Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13#include <linux/export.h>
14#include <linux/compiler.h>
15#include <linux/dax.h>
16#include <linux/fs.h>
17#include <linux/sched/signal.h>
18#include <linux/uaccess.h>
19#include <linux/capability.h>
20#include <linux/kernel_stat.h>
21#include <linux/gfp.h>
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/swapops.h>
25#include <linux/mman.h>
26#include <linux/pagemap.h>
27#include <linux/file.h>
28#include <linux/uio.h>
29#include <linux/error-injection.h>
30#include <linux/hash.h>
31#include <linux/writeback.h>
32#include <linux/backing-dev.h>
33#include <linux/pagevec.h>
34#include <linux/security.h>
35#include <linux/cpuset.h>
36#include <linux/hugetlb.h>
37#include <linux/memcontrol.h>
38#include <linux/shmem_fs.h>
39#include <linux/rmap.h>
40#include <linux/delayacct.h>
41#include <linux/psi.h>
42#include <linux/ramfs.h>
43#include <linux/page_idle.h>
44#include <linux/migrate.h>
45#include <asm/pgalloc.h>
46#include <asm/tlbflush.h>
47#include "internal.h"
48
49#define CREATE_TRACE_POINTS
50#include <trace/events/filemap.h>
51
52/*
53 * FIXME: remove all knowledge of the buffer layer from the core VM
54 */
55#include <linux/buffer_head.h> /* for try_to_free_buffers */
56
57#include <asm/mman.h>
58
59/*
60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
61 * though.
62 *
63 * Shared mappings now work. 15.8.1995 Bruno.
64 *
65 * finished 'unifying' the page and buffer cache and SMP-threaded the
66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67 *
68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69 */
70
71/*
72 * Lock ordering:
73 *
74 * ->i_mmap_rwsem (truncate_pagecache)
75 * ->private_lock (__free_pte->block_dirty_folio)
76 * ->swap_lock (exclusive_swap_page, others)
77 * ->i_pages lock
78 *
79 * ->i_rwsem
80 * ->invalidate_lock (acquired by fs in truncate path)
81 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
82 *
83 * ->mmap_lock
84 * ->i_mmap_rwsem
85 * ->page_table_lock or pte_lock (various, mainly in memory.c)
86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
87 *
88 * ->mmap_lock
89 * ->invalidate_lock (filemap_fault)
90 * ->lock_page (filemap_fault, access_process_vm)
91 *
92 * ->i_rwsem (generic_perform_write)
93 * ->mmap_lock (fault_in_readable->do_page_fault)
94 *
95 * bdi->wb.list_lock
96 * sb_lock (fs/fs-writeback.c)
97 * ->i_pages lock (__sync_single_inode)
98 *
99 * ->i_mmap_rwsem
100 * ->anon_vma.lock (vma_adjust)
101 *
102 * ->anon_vma.lock
103 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
104 *
105 * ->page_table_lock or pte_lock
106 * ->swap_lock (try_to_unmap_one)
107 * ->private_lock (try_to_unmap_one)
108 * ->i_pages lock (try_to_unmap_one)
109 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
111 * ->private_lock (page_remove_rmap->set_page_dirty)
112 * ->i_pages lock (page_remove_rmap->set_page_dirty)
113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
114 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
117 * ->inode->i_lock (zap_pte_range->set_page_dirty)
118 * ->private_lock (zap_pte_range->block_dirty_folio)
119 *
120 * ->i_mmap_rwsem
121 * ->tasklist_lock (memory_failure, collect_procs_ao)
122 */
123
124static void page_cache_delete(struct address_space *mapping,
125 struct folio *folio, void *shadow)
126{
127 XA_STATE(xas, &mapping->i_pages, folio->index);
128 long nr = 1;
129
130 mapping_set_update(&xas, mapping);
131
132 /* hugetlb pages are represented by a single entry in the xarray */
133 if (!folio_test_hugetlb(folio)) {
134 xas_set_order(&xas, folio->index, folio_order(folio));
135 nr = folio_nr_pages(folio);
136 }
137
138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
139
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
142
143 folio->mapping = NULL;
144 /* Leave page->index set: truncation lookup relies upon it */
145 mapping->nrpages -= nr;
146}
147
148static void filemap_unaccount_folio(struct address_space *mapping,
149 struct folio *folio)
150{
151 long nr;
152
153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
156 current->comm, folio_pfn(folio));
157 dump_page(&folio->page, "still mapped when deleted");
158 dump_stack();
159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
160
161 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
162 int mapcount = page_mapcount(&folio->page);
163
164 if (folio_ref_count(folio) >= mapcount + 2) {
165 /*
166 * All vmas have already been torn down, so it's
167 * a good bet that actually the page is unmapped
168 * and we'd rather not leak it: if we're wrong,
169 * another bad page check should catch it later.
170 */
171 page_mapcount_reset(&folio->page);
172 folio_ref_sub(folio, mapcount);
173 }
174 }
175 }
176
177 /* hugetlb folios do not participate in page cache accounting. */
178 if (folio_test_hugetlb(folio))
179 return;
180
181 nr = folio_nr_pages(folio);
182
183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 if (folio_test_swapbacked(folio)) {
185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 if (folio_test_pmd_mappable(folio))
187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 } else if (folio_test_pmd_mappable(folio)) {
189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
190 filemap_nr_thps_dec(mapping);
191 }
192
193 /*
194 * At this point folio must be either written or cleaned by
195 * truncate. Dirty folio here signals a bug and loss of
196 * unwritten data - on ordinary filesystems.
197 *
198 * But it's harmless on in-memory filesystems like tmpfs; and can
199 * occur when a driver which did get_user_pages() sets page dirty
200 * before putting it, while the inode is being finally evicted.
201 *
202 * Below fixes dirty accounting after removing the folio entirely
203 * but leaves the dirty flag set: it has no effect for truncated
204 * folio and anyway will be cleared before returning folio to
205 * buddy allocator.
206 */
207 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
208 mapping_can_writeback(mapping)))
209 folio_account_cleaned(folio, inode_to_wb(mapping->host));
210}
211
212/*
213 * Delete a page from the page cache and free it. Caller has to make
214 * sure the page is locked and that nobody else uses it - or that usage
215 * is safe. The caller must hold the i_pages lock.
216 */
217void __filemap_remove_folio(struct folio *folio, void *shadow)
218{
219 struct address_space *mapping = folio->mapping;
220
221 trace_mm_filemap_delete_from_page_cache(folio);
222 filemap_unaccount_folio(mapping, folio);
223 page_cache_delete(mapping, folio, shadow);
224}
225
226void filemap_free_folio(struct address_space *mapping, struct folio *folio)
227{
228 void (*free_folio)(struct folio *);
229 int refs = 1;
230
231 free_folio = mapping->a_ops->free_folio;
232 if (free_folio)
233 free_folio(folio);
234
235 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
236 refs = folio_nr_pages(folio);
237 folio_put_refs(folio, refs);
238}
239
240/**
241 * filemap_remove_folio - Remove folio from page cache.
242 * @folio: The folio.
243 *
244 * This must be called only on folios that are locked and have been
245 * verified to be in the page cache. It will never put the folio into
246 * the free list because the caller has a reference on the page.
247 */
248void filemap_remove_folio(struct folio *folio)
249{
250 struct address_space *mapping = folio->mapping;
251
252 BUG_ON(!folio_test_locked(folio));
253 spin_lock(&mapping->host->i_lock);
254 xa_lock_irq(&mapping->i_pages);
255 __filemap_remove_folio(folio, NULL);
256 xa_unlock_irq(&mapping->i_pages);
257 if (mapping_shrinkable(mapping))
258 inode_add_lru(mapping->host);
259 spin_unlock(&mapping->host->i_lock);
260
261 filemap_free_folio(mapping, folio);
262}
263
264/*
265 * page_cache_delete_batch - delete several folios from page cache
266 * @mapping: the mapping to which folios belong
267 * @fbatch: batch of folios to delete
268 *
269 * The function walks over mapping->i_pages and removes folios passed in
270 * @fbatch from the mapping. The function expects @fbatch to be sorted
271 * by page index and is optimised for it to be dense.
272 * It tolerates holes in @fbatch (mapping entries at those indices are not
273 * modified).
274 *
275 * The function expects the i_pages lock to be held.
276 */
277static void page_cache_delete_batch(struct address_space *mapping,
278 struct folio_batch *fbatch)
279{
280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
281 long total_pages = 0;
282 int i = 0;
283 struct folio *folio;
284
285 mapping_set_update(&xas, mapping);
286 xas_for_each(&xas, folio, ULONG_MAX) {
287 if (i >= folio_batch_count(fbatch))
288 break;
289
290 /* A swap/dax/shadow entry got inserted? Skip it. */
291 if (xa_is_value(folio))
292 continue;
293 /*
294 * A page got inserted in our range? Skip it. We have our
295 * pages locked so they are protected from being removed.
296 * If we see a page whose index is higher than ours, it
297 * means our page has been removed, which shouldn't be
298 * possible because we're holding the PageLock.
299 */
300 if (folio != fbatch->folios[i]) {
301 VM_BUG_ON_FOLIO(folio->index >
302 fbatch->folios[i]->index, folio);
303 continue;
304 }
305
306 WARN_ON_ONCE(!folio_test_locked(folio));
307
308 folio->mapping = NULL;
309 /* Leave folio->index set: truncation lookup relies on it */
310
311 i++;
312 xas_store(&xas, NULL);
313 total_pages += folio_nr_pages(folio);
314 }
315 mapping->nrpages -= total_pages;
316}
317
318void delete_from_page_cache_batch(struct address_space *mapping,
319 struct folio_batch *fbatch)
320{
321 int i;
322
323 if (!folio_batch_count(fbatch))
324 return;
325
326 spin_lock(&mapping->host->i_lock);
327 xa_lock_irq(&mapping->i_pages);
328 for (i = 0; i < folio_batch_count(fbatch); i++) {
329 struct folio *folio = fbatch->folios[i];
330
331 trace_mm_filemap_delete_from_page_cache(folio);
332 filemap_unaccount_folio(mapping, folio);
333 }
334 page_cache_delete_batch(mapping, fbatch);
335 xa_unlock_irq(&mapping->i_pages);
336 if (mapping_shrinkable(mapping))
337 inode_add_lru(mapping->host);
338 spin_unlock(&mapping->host->i_lock);
339
340 for (i = 0; i < folio_batch_count(fbatch); i++)
341 filemap_free_folio(mapping, fbatch->folios[i]);
342}
343
344int filemap_check_errors(struct address_space *mapping)
345{
346 int ret = 0;
347 /* Check for outstanding write errors */
348 if (test_bit(AS_ENOSPC, &mapping->flags) &&
349 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
350 ret = -ENOSPC;
351 if (test_bit(AS_EIO, &mapping->flags) &&
352 test_and_clear_bit(AS_EIO, &mapping->flags))
353 ret = -EIO;
354 return ret;
355}
356EXPORT_SYMBOL(filemap_check_errors);
357
358static int filemap_check_and_keep_errors(struct address_space *mapping)
359{
360 /* Check for outstanding write errors */
361 if (test_bit(AS_EIO, &mapping->flags))
362 return -EIO;
363 if (test_bit(AS_ENOSPC, &mapping->flags))
364 return -ENOSPC;
365 return 0;
366}
367
368/**
369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
370 * @mapping: address space structure to write
371 * @wbc: the writeback_control controlling the writeout
372 *
373 * Call writepages on the mapping using the provided wbc to control the
374 * writeout.
375 *
376 * Return: %0 on success, negative error code otherwise.
377 */
378int filemap_fdatawrite_wbc(struct address_space *mapping,
379 struct writeback_control *wbc)
380{
381 int ret;
382
383 if (!mapping_can_writeback(mapping) ||
384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
385 return 0;
386
387 wbc_attach_fdatawrite_inode(wbc, mapping->host);
388 ret = do_writepages(mapping, wbc);
389 wbc_detach_inode(wbc);
390 return ret;
391}
392EXPORT_SYMBOL(filemap_fdatawrite_wbc);
393
394/**
395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
396 * @mapping: address space structure to write
397 * @start: offset in bytes where the range starts
398 * @end: offset in bytes where the range ends (inclusive)
399 * @sync_mode: enable synchronous operation
400 *
401 * Start writeback against all of a mapping's dirty pages that lie
402 * within the byte offsets <start, end> inclusive.
