val = value;
1713 break;
1714 case KCFG_UNKNOWN:
1715 case KCFG_INT:
1716 case KCFG_CHAR_ARR:
1717 default:
1718 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1719 ext->name, value);
1720 return -EINVAL;
1721 }
1722 ext->is_set = true;
1723 return 0;
1724}
1725
1726static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1727 const char *value)
1728{
1729 size_t len;
1730
1731 if (ext->kcfg.type != KCFG_CHAR_ARR) {
1732 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1733 ext->name, value);
1734 return -EINVAL;
1735 }
1736
1737 len = strlen(value);
1738 if (value[len - 1] != '"') {
1739 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1740 ext->name, value);
1741 return -EINVAL;
1742 }
1743
1744 /* strip quotes */
1745 len -= 2;
1746 if (len >= ext->kcfg.sz) {
1747 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1748 ext->name, value, len, ext->kcfg.sz - 1);
1749 len = ext->kcfg.sz - 1;
1750 }
1751 memcpy(ext_val, value + 1, len);
1752 ext_val[len] = '\0';
1753 ext->is_set = true;
1754 return 0;
1755}
1756
1757static int parse_u64(const char *value, __u64 *res)
1758{
1759 char *value_end;
1760 int err;
1761
1762 errno = 0;
1763 *res = strtoull(value, &value_end, 0);
1764 if (errno) {
1765 err = -errno;
1766 pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1767 return err;
1768 }
1769 if (*value_end) {
1770 pr_warn("failed to parse '%s' as integer completely\n", value);
1771 return -EINVAL;
1772 }
1773 return 0;
1774}
1775
1776static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1777{
1778 int bit_sz = ext->kcfg.sz * 8;
1779
1780 if (ext->kcfg.sz == 8)
1781 return true;
1782
1783 /* Validate that value stored in u64 fits in integer of `ext->sz`
1784 * bytes size without any loss of information. If the target integer
1785 * is signed, we rely on the following limits of integer type of
1786 * Y bits and subsequent transformation:
1787 *
1788 * -2^(Y-1) <= X <= 2^(Y-1) - 1
1789 * 0 <= X + 2^(Y-1) <= 2^Y - 1
1790 * 0 <= X + 2^(Y-1) < 2^Y
1791 *
1792 * For unsigned target integer, check that all the (64 - Y) bits are
1793 * zero.
1794 */
1795 if (ext->kcfg.is_signed)
1796 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1797 else
1798 return (v >> bit_sz) == 0;
1799}
1800
1801static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1802 __u64 value)
1803{
1804 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1805 ext->kcfg.type != KCFG_BOOL) {
1806 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1807 ext->name, (unsigned long long)value);
1808 return -EINVAL;
1809 }
1810 if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1811 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1812 ext->name, (unsigned long long)value);
1813 return -EINVAL;
1814
1815 }
1816 if (!is_kcfg_value_in_range(ext, value)) {
1817 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1818 ext->name, (unsigned long long)value, ext->kcfg.sz);
1819 return -ERANGE;
1820 }
1821 switch (ext->kcfg.sz) {
1822 case 1: *(__u8 *)ext_val = value; break;
1823 case 2: *(__u16 *)ext_val = value; break;
1824 case 4: *(__u32 *)ext_val = value; break;
1825 case 8: *(__u64 *)ext_val = value; break;
1826 default:
1827 return -EINVAL;
1828 }
1829 ext->is_set = true;
1830 return 0;
1831}
1832
1833static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1834 char *buf, void *data)
1835{
1836 struct extern_desc *ext;
1837 char *sep, *value;
1838 int len, err = 0;
1839 void *ext_val;
1840 __u64 num;
1841
1842 if (!str_has_pfx(buf, "CONFIG_"))
1843 return 0;
1844
1845 sep = strchr(buf, '=');
1846 if (!sep) {
1847 pr_warn("failed to parse '%s': no separator\n", buf);
1848 return -EINVAL;
1849 }
1850
1851 /* Trim ending '\n' */
1852 len = strlen(buf);
1853 if (buf[len - 1] == '\n')
1854 buf[len - 1] = '\0';
1855 /* Split on '=' and ensure that a value is present. */
1856 *sep = '\0';
1857 if (!sep[1]) {
1858 *sep = '=';
1859 pr_warn("failed to parse '%s': no value\n", buf);
1860 return -EINVAL;
1861 }
1862
1863 ext = find_extern_by_name(obj, buf);
1864 if (!ext || ext->is_set)
1865 return 0;
1866
1867 ext_val = data + ext->kcfg.data_off;
1868 value = sep + 1;
1869
1870 switch (*value) {
1871 case 'y': case 'n': case 'm':
1872 err = set_kcfg_value_tri(ext, ext_val, *value);
1873 break;
1874 case '"':
1875 err = set_kcfg_value_str(ext, ext_val, value);
1876 break;
1877 default:
1878 /* assume integer */
1879 err = parse_u64(value, &num);
1880 if (err) {
1881 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1882 return err;
1883 }
1884 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1885 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1886 return -EINVAL;
1887 }
1888 err = set_kcfg_value_num(ext, ext_val, num);
1889 break;
1890 }
1891 if (err)
1892 return err;
1893 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1894 return 0;
1895}
1896
1897static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1898{
1899 char buf[PATH_MAX];
1900 struct utsname uts;
1901 int len, err = 0;
1902 gzFile file;
1903
1904 uname(&uts);
1905 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1906 if (len < 0)
1907 return -EINVAL;
1908 else if (len >= PATH_MAX)
1909 return -ENAMETOOLONG;
1910
1911 /* gzopen also accepts uncompressed files. */
1912 file = gzopen(buf, "r");
1913 if (!file)
1914 file = gzopen("/proc/config.gz", "r");
1915
1916 if (!file) {
1917 pr_warn("failed to open system Kconfig\n");
1918 return -ENOENT;
1919 }
1920
1921 while (gzgets(file, buf, sizeof(buf))) {
1922 err = bpf_object__process_kconfig_line(obj, buf, data);
1923 if (err) {
1924 pr_warn("error parsing system Kconfig line '%s': %d\n",
1925 buf, err);
1926 goto out;
1927 }
1928 }
1929
1930out:
1931 gzclose(file);
1932 return err;
1933}
1934
1935static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1936 const char *config, void *data)
1937{
1938 char buf[PATH_MAX];
1939 int err = 0;
1940 FILE *file;
1941
1942 file = fmemopen((void *)config, strlen(config), "r");
1943 if (!file) {
1944 err = -errno;
1945 pr_warn("failed to open in-memory Kconfig: %d\n", err);
1946 return err;
1947 }
1948
1949 while (fgets(buf, sizeof(buf), file)) {
1950 err = bpf_object__process_kconfig_line(obj, buf, data);
1951 if (err) {
1952 pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1953 buf, err);
1954 break;
1955 }
1956 }
1957
1958 fclose(file);
1959 return err;
1960}
1961
1962static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1963{
1964 struct extern_desc *last_ext = NULL, *ext;
1965 size_t map_sz;
1966 int i, err;
1967
1968 for (i = 0; i < obj->nr_extern; i++) {
1969 ext = &obj->externs[i];
1970 if (ext->type == EXT_KCFG)
1971 last_ext = ext;
1972 }
1973
1974 if (!last_ext)
1975 return 0;
1976
1977 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1978 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1979 ".kconfig", obj->efile.symbols_shndx,
1980 NULL, map_sz);
1981 if (err)
1982 return err;
1983
1984 obj->kconfig_map_idx = obj->nr_maps - 1;
1985
1986 return 0;
1987}
1988
1989const struct btf_type *
1990skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
1991{
1992 const struct btf_type *t = btf__type_by_id(btf, id);
1993
1994 if (res_id)
1995 *res_id = id;
1996
1997 while (btf_is_mod(t) || btf_is_typedef(t)) {
1998 if (res_id)
1999 *res_id = t->type;
2000 t = btf__type_by_id(btf, t->type);
2001 }
2002
2003 return t;
2004}
2005
2006static const struct btf_type *
2007resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2008{
2009 const struct btf_type *t;
2010
2011 t = skip_mods_and_typedefs(btf, id, NULL);
2012 if (!btf_is_ptr(t))
2013 return NULL;
2014
2015 t = skip_mods_and_typedefs(btf, t->type, res_id);
2016
2017 return btf_is_func_proto(t) ? t : NULL;
2018}
2019
2020static const char *__btf_kind_str(__u16 kind)
2021{
2022 switch (kind) {
2023 case BTF_KIND_UNKN: return "void";
2024 case BTF_KIND_INT: return "int";
2025 case BTF_KIND_PTR: return "ptr";
2026 case BTF_KIND_ARRAY: return "array";
2027 case BTF_KIND_STRUCT: return "struct";
2028 case BTF_KIND_UNION: return "union";
2029 case BTF_KIND_ENUM: return "enum";
2030 case BTF_KIND_FWD: return "fwd";
2031 case BTF_KIND_TYPEDEF: return "typedef";
2032 case BTF_KIND_VOLATILE: return "volatile";
2033 case BTF_KIND_CONST: return "const";
2034 case BTF_KIND_RESTRICT: return "restrict";
2035 case BTF_KIND_FUNC: return "func";
2036 case BTF_KIND_FUNC_PROTO: return "func_proto";
2037 case BTF_KIND_VAR: return "var";
2038 case BTF_KIND_DATASEC: return "datasec";
2039 case BTF_KIND_FLOAT: return "float";
2040 case BTF_KIND_DECL_TAG: return "decl_tag";
2041 case BTF_KIND_TYPE_TAG: return "type_tag";
2042 case BTF_KIND_ENUM64: return "enum64";
2043 default: return "unknown";
2044 }
2045}
2046
2047const char *btf_kind_str(const struct btf_type *t)
2048{
2049 return __btf_kind_str(btf_kind(t));
2050}
2051
2052/*
2053 * Fetch integer attribute of BTF map definition. Such attributes are
2054 * represented using a pointer to an array, in which dimensionality of array
2055 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2056 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2057 * type definition, while using only sizeof(void *) space in ELF data section.
2058 */
2059static bool get_map_field_int(const char *map_name, const struct btf *btf,
2060 const struct btf_member *m, __u32 *res)
2061{
2062 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2063 const char *name = btf__name_by_offset(btf, m->name_off);
2064 const struct btf_array *arr_info;
2065 const struct btf_type *arr_t;
2066
2067 if (!btf_is_ptr(t)) {
2068 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2069 map_name, name, btf_kind_str(t));
2070 return false;
2071 }
2072
2073 arr_t = btf__type_by_id(btf, t->type);
2074 if (!arr_t) {
2075 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2076 map_name, name, t->type);
2077 return false;
2078 }
2079 if (!btf_is_array(arr_t)) {
2080 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2081 map_name, name, btf_kind_str(arr_t));
2082 return false;
2083 }
2084 arr_info = btf_array(arr_t);
2085 *res = arr_info->nelems;
2086 return true;
2087}
2088
2089static int build_map_pin_path(struct bpf_map *map, const char *path)
2090{
2091 char buf[PATH_MAX];
2092 int len;
2093
2094 if (!path)
2095 path = "/sys/fs/bpf";
2096
2097 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
2098 if (len < 0)
2099 return -EINVAL;
2100 else if (len >= PATH_MAX)
2101 return -ENAMETOOLONG;
2102
2103 return bpf_map__set_pin_path(map, buf);
2104}
2105
2106/* should match definition in bpf_helpers.h */
2107enum libbpf_pin_type {
2108 LIBBPF_PIN_NONE,
2109 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2110 LIBBPF_PIN_BY_NAME,
2111};
2112
2113int parse_btf_map_def(const char *map_name, struct btf *btf,
2114 const struct btf_type *def_t, bool strict,
2115 struct btf_map_def *map_def, struct btf_map_def *inner_def)
2116{
2117 const struct btf_type *t;
2118 const struct btf_member *m;
2119 bool is_inner = inner_def == NULL;
2120 int vlen, i;
2121
2122 vlen = btf_vlen(def_t);
2123 m = btf_members(def_t);
2124 for (i = 0; i < vlen; i++, m++) {
2125 const char *name = btf__name_by_offset(btf, m->name_off);
2126
2127 if (!name) {
2128 pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2129 return -EINVAL;
2130 }
2131 if (strcmp(name, "type") == 0) {
2132 if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2133 return -EINVAL;
2134 map_def->parts |= MAP_DEF_MAP_TYPE;
2135 } else if (strcmp(name, "max_entries") == 0) {
2136 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2137 return -EINVAL;
2138 map_def->parts |= MAP_DEF_MAX_ENTRIES;
2139 } else if (strcmp(name, "map_flags") == 0) {
2140 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2141 return -EINVAL;
2142 map_def->parts |= MAP_DEF_MAP_FLAGS;
2143 } else if (strcmp(name, "numa_node") == 0) {
2144 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2145 return -EINVAL;
2146 map_def->parts |= MAP_DEF_NUMA_NODE;
2147 } else if (strcmp(name, "key_size") == 0) {
2148 __u32 sz;
2149
2150 if (!get_map_field_int(map_name, btf, m, &sz))
2151 return -EINVAL;
2152 if (map_def->key_size && map_def->key_size != sz) {
2153 pr_warn("map '%s': conflicting key size %u != %u.\n",
2154 map_name, map_def->key_size, sz);
2155 return -EINVAL;
2156 }
2157 map_def->key_size = sz;
2158 map_def->parts |= MAP_DEF_KEY_SIZE;
2159 } else if (strcmp(name, "key") == 0) {
2160 __s64 sz;
2161
2162 t = btf__type_by_id(btf, m->type);
2163 if (!t) {
2164 pr_warn("map '%s': key type [%d] not found.\n",
2165 map_name, m->type);
2166 return -EINVAL;
2167 }
2168 if (!btf_is_ptr(t)) {
2169 pr_warn("map '%s': key spec is not PTR: %s.\n",
2170 map_name, btf_kind_str(t));
2171 return -EINVAL;
2172 }
2173 sz = btf__resolve_size(btf, t->type);
2174 if (sz < 0) {
2175 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2176 map_name, t->type, (ssize_t)sz);
2177 return sz;
2178 }
2179 if (map_def->key_size && map_def->key_size != sz) {
2180 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2181 map_name, map_def->key_size, (ssize_t)sz);
2182 return -EINVAL;
2183 }
2184 map_def->key_size = sz;
2185 map_def->key_type_id = t->type;
2186 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2187 } else if (strcmp(name, "value_size") == 0) {
2188 __u32 sz;
2189
2190 if (!get_map_field_int(map_name, btf, m, &sz))
2191 return -EINVAL;
2192 if (map_def->value_size && map_def->value_size != sz) {
2193 pr_warn("map '%s': conflicting value size %u != %u.\n",
2194 map_name, map_def->value_size, sz);
2195 return -EINVAL;
2196 }
2197 map_def->value_size = sz;
2198 map_def->parts |= MAP_DEF_VALUE_SIZE;
2199 } else if (strcmp(name, "value") == 0) {
2200 __s64 sz;
2201
2202 t = btf__type_by_id(btf, m->type);
2203 if (!t) {
2204 pr_warn("map '%s': value type [%d] not found.\n",
2205 map_name, m->type);
2206 return -EINVAL;
2207 }
2208 if (!btf_is_ptr(t)) {
2209 pr_warn("map '%s': value spec is not PTR: %s.\n",
2210 map_name, btf_kind_str(t));
2211 return -EINVAL;
2212 }
2213 sz = btf__resolve_size(btf, t->type);
2214 if (sz < 0) {
2215 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2216 map_name, t->type, (ssize_t)sz);
2217 return sz;
2218 }
2219 if (map_def->value_size && map_def->value_size != sz) {
2220 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2221 map_name, map_def->value_size, (ssize_t)sz);
2222 return -EINVAL;
2223 }
2224 map_def->value_size = sz;
2225 map_def->value_type_id = t->type;
2226 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2227 }
2228 else if (strcmp(name, "values") == 0) {
2229 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2230 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2231 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2232 char inner_map_name[128];
2233 int err;
2234
2235 if (is_inner) {
2236 pr_warn("map '%s': multi-level inner maps not supported.\n",
2237 map_name);
2238 return -ENOTSUP;
2239 }
2240 if (i != vlen - 1) {
2241 pr_warn("map '%s': '%s' member should be last.\n",
2242 map_name, name);
2243 return -EINVAL;
2244 }
2245 if (!is_map_in_map && !is_prog_array) {
2246 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2247 map_name);
2248 return -ENOTSUP;
2249 }
2250 if (map_def->value_size && map_def->value_size != 4) {
2251 pr_warn("map '%s': conflicting value size %u != 4.\n",
2252 map_name, map_def->value_size);
2253 return -EINVAL;
2254 }
2255 map_def->value_size = 4;
2256 t = btf__type_by_id(btf, m->type);
2257 if (!t) {
2258 pr_warn("map '%s': %s type [%d] not found.\n",
2259 map_name, desc, m->type);
2260 return -EINVAL;
2261 }
2262 if (!btf_is_array(t) || btf_array(t)->nelems) {
2263 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2264 map_name, desc);
2265 return -EINVAL;
2266 }
2267 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2268 if (!btf_is_ptr(t)) {
2269 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2270 map_name, desc, btf_kind_str(t));
2271 return -EINVAL;
2272 }
2273 t = skip_mods_and_typedefs(btf, t->type, NULL);
2274 if (is_prog_array) {
2275 if (!btf_is_func_proto(t)) {
2276 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2277 map_name, btf_kind_str(t));
2278 return -EINVAL;
2279 }
2280 continue;
2281 }
2282 if (!btf_is_struct(t)) {
2283 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2284 map_name, btf_kind_str(t));
2285 return -EINVAL;
2286 }
2287
2288 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2289 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2290 if (err)
2291 return err;
2292
2293 map_def->parts |= MAP_DEF_INNER_MAP;
2294 } else if (strcmp(name, "pinning") == 0) {
2295 __u32 val;
2296
2297 if (is_inner) {
2298 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2299 return -EINVAL;
2300 }
2301 if (!get_map_field_int(map_name, btf, m, &val))
2302 return -EINVAL;
2303 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2304 pr_warn("map '%s': invalid pinning value %u.\n",
2305 map_name, val);
2306 return -EINVAL;
2307 }
2308 map_def->pinning = val;
2309 map_def->parts |= MAP_DEF_PINNING;
2310 } else if (strcmp(name, "map_extra") == 0) {
2311 __u32 map_extra;
2312
2313 if (!get_map_field_int(map_name, btf, m, &map_extra))
2314 return -EINVAL;
2315 map_def->map_extra = map_extra;
2316 map_def->parts |= MAP_DEF_MAP_EXTRA;
2317 } else {
2318 if (strict) {
2319 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2320 return -ENOTSUP;
2321 }
2322 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2323 }
2324 }
2325
2326 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2327 pr_warn("map '%s': map type isn't specified.\n", map_name);
2328 return -EINVAL;
2329 }
2330
2331 return 0;
2332}
2333
2334static size_t adjust_ringbuf_sz(size_t sz)
2335{
2336 __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2337 __u32 mul;
2338
2339 /* if user forgot to set any size, make sure they see error */
2340 if (sz == 0)
2341 return 0;
2342 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2343 * a power-of-2 multiple of kernel's page size. If user diligently
2344 * satisified these conditions, pass the size through.
2345 */
2346 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2347 return sz;
2348
2349 /* Otherwise find closest (page_sz * power_of_2) product bigger than
2350 * user-set size to satisfy both user size request and kernel
2351 * requirements and substitute correct max_entries for map creation.
2352 */
2353 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2354 if (mul * page_sz > sz)
2355 return mul * page_sz;
2356 }
2357
2358 /* if it's impossible to satisfy the conditions (i.e., user size is
2359 * very close to UINT_MAX but is not a power-of-2 multiple of
2360 * page_size) then just return original size and let kernel reject it
2361 */
2362 return sz;
2363}
2364
2365static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2366{
2367 map->def.type = def->map_type;
2368 map->def.key_size = def->key_size;
2369 map->def.value_size = def->value_size;
2370 map->def.max_entries = def->max_entries;
2371 map->def.map_flags = def->map_flags;
2372 map->map_extra = def->map_extra;
2373
2374 map->numa_node = def->numa_node;
2375 map->btf_key_type_id = def->key_type_id;
2376 map->btf_value_type_id = def->value_type_id;
2377
2378 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2379 if (map->def.type == BPF_MAP_TYPE_RINGBUF)
2380 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2381
2382 if (def->parts & MAP_DEF_MAP_TYPE)
2383 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2384
2385 if (def->parts & MAP_DEF_KEY_TYPE)
2386 pr_debug("map '%s': found key [%u], sz = %u.\n",
2387 map->name, def->key_type_id, def->key_size);
2388 else if (def->parts & MAP_DEF_KEY_SIZE)
2389 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2390
2391 if (def->parts & MAP_DEF_VALUE_TYPE)
2392 pr_debug("map '%s': found value [%u], sz = %u.\n",
2393 map->name, def->value_type_id, def->value_size);
2394 else if (def->parts & MAP_DEF_VALUE_SIZE)
2395 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2396
2397 if (def->parts & MAP_DEF_MAX_ENTRIES)
2398 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2399 if (def->parts & MAP_DEF_MAP_FLAGS)
2400 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2401 if (def->parts & MAP_DEF_MAP_EXTRA)
2402 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2403 (unsigned long long)def->map_extra);
2404 if (def->parts & MAP_DEF_PINNING)
2405 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2406 if (def->parts & MAP_DEF_NUMA_NODE)
2407 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2408
2409 if (def->parts & MAP_DEF_INNER_MAP)
2410 pr_debug("map '%s': found inner map definition.\n", map->name);
2411}
2412
2413static const char *btf_var_linkage_str(__u32 linkage)
2414{
2415 switch (linkage) {
2416 case BTF_VAR_STATIC: return "static";
2417 case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2418 case BTF_VAR_GLOBAL_EXTERN: return "extern";
2419 default: return "unknown";
2420 }
2421}
2422
2423static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2424 const struct btf_type *sec,
2425 int var_idx, int sec_idx,
2426 const Elf_Data *data, bool strict,
2427 const char *pin_root_path)
2428{
2429 struct btf_map_def map_def = {}, inner_def = {};
2430 const struct btf_type *var, *def;
2431 const struct btf_var_secinfo *vi;
2432 const struct btf_var *var_extra;
2433 const char *map_name;
2434 struct bpf_map *map;
2435 int err;
2436
2437 vi = btf_var_secinfos(sec) + var_idx;
2438 var = btf__type_by_id(obj->btf, vi->type);
2439 var_extra = btf_var(var);
2440 map_name = btf__name_by_offset(obj->btf, var->name_off);
2441
2442 if (map_name == NULL || map_name[0] == '\0') {
2443 pr_warn("map #%d: empty name.\n", var_idx);
2444 return -EINVAL;
2445 }
2446 if ((__u64)vi->offset + vi->size > data->d_size) {
2447 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2448 return -EINVAL;
2449 }
2450 if (!btf_is_var(var)) {
2451 pr_warn("map '%s': unexpected var kind %s.\n",
2452 map_name, btf_kind_str(var));
2453 return -EINVAL;
2454 }
2455 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2456 pr_warn("map '%s': unsupported map linkage %s.\n",
2457 map_name, btf_var_linkage_str(var_extra->linkage));
2458 return -EOPNOTSUPP;
2459 }
2460
2461 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2462 if (!btf_is_struct(def)) {
2463 pr_warn("map '%s': unexpected def kind %s.\n",
2464 map_name, btf_kind_str(var));
2465 return -EINVAL;
2466 }
2467 if (def->size > vi->size) {
2468 pr_warn("map '%s': invalid def size.\n", map_name);
2469 return -EINVAL;
2470 }
2471
2472 map = bpf_object__add_map(obj);
2473 if (IS_ERR(map))
2474 return PTR_ERR(map);
2475 map->name = strdup(map_name);
2476 if (!map->name) {
2477 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2478 return -ENOMEM;
2479 }
2480 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2481 map->def.type = BPF_MAP_TYPE_UNSPEC;
2482 map->sec_idx = sec_idx;
2483 map->sec_offset = vi->offset;
2484 map->btf_var_idx = var_idx;
2485 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2486 map_name, map->sec_idx, map->sec_offset);
2487
2488 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2489 if (err)
2490 return err;
2491
2492 fill_map_from_def(map, &map_def);
2493
2494 if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2495 err = build_map_pin_path(map, pin_root_path);
2496 if (err) {
2497 pr_warn("map '%s': couldn't build pin path.\n", map->name);
2498 return err;
2499 }
2500 }
2501
2502 if (map_def.parts & MAP_DEF_INNER_MAP) {
2503 map->inner_map = calloc(1, sizeof(*map->inner_map));
2504 if (!map->inner_map)
2505 return -ENOMEM;
2506 map->inner_map->fd = -1;
2507 map->inner_map->sec_idx = sec_idx;
2508 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2509 if (!map->inner_map->name)
2510 return -ENOMEM;
2511 sprintf(map->inner_map->name, "%s.inner", map_name);
2512
2513 fill_map_from_def(map->inner_map, &inner_def);
2514 }
2515
2516 err = bpf_map_find_btf_info(obj, map);
2517 if (err)
2518 return err;
2519
2520 return 0;
2521}
2522
2523static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2524 const char *pin_root_path)
2525{
2526 const struct btf_type *sec = NULL;
2527 int nr_types, i, vlen, err;
2528 const struct btf_type *t;
2529 const char *name;
2530 Elf_Data *data;
2531 Elf_Scn *scn;
2532
2533 if (obj->efile.btf_maps_shndx < 0)
2534 return 0;
2535
2536 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2537 data = elf_sec_data(obj, scn);
2538 if (!scn || !data) {
2539 pr_warn("elf: failed to get %s map definitions for %s\n",
2540 MAPS_ELF_SEC, obj->path);
2541 return -EINVAL;
2542 }
2543
2544 nr_types = btf__type_cnt(obj->btf);
2545 for (i = 1; i < nr_types; i++) {
2546 t = btf__type_by_id(obj->btf, i);
2547 if (!btf_is_datasec(t))
2548 continue;
2549 name = btf__name_by_offset(obj->btf, t->name_off);
2550 if (strcmp(name, MAPS_ELF_SEC) == 0) {
2551 sec = t;
2552 obj->efile.btf_maps_sec_btf_id = i;
2553 break;
2554 }
2555 }
2556
2557 if (!sec) {
2558 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2559 return -ENOENT;
2560 }
2561
2562 vlen = btf_vlen(sec);
2563 for (i = 0; i < vlen; i++) {
2564 err = bpf_object__init_user_btf_map(obj, sec, i,
2565 obj->efile.btf_maps_shndx,
2566 data, strict,
2567 pin_root_path);
2568 if (err)
2569 return err;
2570 }
2571
2572 return 0;
2573}
2574
2575static int bpf_object__init_maps(struct bpf_object *obj,
2576 const struct bpf_object_open_opts *opts)
2577{
2578 const char *pin_root_path;
2579 bool strict;
2580 int err = 0;
2581
2582 strict = !OPTS_GET(opts, relaxed_maps, false);
2583 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2584
2585 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2586 err = err ?: bpf_object__init_global_data_maps(obj);
2587 err = err ?: bpf_object__init_kconfig_map(obj);
2588 err = err ?: bpf_object__init_struct_ops_maps(obj);
2589
2590 return err;
2591}
2592
2593static bool section_have_execinstr(struct bpf_object *obj, int idx)
2594{
2595 Elf64_Shdr *sh;
2596
2597 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2598 if (!sh)
2599 return false;
2600
2601 return sh->sh_flags & SHF_EXECINSTR;
2602}
2603
2604static bool btf_needs_sanitization(struct bpf_object *obj)
2605{
2606 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2607 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2608 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2609 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2610 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2611 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2612 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2613
2614 return !has_func || !has_datasec || !has_func_global || !has_float ||
2615 !has_decl_tag || !has_type_tag || !has_enum64;
2616}
2617
2618static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2619{
2620 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2621 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2622 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2623 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2624 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2625 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2626 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2627 int enum64_placeholder_id = 0;
2628 struct btf_type *t;
2629 int i, j, vlen;
2630
2631 for (i = 1; i < btf__type_cnt(btf); i++) {
2632 t = (struct btf_type *)btf__type_by_id(btf, i);
2633
2634 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2635 /* replace VAR/DECL_TAG with INT */
2636 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2637 /*
2638 * using size = 1 is the safest choice, 4 will be too
2639 * big and cause kernel BTF validation failure if
2640 * original variable took less than 4 bytes
2641 */
2642 t->size = 1;
2643 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2644 } else if (!has_datasec && btf_is_datasec(t)) {
2645 /* replace DATASEC with STRUCT */
2646 const struct btf_var_secinfo *v = btf_var_secinfos(t);
2647 struct btf_member *m = btf_members(t);
2648 struct btf_type *vt;
2649 char *name;
2650
2651 name = (char *)btf__name_by_offset(btf, t->name_off);
2652 while (*name) {
2653 if (*name == '.')
2654 *name = '_';
2655 name++;
2656 }
2657
2658 vlen = btf_vlen(t);
2659 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2660 for (j = 0; j < vlen; j++, v++, m++) {
2661 /* order of field assignments is important */
2662 m->offset = v->offset * 8;
2663 m->type = v->type;
2664 /* preserve variable name as member name */
2665 vt = (void *)btf__type_by_id(btf, v->type);
2666 m->name_off = vt->name_off;
2667 }
2668 } else if (!has_func && btf_is_func_proto(t)) {
2669 /* replace FUNC_PROTO with ENUM */
2670 vlen = btf_vlen(t);
2671 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2672 t->size = sizeof(__u32); /* kernel enforced */
2673 } else if (!has_func && btf_is_func(t)) {
2674 /* replace FUNC with TYPEDEF */
2675 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2676 } else if (!has_func_global && btf_is_func(t)) {
2677 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2678 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2679 } else if (!has_float && btf_is_float(t)) {
2680 /* replace FLOAT with an equally-sized empty STRUCT;
2681 * since C compilers do not accept e.g. "float" as a
2682 * valid struct name, make it anonymous
2683 */
2684 t->name_off = 0;
2685 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2686 } else if (!has_type_tag && btf_is_type_tag(t)) {
2687 /* replace TYPE_TAG with a CONST */
2688 t->name_off = 0;
2689 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2690 } else if (!has_enum64 && btf_is_enum(t)) {
2691 /* clear the kflag */
2692 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2693 } else if (!has_enum64 && btf_is_enum64(t)) {
2694 /* replace ENUM64 with a union */
2695 struct btf_member *m;
2696
2697 if (enum64_placeholder_id == 0) {
2698 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2699 if (enum64_placeholder_id < 0)
2700 return enum64_placeholder_id;
2701
2702 t = (struct btf_type *)btf__type_by_id(btf, i);
2703 }
2704
2705 m = btf_members(t);
2706 vlen = btf_vlen(t);
2707 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2708 for (j = 0; j < vlen; j++, m++) {
2709 m->type = enum64_placeholder_id;
2710 m->offset = 0;
2711 }
2712 }
2713 }
2714
2715 return 0;
2716}
2717
2718static bool libbpf_needs_btf(const struct bpf_object *obj)
2719{
2720 return obj->efile.btf_maps_shndx >= 0 ||
2721 obj->efile.st_ops_shndx >= 0 ||
2722 obj->nr_extern > 0;
2723}
2724
2725static bool kernel_needs_btf(const struct bpf_object *obj)
2726{
2727 return obj->efile.st_ops_shndx >= 0;
2728}
2729
2730static int bpf_object__init_btf(struct bpf_object *obj,
2731 Elf_Data *btf_data,
2732 Elf_Data *btf_ext_data)
2733{
2734 int err = -ENOENT;
2735
2736 if (btf_data) {
2737 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2738 err = libbpf_get_error(obj->btf);
2739 if (err) {
2740 obj->btf = NULL;
2741 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2742 goto out;
2743 }
2744 /* enforce 8-byte pointers for BPF-targeted BTFs */
2745 btf__set_pointer_size(obj->btf, 8);
2746 }
2747 if (btf_ext_data) {
2748 struct btf_ext_info *ext_segs[3];
2749 int seg_num, sec_num;
2750
2751 if (!obj->btf) {
2752 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2753 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2754 goto out;
2755 }
2756 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2757 err = libbpf_get_error(obj->btf_ext);
2758 if (err) {
2759 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2760 BTF_EXT_ELF_SEC, err);
2761 obj->btf_ext = NULL;
2762 goto out;
2763 }
2764
2765 /* setup .BTF.ext to ELF section mapping */
2766 ext_segs[0] = &obj->btf_ext->func_info;
2767 ext_segs[1] = &obj->btf_ext->line_info;
2768 ext_segs[2] = &obj->btf_ext->core_relo_info;
2769 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2770 struct btf_ext_info *seg = ext_segs[seg_num];
2771 const struct btf_ext_info_sec *sec;
2772 const char *sec_name;
2773 Elf_Scn *scn;
2774
2775 if (seg->sec_cnt == 0)
2776 continue;
2777
2778 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2779 if (!seg->sec_idxs) {
2780 err = -ENOMEM;
2781 goto out;
2782 }
2783
2784 sec_num = 0;
2785 for_each_btf_ext_sec(seg, sec) {
2786 /* preventively increment index to avoid doing
2787 * this before every continue below
2788 */
2789 sec_num++;
2790
2791 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2792 if (str_is_empty(sec_name))
2793 continue;
2794 scn = elf_sec_by_name(obj, sec_name);
2795 if (!scn)
2796 continue;
2797
2798 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2799 }
2800 }
2801 }
2802out:
2803 if (err && libbpf_needs_btf(obj)) {
2804 pr_warn("BTF is required, but is missing or corrupted.\n");
2805 return err;
2806 }
2807 return 0;
2808}
2809
2810static int compare_vsi_off(const void *_a, const void *_b)
2811{
2812 const struct btf_var_secinfo *a = _a;
2813 const struct btf_var_secinfo *b = _b;
2814
2815 return a->offset - b->offset;
2816}
2817
2818static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2819 struct btf_type *t)
2820{
2821 __u32 size = 0, off = 0, i, vars = btf_vlen(t);
2822 const char *name = btf__name_by_offset(btf, t->name_off);
2823 const struct btf_type *t_var;
2824 struct btf_var_secinfo *vsi;
2825 const struct btf_var *var;
2826 int ret;
2827
2828 if (!name) {
2829 pr_debug("No name found in string section for DATASEC kind.\n");
2830 return -ENOENT;
2831 }
2832
2833 /* .extern datasec size and var offsets were set correctly during
2834 * extern collection step, so just skip straight to sorting variables
2835 */
2836 if (t->size)
2837 goto sort_vars;
2838
2839 ret = find_elf_sec_sz(obj, name, &size);
2840 if (ret || !size) {
2841 pr_debug("Invalid size for section %s: %u bytes\n", name, size);
2842 return -ENOENT;
2843 }
2844
2845 t->size = size;
2846
2847 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2848 t_var = btf__type_by_id(btf, vsi->type);
2849 if (!t_var || !btf_is_var(t_var)) {
2850 pr_debug("Non-VAR type seen in section %s\n", name);
2851 return -EINVAL;
2852 }
2853
2854 var = btf_var(t_var);
2855 if (var->linkage == BTF_VAR_STATIC)
2856 continue;
2857
2858 name = btf__name_by_offset(btf, t_var->name_off);
2859 if (!name) {
2860 pr_debug("No name found in string section for VAR kind\n");
2861 return -ENOENT;
2862 }
2863
2864 ret = find_elf_var_offset(obj, name, &off);
2865 if (ret) {
2866 pr_debug("No offset found in symbol table for VAR %s\n",
2867 name);
2868 return -ENOENT;
2869 }
2870
2871 vsi->offset = off;
2872 }
2873
2874sort_vars:
2875 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
2876 return 0;
2877}
2878
2879static int btf_finalize_data(struct bpf_object *obj, struct btf *btf)
2880{
2881 int err = 0;
2882 __u32 i, n = btf__type_cnt(btf);
2883
2884 for (i = 1; i < n; i++) {
2885 struct btf_type *t = btf_type_by_id(btf, i);
2886
2887 /* Loader needs to fix up some of the things compiler
2888 * couldn't get its hands on while emitting BTF. This
2889 * is section size and global variable offset. We use
2890 * the info from the ELF itself for this purpose.
2891 */
2892 if (btf_is_datasec(t)) {
2893 err = btf_fixup_datasec(obj, btf, t);
2894 if (err)
2895 break;
2896 }
2897 }
2898
2899 return libbpf_err(err);
2900}
2901
2902static int bpf_object__finalize_btf(struct bpf_object *obj)
2903{
2904 int err;
2905
2906 if (!obj->btf)
2907 return 0;
2908
2909 err = btf_finalize_data(obj, obj->btf);
2910 if (err) {
2911 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2912 return err;
2913 }
2914
2915 return 0;
2916}
2917
2918static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2919{
2920 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2921 prog->type == BPF_PROG_TYPE_LSM)
2922 return true;
2923
2924 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2925 * also need vmlinux BTF
2926 */
2927 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2928 return true;
2929
2930 return false;
2931}
2932
2933static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
2934{
2935 struct bpf_program *prog;
2936 int i;
2937
2938 /* CO-RE relocations need kernel BTF, only when btf_custom_path
2939 * is not specified
2940 */
2941 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
2942 return true;
2943
2944 /* Support for typed ksyms needs kernel BTF */
2945 for (i = 0; i < obj->nr_extern; i++) {
2946 const struct extern_desc *ext;
2947
2948 ext = &obj->externs[i];
2949 if (ext->type == EXT_KSYM && ext->ksym.type_id)
2950 return true;
2951 }
2952
2953 bpf_object__for_each_program(prog, obj) {
2954 if (!prog->autoload)
2955 continue;
2956 if (prog_needs_vmlinux_btf(prog))
2957 return true;
2958 }
2959
2960 return false;
2961}
2962
2963static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
2964{
2965 int err;
2966
2967 /* btf_vmlinux could be loaded earlier */
2968 if (obj->btf_vmlinux || obj->gen_loader)
2969 return 0;
2970
2971 if (!force && !obj_needs_vmlinux_btf(obj))
2972 return 0;
2973
2974 obj->btf_vmlinux = btf__load_vmlinux_btf();
2975 err = libbpf_get_error(obj->btf_vmlinux);
2976 if (err) {
2977 pr_warn("Error loading vmlinux BTF: %d\n", err);
2978 obj->btf_vmlinux = NULL;
2979 return err;
2980 }
2981 return 0;
2982}
2983
2984static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2985{
2986 struct btf *kern_btf = obj->btf;
2987 bool btf_mandatory, sanitize;
2988 int i, err = 0;
2989
2990 if (!obj->btf)
2991 return 0;
2992
2993 if (!kernel_supports(obj, FEAT_BTF)) {
2994 if (kernel_needs_btf(obj)) {
2995 err = -EOPNOTSUPP;
2996 goto report;
2997 }
2998 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
2999 return 0;
3000 }
3001
3002 /* Even though some subprogs are global/weak, user might prefer more
3003 * permissive BPF verification process that BPF verifier performs for
3004 * static functions, taking into account more context from the caller
3005 * functions. In such case, they need to mark such subprogs with
3006 * __attribute__((visibility("hidden"))) and libbpf will adjust
3007 * corresponding FUNC BTF type to be marked as static and trigger more
3008 * involved BPF verification process.