403 *
404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
405 * opposed to a regular memory cleansing writeback. The difference between
406 * these two operations is that if a dirty page/buffer is encountered, it must
407 * be waited upon, and not just skipped over.
408 *
409 * Return: %0 on success, negative error code otherwise.
410 */
411int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 loff_t end, int sync_mode)
413{
414 struct writeback_control wbc = {
415 .sync_mode = sync_mode,
416 .nr_to_write = LONG_MAX,
417 .range_start = start,
418 .range_end = end,
419 };
420
421 return filemap_fdatawrite_wbc(mapping, &wbc);
422}
423
424static inline int __filemap_fdatawrite(struct address_space *mapping,
425 int sync_mode)
426{
427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
428}
429
430int filemap_fdatawrite(struct address_space *mapping)
431{
432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
433}
434EXPORT_SYMBOL(filemap_fdatawrite);
435
436int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
437 loff_t end)
438{
439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
440}
441EXPORT_SYMBOL(filemap_fdatawrite_range);
442
443/**
444 * filemap_flush - mostly a non-blocking flush
445 * @mapping: target address_space
446 *
447 * This is a mostly non-blocking flush. Not suitable for data-integrity
448 * purposes - I/O may not be started against all dirty pages.
449 *
450 * Return: %0 on success, negative error code otherwise.
451 */
452int filemap_flush(struct address_space *mapping)
453{
454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
455}
456EXPORT_SYMBOL(filemap_flush);
457
458/**
459 * filemap_range_has_page - check if a page exists in range.
460 * @mapping: address space within which to check
461 * @start_byte: offset in bytes where the range starts
462 * @end_byte: offset in bytes where the range ends (inclusive)
463 *
464 * Find at least one page in the range supplied, usually used to check if
465 * direct writing in this range will trigger a writeback.
466 *
467 * Return: %true if at least one page exists in the specified range,
468 * %false otherwise.
469 */
470bool filemap_range_has_page(struct address_space *mapping,
471 loff_t start_byte, loff_t end_byte)
472{
473 struct page *page;
474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 pgoff_t max = end_byte >> PAGE_SHIFT;
476
477 if (end_byte < start_byte)
478 return false;
479
480 rcu_read_lock();
481 for (;;) {
482 page = xas_find(&xas, max);
483 if (xas_retry(&xas, page))
484 continue;
485 /* Shadow entries don't count */
486 if (xa_is_value(page))
487 continue;
488 /*
489 * We don't need to try to pin this page; we're about to
490 * release the RCU lock anyway. It is enough to know that
491 * there was a page here recently.
492 */
493 break;
494 }
495 rcu_read_unlock();
496
497 return page != NULL;
498}
499EXPORT_SYMBOL(filemap_range_has_page);
500
501static void __filemap_fdatawait_range(struct address_space *mapping,
502 loff_t start_byte, loff_t end_byte)
503{
504 pgoff_t index = start_byte >> PAGE_SHIFT;
505 pgoff_t end = end_byte >> PAGE_SHIFT;
506 struct pagevec pvec;
507 int nr_pages;
508
509 if (end_byte < start_byte)
510 return;
511
512 pagevec_init(&pvec);
513 while (index <= end) {
514 unsigned i;
515
516 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
517 end, PAGECACHE_TAG_WRITEBACK);
518 if (!nr_pages)
519 break;
520
521 for (i = 0; i < nr_pages; i++) {
522 struct page *page = pvec.pages[i];
523
524 wait_on_page_writeback(page);
525 ClearPageError(page);
526 }
527 pagevec_release(&pvec);
528 cond_resched();
529 }
530}
531
532/**
533 * filemap_fdatawait_range - wait for writeback to complete
534 * @mapping: address space structure to wait for
535 * @start_byte: offset in bytes where the range starts
536 * @end_byte: offset in bytes where the range ends (inclusive)
537 *
538 * Walk the list of under-writeback pages of the given address space
539 * in the given range and wait for all of them. Check error status of
540 * the address space and return it.
541 *
542 * Since the error status of the address space is cleared by this function,
543 * callers are responsible for checking the return value and handling and/or
544 * reporting the error.
545 *
546 * Return: error status of the address space.
547 */
548int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
549 loff_t end_byte)
550{
551 __filemap_fdatawait_range(mapping, start_byte, end_byte);
552 return filemap_check_errors(mapping);
553}
554EXPORT_SYMBOL(filemap_fdatawait_range);
555
556/**
557 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
558 * @mapping: address space structure to wait for
559 * @start_byte: offset in bytes where the range starts
560 * @end_byte: offset in bytes where the range ends (inclusive)
561 *
562 * Walk the list of under-writeback pages of the given address space in the
563 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
564 * this function does not clear error status of the address space.
565 *
566 * Use this function if callers don't handle errors themselves. Expected
567 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
568 * fsfreeze(8)
569 */
570int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
571 loff_t start_byte, loff_t end_byte)
572{
573 __filemap_fdatawait_range(mapping, start_byte, end_byte);
574 return filemap_check_and_keep_errors(mapping);
575}
576EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
577
578/**
579 * file_fdatawait_range - wait for writeback to complete
580 * @file: file pointing to address space structure to wait for
581 * @start_byte: offset in bytes where the range starts
582 * @end_byte: offset in bytes where the range ends (inclusive)
583 *
584 * Walk the list of under-writeback pages of the address space that file
585 * refers to, in the given range and wait for all of them. Check error
586 * status of the address space vs. the file->f_wb_err cursor and return it.
587 *
588 * Since the error status of the file is advanced by this function,
589 * callers are responsible for checking the return value and handling and/or
590 * reporting the error.
591 *
592 * Return: error status of the address space vs. the file->f_wb_err cursor.
593 */
594int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
595{
596 struct address_space *mapping = file->f_mapping;
597
598 __filemap_fdatawait_range(mapping, start_byte, end_byte);
599 return file_check_and_advance_wb_err(file);
600}
601EXPORT_SYMBOL(file_fdatawait_range);
602
603/**
604 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
605 * @mapping: address space structure to wait for
606 *
607 * Walk the list of under-writeback pages of the given address space
608 * and wait for all of them. Unlike filemap_fdatawait(), this function
609 * does not clear error status of the address space.
610 *
611 * Use this function if callers don't handle errors themselves. Expected
612 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
613 * fsfreeze(8)
614 *
615 * Return: error status of the address space.
616 */
617int filemap_fdatawait_keep_errors(struct address_space *mapping)
618{
619 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
620 return filemap_check_and_keep_errors(mapping);
621}
622EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
623
624/* Returns true if writeback might be needed or already in progress. */
625static bool mapping_needs_writeback(struct address_space *mapping)
626{
627 return mapping->nrpages;
628}
629
630bool filemap_range_has_writeback(struct address_space *mapping,
631 loff_t start_byte, loff_t end_byte)
632{
633 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
634 pgoff_t max = end_byte >> PAGE_SHIFT;
635 struct page *page;
636
637 if (end_byte < start_byte)
638 return false;
639
640 rcu_read_lock();
641 xas_for_each(&xas, page, max) {
642 if (xas_retry(&xas, page))
643 continue;
644 if (xa_is_value(page))
645 continue;
646 if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
647 break;
648 }
649 rcu_read_unlock();
650 return page != NULL;
651}
652EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
653
654/**
655 * filemap_write_and_wait_range - write out & wait on a file range
656 * @mapping: the address_space for the pages
657 * @lstart: offset in bytes where the range starts
658 * @lend: offset in bytes where the range ends (inclusive)
659 *
660 * Write out and wait upon file offsets lstart->lend, inclusive.
661 *
662 * Note that @lend is inclusive (describes the last byte to be written) so
663 * that this function can be used to write to the very end-of-file (end = -1).
664 *
665 * Return: error status of the address space.
666 */
667int filemap_write_and_wait_range(struct address_space *mapping,
668 loff_t lstart, loff_t lend)
669{
670 int err = 0, err2;
671
672 if (mapping_needs_writeback(mapping)) {
673 err = __filemap_fdatawrite_range(mapping, lstart, lend,
674 WB_SYNC_ALL);
675 /*
676 * Even if the above returned error, the pages may be
677 * written partially (e.g. -ENOSPC), so we wait for it.
678 * But the -EIO is special case, it may indicate the worst
679 * thing (e.g. bug) happened, so we avoid waiting for it.
680 */
681 if (err != -EIO)
682 __filemap_fdatawait_range(mapping, lstart, lend);
683 }
684 err2 = filemap_check_errors(mapping);
685 if (!err)
686 err = err2;
687 return err;
688}
689EXPORT_SYMBOL(filemap_write_and_wait_range);
690
691void __filemap_set_wb_err(struct address_space *mapping, int err)
692{
693 errseq_t eseq = errseq_set(&mapping->wb_err, err);
694
695 trace_filemap_set_wb_err(mapping, eseq);
696}
697EXPORT_SYMBOL(__filemap_set_wb_err);
698
699/**
700 * file_check_and_advance_wb_err - report wb error (if any) that was previously
701 * and advance wb_err to current one
702 * @file: struct file on which the error is being reported
703 *
704 * When userland calls fsync (or something like nfsd does the equivalent), we
705 * want to report any writeback errors that occurred since the last fsync (or
706 * since the file was opened if there haven't been any).
707 *
708 * Grab the wb_err from the mapping. If it matches what we have in the file,
709 * then just quickly return 0. The file is all caught up.
710 *
711 * If it doesn't match, then take the mapping value, set the "seen" flag in
712 * it and try to swap it into place. If it works, or another task beat us
713 * to it with the new value, then update the f_wb_err and return the error
714 * portion. The error at this point must be reported via proper channels
715 * (a'la fsync, or NFS COMMIT operation, etc.).
716 *
717 * While we handle mapping->wb_err with atomic operations, the f_wb_err
718 * value is protected by the f_lock since we must ensure that it reflects
719 * the latest value swapped in for this file descriptor.
720 *
721 * Return: %0 on success, negative error code otherwise.
722 */
723int file_check_and_advance_wb_err(struct file *file)
724{
725 int err = 0;
726 errseq_t old = READ_ONCE(file->f_wb_err);
727 struct address_space *mapping = file->f_mapping;
728
729 /* Locklessly handle the common case where nothing has changed */
730 if (errseq_check(&mapping->wb_err, old)) {
731 /* Something changed, must use slow path */
732 spin_lock(&file->f_lock);
733 old = file->f_wb_err;
734 err = errseq_check_and_advance(&mapping->wb_err,
735 &file->f_wb_err);
736 trace_file_check_and_advance_wb_err(file, old);
737 spin_unlock(&file->f_lock);
738 }
739
740 /*
741 * We're mostly using this function as a drop in replacement for
742 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
743 * that the legacy code would have had on these flags.
744 */
745 clear_bit(AS_EIO, &mapping->flags);
746 clear_bit(AS_ENOSPC, &mapping->flags);
747 return err;
748}
749EXPORT_SYMBOL(file_check_and_advance_wb_err);
750
751/**
752 * file_write_and_wait_range - write out & wait on a file range
753 * @file: file pointing to address_space with pages
754 * @lstart: offset in bytes where the range starts
755 * @lend: offset in bytes where the range ends (inclusive)
756 *
757 * Write out and wait upon file offsets lstart->lend, inclusive.
758 *
759 * Note that @lend is inclusive (describes the last byte to be written) so
760 * that this function can be used to write to the very end-of-file (end = -1).
761 *
762 * After writing out and waiting on the data, we check and advance the
763 * f_wb_err cursor to the latest value, and return any errors detected there.
764 *
765 * Return: %0 on success, negative error code otherwise.
766 */
767int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
768{
769 int err = 0, err2;
770 struct address_space *mapping = file->f_mapping;
771
772 if (mapping_needs_writeback(mapping)) {
773 err = __filemap_fdatawrite_range(mapping, lstart, lend,
774 WB_SYNC_ALL);
775 /* See comment of filemap_write_and_wait() */
776 if (err != -EIO)
777 __filemap_fdatawait_range(mapping, lstart, lend);
778 }
779 err2 = file_check_and_advance_wb_err(file);
780 if (!err)
781 err = err2;
782 return err;
783}
784EXPORT_SYMBOL(file_write_and_wait_range);
785
786/**
787 * replace_page_cache_page - replace a pagecache page with a new one
788 * @old: page to be replaced
789 * @new: page to replace with
790 *
791 * This function replaces a page in the pagecache with a new one. On
792 * success it acquires the pagecache reference for the new page and
793 * drops it for the old page. Both the old and new pages must be
794 * locked. This function does not add the new page to the LRU, the
795 * caller must do that.
796 *
797 * The remove + add is atomic. This function cannot fail.
798 */
799void replace_page_cache_page(struct page *old, struct page *new)
800{
801 struct folio *fold = page_folio(old);
802 struct folio *fnew = page_folio(new);
803 struct address_space *mapping = old->mapping;
804 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
805 pgoff_t offset = old->index;
806 XA_STATE(xas, &mapping->i_pages, offset);
807
808 VM_BUG_ON_PAGE(!PageLocked(old), old);
809 VM_BUG_ON_PAGE(!PageLocked(new), new);
810 VM_BUG_ON_PAGE(new->mapping, new);
811
812 get_page(new);
813 new->mapping = mapping;
814 new->index = offset;
815
816 mem_cgroup_migrate(fold, fnew);
817
818 xas_lock_irq(&xas);
819 xas_store(&xas, new);
820
821 old->mapping = NULL;
822 /* hugetlb pages do not participate in page cache accounting. */
823 if (!PageHuge(old))
824 __dec_lruvec_page_state(old, NR_FILE_PAGES);
825 if (!PageHuge(new))
826 __inc_lruvec_page_state(new, NR_FILE_PAGES);
827 if (PageSwapBacked(old))
828 __dec_lruvec_page_state(old, NR_SHMEM);
829 if (PageSwapBacked(new))
830 __inc_lruvec_page_state(new, NR_SHMEM);
831 xas_unlock_irq(&xas);
832 if (free_folio)
833 free_folio(fold);
834 folio_put(fold);
835}
836EXPORT_SYMBOL_GPL(replace_page_cache_page);
837
838noinline int __filemap_add_folio(struct address_space *mapping,
839 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
840{
841 XA_STATE(xas, &mapping->i_pages, index);
842 int huge = folio_test_hugetlb(folio);
843 bool charged = false;
844 long nr = 1;
845
846 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
847 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
848 mapping_set_update(&xas, mapping);
849
850 if (!huge) {
851 int error = mem_cgroup_charge(folio, NULL, gfp);
852 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
853 if (error)
854 return error;
855 charged = true;
856 xas_set_order(&xas, index, folio_order(folio));
857 nr = folio_nr_pages(folio);
858 }
859
860 gfp &= GFP_RECLAIM_MASK;
861 folio_ref_add(folio, nr);
862 folio->mapping = mapping;
863 folio->index = xas.xa_index;
864
865 do {
866 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
867 void *entry, *old = NULL;
868
869 if (order > folio_order(folio))
870 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
871 order, gfp);
872 xas_lock_irq(&xas);
873 xas_for_each_conflict(&xas, entry) {
874 old = entry;
875 if (!xa_is_value(entry)) {
876 xas_set_err(&xas, -EEXIST);
877 goto unlock;
878 }
879 }
880
881 if (old) {
882 if (shadowp)
883 *shadowp = old;
884 /* entry may have been split before we acquired lock */
885 order = xa_get_order(xas.xa, xas.xa_index);
886 if (order > folio_order(folio)) {
887 /* How to handle large swap entries? */
888 BUG_ON(shmem_mapping(mapping));
889 xas_split(&xas, old, order);
890 xas_reset(&xas);
891 }
892 }
893
894 xas_store(&xas, folio);
895 if (xas_error(&xas))
896 goto unlock;
897
898 mapping->nrpages += nr;
899
900 /* hugetlb pages do not participate in page cache accounting */
901 if (!huge) {
902 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
903 if (folio_test_pmd_mappable(folio))
904 __lruvec_stat_mod_folio(folio,
905 NR_FILE_THPS, nr);
906 }
907unlock:
908 xas_unlock_irq(&xas);
909 } while (xas_nomem(&xas, gfp));
910
911 if (xas_error(&xas))
912 goto error;
913
914 trace_mm_filemap_add_to_page_cache(folio);
915 return 0;
916error:
917 if (charged)
918 mem_cgroup_uncharge(folio);
919 folio->mapping = NULL;
920 /* Leave page->index set: truncation relies upon it */
921 folio_put_refs(folio, nr);
922 return xas_error(&xas);
923}
924ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
925
926int filemap_add_folio(struct address_space *mapping, struct folio *folio,
927 pgoff_t index, gfp_t gfp)
928{
929 void *shadow = NULL;
930 int ret;
931
932 __folio_set_locked(folio);
933 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
934 if (unlikely(ret))
935 __folio_clear_locked(folio);
936 else {
937 /*
938 * The folio might have been evicted from cache only
939 * recently, in which case it should be activated like
940 * any other repeatedly accessed folio.
941 * The exception is folios getting rewritten; evicting other
942 * data from the working set, only to cache data that will
943 * get overwritten with something else, is a waste of memory.
944 */
945 WARN_ON_ONCE(folio_test_active(folio));
946 if (!(gfp & __GFP_WRITE) && shadow)
947 workingset_refault(folio, shadow);
948 folio_add_lru(folio);
949 }
950 return ret;
951}
952EXPORT_SYMBOL_GPL(filemap_add_folio);
953
954#ifdef CONFIG_NUMA
955struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
956{
957 int n;
958 struct folio *folio;
959
960 if (cpuset_do_page_mem_spread()) {
961 unsigned int cpuset_mems_cookie;
962 do {
963 cpuset_mems_cookie = read_mems_allowed_begin();
964 n = cpuset_mem_spread_node();
965 folio = __folio_alloc_node(gfp, order, n);
966 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
967
968 return folio;
969 }
970 return folio_alloc(gfp, order);
971}
972EXPORT_SYMBOL(filemap_alloc_folio);
973#endif
974
975/*
976 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
977 *
978 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
979 *
980 * @mapping1: the first mapping to lock
981 * @mapping2: the second mapping to lock
982 */
983void filemap_invalidate_lock_two(struct address_space *mapping1,
984 struct address_space *mapping2)
985{
986 if (mapping1 > mapping2)
987 swap(mapping1, mapping2);
988 if (mapping1)
989 down_write(&mapping1->invalidate_lock);
990 if (mapping2 && mapping1 != mapping2)
991 down_write_nested(&mapping2->invalidate_lock, 1);
992}
993EXPORT_SYMBOL(filemap_invalidate_lock_two);
994
995/*
996 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
997 *
998 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
999 *
1000 * @mapping1: the first mapping to unlock
1001 * @mapping2: the second mapping to unlock
1002 */
1003void filemap_invalidate_unlock_two(struct address_space *mapping1,
1004 struct address_space *mapping2)
1005{
1006 if (mapping1)
1007 up_write(&mapping1->invalidate_lock);
1008 if (mapping2 && mapping1 != mapping2)
1009 up_write(&mapping2->invalidate_lock);
1010}
1011EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1012
1013/*
1014 * In order to wait for pages to become available there must be
1015 * waitqueues associated with pages. By using a hash table of
1016 * waitqueues where the bucket discipline is to maintain all
1017 * waiters on the same queue and wake all when any of the pages
1018 * become available, and for the woken contexts to check to be
1019 * sure the appropriate page became available, this saves space
1020 * at a cost of "thundering herd" phenomena during rare hash
1021 * collisions.
1022 */
1023#define PAGE_WAIT_TABLE_BITS 8
1024#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1025static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1026
1027static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1028{
1029 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1030}
1031
1032void __init pagecache_init(void)
1033{
1034 int i;
1035
1036 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1037 init_waitqueue_head(&folio_wait_table[i]);
1038
1039 page_writeback_init();
1040}
1041
1042/*
1043 * The page wait code treats the "wait->flags" somewhat unusually, because
1044 * we have multiple different kinds of waits, not just the usual "exclusive"
1045 * one.
1046 *
1047 * We have:
1048 *
1049 * (a) no special bits set:
1050 *
1051 * We're just waiting for the bit to be released, and when a waker
1052 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1053 * and remove it from the wait queue.
1054 *
1055 * Simple and straightforward.
1056 *
1057 * (b) WQ_FLAG_EXCLUSIVE:
1058 *
1059 * The waiter is waiting to get the lock, and only one waiter should
1060 * be woken up to avoid any thundering herd behavior. We'll set the
1061 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1062 *
1063 * This is the traditional exclusive wait.
1064 *
1065 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1066 *
1067 * The waiter is waiting to get the bit, and additionally wants the
1068 * lock to be transferred to it for fair lock behavior. If the lock
1069 * cannot be taken, we stop walking the wait queue without waking
1070 * the waiter.
1071 *
1072 * This is the "fair lock handoff" case, and in addition to setting
1073 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1074 * that it now has the lock.
1075 */
1076static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1077{
1078 unsigned int flags;
1079 struct wait_page_key *key = arg;
1080 struct wait_page_queue *wait_page
1081 = container_of(wait, struct wait_page_queue, wait);
1082
1083 if (!wake_page_match(wait_page, key))
1084 return 0;
1085
1086 /*
1087 * If it's a lock handoff wait, we get the bit for it, and
1088 * stop walking (and do not wake it up) if we can't.
1089 */
1090 flags = wait->flags;
1091 if (flags & WQ_FLAG_EXCLUSIVE) {
1092 if (test_bit(key->bit_nr, &key->folio->flags))
1093 return -1;
1094 if (flags & WQ_FLAG_CUSTOM) {
1095 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1096 return -1;
1097 flags |= WQ_FLAG_DONE;
1098 }
1099 }
1100
1101 /*
1102 * We are holding the wait-queue lock, but the waiter that
1103 * is waiting for this will be checking the flags without
1104 * any locking.
1105 *
1106 * So update the flags atomically, and wake up the waiter
1107 * afterwards to avoid any races. This store-release pairs
1108 * with the load-acquire in folio_wait_bit_common().
1109 */
1110 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1111 wake_up_state(wait->private, mode);
1112
1113 /*
1114 * Ok, we have successfully done what we're waiting for,
1115 * and we can unconditionally remove the wait entry.
1116 *
1117 * Note that this pairs with the "finish_wait()" in the
1118 * waiter, and has to be the absolute last thing we do.
1119 * After this list_del_init(&wait->entry) the wait entry
1120 * might be de-allocated and the process might even have
1121 * exited.
1122 */
1123 list_del_init_careful(&wait->entry);
1124 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1125}
1126
1127static void folio_wake_bit(struct folio *folio, int bit_nr)
1128{
1129 wait_queue_head_t *q = folio_waitqueue(folio);
1130 struct wait_page_key key;
1131 unsigned long flags;
1132 wait_queue_entry_t bookmark;
1133
1134 key.folio = folio;
1135 key.bit_nr = bit_nr;
1136 key.page_match = 0;
1137
1138 bookmark.flags = 0;
1139 bookmark.private = NULL;
1140 bookmark.func = NULL;
1141 INIT_LIST_HEAD(&bookmark.entry);
1142
1143 spin_lock_irqsave(&q->lock, flags);
1144 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1145
1146 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1147 /*
1148 * Take a breather from holding the lock,
1149 * allow pages that finish wake up asynchronously
1150 * to acquire the lock and remove themselves
1151 * from wait queue
1152 */
1153 spin_unlock_irqrestore(&q->lock, flags);
1154 cpu_relax();
1155 spin_lock_irqsave(&q->lock, flags);
1156 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1157 }
1158
1159 /*
1160 * It's possible to miss clearing waiters here, when we woke our page
1161 * waiters, but the hashed waitqueue has waiters for other pages on it.
1162 * That's okay, it's a rare case. The next waker will clear it.
1163 *
1164 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1165 * other), the flag may be cleared in the course of freeing the page;
1166 * but that is not required for correctness.
1167 */
1168 if (!waitqueue_active(q) || !key.page_match)
1169 folio_clear_waiters(folio);
1170
1171 spin_unlock_irqrestore(&q->lock, flags);
1172}
1173
1174static void folio_wake(struct folio *folio, int bit)
1175{
1176 if (!folio_test_waiters(folio))
1177 return;
1178 folio_wake_bit(folio, bit);
1179}
1180
1181/*
1182 * A choice of three behaviors for folio_wait_bit_common():
1183 */
1184enum behavior {
1185 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1186 * __folio_lock() waiting on then setting PG_locked.