3009 */
3010 for (i = 0; i < obj->nr_programs; i++) {
3011 struct bpf_program *prog = &obj->programs[i];
3012 struct btf_type *t;
3013 const char *name;
3014 int j, n;
3015
3016 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3017 continue;
3018
3019 n = btf__type_cnt(obj->btf);
3020 for (j = 1; j < n; j++) {
3021 t = btf_type_by_id(obj->btf, j);
3022 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3023 continue;
3024
3025 name = btf__str_by_offset(obj->btf, t->name_off);
3026 if (strcmp(name, prog->name) != 0)
3027 continue;
3028
3029 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3030 break;
3031 }
3032 }
3033
3034 sanitize = btf_needs_sanitization(obj);
3035 if (sanitize) {
3036 const void *raw_data;
3037 __u32 sz;
3038
3039 /* clone BTF to sanitize a copy and leave the original intact */
3040 raw_data = btf__raw_data(obj->btf, &sz);
3041 kern_btf = btf__new(raw_data, sz);
3042 err = libbpf_get_error(kern_btf);
3043 if (err)
3044 return err;
3045
3046 /* enforce 8-byte pointers for BPF-targeted BTFs */
3047 btf__set_pointer_size(obj->btf, 8);
3048 err = bpf_object__sanitize_btf(obj, kern_btf);
3049 if (err)
3050 return err;
3051 }
3052
3053 if (obj->gen_loader) {
3054 __u32 raw_size = 0;
3055 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3056
3057 if (!raw_data)
3058 return -ENOMEM;
3059 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3060 /* Pretend to have valid FD to pass various fd >= 0 checks.
3061 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3062 */
3063 btf__set_fd(kern_btf, 0);
3064 } else {
3065 /* currently BPF_BTF_LOAD only supports log_level 1 */
3066 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3067 obj->log_level ? 1 : 0);
3068 }
3069 if (sanitize) {
3070 if (!err) {
3071 /* move fd to libbpf's BTF */
3072 btf__set_fd(obj->btf, btf__fd(kern_btf));
3073 btf__set_fd(kern_btf, -1);
3074 }
3075 btf__free(kern_btf);
3076 }
3077report:
3078 if (err) {
3079 btf_mandatory = kernel_needs_btf(obj);
3080 pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3081 btf_mandatory ? "BTF is mandatory, can't proceed."
3082 : "BTF is optional, ignoring.");
3083 if (!btf_mandatory)
3084 err = 0;
3085 }
3086 return err;
3087}
3088
3089static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3090{
3091 const char *name;
3092
3093 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3094 if (!name) {
3095 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3096 off, obj->path, elf_errmsg(-1));
3097 return NULL;
3098 }
3099
3100 return name;
3101}
3102
3103static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3104{
3105 const char *name;
3106
3107 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3108 if (!name) {
3109 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3110 off, obj->path, elf_errmsg(-1));
3111 return NULL;
3112 }
3113
3114 return name;
3115}
3116
3117static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3118{
3119 Elf_Scn *scn;
3120
3121 scn = elf_getscn(obj->efile.elf, idx);
3122 if (!scn) {
3123 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3124 idx, obj->path, elf_errmsg(-1));
3125 return NULL;
3126 }
3127 return scn;
3128}
3129
3130static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3131{
3132 Elf_Scn *scn = NULL;
3133 Elf *elf = obj->efile.elf;
3134 const char *sec_name;
3135
3136 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3137 sec_name = elf_sec_name(obj, scn);
3138 if (!sec_name)
3139 return NULL;
3140
3141 if (strcmp(sec_name, name) != 0)
3142 continue;
3143
3144 return scn;
3145 }
3146 return NULL;
3147}
3148
3149static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3150{
3151 Elf64_Shdr *shdr;
3152
3153 if (!scn)
3154 return NULL;
3155
3156 shdr = elf64_getshdr(scn);
3157 if (!shdr) {
3158 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3159 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3160 return NULL;
3161 }
3162
3163 return shdr;
3164}
3165
3166static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3167{
3168 const char *name;
3169 Elf64_Shdr *sh;
3170
3171 if (!scn)
3172 return NULL;
3173
3174 sh = elf_sec_hdr(obj, scn);
3175 if (!sh)
3176 return NULL;
3177
3178 name = elf_sec_str(obj, sh->sh_name);
3179 if (!name) {
3180 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3181 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3182 return NULL;
3183 }
3184
3185 return name;
3186}
3187
3188static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3189{
3190 Elf_Data *data;
3191
3192 if (!scn)
3193 return NULL;
3194
3195 data = elf_getdata(scn, 0);
3196 if (!data) {
3197 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3198 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3199 obj->path, elf_errmsg(-1));
3200 return NULL;
3201 }
3202
3203 return data;
3204}
3205
3206static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3207{
3208 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3209 return NULL;
3210
3211 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3212}
3213
3214static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3215{
3216 if (idx >= data->d_size / sizeof(Elf64_Rel))
3217 return NULL;
3218
3219 return (Elf64_Rel *)data->d_buf + idx;
3220}
3221
3222static bool is_sec_name_dwarf(const char *name)
3223{
3224 /* approximation, but the actual list is too long */
3225 return str_has_pfx(name, ".debug_");
3226}
3227
3228static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3229{
3230 /* no special handling of .strtab */
3231 if (hdr->sh_type == SHT_STRTAB)
3232 return true;
3233
3234 /* ignore .llvm_addrsig section as well */
3235 if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3236 return true;
3237
3238 /* no subprograms will lead to an empty .text section, ignore it */
3239 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3240 strcmp(name, ".text") == 0)
3241 return true;
3242
3243 /* DWARF sections */
3244 if (is_sec_name_dwarf(name))
3245 return true;
3246
3247 if (str_has_pfx(name, ".rel")) {
3248 name += sizeof(".rel") - 1;
3249 /* DWARF section relocations */
3250 if (is_sec_name_dwarf(name))
3251 return true;
3252
3253 /* .BTF and .BTF.ext don't need relocations */
3254 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3255 strcmp(name, BTF_EXT_ELF_SEC) == 0)
3256 return true;
3257 }
3258
3259 return false;
3260}
3261
3262static int cmp_progs(const void *_a, const void *_b)
3263{
3264 const struct bpf_program *a = _a;
3265 const struct bpf_program *b = _b;
3266
3267 if (a->sec_idx != b->sec_idx)
3268 return a->sec_idx < b->sec_idx ? -1 : 1;
3269
3270 /* sec_insn_off can't be the same within the section */
3271 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3272}
3273
3274static int bpf_object__elf_collect(struct bpf_object *obj)
3275{
3276 struct elf_sec_desc *sec_desc;
3277 Elf *elf = obj->efile.elf;
3278 Elf_Data *btf_ext_data = NULL;
3279 Elf_Data *btf_data = NULL;
3280 int idx = 0, err = 0;
3281 const char *name;
3282 Elf_Data *data;
3283 Elf_Scn *scn;
3284 Elf64_Shdr *sh;
3285
3286 /* ELF section indices are 0-based, but sec #0 is special "invalid"
3287 * section. e_shnum does include sec #0, so e_shnum is the necessary
3288 * size of an array to keep all the sections.
3289 */
3290 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum;
3291 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3292 if (!obj->efile.secs)
3293 return -ENOMEM;
3294
3295 /* a bunch of ELF parsing functionality depends on processing symbols,
3296 * so do the first pass and find the symbol table
3297 */
3298 scn = NULL;
3299 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3300 sh = elf_sec_hdr(obj, scn);
3301 if (!sh)
3302 return -LIBBPF_ERRNO__FORMAT;
3303
3304 if (sh->sh_type == SHT_SYMTAB) {
3305 if (obj->efile.symbols) {
3306 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3307 return -LIBBPF_ERRNO__FORMAT;
3308 }
3309
3310 data = elf_sec_data(obj, scn);
3311 if (!data)
3312 return -LIBBPF_ERRNO__FORMAT;
3313
3314 idx = elf_ndxscn(scn);
3315
3316 obj->efile.symbols = data;
3317 obj->efile.symbols_shndx = idx;
3318 obj->efile.strtabidx = sh->sh_link;
3319 }
3320 }
3321
3322 if (!obj->efile.symbols) {
3323 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3324 obj->path);
3325 return -ENOENT;
3326 }
3327
3328 scn = NULL;
3329 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3330 idx = elf_ndxscn(scn);
3331 sec_desc = &obj->efile.secs[idx];
3332
3333 sh = elf_sec_hdr(obj, scn);
3334 if (!sh)
3335 return -LIBBPF_ERRNO__FORMAT;
3336
3337 name = elf_sec_str(obj, sh->sh_name);
3338 if (!name)
3339 return -LIBBPF_ERRNO__FORMAT;
3340
3341 if (ignore_elf_section(sh, name))
3342 continue;
3343
3344 data = elf_sec_data(obj, scn);
3345 if (!data)
3346 return -LIBBPF_ERRNO__FORMAT;
3347
3348 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3349 idx, name, (unsigned long)data->d_size,
3350 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3351 (int)sh->sh_type);
3352
3353 if (strcmp(name, "license") == 0) {
3354 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3355 if (err)
3356 return err;
3357 } else if (strcmp(name, "version") == 0) {
3358 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3359 if (err)
3360 return err;
3361 } else if (strcmp(name, "maps") == 0) {
3362 obj->efile.maps_shndx = idx;
3363 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3364 obj->efile.btf_maps_shndx = idx;
3365 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3366 if (sh->sh_type != SHT_PROGBITS)
3367 return -LIBBPF_ERRNO__FORMAT;
3368 btf_data = data;
3369 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3370 if (sh->sh_type != SHT_PROGBITS)
3371 return -LIBBPF_ERRNO__FORMAT;
3372 btf_ext_data = data;
3373 } else if (sh->sh_type == SHT_SYMTAB) {
3374 /* already processed during the first pass above */
3375 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3376 if (sh->sh_flags & SHF_EXECINSTR) {
3377 if (strcmp(name, ".text") == 0)
3378 obj->efile.text_shndx = idx;
3379 err = bpf_object__add_programs(obj, data, name, idx);
3380 if (err)
3381 return err;
3382 } else if (strcmp(name, DATA_SEC) == 0 ||
3383 str_has_pfx(name, DATA_SEC ".")) {
3384 sec_desc->sec_type = SEC_DATA;
3385 sec_desc->shdr = sh;
3386 sec_desc->data = data;
3387 } else if (strcmp(name, RODATA_SEC) == 0 ||
3388 str_has_pfx(name, RODATA_SEC ".")) {
3389 sec_desc->sec_type = SEC_RODATA;
3390 sec_desc->shdr = sh;
3391 sec_desc->data = data;
3392 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3393 obj->efile.st_ops_data = data;
3394 obj->efile.st_ops_shndx = idx;
3395 } else {
3396 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3397 idx, name);
3398 }
3399 } else if (sh->sh_type == SHT_REL) {
3400 int targ_sec_idx = sh->sh_info; /* points to other section */
3401
3402 if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3403 targ_sec_idx >= obj->efile.sec_cnt)
3404 return -LIBBPF_ERRNO__FORMAT;
3405
3406 /* Only do relo for section with exec instructions */
3407 if (!section_have_execinstr(obj, targ_sec_idx) &&
3408 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3409 strcmp(name, ".rel" MAPS_ELF_SEC)) {
3410 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3411 idx, name, targ_sec_idx,
3412 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3413 continue;
3414 }
3415
3416 sec_desc->sec_type = SEC_RELO;
3417 sec_desc->shdr = sh;
3418 sec_desc->data = data;
3419 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
3420 sec_desc->sec_type = SEC_BSS;
3421 sec_desc->shdr = sh;
3422 sec_desc->data = data;
3423 } else {
3424 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3425 (size_t)sh->sh_size);
3426 }
3427 }
3428
3429 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3430 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3431 return -LIBBPF_ERRNO__FORMAT;
3432 }
3433
3434 /* sort BPF programs by section name and in-section instruction offset
3435 * for faster search */
3436 if (obj->nr_programs)
3437 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3438
3439 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3440}
3441
3442static bool sym_is_extern(const Elf64_Sym *sym)
3443{
3444 int bind = ELF64_ST_BIND(sym->st_info);
3445 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3446 return sym->st_shndx == SHN_UNDEF &&
3447 (bind == STB_GLOBAL || bind == STB_WEAK) &&
3448 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3449}
3450
3451static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3452{
3453 int bind = ELF64_ST_BIND(sym->st_info);
3454 int type = ELF64_ST_TYPE(sym->st_info);
3455
3456 /* in .text section */
3457 if (sym->st_shndx != text_shndx)
3458 return false;
3459
3460 /* local function */
3461 if (bind == STB_LOCAL && type == STT_SECTION)
3462 return true;
3463
3464 /* global function */
3465 return bind == STB_GLOBAL && type == STT_FUNC;
3466}
3467
3468static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3469{
3470 const struct btf_type *t;
3471 const char *tname;
3472 int i, n;
3473
3474 if (!btf)
3475 return -ESRCH;
3476
3477 n = btf__type_cnt(btf);
3478 for (i = 1; i < n; i++) {
3479 t = btf__type_by_id(btf, i);
3480
3481 if (!btf_is_var(t) && !btf_is_func(t))
3482 continue;
3483
3484 tname = btf__name_by_offset(btf, t->name_off);
3485 if (strcmp(tname, ext_name))
3486 continue;
3487
3488 if (btf_is_var(t) &&
3489 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3490 return -EINVAL;
3491
3492 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3493 return -EINVAL;
3494
3495 return i;
3496 }
3497
3498 return -ENOENT;
3499}
3500
3501static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3502 const struct btf_var_secinfo *vs;
3503 const struct btf_type *t;
3504 int i, j, n;
3505
3506 if (!btf)
3507 return -ESRCH;
3508
3509 n = btf__type_cnt(btf);
3510 for (i = 1; i < n; i++) {
3511 t = btf__type_by_id(btf, i);
3512
3513 if (!btf_is_datasec(t))
3514 continue;
3515
3516 vs = btf_var_secinfos(t);
3517 for (j = 0; j < btf_vlen(t); j++, vs++) {
3518 if (vs->type == ext_btf_id)
3519 return i;
3520 }
3521 }
3522
3523 return -ENOENT;
3524}
3525
3526static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3527 bool *is_signed)
3528{
3529 const struct btf_type *t;
3530 const char *name;
3531
3532 t = skip_mods_and_typedefs(btf, id, NULL);
3533 name = btf__name_by_offset(btf, t->name_off);
3534
3535 if (is_signed)
3536 *is_signed = false;
3537 switch (btf_kind(t)) {
3538 case BTF_KIND_INT: {
3539 int enc = btf_int_encoding(t);
3540
3541 if (enc & BTF_INT_BOOL)
3542 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3543 if (is_signed)
3544 *is_signed = enc & BTF_INT_SIGNED;
3545 if (t->size == 1)
3546 return KCFG_CHAR;
3547 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3548 return KCFG_UNKNOWN;
3549 return KCFG_INT;
3550 }
3551 case BTF_KIND_ENUM:
3552 if (t->size != 4)
3553 return KCFG_UNKNOWN;
3554 if (strcmp(name, "libbpf_tristate"))
3555 return KCFG_UNKNOWN;
3556 return KCFG_TRISTATE;
3557 case BTF_KIND_ENUM64:
3558 if (strcmp(name, "libbpf_tristate"))
3559 return KCFG_UNKNOWN;
3560 return KCFG_TRISTATE;
3561 case BTF_KIND_ARRAY:
3562 if (btf_array(t)->nelems == 0)
3563 return KCFG_UNKNOWN;
3564 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3565 return KCFG_UNKNOWN;
3566 return KCFG_CHAR_ARR;
3567 default:
3568 return KCFG_UNKNOWN;
3569 }
3570}
3571
3572static int cmp_externs(const void *_a, const void *_b)
3573{
3574 const struct extern_desc *a = _a;
3575 const struct extern_desc *b = _b;
3576
3577 if (a->type != b->type)
3578 return a->type < b->type ? -1 : 1;
3579
3580 if (a->type == EXT_KCFG) {
3581 /* descending order by alignment requirements */
3582 if (a->kcfg.align != b->kcfg.align)
3583 return a->kcfg.align > b->kcfg.align ? -1 : 1;
3584 /* ascending order by size, within same alignment class */
3585 if (a->kcfg.sz != b->kcfg.sz)
3586 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3587 }
3588
3589 /* resolve ties by name */
3590 return strcmp(a->name, b->name);
3591}
3592
3593static int find_int_btf_id(const struct btf *btf)
3594{
3595 const struct btf_type *t;
3596 int i, n;
3597
3598 n = btf__type_cnt(btf);
3599 for (i = 1; i < n; i++) {
3600 t = btf__type_by_id(btf, i);
3601
3602 if (btf_is_int(t) && btf_int_bits(t) == 32)
3603 return i;
3604 }
3605
3606 return 0;
3607}
3608
3609static int add_dummy_ksym_var(struct btf *btf)
3610{
3611 int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3612 const struct btf_var_secinfo *vs;
3613 const struct btf_type *sec;
3614
3615 if (!btf)
3616 return 0;
3617
3618 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3619 BTF_KIND_DATASEC);
3620 if (sec_btf_id < 0)
3621 return 0;
3622
3623 sec = btf__type_by_id(btf, sec_btf_id);
3624 vs = btf_var_secinfos(sec);
3625 for (i = 0; i < btf_vlen(sec); i++, vs++) {
3626 const struct btf_type *vt;
3627
3628 vt = btf__type_by_id(btf, vs->type);
3629 if (btf_is_func(vt))
3630 break;
3631 }
3632
3633 /* No func in ksyms sec. No need to add dummy var. */
3634 if (i == btf_vlen(sec))
3635 return 0;
3636
3637 int_btf_id = find_int_btf_id(btf);
3638 dummy_var_btf_id = btf__add_var(btf,
3639 "dummy_ksym",
3640 BTF_VAR_GLOBAL_ALLOCATED,
3641 int_btf_id);
3642 if (dummy_var_btf_id < 0)
3643 pr_warn("cannot create a dummy_ksym var\n");
3644
3645 return dummy_var_btf_id;
3646}
3647
3648static int bpf_object__collect_externs(struct bpf_object *obj)
3649{
3650 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3651 const struct btf_type *t;
3652 struct extern_desc *ext;
3653 int i, n, off, dummy_var_btf_id;
3654 const char *ext_name, *sec_name;
3655 Elf_Scn *scn;
3656 Elf64_Shdr *sh;
3657
3658 if (!obj->efile.symbols)
3659 return 0;
3660
3661 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3662 sh = elf_sec_hdr(obj, scn);
3663 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3664 return -LIBBPF_ERRNO__FORMAT;
3665
3666 dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3667 if (dummy_var_btf_id < 0)
3668 return dummy_var_btf_id;
3669
3670 n = sh->sh_size / sh->sh_entsize;
3671 pr_debug("looking for externs among %d symbols...\n", n);
3672
3673 for (i = 0; i < n; i++) {
3674 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3675
3676 if (!sym)
3677 return -LIBBPF_ERRNO__FORMAT;
3678 if (!sym_is_extern(sym))
3679 continue;
3680 ext_name = elf_sym_str(obj, sym->st_name);
3681 if (!ext_name || !ext_name[0])
3682 continue;
3683
3684 ext = obj->externs;
3685 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3686 if (!ext)
3687 return -ENOMEM;
3688 obj->externs = ext;
3689 ext = &ext[obj->nr_extern];
3690 memset(ext, 0, sizeof(*ext));
3691 obj->nr_extern++;
3692
3693 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3694 if (ext->btf_id <= 0) {
3695 pr_warn("failed to find BTF for extern '%s': %d\n",
3696 ext_name, ext->btf_id);
3697 return ext->btf_id;
3698 }
3699 t = btf__type_by_id(obj->btf, ext->btf_id);
3700 ext->name = btf__name_by_offset(obj->btf, t->name_off);
3701 ext->sym_idx = i;
3702 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3703
3704 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3705 if (ext->sec_btf_id <= 0) {
3706 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3707 ext_name, ext->btf_id, ext->sec_btf_id);
3708 return ext->sec_btf_id;
3709 }
3710 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3711 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3712
3713 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3714 if (btf_is_func(t)) {
3715 pr_warn("extern function %s is unsupported under %s section\n",
3716 ext->name, KCONFIG_SEC);
3717 return -ENOTSUP;
3718 }
3719 kcfg_sec = sec;
3720 ext->type = EXT_KCFG;
3721 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3722 if (ext->kcfg.sz <= 0) {
3723 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3724 ext_name, ext->kcfg.sz);
3725 return ext->kcfg.sz;
3726 }
3727 ext->kcfg.align = btf__align_of(obj->btf, t->type);
3728 if (ext->kcfg.align <= 0) {
3729 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3730 ext_name, ext->kcfg.align);
3731 return -EINVAL;
3732 }
3733 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3734 &ext->kcfg.is_signed);
3735 if (ext->kcfg.type == KCFG_UNKNOWN) {
3736 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3737 return -ENOTSUP;
3738 }
3739 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3740 ksym_sec = sec;
3741 ext->type = EXT_KSYM;
3742 skip_mods_and_typedefs(obj->btf, t->type,
3743 &ext->ksym.type_id);
3744 } else {
3745 pr_warn("unrecognized extern section '%s'\n", sec_name);
3746 return -ENOTSUP;
3747 }
3748 }
3749 pr_debug("collected %d externs total\n", obj->nr_extern);
3750
3751 if (!obj->nr_extern)
3752 return 0;
3753
3754 /* sort externs by type, for kcfg ones also by (align, size, name) */
3755 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3756
3757 /* for .ksyms section, we need to turn all externs into allocated
3758 * variables in BTF to pass kernel verification; we do this by
3759 * pretending that each extern is a 8-byte variable
3760 */
3761 if (ksym_sec) {
3762 /* find existing 4-byte integer type in BTF to use for fake
3763 * extern variables in DATASEC
3764 */
3765 int int_btf_id = find_int_btf_id(obj->btf);
3766 /* For extern function, a dummy_var added earlier
3767 * will be used to replace the vs->type and
3768 * its name string will be used to refill
3769 * the missing param's name.
3770 */
3771 const struct btf_type *dummy_var;
3772
3773 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3774 for (i = 0; i < obj->nr_extern; i++) {
3775 ext = &obj->externs[i];
3776 if (ext->type != EXT_KSYM)
3777 continue;
3778 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3779 i, ext->sym_idx, ext->name);
3780 }
3781
3782 sec = ksym_sec;
3783 n = btf_vlen(sec);
3784 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3785 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3786 struct btf_type *vt;
3787
3788 vt = (void *)btf__type_by_id(obj->btf, vs->type);
3789 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3790 ext = find_extern_by_name(obj, ext_name);
3791 if (!ext) {
3792 pr_warn("failed to find extern definition for BTF %s '%s'\n",
3793 btf_kind_str(vt), ext_name);
3794 return -ESRCH;
3795 }
3796 if (btf_is_func(vt)) {
3797 const struct btf_type *func_proto;
3798 struct btf_param *param;
3799 int j;
3800
3801 func_proto = btf__type_by_id(obj->btf,
3802 vt->type);
3803 param = btf_params(func_proto);
3804 /* Reuse the dummy_var string if the
3805 * func proto does not have param name.
3806 */
3807 for (j = 0; j < btf_vlen(func_proto); j++)
3808 if (param[j].type && !param[j].name_off)
3809 param[j].name_off =
3810 dummy_var->name_off;
3811 vs->type = dummy_var_btf_id;
3812 vt->info &= ~0xffff;
3813 vt->info |= BTF_FUNC_GLOBAL;
3814 } else {
3815 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3816 vt->type = int_btf_id;
3817 }
3818 vs->offset = off;
3819 vs->size = sizeof(int);
3820 }
3821 sec->size = off;
3822 }
3823
3824 if (kcfg_sec) {
3825 sec = kcfg_sec;
3826 /* for kcfg externs calculate their offsets within a .kconfig map */
3827 off = 0;
3828 for (i = 0; i < obj->nr_extern; i++) {
3829 ext = &obj->externs[i];
3830 if (ext->type != EXT_KCFG)
3831 continue;
3832
3833 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3834 off = ext->kcfg.data_off + ext->kcfg.sz;
3835 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3836 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3837 }
3838 sec->size = off;
3839 n = btf_vlen(sec);
3840 for (i = 0; i < n; i++) {
3841 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3842
3843 t = btf__type_by_id(obj->btf, vs->type);
3844 ext_name = btf__name_by_offset(obj->btf, t->name_off);
3845 ext = find_extern_by_name(obj, ext_name);
3846 if (!ext) {
3847 pr_warn("failed to find extern definition for BTF var '%s'\n",
3848 ext_name);
3849 return -ESRCH;
3850 }
3851 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3852 vs->offset = ext->kcfg.data_off;
3853 }
3854 }
3855 return 0;
3856}
3857
3858static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
3859{
3860 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3861}
3862
3863struct bpf_program *
3864bpf_object__find_program_by_name(const struct bpf_object *obj,
3865 const char *name)
3866{
3867 struct bpf_program *prog;
3868
3869 bpf_object__for_each_program(prog, obj) {
3870 if (prog_is_subprog(obj, prog))
3871 continue;
3872 if (!strcmp(prog->name, name))
3873 return prog;
3874 }
3875 return errno = ENOENT, NULL;
3876}
3877
3878static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3879 int shndx)
3880{
3881 switch (obj->efile.secs[shndx].sec_type) {
3882 case SEC_BSS:
3883 case SEC_DATA:
3884 case SEC_RODATA:
3885 return true;
3886 default:
3887 return false;
3888 }
3889}
3890
3891static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3892 int shndx)
3893{
3894 return shndx == obj->efile.maps_shndx ||
3895 shndx == obj->efile.btf_maps_shndx;
3896}
3897
3898static enum libbpf_map_type
3899bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3900{
3901 if (shndx == obj->efile.symbols_shndx)
3902 return LIBBPF_MAP_KCONFIG;
3903
3904 switch (obj->efile.secs[shndx].sec_type) {
3905 case SEC_BSS:
3906 return LIBBPF_MAP_BSS;
3907 case SEC_DATA:
3908 return LIBBPF_MAP_DATA;
3909 case SEC_RODATA:
3910 return LIBBPF_MAP_RODATA;
3911 default:
3912 return LIBBPF_MAP_UNSPEC;
3913 }
3914}
3915
3916static int bpf_program__record_reloc(struct bpf_program *prog,
3917 struct reloc_desc *reloc_desc,
3918 __u32 insn_idx, const char *sym_name,
3919 const Elf64_Sym *sym, const Elf64_Rel *rel)
3920{
3921 struct bpf_insn *insn = &prog->insns[insn_idx];
3922 size_t map_idx, nr_maps = prog->obj->nr_maps;
3923 struct bpf_object *obj = prog->obj;
3924 __u32 shdr_idx = sym->st_shndx;
3925 enum libbpf_map_type type;
3926 const char *sym_sec_name;
3927 struct bpf_map *map;
3928
3929 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
3930 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3931 prog->name, sym_name, insn_idx, insn->code);
3932 return -LIBBPF_ERRNO__RELOC;
3933 }
3934
3935 if (sym_is_extern(sym)) {
3936 int sym_idx = ELF64_R_SYM(rel->r_info);
3937 int i, n = obj->nr_extern;
3938 struct extern_desc *ext;
3939
3940 for (i = 0; i < n; i++) {
3941 ext = &obj->externs[i];
3942 if (ext->sym_idx == sym_idx)
3943 break;
3944 }
3945 if (i >= n) {
3946 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3947 prog->name, sym_name, sym_idx);
3948 return -LIBBPF_ERRNO__RELOC;
3949 }
3950 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3951 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3952 if (insn->code == (BPF_JMP | BPF_CALL))
3953 reloc_desc->type = RELO_EXTERN_FUNC;
3954 else
3955 reloc_desc->type = RELO_EXTERN_VAR;
3956 reloc_desc->insn_idx = insn_idx;
3957 reloc_desc->sym_off = i; /* sym_off stores extern index */
3958 return 0;
3959 }
3960
3961 /* sub-program call relocation */
3962 if (is_call_insn(insn)) {
3963 if (insn->src_reg != BPF_PSEUDO_CALL) {
3964 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3965 return -LIBBPF_ERRNO__RELOC;
3966 }
3967 /* text_shndx can be 0, if no default "main" program exists */
3968 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3969 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3970 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3971 prog->name, sym_name, sym_sec_name);
3972 return -LIBBPF_ERRNO__RELOC;
3973 }
3974 if (sym->st_value % BPF_INSN_SZ) {
3975 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
3976 prog->name, sym_name, (size_t)sym->st_value);
3977 return -LIBBPF_ERRNO__RELOC;
3978 }
3979 reloc_desc->type = RELO_CALL;
3980 reloc_desc->insn_idx = insn_idx;
3981 reloc_desc->sym_off = sym->st_value;
3982 return 0;
3983 }
3984
3985 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
3986 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
3987 prog->name, sym_name, shdr_idx);
3988 return -LIBBPF_ERRNO__RELOC;
3989 }
3990
3991 /* loading subprog addresses */
3992 if (sym_is_subprog(sym, obj->efile.text_shndx)) {
3993 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
3994 * local_func: sym->st_value = 0, insn->imm = offset in the section.
3995 */
3996 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
3997 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
3998 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
3999 return -LIBBPF_ERRNO__RELOC;
4000 }
4001
4002 reloc_desc->type = RELO_SUBPROG_ADDR;
4003 reloc_desc->insn_idx = insn_idx;
4004 reloc_desc->sym_off = sym->st_value;
4005 return 0;
4006 }
4007
4008 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4009 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4010
4011 /* generic map reference relocation */
4012 if (type == LIBBPF_MAP_UNSPEC) {
4013 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4014 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4015 prog->name, sym_name, sym_sec_name);
4016 return -LIBBPF_ERRNO__RELOC;
4017 }
4018 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4019 map = &obj->maps[map_idx];
4020 if (map->libbpf_type != type ||
4021 map->sec_idx != sym->st_shndx ||
4022 map->sec_offset != sym->st_value)
4023 continue;
4024 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4025 prog->name, map_idx, map->name, map->sec_idx,
4026 map->sec_offset, insn_idx);
4027 break;
4028 }
4029 if (map_idx >= nr_maps) {
4030 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4031 prog->name, sym_sec_name, (size_t)sym->st_value);
4032 return -LIBBPF_ERRNO__RELOC;
4033 }
4034 reloc_desc->type = RELO_LD64;
4035 reloc_desc->insn_idx = insn_idx;
4036 reloc_desc->map_idx = map_idx;
4037 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4038 return 0;
4039 }
4040
4041 /* global data map relocation */
4042 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4043 pr_warn("prog '%s': bad data relo against section '%s'\n",
4044 prog->name, sym_sec_name);
4045 return -LIBBPF_ERRNO__RELOC;
4046 }
4047 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4048 map = &obj->maps[map_idx];
4049 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4050 continue;
4051 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4052 prog->name, map_idx, map->name, map->sec_idx,
4053 map->sec_offset, insn_idx);
4054 break;
4055 }
4056 if (map_idx >= nr_maps) {
4057 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4058 prog->name, sym_sec_name);
4059 return -LIBBPF_ERRNO__RELOC;
4060 }
4061
4062 reloc_desc->type = RELO_DATA;
4063 reloc_desc->insn_idx = insn_idx;
4064 reloc_desc->map_idx = map_idx;
4065 reloc_desc->sym_off = sym->st_value;
4066 return 0;
4067}
4068
4069static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4070{
4071 return insn_idx >= prog->sec_insn_off &&
4072 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4073}
4074
4075static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4076 size_t sec_idx, size_t insn_idx)
4077{
4078 int l = 0, r = obj->nr_programs - 1, m;
4079 struct bpf_program *prog;
4080
4081 while (l < r) {
4082 m = l + (r - l + 1) / 2;
4083 prog = &obj->programs[m];
4084
4085 if (prog->sec_idx < sec_idx ||
4086 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4087 l = m;
4088 else
4089 r = m - 1;
4090 }
4091 /* matching program could be at index l, but it still might be the
4092 * wrong one, so we need to double check conditions for the last time
4093 */
4094 prog = &obj->programs[l];
4095 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4096 return prog;
4097 return NULL;
4098}
4099
4100static int
4101bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4102{
4103 const char *relo_sec_name, *sec_name;
4104 size_t sec_idx = shdr->sh_info, sym_idx;
4105 struct bpf_program *prog;
4106 struct reloc_desc *relos;
4107 int err, i, nrels;
4108 const char *sym_name;
4109 __u32 insn_idx;
4110 Elf_Scn *scn;
4111 Elf_Data *scn_data;
4112 Elf64_Sym *sym;
4113 Elf64_Rel *rel;
4114
4115 if (sec_idx >= obj->efile.sec_cnt)
4116 return -EINVAL;
4117
4118 scn = elf_sec_by_idx(obj, sec_idx);
4119 scn_data = elf_sec_data(obj, scn);
4120
4121 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4122 sec_name = elf_sec_name(obj, scn);
4123 if (!relo_sec_name || !sec_name)
4124 return -EINVAL;
4125
4126 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4127 relo_sec_name, sec_idx, sec_name);
4128 nrels = shdr->sh_size / shdr->sh_entsize;
4129
4130 for (i = 0; i < nrels; i++) {
4131 rel = elf_rel_by_idx(data, i);
4132 if (!rel) {
4133 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4134 return -LIBBPF_ERRNO__FORMAT;
4135 }
4136
4137 sym_idx = ELF64_R_SYM(rel->r_info);
4138 sym = elf_sym_by_idx(obj, sym_idx);
4139 if (!sym) {
4140 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4141 relo_sec_name, sym_idx, i);
4142 return -LIBBPF_ERRNO__FORMAT;
4143 }
4144
4145 if (sym->st_shndx >= obj->efile.sec_cnt) {
4146 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4147 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4148 return -LIBBPF_ERRNO__FORMAT;
4149 }
4150
4151 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4152 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4153 relo_sec_name, (size_t)rel->r_offset, i);
4154 return -LIBBPF_ERRNO__FORMAT;
4155 }
4156
4157 insn_idx = rel->r_offset / BPF_INSN_SZ;
4158 /* relocations against static functions are recorded as
4159 * relocations against the section that contains a function;
4160 * in such case, symbol will be STT_SECTION and sym.st_name
4161 * will point to empty string (0), so fetch section name
4162 * instead
4163 */
4164 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4165 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4166 else
4167 sym_name = elf_sym_str(obj, sym->st_name);
4168 sym_name = sym_name ?: "<?";
4169
4170 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4171 relo_sec_name, i, insn_idx, sym_name);
4172
4173 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4174 if (!prog) {
4175 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4176 relo_sec_name, i, sec_name, insn_idx);
4177 continue;
4178 }
4179
4180 relos = libbpf_reallocarray(prog->reloc_desc,
4181 prog->nr_reloc + 1, sizeof(*relos));
4182 if (!relos)
4183 return -ENOMEM;
4184 prog->reloc_desc = relos;
4185
4186 /* adjust insn_idx to local BPF program frame of reference */
4187 insn_idx -= prog->sec_insn_off;
4188 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4189 insn_idx, sym_name, sym, rel);
4190 if (err)
4191 return err;
4192
4193 prog->nr_reloc++;
4194 }
4195 return 0;
4196}
4197
4198static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
4199{
4200 int id;
4201
4202 if (!obj->btf)
4203 return -ENOENT;
4204
4205 /* if it's BTF-defined map, we don't need to search for type IDs.
4206 * For struct_ops map, it does not need btf_key_type_id and
4207 * btf_value_type_id.
4208 */
4209 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4210 return 0;
4211
4212 /*
4213 * LLVM annotates global data differently in BTF, that is,
4214 * only as '.data', '.bss' or '.rodata'.
4215 */
4216 if (!bpf_map__is_internal(map))
4217 return -ENOENT;
4218
4219 id = btf__find_by_name(obj->btf, map->real_name);
4220 if (id < 0)
4221 return id;
4222
4223 map->btf_key_type_id = 0;
4224 map->btf_value_type_id = id;
4225 return 0;
4226}
4227
4228static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4229{
4230 char file[PATH_MAX], buff[4096];
4231 FILE *fp;
4232 __u32 val;
4233 int err;
4234
4235 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4236 memset(info, 0, sizeof(*info));
4237
4238 fp = fopen(file, "r");
4239 if (!fp) {
4240 err = -errno;
4241 pr_warn("failed to open %s: %d. No procfs support?\n", file,
4242 err);
4243 return err;
4244 }
4245
4246 while (fgets(buff, sizeof(buff), fp)) {
4247 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4248 info->type = val;
4249 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4250 info->key_size = val;
4251 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4252 info->value_size = val;
4253 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4254 info->max_entries = val;
4255 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4256 info->map_flags = val;
4257 }
4258
4259 fclose(fp);
4260
4261 return 0;
4262}
4263
4264bool bpf_map__autocreate(const struct bpf_map *map)
4265{
4266 return map->autocreate;
4267}
4268
4269int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4270{
4271 if (map->obj->loaded)
4272 return libbpf_err(-EBUSY);
4273
4274 map->autocreate = autocreate;
4275 return 0;
4276}
4277
4278int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4279{
4280 struct bpf_map_info info = {};
4281 __u32 len = sizeof(info), name_len;
4282 int new_fd, err;
4283 char *new_name;
4284
4285 err = bpf_obj_get_info_by_fd(fd, &info, &len);
4286 if (err && errno == EINVAL)
4287 err = bpf_get_map_info_from_fdinfo(fd, &info);
4288 if (err)
4289 return libbpf_err(err);
4290
4291 name_len = strlen(info.name);
4292 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4293 new_name = strdup(map->name);
4294 else
4295 new_name = strdup(info.name);
4296
4297 if (!new_name)
4298 return libbpf_err(-errno);
4299
4300 new_fd = open("/", O_RDONLY | O_CLOEXEC);
4301 if (new_fd < 0) {
4302 err = -errno;
4303 goto err_free_new_name;
4304 }
4305
4306 new_fd = dup3(fd, new_fd, O_CLOEXEC);
4307 if (new_fd < 0) {
4308 err = -errno;
4309 goto err_close_new_fd;
4310 }
4311
4312 err = zclose(map->fd);
4313 if (err) {
4314 err = -errno;
4315 goto err_close_new_fd;
4316 }
4317 free(map->name);
4318
4319 map->fd = new_fd;
4320 map->name = new_name;
4321 map->def.type = info.type;
4322 map->def.key_size = info.key_size;
4323 map->def.value_size = info.value_size;
4324 map->def.max_entries = info.max_entries;
4325 map->def.map_flags = info.map_flags;
4326 map->btf_key_type_id = info.btf_key_type_id;
4327 map->btf_value_type_id = info.btf_value_type_id;
4328 map->reused = true;
4329 map->map_extra = info.map_extra;
4330
4331 return 0;
4332
4333err_close_new_fd:
4334 close(new_fd);
4335err_free_new_name:
4336 free(new_name);
4337 return libbpf_err(err);
4338}
4339
4340__u32 bpf_map__max_entries(const struct bpf_map *map)
4341{
4342 return map->def.max_entries;
4343}
4344
4345struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4346{
4347 if (!bpf_map_type__is_map_in_map(map->def.type))
4348 return errno = EINVAL, NULL;
4349
4350 return map->inner_map;
4351}
4352
4353int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4354{
4355 if (map->obj->loaded)
4356 return libbpf_err(-EBUSY);
4357
4358 map->def.max_entries = max_entries;
4359
4360 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4361 if (map->def.type == BPF_MAP_TYPE_RINGBUF)
4362 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4363
4364 return 0;
4365}
4366
4367static int
4368bpf_object__probe_loading(struct bpf_object *obj)
4369{
4370 char *cp, errmsg[STRERR_BUFSIZE];
4371 struct bpf_insn insns[] = {
4372 BPF_MOV64_IMM(BPF_REG_0, 0),
4373 BPF_EXIT_INSN(),
4374 };
4375 int ret, insn_cnt = ARRAY_SIZE(insns);
4376
4377 if (obj->gen_loader)
4378 return 0;
4379
4380 ret = bump_rlimit_memlock();
4381 if (ret)
4382 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4383
4384 /* make sure basic loading works */
4385 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4386 if (ret < 0)
4387 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4388 if (ret < 0) {
4389 ret = errno;
4390 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4391 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4392 "program. Make sure your kernel supports BPF "
4393 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4394 "set to big enough value.\n", __func__, cp, ret);
4395 return -ret;
4396 }
4397 close(ret);
4398
4399 return 0;
4400}
4401
4402static int probe_fd(int fd)
4403{
4404 if (fd >= 0)
4405 close(fd);
4406 return fd >= 0;
4407}
4408
4409static int probe_kern_prog_name(void)
4410{
4411 struct bpf_insn insns[] = {
4412 BPF_MOV64_IMM(BPF_REG_0, 0),
4413 BPF_EXIT_INSN(),
4414 };
4415 int ret, insn_cnt = ARRAY_SIZE(insns);
4416
4417 /* make sure loading with name works */
4418 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL);
4419 return probe_fd(ret);
4420}
4421
4422static int probe_kern_global_data(void)
4423{
4424 char *cp, errmsg[STRERR_BUFSIZE];
4425 struct bpf_insn insns[] = {
4426 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4427 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4428 BPF_MOV64_IMM(BPF_REG_0, 0),
4429 BPF_EXIT_INSN(),
4430 };
4431 int ret, map, insn_cnt = ARRAY_SIZE(insns);
4432
4433 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL);
4434 if (map < 0) {
4435 ret = -errno;
4436 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4437 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4438 __func__, cp, -ret);
4439 return ret;
4440 }
4441
4442 insns[0].imm = map;
4443
4444 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4445 close(map);
4446 return probe_fd(ret);
4447}
4448
4449static int probe_kern_btf(void)
4450{
4451 static const char strs[] = "\0int";
4452 __u32 types[] = {
4453 /* int */
4454 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4455 };
4456
4457 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4458 strs, sizeof(strs)));
4459}
4460
4461static int probe_kern_btf_func(void)
4462{
4463 static const char strs[] = "\0int\0x\0a";
4464 /* void x(int a) {} */
4465 __u32 types[] = {
4466 /* int */
4467 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4468 /* FUNC_PROTO */ /* [2] */
4469 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4470 BTF_PARAM_ENC(7, 1),
4471 /* FUNC x */ /* [3] */
4472 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4473 };
4474
4475 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4476 strs, sizeof(strs)));
4477}
4478
4479static int probe_kern_btf_func_global(void)
4480{
4481 static const char strs[] = "\0int\0x\0a";
4482 /* static void x(int a) {} */
4483 __u32 types[] = {
4484 /* int */
4485 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4486 /* FUNC_PROTO */ /* [2] */
4487 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4488 BTF_PARAM_ENC(7, 1),
4489 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */
4490 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4491 };
4492
4493 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4494 strs, sizeof(strs)));
4495}
4496
4497static int probe_kern_btf_datasec(void)
4498{
4499 static const char strs[] = "\0x\0.data";
4500 /* static int a; */
4501 __u32 types[] = {
4502 /* int */
4503 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4504 /* VAR x */ /* [2] */
4505 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4506 BTF_VAR_STATIC,
4507 /* DATASEC val */ /* [3] */
4508 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4509 BTF_VAR_SECINFO_ENC(2, 0, 4),
4510 };
4511
4512 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4513 strs, sizeof(strs)));
4514}
4515
4516static int probe_kern_btf_float(void)
4517{
4518 static const char strs[] = "\0float";
4519 __u32 types[] = {
4520 /* float */
4521 BTF_TYPE_FLOAT_ENC(1, 4),
4522 };
4523
4524 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4525 strs, sizeof(strs)));
4526}
4527
4528static int probe_kern_btf_decl_tag(void)
4529{
4530 static const char strs[] = "\0tag";
4531 __u32 types[] = {
4532 /* int */
4533 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4534 /* VAR x */ /* [2] */
4535 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4536 BTF_VAR_STATIC,
4537 /* attr */
4538 BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4539 };
4540
4541 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4542 strs, sizeof(strs)));
4543}
4544
4545static int probe_kern_btf_type_tag(void)
4546{
4547 static const char strs[] = "\0tag";
4548 __u32 types[] = {
4549 /* int */
4550 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4551 /* attr */
4552 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */
4553 /* ptr */
4554 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */
4555 };
4556
4557 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4558 strs, sizeof(strs)));
4559}
4560
4561static int probe_kern_array_mmap(void)
4562{
4563 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4564 int fd;
4565
4566 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts);
4567 return probe_fd(fd);
4568}
4569
4570static int probe_kern_exp_attach_type(void)
4571{
4572 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4573 struct bpf_insn insns[] = {
4574 BPF_MOV64_IMM(BPF_REG_0, 0),
4575 BPF_EXIT_INSN(),
4576 };
4577 int fd, insn_cnt = ARRAY_SIZE(insns);
4578
4579 /* use any valid combination of program type and (optional)
4580 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4581 * to see if kernel supports expected_attach_type field for
4582 * BPF_PROG_LOAD command
4583 */
4584 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4585 return probe_fd(fd);
4586}
4587
4588static int probe_kern_probe_read_kernel(void)
4589{
4590 struct bpf_insn insns[] = {
4591 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */
4592 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */
4593 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */
4594 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */
4595 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4596 BPF_EXIT_INSN(),
4597 };
4598 int fd, insn_cnt = ARRAY_SIZE(insns);
4599
4600 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4601 return probe_fd(fd);
4602}
4603
4604static int probe_prog_bind_map(void)
4605{
4606 char *cp, errmsg[STRERR_BUFSIZE];
4607 struct bpf_insn insns[] = {
4608 BPF_MOV64_IMM(BPF_REG_0, 0),
4609 BPF_EXIT_INSN(),
4610 };
4611 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4612
4613 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL);
4614 if (map < 0) {
4615 ret = -errno;
4616 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4617 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4618 __func__, cp, -ret);
4619 return ret;
4620 }
4621
4622 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4623 if (prog < 0) {
4624 close(map);
4625 return 0;
4626 }
4627
4628 ret = bpf_prog_bind_map(prog, map, NULL);
4629
4630 close(map);
4631 close(prog);
4632
4633 return ret >= 0;
4634}
4635
4636static int probe_module_btf(void)
4637{
4638 static const char strs[] = "\0int";
4639 __u32 types[] = {
4640 /* int */
4641 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4642 };
4643 struct bpf_btf_info info;
4644 __u32 len = sizeof(info);
4645 char name[16];
4646 int fd, err;
4647
4648 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4649 if (fd < 0)
4650 return 0; /* BTF not supported at all */
4651
4652 memset(&info, 0, sizeof(info));
4653 info.name = ptr_to_u64(name);
4654 info.name_len = sizeof(name);
4655
4656 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4657 * kernel's module BTF support coincides with support for
4658 * name/name_len fields in struct bpf_btf_info.
4659 */
4660 err = bpf_obj_get_info_by_fd(fd, &info, &len);
4661 close(fd);
4662 return !err;
4663}
4664
4665static int probe_perf_link(void)
4666{
4667 struct bpf_insn insns[] = {
4668 BPF_MOV64_IMM(BPF_REG_0, 0),
4669 BPF_EXIT_INSN(),
4670 };
4671 int prog_fd, link_fd, err;
4672
4673 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4674 insns, ARRAY_SIZE(insns), NULL);
4675 if (prog_fd < 0)
4676 return -errno;
4677
4678 /* use invalid perf_event FD to get EBADF, if link is supported;
4679 * otherwise EINVAL should be returned
4680 */
4681 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4682 err = -errno; /* close() can clobber errno */
4683
4684 if (link_fd >= 0)
4685 close(link_fd);
4686 close(prog_fd);
4687
4688 return link_fd < 0 && err == -EBADF;
4689}
4690
4691static int probe_kern_bpf_cookie(void)
4692{
4693 struct bpf_insn insns[] = {
4694 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4695 BPF_EXIT_INSN(),
4696 };
4697 int ret, insn_cnt = ARRAY_SIZE(insns);
4698
4699 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4700 return probe_fd(ret);
4701}
4702
4703static int probe_kern_btf_enum64(void)
4704{
4705 static const char strs[] = "\0enum64";
4706 __u32 types[] = {
4707 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4708 };
4709
4710 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4711 strs, sizeof(strs)));
4712}
4713
4714static int probe_kern_syscall_wrapper(void);
4715
4716enum kern_feature_result {
4717 FEAT_UNKNOWN = 0,
4718 FEAT_SUPPORTED = 1,
4719 FEAT_MISSING = 2,
4720};
4721
4722typedef int (*feature_probe_fn)(void);
4723
4724static struct kern_feature_desc {
4725 const char *desc;
4726 feature_probe_fn probe;
4727 enum kern_feature_result res;
4728} feature_probes[__FEAT_CNT] = {
4729 [FEAT_PROG_NAME] = {
4730 "BPF program name", probe_kern_prog_name,
4731 },
4732 [FEAT_GLOBAL_DATA] = {
4733 "global variables", probe_kern_global_data,
4734 },
4735 [FEAT_BTF] = {
4736 "minimal BTF", probe_kern_btf,
4737 },
4738 [FEAT_BTF_FUNC] = {
4739 "BTF functions", probe_kern_btf_func,
4740 },
4741 [FEAT_BTF_GLOBAL_FUNC] = {
4742 "BTF global function", probe_kern_btf_func_global,
4743 },
4744 [FEAT_BTF_DATASEC] = {
4745 "BTF data section and variable", probe_kern_btf_datasec,
4746 },
4747 [FEAT_ARRAY_MMAP] = {
4748 "ARRAY map mmap()", probe_kern_array_mmap,
4749 },
4750 [FEAT_EXP_ATTACH_TYPE] = {
4751 "BPF_PROG_LOAD expected_attach_type attribute",
4752 probe_kern_exp_attach_type,
4753 },
4754 [FEAT_PROBE_READ_KERN] = {
4755 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4756 },
4757 [FEAT_PROG_BIND_MAP] = {
4758 "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4759 },
4760 [FEAT_MODULE_BTF] = {
4761 "module BTF support", probe_module_btf,
4762 },
4763 [FEAT_BTF_FLOAT] = {
4764 "BTF_KIND_FLOAT support", probe_kern_btf_float,
4765 },
4766 [FEAT_PERF_LINK] = {
4767 "BPF perf link support", probe_perf_link,
4768 },
4769 [FEAT_BTF_DECL_TAG] = {
4770 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4771 },
4772 [FEAT_BTF_TYPE_TAG] = {
4773 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4774 },
4775 [FEAT_MEMCG_ACCOUNT] = {
4776 "memcg-based memory accounting", probe_memcg_account,
4777 },
4778 [FEAT_BPF_COOKIE] = {
4779 "BPF cookie support", probe_kern_bpf_cookie,
4780 },
4781 [FEAT_BTF_ENUM64] = {
4782 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
4783 },
4784 [FEAT_SYSCALL_WRAPPER] = {
4785 "Kernel using syscall wrapper", probe_kern_syscall_wrapper,
4786 },
4787};
4788
4789bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4790{
4791 struct kern_feature_desc *feat = &feature_probes[feat_id];
4792 int ret;
4793
4794 if (obj && obj->gen_loader)
4795 /* To generate loader program assume the latest kernel
4796 * to avoid doing extra prog_load, map_create syscalls.
4797 */
4798 return true;
4799
4800 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4801 ret = feat->probe();
4802 if (ret > 0) {
4803 WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4804 } else if (ret == 0) {
4805 WRITE_ONCE(feat->res, FEAT_MISSING);
4806 } else {
4807 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4808 WRITE_ONCE(feat->res, FEAT_MISSING);
4809 }
4810 }
4811
4812 return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4813}
4814
4815static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4816{
4817 struct bpf_map_info map_info = {};
4818 char msg[STRERR_BUFSIZE];
4819 __u32 map_info_len;
4820 int err;
4821
4822 map_info_len = sizeof(map_info);
4823
4824 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len);
4825 if (err && errno == EINVAL)
4826 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4827 if (err) {
4828 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4829 libbpf_strerror_r(errno, msg, sizeof(msg)));
4830 return false;
4831 }
4832
4833 return (map_info.type == map->def.type &&
4834 map_info.key_size == map->def.key_size &&
4835 map_info.value_size == map->def.value_size &&
4836 map_info.max_entries == map->def.max_entries &&
4837 map_info.map_flags == map->def.map_flags &&
4838 map_info.map_extra == map->map_extra);
4839}
4840
4841static int
4842bpf_object__reuse_map(struct bpf_map *map)
4843{
4844 char *cp, errmsg[STRERR_BUFSIZE];
4845 int err, pin_fd;
4846
4847 pin_fd = bpf_obj_get(map->pin_path);
4848 if (pin_fd < 0) {
4849 err = -errno;
4850 if (err == -ENOENT) {
4851 pr_debug("found no pinned map to reuse at '%s'\n",
4852 map->pin_path);
4853 return 0;
4854 }
4855
4856 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4857 pr_warn("couldn't retrieve pinned map '%s': %s\n",
4858 map->pin_path, cp);
4859 return err;
4860 }
4861
4862 if (!map_is_reuse_compat(map, pin_fd)) {
4863 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4864 map->pin_path);
4865 close(pin_fd);
4866 return -EINVAL;
4867 }
4868
4869 err = bpf_map__reuse_fd(map, pin_fd);
4870 close(pin_fd);
4871 if (err) {
4872 return err;
4873 }
4874 map->pinned = true;
4875 pr_debug("reused pinned map at '%s'\n", map->pin_path);
4876
4877 return 0;
4878}
4879
4880static int
4881bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4882{
4883 enum libbpf_map_type map_type = map->libbpf_type;
4884 char *cp, errmsg[STRERR_BUFSIZE];
4885 int err, zero = 0;
4886
4887 if (obj->gen_loader) {
4888 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
4889 map->mmaped, map->def.value_size);
4890 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
4891 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
4892 return 0;
4893 }
4894 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4895 if (err) {
4896 err = -errno;
4897 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4898 pr_warn("Error setting initial map(%s) contents: %s\n",
4899 map->name, cp);
4900 return err;
4901 }
4902
4903 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
4904 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4905 err = bpf_map_freeze(map->fd);
4906 if (err) {
4907 err = -errno;
4908 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4909 pr_warn("Error freezing map(%s) as read-only: %s\n",
4910 map->name, cp);
4911 return err;
4912 }
4913 }
4914 return 0;
4915}
4916
4917static void bpf_map__destroy(struct bpf_map *map);
4918
4919static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
4920{
4921 LIBBPF_OPTS(bpf_map_create_opts, create_attr);
4922 struct bpf_map_def *def = &map->def;
4923 const char *map_name = NULL;
4924 int err = 0;
4925
4926 if (kernel_supports(obj, FEAT_PROG_NAME))
4927 map_name = map->name;
4928 create_attr.map_ifindex = map->map_ifindex;
4929 create_attr.map_flags = def->map_flags;
4930 create_attr.numa_node = map->numa_node;
4931 create_attr.map_extra = map->map_extra;
4932
4933 if (bpf_map__is_struct_ops(map))
4934 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
4935
4936 if (obj->btf && btf__fd(obj->btf) >= 0) {
4937 create_attr.btf_fd = btf__fd(obj->btf);
4938 create_attr.btf_key_type_id = map->btf_key_type_id;
4939 create_attr.btf_value_type_id = map->btf_value_type_id;
4940 }
4941
4942 if (bpf_map_type__is_map_in_map(def->type)) {
4943 if (map->inner_map) {
4944 err = bpf_object__create_map(obj, map->inner_map, true);
4945 if (err) {
4946 pr_warn("map '%s': failed to create inner map: %d\n",
4947 map->name, err);
4948 return err;
4949 }
4950 map->inner_map_fd = bpf_map__fd(map->inner_map);
4951 }
4952 if (map->inner_map_fd >= 0)
4953 create_attr.inner_map_fd = map->inner_map_fd;
4954 }
4955
4956 switch (def->type) {
4957 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4958 case BPF_MAP_TYPE_CGROUP_ARRAY:
4959 case BPF_MAP_TYPE_STACK_TRACE:
4960 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4961 case BPF_MAP_TYPE_HASH_OF_MAPS:
4962 case BPF_MAP_TYPE_DEVMAP:
4963 case BPF_MAP_TYPE_DEVMAP_HASH:
4964 case BPF_MAP_TYPE_CPUMAP:
4965 case BPF_MAP_TYPE_XSKMAP:
4966 case BPF_MAP_TYPE_SOCKMAP:
4967 case BPF_MAP_TYPE_SOCKHASH:
4968 case BPF_MAP_TYPE_QUEUE:
4969 case BPF_MAP_TYPE_STACK:
4970 create_attr.btf_fd = 0;
4971 create_attr.btf_key_type_id = 0;
4972 create_attr.btf_value_type_id = 0;
4973 map->btf_key_type_id = 0;
4974 map->btf_value_type_id = 0;
4975 default:
4976 break;
4977 }
4978
4979 if (obj->gen_loader) {
4980 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
4981 def->key_size, def->value_size, def->max_entries,
4982 &create_attr, is_inner ? -1 : map - obj->maps);
4983 /* Pretend to have valid FD to pass various fd >= 0 checks.
4984 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
4985 */
4986 map->fd = 0;
4987 } else {
4988 map->fd = bpf_map_create(def->type, map_name,
4989 def->key_size, def->value_size,
4990 def->max_entries, &create_attr);
4991 }
4992 if (map->fd < 0 && (create_attr.btf_key_type_id ||
4993 create_attr.btf_value_type_id)) {
4994 char *cp, errmsg[STRERR_BUFSIZE];
4995
4996 err = -errno;
4997 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4998 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
4999 map->name, cp, err);
5000 create_attr.btf_fd = 0;
5001 create_attr.btf_key_type_id = 0;
5002 create_attr.btf_value_type_id = 0;
5003 map->btf_key_type_id = 0;
5004 map->btf_value_type_id = 0;
5005 map->fd = bpf_map_create(def->type, map_name,
5006 def->key_size, def->value_size,
5007 def->max_entries, &create_attr);
5008 }
5009
5010 err = map->fd < 0 ? -errno : 0;
5011
5012 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5013 if (obj->gen_loader)
5014 map->inner_map->fd = -1;
5015 bpf_map__destroy(map->inner_map);
5016 zfree(&map->inner_map);
5017 }
5018
5019 return err;
5020}
5021
5022static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5023{
5024 const struct bpf_map *targ_map;
5025 unsigned int i;
5026 int fd, err = 0;
5027
5028 for (i = 0; i < map->init_slots_sz; i++) {
5029 if (!map->init_slots[i])
5030 continue;
5031
5032 targ_map = map->init_slots[i];
5033 fd = bpf_map__fd(targ_map);
5034
5035 if (obj->gen_loader) {
5036 bpf_gen__populate_outer_map(obj->gen_loader,
5037 map - obj->maps, i,
5038 targ_map - obj->maps);
5039 } else {
5040 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5041 }
5042 if (err) {
5043 err = -errno;
5044 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5045 map->name, i, targ_map->name, fd, err);
5046 return err;
5047 }
5048 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5049 map->name, i, targ_map->name, fd);
5050 }
5051
5052 zfree(&map->init_slots);
5053 map->init_slots_sz = 0;
5054
5055 return 0;
5056}
5057
5058static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5059{
5060 const struct bpf_program *targ_prog;
5061 unsigned int i;
5062 int fd, err;
5063
5064 if (obj->gen_loader)
5065 return -ENOTSUP;
5066
5067 for (i = 0; i < map->init_slots_sz; i++) {
5068 if (!map->init_slots[i])
5069 continue;
5070
5071 targ_prog = map->init_slots[i];
5072 fd = bpf_program__fd(targ_prog);
5073
5074 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5075 if (err) {
5076 err = -errno;
5077 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5078 map->name, i, targ_prog->name, fd, err);
5079 return err;
5080 }
5081 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5082 map->name, i, targ_prog->name, fd);
5083 }
5084
5085 zfree(&map->init_slots);
5086 map->init_slots_sz = 0;
5087
5088 return 0;
5089}
5090
5091static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5092{
5093 struct bpf_map *map;
5094 int i, err;
5095
5096 for (i = 0; i < obj->nr_maps; i++) {
5097 map = &obj->maps[i];
5098
5099 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5100 continue;
5101
5102 err = init_prog_array_slots(obj, map);
5103 if (err < 0) {
5104 zclose(map->fd);
5105 return err;
5106 }
5107 }
5108 return 0;
5109}
5110
5111static int map_set_def_max_entries(struct bpf_map *map)
5112{
5113 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5114 int nr_cpus;
5115
5116 nr_cpus = libbpf_num_possible_cpus();
5117 if (nr_cpus < 0) {
5118 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5119 map->name, nr_cpus);
5120 return nr_cpus;
5121 }
5122 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5123 map->def.max_entries = nr_cpus;
5124 }
5125
5126 return 0;
5127}
5128
5129static int
5130bpf_object__create_maps(struct bpf_object *obj)
5131{
5132 struct bpf_map *map;
5133 char *cp, errmsg[STRERR_BUFSIZE];
5134 unsigned int i, j;
5135 int err;
5136 bool retried;
5137
5138 for (i = 0; i < obj->nr_maps; i++) {
5139 map = &obj->maps[i];
5140
5141 /* To support old kernels, we skip creating global data maps
5142 * (.rodata, .data, .kconfig, etc); later on, during program
5143 * loading, if we detect that at least one of the to-be-loaded
5144 * programs is referencing any global data map, we'll error
5145 * out with program name and relocation index logged.
5146 * This approach allows to accommodate Clang emitting
5147 * unnecessary .rodata.str1.1 sections for string literals,
5148 * but also it allows to have CO-RE applications that use
5149 * global variables in some of BPF programs, but not others.
5150 * If those global variable-using programs are not loaded at
5151 * runtime due to bpf_program__set_autoload(prog, false),
5152 * bpf_object loading will succeed just fine even on old
5153 * kernels.
5154 */
5155 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5156 map->autocreate = false;
5157
5158 if (!map->autocreate) {
5159 pr_debug("map '%s': skipped auto-creating...\n", map->name);
5160 continue;
5161 }
5162
5163 err = map_set_def_max_entries(map);
5164 if (err)
5165 goto err_out;
5166
5167 retried = false;
5168retry:
5169 if (map->pin_path) {
5170 err = bpf_object__reuse_map(map);
5171 if (err) {
5172 pr_warn("map '%s': error reusing pinned map\n",
5173 map->name);
5174 goto err_out;
5175 }
5176 if (retried && map->fd < 0) {
5177 pr_warn("map '%s': cannot find pinned map\n",
5178 map->name);
5179 err = -ENOENT;
5180 goto err_out;
5181 }
5182 }
5183
5184 if (map->fd >= 0) {
5185 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5186 map->name, map->fd);
5187 } else {
5188 err = bpf_object__create_map(obj, map, false);
5189 if (err)
5190 goto err_out;
5191
5192 pr_debug("map '%s': created successfully, fd=%d\n",
5193 map->name, map->fd);
5194
5195 if (bpf_map__is_internal(map)) {
5196 err = bpf_object__populate_internal_map(obj, map);
5197 if (err < 0) {
5198 zclose(map->fd);
5199 goto err_out;
5200 }
5201 }
5202
5203 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5204 err = init_map_in_map_slots(obj, map);
5205 if (err < 0) {
5206 zclose(map->fd);
5207 goto err_out;
5208 }
5209 }
5210 }
5211
5212 if (map->pin_path && !map->pinned) {
5213 err = bpf_map__pin(map, NULL);
5214 if (err) {
5215 zclose(map->fd);
5216 if (!retried && err == -EEXIST) {
5217 retried = true;
5218 goto retry;
5219 }
5220 pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5221 map->name, map->pin_path, err);
5222 goto err_out;
5223 }
5224 }
5225 }
5226
5227 return 0;
5228
5229err_out:
5230 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5231 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5232 pr_perm_msg(err);
5233 for (j = 0; j < i; j++)
5234 zclose(obj->maps[j].fd);
5235 return err;
5236}
5237
5238static bool bpf_core_is_flavor_sep(const char *s)
5239{
5240 /* check X___Y name pattern, where X and Y are not underscores */
5241 return s[0] != '_' && /* X */
5242 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5243 s[4] != '_'; /* Y */
5244}
5245
5246/* Given 'some_struct_name___with_flavor' return the length of a name prefix
5247 * before last triple underscore. Struct name part after last triple
5248 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5249 */
5250size_t bpf_core_essential_name_len(const char *name)
5251{
5252 size_t n = strlen(name);
5253 int i;
5254
5255 for (i = n - 5; i >= 0; i--) {
5256 if (bpf_core_is_flavor_sep(name + i))
5257 return i + 1;
5258 }
5259 return n;
5260}
5261
5262void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5263{
5264 if (!cands)
5265 return;
5266
5267 free(cands->cands);
5268 free(cands);
5269}
5270
5271int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5272 size_t local_essent_len,
5273 const struct btf *targ_btf,
5274 const char *targ_btf_name,
5275 int targ_start_id,
5276 struct bpf_core_cand_list *cands)
5277{
5278 struct bpf_core_cand *new_cands, *cand;
5279 const struct btf_type *t, *local_t;
5280 const char *targ_name, *local_name;
5281 size_t targ_essent_len;
5282 int n, i;
5283
5284 local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5285 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5286
5287 n = btf__type_cnt(targ_btf);
5288 for (i = targ_start_id; i < n; i++) {
5289 t = btf__type_by_id(targ_btf, i);
5290 if (!btf_kind_core_compat(t, local_t))
5291 continue;
5292
5293 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5294 if (str_is_empty(targ_name))
5295 continue;
5296
5297 targ_essent_len = bpf_core_essential_name_len(targ_name);
5298 if (targ_essent_len != local_essent_len)
5299 continue;
5300
5301 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5302 continue;
5303
5304 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5305 local_cand->id, btf_kind_str(local_t),
5306 local_name, i, btf_kind_str(t), targ_name,
5307 targ_btf_name);
5308 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5309 sizeof(*cands->cands));
5310 if (!new_cands)
5311 return -ENOMEM;
5312
5313 cand = &new_cands[cands->len];
5314 cand->btf = targ_btf;
5315 cand->id = i;
5316
5317 cands->cands = new_cands;
5318 cands->len++;
5319 }
5320 return 0;
5321}
5322
5323static int load_module_btfs(struct bpf_object *obj)
5324{
5325 struct bpf_btf_info info;
5326 struct module_btf *mod_btf;
5327 struct btf *btf;
5328 char name[64];
5329 __u32 id = 0, len;
5330 int err, fd;
5331
5332 if (obj->btf_modules_loaded)
5333 return 0;
5334
5335 if (obj->gen_loader)
5336 return 0;
5337
5338 /* don't do this again, even if we find no module BTFs */
5339 obj->btf_modules_loaded = true;
5340
5341 /* kernel too old to support module BTFs */
5342 if (!kernel_supports(obj, FEAT_MODULE_BTF))
5343 return 0;
5344
5345 while (true) {
5346 err = bpf_btf_get_next_id(id, &id);
5347 if (err && errno == ENOENT)
5348 return 0;
5349 if (err) {
5350 err = -errno;
5351 pr_warn("failed to iterate BTF objects: %d\n", err);
5352 return err;
5353 }
5354
5355 fd = bpf_btf_get_fd_by_id(id);
5356 if (fd < 0) {
5357 if (errno == ENOENT)
5358 continue; /* expected race: BTF was unloaded */
5359 err = -errno;
5360 pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5361 return err;
5362 }
5363
5364 len = sizeof(info);
5365 memset(&info, 0, sizeof(info));
5366 info.name = ptr_to_u64(name);
5367 info.name_len = sizeof(name);
5368
5369 err = bpf_obj_get_info_by_fd(fd, &info, &len);
5370 if (err) {
5371 err = -errno;
5372 pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5373 goto err_out;
5374 }
5375
5376 /* ignore non-module BTFs */
5377 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5378 close(fd);
5379 continue;
5380 }
5381
5382 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5383 err = libbpf_get_error(btf);
5384 if (err) {
5385 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5386 name, id, err);
5387 goto err_out;
5388 }
5389
5390 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5391 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5392 if (err)
5393 goto err_out;
5394
5395 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5396
5397 mod_btf->btf = btf;
5398 mod_btf->id = id;
5399 mod_btf->fd = fd;
5400 mod_btf->name = strdup(name);
5401 if (!mod_btf->name) {
5402 err = -ENOMEM;
5403 goto err_out;
5404 }
5405 continue;
5406
5407err_out:
5408 close(fd);
5409 return err;
5410 }
5411
5412 return 0;
5413}
5414
5415static struct bpf_core_cand_list *
5416bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5417{
5418 struct bpf_core_cand local_cand = {};
5419 struct bpf_core_cand_list *cands;
5420 const struct btf *main_btf;
5421 const struct btf_type *local_t;
5422 const char *local_name;
5423 size_t local_essent_len;
5424 int err, i;
5425
5426 local_cand.btf = local_btf;
5427 local_cand.id = local_type_id;
5428 local_t = btf__type_by_id(local_btf, local_type_id);
5429 if (!local_t)
5430 return ERR_PTR(-EINVAL);
5431
5432 local_name = btf__name_by_offset(local_btf, local_t->name_off);
5433 if (str_is_empty(local_name))
5434 return ERR_PTR(-EINVAL);
5435 local_essent_len = bpf_core_essential_name_len(local_name);
5436
5437 cands = calloc(1, sizeof(*cands));
5438 if (!cands)
5439 return ERR_PTR(-ENOMEM);
5440
5441 /* Attempt to find target candidates in vmlinux BTF first */
5442 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5443 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5444 if (err)
5445 goto err_out;
5446
5447 /* if vmlinux BTF has any candidate, don't got for module BTFs */
5448 if (cands->len)
5449 return cands;
5450
5451 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5452 if (obj->btf_vmlinux_override)
5453 return cands;
5454
5455 /* now look through module BTFs, trying to still find candidates */
5456 err = load_module_btfs(obj);
5457 if (err)
5458 goto err_out;
5459
5460 for (i = 0; i < obj->btf_module_cnt; i++) {
5461 err = bpf_core_add_cands(&local_cand, local_essent_len,
5462 obj->btf_modules[i].btf,
5463 obj->btf_modules[i].name,
5464 btf__type_cnt(obj->btf_vmlinux),
5465 cands);
5466 if (err)
5467 goto err_out;
5468 }
5469
5470 return cands;
5471err_out:
5472 bpf_core_free_cands(cands);
5473 return ERR_PTR(err);
5474}
5475
5476/* Check local and target types for compatibility. This check is used for
5477 * type-based CO-RE relocations and follow slightly different rules than
5478 * field-based relocations. This function assumes that root types were already
5479 * checked for name match. Beyond that initial root-level name check, names
5480 * are completely ignored. Compatibility rules are as follows:
5481 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5482 * kind should match for local and target types (i.e., STRUCT is not
5483 * compatible with UNION);
5484 * - for ENUMs, the size is ignored;
5485 * - for INT, size and signedness are ignored;
5486 * - for ARRAY, dimensionality is ignored, element types are checked for
5487 * compatibility recursively;
5488 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
5489 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5490 * - FUNC_PROTOs are compatible if they have compatible signature: same
5491 * number of input args and compatible return and argument types.
5492 * These rules are not set in stone and probably will be adjusted as we get
5493 * more experience with using BPF CO-RE relocations.
5494 */
5495int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5496 const struct btf *targ_btf, __u32 targ_id)
5497{
5498 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5499}
5500
5501int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5502 const struct btf *targ_btf, __u32 targ_id)
5503{
5504 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5505}
5506
5507static size_t bpf_core_hash_fn(const void *key, void *ctx)
5508{
5509 return (size_t)key;
5510}
5511
5512static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5513{
5514 return k1 == k2;
5515}
5516
5517static void *u32_as_hash_key(__u32 x)
5518{
5519 return (void *)(uintptr_t)x;
5520}
5521
5522static int record_relo_core(struct bpf_program *prog,
5523 const struct bpf_core_relo *core_relo, int insn_idx)
5524{
5525 struct reloc_desc *relos, *relo;
5526
5527 relos = libbpf_reallocarray(prog->reloc_desc,
5528 prog->nr_reloc + 1, sizeof(*relos));
5529 if (!relos)
5530 return -ENOMEM;
5531 relo = &relos[prog->nr_reloc];
5532 relo->type = RELO_CORE;
5533 relo->insn_idx = insn_idx;
5534 relo->core_relo = core_relo;
5535 prog->reloc_desc = relos;
5536 prog->nr_reloc++;
5537 return 0;
5538}
5539
5540static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5541{
5542 struct reloc_desc *relo;
5543 int i;
5544
5545 for (i = 0; i < prog->nr_reloc; i++) {
5546 relo = &prog->reloc_desc[i];
5547 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5548 continue;
5549
5550 return relo->core_relo;
5551 }
5552
5553 return NULL;
5554}
5555
5556static int bpf_core_resolve_relo(struct bpf_program *prog,
5557 const struct bpf_core_relo *relo,
5558 int relo_idx,
5559 const struct btf *local_btf,
5560 struct hashmap *cand_cache,
5561 struct bpf_core_relo_res *targ_res)
5562{
5563 struct bpf_core_spec specs_scratch[3] = {};
5564 const void *type_key = u32_as_hash_key(relo->type_id);
5565 struct bpf_core_cand_list *cands = NULL;
5566 const char *prog_name = prog->name;
5567 const struct btf_type *local_type;
5568 const char *local_name;
5569 __u32 local_id = relo->type_id;
5570 int err;
5571
5572 local_type = btf__type_by_id(local_btf, local_id);
5573 if (!local_type)
5574 return -EINVAL;
5575
5576 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5577 if (!local_name)
5578 return -EINVAL;
5579
5580 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5581 !hashmap__find(cand_cache, type_key, (void **)&cands)) {
5582 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5583 if (IS_ERR(cands)) {
5584 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5585 prog_name, relo_idx, local_id, btf_kind_str(local_type),
5586 local_name, PTR_ERR(cands));
5587 return PTR_ERR(cands);
5588 }
5589 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL);
5590 if (err) {
5591 bpf_core_free_cands(cands);
5592 return err;
5593 }
5594 }
5595
5596 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5597 targ_res);
5598}
5599
5600static int
5601bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5602{
5603 const struct btf_ext_info_sec *sec;
5604 struct bpf_core_relo_res targ_res;
5605 const struct bpf_core_relo *rec;
5606 const struct btf_ext_info *seg;
5607 struct hashmap_entry *entry;
5608 struct hashmap *cand_cache = NULL;
5609 struct bpf_program *prog;
5610 struct bpf_insn *insn;
5611 const char *sec_name;
5612 int i, err = 0, insn_idx, sec_idx, sec_num;
5613
5614 if (obj->btf_ext->core_relo_info.len == 0)
5615 return 0;
5616
5617 if (targ_btf_path) {
5618 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5619 err = libbpf_get_error(obj->btf_vmlinux_override);
5620 if (err) {
5621 pr_warn("failed to parse target BTF: %d\n", err);
5622 return err;
5623 }
5624 }
5625
5626 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5627 if (IS_ERR(cand_cache)) {
5628 err = PTR_ERR(cand_cache);
5629 goto out;
5630 }
5631
5632 seg = &obj->btf_ext->core_relo_info;
5633 sec_num = 0;
5634 for_each_btf_ext_sec(seg, sec) {
5635 sec_idx = seg->sec_idxs[sec_num];
5636 sec_num++;
5637
5638 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5639 if (str_is_empty(sec_name)) {
5640 err = -EINVAL;
5641 goto out;
5642 }
5643
5644 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5645
5646 for_each_btf_ext_rec(seg, sec, i, rec) {
5647 if (rec->insn_off % BPF_INSN_SZ)
5648 return -EINVAL;
5649 insn_idx = rec->insn_off / BPF_INSN_SZ;
5650 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5651 if (!prog) {
5652 /* When __weak subprog is "overridden" by another instance
5653 * of the subprog from a different object file, linker still
5654 * appends all the .BTF.ext info that used to belong to that
5655 * eliminated subprogram.