1187 */
1188 SHARED, /* Hold ref to page and check the bit when woken, like
1189 * folio_wait_writeback() waiting on PG_writeback.
1190 */
1191 DROP, /* Drop ref to page before wait, no check when woken,
1192 * like folio_put_wait_locked() on PG_locked.
1193 */
1194};
1195
1196/*
1197 * Attempt to check (or get) the folio flag, and mark us done
1198 * if successful.
1199 */
1200static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1201 struct wait_queue_entry *wait)
1202{
1203 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1204 if (test_and_set_bit(bit_nr, &folio->flags))
1205 return false;
1206 } else if (test_bit(bit_nr, &folio->flags))
1207 return false;
1208
1209 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1210 return true;
1211}
1212
1213/* How many times do we accept lock stealing from under a waiter? */
1214int sysctl_page_lock_unfairness = 5;
1215
1216static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1217 int state, enum behavior behavior)
1218{
1219 wait_queue_head_t *q = folio_waitqueue(folio);
1220 int unfairness = sysctl_page_lock_unfairness;
1221 struct wait_page_queue wait_page;
1222 wait_queue_entry_t *wait = &wait_page.wait;
1223 bool thrashing = false;
1224 bool delayacct = false;
1225 unsigned long pflags;
1226
1227 if (bit_nr == PG_locked &&
1228 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1229 if (!folio_test_swapbacked(folio)) {
1230 delayacct_thrashing_start();
1231 delayacct = true;
1232 }
1233 psi_memstall_enter(&pflags);
1234 thrashing = true;
1235 }
1236
1237 init_wait(wait);
1238 wait->func = wake_page_function;
1239 wait_page.folio = folio;
1240 wait_page.bit_nr = bit_nr;
1241
1242repeat:
1243 wait->flags = 0;
1244 if (behavior == EXCLUSIVE) {
1245 wait->flags = WQ_FLAG_EXCLUSIVE;
1246 if (--unfairness < 0)
1247 wait->flags |= WQ_FLAG_CUSTOM;
1248 }
1249
1250 /*
1251 * Do one last check whether we can get the
1252 * page bit synchronously.
1253 *
1254 * Do the folio_set_waiters() marking before that
1255 * to let any waker we _just_ missed know they
1256 * need to wake us up (otherwise they'll never
1257 * even go to the slow case that looks at the
1258 * page queue), and add ourselves to the wait
1259 * queue if we need to sleep.
1260 *
1261 * This part needs to be done under the queue
1262 * lock to avoid races.
1263 */
1264 spin_lock_irq(&q->lock);
1265 folio_set_waiters(folio);
1266 if (!folio_trylock_flag(folio, bit_nr, wait))
1267 __add_wait_queue_entry_tail(q, wait);
1268 spin_unlock_irq(&q->lock);
1269
1270 /*
1271 * From now on, all the logic will be based on
1272 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1273 * see whether the page bit testing has already
1274 * been done by the wake function.
1275 *
1276 * We can drop our reference to the folio.
1277 */
1278 if (behavior == DROP)
1279 folio_put(folio);
1280
1281 /*
1282 * Note that until the "finish_wait()", or until
1283 * we see the WQ_FLAG_WOKEN flag, we need to
1284 * be very careful with the 'wait->flags', because
1285 * we may race with a waker that sets them.
1286 */
1287 for (;;) {
1288 unsigned int flags;
1289
1290 set_current_state(state);
1291
1292 /* Loop until we've been woken or interrupted */
1293 flags = smp_load_acquire(&wait->flags);
1294 if (!(flags & WQ_FLAG_WOKEN)) {
1295 if (signal_pending_state(state, current))
1296 break;
1297
1298 io_schedule();
1299 continue;
1300 }
1301
1302 /* If we were non-exclusive, we're done */
1303 if (behavior != EXCLUSIVE)
1304 break;
1305
1306 /* If the waker got the lock for us, we're done */
1307 if (flags & WQ_FLAG_DONE)
1308 break;
1309
1310 /*
1311 * Otherwise, if we're getting the lock, we need to
1312 * try to get it ourselves.
1313 *
1314 * And if that fails, we'll have to retry this all.
1315 */
1316 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1317 goto repeat;
1318
1319 wait->flags |= WQ_FLAG_DONE;
1320 break;
1321 }
1322
1323 /*
1324 * If a signal happened, this 'finish_wait()' may remove the last
1325 * waiter from the wait-queues, but the folio waiters bit will remain
1326 * set. That's ok. The next wakeup will take care of it, and trying
1327 * to do it here would be difficult and prone to races.
1328 */
1329 finish_wait(q, wait);
1330
1331 if (thrashing) {
1332 if (delayacct)
1333 delayacct_thrashing_end();
1334 psi_memstall_leave(&pflags);
1335 }
1336
1337 /*
1338 * NOTE! The wait->flags weren't stable until we've done the
1339 * 'finish_wait()', and we could have exited the loop above due
1340 * to a signal, and had a wakeup event happen after the signal
1341 * test but before the 'finish_wait()'.
1342 *
1343 * So only after the finish_wait() can we reliably determine
1344 * if we got woken up or not, so we can now figure out the final
1345 * return value based on that state without races.
1346 *
1347 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1348 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1349 */
1350 if (behavior == EXCLUSIVE)
1351 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1352
1353 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1354}
1355
1356#ifdef CONFIG_MIGRATION
1357/**
1358 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1359 * @entry: migration swap entry.
1360 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1361 * for pte entries, pass NULL for pmd entries.
1362 * @ptl: already locked ptl. This function will drop the lock.
1363 *
1364 * Wait for a migration entry referencing the given page to be removed. This is
1365 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1366 * this can be called without taking a reference on the page. Instead this
1367 * should be called while holding the ptl for the migration entry referencing
1368 * the page.
1369 *
1370 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1371 *
1372 * This follows the same logic as folio_wait_bit_common() so see the comments
1373 * there.
1374 */
1375void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1376 spinlock_t *ptl)
1377{
1378 struct wait_page_queue wait_page;
1379 wait_queue_entry_t *wait = &wait_page.wait;
1380 bool thrashing = false;
1381 bool delayacct = false;
1382 unsigned long pflags;
1383 wait_queue_head_t *q;
1384 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1385
1386 q = folio_waitqueue(folio);
1387 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1388 if (!folio_test_swapbacked(folio)) {
1389 delayacct_thrashing_start();
1390 delayacct = true;
1391 }
1392 psi_memstall_enter(&pflags);
1393 thrashing = true;
1394 }
1395
1396 init_wait(wait);
1397 wait->func = wake_page_function;
1398 wait_page.folio = folio;
1399 wait_page.bit_nr = PG_locked;
1400 wait->flags = 0;
1401
1402 spin_lock_irq(&q->lock);
1403 folio_set_waiters(folio);
1404 if (!folio_trylock_flag(folio, PG_locked, wait))
1405 __add_wait_queue_entry_tail(q, wait);
1406 spin_unlock_irq(&q->lock);
1407
1408 /*
1409 * If a migration entry exists for the page the migration path must hold
1410 * a valid reference to the page, and it must take the ptl to remove the
1411 * migration entry. So the page is valid until the ptl is dropped.
1412 */
1413 if (ptep)
1414 pte_unmap_unlock(ptep, ptl);
1415 else
1416 spin_unlock(ptl);
1417
1418 for (;;) {
1419 unsigned int flags;
1420
1421 set_current_state(TASK_UNINTERRUPTIBLE);
1422
1423 /* Loop until we've been woken or interrupted */
1424 flags = smp_load_acquire(&wait->flags);
1425 if (!(flags & WQ_FLAG_WOKEN)) {
1426 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1427 break;
1428
1429 io_schedule();
1430 continue;
1431 }
1432 break;
1433 }
1434
1435 finish_wait(q, wait);
1436
1437 if (thrashing) {
1438 if (delayacct)
1439 delayacct_thrashing_end();
1440 psi_memstall_leave(&pflags);
1441 }
1442}
1443#endif
1444
1445void folio_wait_bit(struct folio *folio, int bit_nr)
1446{
1447 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1448}
1449EXPORT_SYMBOL(folio_wait_bit);
1450
1451int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1452{
1453 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1454}
1455EXPORT_SYMBOL(folio_wait_bit_killable);
1456
1457/**
1458 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1459 * @folio: The folio to wait for.
1460 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1461 *
1462 * The caller should hold a reference on @folio. They expect the page to
1463 * become unlocked relatively soon, but do not wish to hold up migration
1464 * (for example) by holding the reference while waiting for the folio to
1465 * come unlocked. After this function returns, the caller should not
1466 * dereference @folio.
1467 *
1468 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1469 */
1470int folio_put_wait_locked(struct folio *folio, int state)
1471{
1472 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1473}
1474
1475/**
1476 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1477 * @folio: Folio defining the wait queue of interest
1478 * @waiter: Waiter to add to the queue
1479 *
1480 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1481 */
1482void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1483{
1484 wait_queue_head_t *q = folio_waitqueue(folio);
1485 unsigned long flags;
1486
1487 spin_lock_irqsave(&q->lock, flags);
1488 __add_wait_queue_entry_tail(q, waiter);
1489 folio_set_waiters(folio);
1490 spin_unlock_irqrestore(&q->lock, flags);
1491}
1492EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1493
1494#ifndef clear_bit_unlock_is_negative_byte
1495
1496/*
1497 * PG_waiters is the high bit in the same byte as PG_lock.
1498 *
1499 * On x86 (and on many other architectures), we can clear PG_lock and
1500 * test the sign bit at the same time. But if the architecture does
1501 * not support that special operation, we just do this all by hand
1502 * instead.
1503 *
1504 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1505 * being cleared, but a memory barrier should be unnecessary since it is
1506 * in the same byte as PG_locked.
1507 */
1508static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1509{
1510 clear_bit_unlock(nr, mem);
1511 /* smp_mb__after_atomic(); */
1512 return test_bit(PG_waiters, mem);
1513}
1514
1515#endif
1516
1517/**
1518 * folio_unlock - Unlock a locked folio.
1519 * @folio: The folio.
1520 *
1521 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1522 *
1523 * Context: May be called from interrupt or process context. May not be
1524 * called from NMI context.
1525 */
1526void folio_unlock(struct folio *folio)
1527{
1528 /* Bit 7 allows x86 to check the byte's sign bit */
1529 BUILD_BUG_ON(PG_waiters != 7);
1530 BUILD_BUG_ON(PG_locked > 7);
1531 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1532 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1533 folio_wake_bit(folio, PG_locked);
1534}
1535EXPORT_SYMBOL(folio_unlock);
1536
1537/**
1538 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1539 * @folio: The folio.
1540 *
1541 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1542 * it. The folio reference held for PG_private_2 being set is released.
1543 *
1544 * This is, for example, used when a netfs folio is being written to a local
1545 * disk cache, thereby allowing writes to the cache for the same folio to be
1546 * serialised.
1547 */
1548void folio_end_private_2(struct folio *folio)
1549{
1550 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1551 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1552 folio_wake_bit(folio, PG_private_2);
1553 folio_put(folio);
1554}
1555EXPORT_SYMBOL(folio_end_private_2);
1556
1557/**
1558 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1559 * @folio: The folio to wait on.
1560 *
1561 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1562 */
1563void folio_wait_private_2(struct folio *folio)
1564{
1565 while (folio_test_private_2(folio))
1566 folio_wait_bit(folio, PG_private_2);
1567}
1568EXPORT_SYMBOL(folio_wait_private_2);
1569
1570/**
1571 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1572 * @folio: The folio to wait on.
1573 *
1574 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1575 * fatal signal is received by the calling task.
1576 *
1577 * Return:
1578 * - 0 if successful.
1579 * - -EINTR if a fatal signal was encountered.
1580 */
1581int folio_wait_private_2_killable(struct folio *folio)
1582{
1583 int ret = 0;
1584
1585 while (folio_test_private_2(folio)) {
1586 ret = folio_wait_bit_killable(folio, PG_private_2);
1587 if (ret < 0)
1588 break;
1589 }
1590
1591 return ret;
1592}
1593EXPORT_SYMBOL(folio_wait_private_2_killable);
1594
1595/**
1596 * folio_end_writeback - End writeback against a folio.
1597 * @folio: The folio.