5656 * This is similar to what x86-64 linker does for relocations.
5657 * So just ignore such relocations just like we ignore
5658 * subprog instructions when discovering subprograms.
5659 */
5660 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5661 sec_name, i, insn_idx);
5662 continue;
5663 }
5664 /* no need to apply CO-RE relocation if the program is
5665 * not going to be loaded
5666 */
5667 if (!prog->autoload)
5668 continue;
5669
5670 /* adjust insn_idx from section frame of reference to the local
5671 * program's frame of reference; (sub-)program code is not yet
5672 * relocated, so it's enough to just subtract in-section offset
5673 */
5674 insn_idx = insn_idx - prog->sec_insn_off;
5675 if (insn_idx >= prog->insns_cnt)
5676 return -EINVAL;
5677 insn = &prog->insns[insn_idx];
5678
5679 err = record_relo_core(prog, rec, insn_idx);
5680 if (err) {
5681 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5682 prog->name, i, err);
5683 goto out;
5684 }
5685
5686 if (prog->obj->gen_loader)
5687 continue;
5688
5689 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5690 if (err) {
5691 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5692 prog->name, i, err);
5693 goto out;
5694 }
5695
5696 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5697 if (err) {
5698 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5699 prog->name, i, insn_idx, err);
5700 goto out;
5701 }
5702 }
5703 }
5704
5705out:
5706 /* obj->btf_vmlinux and module BTFs are freed after object load */
5707 btf__free(obj->btf_vmlinux_override);
5708 obj->btf_vmlinux_override = NULL;
5709
5710 if (!IS_ERR_OR_NULL(cand_cache)) {
5711 hashmap__for_each_entry(cand_cache, entry, i) {
5712 bpf_core_free_cands(entry->value);
5713 }
5714 hashmap__free(cand_cache);
5715 }
5716 return err;
5717}
5718
5719/* base map load ldimm64 special constant, used also for log fixup logic */
5720#define MAP_LDIMM64_POISON_BASE 2001000000
5721#define MAP_LDIMM64_POISON_PFX "200100"
5722
5723static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5724 int insn_idx, struct bpf_insn *insn,
5725 int map_idx, const struct bpf_map *map)
5726{
5727 int i;
5728
5729 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5730 prog->name, relo_idx, insn_idx, map_idx, map->name);
5731
5732 /* we turn single ldimm64 into two identical invalid calls */
5733 for (i = 0; i < 2; i++) {
5734 insn->code = BPF_JMP | BPF_CALL;
5735 insn->dst_reg = 0;
5736 insn->src_reg = 0;
5737 insn->off = 0;
5738 /* if this instruction is reachable (not a dead code),
5739 * verifier will complain with something like:
5740 * invalid func unknown#2001000123
5741 * where lower 123 is map index into obj->maps[] array
5742 */
5743 insn->imm = MAP_LDIMM64_POISON_BASE + map_idx;
5744
5745 insn++;
5746 }
5747}
5748
5749/* Relocate data references within program code:
5750 * - map references;
5751 * - global variable references;
5752 * - extern references.
5753 */
5754static int
5755bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5756{
5757 int i;
5758
5759 for (i = 0; i < prog->nr_reloc; i++) {
5760 struct reloc_desc *relo = &prog->reloc_desc[i];
5761 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5762 const struct bpf_map *map;
5763 struct extern_desc *ext;
5764
5765 switch (relo->type) {
5766 case RELO_LD64:
5767 map = &obj->maps[relo->map_idx];
5768 if (obj->gen_loader) {
5769 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5770 insn[0].imm = relo->map_idx;
5771 } else if (map->autocreate) {
5772 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5773 insn[0].imm = map->fd;
5774 } else {
5775 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5776 relo->map_idx, map);
5777 }
5778 break;
5779 case RELO_DATA:
5780 map = &obj->maps[relo->map_idx];
5781 insn[1].imm = insn[0].imm + relo->sym_off;
5782 if (obj->gen_loader) {
5783 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5784 insn[0].imm = relo->map_idx;
5785 } else if (map->autocreate) {
5786 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5787 insn[0].imm = map->fd;
5788 } else {
5789 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5790 relo->map_idx, map);
5791 }
5792 break;
5793 case RELO_EXTERN_VAR:
5794 ext = &obj->externs[relo->sym_off];
5795 if (ext->type == EXT_KCFG) {
5796 if (obj->gen_loader) {
5797 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5798 insn[0].imm = obj->kconfig_map_idx;
5799 } else {
5800 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5801 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5802 }
5803 insn[1].imm = ext->kcfg.data_off;
5804 } else /* EXT_KSYM */ {
5805 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5806 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5807 insn[0].imm = ext->ksym.kernel_btf_id;
5808 insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5809 } else { /* typeless ksyms or unresolved typed ksyms */
5810 insn[0].imm = (__u32)ext->ksym.addr;
5811 insn[1].imm = ext->ksym.addr >> 32;
5812 }
5813 }
5814 break;
5815 case RELO_EXTERN_FUNC:
5816 ext = &obj->externs[relo->sym_off];
5817 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
5818 if (ext->is_set) {
5819 insn[0].imm = ext->ksym.kernel_btf_id;
5820 insn[0].off = ext->ksym.btf_fd_idx;
5821 } else { /* unresolved weak kfunc */
5822 insn[0].imm = 0;
5823 insn[0].off = 0;
5824 }
5825 break;
5826 case RELO_SUBPROG_ADDR:
5827 if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
5828 pr_warn("prog '%s': relo #%d: bad insn\n",
5829 prog->name, i);
5830 return -EINVAL;
5831 }
5832 /* handled already */
5833 break;
5834 case RELO_CALL:
5835 /* handled already */
5836 break;
5837 case RELO_CORE:
5838 /* will be handled by bpf_program_record_relos() */
5839 break;
5840 default:
5841 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5842 prog->name, i, relo->type);
5843 return -EINVAL;
5844 }
5845 }
5846
5847 return 0;
5848}
5849
5850static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5851 const struct bpf_program *prog,
5852 const struct btf_ext_info *ext_info,
5853 void **prog_info, __u32 *prog_rec_cnt,
5854 __u32 *prog_rec_sz)
5855{
5856 void *copy_start = NULL, *copy_end = NULL;
5857 void *rec, *rec_end, *new_prog_info;
5858 const struct btf_ext_info_sec *sec;
5859 size_t old_sz, new_sz;
5860 int i, sec_num, sec_idx, off_adj;
5861
5862 sec_num = 0;
5863 for_each_btf_ext_sec(ext_info, sec) {
5864 sec_idx = ext_info->sec_idxs[sec_num];
5865 sec_num++;
5866 if (prog->sec_idx != sec_idx)
5867 continue;
5868
5869 for_each_btf_ext_rec(ext_info, sec, i, rec) {
5870 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
5871
5872 if (insn_off < prog->sec_insn_off)
5873 continue;
5874 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
5875 break;
5876
5877 if (!copy_start)
5878 copy_start = rec;
5879 copy_end = rec + ext_info->rec_size;
5880 }
5881
5882 if (!copy_start)
5883 return -ENOENT;
5884
5885 /* append func/line info of a given (sub-)program to the main
5886 * program func/line info
5887 */
5888 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
5889 new_sz = old_sz + (copy_end - copy_start);
5890 new_prog_info = realloc(*prog_info, new_sz);
5891 if (!new_prog_info)
5892 return -ENOMEM;
5893 *prog_info = new_prog_info;
5894 *prog_rec_cnt = new_sz / ext_info->rec_size;
5895 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
5896
5897 /* Kernel instruction offsets are in units of 8-byte
5898 * instructions, while .BTF.ext instruction offsets generated
5899 * by Clang are in units of bytes. So convert Clang offsets
5900 * into kernel offsets and adjust offset according to program
5901 * relocated position.
5902 */
5903 off_adj = prog->sub_insn_off - prog->sec_insn_off;
5904 rec = new_prog_info + old_sz;
5905 rec_end = new_prog_info + new_sz;
5906 for (; rec < rec_end; rec += ext_info->rec_size) {
5907 __u32 *insn_off = rec;
5908
5909 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
5910 }
5911 *prog_rec_sz = ext_info->rec_size;
5912 return 0;
5913 }
5914
5915 return -ENOENT;
5916}
5917
5918static int
5919reloc_prog_func_and_line_info(const struct bpf_object *obj,
5920 struct bpf_program *main_prog,
5921 const struct bpf_program *prog)
5922{
5923 int err;
5924
5925 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
5926 * supprot func/line info
5927 */
5928 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
5929 return 0;
5930
5931 /* only attempt func info relocation if main program's func_info
5932 * relocation was successful
5933 */
5934 if (main_prog != prog && !main_prog->func_info)
5935 goto line_info;
5936
5937 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
5938 &main_prog->func_info,
5939 &main_prog->func_info_cnt,
5940 &main_prog->func_info_rec_size);
5941 if (err) {
5942 if (err != -ENOENT) {
5943 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
5944 prog->name, err);
5945 return err;
5946 }
5947 if (main_prog->func_info) {
5948 /*
5949 * Some info has already been found but has problem
5950 * in the last btf_ext reloc. Must have to error out.
5951 */
5952 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
5953 return err;
5954 }
5955 /* Have problem loading the very first info. Ignore the rest. */
5956 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
5957 prog->name);
5958 }
5959
5960line_info:
5961 /* don't relocate line info if main program's relocation failed */
5962 if (main_prog != prog && !main_prog->line_info)
5963 return 0;
5964
5965 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
5966 &main_prog->line_info,
5967 &main_prog->line_info_cnt,
5968 &main_prog->line_info_rec_size);
5969 if (err) {
5970 if (err != -ENOENT) {
5971 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
5972 prog->name, err);
5973 return err;
5974 }
5975 if (main_prog->line_info) {
5976 /*
5977 * Some info has already been found but has problem
5978 * in the last btf_ext reloc. Must have to error out.
5979 */
5980 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
5981 return err;
5982 }
5983 /* Have problem loading the very first info. Ignore the rest. */
5984 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
5985 prog->name);
5986 }
5987 return 0;
5988}
5989
5990static int cmp_relo_by_insn_idx(const void *key, const void *elem)
5991{
5992 size_t insn_idx = *(const size_t *)key;
5993 const struct reloc_desc *relo = elem;
5994
5995 if (insn_idx == relo->insn_idx)
5996 return 0;
5997 return insn_idx < relo->insn_idx ? -1 : 1;
5998}
5999
6000static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6001{
6002 if (!prog->nr_reloc)
6003 return NULL;
6004 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6005 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6006}
6007
6008static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6009{
6010 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6011 struct reloc_desc *relos;
6012 int i;
6013
6014 if (main_prog == subprog)
6015 return 0;
6016 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6017 if (!relos)
6018 return -ENOMEM;
6019 if (subprog->nr_reloc)
6020 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6021 sizeof(*relos) * subprog->nr_reloc);
6022
6023 for (i = main_prog->nr_reloc; i < new_cnt; i++)
6024 relos[i].insn_idx += subprog->sub_insn_off;
6025 /* After insn_idx adjustment the 'relos' array is still sorted
6026 * by insn_idx and doesn't break bsearch.
6027 */
6028 main_prog->reloc_desc = relos;
6029 main_prog->nr_reloc = new_cnt;
6030 return 0;
6031}
6032
6033static int
6034bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6035 struct bpf_program *prog)
6036{
6037 size_t sub_insn_idx, insn_idx, new_cnt;
6038 struct bpf_program *subprog;
6039 struct bpf_insn *insns, *insn;
6040 struct reloc_desc *relo;
6041 int err;
6042
6043 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6044 if (err)
6045 return err;
6046
6047 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6048 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6049 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6050 continue;
6051
6052 relo = find_prog_insn_relo(prog, insn_idx);
6053 if (relo && relo->type == RELO_EXTERN_FUNC)
6054 /* kfunc relocations will be handled later
6055 * in bpf_object__relocate_data()
6056 */
6057 continue;
6058 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6059 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6060 prog->name, insn_idx, relo->type);
6061 return -LIBBPF_ERRNO__RELOC;
6062 }
6063 if (relo) {
6064 /* sub-program instruction index is a combination of
6065 * an offset of a symbol pointed to by relocation and
6066 * call instruction's imm field; for global functions,
6067 * call always has imm = -1, but for static functions
6068 * relocation is against STT_SECTION and insn->imm
6069 * points to a start of a static function
6070 *
6071 * for subprog addr relocation, the relo->sym_off + insn->imm is
6072 * the byte offset in the corresponding section.
6073 */
6074 if (relo->type == RELO_CALL)
6075 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6076 else
6077 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6078 } else if (insn_is_pseudo_func(insn)) {
6079 /*
6080 * RELO_SUBPROG_ADDR relo is always emitted even if both
6081 * functions are in the same section, so it shouldn't reach here.
6082 */
6083 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6084 prog->name, insn_idx);
6085 return -LIBBPF_ERRNO__RELOC;
6086 } else {
6087 /* if subprogram call is to a static function within
6088 * the same ELF section, there won't be any relocation
6089 * emitted, but it also means there is no additional
6090 * offset necessary, insns->imm is relative to
6091 * instruction's original position within the section
6092 */
6093 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6094 }
6095
6096 /* we enforce that sub-programs should be in .text section */
6097 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6098 if (!subprog) {
6099 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6100 prog->name);
6101 return -LIBBPF_ERRNO__RELOC;
6102 }
6103
6104 /* if it's the first call instruction calling into this
6105 * subprogram (meaning this subprog hasn't been processed
6106 * yet) within the context of current main program:
6107 * - append it at the end of main program's instructions blog;
6108 * - process is recursively, while current program is put on hold;
6109 * - if that subprogram calls some other not yet processes
6110 * subprogram, same thing will happen recursively until
6111 * there are no more unprocesses subprograms left to append
6112 * and relocate.
6113 */
6114 if (subprog->sub_insn_off == 0) {
6115 subprog->sub_insn_off = main_prog->insns_cnt;
6116
6117 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6118 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6119 if (!insns) {
6120 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6121 return -ENOMEM;
6122 }
6123 main_prog->insns = insns;
6124 main_prog->insns_cnt = new_cnt;
6125
6126 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6127 subprog->insns_cnt * sizeof(*insns));
6128
6129 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6130 main_prog->name, subprog->insns_cnt, subprog->name);
6131
6132 /* The subprog insns are now appended. Append its relos too. */
6133 err = append_subprog_relos(main_prog, subprog);
6134 if (err)
6135 return err;
6136 err = bpf_object__reloc_code(obj, main_prog, subprog);
6137 if (err)
6138 return err;
6139 }
6140
6141 /* main_prog->insns memory could have been re-allocated, so
6142 * calculate pointer again
6143 */
6144 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6145 /* calculate correct instruction position within current main
6146 * prog; each main prog can have a different set of
6147 * subprograms appended (potentially in different order as
6148 * well), so position of any subprog can be different for
6149 * different main programs */
6150 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6151
6152 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6153 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6154 }
6155
6156 return 0;
6157}
6158
6159/*
6160 * Relocate sub-program calls.
6161 *
6162 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6163 * main prog) is processed separately. For each subprog (non-entry functions,
6164 * that can be called from either entry progs or other subprogs) gets their
6165 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6166 * hasn't been yet appended and relocated within current main prog. Once its
6167 * relocated, sub_insn_off will point at the position within current main prog
6168 * where given subprog was appended. This will further be used to relocate all
6169 * the call instructions jumping into this subprog.
6170 *
6171 * We start with main program and process all call instructions. If the call
6172 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6173 * is zero), subprog instructions are appended at the end of main program's
6174 * instruction array. Then main program is "put on hold" while we recursively
6175 * process newly appended subprogram. If that subprogram calls into another
6176 * subprogram that hasn't been appended, new subprogram is appended again to
6177 * the *main* prog's instructions (subprog's instructions are always left
6178 * untouched, as they need to be in unmodified state for subsequent main progs
6179 * and subprog instructions are always sent only as part of a main prog) and
6180 * the process continues recursively. Once all the subprogs called from a main
6181 * prog or any of its subprogs are appended (and relocated), all their
6182 * positions within finalized instructions array are known, so it's easy to
6183 * rewrite call instructions with correct relative offsets, corresponding to
6184 * desired target subprog.
6185 *
6186 * Its important to realize that some subprogs might not be called from some
6187 * main prog and any of its called/used subprogs. Those will keep their
6188 * subprog->sub_insn_off as zero at all times and won't be appended to current
6189 * main prog and won't be relocated within the context of current main prog.
6190 * They might still be used from other main progs later.
6191 *
6192 * Visually this process can be shown as below. Suppose we have two main
6193 * programs mainA and mainB and BPF object contains three subprogs: subA,
6194 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6195 * subC both call subB:
6196 *
6197 * +--------+ +-------+
6198 * | v v |
6199 * +--+---+ +--+-+-+ +---+--+
6200 * | subA | | subB | | subC |
6201 * +--+---+ +------+ +---+--+
6202 * ^ ^
6203 * | |
6204 * +---+-------+ +------+----+
6205 * | mainA | | mainB |
6206 * +-----------+ +-----------+
6207 *
6208 * We'll start relocating mainA, will find subA, append it and start
6209 * processing sub A recursively:
6210 *
6211 * +-----------+------+
6212 * | mainA | subA |
6213 * +-----------+------+
6214 *
6215 * At this point we notice that subB is used from subA, so we append it and
6216 * relocate (there are no further subcalls from subB):
6217 *
6218 * +-----------+------+------+
6219 * | mainA | subA | subB |
6220 * +-----------+------+------+
6221 *
6222 * At this point, we relocate subA calls, then go one level up and finish with
6223 * relocatin mainA calls. mainA is done.
6224 *
6225 * For mainB process is similar but results in different order. We start with
6226 * mainB and skip subA and subB, as mainB never calls them (at least
6227 * directly), but we see subC is needed, so we append and start processing it:
6228 *
6229 * +-----------+------+
6230 * | mainB | subC |
6231 * +-----------+------+
6232 * Now we see subC needs subB, so we go back to it, append and relocate it:
6233 *
6234 * +-----------+------+------+
6235 * | mainB | subC | subB |
6236 * +-----------+------+------+
6237 *
6238 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6239 */
6240static int
6241bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6242{
6243 struct bpf_program *subprog;
6244 int i, err;
6245
6246 /* mark all subprogs as not relocated (yet) within the context of
6247 * current main program
6248 */
6249 for (i = 0; i < obj->nr_programs; i++) {
6250 subprog = &obj->programs[i];
6251 if (!prog_is_subprog(obj, subprog))
6252 continue;
6253
6254 subprog->sub_insn_off = 0;
6255 }
6256
6257 err = bpf_object__reloc_code(obj, prog, prog);
6258 if (err)
6259 return err;
6260
6261 return 0;
6262}
6263
6264static void
6265bpf_object__free_relocs(struct bpf_object *obj)
6266{
6267 struct bpf_program *prog;
6268 int i;
6269
6270 /* free up relocation descriptors */
6271 for (i = 0; i < obj->nr_programs; i++) {
6272 prog = &obj->programs[i];
6273 zfree(&prog->reloc_desc);
6274 prog->nr_reloc = 0;
6275 }
6276}
6277
6278static int cmp_relocs(const void *_a, const void *_b)
6279{
6280 const struct reloc_desc *a = _a;
6281 const struct reloc_desc *b = _b;
6282
6283 if (a->insn_idx != b->insn_idx)
6284 return a->insn_idx < b->insn_idx ? -1 : 1;
6285
6286 /* no two relocations should have the same insn_idx, but ... */
6287 if (a->type != b->type)
6288 return a->type < b->type ? -1 : 1;
6289
6290 return 0;
6291}
6292
6293static void bpf_object__sort_relos(struct bpf_object *obj)
6294{
6295 int i;
6296
6297 for (i = 0; i < obj->nr_programs; i++) {
6298 struct bpf_program *p = &obj->programs[i];
6299
6300 if (!p->nr_reloc)
6301 continue;
6302
6303 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6304 }
6305}
6306
6307static int
6308bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6309{
6310 struct bpf_program *prog;
6311 size_t i, j;
6312 int err;
6313
6314 if (obj->btf_ext) {
6315 err = bpf_object__relocate_core(obj, targ_btf_path);
6316 if (err) {
6317 pr_warn("failed to perform CO-RE relocations: %d\n",
6318 err);
6319 return err;
6320 }
6321 bpf_object__sort_relos(obj);
6322 }
6323
6324 /* Before relocating calls pre-process relocations and mark
6325 * few ld_imm64 instructions that points to subprogs.
6326 * Otherwise bpf_object__reloc_code() later would have to consider
6327 * all ld_imm64 insns as relocation candidates. That would
6328 * reduce relocation speed, since amount of find_prog_insn_relo()
6329 * would increase and most of them will fail to find a relo.
6330 */
6331 for (i = 0; i < obj->nr_programs; i++) {
6332 prog = &obj->programs[i];
6333 for (j = 0; j < prog->nr_reloc; j++) {
6334 struct reloc_desc *relo = &prog->reloc_desc[j];
6335 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6336
6337 /* mark the insn, so it's recognized by insn_is_pseudo_func() */
6338 if (relo->type == RELO_SUBPROG_ADDR)
6339 insn[0].src_reg = BPF_PSEUDO_FUNC;
6340 }
6341 }
6342
6343 /* relocate subprogram calls and append used subprograms to main
6344 * programs; each copy of subprogram code needs to be relocated
6345 * differently for each main program, because its code location might
6346 * have changed.
6347 * Append subprog relos to main programs to allow data relos to be
6348 * processed after text is completely relocated.
6349 */
6350 for (i = 0; i < obj->nr_programs; i++) {
6351 prog = &obj->programs[i];
6352 /* sub-program's sub-calls are relocated within the context of
6353 * its main program only
6354 */
6355 if (prog_is_subprog(obj, prog))
6356 continue;
6357 if (!prog->autoload)
6358 continue;
6359
6360 err = bpf_object__relocate_calls(obj, prog);
6361 if (err) {
6362 pr_warn("prog '%s': failed to relocate calls: %d\n",
6363 prog->name, err);
6364 return err;
6365 }
6366 }
6367 /* Process data relos for main programs */
6368 for (i = 0; i < obj->nr_programs; i++) {
6369 prog = &obj->programs[i];
6370 if (prog_is_subprog(obj, prog))
6371 continue;
6372 if (!prog->autoload)
6373 continue;
6374 err = bpf_object__relocate_data(obj, prog);
6375 if (err) {
6376 pr_warn("prog '%s': failed to relocate data references: %d\n",
6377 prog->name, err);
6378 return err;
6379 }
6380 }
6381
6382 return 0;
6383}
6384
6385static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6386 Elf64_Shdr *shdr, Elf_Data *data);
6387
6388static int bpf_object__collect_map_relos(struct bpf_object *obj,
6389 Elf64_Shdr *shdr, Elf_Data *data)
6390{
6391 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6392 int i, j, nrels, new_sz;
6393 const struct btf_var_secinfo *vi = NULL;
6394 const struct btf_type *sec, *var, *def;
6395 struct bpf_map *map = NULL, *targ_map = NULL;
6396 struct bpf_program *targ_prog = NULL;
6397 bool is_prog_array, is_map_in_map;
6398 const struct btf_member *member;
6399 const char *name, *mname, *type;
6400 unsigned int moff;
6401 Elf64_Sym *sym;
6402 Elf64_Rel *rel;
6403 void *tmp;
6404
6405 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6406 return -EINVAL;
6407 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6408 if (!sec)
6409 return -EINVAL;
6410
6411 nrels = shdr->sh_size / shdr->sh_entsize;
6412 for (i = 0; i < nrels; i++) {
6413 rel = elf_rel_by_idx(data, i);
6414 if (!rel) {
6415 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6416 return -LIBBPF_ERRNO__FORMAT;
6417 }
6418
6419 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6420 if (!sym) {
6421 pr_warn(".maps relo #%d: symbol %zx not found\n",
6422 i, (size_t)ELF64_R_SYM(rel->r_info));
6423 return -LIBBPF_ERRNO__FORMAT;
6424 }
6425 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6426
6427 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6428 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6429 (size_t)rel->r_offset, sym->st_name, name);
6430
6431 for (j = 0; j < obj->nr_maps; j++) {
6432 map = &obj->maps[j];
6433 if (map->sec_idx != obj->efile.btf_maps_shndx)
6434 continue;
6435
6436 vi = btf_var_secinfos(sec) + map->btf_var_idx;
6437 if (vi->offset <= rel->r_offset &&
6438 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6439 break;
6440 }
6441 if (j == obj->nr_maps) {
6442 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6443 i, name, (size_t)rel->r_offset);
6444 return -EINVAL;
6445 }
6446
6447 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6448 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6449 type = is_map_in_map ? "map" : "prog";
6450 if (is_map_in_map) {
6451 if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6452 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6453 i, name);
6454 return -LIBBPF_ERRNO__RELOC;
6455 }
6456 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6457 map->def.key_size != sizeof(int)) {
6458 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6459 i, map->name, sizeof(int));
6460 return -EINVAL;
6461 }
6462 targ_map = bpf_object__find_map_by_name(obj, name);
6463 if (!targ_map) {
6464 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6465 i, name);
6466 return -ESRCH;
6467 }
6468 } else if (is_prog_array) {
6469 targ_prog = bpf_object__find_program_by_name(obj, name);
6470 if (!targ_prog) {
6471 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6472 i, name);
6473 return -ESRCH;
6474 }
6475 if (targ_prog->sec_idx != sym->st_shndx ||
6476 targ_prog->sec_insn_off * 8 != sym->st_value ||
6477 prog_is_subprog(obj, targ_prog)) {
6478 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6479 i, name);
6480 return -LIBBPF_ERRNO__RELOC;
6481 }
6482 } else {
6483 return -EINVAL;
6484 }
6485
6486 var = btf__type_by_id(obj->btf, vi->type);
6487 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6488 if (btf_vlen(def) == 0)
6489 return -EINVAL;
6490 member = btf_members(def) + btf_vlen(def) - 1;
6491 mname = btf__name_by_offset(obj->btf, member->name_off);
6492 if (strcmp(mname, "values"))
6493 return -EINVAL;
6494
6495 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6496 if (rel->r_offset - vi->offset < moff)
6497 return -EINVAL;
6498
6499 moff = rel->r_offset - vi->offset - moff;
6500 /* here we use BPF pointer size, which is always 64 bit, as we
6501 * are parsing ELF that was built for BPF target
6502 */
6503 if (moff % bpf_ptr_sz)
6504 return -EINVAL;
6505 moff /= bpf_ptr_sz;
6506 if (moff >= map->init_slots_sz) {
6507 new_sz = moff + 1;
6508 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6509 if (!tmp)
6510 return -ENOMEM;
6511 map->init_slots = tmp;
6512 memset(map->init_slots + map->init_slots_sz, 0,
6513 (new_sz - map->init_slots_sz) * host_ptr_sz);
6514 map->init_slots_sz = new_sz;
6515 }
6516 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6517
6518 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6519 i, map->name, moff, type, name);
6520 }
6521
6522 return 0;
6523}
6524
6525static int bpf_object__collect_relos(struct bpf_object *obj)
6526{
6527 int i, err;
6528
6529 for (i = 0; i < obj->efile.sec_cnt; i++) {
6530 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6531 Elf64_Shdr *shdr;
6532 Elf_Data *data;
6533 int idx;
6534
6535 if (sec_desc->sec_type != SEC_RELO)
6536 continue;
6537
6538 shdr = sec_desc->shdr;
6539 data = sec_desc->data;
6540 idx = shdr->sh_info;
6541
6542 if (shdr->sh_type != SHT_REL) {
6543 pr_warn("internal error at %d\n", __LINE__);
6544 return -LIBBPF_ERRNO__INTERNAL;
6545 }
6546
6547 if (idx == obj->efile.st_ops_shndx)
6548 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6549 else if (idx == obj->efile.btf_maps_shndx)
6550 err = bpf_object__collect_map_relos(obj, shdr, data);
6551 else
6552 err = bpf_object__collect_prog_relos(obj, shdr, data);
6553 if (err)
6554 return err;
6555 }
6556
6557 bpf_object__sort_relos(obj);
6558 return 0;
6559}
6560
6561static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6562{
6563 if (BPF_CLASS(insn->code) == BPF_JMP &&
6564 BPF_OP(insn->code) == BPF_CALL &&
6565 BPF_SRC(insn->code) == BPF_K &&
6566 insn->src_reg == 0 &&
6567 insn->dst_reg == 0) {
6568 *func_id = insn->imm;
6569 return true;
6570 }
6571 return false;
6572}
6573
6574static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6575{
6576 struct bpf_insn *insn = prog->insns;
6577 enum bpf_func_id func_id;
6578 int i;
6579
6580 if (obj->gen_loader)
6581 return 0;
6582
6583 for (i = 0; i < prog->insns_cnt; i++, insn++) {
6584 if (!insn_is_helper_call(insn, &func_id))
6585 continue;
6586
6587 /* on kernels that don't yet support
6588 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6589 * to bpf_probe_read() which works well for old kernels
6590 */
6591 switch (func_id) {
6592 case BPF_FUNC_probe_read_kernel:
6593 case BPF_FUNC_probe_read_user:
6594 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6595 insn->imm = BPF_FUNC_probe_read;
6596 break;
6597 case BPF_FUNC_probe_read_kernel_str:
6598 case BPF_FUNC_probe_read_user_str:
6599 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6600 insn->imm = BPF_FUNC_probe_read_str;
6601 break;
6602 default:
6603 break;
6604 }
6605 }
6606 return 0;
6607}
6608
6609static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6610 int *btf_obj_fd, int *btf_type_id);
6611
6612/* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
6613static int libbpf_prepare_prog_load(struct bpf_program *prog,
6614 struct bpf_prog_load_opts *opts, long cookie)
6615{
6616 enum sec_def_flags def = cookie;
6617
6618 /* old kernels might not support specifying expected_attach_type */
6619 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6620 opts->expected_attach_type = 0;
6621
6622 if (def & SEC_SLEEPABLE)
6623 opts->prog_flags |= BPF_F_SLEEPABLE;
6624
6625 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6626 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6627
6628 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6629 int btf_obj_fd = 0, btf_type_id = 0, err;
6630 const char *attach_name;
6631
6632 attach_name = strchr(prog->sec_name, '/');
6633 if (!attach_name) {
6634 /* if BPF program is annotated with just SEC("fentry")
6635 * (or similar) without declaratively specifying
6636 * target, then it is expected that target will be
6637 * specified with bpf_program__set_attach_target() at
6638 * runtime before BPF object load step. If not, then
6639 * there is nothing to load into the kernel as BPF
6640 * verifier won't be able to validate BPF program
6641 * correctness anyways.
6642 */
6643 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6644 prog->name);
6645 return -EINVAL;
6646 }
6647 attach_name++; /* skip over / */
6648
6649 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6650 if (err)
6651 return err;
6652
6653 /* cache resolved BTF FD and BTF type ID in the prog */
6654 prog->attach_btf_obj_fd = btf_obj_fd;
6655 prog->attach_btf_id = btf_type_id;
6656
6657 /* but by now libbpf common logic is not utilizing
6658 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6659 * this callback is called after opts were populated by
6660 * libbpf, so this callback has to update opts explicitly here
6661 */
6662 opts->attach_btf_obj_fd = btf_obj_fd;
6663 opts->attach_btf_id = btf_type_id;
6664 }
6665 return 0;
6666}
6667
6668static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6669
6670static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6671 struct bpf_insn *insns, int insns_cnt,
6672 const char *license, __u32 kern_version, int *prog_fd)
6673{
6674 LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6675 const char *prog_name = NULL;
6676 char *cp, errmsg[STRERR_BUFSIZE];
6677 size_t log_buf_size = 0;
6678 char *log_buf = NULL, *tmp;
6679 int btf_fd, ret, err;
6680 bool own_log_buf = true;
6681 __u32 log_level = prog->log_level;
6682
6683 if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6684 /*
6685 * The program type must be set. Most likely we couldn't find a proper
6686 * section definition at load time, and thus we didn't infer the type.
6687 */
6688 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6689 prog->name, prog->sec_name);
6690 return -EINVAL;
6691 }
6692
6693 if (!insns || !insns_cnt)
6694 return -EINVAL;
6695
6696 load_attr.expected_attach_type = prog->expected_attach_type;
6697 if (kernel_supports(obj, FEAT_PROG_NAME))
6698 prog_name = prog->name;
6699 load_attr.attach_prog_fd = prog->attach_prog_fd;
6700 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6701 load_attr.attach_btf_id = prog->attach_btf_id;
6702 load_attr.kern_version = kern_version;
6703 load_attr.prog_ifindex = prog->prog_ifindex;
6704
6705 /* specify func_info/line_info only if kernel supports them */
6706 btf_fd = bpf_object__btf_fd(obj);
6707 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6708 load_attr.prog_btf_fd = btf_fd;
6709 load_attr.func_info = prog->func_info;
6710 load_attr.func_info_rec_size = prog->func_info_rec_size;
6711 load_attr.func_info_cnt = prog->func_info_cnt;
6712 load_attr.line_info = prog->line_info;
6713 load_attr.line_info_rec_size = prog->line_info_rec_size;
6714 load_attr.line_info_cnt = prog->line_info_cnt;
6715 }
6716 load_attr.log_level = log_level;
6717 load_attr.prog_flags = prog->prog_flags;
6718 load_attr.fd_array = obj->fd_array;
6719
6720 /* adjust load_attr if sec_def provides custom preload callback */
6721 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6722 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6723 if (err < 0) {
6724 pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6725 prog->name, err);
6726 return err;
6727 }
6728 insns = prog->insns;
6729 insns_cnt = prog->insns_cnt;
6730 }
6731
6732 if (obj->gen_loader) {
6733 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6734 license, insns, insns_cnt, &load_attr,
6735 prog - obj->programs);
6736 *prog_fd = -1;
6737 return 0;
6738 }
6739
6740retry_load:
6741 /* if log_level is zero, we don't request logs initially even if
6742 * custom log_buf is specified; if the program load fails, then we'll
6743 * bump log_level to 1 and use either custom log_buf or we'll allocate
6744 * our own and retry the load to get details on what failed
6745 */
6746 if (log_level) {
6747 if (prog->log_buf) {
6748 log_buf = prog->log_buf;
6749 log_buf_size = prog->log_size;
6750 own_log_buf = false;
6751 } else if (obj->log_buf) {
6752 log_buf = obj->log_buf;
6753 log_buf_size = obj->log_size;
6754 own_log_buf = false;
6755 } else {
6756 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6757 tmp = realloc(log_buf, log_buf_size);
6758 if (!tmp) {
6759 ret = -ENOMEM;
6760 goto out;
6761 }
6762 log_buf = tmp;
6763 log_buf[0] = '\0';
6764 own_log_buf = true;
6765 }
6766 }
6767
6768 load_attr.log_buf = log_buf;
6769 load_attr.log_size = log_buf_size;
6770 load_attr.log_level = log_level;
6771
6772 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6773 if (ret >= 0) {
6774 if (log_level && own_log_buf) {
6775 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6776 prog->name, log_buf);
6777 }
6778
6779 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6780 struct bpf_map *map;
6781 int i;
6782
6783 for (i = 0; i < obj->nr_maps; i++) {
6784 map = &prog->obj->maps[i];
6785 if (map->libbpf_type != LIBBPF_MAP_RODATA)
6786 continue;
6787
6788 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
6789 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6790 pr_warn("prog '%s': failed to bind map '%s': %s\n",
6791 prog->name, map->real_name, cp);
6792 /* Don't fail hard if can't bind rodata. */
6793 }
6794 }
6795 }
6796
6797 *prog_fd = ret;
6798 ret = 0;
6799 goto out;
6800 }
6801
6802 if (log_level == 0) {
6803 log_level = 1;
6804 goto retry_load;
6805 }
6806 /* On ENOSPC, increase log buffer size and retry, unless custom
6807 * log_buf is specified.
6808 * Be careful to not overflow u32, though. Kernel's log buf size limit
6809 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
6810 * multiply by 2 unless we are sure we'll fit within 32 bits.
6811 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
6812 */
6813 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
6814 goto retry_load;
6815
6816 ret = -errno;
6817
6818 /* post-process verifier log to improve error descriptions */
6819 fixup_verifier_log(prog, log_buf, log_buf_size);
6820
6821 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6822 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
6823 pr_perm_msg(ret);
6824
6825 if (own_log_buf && log_buf && log_buf[0] != '\0') {
6826 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6827 prog->name, log_buf);
6828 }
6829
6830out:
6831 if (own_log_buf)
6832 free(log_buf);
6833 return ret;
6834}
6835
6836static char *find_prev_line(char *buf, char *cur)
6837{
6838 char *p;
6839
6840 if (cur == buf) /* end of a log buf */
6841 return NULL;
6842
6843 p = cur - 1;
6844 while (p - 1 >= buf && *(p - 1) != '\n')
6845 p--;
6846
6847 return p;
6848}
6849
6850static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
6851 char *orig, size_t orig_sz, const char *patch)
6852{
6853 /* size of the remaining log content to the right from the to-be-replaced part */
6854 size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
6855 size_t patch_sz = strlen(patch);
6856
6857 if (patch_sz != orig_sz) {
6858 /* If patch line(s) are longer than original piece of verifier log,
6859 * shift log contents by (patch_sz - orig_sz) bytes to the right
6860 * starting from after to-be-replaced part of the log.
6861 *
6862 * If patch line(s) are shorter than original piece of verifier log,
6863 * shift log contents by (orig_sz - patch_sz) bytes to the left
6864 * starting from after to-be-replaced part of the log
6865 *
6866 * We need to be careful about not overflowing available
6867 * buf_sz capacity. If that's the case, we'll truncate the end
6868 * of the original log, as necessary.
6869 */
6870 if (patch_sz > orig_sz) {
6871 if (orig + patch_sz >= buf + buf_sz) {
6872 /* patch is big enough to cover remaining space completely */
6873 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
6874 rem_sz = 0;
6875 } else if (patch_sz - orig_sz > buf_sz - log_sz) {
6876 /* patch causes part of remaining log to be truncated */
6877 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
6878 }
6879 }
6880 /* shift remaining log to the right by calculated amount */
6881 memmove(orig + patch_sz, orig + orig_sz, rem_sz);
6882 }
6883
6884 memcpy(orig, patch, patch_sz);
6885}
6886
6887static void fixup_log_failed_core_relo(struct bpf_program *prog,
6888 char *buf, size_t buf_sz, size_t log_sz,
6889 char *line1, char *line2, char *line3)
6890{
6891 /* Expected log for failed and not properly guarded CO-RE relocation:
6892 * line1 -> 123: (85) call unknown#195896080
6893 * line2 -> invalid func unknown#195896080
6894 * line3 -> <anything else or end of buffer>
6895 *
6896 * "123" is the index of the instruction that was poisoned. We extract
6897 * instruction index to find corresponding CO-RE relocation and
6898 * replace this part of the log with more relevant information about
6899 * failed CO-RE relocation.
6900 */
6901 const struct bpf_core_relo *relo;
6902 struct bpf_core_spec spec;
6903 char patch[512], spec_buf[256];
6904 int insn_idx, err, spec_len;
6905
6906 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
6907 return;
6908
6909 relo = find_relo_core(prog, insn_idx);
6910 if (!relo)
6911 return;
6912
6913 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
6914 if (err)
6915 return;
6916
6917 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
6918 snprintf(patch, sizeof(patch),
6919 "%d: <invalid CO-RE relocation>\n"
6920 "failed to resolve CO-RE relocation %s%s\n",
6921 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
6922
6923 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
6924}
6925
6926static void fixup_log_missing_map_load(struct bpf_program *prog,
6927 char *buf, size_t buf_sz, size_t log_sz,
6928 char *line1, char *line2, char *line3)
6929{
6930 /* Expected log for failed and not properly guarded CO-RE relocation:
6931 * line1 -> 123: (85) call unknown#2001000345
6932 * line2 -> invalid func unknown#2001000345
6933 * line3 -> <anything else or end of buffer>
6934 *
6935 * "123" is the index of the instruction that was poisoned.
6936 * "345" in "2001000345" are map index in obj->maps to fetch map name.
6937 */
6938 struct bpf_object *obj = prog->obj;
6939 const struct bpf_map *map;
6940 int insn_idx, map_idx;
6941 char patch[128];
6942
6943 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
6944 return;
6945
6946 map_idx -= MAP_LDIMM64_POISON_BASE;
6947 if (map_idx < 0 || map_idx >= obj->nr_maps)
6948 return;
6949 map = &obj->maps[map_idx];
6950
6951 snprintf(patch, sizeof(patch),
6952 "%d: <invalid BPF map reference>\n"
6953 "BPF map '%s' is referenced but wasn't created\n",
6954 insn_idx, map->name);
6955
6956 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
6957}
6958
6959static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
6960{
6961 /* look for familiar error patterns in last N lines of the log */
6962 const size_t max_last_line_cnt = 10;
6963 char *prev_line, *cur_line, *next_line;
6964 size_t log_sz;
6965 int i;
6966
6967 if (!buf)
6968 return;
6969
6970 log_sz = strlen(buf) + 1;
6971 next_line = buf + log_sz - 1;
6972
6973 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
6974 cur_line = find_prev_line(buf, next_line);
6975 if (!cur_line)
6976 return;
6977
6978 /* failed CO-RE relocation case */
6979 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
6980 prev_line = find_prev_line(buf, cur_line);
6981 if (!prev_line)
6982 continue;
6983
6984 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
6985 prev_line, cur_line, next_line);
6986 return;
6987 } else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) {
6988 prev_line = find_prev_line(buf, cur_line);
6989 if (!prev_line)
6990 continue;
6991
6992 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
6993 prev_line, cur_line, next_line);
6994 return;
6995 }
6996 }
6997}
6998
6999static int bpf_program_record_relos(struct bpf_program *prog)
7000{
7001 struct bpf_object *obj = prog->obj;
7002 int i;
7003
7004 for (i = 0; i < prog->nr_reloc; i++) {
7005 struct reloc_desc *relo = &prog->reloc_desc[i];
7006 struct extern_desc *ext = &obj->externs[relo->sym_off];
7007
7008 switch (relo->type) {
7009 case RELO_EXTERN_VAR:
7010 if (ext->type != EXT_KSYM)
7011 continue;
7012 bpf_gen__record_extern(obj->gen_loader, ext->name,
7013 ext->is_weak, !ext->ksym.type_id,
7014 BTF_KIND_VAR, relo->insn_idx);
7015 break;
7016 case RELO_EXTERN_FUNC:
7017 bpf_gen__record_extern(obj->gen_loader, ext->name,
7018 ext->is_weak, false, BTF_KIND_FUNC,
7019 relo->insn_idx);
7020 break;
7021 case RELO_CORE: {
7022 struct bpf_core_relo cr = {
7023 .insn_off = relo->insn_idx * 8,
7024 .type_id = relo->core_relo->type_id,
7025 .access_str_off = relo->core_relo->access_str_off,
7026 .kind = relo->core_relo->kind,
7027 };
7028
7029 bpf_gen__record_relo_core(obj->gen_loader, &cr);
7030 break;
7031 }
7032 default:
7033 continue;
7034 }
7035 }
7036 return 0;
7037}
7038
7039static int
7040bpf_object__load_progs(struct bpf_object *obj, int log_level)
7041{
7042 struct bpf_program *prog;
7043 size_t i;
7044 int err;
7045
7046 for (i = 0; i < obj->nr_programs; i++) {
7047 prog = &obj->programs[i];
7048 err = bpf_object__sanitize_prog(obj, prog);
7049 if (err)
7050 return err;
7051 }
7052
7053 for (i = 0; i < obj->nr_programs; i++) {
7054 prog = &obj->programs[i];
7055 if (prog_is_subprog(obj, prog))
7056 continue;
7057 if (!prog->autoload) {
7058 pr_debug("prog '%s': skipped loading\n", prog->name);
7059 continue;
7060 }
7061 prog->log_level |= log_level;
7062
7063 if (obj->gen_loader)
7064 bpf_program_record_relos(prog);
7065
7066 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7067 obj->license, obj->kern_version, &prog->fd);
7068 if (err) {
7069 pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7070 return err;
7071 }
7072 }
7073
7074 bpf_object__free_relocs(obj);
7075 return 0;
7076}
7077
7078static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7079
7080static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7081{
7082 struct bpf_program *prog;
7083 int err;
7084
7085 bpf_object__for_each_program(prog, obj) {
7086 prog->sec_def = find_sec_def(prog->sec_name);
7087 if (!prog->sec_def) {
7088 /* couldn't guess, but user might manually specify */
7089 pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7090 prog->name, prog->sec_name);
7091 continue;
7092 }
7093
7094 prog->type = prog->sec_def->prog_type;
7095 prog->expected_attach_type = prog->sec_def->expected_attach_type;
7096
7097 /* sec_def can have custom callback which should be called
7098 * after bpf_program is initialized to adjust its properties
7099 */
7100 if (prog->sec_def->prog_setup_fn) {
7101 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7102 if (err < 0) {
7103 pr_warn("prog '%s': failed to initialize: %d\n",
7104 prog->name, err);
7105 return err;
7106 }
7107 }
7108 }
7109
7110 return 0;
7111}
7112
7113static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7114 const struct bpf_object_open_opts *opts)
7115{
7116 const char *obj_name, *kconfig, *btf_tmp_path;
7117 struct bpf_object *obj;
7118 char tmp_name[64];
7119 int err;
7120 char *log_buf;
7121 size_t log_size;
7122 __u32 log_level;
7123
7124 if (elf_version(EV_CURRENT) == EV_NONE) {
7125 pr_warn("failed to init libelf for %s\n",
7126 path ? : "(mem buf)");
7127 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7128 }
7129
7130 if (!OPTS_VALID(opts, bpf_object_open_opts))
7131 return ERR_PTR(-EINVAL);
7132
7133 obj_name = OPTS_GET(opts, object_name, NULL);
7134 if (obj_buf) {
7135 if (!obj_name) {
7136 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7137 (unsigned long)obj_buf,
7138 (unsigned long)obj_buf_sz);
7139 obj_name = tmp_name;
7140 }
7141 path = obj_name;
7142 pr_debug("loading object '%s' from buffer\n", obj_name);
7143 }
7144
7145 log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7146 log_size = OPTS_GET(opts, kernel_log_size, 0);
7147 log_level = OPTS_GET(opts, kernel_log_level, 0);
7148 if (log_size > UINT_MAX)
7149 return ERR_PTR(-EINVAL);
7150 if (log_size && !log_buf)
7151 return ERR_PTR(-EINVAL);
7152
7153 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7154 if (IS_ERR(obj))
7155 return obj;
7156
7157 obj->log_buf = log_buf;
7158 obj->log_size = log_size;
7159 obj->log_level = log_level;
7160
7161 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7162 if (btf_tmp_path) {
7163 if (strlen(btf_tmp_path) >= PATH_MAX) {
7164 err = -ENAMETOOLONG;
7165 goto out;
7166 }
7167 obj->btf_custom_path = strdup(btf_tmp_path);
7168 if (!obj->btf_custom_path) {
7169 err = -ENOMEM;
7170 goto out;
7171 }
7172 }
7173
7174 kconfig = OPTS_GET(opts, kconfig, NULL);
7175 if (kconfig) {
7176 obj->kconfig = strdup(kconfig);
7177 if (!obj->kconfig) {
7178 err = -ENOMEM;
7179 goto out;
7180 }
7181 }
7182
7183 err = bpf_object__elf_init(obj);
7184 err = err ? : bpf_object__check_endianness(obj);
7185 err = err ? : bpf_object__elf_collect(obj);
7186 err = err ? : bpf_object__collect_externs(obj);
7187 err = err ? : bpf_object__finalize_btf(obj);
7188 err = err ? : bpf_object__init_maps(obj, opts);
7189 err = err ? : bpf_object_init_progs(obj, opts);
7190 err = err ? : bpf_object__collect_relos(obj);
7191 if (err)
7192 goto out;
7193
7194 bpf_object__elf_finish(obj);
7195
7196 return obj;
7197out:
7198 bpf_object__close(obj);
7199 return ERR_PTR(err);
7200}
7201
7202struct bpf_object *
7203bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7204{
7205 if (!path)
7206 return libbpf_err_ptr(-EINVAL);
7207
7208 pr_debug("loading %s\n", path);
7209
7210 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7211}
7212
7213struct bpf_object *bpf_object__open(const char *path)
7214{
7215 return bpf_object__open_file(path, NULL);
7216}
7217
7218struct bpf_object *
7219bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7220 const struct bpf_object_open_opts *opts)
7221{
7222 if (!obj_buf || obj_buf_sz == 0)
7223 return libbpf_err_ptr(-EINVAL);
7224
7225 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7226}
7227
7228static int bpf_object_unload(struct bpf_object *obj)
7229{
7230 size_t i;
7231
7232 if (!obj)
7233 return libbpf_err(-EINVAL);
7234
7235 for (i = 0; i < obj->nr_maps; i++) {
7236 zclose(obj->maps[i].fd);
7237 if (obj->maps[i].st_ops)
7238 zfree(&obj->maps[i].st_ops->kern_vdata);
7239 }
7240
7241 for (i = 0; i < obj->nr_programs; i++)
7242 bpf_program__unload(&obj->programs[i]);
7243
7244 return 0;
7245}
7246
7247int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload")));
7248
7249static int bpf_object__sanitize_maps(struct bpf_object *obj)
7250{
7251 struct bpf_map *m;
7252
7253 bpf_object__for_each_map(m, obj) {
7254 if (!bpf_map__is_internal(m))
7255 continue;
7256 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7257 m->def.map_flags ^= BPF_F_MMAPABLE;
7258 }
7259
7260 return 0;
7261}
7262
7263int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7264{
7265 char sym_type, sym_name[500];
7266 unsigned long long sym_addr;
7267 int ret, err = 0;
7268 FILE *f;
7269
7270 f = fopen("/proc/kallsyms", "r");
7271 if (!f) {
7272 err = -errno;
7273 pr_warn("failed to open /proc/kallsyms: %d\n", err);
7274 return err;
7275 }
7276
7277 while (true) {
7278 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7279 &sym_addr, &sym_type, sym_name);
7280 if (ret == EOF && feof(f))
7281 break;
7282 if (ret != 3) {
7283 pr_warn("failed to read kallsyms entry: %d\n", ret);
7284 err = -EINVAL;
7285 break;
7286 }
7287
7288 err = cb(sym_addr, sym_type, sym_name, ctx);
7289 if (err)
7290 break;
7291 }
7292
7293 fclose(f);
7294 return err;
7295}
7296
7297static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7298 const char *sym_name, void *ctx)
7299{
7300 struct bpf_object *obj = ctx;
7301 const struct btf_type *t;
7302 struct extern_desc *ext;
7303
7304 ext = find_extern_by_name(obj, sym_name);
7305 if (!ext || ext->type != EXT_KSYM)
7306 return 0;
7307
7308 t = btf__type_by_id(obj->btf, ext->btf_id);
7309 if (!btf_is_var(t))
7310 return 0;
7311
7312 if (ext->is_set && ext->ksym.addr != sym_addr) {
7313 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7314 sym_name, ext->ksym.addr, sym_addr);
7315 return -EINVAL;
7316 }
7317 if (!ext->is_set) {
7318 ext->is_set = true;
7319 ext->ksym.addr = sym_addr;
7320 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7321 }
7322 return 0;
7323}
7324
7325static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7326{
7327 return libbpf_kallsyms_parse(kallsyms_cb, obj);
7328}
7329
7330static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7331 __u16 kind, struct btf **res_btf,
7332 struct module_btf **res_mod_btf)
7333{
7334 struct module_btf *mod_btf;
7335 struct btf *btf;
7336 int i, id, err;
7337
7338 btf = obj->btf_vmlinux;
7339 mod_btf = NULL;
7340 id = btf__find_by_name_kind(btf, ksym_name, kind);
7341
7342 if (id == -ENOENT) {
7343 err = load_module_btfs(obj);
7344 if (err)
7345 return err;
7346
7347 for (i = 0; i < obj->btf_module_cnt; i++) {
7348 /* we assume module_btf's BTF FD is always >0 */
7349 mod_btf = &obj->btf_modules[i];
7350 btf = mod_btf->btf;
7351 id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7352 if (id != -ENOENT)
7353 break;
7354 }
7355 }
7356 if (id <= 0)
7357 return -ESRCH;
7358
7359 *res_btf = btf;
7360 *res_mod_btf = mod_btf;
7361 return id;
7362}
7363
7364static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7365 struct extern_desc *ext)
7366{
7367 const struct btf_type *targ_var, *targ_type;
7368 __u32 targ_type_id, local_type_id;
7369 struct module_btf *mod_btf = NULL;
7370 const char *targ_var_name;
7371 struct btf *btf = NULL;
7372 int id, err;
7373
7374 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7375 if (id < 0) {
7376 if (id == -ESRCH && ext->is_weak)
7377 return 0;
7378 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7379 ext->name);
7380 return id;
7381 }
7382
7383 /* find local type_id */
7384 local_type_id = ext->ksym.type_id;
7385
7386 /* find target type_id */
7387 targ_var = btf__type_by_id(btf, id);
7388 targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7389 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7390
7391 err = bpf_core_types_are_compat(obj->btf, local_type_id,
7392 btf, targ_type_id);
7393 if (err <= 0) {
7394 const struct btf_type *local_type;
7395 const char *targ_name, *local_name;
7396
7397 local_type = btf__type_by_id(obj->btf, local_type_id);
7398 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7399 targ_name = btf__name_by_offset(btf, targ_type->name_off);
7400
7401 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7402 ext->name, local_type_id,
7403 btf_kind_str(local_type), local_name, targ_type_id,
7404 btf_kind_str(targ_type), targ_name);
7405 return -EINVAL;
7406 }
7407
7408 ext->is_set = true;
7409 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7410 ext->ksym.kernel_btf_id = id;
7411 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7412 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7413
7414 return 0;
7415}
7416
7417static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7418 struct extern_desc *ext)
7419{
7420 int local_func_proto_id, kfunc_proto_id, kfunc_id;
7421 struct module_btf *mod_btf = NULL;
7422 const struct btf_type *kern_func;
7423 struct btf *kern_btf = NULL;
7424 int ret;
7425
7426 local_func_proto_id = ext->ksym.type_id;
7427
7428 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf);
7429 if (kfunc_id < 0) {
7430 if (kfunc_id == -ESRCH && ext->is_weak)
7431 return 0;
7432 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7433 ext->name);
7434 return kfunc_id;
7435 }
7436
7437 kern_func = btf__type_by_id(kern_btf, kfunc_id);
7438 kfunc_proto_id = kern_func->type;
7439
7440 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7441 kern_btf, kfunc_proto_id);
7442 if (ret <= 0) {
7443 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n",
7444 ext->name, local_func_proto_id, kfunc_proto_id);
7445 return -EINVAL;
7446 }
7447
7448 /* set index for module BTF fd in fd_array, if unset */
7449 if (mod_btf && !mod_btf->fd_array_idx) {
7450 /* insn->off is s16 */
7451 if (obj->fd_array_cnt == INT16_MAX) {
7452 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7453 ext->name, mod_btf->fd_array_idx);
7454 return -E2BIG;
7455 }
7456 /* Cannot use index 0 for module BTF fd */
7457 if (!obj->fd_array_cnt)
7458 obj->fd_array_cnt = 1;
7459
7460 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7461 obj->fd_array_cnt + 1);
7462 if (ret)
7463 return ret;
7464 mod_btf->fd_array_idx = obj->fd_array_cnt;
7465 /* we assume module BTF FD is always >0 */
7466 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7467 }
7468
7469 ext->is_set = true;
7470 ext->ksym.kernel_btf_id = kfunc_id;
7471 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7472 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n",
7473 ext->name, kfunc_id);
7474
7475 return 0;
7476}
7477
7478static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7479{
7480 const struct btf_type *t;
7481 struct extern_desc *ext;
7482 int i, err;
7483
7484 for (i = 0; i < obj->nr_extern; i++) {
7485 ext = &obj->externs[i];
7486 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7487 continue;
7488
7489 if (obj->gen_loader) {
7490 ext->is_set = true;
7491 ext->ksym.kernel_btf_obj_fd = 0;
7492 ext->ksym.kernel_btf_id = 0;
7493 continue;
7494 }
7495 t = btf__type_by_id(obj->btf, ext->btf_id);
7496 if (btf_is_var(t))
7497 err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7498 else
7499 err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7500 if (err)
7501 return err;
7502 }
7503 return 0;
7504}
7505
7506static int bpf_object__resolve_externs(struct bpf_object *obj,
7507 const char *extra_kconfig)
7508{
7509 bool need_config = false, need_kallsyms = false;
7510 bool need_vmlinux_btf = false;
7511 struct extern_desc *ext;
7512 void *kcfg_data = NULL;
7513 int err, i;
7514
7515 if (obj->nr_extern == 0)
7516 return 0;
7517
7518 if (obj->kconfig_map_idx >= 0)
7519 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7520
7521 for (i = 0; i < obj->nr_extern; i++) {
7522 ext = &obj->externs[i];
7523
7524 if (ext->type == EXT_KSYM) {
7525 if (ext->ksym.type_id)
7526 need_vmlinux_btf = true;
7527 else
7528 need_kallsyms = true;
7529 continue;
7530 } else if (ext->type == EXT_KCFG) {
7531 void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7532 __u64 value = 0;
7533
7534 /* Kconfig externs need actual /proc/config.gz */
7535 if (str_has_pfx(ext->name, "CONFIG_")) {
7536 need_config = true;
7537 continue;
7538 }
7539
7540 /* Virtual kcfg externs are customly handled by libbpf */
7541 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7542 value = get_kernel_version();
7543 if (!value) {
7544 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7545 return -EINVAL;
7546 }
7547 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7548 value = kernel_supports(obj, FEAT_BPF_COOKIE);
7549 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7550 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7551 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7552 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7553 * __kconfig externs, where LINUX_ ones are virtual and filled out
7554 * customly by libbpf (their values don't come from Kconfig).
7555 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7556 * __weak, it defaults to zero value, just like for CONFIG_xxx
7557 * externs.
7558 */
7559 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7560 return -EINVAL;
7561 }
7562
7563 err = set_kcfg_value_num(ext, ext_ptr, value);
7564 if (err)
7565 return err;
7566 pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7567 ext->name, (long long)value);
7568 } else {
7569 pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7570 return -EINVAL;
7571 }
7572 }
7573 if (need_config && extra_kconfig) {
7574 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7575 if (err)
7576 return -EINVAL;
7577 need_config = false;
7578 for (i = 0; i < obj->nr_extern; i++) {
7579 ext = &obj->externs[i];
7580 if (ext->type == EXT_KCFG && !ext->is_set) {
7581 need_config = true;
7582 break;
7583 }
7584 }
7585 }
7586 if (need_config) {
7587 err = bpf_object__read_kconfig_file(obj, kcfg_data);
7588 if (err)
7589 return -EINVAL;
7590 }
7591 if (need_kallsyms) {
7592 err = bpf_object__read_kallsyms_file(obj);
7593 if (err)
7594 return -EINVAL;
7595 }
7596 if (need_vmlinux_btf) {
7597 err = bpf_object__resolve_ksyms_btf_id(obj);
7598 if (err)
7599 return -EINVAL;
7600 }
7601 for (i = 0; i < obj->nr_extern; i++) {
7602 ext = &obj->externs[i];
7603
7604 if (!ext->is_set && !ext->is_weak) {
7605 pr_warn("extern '%s' (strong): not resolved\n", ext->name);
7606 return -ESRCH;
7607 } else if (!ext->is_set) {
7608 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
7609 ext->name);
7610 }
7611 }
7612
7613 return 0;
7614}
7615
7616static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7617{
7618 int err, i;
7619
7620 if (!obj)
7621 return libbpf_err(-EINVAL);
7622
7623 if (obj->loaded) {
7624 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7625 return libbpf_err(-EINVAL);
7626 }
7627
7628 if (obj->gen_loader)
7629 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7630
7631 err = bpf_object__probe_loading(obj);
7632 err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7633 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7634 err = err ? : bpf_object__sanitize_and_load_btf(obj);
7635 err = err ? : bpf_object__sanitize_maps(obj);
7636 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7637 err = err ? : bpf_object__create_maps(obj);
7638 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7639 err = err ? : bpf_object__load_progs(obj, extra_log_level);
7640 err = err ? : bpf_object_init_prog_arrays(obj);
7641
7642 if (obj->gen_loader) {
7643 /* reset FDs */
7644 if (obj->btf)
7645 btf__set_fd(obj->btf, -1);
7646 for (i = 0; i < obj->nr_maps; i++)
7647 obj->maps[i].fd = -1;
7648 if (!err)
7649 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7650 }
7651
7652 /* clean up fd_array */
7653 zfree(&obj->fd_array);
7654
7655 /* clean up module BTFs */
7656 for (i = 0; i < obj->btf_module_cnt; i++) {
7657 close(obj->btf_modules[i].fd);
7658 btf__free(obj->btf_modules[i].btf);
7659 free(obj->btf_modules[i].name);
7660 }
7661 free(obj->btf_modules);
7662
7663 /* clean up vmlinux BTF */
7664 btf__free(obj->btf_vmlinux);
7665 obj->btf_vmlinux = NULL;
7666
7667 obj->loaded = true; /* doesn't matter if successfully or not */
7668
7669 if (err)
7670 goto out;
7671
7672 return 0;
7673out:
7674 /* unpin any maps that were auto-pinned during load */
7675 for (i = 0; i < obj->nr_maps; i++)
7676 if (obj->maps[i].pinned && !obj->maps[i].reused)
7677 bpf_map__unpin(&obj->maps[i], NULL);
7678
7679 bpf_object_unload(obj);
7680 pr_warn("failed to load object '%s'\n", obj->path);
7681 return libbpf_err(err);
7682}
7683
7684int bpf_object__load(struct bpf_object *obj)
7685{
7686 return bpf_object_load(obj, 0, NULL);
7687}
7688
7689static int make_parent_dir(const char *path)
7690{
7691 char *cp, errmsg[STRERR_BUFSIZE];
7692 char *dname, *dir;
7693 int err = 0;
7694
7695 dname = strdup(path);
7696 if (dname == NULL)
7697 return -ENOMEM;
7698
7699 dir = dirname(dname);
7700 if (mkdir(dir, 0700) && errno != EEXIST)
7701 err = -errno;
7702
7703 free(dname);
7704 if (err) {
7705 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7706 pr_warn("failed to mkdir %s: %s\n", path, cp);
7707 }
7708 return err;
7709}
7710
7711static int check_path(const char *path)
7712{
7713 char *cp, errmsg[STRERR_BUFSIZE];
7714 struct statfs st_fs;
7715 char *dname, *dir;
7716 int err = 0;
7717
7718 if (path == NULL)
7719 return -EINVAL;
7720
7721 dname = strdup(path);
7722 if (dname == NULL)
7723 return -ENOMEM;
7724
7725 dir = dirname(dname);
7726 if (statfs(dir, &st_fs)) {
7727 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7728 pr_warn("failed to statfs %s: %s\n", dir, cp);
7729 err = -errno;
7730 }
7731 free(dname);
7732
7733 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7734 pr_warn("specified path %s is not on BPF FS\n", path);
7735 err = -EINVAL;
7736 }
7737
7738 return err;
7739}
7740
7741int bpf_program__pin(struct bpf_program *prog, const char *path)
7742{
7743 char *cp, errmsg[STRERR_BUFSIZE];
7744 int err;
7745
7746 if (prog->fd < 0) {
7747 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
7748 return libbpf_err(-EINVAL);
7749 }
7750
7751 err = make_parent_dir(path);
7752 if (err)
7753 return libbpf_err(err);
7754
7755 err = check_path(path);
7756 if (err)
7757 return libbpf_err(err);
7758
7759 if (bpf_obj_pin(prog->fd, path)) {
7760 err = -errno;
7761 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7762 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
7763 return libbpf_err(err);
7764 }
7765
7766 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
7767 return 0;
7768}
7769
7770int bpf_program__unpin(struct bpf_program *prog, const char *path)
7771{
7772 int err;
7773
7774 if (prog->fd < 0) {
7775 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
7776 return libbpf_err(-EINVAL);
7777 }
7778
7779 err = check_path(path);
7780 if (err)
7781 return libbpf_err(err);
7782
7783 err = unlink(path);
7784 if (err)
7785 return libbpf_err(-errno);
7786
7787 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
7788 return 0;
7789}
7790
7791int bpf_map__pin(struct bpf_map *map, const char *path)
7792{
7793 char *cp, errmsg[STRERR_BUFSIZE];
7794 int err;
7795
7796 if (map == NULL) {
7797 pr_warn("invalid map pointer\n");
7798 return libbpf_err(-EINVAL);
7799 }
7800
7801 if (map->pin_path) {
7802 if (path && strcmp(path, map->pin_path)) {
7803 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7804 bpf_map__name(map), map->pin_path, path);
7805 return libbpf_err(-EINVAL);
7806 } else if (map->pinned) {
7807 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7808 bpf_map__name(map), map->pin_path);
7809 return 0;
7810 }
7811 } else {
7812 if (!path) {
7813 pr_warn("missing a path to pin map '%s' at\n",
7814 bpf_map__name(map));
7815 return libbpf_err(-EINVAL);
7816 } else if (map->pinned) {
7817 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7818 return libbpf_err(-EEXIST);
7819 }
7820
7821 map->pin_path = strdup(path);
7822 if (!map->pin_path) {
7823 err = -errno;
7824 goto out_err;
7825 }
7826 }
7827
7828 err = make_parent_dir(map->pin_path);
7829 if (err)
7830 return libbpf_err(err);
7831
7832 err = check_path(map->pin_path);
7833 if (err)
7834 return libbpf_err(err);
7835
7836 if (bpf_obj_pin(map->fd, map->pin_path)) {
7837 err = -errno;
7838 goto out_err;
7839 }
7840
7841 map->pinned = true;
7842 pr_debug("pinned map '%s'\n", map->pin_path);
7843
7844 return 0;
7845
7846out_err:
7847 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7848 pr_warn("failed to pin map: %s\n", cp);
7849 return libbpf_err(err);
7850}
7851
7852int bpf_map__unpin(struct bpf_map *map, const char *path)
7853{
7854 int err;
7855
7856 if (map == NULL) {
7857 pr_warn("invalid map pointer\n");
7858 return libbpf_err(-EINVAL);
7859 }
7860
7861 if (map->pin_path) {
7862 if (path && strcmp(path, map->pin_path)) {
7863 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7864 bpf_map__name(map), map->pin_path, path);
7865 return libbpf_err(-EINVAL);
7866 }
7867 path = map->pin_path;
7868 } else if (!path) {
7869 pr_warn("no path to unpin map '%s' from\n",
7870 bpf_map__name(map));
7871 return libbpf_err(-EINVAL);
7872 }
7873
7874 err = check_path(path);
7875 if (err)
7876 return libbpf_err(err);
7877
7878 err = unlink(path);
7879 if (err != 0)
7880 return libbpf_err(-errno);
7881
7882 map->pinned = false;
7883 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7884
7885 return 0;
7886}
7887
7888int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7889{
7890 char *new = NULL;
7891
7892 if (path) {
7893 new = strdup(path);
7894 if (!new)
7895 return libbpf_err(-errno);
7896 }
7897
7898 free(map->pin_path);
7899 map->pin_path = new;
7900 return 0;
7901}
7902
7903__alias(bpf_map__pin_path)
7904const char *bpf_map__get_pin_path(const struct bpf_map *map);
7905
7906const char *bpf_map__pin_path(const struct bpf_map *map)
7907{
7908 return map->pin_path;
7909}
7910
7911bool bpf_map__is_pinned(const struct bpf_map *map)
7912{
7913 return map->pinned;
7914}
7915
7916static void sanitize_pin_path(char *s)
7917{
7918 /* bpffs disallows periods in path names */
7919 while (*s) {
7920 if (*s == '.')