1598 */
1599void folio_end_writeback(struct folio *folio)
1600{
1601 /*
1602 * folio_test_clear_reclaim() could be used here but it is an
1603 * atomic operation and overkill in this particular case. Failing
1604 * to shuffle a folio marked for immediate reclaim is too mild
1605 * a gain to justify taking an atomic operation penalty at the
1606 * end of every folio writeback.
1607 */
1608 if (folio_test_reclaim(folio)) {
1609 folio_clear_reclaim(folio);
1610 folio_rotate_reclaimable(folio);
1611 }
1612
1613 /*
1614 * Writeback does not hold a folio reference of its own, relying
1615 * on truncation to wait for the clearing of PG_writeback.
1616 * But here we must make sure that the folio is not freed and
1617 * reused before the folio_wake().
1618 */
1619 folio_get(folio);
1620 if (!__folio_end_writeback(folio))
1621 BUG();
1622
1623 smp_mb__after_atomic();
1624 folio_wake(folio, PG_writeback);
1625 acct_reclaim_writeback(folio);
1626 folio_put(folio);
1627}
1628EXPORT_SYMBOL(folio_end_writeback);
1629
1630/*
1631 * After completing I/O on a page, call this routine to update the page
1632 * flags appropriately
1633 */
1634void page_endio(struct page *page, bool is_write, int err)
1635{
1636 if (!is_write) {
1637 if (!err) {
1638 SetPageUptodate(page);
1639 } else {
1640 ClearPageUptodate(page);
1641 SetPageError(page);
1642 }
1643 unlock_page(page);
1644 } else {
1645 if (err) {
1646 struct address_space *mapping;
1647
1648 SetPageError(page);
1649 mapping = page_mapping(page);
1650 if (mapping)
1651 mapping_set_error(mapping, err);
1652 }
1653 end_page_writeback(page);
1654 }
1655}
1656EXPORT_SYMBOL_GPL(page_endio);
1657
1658/**
1659 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1660 * @folio: The folio to lock
1661 */
1662void __folio_lock(struct folio *folio)
1663{
1664 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1665 EXCLUSIVE);
1666}
1667EXPORT_SYMBOL(__folio_lock);
1668
1669int __folio_lock_killable(struct folio *folio)
1670{
1671 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1672 EXCLUSIVE);
1673}
1674EXPORT_SYMBOL_GPL(__folio_lock_killable);
1675
1676static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1677{
1678 struct wait_queue_head *q = folio_waitqueue(folio);
1679 int ret = 0;
1680
1681 wait->folio = folio;
1682 wait->bit_nr = PG_locked;
1683
1684 spin_lock_irq(&q->lock);
1685 __add_wait_queue_entry_tail(q, &wait->wait);
1686 folio_set_waiters(folio);
1687 ret = !folio_trylock(folio);
1688 /*
1689 * If we were successful now, we know we're still on the
1690 * waitqueue as we're still under the lock. This means it's
1691 * safe to remove and return success, we know the callback
1692 * isn't going to trigger.
1693 */
1694 if (!ret)
1695 __remove_wait_queue(q, &wait->wait);
1696 else
1697 ret = -EIOCBQUEUED;
1698 spin_unlock_irq(&q->lock);
1699 return ret;
1700}
1701
1702/*
1703 * Return values:
1704 * true - folio is locked; mmap_lock is still held.
1705 * false - folio is not locked.
1706 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1707 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1708 * which case mmap_lock is still held.
1709 *
1710 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1711 * with the folio locked and the mmap_lock unperturbed.
1712 */
1713bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1714 unsigned int flags)
1715{
1716 if (fault_flag_allow_retry_first(flags)) {
1717 /*
1718 * CAUTION! In this case, mmap_lock is not released
1719 * even though return 0.
1720 */
1721 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1722 return false;
1723
1724 mmap_read_unlock(mm);
1725 if (flags & FAULT_FLAG_KILLABLE)
1726 folio_wait_locked_killable(folio);
1727 else
1728 folio_wait_locked(folio);
1729 return false;
1730 }
1731 if (flags & FAULT_FLAG_KILLABLE) {
1732 bool ret;
1733
1734 ret = __folio_lock_killable(folio);
1735 if (ret) {
1736 mmap_read_unlock(mm);
1737 return false;
1738 }
1739 } else {
1740 __folio_lock(folio);
1741 }
1742
1743 return true;
1744}
1745
1746/**
1747 * page_cache_next_miss() - Find the next gap in the page cache.
1748 * @mapping: Mapping.
1749 * @index: Index.
1750 * @max_scan: Maximum range to search.
1751 *
1752 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1753 * gap with the lowest index.
1754 *
1755 * This function may be called under the rcu_read_lock. However, this will
1756 * not atomically search a snapshot of the cache at a single point in time.
1757 * For example, if a gap is created at index 5, then subsequently a gap is
1758 * created at index 10, page_cache_next_miss covering both indices may
1759 * return 10 if called under the rcu_read_lock.
1760 *
1761 * Return: The index of the gap if found, otherwise an index outside the
1762 * range specified (in which case 'return - index >= max_scan' will be true).
1763 * In the rare case of index wrap-around, 0 will be returned.
1764 */
1765pgoff_t page_cache_next_miss(struct address_space *mapping,
1766 pgoff_t index, unsigned long max_scan)
1767{
1768 XA_STATE(xas, &mapping->i_pages, index);
1769
1770 while (max_scan--) {
1771 void *entry = xas_next(&xas);
1772 if (!entry || xa_is_value(entry))
1773 break;
1774 if (xas.xa_index == 0)
1775 break;
1776 }
1777
1778 return xas.xa_index;
1779}
1780EXPORT_SYMBOL(page_cache_next_miss);
1781
1782/**
1783 * page_cache_prev_miss() - Find the previous gap in the page cache.
1784 * @mapping: Mapping.
1785 * @index: Index.
1786 * @max_scan: Maximum range to search.
1787 *
1788 * Search the range [max(index - max_scan + 1, 0), index] for the
1789 * gap with the highest index.
1790 *
1791 * This function may be called under the rcu_read_lock. However, this will
1792 * not atomically search a snapshot of the cache at a single point in time.
1793 * For example, if a gap is created at index 10, then subsequently a gap is
1794 * created at index 5, page_cache_prev_miss() covering both indices may
1795 * return 5 if called under the rcu_read_lock.
1796 *
1797 * Return: The index of the gap if found, otherwise an index outside the
1798 * range specified (in which case 'index - return >= max_scan' will be true).
1799 * In the rare case of wrap-around, ULONG_MAX will be returned.
1800 */
1801pgoff_t page_cache_prev_miss(struct address_space *mapping,
1802 pgoff_t index, unsigned long max_scan)
1803{
1804 XA_STATE(xas, &mapping->i_pages, index);
1805
1806 while (max_scan--) {
1807 void *entry = xas_prev(&xas);
1808 if (!entry || xa_is_value(entry))
1809 break;
1810 if (xas.xa_index == ULONG_MAX)
1811 break;
1812 }
1813
1814 return xas.xa_index;
1815}
1816EXPORT_SYMBOL(page_cache_prev_miss);
1817
1818/*
1819 * Lockless page cache protocol:
1820 * On the lookup side:
1821 * 1. Load the folio from i_pages
1822 * 2. Increment the refcount if it's not zero
1823 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1824 *
1825 * On the removal side:
1826 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1827 * B. Remove the page from i_pages
1828 * C. Return the page to the page allocator
1829 *
1830 * This means that any page may have its reference count temporarily
1831 * increased by a speculative page cache (or fast GUP) lookup as it can
1832 * be allocated by another user before the RCU grace period expires.
1833 * Because the refcount temporarily acquired here may end up being the
1834 * last refcount on the page, any page allocation must be freeable by
1835 * folio_put().
1836 */
1837
1838/*
1839 * mapping_get_entry - Get a page cache entry.
1840 * @mapping: the address_space to search
1841 * @index: The page cache index.
1842 *
1843 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1844 * it is returned with an increased refcount. If it is a shadow entry
1845 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1846 * it is returned without further action.
1847 *
1848 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1849 */
1850static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1851{
1852 XA_STATE(xas, &mapping->i_pages, index);
1853 struct folio *folio;
1854
1855 rcu_read_lock();
1856repeat:
1857 xas_reset(&xas);
1858 folio = xas_load(&xas);
1859 if (xas_retry(&xas, folio))
1860 goto repeat;
1861 /*
1862 * A shadow entry of a recently evicted page, or a swap entry from
1863 * shmem/tmpfs. Return it without attempting to raise page count.
1864 */
1865 if (!folio || xa_is_value(folio))
1866 goto out;
1867
1868 if (!folio_try_get_rcu(folio))
1869 goto repeat;
1870
1871 if (unlikely(folio != xas_reload(&xas))) {
1872 folio_put(folio);
1873 goto repeat;
1874 }
1875out:
1876 rcu_read_unlock();
1877
1878 return folio;
1879}
1880
1881/**
1882 * __filemap_get_folio - Find and get a reference to a folio.
1883 * @mapping: The address_space to search.
1884 * @index: The page index.
1885 * @fgp_flags: %FGP flags modify how the folio is returned.
1886 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1887 *
1888 * Looks up the page cache entry at @mapping & @index.
1889 *
1890 * @fgp_flags can be zero or more of these flags:
1891 *
1892 * * %FGP_ACCESSED - The folio will be marked accessed.
1893 * * %FGP_LOCK - The folio is returned locked.
1894 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1895 * instead of allocating a new folio to replace it.
1896 * * %FGP_CREAT - If no page is present then a new page is allocated using
1897 * @gfp and added to the page cache and the VM's LRU list.
1898 * The page is returned locked and with an increased refcount.
1899 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1900 * page is already in cache. If the page was allocated, unlock it before
1901 * returning so the caller can do the same dance.
1902 * * %FGP_WRITE - The page will be written to by the caller.
1903 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1904 * * %FGP_NOWAIT - Don't get blocked by page lock.
1905 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1906 *
1907 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1908 * if the %GFP flags specified for %FGP_CREAT are atomic.
1909 *
1910 * If there is a page cache page, it is returned with an increased refcount.
1911 *
1912 * Return: The found folio or %NULL otherwise.
1913 */
1914struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1915 int fgp_flags, gfp_t gfp)
1916{
1917 struct folio *folio;
1918
1919repeat:
1920 folio = mapping_get_entry(mapping, index);
1921 if (xa_is_value(folio)) {
1922 if (fgp_flags & FGP_ENTRY)
1923 return folio;
1924 folio = NULL;
1925 }
1926 if (!folio)
1927 goto no_page;
1928
1929 if (fgp_flags & FGP_LOCK) {
1930 if (fgp_flags & FGP_NOWAIT) {
1931 if (!folio_trylock(folio)) {
1932 folio_put(folio);
1933 return NULL;
1934 }
1935 } else {
1936 folio_lock(folio);
1937 }
1938
1939 /* Has the page been truncated? */
1940 if (unlikely(folio->mapping != mapping)) {
1941 folio_unlock(folio);
1942 folio_put(folio);
1943 goto repeat;
1944 }
1945 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1946 }
1947
1948 if (fgp_flags & FGP_ACCESSED)
1949 folio_mark_accessed(folio);
1950 else if (fgp_flags & FGP_WRITE) {
1951 /* Clear idle flag for buffer write */
1952 if (folio_test_idle(folio))
1953 folio_clear_idle(folio);
1954 }
1955
1956 if (fgp_flags & FGP_STABLE)
1957 folio_wait_stable(folio);
1958no_page:
1959 if (!folio && (fgp_flags & FGP_CREAT)) {
1960 int err;
1961 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1962 gfp |= __GFP_WRITE;
1963 if (fgp_flags & FGP_NOFS)
1964 gfp &= ~__GFP_FS;
1965 if (fgp_flags & FGP_NOWAIT) {
1966 gfp &= ~GFP_KERNEL;
1967 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1968 }
1969
1970 folio = filemap_alloc_folio(gfp, 0);
1971 if (!folio)
1972 return NULL;
1973
1974 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1975 fgp_flags |= FGP_LOCK;
1976
1977 /* Init accessed so avoid atomic mark_page_accessed later */
1978 if (fgp_flags & FGP_ACCESSED)
1979 __folio_set_referenced(folio);
1980
1981 err = filemap_add_folio(mapping, folio, index, gfp);
1982 if (unlikely(err)) {
1983 folio_put(folio);
1984 folio = NULL;
1985 if (err == -EEXIST)
1986 goto repeat;
1987 }
1988
1989 /*
1990 * filemap_add_folio locks the page, and for mmap
1991 * we expect an unlocked page.