7921 *s = '_';
7922 s++;
7923 }
7924}
7925
7926int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7927{
7928 struct bpf_map *map;
7929 int err;
7930
7931 if (!obj)
7932 return libbpf_err(-ENOENT);
7933
7934 if (!obj->loaded) {
7935 pr_warn("object not yet loaded; load it first\n");
7936 return libbpf_err(-ENOENT);
7937 }
7938
7939 bpf_object__for_each_map(map, obj) {
7940 char *pin_path = NULL;
7941 char buf[PATH_MAX];
7942
7943 if (!map->autocreate)
7944 continue;
7945
7946 if (path) {
7947 int len;
7948
7949 len = snprintf(buf, PATH_MAX, "%s/%s", path,
7950 bpf_map__name(map));
7951 if (len < 0) {
7952 err = -EINVAL;
7953 goto err_unpin_maps;
7954 } else if (len >= PATH_MAX) {
7955 err = -ENAMETOOLONG;
7956 goto err_unpin_maps;
7957 }
7958 sanitize_pin_path(buf);
7959 pin_path = buf;
7960 } else if (!map->pin_path) {
7961 continue;
7962 }
7963
7964 err = bpf_map__pin(map, pin_path);
7965 if (err)
7966 goto err_unpin_maps;
7967 }
7968
7969 return 0;
7970
7971err_unpin_maps:
7972 while ((map = bpf_object__prev_map(obj, map))) {
7973 if (!map->pin_path)
7974 continue;
7975
7976 bpf_map__unpin(map, NULL);
7977 }
7978
7979 return libbpf_err(err);
7980}
7981
7982int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
7983{
7984 struct bpf_map *map;
7985 int err;
7986
7987 if (!obj)
7988 return libbpf_err(-ENOENT);
7989
7990 bpf_object__for_each_map(map, obj) {
7991 char *pin_path = NULL;
7992 char buf[PATH_MAX];
7993
7994 if (path) {
7995 int len;
7996
7997 len = snprintf(buf, PATH_MAX, "%s/%s", path,
7998 bpf_map__name(map));
7999 if (len < 0)
8000 return libbpf_err(-EINVAL);
8001 else if (len >= PATH_MAX)
8002 return libbpf_err(-ENAMETOOLONG);
8003 sanitize_pin_path(buf);
8004 pin_path = buf;
8005 } else if (!map->pin_path) {
8006 continue;
8007 }
8008
8009 err = bpf_map__unpin(map, pin_path);
8010 if (err)
8011 return libbpf_err(err);
8012 }
8013
8014 return 0;
8015}
8016
8017int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8018{
8019 struct bpf_program *prog;
8020 int err;
8021
8022 if (!obj)
8023 return libbpf_err(-ENOENT);
8024
8025 if (!obj->loaded) {
8026 pr_warn("object not yet loaded; load it first\n");
8027 return libbpf_err(-ENOENT);
8028 }
8029
8030 bpf_object__for_each_program(prog, obj) {
8031 char buf[PATH_MAX];
8032 int len;
8033
8034 len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->name);
8035 if (len < 0) {
8036 err = -EINVAL;
8037 goto err_unpin_programs;
8038 } else if (len >= PATH_MAX) {
8039 err = -ENAMETOOLONG;
8040 goto err_unpin_programs;
8041 }
8042
8043 err = bpf_program__pin(prog, buf);
8044 if (err)
8045 goto err_unpin_programs;
8046 }
8047
8048 return 0;
8049
8050err_unpin_programs:
8051 while ((prog = bpf_object__prev_program(obj, prog))) {
8052 char buf[PATH_MAX];
8053 int len;
8054
8055 len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->name);
8056 if (len < 0)
8057 continue;
8058 else if (len >= PATH_MAX)
8059 continue;
8060
8061 bpf_program__unpin(prog, buf);
8062 }
8063
8064 return libbpf_err(err);
8065}
8066
8067int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8068{
8069 struct bpf_program *prog;
8070 int err;
8071
8072 if (!obj)
8073 return libbpf_err(-ENOENT);
8074
8075 bpf_object__for_each_program(prog, obj) {
8076 char buf[PATH_MAX];
8077 int len;
8078
8079 len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->name);
8080 if (len < 0)
8081 return libbpf_err(-EINVAL);
8082 else if (len >= PATH_MAX)
8083 return libbpf_err(-ENAMETOOLONG);
8084
8085 err = bpf_program__unpin(prog, buf);
8086 if (err)
8087 return libbpf_err(err);
8088 }
8089
8090 return 0;
8091}
8092
8093int bpf_object__pin(struct bpf_object *obj, const char *path)
8094{
8095 int err;
8096
8097 err = bpf_object__pin_maps(obj, path);
8098 if (err)
8099 return libbpf_err(err);
8100
8101 err = bpf_object__pin_programs(obj, path);
8102 if (err) {
8103 bpf_object__unpin_maps(obj, path);
8104 return libbpf_err(err);
8105 }
8106
8107 return 0;
8108}
8109
8110static void bpf_map__destroy(struct bpf_map *map)
8111{
8112 if (map->inner_map) {
8113 bpf_map__destroy(map->inner_map);
8114 zfree(&map->inner_map);
8115 }
8116
8117 zfree(&map->init_slots);
8118 map->init_slots_sz = 0;
8119
8120 if (map->mmaped) {
8121 munmap(map->mmaped, bpf_map_mmap_sz(map));
8122 map->mmaped = NULL;
8123 }
8124
8125 if (map->st_ops) {
8126 zfree(&map->st_ops->data);
8127 zfree(&map->st_ops->progs);
8128 zfree(&map->st_ops->kern_func_off);
8129 zfree(&map->st_ops);
8130 }
8131
8132 zfree(&map->name);
8133 zfree(&map->real_name);
8134 zfree(&map->pin_path);
8135
8136 if (map->fd >= 0)
8137 zclose(map->fd);
8138}
8139
8140void bpf_object__close(struct bpf_object *obj)
8141{
8142 size_t i;
8143
8144 if (IS_ERR_OR_NULL(obj))
8145 return;
8146
8147 usdt_manager_free(obj->usdt_man);
8148 obj->usdt_man = NULL;
8149
8150 bpf_gen__free(obj->gen_loader);
8151 bpf_object__elf_finish(obj);
8152 bpf_object_unload(obj);
8153 btf__free(obj->btf);
8154 btf_ext__free(obj->btf_ext);
8155
8156 for (i = 0; i < obj->nr_maps; i++)
8157 bpf_map__destroy(&obj->maps[i]);
8158
8159 zfree(&obj->btf_custom_path);
8160 zfree(&obj->kconfig);
8161 zfree(&obj->externs);
8162 obj->nr_extern = 0;
8163
8164 zfree(&obj->maps);
8165 obj->nr_maps = 0;
8166
8167 if (obj->programs && obj->nr_programs) {
8168 for (i = 0; i < obj->nr_programs; i++)
8169 bpf_program__exit(&obj->programs[i]);
8170 }
8171 zfree(&obj->programs);
8172
8173 free(obj);
8174}
8175
8176const char *bpf_object__name(const struct bpf_object *obj)
8177{
8178 return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8179}
8180
8181unsigned int bpf_object__kversion(const struct bpf_object *obj)
8182{
8183 return obj ? obj->kern_version : 0;
8184}
8185
8186struct btf *bpf_object__btf(const struct bpf_object *obj)
8187{
8188 return obj ? obj->btf : NULL;
8189}
8190
8191int bpf_object__btf_fd(const struct bpf_object *obj)
8192{
8193 return obj->btf ? btf__fd(obj->btf) : -1;
8194}
8195
8196int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8197{
8198 if (obj->loaded)
8199 return libbpf_err(-EINVAL);
8200
8201 obj->kern_version = kern_version;
8202
8203 return 0;
8204}
8205
8206int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8207{
8208 struct bpf_gen *gen;
8209
8210 if (!opts)
8211 return -EFAULT;
8212 if (!OPTS_VALID(opts, gen_loader_opts))
8213 return -EINVAL;
8214 gen = calloc(sizeof(*gen), 1);
8215 if (!gen)
8216 return -ENOMEM;
8217 gen->opts = opts;
8218 obj->gen_loader = gen;
8219 return 0;
8220}
8221
8222static struct bpf_program *
8223__bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8224 bool forward)
8225{
8226 size_t nr_programs = obj->nr_programs;
8227 ssize_t idx;
8228
8229 if (!nr_programs)
8230 return NULL;
8231
8232 if (!p)
8233 /* Iter from the beginning */
8234 return forward ? &obj->programs[0] :
8235 &obj->programs[nr_programs - 1];
8236
8237 if (p->obj != obj) {
8238 pr_warn("error: program handler doesn't match object\n");
8239 return errno = EINVAL, NULL;
8240 }
8241
8242 idx = (p - obj->programs) + (forward ? 1 : -1);
8243 if (idx >= obj->nr_programs || idx < 0)
8244 return NULL;
8245 return &obj->programs[idx];
8246}
8247
8248struct bpf_program *
8249bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8250{
8251 struct bpf_program *prog = prev;
8252
8253 do {
8254 prog = __bpf_program__iter(prog, obj, true);
8255 } while (prog && prog_is_subprog(obj, prog));
8256
8257 return prog;
8258}
8259
8260struct bpf_program *
8261bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8262{
8263 struct bpf_program *prog = next;
8264
8265 do {
8266 prog = __bpf_program__iter(prog, obj, false);
8267 } while (prog && prog_is_subprog(obj, prog));
8268
8269 return prog;
8270}
8271
8272void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8273{
8274 prog->prog_ifindex = ifindex;
8275}
8276
8277const char *bpf_program__name(const struct bpf_program *prog)
8278{
8279 return prog->name;
8280}
8281
8282const char *bpf_program__section_name(const struct bpf_program *prog)
8283{
8284 return prog->sec_name;
8285}
8286
8287bool bpf_program__autoload(const struct bpf_program *prog)
8288{
8289 return prog->autoload;
8290}
8291
8292int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8293{
8294 if (prog->obj->loaded)
8295 return libbpf_err(-EINVAL);
8296
8297 prog->autoload = autoload;
8298 return 0;
8299}
8300
8301const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8302{
8303 return prog->insns;
8304}
8305
8306size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8307{
8308 return prog->insns_cnt;
8309}
8310
8311int bpf_program__set_insns(struct bpf_program *prog,
8312 struct bpf_insn *new_insns, size_t new_insn_cnt)
8313{
8314 struct bpf_insn *insns;
8315
8316 if (prog->obj->loaded)
8317 return -EBUSY;
8318
8319 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8320 if (!insns) {
8321 pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8322 return -ENOMEM;
8323 }
8324 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8325
8326 prog->insns = insns;
8327 prog->insns_cnt = new_insn_cnt;
8328 return 0;
8329}
8330
8331int bpf_program__fd(const struct bpf_program *prog)
8332{
8333 if (!prog)
8334 return libbpf_err(-EINVAL);
8335
8336 if (prog->fd < 0)
8337 return libbpf_err(-ENOENT);
8338
8339 return prog->fd;
8340}
8341
8342__alias(bpf_program__type)
8343enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8344
8345enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8346{
8347 return prog->type;
8348}
8349
8350int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8351{
8352 if (prog->obj->loaded)
8353 return libbpf_err(-EBUSY);
8354
8355 prog->type = type;
8356 return 0;
8357}
8358
8359__alias(bpf_program__expected_attach_type)
8360enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8361
8362enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8363{
8364 return prog->expected_attach_type;
8365}
8366
8367int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8368 enum bpf_attach_type type)
8369{
8370 if (prog->obj->loaded)
8371 return libbpf_err(-EBUSY);
8372
8373 prog->expected_attach_type = type;
8374 return 0;
8375}
8376
8377__u32 bpf_program__flags(const struct bpf_program *prog)
8378{
8379 return prog->prog_flags;
8380}
8381
8382int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8383{
8384 if (prog->obj->loaded)
8385 return libbpf_err(-EBUSY);
8386
8387 prog->prog_flags = flags;
8388 return 0;
8389}
8390
8391__u32 bpf_program__log_level(const struct bpf_program *prog)
8392{
8393 return prog->log_level;
8394}
8395
8396int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8397{
8398 if (prog->obj->loaded)
8399 return libbpf_err(-EBUSY);
8400
8401 prog->log_level = log_level;
8402 return 0;
8403}
8404
8405const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8406{
8407 *log_size = prog->log_size;
8408 return prog->log_buf;
8409}
8410
8411int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8412{
8413 if (log_size && !log_buf)
8414 return -EINVAL;
8415 if (prog->log_size > UINT_MAX)
8416 return -EINVAL;
8417 if (prog->obj->loaded)
8418 return -EBUSY;
8419
8420 prog->log_buf = log_buf;
8421 prog->log_size = log_size;
8422 return 0;
8423}
8424
8425#define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
8426 .sec = (char *)sec_pfx, \
8427 .prog_type = BPF_PROG_TYPE_##ptype, \
8428 .expected_attach_type = atype, \
8429 .cookie = (long)(flags), \
8430 .prog_prepare_load_fn = libbpf_prepare_prog_load, \
8431 __VA_ARGS__ \
8432}
8433
8434static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8435static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8436static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8437static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8438static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8439static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8440static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8441static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8442static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8443static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8444
8445static const struct bpf_sec_def section_defs[] = {
8446 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE),
8447 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8448 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8449 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
8450 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
8451 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8452 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
8453 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
8454 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8455 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8456 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8457 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
8458 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
8459 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt),
8460 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE),
8461 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE),
8462 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE),
8463 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp),
8464 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp),
8465 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8466 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8467 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8468 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8469 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8470 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8471 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8472 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8473 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8474 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8475 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8476 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace),
8477 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8478 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8479 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8480 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8481 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8482 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
8483 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8484 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8485 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8486 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8487 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS),
8488 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8489 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE),
8490 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE),
8491 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE),
8492 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE),
8493 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE),
8494 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8495 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8496 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8497 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE),
8498 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8499 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8500 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8501 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8502 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8503 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE),
8504 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8505 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8506 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8507 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8508 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8509 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8510 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8511 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8512 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8513 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8514 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8515 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8516 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8517 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8518 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8519 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8520 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8521 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8522 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8523 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8524 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8525 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
8526 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8527};
8528
8529static size_t custom_sec_def_cnt;
8530static struct bpf_sec_def *custom_sec_defs;
8531static struct bpf_sec_def custom_fallback_def;
8532static bool has_custom_fallback_def;
8533
8534static int last_custom_sec_def_handler_id;
8535
8536int libbpf_register_prog_handler(const char *sec,
8537 enum bpf_prog_type prog_type,
8538 enum bpf_attach_type exp_attach_type,
8539 const struct libbpf_prog_handler_opts *opts)
8540{
8541 struct bpf_sec_def *sec_def;
8542
8543 if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8544 return libbpf_err(-EINVAL);
8545
8546 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8547 return libbpf_err(-E2BIG);
8548
8549 if (sec) {
8550 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8551 sizeof(*sec_def));
8552 if (!sec_def)
8553 return libbpf_err(-ENOMEM);
8554
8555 custom_sec_defs = sec_def;
8556 sec_def = &custom_sec_defs[custom_sec_def_cnt];
8557 } else {
8558 if (has_custom_fallback_def)
8559 return libbpf_err(-EBUSY);
8560
8561 sec_def = &custom_fallback_def;
8562 }
8563
8564 sec_def->sec = sec ? strdup(sec) : NULL;
8565 if (sec && !sec_def->sec)
8566 return libbpf_err(-ENOMEM);
8567
8568 sec_def->prog_type = prog_type;
8569 sec_def->expected_attach_type = exp_attach_type;
8570 sec_def->cookie = OPTS_GET(opts, cookie, 0);
8571
8572 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8573 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8574 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8575
8576 sec_def->handler_id = ++last_custom_sec_def_handler_id;
8577
8578 if (sec)
8579 custom_sec_def_cnt++;
8580 else
8581 has_custom_fallback_def = true;
8582
8583 return sec_def->handler_id;
8584}
8585
8586int libbpf_unregister_prog_handler(int handler_id)
8587{
8588 struct bpf_sec_def *sec_defs;
8589 int i;
8590
8591 if (handler_id <= 0)
8592 return libbpf_err(-EINVAL);
8593
8594 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8595 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8596 has_custom_fallback_def = false;
8597 return 0;
8598 }
8599
8600 for (i = 0; i < custom_sec_def_cnt; i++) {
8601 if (custom_sec_defs[i].handler_id == handler_id)
8602 break;
8603 }
8604
8605 if (i == custom_sec_def_cnt)
8606 return libbpf_err(-ENOENT);
8607
8608 free(custom_sec_defs[i].sec);
8609 for (i = i + 1; i < custom_sec_def_cnt; i++)
8610 custom_sec_defs[i - 1] = custom_sec_defs[i];
8611 custom_sec_def_cnt--;
8612
8613 /* try to shrink the array, but it's ok if we couldn't */
8614 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8615 if (sec_defs)
8616 custom_sec_defs = sec_defs;
8617
8618 return 0;
8619}
8620
8621static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
8622{
8623 size_t len = strlen(sec_def->sec);
8624
8625 /* "type/" always has to have proper SEC("type/extras") form */
8626 if (sec_def->sec[len - 1] == '/') {
8627 if (str_has_pfx(sec_name, sec_def->sec))
8628 return true;
8629 return false;
8630 }
8631
8632 /* "type+" means it can be either exact SEC("type") or
8633 * well-formed SEC("type/extras") with proper '/' separator
8634 */
8635 if (sec_def->sec[len - 1] == '+') {
8636 len--;
8637 /* not even a prefix */
8638 if (strncmp(sec_name, sec_def->sec, len) != 0)
8639 return false;
8640 /* exact match or has '/' separator */
8641 if (sec_name[len] == '\0' || sec_name[len] == '/')
8642 return true;
8643 return false;
8644 }
8645
8646 return strcmp(sec_name, sec_def->sec) == 0;
8647}
8648
8649static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8650{
8651 const struct bpf_sec_def *sec_def;
8652 int i, n;
8653
8654 n = custom_sec_def_cnt;
8655 for (i = 0; i < n; i++) {
8656 sec_def = &custom_sec_defs[i];
8657 if (sec_def_matches(sec_def, sec_name))
8658 return sec_def;
8659 }
8660
8661 n = ARRAY_SIZE(section_defs);
8662 for (i = 0; i < n; i++) {
8663 sec_def = §ion_defs[i];
8664 if (sec_def_matches(sec_def, sec_name))
8665 return sec_def;
8666 }
8667
8668 if (has_custom_fallback_def)
8669 return &custom_fallback_def;
8670
8671 return NULL;
8672}
8673
8674#define MAX_TYPE_NAME_SIZE 32
8675
8676static char *libbpf_get_type_names(bool attach_type)
8677{
8678 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8679 char *buf;
8680
8681 buf = malloc(len);
8682 if (!buf)
8683 return NULL;
8684
8685 buf[0] = '\0';
8686 /* Forge string buf with all available names */
8687 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8688 const struct bpf_sec_def *sec_def = §ion_defs[i];
8689
8690 if (attach_type) {
8691 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
8692 continue;
8693
8694 if (!(sec_def->cookie & SEC_ATTACHABLE))
8695 continue;
8696 }
8697
8698 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8699 free(buf);
8700 return NULL;
8701 }
8702 strcat(buf, " ");
8703 strcat(buf, section_defs[i].sec);
8704 }
8705
8706 return buf;
8707}
8708
8709int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8710 enum bpf_attach_type *expected_attach_type)
8711{
8712 const struct bpf_sec_def *sec_def;
8713 char *type_names;
8714
8715 if (!name)
8716 return libbpf_err(-EINVAL);
8717
8718 sec_def = find_sec_def(name);
8719 if (sec_def) {
8720 *prog_type = sec_def->prog_type;
8721 *expected_attach_type = sec_def->expected_attach_type;
8722 return 0;
8723 }
8724
8725 pr_debug("failed to guess program type from ELF section '%s'\n", name);
8726 type_names = libbpf_get_type_names(false);
8727 if (type_names != NULL) {
8728 pr_debug("supported section(type) names are:%s\n", type_names);
8729 free(type_names);
8730 }
8731
8732 return libbpf_err(-ESRCH);
8733}
8734
8735const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
8736{
8737 if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
8738 return NULL;
8739
8740 return attach_type_name[t];
8741}
8742
8743const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
8744{
8745 if (t < 0 || t >= ARRAY_SIZE(link_type_name))
8746 return NULL;
8747
8748 return link_type_name[t];
8749}
8750
8751const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
8752{
8753 if (t < 0 || t >= ARRAY_SIZE(map_type_name))
8754 return NULL;
8755
8756 return map_type_name[t];
8757}
8758
8759const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
8760{
8761 if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
8762 return NULL;
8763
8764 return prog_type_name[t];
8765}
8766
8767static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8768 size_t offset)
8769{
8770 struct bpf_map *map;
8771 size_t i;
8772
8773 for (i = 0; i < obj->nr_maps; i++) {
8774 map = &obj->maps[i];
8775 if (!bpf_map__is_struct_ops(map))
8776 continue;
8777 if (map->sec_offset <= offset &&
8778 offset - map->sec_offset < map->def.value_size)
8779 return map;
8780 }
8781
8782 return NULL;
8783}
8784
8785/* Collect the reloc from ELF and populate the st_ops->progs[] */
8786static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8787 Elf64_Shdr *shdr, Elf_Data *data)
8788{
8789 const struct btf_member *member;
8790 struct bpf_struct_ops *st_ops;
8791 struct bpf_program *prog;
8792 unsigned int shdr_idx;
8793 const struct btf *btf;
8794 struct bpf_map *map;
8795 unsigned int moff, insn_idx;
8796 const char *name;
8797 __u32 member_idx;
8798 Elf64_Sym *sym;
8799 Elf64_Rel *rel;
8800 int i, nrels;
8801
8802 btf = obj->btf;
8803 nrels = shdr->sh_size / shdr->sh_entsize;
8804 for (i = 0; i < nrels; i++) {
8805 rel = elf_rel_by_idx(data, i);
8806 if (!rel) {
8807 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8808 return -LIBBPF_ERRNO__FORMAT;
8809 }
8810
8811 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
8812 if (!sym) {
8813 pr_warn("struct_ops reloc: symbol %zx not found\n",
8814 (size_t)ELF64_R_SYM(rel->r_info));
8815 return -LIBBPF_ERRNO__FORMAT;
8816 }
8817
8818 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
8819 map = find_struct_ops_map_by_offset(obj, rel->r_offset);
8820 if (!map) {
8821 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
8822 (size_t)rel->r_offset);
8823 return -EINVAL;
8824 }
8825
8826 moff = rel->r_offset - map->sec_offset;
8827 shdr_idx = sym->st_shndx;
8828 st_ops = map->st_ops;
8829 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8830 map->name,
8831 (long long)(rel->r_info >> 32),
8832 (long long)sym->st_value,
8833 shdr_idx, (size_t)rel->r_offset,
8834 map->sec_offset, sym->st_name, name);
8835
8836 if (shdr_idx >= SHN_LORESERVE) {
8837 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
8838 map->name, (size_t)rel->r_offset, shdr_idx);
8839 return -LIBBPF_ERRNO__RELOC;
8840 }
8841 if (sym->st_value % BPF_INSN_SZ) {
8842 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8843 map->name, (unsigned long long)sym->st_value);
8844 return -LIBBPF_ERRNO__FORMAT;
8845 }
8846 insn_idx = sym->st_value / BPF_INSN_SZ;
8847
8848 member = find_member_by_offset(st_ops->type, moff * 8);
8849 if (!member) {
8850 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8851 map->name, moff);
8852 return -EINVAL;
8853 }
8854 member_idx = member - btf_members(st_ops->type);
8855 name = btf__name_by_offset(btf, member->name_off);
8856
8857 if (!resolve_func_ptr(btf, member->type, NULL)) {
8858 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8859 map->name, name);
8860 return -EINVAL;
8861 }
8862
8863 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8864 if (!prog) {
8865 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8866 map->name, shdr_idx, name);
8867 return -EINVAL;
8868 }
8869
8870 /* prevent the use of BPF prog with invalid type */
8871 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
8872 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
8873 map->name, prog->name);
8874 return -EINVAL;
8875 }
8876
8877 /* if we haven't yet processed this BPF program, record proper
8878 * attach_btf_id and member_idx
8879 */
8880 if (!prog->attach_btf_id) {
8881 prog->attach_btf_id = st_ops->type_id;
8882 prog->expected_attach_type = member_idx;
8883 }
8884
8885 /* struct_ops BPF prog can be re-used between multiple
8886 * .struct_ops as long as it's the same struct_ops struct
8887 * definition and the same function pointer field
8888 */
8889 if (prog->attach_btf_id != st_ops->type_id ||
8890 prog->expected_attach_type != member_idx) {
8891 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8892 map->name, prog->name, prog->sec_name, prog->type,
8893 prog->attach_btf_id, prog->expected_attach_type, name);
8894 return -EINVAL;
8895 }
8896
8897 st_ops->progs[member_idx] = prog;
8898 }
8899
8900 return 0;
8901}
8902
8903#define BTF_TRACE_PREFIX "btf_trace_"
8904#define BTF_LSM_PREFIX "bpf_lsm_"
8905#define BTF_ITER_PREFIX "bpf_iter_"
8906#define BTF_MAX_NAME_SIZE 128
8907
8908void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
8909 const char **prefix, int *kind)
8910{
8911 switch (attach_type) {
8912 case BPF_TRACE_RAW_TP:
8913 *prefix = BTF_TRACE_PREFIX;
8914 *kind = BTF_KIND_TYPEDEF;
8915 break;
8916 case BPF_LSM_MAC:
8917 case BPF_LSM_CGROUP:
8918 *prefix = BTF_LSM_PREFIX;
8919 *kind = BTF_KIND_FUNC;
8920 break;
8921 case BPF_TRACE_ITER:
8922 *prefix = BTF_ITER_PREFIX;
8923 *kind = BTF_KIND_FUNC;
8924 break;
8925 default:
8926 *prefix = "";
8927 *kind = BTF_KIND_FUNC;
8928 }
8929}
8930
8931static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
8932 const char *name, __u32 kind)
8933{
8934 char btf_type_name[BTF_MAX_NAME_SIZE];
8935 int ret;
8936
8937 ret = snprintf(btf_type_name, sizeof(btf_type_name),
8938 "%s%s", prefix, name);
8939 /* snprintf returns the number of characters written excluding the
8940 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
8941 * indicates truncation.
8942 */
8943 if (ret < 0 || ret >= sizeof(btf_type_name))
8944 return -ENAMETOOLONG;
8945 return btf__find_by_name_kind(btf, btf_type_name, kind);
8946}
8947
8948static inline int find_attach_btf_id(struct btf *btf, const char *name,
8949 enum bpf_attach_type attach_type)
8950{
8951 const char *prefix;
8952 int kind;
8953
8954 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
8955 return find_btf_by_prefix_kind(btf, prefix, name, kind);
8956}
8957
8958int libbpf_find_vmlinux_btf_id(const char *name,
8959 enum bpf_attach_type attach_type)
8960{
8961 struct btf *btf;
8962 int err;
8963
8964 btf = btf__load_vmlinux_btf();
8965 err = libbpf_get_error(btf);
8966 if (err) {
8967 pr_warn("vmlinux BTF is not found\n");
8968 return libbpf_err(err);
8969 }
8970
8971 err = find_attach_btf_id(btf, name, attach_type);
8972 if (err <= 0)
8973 pr_warn("%s is not found in vmlinux BTF\n", name);
8974
8975 btf__free(btf);
8976 return libbpf_err(err);
8977}
8978
8979static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
8980{
8981 struct bpf_prog_info info = {};
8982 __u32 info_len = sizeof(info);
8983 struct btf *btf;
8984 int err;
8985
8986 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len);
8987 if (err) {
8988 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n",
8989 attach_prog_fd, err);
8990 return err;
8991 }
8992
8993 err = -EINVAL;
8994 if (!info.btf_id) {
8995 pr_warn("The target program doesn't have BTF\n");
8996 goto out;
8997 }
8998 btf = btf__load_from_kernel_by_id(info.btf_id);
8999 err = libbpf_get_error(btf);
9000 if (err) {
9001 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9002 goto out;
9003 }
9004 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9005 btf__free(btf);
9006 if (err <= 0) {
9007 pr_warn("%s is not found in prog's BTF\n", name);
9008 goto out;
9009 }
9010out:
9011 return err;
9012}
9013
9014static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9015 enum bpf_attach_type attach_type,
9016 int *btf_obj_fd, int *btf_type_id)
9017{
9018 int ret, i;
9019
9020 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9021 if (ret > 0) {
9022 *btf_obj_fd = 0; /* vmlinux BTF */
9023 *btf_type_id = ret;
9024 return 0;
9025 }
9026 if (ret != -ENOENT)
9027 return ret;
9028
9029 ret = load_module_btfs(obj);
9030 if (ret)
9031 return ret;
9032
9033 for (i = 0; i < obj->btf_module_cnt; i++) {
9034 const struct module_btf *mod = &obj->btf_modules[i];
9035
9036 ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9037 if (ret > 0) {
9038 *btf_obj_fd = mod->fd;
9039 *btf_type_id = ret;
9040 return 0;
9041 }
9042 if (ret == -ENOENT)
9043 continue;
9044
9045 return ret;
9046 }
9047
9048 return -ESRCH;
9049}
9050
9051static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9052 int *btf_obj_fd, int *btf_type_id)
9053{
9054 enum bpf_attach_type attach_type = prog->expected_attach_type;
9055 __u32 attach_prog_fd = prog->attach_prog_fd;
9056 int err = 0;
9057
9058 /* BPF program's BTF ID */
9059 if (attach_prog_fd) {
9060 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9061 if (err < 0) {
9062 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9063 attach_prog_fd, attach_name, err);
9064 return err;
9065 }
9066 *btf_obj_fd = 0;
9067 *btf_type_id = err;
9068 return 0;
9069 }
9070
9071 /* kernel/module BTF ID */
9072 if (prog->obj->gen_loader) {
9073 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9074 *btf_obj_fd = 0;
9075 *btf_type_id = 1;
9076 } else {
9077 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9078 }
9079 if (err) {
9080 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err);
9081 return err;
9082 }
9083 return 0;
9084}
9085
9086int libbpf_attach_type_by_name(const char *name,
9087 enum bpf_attach_type *attach_type)
9088{
9089 char *type_names;
9090 const struct bpf_sec_def *sec_def;
9091
9092 if (!name)
9093 return libbpf_err(-EINVAL);
9094
9095 sec_def = find_sec_def(name);
9096 if (!sec_def) {
9097 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9098 type_names = libbpf_get_type_names(true);
9099 if (type_names != NULL) {
9100 pr_debug("attachable section(type) names are:%s\n", type_names);
9101 free(type_names);
9102 }
9103
9104 return libbpf_err(-EINVAL);
9105 }
9106
9107 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9108 return libbpf_err(-EINVAL);
9109 if (!(sec_def->cookie & SEC_ATTACHABLE))
9110 return libbpf_err(-EINVAL);
9111
9112 *attach_type = sec_def->expected_attach_type;
9113 return 0;
9114}
9115
9116int bpf_map__fd(const struct bpf_map *map)
9117{
9118 return map ? map->fd : libbpf_err(-EINVAL);
9119}
9120
9121static bool map_uses_real_name(const struct bpf_map *map)
9122{
9123 /* Since libbpf started to support custom .data.* and .rodata.* maps,
9124 * their user-visible name differs from kernel-visible name. Users see
9125 * such map's corresponding ELF section name as a map name.
9126 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9127 * maps to know which name has to be returned to the user.
9128 */
9129 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9130 return true;
9131 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9132 return true;
9133 return false;
9134}
9135
9136const char *bpf_map__name(const struct bpf_map *map)
9137{
9138 if (!map)
9139 return NULL;
9140
9141 if (map_uses_real_name(map))
9142 return map->real_name;
9143
9144 return map->name;
9145}
9146
9147enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9148{
9149 return map->def.type;
9150}
9151
9152int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9153{
9154 if (map->fd >= 0)
9155 return libbpf_err(-EBUSY);
9156 map->def.type = type;
9157 return 0;
9158}
9159
9160__u32 bpf_map__map_flags(const struct bpf_map *map)
9161{
9162 return map->def.map_flags;
9163}
9164
9165int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9166{
9167 if (map->fd >= 0)
9168 return libbpf_err(-EBUSY);
9169 map->def.map_flags = flags;
9170 return 0;
9171}
9172
9173__u64 bpf_map__map_extra(const struct bpf_map *map)
9174{
9175 return map->map_extra;
9176}
9177
9178int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9179{
9180 if (map->fd >= 0)
9181 return libbpf_err(-EBUSY);
9182 map->map_extra = map_extra;
9183 return 0;
9184}
9185
9186__u32 bpf_map__numa_node(const struct bpf_map *map)
9187{
9188 return map->numa_node;
9189}
9190
9191int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9192{
9193 if (map->fd >= 0)
9194 return libbpf_err(-EBUSY);
9195 map->numa_node = numa_node;
9196 return 0;
9197}
9198
9199__u32 bpf_map__key_size(const struct bpf_map *map)
9200{
9201 return map->def.key_size;
9202}
9203
9204int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9205{
9206 if (map->fd >= 0)
9207 return libbpf_err(-EBUSY);
9208 map->def.key_size = size;
9209 return 0;
9210}
9211
9212__u32 bpf_map__value_size(const struct bpf_map *map)
9213{
9214 return map->def.value_size;
9215}
9216
9217int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9218{
9219 if (map->fd >= 0)
9220 return libbpf_err(-EBUSY);
9221 map->def.value_size = size;
9222 return 0;
9223}
9224
9225__u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9226{
9227 return map ? map->btf_key_type_id : 0;
9228}
9229
9230__u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9231{
9232 return map ? map->btf_value_type_id : 0;
9233}
9234
9235int bpf_map__set_initial_value(struct bpf_map *map,
9236 const void *data, size_t size)
9237{
9238 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9239 size != map->def.value_size || map->fd >= 0)
9240 return libbpf_err(-EINVAL);
9241
9242 memcpy(map->mmaped, data, size);
9243 return 0;
9244}
9245
9246const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9247{
9248 if (!map->mmaped)
9249 return NULL;
9250 *psize = map->def.value_size;
9251 return map->mmaped;
9252}
9253
9254bool bpf_map__is_internal(const struct bpf_map *map)
9255{
9256 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9257}
9258
9259__u32 bpf_map__ifindex(const struct bpf_map *map)
9260{
9261 return map->map_ifindex;
9262}
9263
9264int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9265{
9266 if (map->fd >= 0)
9267 return libbpf_err(-EBUSY);
9268 map->map_ifindex = ifindex;
9269 return 0;
9270}
9271
9272int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9273{
9274 if (!bpf_map_type__is_map_in_map(map->def.type)) {
9275 pr_warn("error: unsupported map type\n");
9276 return libbpf_err(-EINVAL);
9277 }
9278 if (map->inner_map_fd != -1) {
9279 pr_warn("error: inner_map_fd already specified\n");
9280 return libbpf_err(-EINVAL);
9281 }
9282 if (map->inner_map) {
9283 bpf_map__destroy(map->inner_map);
9284 zfree(&map->inner_map);
9285 }
9286 map->inner_map_fd = fd;
9287 return 0;
9288}
9289
9290static struct bpf_map *
9291__bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9292{
9293 ssize_t idx;
9294 struct bpf_map *s, *e;
9295
9296 if (!obj || !obj->maps)
9297 return errno = EINVAL, NULL;
9298
9299 s = obj->maps;
9300 e = obj->maps + obj->nr_maps;
9301
9302 if ((m < s) || (m >= e)) {
9303 pr_warn("error in %s: map handler doesn't belong to object\n",
9304 __func__);
9305 return errno = EINVAL, NULL;
9306 }
9307
9308 idx = (m - obj->maps) + i;
9309 if (idx >= obj->nr_maps || idx < 0)
9310 return NULL;
9311 return &obj->maps[idx];
9312}
9313
9314struct bpf_map *
9315bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9316{
9317 if (prev == NULL)
9318 return obj->maps;
9319
9320 return __bpf_map__iter(prev, obj, 1);
9321}
9322
9323struct bpf_map *
9324bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9325{
9326 if (next == NULL) {
9327 if (!obj->nr_maps)
9328 return NULL;
9329 return obj->maps + obj->nr_maps - 1;
9330 }
9331
9332 return __bpf_map__iter(next, obj, -1);
9333}
9334
9335struct bpf_map *
9336bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9337{
9338 struct bpf_map *pos;
9339
9340 bpf_object__for_each_map(pos, obj) {
9341 /* if it's a special internal map name (which always starts
9342 * with dot) then check if that special name matches the
9343 * real map name (ELF section name)
9344 */
9345 if (name[0] == '.') {
9346 if (pos->real_name && strcmp(pos->real_name, name) == 0)
9347 return pos;
9348 continue;
9349 }
9350 /* otherwise map name has to be an exact match */
9351 if (map_uses_real_name(pos)) {
9352 if (strcmp(pos->real_name, name) == 0)
9353 return pos;
9354 continue;
9355 }
9356 if (strcmp(pos->name, name) == 0)
9357 return pos;
9358 }
9359 return errno = ENOENT, NULL;
9360}
9361
9362int
9363bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9364{
9365 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9366}
9367
9368static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9369 size_t value_sz, bool check_value_sz)
9370{
9371 if (map->fd <= 0)
9372 return -ENOENT;
9373
9374 if (map->def.key_size != key_sz) {
9375 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9376 map->name, key_sz, map->def.key_size);
9377 return -EINVAL;
9378 }
9379
9380 if (!check_value_sz)
9381 return 0;
9382
9383 switch (map->def.type) {
9384 case BPF_MAP_TYPE_PERCPU_ARRAY:
9385 case BPF_MAP_TYPE_PERCPU_HASH:
9386 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9387 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9388 int num_cpu = libbpf_num_possible_cpus();
9389 size_t elem_sz = roundup(map->def.value_size, 8);
9390
9391 if (value_sz != num_cpu * elem_sz) {
9392 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9393 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9394 return -EINVAL;
9395 }
9396 break;
9397 }
9398 default:
9399 if (map->def.value_size != value_sz) {
9400 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9401 map->name, value_sz, map->def.value_size);
9402 return -EINVAL;
9403 }
9404 break;
9405 }
9406 return 0;
9407}
9408
9409int bpf_map__lookup_elem(const struct bpf_map *map,
9410 const void *key, size_t key_sz,
9411 void *value, size_t value_sz, __u64 flags)
9412{
9413 int err;
9414
9415 err = validate_map_op(map, key_sz, value_sz, true);
9416 if (err)
9417 return libbpf_err(err);
9418
9419 return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9420}
9421
9422int bpf_map__update_elem(const struct bpf_map *map,
9423 const void *key, size_t key_sz,
9424 const void *value, size_t value_sz, __u64 flags)
9425{
9426 int err;
9427
9428 err = validate_map_op(map, key_sz, value_sz, true);
9429 if (err)
9430 return libbpf_err(err);
9431
9432 return bpf_map_update_elem(map->fd, key, value, flags);
9433}
9434
9435int bpf_map__delete_elem(const struct bpf_map *map,
9436 const void *key, size_t key_sz, __u64 flags)
9437{
9438 int err;
9439
9440 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9441 if (err)
9442 return libbpf_err(err);
9443
9444 return bpf_map_delete_elem_flags(map->fd, key, flags);
9445}
9446
9447int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
9448 const void *key, size_t key_sz,
9449 void *value, size_t value_sz, __u64 flags)
9450{
9451 int err;
9452
9453 err = validate_map_op(map, key_sz, value_sz, true);
9454 if (err)
9455 return libbpf_err(err);
9456
9457 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
9458}
9459
9460int bpf_map__get_next_key(const struct bpf_map *map,
9461 const void *cur_key, void *next_key, size_t key_sz)
9462{
9463 int err;
9464
9465 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9466 if (err)
9467 return libbpf_err(err);
9468
9469 return bpf_map_get_next_key(map->fd, cur_key, next_key);
9470}
9471
9472long libbpf_get_error(const void *ptr)
9473{
9474 if (!IS_ERR_OR_NULL(ptr))
9475 return 0;
9476
9477 if (IS_ERR(ptr))
9478 errno = -PTR_ERR(ptr);
9479
9480 /* If ptr == NULL, then errno should be already set by the failing
9481 * API, because libbpf never returns NULL on success and it now always
9482 * sets errno on error. So no extra errno handling for ptr == NULL
9483 * case.
9484 */
9485 return -errno;
9486}
9487
9488/* Replace link's underlying BPF program with the new one */
9489int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9490{
9491 int ret;
9492
9493 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9494 return libbpf_err_errno(ret);
9495}
9496
9497/* Release "ownership" of underlying BPF resource (typically, BPF program
9498 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9499 * link, when destructed through bpf_link__destroy() call won't attempt to
9500 * detach/unregisted that BPF resource. This is useful in situations where,
9501 * say, attached BPF program has to outlive userspace program that attached it
9502 * in the system. Depending on type of BPF program, though, there might be
9503 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9504 * exit of userspace program doesn't trigger automatic detachment and clean up
9505 * inside the kernel.
9506 */
9507void bpf_link__disconnect(struct bpf_link *link)
9508{
9509 link->disconnected = true;
9510}
9511
9512int bpf_link__destroy(struct bpf_link *link)
9513{
9514 int err = 0;
9515
9516 if (IS_ERR_OR_NULL(link))
9517 return 0;
9518
9519 if (!link->disconnected && link->detach)
9520 err = link->detach(link);
9521 if (link->pin_path)
9522 free(link->pin_path);
9523 if (link->dealloc)
9524 link->dealloc(link);
9525 else
9526 free(link);
9527
9528 return libbpf_err(err);
9529}
9530
9531int bpf_link__fd(const struct bpf_link *link)
9532{
9533 return link->fd;
9534}
9535
9536const char *bpf_link__pin_path(const struct bpf_link *link)
9537{
9538 return link->pin_path;
9539}
9540
9541static int bpf_link__detach_fd(struct bpf_link *link)
9542{
9543 return libbpf_err_errno(close(link->fd));
9544}
9545
9546struct bpf_link *bpf_link__open(const char *path)
9547{
9548 struct bpf_link *link;
9549 int fd;
9550
9551 fd = bpf_obj_get(path);
9552 if (fd < 0) {
9553 fd = -errno;
9554 pr_warn("failed to open link at %s: %d\n", path, fd);
9555 return libbpf_err_ptr(fd);
9556 }
9557
9558 link = calloc(1, sizeof(*link));
9559 if (!link) {
9560 close(fd);
9561 return libbpf_err_ptr(-ENOMEM);
9562 }
9563 link->detach = &bpf_link__detach_fd;
9564 link->fd = fd;
9565
9566 link->pin_path = strdup(path);
9567 if (!link->pin_path) {
9568 bpf_link__destroy(link);
9569 return libbpf_err_ptr(-ENOMEM);
9570 }
9571
9572 return link;
9573}
9574
9575int bpf_link__detach(struct bpf_link *link)
9576{
9577 return bpf_link_detach(link->fd) ? -errno : 0;
9578}
9579
9580int bpf_link__pin(struct bpf_link *link, const char *path)
9581{
9582 int err;
9583
9584 if (link->pin_path)
9585 return libbpf_err(-EBUSY);
9586 err = make_parent_dir(path);
9587 if (err)
9588 return libbpf_err(err);
9589 err = check_path(path);
9590 if (err)
9591 return libbpf_err(err);
9592
9593 link->pin_path = strdup(path);
9594 if (!link->pin_path)
9595 return libbpf_err(-ENOMEM);
9596
9597 if (bpf_obj_pin(link->fd, link->pin_path)) {
9598 err = -errno;
9599 zfree(&link->pin_path);
9600 return libbpf_err(err);
9601 }
9602
9603 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9604 return 0;
9605}
9606
9607int bpf_link__unpin(struct bpf_link *link)
9608{
9609 int err;
9610
9611 if (!link->pin_path)
9612 return libbpf_err(-EINVAL);
9613
9614 err = unlink(link->pin_path);
9615 if (err != 0)
9616 return -errno;
9617
9618 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9619 zfree(&link->pin_path);
9620 return 0;
9621}
9622
9623struct bpf_link_perf {
9624 struct bpf_link link;
9625 int perf_event_fd;
9626 /* legacy kprobe support: keep track of probe identifier and type */
9627 char *legacy_probe_name;
9628 bool legacy_is_kprobe;
9629 bool legacy_is_retprobe;
9630};
9631
9632static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
9633static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
9634
9635static int bpf_link_perf_detach(struct bpf_link *link)
9636{
9637 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9638 int err = 0;
9639
9640 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
9641 err = -errno;
9642
9643 if (perf_link->perf_event_fd != link->fd)
9644 close(perf_link->perf_event_fd);
9645 close(link->fd);
9646
9647 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
9648 if (perf_link->legacy_probe_name) {
9649 if (perf_link->legacy_is_kprobe) {
9650 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
9651 perf_link->legacy_is_retprobe);
9652 } else {
9653 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
9654 perf_link->legacy_is_retprobe);
9655 }
9656 }
9657
9658 return err;
9659}
9660
9661static void bpf_link_perf_dealloc(struct bpf_link *link)
9662{
9663 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9664
9665 free(perf_link->legacy_probe_name);
9666 free(perf_link);
9667}
9668
9669struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
9670 const struct bpf_perf_event_opts *opts)
9671{
9672 char errmsg[STRERR_BUFSIZE];
9673 struct bpf_link_perf *link;
9674 int prog_fd, link_fd = -1, err;
9675
9676 if (!OPTS_VALID(opts, bpf_perf_event_opts))
9677 return libbpf_err_ptr(-EINVAL);
9678
9679 if (pfd < 0) {
9680 pr_warn("prog '%s': invalid perf event FD %d\n",
9681 prog->name, pfd);
9682 return libbpf_err_ptr(-EINVAL);
9683 }
9684 prog_fd = bpf_program__fd(prog);
9685 if (prog_fd < 0) {
9686 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9687 prog->name);
9688 return libbpf_err_ptr(-EINVAL);
9689 }
9690
9691 link = calloc(1, sizeof(*link));
9692 if (!link)
9693 return libbpf_err_ptr(-ENOMEM);
9694 link->link.detach = &bpf_link_perf_detach;
9695 link->link.dealloc = &bpf_link_perf_dealloc;
9696 link->perf_event_fd = pfd;
9697
9698 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) {
9699 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
9700 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
9701
9702 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
9703 if (link_fd < 0) {
9704 err = -errno;
9705 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
9706 prog->name, pfd,
9707 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9708 goto err_out;
9709 }
9710 link->link.fd = link_fd;
9711 } else {
9712 if (OPTS_GET(opts, bpf_cookie, 0)) {
9713 pr_warn("prog '%s': user context value is not supported\n", prog->name);
9714 err = -EOPNOTSUPP;
9715 goto err_out;
9716 }
9717
9718 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9719 err = -errno;
9720 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
9721 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9722 if (err == -EPROTO)
9723 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9724 prog->name, pfd);
9725 goto err_out;
9726 }
9727 link->link.fd = pfd;
9728 }
9729 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9730 err = -errno;
9731 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
9732 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9733 goto err_out;
9734 }
9735
9736 return &link->link;
9737err_out:
9738 if (link_fd >= 0)
9739 close(link_fd);
9740 free(link);
9741 return libbpf_err_ptr(err);
9742}
9743
9744struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
9745{
9746 return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
9747}
9748
9749/*
9750 * this function is expected to parse integer in the range of [0, 2^31-1] from
9751 * given file using scanf format string fmt. If actual parsed value is
9752 * negative, the result might be indistinguishable from error
9753 */
9754static int parse_uint_from_file(const char *file, const char *fmt)
9755{
9756 char buf[STRERR_BUFSIZE];
9757 int err, ret;
9758 FILE *f;
9759
9760 f = fopen(file, "r");
9761 if (!f) {
9762 err = -errno;
9763 pr_debug("failed to open '%s': %s\n", file,
9764 libbpf_strerror_r(err, buf, sizeof(buf)));
9765 return err;
9766 }
9767 err = fscanf(f, fmt, &ret);
9768 if (err != 1) {
9769 err = err == EOF ? -EIO : -errno;
9770 pr_debug("failed to parse '%s': %s\n", file,
9771 libbpf_strerror_r(err, buf, sizeof(buf)));
9772 fclose(f);
9773 return err;
9774 }
9775 fclose(f);
9776 return ret;
9777}
9778
9779static int determine_kprobe_perf_type(void)
9780{
9781 const char *file = "/sys/bus/event_source/devices/kprobe/type";
9782
9783 return parse_uint_from_file(file, "%d\n");
9784}
9785
9786static int determine_uprobe_perf_type(void)
9787{
9788 const char *file = "/sys/bus/event_source/devices/uprobe/type";
9789
9790 return parse_uint_from_file(file, "%d\n");
9791}
9792
9793static int determine_kprobe_retprobe_bit(void)
9794{
9795 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9796
9797 return parse_uint_from_file(file, "config:%d\n");
9798}
9799
9800static int determine_uprobe_retprobe_bit(void)
9801{
9802 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9803
9804 return parse_uint_from_file(file, "config:%d\n");
9805}
9806
9807#define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
9808#define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
9809
9810static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9811 uint64_t offset, int pid, size_t ref_ctr_off)
9812{
9813 struct perf_event_attr attr = {};
9814 char errmsg[STRERR_BUFSIZE];
9815 int type, pfd;
9816
9817 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
9818 return -EINVAL;
9819
9820 type = uprobe ? determine_uprobe_perf_type()
9821 : determine_kprobe_perf_type();
9822 if (type < 0) {
9823 pr_warn("failed to determine %s perf type: %s\n",
9824 uprobe ? "uprobe" : "kprobe",
9825 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9826 return type;
9827 }
9828 if (retprobe) {
9829 int bit = uprobe ? determine_uprobe_retprobe_bit()
9830 : determine_kprobe_retprobe_bit();
9831
9832 if (bit < 0) {
9833 pr_warn("failed to determine %s retprobe bit: %s\n",
9834 uprobe ? "uprobe" : "kprobe",
9835 libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9836 return bit;
9837 }
9838 attr.config |= 1 << bit;
9839 }
9840 attr.size = sizeof(attr);
9841 attr.type = type;
9842 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9843 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9844 attr.config2 = offset; /* kprobe_addr or probe_offset */
9845
9846 /* pid filter is meaningful only for uprobes */
9847 pfd = syscall(__NR_perf_event_open, &attr,
9848 pid < 0 ? -1 : pid /* pid */,
9849 pid == -1 ? 0 : -1 /* cpu */,
9850 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9851 return pfd >= 0 ? pfd : -errno;
9852}
9853
9854static int append_to_file(const char *file, const char *fmt, ...)
9855{
9856 int fd, n, err = 0;
9857 va_list ap;
9858
9859 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
9860 if (fd < 0)
9861 return -errno;
9862
9863 va_start(ap, fmt);
9864 n = vdprintf(fd, fmt, ap);
9865 va_end(ap);
9866
9867 if (n < 0)
9868 err = -errno;
9869
9870 close(fd);
9871 return err;
9872}
9873
9874#define DEBUGFS "/sys/kernel/debug/tracing"
9875#define TRACEFS "/sys/kernel/tracing"
9876
9877static bool use_debugfs(void)
9878{
9879 static int has_debugfs = -1;
9880
9881 if (has_debugfs < 0)
9882 has_debugfs = access(DEBUGFS, F_OK) == 0;
9883
9884 return has_debugfs == 1;
9885}
9886
9887static const char *tracefs_path(void)
9888{
9889 return use_debugfs() ? DEBUGFS : TRACEFS;
9890}
9891
9892static const char *tracefs_kprobe_events(void)
9893{
9894 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
9895}
9896
9897static const char *tracefs_uprobe_events(void)
9898{
9899 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
9900}
9901
9902static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
9903 const char *kfunc_name, size_t offset)
9904{
9905 static int index = 0;
9906
9907 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
9908 __sync_fetch_and_add(&index, 1));
9909}
9910
9911static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
9912 const char *kfunc_name, size_t offset)
9913{
9914 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
9915 retprobe ? 'r' : 'p',
9916 retprobe ? "kretprobes" : "kprobes",
9917 probe_name, kfunc_name, offset);
9918}
9919
9920static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
9921{
9922 return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
9923 retprobe ? "kretprobes" : "kprobes", probe_name);
9924}
9925
9926static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
9927{
9928 char file[256];
9929
9930 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
9931 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
9932
9933 return parse_uint_from_file(file, "%d\n");
9934}
9935
9936static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
9937 const char *kfunc_name, size_t offset, int pid)
9938{
9939 struct perf_event_attr attr = {};
9940 char errmsg[STRERR_BUFSIZE];
9941 int type, pfd, err;
9942
9943 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
9944 if (err < 0) {
9945 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
9946 kfunc_name, offset,
9947 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9948 return err;
9949 }
9950 type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
9951 if (type < 0) {
9952 err = type;
9953 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
9954 kfunc_name, offset,
9955 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9956 goto err_clean_legacy;
9957 }
9958 attr.size = sizeof(attr);
9959 attr.config = type;
9960 attr.type = PERF_TYPE_TRACEPOINT;
9961
9962 pfd = syscall(__NR_perf_event_open, &attr,
9963 pid < 0 ? -1 : pid, /* pid */
9964 pid == -1 ? 0 : -1, /* cpu */
9965 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9966 if (pfd < 0) {
9967 err = -errno;
9968 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
9969 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9970 goto err_clean_legacy;
9971 }
9972 return pfd;
9973
9974err_clean_legacy:
9975 /* Clear the newly added legacy kprobe_event */
9976 remove_kprobe_event_legacy(probe_name, retprobe);
9977 return err;
9978}
9979
9980static const char *arch_specific_syscall_pfx(void)
9981{
9982#if defined(__x86_64__)
9983 return "x64";
9984#elif defined(__i386__)
9985 return "ia32";
9986#elif defined(__s390x__)
9987 return "s390x";
9988#elif defined(__s390__)
9989 return "s390";
9990#elif defined(__arm__)
9991 return "arm";
9992#elif defined(__aarch64__)
9993 return "arm64";
9994#elif defined(__mips__)
9995 return "mips";
9996#elif defined(__riscv)
9997 return "riscv";
9998#elif defined(__powerpc__)
9999 return "powerpc";
10000#elif defined(__powerpc64__)
10001 return "powerpc64";
10002#else
10003 return NULL;
10004#endif
10005}
10006
10007static int probe_kern_syscall_wrapper(void)
10008{
10009 char syscall_name[64];
10010 const char *ksys_pfx;
10011
10012 ksys_pfx = arch_specific_syscall_pfx();
10013 if (!ksys_pfx)
10014 return 0;
10015
10016 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10017
10018 if (determine_kprobe_perf_type() >= 0) {
10019 int pfd;
10020
10021 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10022 if (pfd >= 0)
10023 close(pfd);
10024
10025 return pfd >= 0 ? 1 : 0;
10026 } else { /* legacy mode */
10027 char probe_name[128];
10028
10029 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10030 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10031 return 0;
10032
10033 (void)remove_kprobe_event_legacy(probe_name, false);
10034 return 1;
10035 }
10036}
10037
10038struct bpf_link *
10039bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10040 const char *func_name,
10041 const struct bpf_kprobe_opts *opts)
10042{
10043 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10044 char errmsg[STRERR_BUFSIZE];
10045 char *legacy_probe = NULL;
10046 struct bpf_link *link;
10047 size_t offset;
10048 bool retprobe, legacy;
10049 int pfd, err;
10050
10051 if (!OPTS_VALID(opts, bpf_kprobe_opts))
10052 return libbpf_err_ptr(-EINVAL);
10053
10054 retprobe = OPTS_GET(opts, retprobe, false);
10055 offset = OPTS_GET(opts, offset, 0);
10056 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10057
10058 legacy = determine_kprobe_perf_type() < 0;
10059 if (!legacy) {
10060 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10061 func_name, offset,
10062 -1 /* pid */, 0 /* ref_ctr_off */);
10063 } else {
10064 char probe_name[256];
10065
10066 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10067 func_name, offset);
10068
10069 legacy_probe = strdup(probe_name);
10070 if (!legacy_probe)
10071 return libbpf_err_ptr(-ENOMEM);
10072
10073 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10074 offset, -1 /* pid */);
10075 }
10076 if (pfd < 0) {
10077 err = -errno;
10078 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10079 prog->name, retprobe ? "kretprobe" : "kprobe",
10080 func_name, offset,
10081 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10082 goto err_out;
10083 }
10084 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10085 err = libbpf_get_error(link);
10086 if (err) {
10087 close(pfd);
10088 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10089 prog->name, retprobe ? "kretprobe" : "kprobe",
10090 func_name, offset,
10091 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10092 goto err_clean_legacy;
10093 }
10094 if (legacy) {
10095 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10096
10097 perf_link->legacy_probe_name = legacy_probe;
10098 perf_link->legacy_is_kprobe = true;
10099 perf_link->legacy_is_retprobe = retprobe;
10100 }
10101
10102 return link;
10103
10104err_clean_legacy:
10105 if (legacy)
10106 remove_kprobe_event_legacy(legacy_probe, retprobe);
10107err_out:
10108 free(legacy_probe);
10109 return libbpf_err_ptr(err);
10110}
10111
10112struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10113 bool retprobe,
10114 const char *func_name)
10115{
10116 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10117 .retprobe = retprobe,
10118 );
10119
10120 return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10121}
10122
10123struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10124 const char *syscall_name,
10125 const struct bpf_ksyscall_opts *opts)
10126{
10127 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10128 char func_name[128];
10129
10130 if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10131 return libbpf_err_ptr(-EINVAL);
10132
10133 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10134 /* arch_specific_syscall_pfx() should never return NULL here
10135 * because it is guarded by kernel_supports(). However, since
10136 * compiler does not know that we have an explicit conditional
10137 * as well.
10138 */
10139 snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10140 arch_specific_syscall_pfx() ? : "", syscall_name);
10141 } else {
10142 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10143 }
10144
10145 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10146 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10147
10148 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10149}
10150
10151/* Adapted from perf/util/string.c */
10152static bool glob_match(const char *str, const char *pat)
10153{
10154 while (*str && *pat && *pat != '*') {
10155 if (*pat == '?') { /* Matches any single character */
10156 str++;
10157 pat++;
10158 continue;
10159 }
10160 if (*str != *pat)
10161 return false;
10162 str++;
10163 pat++;
10164 }
10165 /* Check wild card */
10166 if (*pat == '*') {
10167 while (*pat == '*')
10168 pat++;
10169 if (!*pat) /* Tail wild card matches all */
10170 return true;
10171 while (*str)
10172 if (glob_match(str++, pat))
10173 return true;
10174 }
10175 return !*str && !*pat;
10176}
10177
10178struct kprobe_multi_resolve {
10179 const char *pattern;
10180 unsigned long *addrs;
10181 size_t cap;
10182 size_t cnt;
10183};
10184
10185static int
10186resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type,
10187 const char *sym_name, void *ctx)
10188{
10189 struct kprobe_multi_resolve *res = ctx;
10190 int err;
10191
10192 if (!glob_match(sym_name, res->pattern))
10193 return 0;
10194
10195 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long),
10196 res->cnt + 1);
10197 if (err)
10198 return err;
10199
10200 res->addrs[res->cnt++] = (unsigned long) sym_addr;
10201 return 0;
10202}
10203
10204struct bpf_link *
10205bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10206 const char *pattern,
10207 const struct bpf_kprobe_multi_opts *opts)
10208{
10209 LIBBPF_OPTS(bpf_link_create_opts, lopts);
10210 struct kprobe_multi_resolve res = {
10211 .pattern = pattern,
10212 };
10213 struct bpf_link *link = NULL;
10214 char errmsg[STRERR_BUFSIZE];
10215 const unsigned long *addrs;
10216 int err, link_fd, prog_fd;
10217 const __u64 *cookies;
10218 const char **syms;
10219 bool retprobe;
10220 size_t cnt;
10221
10222 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10223 return libbpf_err_ptr(-EINVAL);
10224
10225 syms = OPTS_GET(opts, syms, false);
10226 addrs = OPTS_GET(opts, addrs, false);
10227 cnt = OPTS_GET(opts, cnt, false);
10228 cookies = OPTS_GET(opts, cookies, false);
10229
10230 if (!pattern && !addrs && !syms)
10231 return libbpf_err_ptr(-EINVAL);
10232 if (pattern && (addrs || syms || cookies || cnt))
10233 return libbpf_err_ptr(-EINVAL);
10234 if (!pattern && !cnt)
10235 return libbpf_err_ptr(-EINVAL);
10236 if (addrs && syms)
10237 return libbpf_err_ptr(-EINVAL);
10238
10239 if (pattern) {
10240 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res);
10241 if (err)
10242 goto error;
10243 if (!res.cnt) {
10244 err = -ENOENT;
10245 goto error;
10246 }
10247 addrs = res.addrs;
10248 cnt = res.cnt;
10249 }
10250
10251 retprobe = OPTS_GET(opts, retprobe, false);
10252
10253 lopts.kprobe_multi.syms = syms;
10254 lopts.kprobe_multi.addrs = addrs;
10255 lopts.kprobe_multi.cookies = cookies;
10256 lopts.kprobe_multi.cnt = cnt;
10257 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10258
10259 link = calloc(1, sizeof(*link));
10260 if (!link) {
10261 err = -ENOMEM;
10262 goto error;
10263 }
10264 link->detach = &bpf_link__detach_fd;
10265
10266 prog_fd = bpf_program__fd(prog);
10267 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10268 if (link_fd < 0) {
10269 err = -errno;
10270 pr_warn("prog '%s': failed to attach: %s\n",
10271 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10272 goto error;
10273 }
10274 link->fd = link_fd;
10275 free(res.addrs);
10276 return link;
10277
10278error:
10279 free(link);
10280 free(res.addrs);
10281 return libbpf_err_ptr(err);
10282}
10283
10284static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10285{
10286 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10287 unsigned long offset = 0;
10288 const char *func_name;
10289 char *func;
10290 int n;
10291
10292 *link = NULL;
10293
10294 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10295 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10296 return 0;
10297
10298 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10299 if (opts.retprobe)
10300 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10301 else
10302 func_name = prog->sec_name + sizeof("kprobe/") - 1;
10303
10304 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10305 if (n < 1) {
10306 pr_warn("kprobe name is invalid: %s\n", func_name);
10307 return -EINVAL;
10308 }
10309 if (opts.retprobe && offset != 0) {
10310 free(func);
10311 pr_warn("kretprobes do not support offset specification\n");
10312 return -EINVAL;
10313 }
10314
10315 opts.offset = offset;
10316 *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10317 free(func);
10318 return libbpf_get_error(*link);
10319}
10320
10321static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10322{
10323 LIBBPF_OPTS(bpf_ksyscall_opts, opts);
10324 const char *syscall_name;
10325
10326 *link = NULL;
10327
10328 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
10329 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
10330 return 0;
10331
10332 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
10333 if (opts.retprobe)
10334 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
10335 else
10336 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
10337
10338 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
10339 return *link ? 0 : -errno;
10340}
10341
10342static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10343{
10344 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10345 const char *spec;
10346 char *pattern;
10347 int n;
10348
10349 *link = NULL;
10350
10351 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10352 if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10353 strcmp(prog->sec_name, "kretprobe.multi") == 0)
10354 return 0;
10355
10356 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10357 if (opts.retprobe)
10358 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10359 else
10360 spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10361
10362 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10363 if (n < 1) {
10364 pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10365 return -EINVAL;
10366 }
10367
10368 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10369 free(pattern);
10370 return libbpf_get_error(*link);
10371}
10372
10373static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
10374 const char *binary_path, uint64_t offset)
10375{
10376 int i;
10377
10378 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
10379
10380 /* sanitize binary_path in the probe name */
10381 for (i = 0; buf[i]; i++) {
10382 if (!isalnum(buf[i]))
10383 buf[i] = '_';
10384 }
10385}
10386
10387static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
10388 const char *binary_path, size_t offset)
10389{
10390 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
10391 retprobe ? 'r' : 'p',
10392 retprobe ? "uretprobes" : "uprobes",
10393 probe_name, binary_path, offset);
10394}
10395
10396static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
10397{
10398 return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
10399 retprobe ? "uretprobes" : "uprobes", probe_name);
10400}
10401
10402static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10403{
10404 char file[512];
10405
10406 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10407 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
10408
10409 return parse_uint_from_file(file, "%d\n");
10410}
10411
10412static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
10413 const char *binary_path, size_t offset, int pid)
10414{
10415 struct perf_event_attr attr;
10416 int type, pfd, err;
10417
10418 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
10419 if (err < 0) {
10420 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
10421 binary_path, (size_t)offset, err);
10422 return err;
10423 }
10424 type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
10425 if (type < 0) {
10426 err = type;
10427 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
10428 binary_path, offset, err);
10429 goto err_clean_legacy;
10430 }
10431
10432 memset(&attr, 0, sizeof(attr));
10433 attr.size = sizeof(attr);
10434 attr.config = type;
10435 attr.type = PERF_TYPE_TRACEPOINT;
10436
10437 pfd = syscall(__NR_perf_event_open, &attr,
10438 pid < 0 ? -1 : pid, /* pid */
10439 pid == -1 ? 0 : -1, /* cpu */
10440 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10441 if (pfd < 0) {
10442 err = -errno;
10443 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
10444 goto err_clean_legacy;
10445 }
10446 return pfd;
10447
10448err_clean_legacy:
10449 /* Clear the newly added legacy uprobe_event */
10450 remove_uprobe_event_legacy(probe_name, retprobe);
10451 return err;
10452}
10453
10454/* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */
10455static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn)
10456{
10457 while ((scn = elf_nextscn(elf, scn)) != NULL) {
10458 GElf_Shdr sh;
10459
10460 if (!gelf_getshdr(scn, &sh))
10461 continue;
10462 if (sh.sh_type == sh_type)
10463 return scn;
10464 }
10465 return NULL;
10466}
10467
10468/* Find offset of function name in object specified by path. "name" matches
10469 * symbol name or name@@LIB for library functions.
10470 */
10471static long elf_find_func_offset(const char *binary_path, const char *name)
10472{
10473 int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB };
10474 bool is_shared_lib, is_name_qualified;
10475 char errmsg[STRERR_BUFSIZE];
10476 long ret = -ENOENT;
10477 size_t name_len;
10478 GElf_Ehdr ehdr;
10479 Elf *elf;
10480
10481 fd = open(binary_path, O_RDONLY | O_CLOEXEC);
10482 if (fd < 0) {
10483 ret = -errno;
10484 pr_warn("failed to open %s: %s\n", binary_path,
10485 libbpf_strerror_r(ret, errmsg, sizeof(errmsg)));
10486 return ret;
10487 }
10488 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL);
10489 if (!elf) {
10490 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1));
10491 close(fd);
10492 return -LIBBPF_ERRNO__FORMAT;
10493 }
10494 if (!gelf_getehdr(elf, &ehdr)) {
10495 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1));
10496 ret = -LIBBPF_ERRNO__FORMAT;
10497 goto out;
10498 }
10499 /* for shared lib case, we do not need to calculate relative offset */
10500 is_shared_lib = ehdr.e_type == ET_DYN;
10501
10502 name_len = strlen(name);
10503 /* Does name specify "@@LIB"? */
10504 is_name_qualified = strstr(name, "@@") != NULL;
10505
10506 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if
10507 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically
10508 * linked binary may not have SHT_DYMSYM, so absence of a section should not be
10509 * reported as a warning/error.
10510 */
10511 for (i = 0; i < ARRAY_SIZE(sh_types); i++) {
10512 size_t nr_syms, strtabidx, idx;
10513 Elf_Data *symbols = NULL;
10514 Elf_Scn *scn = NULL;
10515 int last_bind = -1;
10516 const char *sname;
10517 GElf_Shdr sh;
10518
10519 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL);
10520 if (!scn) {
10521 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n",
10522 binary_path);
10523 continue;
10524 }
10525 if (!gelf_getshdr(scn, &sh))
10526 continue;
10527 strtabidx = sh.sh_link;
10528 symbols = elf_getdata(scn, 0);
10529 if (!symbols) {
10530 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n",
10531 binary_path, elf_errmsg(-1));
10532 ret = -LIBBPF_ERRNO__FORMAT;
10533 goto out;
10534 }
10535 nr_syms = symbols->d_size / sh.sh_entsize;
10536
10537 for (idx = 0; idx < nr_syms; idx++) {
10538 int curr_bind;
10539 GElf_Sym sym;
10540 Elf_Scn *sym_scn;
10541 GElf_Shdr sym_sh;
10542
10543 if (!gelf_getsym(symbols, idx, &sym))
10544 continue;
10545
10546 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC)
10547 continue;
10548
10549 sname = elf_strptr(elf, strtabidx, sym.st_name);
10550 if (!sname)
10551 continue;
10552
10553 curr_bind = GELF_ST_BIND(sym.st_info);
10554
10555 /* User can specify func, func@@LIB or func@@LIB_VERSION. */
10556 if (strncmp(sname, name, name_len) != 0)
10557 continue;
10558 /* ...but we don't want a search for "foo" to match 'foo2" also, so any
10559 * additional characters in sname should be of the form "@@LIB".
10560 */
10561 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@')
10562 continue;
10563
10564 if (ret >= 0) {
10565 /* handle multiple matches */
10566 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) {
10567 /* Only accept one non-weak bind. */
10568 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n",
10569 sname, name, binary_path);
10570 ret = -LIBBPF_ERRNO__FORMAT;
10571 goto out;
10572 } else if (curr_bind == STB_WEAK) {
10573 /* already have a non-weak bind, and
10574 * this is a weak bind, so ignore.
10575 */
10576 continue;
10577 }
10578 }
10579
10580 /* Transform symbol's virtual address (absolute for
10581 * binaries and relative for shared libs) into file
10582 * offset, which is what kernel is expecting for
10583 * uprobe/uretprobe attachment.
10584 * See Documentation/trace/uprobetracer.rst for more
10585 * details.
10586 * This is done by looking up symbol's containing
10587 * section's header and using it's virtual address
10588 * (sh_addr) and corresponding file offset (sh_offset)
10589 * to transform sym.st_value (virtual address) into
10590 * desired final file offset.
10591 */
10592 sym_scn = elf_getscn(elf, sym.st_shndx);
10593 if (!sym_scn)
10594 continue;
10595 if (!gelf_getshdr(sym_scn, &sym_sh))
10596 continue;
10597
10598 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset;
10599 last_bind = curr_bind;
10600 }
10601 if (ret > 0)
10602 break;
10603 }
10604
10605 if (ret > 0) {
10606 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path,
10607 ret);
10608 } else {
10609 if (ret == 0) {
10610 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path,
10611 is_shared_lib ? "should not be 0 in a shared library" :
10612 "try using shared library path instead");
10613 ret = -ENOENT;
10614 } else {
10615 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path);
10616 }
10617 }
10618out:
10619 elf_end(elf);
10620 close(fd);
10621 return ret;
10622}
10623
10624static const char *arch_specific_lib_paths(void)
10625{
10626 /*
10627 * Based on https://packages.debian.org/sid/libc6.
10628 *
10629 * Assume that the traced program is built for the same architecture
10630 * as libbpf, which should cover the vast majority of cases.
10631 */
10632#if defined(__x86_64__)
10633 return "/lib/x86_64-linux-gnu";
10634#elif defined(__i386__)
10635 return "/lib/i386-linux-gnu";
10636#elif defined(__s390x__)
10637 return "/lib/s390x-linux-gnu";
10638#elif defined(__s390__)
10639 return "/lib/s390-linux-gnu";
10640#elif defined(__arm__) && defined(__SOFTFP__)
10641 return "/lib/arm-linux-gnueabi";
10642#elif defined(__arm__) && !defined(__SOFTFP__)
10643 return "/lib/arm-linux-gnueabihf";
10644#elif defined(__aarch64__)
10645 return "/lib/aarch64-linux-gnu";
10646#elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
10647 return "/lib/mips64el-linux-gnuabi64";
10648#elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
10649 return "/lib/mipsel-linux-gnu";
10650#elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
10651 return "/lib/powerpc64le-linux-gnu";
10652#elif defined(__sparc__) && defined(__arch64__)
10653 return "/lib/sparc64-linux-gnu";
10654#elif defined(__riscv) && __riscv_xlen == 64
10655 return "/lib/riscv64-linux-gnu";
10656#else
10657 return NULL;
10658#endif
10659}
10660
10661/* Get full path to program/shared library. */
10662static int resolve_full_path(const char *file, char *result, size_t result_sz)
10663{
10664 const char *search_paths[3] = {};
10665 int i;
10666
10667 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
10668 search_paths[0] = getenv("LD_LIBRARY_PATH");
10669 search_paths[1] = "/usr/lib64:/usr/lib";
10670 search_paths[2] = arch_specific_lib_paths();
10671 } else {
10672 search_paths[0] = getenv("PATH");
10673 search_paths[1] = "/usr/bin:/usr/sbin";
10674 }
10675
10676 for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
10677 const char *s;
10678
10679 if (!search_paths[i])
10680 continue;
10681 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
10682 char *next_path;
10683 int seg_len;
10684
10685 if (s[0] == ':')
10686 s++;
10687 next_path = strchr(s, ':');
10688 seg_len = next_path ? next_path - s : strlen(s);
10689 if (!seg_len)
10690 continue;
10691 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
10692 /* ensure it is an executable file/link */
10693 if (access(result, R_OK | X_OK) < 0)
10694 continue;
10695 pr_debug("resolved '%s' to '%s'\n", file, result);
10696 return 0;
10697 }
10698 }
10699 return -ENOENT;
10700}
10701
10702LIBBPF_API struct bpf_link *
10703bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
10704 const char *binary_path, size_t func_offset,
10705 const struct bpf_uprobe_opts *opts)
10706{
10707 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10708 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
10709 char full_binary_path[PATH_MAX];
10710 struct bpf_link *link;
10711 size_t ref_ctr_off;
10712 int pfd, err;
10713 bool retprobe, legacy;
10714 const char *func_name;
10715
10716 if (!OPTS_VALID(opts, bpf_uprobe_opts))
10717 return libbpf_err_ptr(-EINVAL);
10718
10719 retprobe = OPTS_GET(opts, retprobe, false);
10720 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
10721 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10722
10723 if (!binary_path)
10724 return libbpf_err_ptr(-EINVAL);
10725
10726 if (!strchr(binary_path, '/')) {
10727 err = resolve_full_path(binary_path, full_binary_path,
10728 sizeof(full_binary_path));
10729 if (err) {
10730 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
10731 prog->name, binary_path, err);
10732 return libbpf_err_ptr(err);
10733 }
10734 binary_path = full_binary_path;
10735 }
10736 func_name = OPTS_GET(opts, func_name, NULL);
10737 if (func_name) {
10738 long sym_off;
10739
10740 sym_off = elf_find_func_offset(binary_path, func_name);
10741 if (sym_off < 0)
10742 return libbpf_err_ptr(sym_off);
10743 func_offset += sym_off;
10744 }
10745
10746 legacy = determine_uprobe_perf_type() < 0;
10747 if (!legacy) {
10748 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
10749 func_offset, pid, ref_ctr_off);
10750 } else {
10751 char probe_name[PATH_MAX + 64];
10752
10753 if (ref_ctr_off)
10754 return libbpf_err_ptr(-EINVAL);
10755
10756 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
10757 binary_path, func_offset);
10758
10759 legacy_probe = strdup(probe_name);
10760 if (!legacy_probe)
10761 return libbpf_err_ptr(-ENOMEM);
10762
10763 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
10764 binary_path, func_offset, pid);
10765 }
10766 if (pfd < 0) {
10767 err = -errno;
10768 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
10769 prog->name, retprobe ? "uretprobe" : "uprobe",
10770 binary_path, func_offset,
10771 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10772 goto err_out;
10773 }
10774
10775 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10776 err = libbpf_get_error(link);
10777 if (err) {
10778 close(pfd);
10779 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
10780 prog->name, retprobe ? "uretprobe" : "uprobe",
10781 binary_path, func_offset,
10782 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10783 goto err_clean_legacy;
10784 }
10785 if (legacy) {
10786 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10787
10788 perf_link->legacy_probe_name = legacy_probe;
10789 perf_link->legacy_is_kprobe = false;
10790 perf_link->legacy_is_retprobe = retprobe;
10791 }
10792 return link;
10793
10794err_clean_legacy:
10795 if (legacy)
10796 remove_uprobe_event_legacy(legacy_probe, retprobe);
10797err_out:
10798 free(legacy_probe);
10799 return libbpf_err_ptr(err);
10800}
10801
10802/* Format of u[ret]probe section definition supporting auto-attach:
10803 * u[ret]probe/binary:function[+offset]
10804 *
10805 * binary can be an absolute/relative path or a filename; the latter is resolved to a
10806 * full binary path via bpf_program__attach_uprobe_opts.
10807 *
10808 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
10809 * specified (and auto-attach is not possible) or the above format is specified for
10810 * auto-attach.
10811 */
10812static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10813{
10814 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
10815 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
10816 int n, ret = -EINVAL;
10817 long offset = 0;
10818
10819 *link = NULL;
10820
10821 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
10822 &probe_type, &binary_path, &func_name, &offset);
10823 switch (n) {
10824 case 1:
10825 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
10826 ret = 0;
10827 break;
10828 case 2:
10829 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
10830 prog->name, prog->sec_name);
10831 break;
10832 case 3:
10833 case 4:
10834 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
10835 strcmp(probe_type, "uretprobe.s") == 0;
10836 if (opts.retprobe && offset != 0) {
10837 pr_warn("prog '%s': uretprobes do not support offset specification\n",
10838 prog->name);
10839 break;
10840 }
10841 opts.func_name = func_name;
10842 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
10843 ret = libbpf_get_error(*link);
10844 break;
10845 default:
10846 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
10847 prog->sec_name);
10848 break;
10849 }
10850 free(probe_type);
10851 free(binary_path);
10852 free(func_name);
10853
10854 return ret;
10855}
10856
10857struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
10858 bool retprobe, pid_t pid,
10859 const char *binary_path,
10860 size_t func_offset)
10861{
10862 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
10863
10864 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
10865}
10866
10867struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
10868 pid_t pid, const char *binary_path,
10869 const char *usdt_provider, const char *usdt_name,
10870 const struct bpf_usdt_opts *opts)
10871{
10872 char resolved_path[512];
10873 struct bpf_object *obj = prog->obj;
10874 struct bpf_link *link;
10875 __u64 usdt_cookie;
10876 int err;
10877
10878 if (!OPTS_VALID(opts, bpf_uprobe_opts))
10879 return libbpf_err_ptr(-EINVAL);
10880
10881 if (bpf_program__fd(prog) < 0) {
10882 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10883 prog->name);
10884 return libbpf_err_ptr(-EINVAL);
10885 }
10886
10887 if (!binary_path)
10888 return libbpf_err_ptr(-EINVAL);
10889
10890 if (!strchr(binary_path, '/')) {
10891 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
10892 if (err) {
10893 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
10894 prog->name, binary_path, err);
10895 return libbpf_err_ptr(err);
10896 }
10897 binary_path = resolved_path;
10898 }
10899
10900 /* USDT manager is instantiated lazily on first USDT attach. It will
10901 * be destroyed together with BPF object in bpf_object__close().