1992 */
1993 if (folio && (fgp_flags & FGP_FOR_MMAP))
1994 folio_unlock(folio);
1995 }
1996
1997 return folio;
1998}
1999EXPORT_SYMBOL(__filemap_get_folio);
2000
2001static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2002 xa_mark_t mark)
2003{
2004 struct folio *folio;
2005
2006retry:
2007 if (mark == XA_PRESENT)
2008 folio = xas_find(xas, max);
2009 else
2010 folio = xas_find_marked(xas, max, mark);
2011
2012 if (xas_retry(xas, folio))
2013 goto retry;
2014 /*
2015 * A shadow entry of a recently evicted page, a swap
2016 * entry from shmem/tmpfs or a DAX entry. Return it
2017 * without attempting to raise page count.
2018 */
2019 if (!folio || xa_is_value(folio))
2020 return folio;
2021
2022 if (!folio_try_get_rcu(folio))
2023 goto reset;
2024
2025 if (unlikely(folio != xas_reload(xas))) {
2026 folio_put(folio);
2027 goto reset;
2028 }
2029
2030 return folio;
2031reset:
2032 xas_reset(xas);
2033 goto retry;
2034}
2035
2036/**
2037 * find_get_entries - gang pagecache lookup
2038 * @mapping: The address_space to search
2039 * @start: The starting page cache index
2040 * @end: The final page index (inclusive).
2041 * @fbatch: Where the resulting entries are placed.
2042 * @indices: The cache indices corresponding to the entries in @entries
2043 *
2044 * find_get_entries() will search for and return a batch of entries in
2045 * the mapping. The entries are placed in @fbatch. find_get_entries()
2046 * takes a reference on any actual folios it returns.
2047 *
2048 * The entries have ascending indexes. The indices may not be consecutive
2049 * due to not-present entries or large folios.
2050 *
2051 * Any shadow entries of evicted folios, or swap entries from
2052 * shmem/tmpfs, are included in the returned array.
2053 *
2054 * Return: The number of entries which were found.
2055 */
2056unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2057 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2058{
2059 XA_STATE(xas, &mapping->i_pages, start);
2060 struct folio *folio;
2061
2062 rcu_read_lock();
2063 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2064 indices[fbatch->nr] = xas.xa_index;
2065 if (!folio_batch_add(fbatch, folio))
2066 break;
2067 }
2068 rcu_read_unlock();
2069
2070 return folio_batch_count(fbatch);
2071}
2072
2073/**
2074 * find_lock_entries - Find a batch of pagecache entries.
2075 * @mapping: The address_space to search.
2076 * @start: The starting page cache index.
2077 * @end: The final page index (inclusive).
2078 * @fbatch: Where the resulting entries are placed.
2079 * @indices: The cache indices of the entries in @fbatch.
2080 *
2081 * find_lock_entries() will return a batch of entries from @mapping.
2082 * Swap, shadow and DAX entries are included. Folios are returned
2083 * locked and with an incremented refcount. Folios which are locked
2084 * by somebody else or under writeback are skipped. Folios which are
2085 * partially outside the range are not returned.
2086 *
2087 * The entries have ascending indexes. The indices may not be consecutive
2088 * due to not-present entries, large folios, folios which could not be
2089 * locked or folios under writeback.
2090 *
2091 * Return: The number of entries which were found.
2092 */
2093unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2094 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2095{
2096 XA_STATE(xas, &mapping->i_pages, start);
2097 struct folio *folio;
2098
2099 rcu_read_lock();
2100 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2101 if (!xa_is_value(folio)) {
2102 if (folio->index < start)
2103 goto put;
2104 if (folio->index + folio_nr_pages(folio) - 1 > end)
2105 goto put;
2106 if (!folio_trylock(folio))
2107 goto put;
2108 if (folio->mapping != mapping ||
2109 folio_test_writeback(folio))
2110 goto unlock;
2111 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2112 folio);
2113 }
2114 indices[fbatch->nr] = xas.xa_index;
2115 if (!folio_batch_add(fbatch, folio))
2116 break;
2117 continue;
2118unlock:
2119 folio_unlock(folio);
2120put:
2121 folio_put(folio);
2122 }
2123 rcu_read_unlock();
2124
2125 return folio_batch_count(fbatch);
2126}
2127
2128/**
2129 * filemap_get_folios - Get a batch of folios
2130 * @mapping: The address_space to search
2131 * @start: The starting page index
2132 * @end: The final page index (inclusive)
2133 * @fbatch: The batch to fill.
2134 *
2135 * Search for and return a batch of folios in the mapping starting at
2136 * index @start and up to index @end (inclusive). The folios are returned
2137 * in @fbatch with an elevated reference count.
2138 *
2139 * The first folio may start before @start; if it does, it will contain
2140 * @start. The final folio may extend beyond @end; if it does, it will
2141 * contain @end. The folios have ascending indices. There may be gaps
2142 * between the folios if there are indices which have no folio in the
2143 * page cache. If folios are added to or removed from the page cache
2144 * while this is running, they may or may not be found by this call.
2145 *
2146 * Return: The number of folios which were found.
2147 * We also update @start to index the next folio for the traversal.
2148 */
2149unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2150 pgoff_t end, struct folio_batch *fbatch)
2151{
2152 XA_STATE(xas, &mapping->i_pages, *start);
2153 struct folio *folio;
2154
2155 rcu_read_lock();
2156 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2157 /* Skip over shadow, swap and DAX entries */
2158 if (xa_is_value(folio))
2159 continue;
2160 if (!folio_batch_add(fbatch, folio)) {
2161 unsigned long nr = folio_nr_pages(folio);
2162
2163 if (folio_test_hugetlb(folio))
2164 nr = 1;
2165 *start = folio->index + nr;
2166 goto out;
2167 }
2168 }
2169
2170 /*
2171 * We come here when there is no page beyond @end. We take care to not
2172 * overflow the index @start as it confuses some of the callers. This
2173 * breaks the iteration when there is a page at index -1 but that is
2174 * already broken anyway.
2175 */
2176 if (end == (pgoff_t)-1)
2177 *start = (pgoff_t)-1;
2178 else
2179 *start = end + 1;
2180out:
2181 rcu_read_unlock();
2182
2183 return folio_batch_count(fbatch);
2184}
2185EXPORT_SYMBOL(filemap_get_folios);
2186
2187static inline
2188bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2189{
2190 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2191 return false;
2192 if (index >= max)
2193 return false;
2194 return index < folio->index + folio_nr_pages(folio) - 1;
2195}
2196
2197/**
2198 * find_get_pages_contig - gang contiguous pagecache lookup
2199 * @mapping: The address_space to search
2200 * @index: The starting page index
2201 * @nr_pages: The maximum number of pages
2202 * @pages: Where the resulting pages are placed
2203 *
2204 * find_get_pages_contig() works exactly like find_get_pages_range(),
2205 * except that the returned number of pages are guaranteed to be
2206 * contiguous.
2207 *
2208 * Return: the number of pages which were found.
2209 */
2210unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2211 unsigned int nr_pages, struct page **pages)
2212{
2213 XA_STATE(xas, &mapping->i_pages, index);
2214 struct folio *folio;
2215 unsigned int ret = 0;
2216
2217 if (unlikely(!nr_pages))
2218 return 0;
2219
2220 rcu_read_lock();
2221 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2222 if (xas_retry(&xas, folio))
2223 continue;
2224 /*
2225 * If the entry has been swapped out, we can stop looking.
2226 * No current caller is looking for DAX entries.
2227 */
2228 if (xa_is_value(folio))
2229 break;
2230
2231 if (!folio_try_get_rcu(folio))
2232 goto retry;
2233
2234 if (unlikely(folio != xas_reload(&xas)))
2235 goto put_page;
2236
2237again:
2238 pages[ret] = folio_file_page(folio, xas.xa_index);
2239 if (++ret == nr_pages)
2240 break;
2241 if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) {
2242 xas.xa_index++;
2243 folio_ref_inc(folio);
2244 goto again;
2245 }
2246 continue;
2247put_page:
2248 folio_put(folio);
2249retry:
2250 xas_reset(&xas);
2251 }
2252 rcu_read_unlock();
2253 return ret;
2254}
2255EXPORT_SYMBOL(find_get_pages_contig);
2256
2257/**
2258 * find_get_pages_range_tag - Find and return head pages matching @tag.
2259 * @mapping: the address_space to search
2260 * @index: the starting page index
2261 * @end: The final page index (inclusive)
2262 * @tag: the tag index
2263 * @nr_pages: the maximum number of pages
2264 * @pages: where the resulting pages are placed
2265 *
2266 * Like find_get_pages_range(), except we only return head pages which are
2267 * tagged with @tag. @index is updated to the index immediately after the
2268 * last page we return, ready for the next iteration.
2269 *
2270 * Return: the number of pages which were found.
2271 */
2272unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2273 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2274 struct page **pages)
2275{
2276 XA_STATE(xas, &mapping->i_pages, *index);
2277 struct folio *folio;
2278 unsigned ret = 0;
2279
2280 if (unlikely(!nr_pages))
2281 return 0;
2282
2283 rcu_read_lock();
2284 while ((folio = find_get_entry(&xas, end, tag))) {
2285 /*
2286 * Shadow entries should never be tagged, but this iteration
2287 * is lockless so there is a window for page reclaim to evict
2288 * a page we saw tagged. Skip over it.
2289 */
2290 if (xa_is_value(folio))
2291 continue;
2292
2293 pages[ret] = &folio->page;
2294 if (++ret == nr_pages) {
2295 *index = folio->index + folio_nr_pages(folio);
2296 goto out;
2297 }
2298 }
2299
2300 /*
2301 * We come here when we got to @end. We take care to not overflow the
2302 * index @index as it confuses some of the callers. This breaks the
2303 * iteration when there is a page at index -1 but that is already
2304 * broken anyway.
2305 */
2306 if (end == (pgoff_t)-1)
2307 *index = (pgoff_t)-1;
2308 else
2309 *index = end + 1;
2310out:
2311 rcu_read_unlock();
2312
2313 return ret;
2314}
2315EXPORT_SYMBOL(find_get_pages_range_tag);
2316
2317/*
2318 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2319 * a _large_ part of the i/o request. Imagine the worst scenario:
2320 *
2321 * ---R__________________________________________B__________
2322 * ^ reading here ^ bad block(assume 4k)
2323 *
2324 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2325 * => failing the whole request => read(R) => read(R+1) =>
2326 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2327 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2328 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2329 *
2330 * It is going insane. Fix it by quickly scaling down the readahead size.
2331 */
2332static void shrink_readahead_size_eio(struct file_ra_state *ra)
2333{
2334 ra->ra_pages /= 4;
2335}
2336
2337/*
2338 * filemap_get_read_batch - Get a batch of folios for read
2339 *
2340 * Get a batch of folios which represent a contiguous range of bytes in
2341 * the file. No exceptional entries will be returned. If @index is in
2342 * the middle of a folio, the entire folio will be returned. The last
2343 * folio in the batch may have the readahead flag set or the uptodate flag
2344 * clear so that the caller can take the appropriate action.
2345 */
2346static void filemap_get_read_batch(struct address_space *mapping,
2347 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2348{
2349 XA_STATE(xas, &mapping->i_pages, index);
2350 struct folio *folio;
2351
2352 rcu_read_lock();
2353 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2354 if (xas_retry(&xas, folio))
2355 continue;
2356 if (xas.xa_index > max || xa_is_value(folio))
2357 break;
2358 if (xa_is_sibling(folio))
2359 break;
2360 if (!folio_try_get_rcu(folio))
2361 goto retry;
2362
2363 if (unlikely(folio != xas_reload(&xas)))
2364 goto put_folio;
2365
2366 if (!folio_batch_add(fbatch, folio))
2367 break;
2368 if (!folio_test_uptodate(folio))
2369 break;
2370 if (folio_test_readahead(folio))
2371 break;
2372 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2373 continue;
2374put_folio:
2375 folio_put(folio);
2376retry:
2377 xas_reset(&xas);
2378 }
2379 rcu_read_unlock();
2380}
2381
2382static int filemap_read_folio(struct file *file, filler_t filler,
2383 struct folio *folio)
2384{
2385 int error;
2386
2387 /*
2388 * A previous I/O error may have been due to temporary failures,
2389 * eg. multipath errors. PG_error will be set again if read_folio
2390 * fails.