10902 */
10903 if (IS_ERR(obj->usdt_man))
10904 return libbpf_ptr(obj->usdt_man);
10905 if (!obj->usdt_man) {
10906 obj->usdt_man = usdt_manager_new(obj);
10907 if (IS_ERR(obj->usdt_man))
10908 return libbpf_ptr(obj->usdt_man);
10909 }
10910
10911 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
10912 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
10913 usdt_provider, usdt_name, usdt_cookie);
10914 err = libbpf_get_error(link);
10915 if (err)
10916 return libbpf_err_ptr(err);
10917 return link;
10918}
10919
10920static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10921{
10922 char *path = NULL, *provider = NULL, *name = NULL;
10923 const char *sec_name;
10924 int n, err;
10925
10926 sec_name = bpf_program__section_name(prog);
10927 if (strcmp(sec_name, "usdt") == 0) {
10928 /* no auto-attach for just SEC("usdt") */
10929 *link = NULL;
10930 return 0;
10931 }
10932
10933 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
10934 if (n != 3) {
10935 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
10936 sec_name);
10937 err = -EINVAL;
10938 } else {
10939 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
10940 provider, name, NULL);
10941 err = libbpf_get_error(*link);
10942 }
10943 free(path);
10944 free(provider);
10945 free(name);
10946 return err;
10947}
10948
10949static int determine_tracepoint_id(const char *tp_category,
10950 const char *tp_name)
10951{
10952 char file[PATH_MAX];
10953 int ret;
10954
10955 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10956 tracefs_path(), tp_category, tp_name);
10957 if (ret < 0)
10958 return -errno;
10959 if (ret >= sizeof(file)) {
10960 pr_debug("tracepoint %s/%s path is too long\n",
10961 tp_category, tp_name);
10962 return -E2BIG;
10963 }
10964 return parse_uint_from_file(file, "%d\n");
10965}
10966
10967static int perf_event_open_tracepoint(const char *tp_category,
10968 const char *tp_name)
10969{
10970 struct perf_event_attr attr = {};
10971 char errmsg[STRERR_BUFSIZE];
10972 int tp_id, pfd, err;
10973
10974 tp_id = determine_tracepoint_id(tp_category, tp_name);
10975 if (tp_id < 0) {
10976 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
10977 tp_category, tp_name,
10978 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
10979 return tp_id;
10980 }
10981
10982 attr.type = PERF_TYPE_TRACEPOINT;
10983 attr.size = sizeof(attr);
10984 attr.config = tp_id;
10985
10986 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
10987 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10988 if (pfd < 0) {
10989 err = -errno;
10990 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
10991 tp_category, tp_name,
10992 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10993 return err;
10994 }
10995 return pfd;
10996}
10997
10998struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
10999 const char *tp_category,
11000 const char *tp_name,
11001 const struct bpf_tracepoint_opts *opts)
11002{
11003 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11004 char errmsg[STRERR_BUFSIZE];
11005 struct bpf_link *link;
11006 int pfd, err;
11007
11008 if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11009 return libbpf_err_ptr(-EINVAL);
11010
11011 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11012
11013 pfd = perf_event_open_tracepoint(tp_category, tp_name);
11014 if (pfd < 0) {
11015 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11016 prog->name, tp_category, tp_name,
11017 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11018 return libbpf_err_ptr(pfd);
11019 }
11020 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11021 err = libbpf_get_error(link);
11022 if (err) {
11023 close(pfd);
11024 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11025 prog->name, tp_category, tp_name,
11026 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11027 return libbpf_err_ptr(err);
11028 }
11029 return link;
11030}
11031
11032struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11033 const char *tp_category,
11034 const char *tp_name)
11035{
11036 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11037}
11038
11039static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11040{
11041 char *sec_name, *tp_cat, *tp_name;
11042
11043 *link = NULL;
11044
11045 /* no auto-attach for SEC("tp") or SEC("tracepoint") */
11046 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11047 return 0;
11048
11049 sec_name = strdup(prog->sec_name);
11050 if (!sec_name)
11051 return -ENOMEM;
11052
11053 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11054 if (str_has_pfx(prog->sec_name, "tp/"))
11055 tp_cat = sec_name + sizeof("tp/") - 1;
11056 else
11057 tp_cat = sec_name + sizeof("tracepoint/") - 1;
11058 tp_name = strchr(tp_cat, '/');
11059 if (!tp_name) {
11060 free(sec_name);
11061 return -EINVAL;
11062 }
11063 *tp_name = '\0';
11064 tp_name++;
11065
11066 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11067 free(sec_name);
11068 return libbpf_get_error(*link);
11069}
11070
11071struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11072 const char *tp_name)
11073{
11074 char errmsg[STRERR_BUFSIZE];
11075 struct bpf_link *link;
11076 int prog_fd, pfd;
11077
11078 prog_fd = bpf_program__fd(prog);
11079 if (prog_fd < 0) {
11080 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11081 return libbpf_err_ptr(-EINVAL);
11082 }
11083
11084 link = calloc(1, sizeof(*link));
11085 if (!link)
11086 return libbpf_err_ptr(-ENOMEM);
11087 link->detach = &bpf_link__detach_fd;
11088
11089 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11090 if (pfd < 0) {
11091 pfd = -errno;
11092 free(link);
11093 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11094 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11095 return libbpf_err_ptr(pfd);
11096 }
11097 link->fd = pfd;
11098 return link;
11099}
11100
11101static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11102{
11103 static const char *const prefixes[] = {
11104 "raw_tp",
11105 "raw_tracepoint",
11106 "raw_tp.w",
11107 "raw_tracepoint.w",
11108 };
11109 size_t i;
11110 const char *tp_name = NULL;
11111
11112 *link = NULL;
11113
11114 for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11115 size_t pfx_len;
11116
11117 if (!str_has_pfx(prog->sec_name, prefixes[i]))
11118 continue;
11119
11120 pfx_len = strlen(prefixes[i]);
11121 /* no auto-attach case of, e.g., SEC("raw_tp") */
11122 if (prog->sec_name[pfx_len] == '\0')
11123 return 0;
11124
11125 if (prog->sec_name[pfx_len] != '/')
11126 continue;
11127
11128 tp_name = prog->sec_name + pfx_len + 1;
11129 break;
11130 }
11131
11132 if (!tp_name) {
11133 pr_warn("prog '%s': invalid section name '%s'\n",
11134 prog->name, prog->sec_name);
11135 return -EINVAL;
11136 }
11137
11138 *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11139 return libbpf_get_error(link);
11140}
11141
11142/* Common logic for all BPF program types that attach to a btf_id */
11143static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11144 const struct bpf_trace_opts *opts)
11145{
11146 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11147 char errmsg[STRERR_BUFSIZE];
11148 struct bpf_link *link;
11149 int prog_fd, pfd;
11150
11151 if (!OPTS_VALID(opts, bpf_trace_opts))
11152 return libbpf_err_ptr(-EINVAL);
11153
11154 prog_fd = bpf_program__fd(prog);
11155 if (prog_fd < 0) {
11156 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11157 return libbpf_err_ptr(-EINVAL);
11158 }
11159
11160 link = calloc(1, sizeof(*link));
11161 if (!link)
11162 return libbpf_err_ptr(-ENOMEM);
11163 link->detach = &bpf_link__detach_fd;
11164
11165 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11166 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11167 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11168 if (pfd < 0) {
11169 pfd = -errno;
11170 free(link);
11171 pr_warn("prog '%s': failed to attach: %s\n",
11172 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11173 return libbpf_err_ptr(pfd);
11174 }
11175 link->fd = pfd;
11176 return link;
11177}
11178
11179struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11180{
11181 return bpf_program__attach_btf_id(prog, NULL);
11182}
11183
11184struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11185 const struct bpf_trace_opts *opts)
11186{
11187 return bpf_program__attach_btf_id(prog, opts);
11188}
11189
11190struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11191{
11192 return bpf_program__attach_btf_id(prog, NULL);
11193}
11194
11195static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11196{
11197 *link = bpf_program__attach_trace(prog);
11198 return libbpf_get_error(*link);
11199}
11200
11201static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11202{
11203 *link = bpf_program__attach_lsm(prog);
11204 return libbpf_get_error(*link);
11205}
11206
11207static struct bpf_link *
11208bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id,
11209 const char *target_name)
11210{
11211 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
11212 .target_btf_id = btf_id);
11213 enum bpf_attach_type attach_type;
11214 char errmsg[STRERR_BUFSIZE];
11215 struct bpf_link *link;
11216 int prog_fd, link_fd;
11217
11218 prog_fd = bpf_program__fd(prog);
11219 if (prog_fd < 0) {
11220 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11221 return libbpf_err_ptr(-EINVAL);
11222 }
11223
11224 link = calloc(1, sizeof(*link));
11225 if (!link)
11226 return libbpf_err_ptr(-ENOMEM);
11227 link->detach = &bpf_link__detach_fd;
11228
11229 attach_type = bpf_program__expected_attach_type(prog);
11230 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
11231 if (link_fd < 0) {
11232 link_fd = -errno;
11233 free(link);
11234 pr_warn("prog '%s': failed to attach to %s: %s\n",
11235 prog->name, target_name,
11236 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11237 return libbpf_err_ptr(link_fd);
11238 }
11239 link->fd = link_fd;
11240 return link;
11241}
11242
11243struct bpf_link *
11244bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11245{
11246 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
11247}
11248
11249struct bpf_link *
11250bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11251{
11252 return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
11253}
11254
11255struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11256{
11257 /* target_fd/target_ifindex use the same field in LINK_CREATE */
11258 return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
11259}
11260
11261struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
11262 int target_fd,
11263 const char *attach_func_name)
11264{
11265 int btf_id;
11266
11267 if (!!target_fd != !!attach_func_name) {
11268 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
11269 prog->name);
11270 return libbpf_err_ptr(-EINVAL);
11271 }
11272
11273 if (prog->type != BPF_PROG_TYPE_EXT) {
11274 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
11275 prog->name);
11276 return libbpf_err_ptr(-EINVAL);
11277 }
11278
11279 if (target_fd) {
11280 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
11281 if (btf_id < 0)
11282 return libbpf_err_ptr(btf_id);
11283
11284 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
11285 } else {
11286 /* no target, so use raw_tracepoint_open for compatibility
11287 * with old kernels
11288 */
11289 return bpf_program__attach_trace(prog);
11290 }
11291}
11292
11293struct bpf_link *
11294bpf_program__attach_iter(const struct bpf_program *prog,
11295 const struct bpf_iter_attach_opts *opts)
11296{
11297 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11298 char errmsg[STRERR_BUFSIZE];
11299 struct bpf_link *link;
11300 int prog_fd, link_fd;
11301 __u32 target_fd = 0;
11302
11303 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
11304 return libbpf_err_ptr(-EINVAL);
11305
11306 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
11307 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
11308
11309 prog_fd = bpf_program__fd(prog);
11310 if (prog_fd < 0) {
11311 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11312 return libbpf_err_ptr(-EINVAL);
11313 }
11314
11315 link = calloc(1, sizeof(*link));
11316 if (!link)
11317 return libbpf_err_ptr(-ENOMEM);
11318 link->detach = &bpf_link__detach_fd;
11319
11320 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
11321 &link_create_opts);
11322 if (link_fd < 0) {
11323 link_fd = -errno;
11324 free(link);
11325 pr_warn("prog '%s': failed to attach to iterator: %s\n",
11326 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11327 return libbpf_err_ptr(link_fd);
11328 }
11329 link->fd = link_fd;
11330 return link;
11331}
11332
11333static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11334{
11335 *link = bpf_program__attach_iter(prog, NULL);
11336 return libbpf_get_error(*link);
11337}
11338
11339struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
11340{
11341 struct bpf_link *link = NULL;
11342 int err;
11343
11344 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
11345 return libbpf_err_ptr(-EOPNOTSUPP);
11346
11347 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
11348 if (err)
11349 return libbpf_err_ptr(err);
11350
11351 /* When calling bpf_program__attach() explicitly, auto-attach support
11352 * is expected to work, so NULL returned link is considered an error.
11353 * This is different for skeleton's attach, see comment in
11354 * bpf_object__attach_skeleton().
11355 */
11356 if (!link)
11357 return libbpf_err_ptr(-EOPNOTSUPP);
11358
11359 return link;
11360}
11361
11362static int bpf_link__detach_struct_ops(struct bpf_link *link)
11363{
11364 __u32 zero = 0;
11365
11366 if (bpf_map_delete_elem(link->fd, &zero))
11367 return -errno;
11368
11369 return 0;
11370}
11371
11372struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
11373{
11374 struct bpf_struct_ops *st_ops;
11375 struct bpf_link *link;
11376 __u32 i, zero = 0;
11377 int err;
11378
11379 if (!bpf_map__is_struct_ops(map) || map->fd == -1)
11380 return libbpf_err_ptr(-EINVAL);
11381
11382 link = calloc(1, sizeof(*link));
11383 if (!link)
11384 return libbpf_err_ptr(-EINVAL);
11385
11386 st_ops = map->st_ops;
11387 for (i = 0; i < btf_vlen(st_ops->type); i++) {
11388 struct bpf_program *prog = st_ops->progs[i];
11389 void *kern_data;
11390 int prog_fd;
11391
11392 if (!prog)
11393 continue;
11394
11395 prog_fd = bpf_program__fd(prog);
11396 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
11397 *(unsigned long *)kern_data = prog_fd;
11398 }
11399
11400 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
11401 if (err) {
11402 err = -errno;
11403 free(link);
11404 return libbpf_err_ptr(err);
11405 }
11406
11407 link->detach = bpf_link__detach_struct_ops;
11408 link->fd = map->fd;
11409
11410 return link;
11411}
11412
11413typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
11414 void *private_data);
11415
11416static enum bpf_perf_event_ret
11417perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
11418 void **copy_mem, size_t *copy_size,
11419 bpf_perf_event_print_t fn, void *private_data)
11420{
11421 struct perf_event_mmap_page *header = mmap_mem;
11422 __u64 data_head = ring_buffer_read_head(header);
11423 __u64 data_tail = header->data_tail;
11424 void *base = ((__u8 *)header) + page_size;
11425 int ret = LIBBPF_PERF_EVENT_CONT;
11426 struct perf_event_header *ehdr;
11427 size_t ehdr_size;
11428
11429 while (data_head != data_tail) {
11430 ehdr = base + (data_tail & (mmap_size - 1));
11431 ehdr_size = ehdr->size;
11432
11433 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
11434 void *copy_start = ehdr;
11435 size_t len_first = base + mmap_size - copy_start;
11436 size_t len_secnd = ehdr_size - len_first;
11437
11438 if (*copy_size < ehdr_size) {
11439 free(*copy_mem);
11440 *copy_mem = malloc(ehdr_size);
11441 if (!*copy_mem) {
11442 *copy_size = 0;
11443 ret = LIBBPF_PERF_EVENT_ERROR;
11444 break;
11445 }
11446 *copy_size = ehdr_size;
11447 }
11448
11449 memcpy(*copy_mem, copy_start, len_first);
11450 memcpy(*copy_mem + len_first, base, len_secnd);
11451 ehdr = *copy_mem;
11452 }
11453
11454 ret = fn(ehdr, private_data);
11455 data_tail += ehdr_size;
11456 if (ret != LIBBPF_PERF_EVENT_CONT)
11457 break;
11458 }
11459
11460 ring_buffer_write_tail(header, data_tail);
11461 return libbpf_err(ret);
11462}
11463
11464struct perf_buffer;
11465
11466struct perf_buffer_params {
11467 struct perf_event_attr *attr;
11468 /* if event_cb is specified, it takes precendence */
11469 perf_buffer_event_fn event_cb;
11470 /* sample_cb and lost_cb are higher-level common-case callbacks */
11471 perf_buffer_sample_fn sample_cb;
11472 perf_buffer_lost_fn lost_cb;
11473 void *ctx;
11474 int cpu_cnt;
11475 int *cpus;
11476 int *map_keys;
11477};
11478
11479struct perf_cpu_buf {
11480 struct perf_buffer *pb;
11481 void *base; /* mmap()'ed memory */
11482 void *buf; /* for reconstructing segmented data */
11483 size_t buf_size;
11484 int fd;
11485 int cpu;
11486 int map_key;
11487};
11488
11489struct perf_buffer {
11490 perf_buffer_event_fn event_cb;
11491 perf_buffer_sample_fn sample_cb;
11492 perf_buffer_lost_fn lost_cb;
11493 void *ctx; /* passed into callbacks */
11494
11495 size_t page_size;
11496 size_t mmap_size;
11497 struct perf_cpu_buf **cpu_bufs;
11498 struct epoll_event *events;
11499 int cpu_cnt; /* number of allocated CPU buffers */
11500 int epoll_fd; /* perf event FD */
11501 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
11502};
11503
11504static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
11505 struct perf_cpu_buf *cpu_buf)
11506{
11507 if (!cpu_buf)
11508 return;
11509 if (cpu_buf->base &&
11510 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
11511 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
11512 if (cpu_buf->fd >= 0) {
11513 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
11514 close(cpu_buf->fd);
11515 }
11516 free(cpu_buf->buf);
11517 free(cpu_buf);
11518}
11519
11520void perf_buffer__free(struct perf_buffer *pb)
11521{
11522 int i;
11523
11524 if (IS_ERR_OR_NULL(pb))
11525 return;
11526 if (pb->cpu_bufs) {
11527 for (i = 0; i < pb->cpu_cnt; i++) {
11528 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11529
11530 if (!cpu_buf)
11531 continue;
11532
11533 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
11534 perf_buffer__free_cpu_buf(pb, cpu_buf);
11535 }
11536 free(pb->cpu_bufs);
11537 }
11538 if (pb->epoll_fd >= 0)
11539 close(pb->epoll_fd);
11540 free(pb->events);
11541 free(pb);
11542}
11543
11544static struct perf_cpu_buf *
11545perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
11546 int cpu, int map_key)
11547{
11548 struct perf_cpu_buf *cpu_buf;
11549 char msg[STRERR_BUFSIZE];
11550 int err;
11551
11552 cpu_buf = calloc(1, sizeof(*cpu_buf));
11553 if (!cpu_buf)
11554 return ERR_PTR(-ENOMEM);
11555
11556 cpu_buf->pb = pb;
11557 cpu_buf->cpu = cpu;
11558 cpu_buf->map_key = map_key;
11559
11560 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
11561 -1, PERF_FLAG_FD_CLOEXEC);
11562 if (cpu_buf->fd < 0) {
11563 err = -errno;
11564 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
11565 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11566 goto error;
11567 }
11568
11569 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
11570 PROT_READ | PROT_WRITE, MAP_SHARED,
11571 cpu_buf->fd, 0);
11572 if (cpu_buf->base == MAP_FAILED) {
11573 cpu_buf->base = NULL;
11574 err = -errno;
11575 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
11576 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11577 goto error;
11578 }
11579
11580 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
11581 err = -errno;
11582 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
11583 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11584 goto error;
11585 }
11586
11587 return cpu_buf;
11588
11589error:
11590 perf_buffer__free_cpu_buf(pb, cpu_buf);
11591 return (struct perf_cpu_buf *)ERR_PTR(err);
11592}
11593
11594static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11595 struct perf_buffer_params *p);
11596
11597struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
11598 perf_buffer_sample_fn sample_cb,
11599 perf_buffer_lost_fn lost_cb,
11600 void *ctx,
11601 const struct perf_buffer_opts *opts)
11602{
11603 struct perf_buffer_params p = {};
11604 struct perf_event_attr attr = {};
11605
11606 if (!OPTS_VALID(opts, perf_buffer_opts))
11607 return libbpf_err_ptr(-EINVAL);
11608
11609 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
11610 attr.type = PERF_TYPE_SOFTWARE;
11611 attr.sample_type = PERF_SAMPLE_RAW;
11612 attr.sample_period = 1;
11613 attr.wakeup_events = 1;
11614
11615 p.attr = &attr;
11616 p.sample_cb = sample_cb;
11617 p.lost_cb = lost_cb;
11618 p.ctx = ctx;
11619
11620 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11621}
11622
11623struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
11624 struct perf_event_attr *attr,
11625 perf_buffer_event_fn event_cb, void *ctx,
11626 const struct perf_buffer_raw_opts *opts)
11627{
11628 struct perf_buffer_params p = {};
11629
11630 if (!attr)
11631 return libbpf_err_ptr(-EINVAL);
11632
11633 if (!OPTS_VALID(opts, perf_buffer_raw_opts))
11634 return libbpf_err_ptr(-EINVAL);
11635
11636 p.attr = attr;
11637 p.event_cb = event_cb;
11638 p.ctx = ctx;
11639 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
11640 p.cpus = OPTS_GET(opts, cpus, NULL);
11641 p.map_keys = OPTS_GET(opts, map_keys, NULL);
11642
11643 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11644}
11645
11646static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11647 struct perf_buffer_params *p)
11648{
11649 const char *online_cpus_file = "/sys/devices/system/cpu/online";
11650 struct bpf_map_info map;
11651 char msg[STRERR_BUFSIZE];
11652 struct perf_buffer *pb;
11653 bool *online = NULL;
11654 __u32 map_info_len;
11655 int err, i, j, n;
11656
11657 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
11658 pr_warn("page count should be power of two, but is %zu\n",
11659 page_cnt);
11660 return ERR_PTR(-EINVAL);
11661 }
11662
11663 /* best-effort sanity checks */
11664 memset(&map, 0, sizeof(map));
11665 map_info_len = sizeof(map);
11666 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
11667 if (err) {
11668 err = -errno;
11669 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
11670 * -EBADFD, -EFAULT, or -E2BIG on real error
11671 */
11672 if (err != -EINVAL) {
11673 pr_warn("failed to get map info for map FD %d: %s\n",
11674 map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
11675 return ERR_PTR(err);
11676 }
11677 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
11678 map_fd);
11679 } else {
11680 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
11681 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
11682 map.name);
11683 return ERR_PTR(-EINVAL);
11684 }
11685 }
11686
11687 pb = calloc(1, sizeof(*pb));
11688 if (!pb)
11689 return ERR_PTR(-ENOMEM);
11690
11691 pb->event_cb = p->event_cb;
11692 pb->sample_cb = p->sample_cb;
11693 pb->lost_cb = p->lost_cb;
11694 pb->ctx = p->ctx;
11695
11696 pb->page_size = getpagesize();
11697 pb->mmap_size = pb->page_size * page_cnt;
11698 pb->map_fd = map_fd;
11699
11700 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
11701 if (pb->epoll_fd < 0) {
11702 err = -errno;
11703 pr_warn("failed to create epoll instance: %s\n",
11704 libbpf_strerror_r(err, msg, sizeof(msg)));
11705 goto error;
11706 }
11707
11708 if (p->cpu_cnt > 0) {
11709 pb->cpu_cnt = p->cpu_cnt;
11710 } else {
11711 pb->cpu_cnt = libbpf_num_possible_cpus();
11712 if (pb->cpu_cnt < 0) {
11713 err = pb->cpu_cnt;
11714 goto error;
11715 }
11716 if (map.max_entries && map.max_entries < pb->cpu_cnt)
11717 pb->cpu_cnt = map.max_entries;
11718 }
11719
11720 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
11721 if (!pb->events) {
11722 err = -ENOMEM;
11723 pr_warn("failed to allocate events: out of memory\n");
11724 goto error;
11725 }
11726 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
11727 if (!pb->cpu_bufs) {
11728 err = -ENOMEM;
11729 pr_warn("failed to allocate buffers: out of memory\n");
11730 goto error;
11731 }
11732
11733 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
11734 if (err) {
11735 pr_warn("failed to get online CPU mask: %d\n", err);
11736 goto error;
11737 }
11738
11739 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
11740 struct perf_cpu_buf *cpu_buf;
11741 int cpu, map_key;
11742
11743 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
11744 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
11745
11746 /* in case user didn't explicitly requested particular CPUs to
11747 * be attached to, skip offline/not present CPUs
11748 */
11749 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
11750 continue;
11751
11752 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
11753 if (IS_ERR(cpu_buf)) {
11754 err = PTR_ERR(cpu_buf);
11755 goto error;
11756 }
11757
11758 pb->cpu_bufs[j] = cpu_buf;
11759
11760 err = bpf_map_update_elem(pb->map_fd, &map_key,
11761 &cpu_buf->fd, 0);
11762 if (err) {
11763 err = -errno;
11764 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
11765 cpu, map_key, cpu_buf->fd,
11766 libbpf_strerror_r(err, msg, sizeof(msg)));
11767 goto error;
11768 }
11769
11770 pb->events[j].events = EPOLLIN;
11771 pb->events[j].data.ptr = cpu_buf;
11772 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
11773 &pb->events[j]) < 0) {
11774 err = -errno;
11775 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
11776 cpu, cpu_buf->fd,
11777 libbpf_strerror_r(err, msg, sizeof(msg)));
11778 goto error;
11779 }
11780 j++;
11781 }
11782 pb->cpu_cnt = j;
11783 free(online);
11784
11785 return pb;
11786
11787error:
11788 free(online);
11789 if (pb)
11790 perf_buffer__free(pb);
11791 return ERR_PTR(err);
11792}
11793
11794struct perf_sample_raw {
11795 struct perf_event_header header;
11796 uint32_t size;
11797 char data[];
11798};
11799
11800struct perf_sample_lost {
11801 struct perf_event_header header;
11802 uint64_t id;
11803 uint64_t lost;
11804 uint64_t sample_id;
11805};
11806
11807static enum bpf_perf_event_ret
11808perf_buffer__process_record(struct perf_event_header *e, void *ctx)
11809{
11810 struct perf_cpu_buf *cpu_buf = ctx;
11811 struct perf_buffer *pb = cpu_buf->pb;
11812 void *data = e;
11813
11814 /* user wants full control over parsing perf event */
11815 if (pb->event_cb)
11816 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
11817
11818 switch (e->type) {
11819 case PERF_RECORD_SAMPLE: {
11820 struct perf_sample_raw *s = data;
11821
11822 if (pb->sample_cb)
11823 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
11824 break;
11825 }
11826 case PERF_RECORD_LOST: {
11827 struct perf_sample_lost *s = data;
11828
11829 if (pb->lost_cb)
11830 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
11831 break;
11832 }
11833 default:
11834 pr_warn("unknown perf sample type %d\n", e->type);
11835 return LIBBPF_PERF_EVENT_ERROR;
11836 }
11837 return LIBBPF_PERF_EVENT_CONT;
11838}
11839
11840static int perf_buffer__process_records(struct perf_buffer *pb,
11841 struct perf_cpu_buf *cpu_buf)
11842{
11843 enum bpf_perf_event_ret ret;
11844
11845 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
11846 pb->page_size, &cpu_buf->buf,
11847 &cpu_buf->buf_size,
11848 perf_buffer__process_record, cpu_buf);
11849 if (ret != LIBBPF_PERF_EVENT_CONT)
11850 return ret;
11851 return 0;
11852}
11853
11854int perf_buffer__epoll_fd(const struct perf_buffer *pb)
11855{
11856 return pb->epoll_fd;
11857}
11858
11859int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
11860{
11861 int i, cnt, err;
11862
11863 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
11864 if (cnt < 0)
11865 return -errno;
11866
11867 for (i = 0; i < cnt; i++) {
11868 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
11869
11870 err = perf_buffer__process_records(pb, cpu_buf);
11871 if (err) {
11872 pr_warn("error while processing records: %d\n", err);
11873 return libbpf_err(err);
11874 }
11875 }
11876 return cnt;
11877}
11878
11879/* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
11880 * manager.
11881 */
11882size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
11883{
11884 return pb->cpu_cnt;
11885}
11886
11887/*
11888 * Return perf_event FD of a ring buffer in *buf_idx* slot of
11889 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
11890 * select()/poll()/epoll() Linux syscalls.
11891 */
11892int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
11893{
11894 struct perf_cpu_buf *cpu_buf;
11895
11896 if (buf_idx >= pb->cpu_cnt)
11897 return libbpf_err(-EINVAL);
11898
11899 cpu_buf = pb->cpu_bufs[buf_idx];
11900 if (!cpu_buf)
11901 return libbpf_err(-ENOENT);
11902
11903 return cpu_buf->fd;
11904}
11905
11906int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
11907{
11908 struct perf_cpu_buf *cpu_buf;
11909
11910 if (buf_idx >= pb->cpu_cnt)
11911 return libbpf_err(-EINVAL);
11912
11913 cpu_buf = pb->cpu_bufs[buf_idx];
11914 if (!cpu_buf)
11915 return libbpf_err(-ENOENT);
11916
11917 *buf = cpu_buf->base;
11918 *buf_size = pb->mmap_size;
11919 return 0;
11920}
11921
11922/*
11923 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
11924 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
11925 * consume, do nothing and return success.
11926 * Returns:
11927 * - 0 on success;
11928 * - <0 on failure.
11929 */
11930int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
11931{
11932 struct perf_cpu_buf *cpu_buf;
11933
11934 if (buf_idx >= pb->cpu_cnt)
11935 return libbpf_err(-EINVAL);
11936
11937 cpu_buf = pb->cpu_bufs[buf_idx];
11938 if (!cpu_buf)
11939 return libbpf_err(-ENOENT);
11940
11941 return perf_buffer__process_records(pb, cpu_buf);
11942}
11943
11944int perf_buffer__consume(struct perf_buffer *pb)
11945{
11946 int i, err;
11947
11948 for (i = 0; i < pb->cpu_cnt; i++) {
11949 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11950
11951 if (!cpu_buf)
11952 continue;
11953
11954 err = perf_buffer__process_records(pb, cpu_buf);
11955 if (err) {
11956 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
11957 return libbpf_err(err);
11958 }
11959 }
11960 return 0;
11961}
11962
11963int bpf_program__set_attach_target(struct bpf_program *prog,
11964 int attach_prog_fd,
11965 const char *attach_func_name)
11966{
11967 int btf_obj_fd = 0, btf_id = 0, err;
11968
11969 if (!prog || attach_prog_fd < 0)
11970 return libbpf_err(-EINVAL);
11971
11972 if (prog->obj->loaded)
11973 return libbpf_err(-EINVAL);
11974
11975 if (attach_prog_fd && !attach_func_name) {
11976 /* remember attach_prog_fd and let bpf_program__load() find
11977 * BTF ID during the program load
11978 */
11979 prog->attach_prog_fd = attach_prog_fd;
11980 return 0;
11981 }
11982
11983 if (attach_prog_fd) {
11984 btf_id = libbpf_find_prog_btf_id(attach_func_name,
11985 attach_prog_fd);
11986 if (btf_id < 0)
11987 return libbpf_err(btf_id);
11988 } else {
11989 if (!attach_func_name)
11990 return libbpf_err(-EINVAL);
11991
11992 /* load btf_vmlinux, if not yet */
11993 err = bpf_object__load_vmlinux_btf(prog->obj, true);
11994 if (err)
11995 return libbpf_err(err);
11996 err = find_kernel_btf_id(prog->obj, attach_func_name,
11997 prog->expected_attach_type,
11998 &btf_obj_fd, &btf_id);
11999 if (err)
12000 return libbpf_err(err);
12001 }
12002
12003 prog->attach_btf_id = btf_id;
12004 prog->attach_btf_obj_fd = btf_obj_fd;
12005 prog->attach_prog_fd = attach_prog_fd;
12006 return 0;
12007}
12008
12009int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12010{
12011 int err = 0, n, len, start, end = -1;
12012 bool *tmp;
12013
12014 *mask = NULL;
12015 *mask_sz = 0;
12016
12017 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12018 while (*s) {
12019 if (*s == ',' || *s == '\n') {
12020 s++;
12021 continue;
12022 }
12023 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12024 if (n <= 0 || n > 2) {
12025 pr_warn("Failed to get CPU range %s: %d\n", s, n);
12026 err = -EINVAL;
12027 goto cleanup;
12028 } else if (n == 1) {
12029 end = start;
12030 }
12031 if (start < 0 || start > end) {
12032 pr_warn("Invalid CPU range [%d,%d] in %s\n",
12033 start, end, s);
12034 err = -EINVAL;
12035 goto cleanup;
12036 }
12037 tmp = realloc(*mask, end + 1);
12038 if (!tmp) {
12039 err = -ENOMEM;
12040 goto cleanup;
12041 }
12042 *mask = tmp;
12043 memset(tmp + *mask_sz, 0, start - *mask_sz);
12044 memset(tmp + start, 1, end - start + 1);
12045 *mask_sz = end + 1;
12046 s += len;
12047 }
12048 if (!*mask_sz) {
12049 pr_warn("Empty CPU range\n");
12050 return -EINVAL;
12051 }
12052 return 0;
12053cleanup:
12054 free(*mask);
12055 *mask = NULL;
12056 return err;
12057}
12058
12059int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12060{
12061 int fd, err = 0, len;
12062 char buf[128];
12063
12064 fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12065 if (fd < 0) {
12066 err = -errno;
12067 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12068 return err;
12069 }
12070 len = read(fd, buf, sizeof(buf));
12071 close(fd);
12072 if (len <= 0) {
12073 err = len ? -errno : -EINVAL;
12074 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12075 return err;
12076 }
12077 if (len >= sizeof(buf)) {
12078 pr_warn("CPU mask is too big in file %s\n", fcpu);
12079 return -E2BIG;
12080 }
12081 buf[len] = '\0';
12082
12083 return parse_cpu_mask_str(buf, mask, mask_sz);
12084}
12085
12086int libbpf_num_possible_cpus(void)
12087{
12088 static const char *fcpu = "/sys/devices/system/cpu/possible";
12089 static int cpus;
12090 int err, n, i, tmp_cpus;
12091 bool *mask;
12092
12093 tmp_cpus = READ_ONCE(cpus);
12094 if (tmp_cpus > 0)
12095 return tmp_cpus;
12096
12097 err = parse_cpu_mask_file(fcpu, &mask, &n);
12098 if (err)
12099 return libbpf_err(err);
12100
12101 tmp_cpus = 0;
12102 for (i = 0; i < n; i++) {
12103 if (mask[i])
12104 tmp_cpus++;
12105 }
12106 free(mask);
12107
12108 WRITE_ONCE(cpus, tmp_cpus);
12109 return tmp_cpus;
12110}
12111
12112static int populate_skeleton_maps(const struct bpf_object *obj,
12113 struct bpf_map_skeleton *maps,
12114 size_t map_cnt)
12115{
12116 int i;
12117
12118 for (i = 0; i < map_cnt; i++) {
12119 struct bpf_map **map = maps[i].map;
12120 const char *name = maps[i].name;
12121 void **mmaped = maps[i].mmaped;
12122
12123 *map = bpf_object__find_map_by_name(obj, name);
12124 if (!*map) {
12125 pr_warn("failed to find skeleton map '%s'\n", name);
12126 return -ESRCH;
12127 }
12128
12129 /* externs shouldn't be pre-setup from user code */
12130 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12131 *mmaped = (*map)->mmaped;
12132 }
12133 return 0;
12134}
12135
12136static int populate_skeleton_progs(const struct bpf_object *obj,
12137 struct bpf_prog_skeleton *progs,
12138 size_t prog_cnt)
12139{
12140 int i;
12141
12142 for (i = 0; i < prog_cnt; i++) {
12143 struct bpf_program **prog = progs[i].prog;
12144 const char *name = progs[i].name;
12145
12146 *prog = bpf_object__find_program_by_name(obj, name);
12147 if (!*prog) {
12148 pr_warn("failed to find skeleton program '%s'\n", name);
12149 return -ESRCH;
12150 }
12151 }
12152 return 0;
12153}
12154
12155int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12156 const struct bpf_object_open_opts *opts)
12157{
12158 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12159 .object_name = s->name,
12160 );
12161 struct bpf_object *obj;
12162 int err;
12163
12164 /* Attempt to preserve opts->object_name, unless overriden by user
12165 * explicitly. Overwriting object name for skeletons is discouraged,
12166 * as it breaks global data maps, because they contain object name
12167 * prefix as their own map name prefix. When skeleton is generated,
12168 * bpftool is making an assumption that this name will stay the same.
12169 */
12170 if (opts) {
12171 memcpy(&skel_opts, opts, sizeof(*opts));
12172 if (!opts->object_name)
12173 skel_opts.object_name = s->name;
12174 }
12175
12176 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
12177 err = libbpf_get_error(obj);
12178 if (err) {
12179 pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
12180 s->name, err);
12181 return libbpf_err(err);
12182 }
12183
12184 *s->obj = obj;
12185 err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
12186 if (err) {
12187 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
12188 return libbpf_err(err);
12189 }
12190
12191 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
12192 if (err) {
12193 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
12194 return libbpf_err(err);
12195 }
12196
12197 return 0;
12198}
12199
12200int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
12201{
12202 int err, len, var_idx, i;
12203 const char *var_name;
12204 const struct bpf_map *map;
12205 struct btf *btf;
12206 __u32 map_type_id;
12207 const struct btf_type *map_type, *var_type;
12208 const struct bpf_var_skeleton *var_skel;
12209 struct btf_var_secinfo *var;
12210
12211 if (!s->obj)
12212 return libbpf_err(-EINVAL);
12213
12214 btf = bpf_object__btf(s->obj);
12215 if (!btf) {
12216 pr_warn("subskeletons require BTF at runtime (object %s)\n",
12217 bpf_object__name(s->obj));
12218 return libbpf_err(-errno);
12219 }
12220
12221 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
12222 if (err) {
12223 pr_warn("failed to populate subskeleton maps: %d\n", err);
12224 return libbpf_err(err);
12225 }
12226
12227 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
12228 if (err) {
12229 pr_warn("failed to populate subskeleton maps: %d\n", err);
12230 return libbpf_err(err);
12231 }
12232
12233 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
12234 var_skel = &s->vars[var_idx];
12235 map = *var_skel->map;
12236 map_type_id = bpf_map__btf_value_type_id(map);
12237 map_type = btf__type_by_id(btf, map_type_id);
12238
12239 if (!btf_is_datasec(map_type)) {
12240 pr_warn("type for map '%1$s' is not a datasec: %2$s",
12241 bpf_map__name(map),
12242 __btf_kind_str(btf_kind(map_type)));
12243 return libbpf_err(-EINVAL);
12244 }
12245
12246 len = btf_vlen(map_type);
12247 var = btf_var_secinfos(map_type);
12248 for (i = 0; i < len; i++, var++) {
12249 var_type = btf__type_by_id(btf, var->type);
12250 var_name = btf__name_by_offset(btf, var_type->name_off);
12251 if (strcmp(var_name, var_skel->name) == 0) {
12252 *var_skel->addr = map->mmaped + var->offset;
12253 break;
12254 }
12255 }
12256 }
12257 return 0;
12258}
12259
12260void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
12261{
12262 if (!s)
12263 return;
12264 free(s->maps);
12265 free(s->progs);
12266 free(s->vars);
12267 free(s);
12268}
12269
12270int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
12271{
12272 int i, err;
12273
12274 err = bpf_object__load(*s->obj);
12275 if (err) {
12276 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
12277 return libbpf_err(err);
12278 }
12279
12280 for (i = 0; i < s->map_cnt; i++) {
12281 struct bpf_map *map = *s->maps[i].map;
12282 size_t mmap_sz = bpf_map_mmap_sz(map);
12283 int prot, map_fd = bpf_map__fd(map);
12284 void **mmaped = s->maps[i].mmaped;
12285
12286 if (!mmaped)
12287 continue;
12288
12289 if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
12290 *mmaped = NULL;
12291 continue;
12292 }
12293
12294 if (map->def.map_flags & BPF_F_RDONLY_PROG)
12295 prot = PROT_READ;
12296 else
12297 prot = PROT_READ | PROT_WRITE;
12298
12299 /* Remap anonymous mmap()-ed "map initialization image" as
12300 * a BPF map-backed mmap()-ed memory, but preserving the same
12301 * memory address. This will cause kernel to change process'
12302 * page table to point to a different piece of kernel memory,
12303 * but from userspace point of view memory address (and its
12304 * contents, being identical at this point) will stay the
12305 * same. This mapping will be released by bpf_object__close()
12306 * as per normal clean up procedure, so we don't need to worry
12307 * about it from skeleton's clean up perspective.
12308 */
12309 *mmaped = mmap(map->mmaped, mmap_sz, prot,
12310 MAP_SHARED | MAP_FIXED, map_fd, 0);
12311 if (*mmaped == MAP_FAILED) {
12312 err = -errno;
12313 *mmaped = NULL;
12314 pr_warn("failed to re-mmap() map '%s': %d\n",
12315 bpf_map__name(map), err);
12316 return libbpf_err(err);
12317 }
12318 }
12319
12320 return 0;
12321}
12322
12323int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
12324{
12325 int i, err;
12326
12327 for (i = 0; i < s->prog_cnt; i++) {
12328 struct bpf_program *prog = *s->progs[i].prog;
12329 struct bpf_link **link = s->progs[i].link;
12330
12331 if (!prog->autoload)
12332 continue;
12333
12334 /* auto-attaching not supported for this program */
12335 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12336 continue;
12337
12338 /* if user already set the link manually, don't attempt auto-attach */
12339 if (*link)
12340 continue;
12341
12342 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
12343 if (err) {
12344 pr_warn("prog '%s': failed to auto-attach: %d\n",
12345 bpf_program__name(prog), err);
12346 return libbpf_err(err);
12347 }
12348
12349 /* It's possible that for some SEC() definitions auto-attach
12350 * is supported in some cases (e.g., if definition completely
12351 * specifies target information), but is not in other cases.
12352 * SEC("uprobe") is one such case. If user specified target
12353 * binary and function name, such BPF program can be
12354 * auto-attached. But if not, it shouldn't trigger skeleton's
12355 * attach to fail. It should just be skipped.
12356 * attach_fn signals such case with returning 0 (no error) and
12357 * setting link to NULL.
12358 */
12359 }
12360
12361 return 0;
12362}
12363
12364void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
12365{
12366 int i;
12367
12368 for (i = 0; i < s->prog_cnt; i++) {
12369 struct bpf_link **link = s->progs[i].link;
12370
12371 bpf_link__destroy(*link);
12372 *link = NULL;
12373 }
12374}
12375
12376void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
12377{
12378 if (!s)
12379 return;
12380
12381 if (s->progs)
12382 bpf_object__detach_skeleton(s);
12383 if (s->obj)
12384 bpf_object__close(*s->obj);
12385 free(s->maps);
12386 free(s->progs);
12387 free(s);
12388}