2391 */
2392 folio_clear_error(folio);
2393 /* Start the actual read. The read will unlock the page. */
2394 error = filler(file, folio);
2395 if (error)
2396 return error;
2397
2398 error = folio_wait_locked_killable(folio);
2399 if (error)
2400 return error;
2401 if (folio_test_uptodate(folio))
2402 return 0;
2403 if (file)
2404 shrink_readahead_size_eio(&file->f_ra);
2405 return -EIO;
2406}
2407
2408static bool filemap_range_uptodate(struct address_space *mapping,
2409 loff_t pos, struct iov_iter *iter, struct folio *folio)
2410{
2411 int count;
2412
2413 if (folio_test_uptodate(folio))
2414 return true;
2415 /* pipes can't handle partially uptodate pages */
2416 if (iov_iter_is_pipe(iter))
2417 return false;
2418 if (!mapping->a_ops->is_partially_uptodate)
2419 return false;
2420 if (mapping->host->i_blkbits >= folio_shift(folio))
2421 return false;
2422
2423 count = iter->count;
2424 if (folio_pos(folio) > pos) {
2425 count -= folio_pos(folio) - pos;
2426 pos = 0;
2427 } else {
2428 pos -= folio_pos(folio);
2429 }
2430
2431 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2432}
2433
2434static int filemap_update_page(struct kiocb *iocb,
2435 struct address_space *mapping, struct iov_iter *iter,
2436 struct folio *folio)
2437{
2438 int error;
2439
2440 if (iocb->ki_flags & IOCB_NOWAIT) {
2441 if (!filemap_invalidate_trylock_shared(mapping))
2442 return -EAGAIN;
2443 } else {
2444 filemap_invalidate_lock_shared(mapping);
2445 }
2446
2447 if (!folio_trylock(folio)) {
2448 error = -EAGAIN;
2449 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2450 goto unlock_mapping;
2451 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2452 filemap_invalidate_unlock_shared(mapping);
2453 /*
2454 * This is where we usually end up waiting for a
2455 * previously submitted readahead to finish.
2456 */
2457 folio_put_wait_locked(folio, TASK_KILLABLE);
2458 return AOP_TRUNCATED_PAGE;
2459 }
2460 error = __folio_lock_async(folio, iocb->ki_waitq);
2461 if (error)
2462 goto unlock_mapping;
2463 }
2464
2465 error = AOP_TRUNCATED_PAGE;
2466 if (!folio->mapping)
2467 goto unlock;
2468
2469 error = 0;
2470 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
2471 goto unlock;
2472
2473 error = -EAGAIN;
2474 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2475 goto unlock;
2476
2477 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2478 folio);
2479 goto unlock_mapping;
2480unlock:
2481 folio_unlock(folio);
2482unlock_mapping:
2483 filemap_invalidate_unlock_shared(mapping);
2484 if (error == AOP_TRUNCATED_PAGE)
2485 folio_put(folio);
2486 return error;
2487}
2488
2489static int filemap_create_folio(struct file *file,
2490 struct address_space *mapping, pgoff_t index,
2491 struct folio_batch *fbatch)
2492{
2493 struct folio *folio;
2494 int error;
2495
2496 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2497 if (!folio)
2498 return -ENOMEM;
2499
2500 /*
2501 * Protect against truncate / hole punch. Grabbing invalidate_lock
2502 * here assures we cannot instantiate and bring uptodate new
2503 * pagecache folios after evicting page cache during truncate
2504 * and before actually freeing blocks. Note that we could
2505 * release invalidate_lock after inserting the folio into
2506 * the page cache as the locked folio would then be enough to
2507 * synchronize with hole punching. But there are code paths
2508 * such as filemap_update_page() filling in partially uptodate
2509 * pages or ->readahead() that need to hold invalidate_lock
2510 * while mapping blocks for IO so let's hold the lock here as
2511 * well to keep locking rules simple.
2512 */
2513 filemap_invalidate_lock_shared(mapping);
2514 error = filemap_add_folio(mapping, folio, index,
2515 mapping_gfp_constraint(mapping, GFP_KERNEL));
2516 if (error == -EEXIST)
2517 error = AOP_TRUNCATED_PAGE;
2518 if (error)
2519 goto error;
2520
2521 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2522 if (error)
2523 goto error;
2524
2525 filemap_invalidate_unlock_shared(mapping);
2526 folio_batch_add(fbatch, folio);
2527 return 0;
2528error:
2529 filemap_invalidate_unlock_shared(mapping);
2530 folio_put(folio);
2531 return error;
2532}
2533
2534static int filemap_readahead(struct kiocb *iocb, struct file *file,
2535 struct address_space *mapping, struct folio *folio,
2536 pgoff_t last_index)
2537{
2538 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2539
2540 if (iocb->ki_flags & IOCB_NOIO)
2541 return -EAGAIN;
2542 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2543 return 0;
2544}
2545
2546static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2547 struct folio_batch *fbatch)
2548{
2549 struct file *filp = iocb->ki_filp;
2550 struct address_space *mapping = filp->f_mapping;
2551 struct file_ra_state *ra = &filp->f_ra;
2552 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2553 pgoff_t last_index;
2554 struct folio *folio;
2555 int err = 0;
2556
2557 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2558retry:
2559 if (fatal_signal_pending(current))
2560 return -EINTR;
2561
2562 filemap_get_read_batch(mapping, index, last_index, fbatch);
2563 if (!folio_batch_count(fbatch)) {
2564 if (iocb->ki_flags & IOCB_NOIO)
2565 return -EAGAIN;
2566 page_cache_sync_readahead(mapping, ra, filp, index,
2567 last_index - index);
2568 filemap_get_read_batch(mapping, index, last_index, fbatch);
2569 }
2570 if (!folio_batch_count(fbatch)) {
2571 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2572 return -EAGAIN;
2573 err = filemap_create_folio(filp, mapping,
2574 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2575 if (err == AOP_TRUNCATED_PAGE)
2576 goto retry;
2577 return err;
2578 }
2579
2580 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2581 if (folio_test_readahead(folio)) {
2582 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2583 if (err)
2584 goto err;
2585 }
2586 if (!folio_test_uptodate(folio)) {
2587 if ((iocb->ki_flags & IOCB_WAITQ) &&
2588 folio_batch_count(fbatch) > 1)
2589 iocb->ki_flags |= IOCB_NOWAIT;
2590 err = filemap_update_page(iocb, mapping, iter, folio);
2591 if (err)
2592 goto err;
2593 }
2594
2595 return 0;
2596err:
2597 if (err < 0)
2598 folio_put(folio);
2599 if (likely(--fbatch->nr))
2600 return 0;
2601 if (err == AOP_TRUNCATED_PAGE)
2602 goto retry;
2603 return err;
2604}
2605
2606static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2607{
2608 unsigned int shift = folio_shift(folio);
2609
2610 return (pos1 >> shift == pos2 >> shift);
2611}
2612
2613/**
2614 * filemap_read - Read data from the page cache.
2615 * @iocb: The iocb to read.
2616 * @iter: Destination for the data.
2617 * @already_read: Number of bytes already read by the caller.
2618 *
2619 * Copies data from the page cache. If the data is not currently present,
2620 * uses the readahead and read_folio address_space operations to fetch it.
2621 *
2622 * Return: Total number of bytes copied, including those already read by
2623 * the caller. If an error happens before any bytes are copied, returns
2624 * a negative error number.
2625 */
2626ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2627 ssize_t already_read)
2628{
2629 struct file *filp = iocb->ki_filp;
2630 struct file_ra_state *ra = &filp->f_ra;
2631 struct address_space *mapping = filp->f_mapping;
2632 struct inode *inode = mapping->host;
2633 struct folio_batch fbatch;
2634 int i, error = 0;
2635 bool writably_mapped;
2636 loff_t isize, end_offset;
2637
2638 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2639 return 0;
2640 if (unlikely(!iov_iter_count(iter)))
2641 return 0;
2642
2643 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2644 folio_batch_init(&fbatch);
2645
2646 do {
2647 cond_resched();
2648
2649 /*
2650 * If we've already successfully copied some data, then we
2651 * can no longer safely return -EIOCBQUEUED. Hence mark
2652 * an async read NOWAIT at that point.
2653 */
2654 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2655 iocb->ki_flags |= IOCB_NOWAIT;
2656
2657 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2658 break;
2659
2660 error = filemap_get_pages(iocb, iter, &fbatch);
2661 if (error < 0)
2662 break;
2663
2664 /*
2665 * i_size must be checked after we know the pages are Uptodate.
2666 *
2667 * Checking i_size after the check allows us to calculate
2668 * the correct value for "nr", which means the zero-filled
2669 * part of the page is not copied back to userspace (unless
2670 * another truncate extends the file - this is desired though).
2671 */
2672 isize = i_size_read(inode);
2673 if (unlikely(iocb->ki_pos >= isize))
2674 goto put_folios;
2675 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2676
2677 /*
2678 * Once we start copying data, we don't want to be touching any
2679 * cachelines that might be contended:
2680 */
2681 writably_mapped = mapping_writably_mapped(mapping);
2682
2683 /*
2684 * When a read accesses the same folio several times, only
2685 * mark it as accessed the first time.
2686 */
2687 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1,
2688 fbatch.folios[0]))
2689 folio_mark_accessed(fbatch.folios[0]);
2690
2691 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2692 struct folio *folio = fbatch.folios[i];
2693 size_t fsize = folio_size(folio);
2694 size_t offset = iocb->ki_pos & (fsize - 1);
2695 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2696 fsize - offset);
2697 size_t copied;
2698
2699 if (end_offset < folio_pos(folio))
2700 break;
2701 if (i > 0)
2702 folio_mark_accessed(folio);
2703 /*
2704 * If users can be writing to this folio using arbitrary
2705 * virtual addresses, take care of potential aliasing
2706 * before reading the folio on the kernel side.
2707 */
2708 if (writably_mapped)
2709 flush_dcache_folio(folio);
2710
2711 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2712
2713 already_read += copied;
2714 iocb->ki_pos += copied;
2715 ra->prev_pos = iocb->ki_pos;
2716
2717 if (copied < bytes) {
2718 error = -EFAULT;
2719 break;
2720 }
2721 }
2722put_folios:
2723 for (i = 0; i < folio_batch_count(&fbatch); i++)
2724 folio_put(fbatch.folios[i]);
2725 folio_batch_init(&fbatch);
2726 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2727
2728 file_accessed(filp);
2729
2730 return already_read ? already_read : error;
2731}
2732EXPORT_SYMBOL_GPL(filemap_read);
2733
2734/**
2735 * generic_file_read_iter - generic filesystem read routine
2736 * @iocb: kernel I/O control block
2737 * @iter: destination for the data read
2738 *
2739 * This is the "read_iter()" routine for all filesystems
2740 * that can use the page cache directly.
2741 *
2742 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2743 * be returned when no data can be read without waiting for I/O requests
2744 * to complete; it doesn't prevent readahead.
2745 *
2746 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2747 * requests shall be made for the read or for readahead. When no data
2748 * can be read, -EAGAIN shall be returned. When readahead would be
2749 * triggered, a partial, possibly empty read shall be returned.
2750 *
2751 * Return:
2752 * * number of bytes copied, even for partial reads
2753 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2754 */
2755ssize_t
2756generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2757{
2758 size_t count = iov_iter_count(iter);
2759 ssize_t retval = 0;
2760
2761 if (!count)
2762 return 0; /* skip atime */
2763
2764 if (iocb->ki_flags & IOCB_DIRECT) {
2765 struct file *file = iocb->ki_filp;
2766 struct address_space *mapping = file->f_mapping;
2767 struct inode *inode = mapping->host;
2768
2769 if (iocb->ki_flags & IOCB_NOWAIT) {
2770 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2771 iocb->ki_pos + count - 1))
2772 return -EAGAIN;
2773 } else {
2774 retval = filemap_write_and_wait_range(mapping,
2775 iocb->ki_pos,
2776 iocb->ki_pos + count - 1);
2777 if (retval < 0)
2778 return retval;
2779 }
2780
2781 file_accessed(file);
2782
2783 retval = mapping->a_ops->direct_IO(iocb, iter);
2784 if (retval >= 0) {
2785 iocb->ki_pos += retval;
2786 count -= retval;
2787 }
2788 if (retval != -EIOCBQUEUED)
2789 iov_iter_revert(iter, count - iov_iter_count(iter));
2790
2791 /*
2792 * Btrfs can have a short DIO read if we encounter
2793 * compressed extents, so if there was an error, or if
2794 * we've already read everything we wanted to, or if
2795 * there was a short read because we hit EOF, go ahead
2796 * and return. Otherwise fallthrough to buffered io for
2797 * the rest of the read. Buffered reads will not work for
2798 * DAX files, so don't bother trying.
2799 */
2800 if (retval < 0 || !count || IS_DAX(inode))
2801 return retval;
2802 if (iocb->ki_pos >= i_size_read(inode))
2803 return retval;
2804 }
2805
2806 return filemap_read(iocb, iter, retval);
2807}
2808EXPORT_SYMBOL(generic_file_read_iter);
2809
2810static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2811 struct address_space *mapping, struct folio *folio,
2812 loff_t start, loff_t end, bool seek_data)
2813{
2814 const struct address_space_operations *ops = mapping->a_ops;
2815 size_t offset, bsz = i_blocksize(mapping->host);
2816
2817 if (xa_is_value(folio) || folio_test_uptodate(folio))
2818 return seek_data ? start : end;
2819 if (!ops->is_partially_uptodate)
2820 return seek_data ? end : start;
2821
2822 xas_pause(xas);
2823 rcu_read_unlock();
2824 folio_lock(folio);
2825 if (unlikely(folio->mapping != mapping))
2826 goto unlock;
2827
2828 offset = offset_in_folio(folio, start) & ~(bsz - 1);
2829
2830 do {
2831 if (ops->is_partially_uptodate(folio, offset, bsz) ==
2832 seek_data)
2833 break;
2834 start = (start + bsz) & ~(bsz - 1);
2835 offset += bsz;
2836 } while (offset < folio_size(folio));
2837unlock:
2838 folio_unlock(folio);
2839 rcu_read_lock();
2840 return start;
2841}
2842
2843static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2844{
2845 if (xa_is_value(folio))
2846 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2847 return folio_size(folio);
2848}
2849
2850/**
2851 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2852 * @mapping: Address space to search.
2853 * @start: First byte to consider.
2854 * @end: Limit of search (exclusive).
2855 * @whence: Either SEEK_HOLE or SEEK_DATA.
2856 *
2857 * If the page cache knows which blocks contain holes and which blocks
2858 * contain data, your filesystem can use this function to implement
2859 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2860 * entirely memory-based such as tmpfs, and filesystems which support
2861 * unwritten extents.
2862 *
2863 * Return: The requested offset on success, or -ENXIO if @whence specifies
2864 * SEEK_DATA and there is no data after @start. There is an implicit hole
2865 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2866 * and @end contain data.
2867 */
2868loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2869 loff_t end, int whence)
2870{
2871 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2872 pgoff_t max = (end - 1) >> PAGE_SHIFT;
2873 bool seek_data = (whence == SEEK_DATA);
2874 struct folio *folio;
2875
2876 if (end <= start)
2877 return -ENXIO;
2878
2879 rcu_read_lock();
2880 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
2881 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2882 size_t seek_size;
2883
2884 if (start < pos) {
2885 if (!seek_data)
2886 goto unlock;
2887 start = pos;
2888 }
2889
2890 seek_size = seek_folio_size(&xas, folio);
2891 pos = round_up((u64)pos + 1, seek_size);
2892 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
2893 seek_data);
2894 if (start < pos)
2895 goto unlock;
2896 if (start >= end)
2897 break;
2898 if (seek_size > PAGE_SIZE)
2899 xas_set(&xas, pos >> PAGE_SHIFT);
2900 if (!xa_is_value(folio))
2901 folio_put(folio);
2902 }
2903 if (seek_data)
2904 start = -ENXIO;
2905unlock:
2906 rcu_read_unlock();
2907 if (folio && !xa_is_value(folio))
2908 folio_put(folio);
2909 if (start > end)
2910 return end;
2911 return start;
2912}
2913
2914#ifdef CONFIG_MMU
2915#define MMAP_LOTSAMISS (100)
2916/*
2917 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2918 * @vmf - the vm_fault for this fault.
2919 * @folio - the folio to lock.
2920 * @fpin - the pointer to the file we may pin (or is already pinned).
2921 *
2922 * This works similar to lock_folio_or_retry in that it can drop the
2923 * mmap_lock. It differs in that it actually returns the folio locked
2924 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
2925 * to drop the mmap_lock then fpin will point to the pinned file and
2926 * needs to be fput()'ed at a later point.
2927 */
2928static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
2929 struct file **fpin)
2930{
2931 if (folio_trylock(folio))
2932 return 1;
2933
2934 /*
2935 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2936 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2937 * is supposed to work. We have way too many special cases..
2938 */
2939 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2940 return 0;
2941
2942 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2943 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2944 if (__folio_lock_killable(folio)) {
2945 /*
2946 * We didn't have the right flags to drop the mmap_lock,
2947 * but all fault_handlers only check for fatal signals
2948 * if we return VM_FAULT_RETRY, so we need to drop the
2949 * mmap_lock here and return 0 if we don't have a fpin.
2950 */
2951 if (*fpin == NULL)
2952 mmap_read_unlock(vmf->vma->vm_mm);
2953 return 0;
2954 }
2955 } else
2956 __folio_lock(folio);
2957
2958 return 1;
2959}
2960
2961/*
2962 * Synchronous readahead happens when we don't even find a page in the page
2963 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2964 * to drop the mmap sem we return the file that was pinned in order for us to do
2965 * that. If we didn't pin a file then we return NULL. The file that is
2966 * returned needs to be fput()'ed when we're done with it.
2967 */
2968static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2969{
2970 struct file *file = vmf->vma->vm_file;
2971 struct file_ra_state *ra = &file->f_ra;
2972 struct address_space *mapping = file->f_mapping;
2973 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2974 struct file *fpin = NULL;
2975 unsigned long vm_flags = vmf->vma->vm_flags;
2976 unsigned int mmap_miss;
2977
2978#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2979 /* Use the readahead code, even if readahead is disabled */
2980 if (vm_flags & VM_HUGEPAGE) {
2981 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2982 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
2983 ra->size = HPAGE_PMD_NR;
2984 /*
2985 * Fetch two PMD folios, so we get the chance to actually
2986 * readahead, unless we've been told not to.
2987 */
2988 if (!(vm_flags & VM_RAND_READ))
2989 ra->size *= 2;
2990 ra->async_size = HPAGE_PMD_NR;
2991 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
2992 return fpin;
2993 }
2994#endif
2995
2996 /* If we don't want any read-ahead, don't bother */
2997 if (vm_flags & VM_RAND_READ)
2998 return fpin;
2999 if (!ra->ra_pages)
3000 return fpin;
3001
3002 if (vm_flags & VM_SEQ_READ) {
3003 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3004 page_cache_sync_ra(&ractl, ra->ra_pages);
3005 return fpin;
3006 }
3007
3008 /* Avoid banging the cache line if not needed */
3009 mmap_miss = READ_ONCE(ra->mmap_miss);
3010 if (mmap_miss < MMAP_LOTSAMISS * 10)
3011 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3012
3013 /*
3014 * Do we miss much more than hit in this file? If so,
3015 * stop bothering with read-ahead. It will only hurt.
3016 */
3017 if (mmap_miss > MMAP_LOTSAMISS)
3018 return fpin;
3019
3020 /*
3021 * mmap read-around
3022 */
3023 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3024 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3025 ra->size = ra->ra_pages;
3026 ra->async_size = ra->ra_pages / 4;
3027 ractl._index = ra->start;
3028 page_cache_ra_order(&ractl, ra, 0);
3029 return fpin;
3030}
3031
3032/*
3033 * Asynchronous readahead happens when we find the page and PG_readahead,
3034 * so we want to possibly extend the readahead further. We return the file that
3035 * was pinned if we have to drop the mmap_lock in order to do IO.
3036 */
3037static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3038 struct folio *folio)
3039{
3040 struct file *file = vmf->vma->vm_file;
3041 struct file_ra_state *ra = &file->f_ra;
3042 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3043 struct file *fpin = NULL;
3044 unsigned int mmap_miss;
3045
3046 /* If we don't want any read-ahead, don't bother */
3047 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3048 return fpin;
3049
3050 mmap_miss = READ_ONCE(ra->mmap_miss);
3051 if (mmap_miss)
3052 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3053
3054 if (folio_test_readahead(folio)) {
3055 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3056 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3057 }
3058 return fpin;
3059}
3060
3061/**
3062 * filemap_fault - read in file data for page fault handling
3063 * @vmf: struct vm_fault containing details of the fault
3064 *
3065 * filemap_fault() is invoked via the vma operations vector for a
3066 * mapped memory region to read in file data during a page fault.
3067 *
3068 * The goto's are kind of ugly, but this streamlines the normal case of having
3069 * it in the page cache, and handles the special cases reasonably without
3070 * having a lot of duplicated code.
3071 *
3072 * vma->vm_mm->mmap_lock must be held on entry.
3073 *
3074 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3075 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3076 *
3077 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3078 * has not been released.
3079 *
3080 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3081 *
3082 * Return: bitwise-OR of %VM_FAULT_ codes.
3083 */
3084vm_fault_t filemap_fault(struct vm_fault *vmf)
3085{
3086 int error;
3087 struct file *file = vmf->vma->vm_file;
3088 struct file *fpin = NULL;
3089 struct address_space *mapping = file->f_mapping;
3090 struct inode *inode = mapping->host;
3091 pgoff_t max_idx, index = vmf->pgoff;
3092 struct folio *folio;
3093 vm_fault_t ret = 0;
3094 bool mapping_locked = false;
3095
3096 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3097 if (unlikely(index >= max_idx))
3098 return VM_FAULT_SIGBUS;
3099
3100 /*
3101 * Do we have something in the page cache already?
3102 */
3103 folio = filemap_get_folio(mapping, index);
3104 if (likely(folio)) {
3105 /*
3106 * We found the page, so try async readahead before waiting for
3107 * the lock.
3108 */
3109 if (!(vmf->flags & FAULT_FLAG_TRIED))
3110 fpin = do_async_mmap_readahead(vmf, folio);
3111 if (unlikely(!folio_test_uptodate(folio))) {
3112 filemap_invalidate_lock_shared(mapping);
3113 mapping_locked = true;
3114 }
3115 } else {
3116 /* No page in the page cache at all */
3117 count_vm_event(PGMAJFAULT);
3118 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3119 ret = VM_FAULT_MAJOR;
3120 fpin = do_sync_mmap_readahead(vmf);
3121retry_find:
3122 /*
3123 * See comment in filemap_create_folio() why we need
3124 * invalidate_lock
3125 */
3126 if (!mapping_locked) {
3127 filemap_invalidate_lock_shared(mapping);
3128 mapping_locked = true;
3129 }
3130 folio = __filemap_get_folio(mapping, index,
3131 FGP_CREAT|FGP_FOR_MMAP,
3132 vmf->gfp_mask);
3133 if (!folio) {
3134 if (fpin)
3135 goto out_retry;
3136 filemap_invalidate_unlock_shared(mapping);
3137 return VM_FAULT_OOM;
3138 }
3139 }
3140
3141 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3142 goto out_retry;
3143
3144 /* Did it get truncated? */
3145 if (unlikely(folio->mapping != mapping)) {
3146 folio_unlock(folio);
3147 folio_put(folio);
3148 goto retry_find;
3149 }
3150 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3151
3152 /*
3153 * We have a locked page in the page cache, now we need to check
3154 * that it's up-to-date. If not, it is going to be due to an error.
3155 */
3156 if (unlikely(!folio_test_uptodate(folio))) {
3157 /*
3158 * The page was in cache and uptodate and now it is not.
3159 * Strange but possible since we didn't hold the page lock all
3160 * the time. Let's drop everything get the invalidate lock and
3161 * try again.
3162 */
3163 if (!mapping_locked) {
3164 folio_unlock(folio);
3165 folio_put(folio);
3166 goto retry_find;
3167 }
3168 goto page_not_uptodate;
3169 }
3170
3171 /*
3172 * We've made it this far and we had to drop our mmap_lock, now is the
3173 * time to return to the upper layer and have it re-find the vma and
3174 * redo the fault.
3175 */
3176 if (fpin) {
3177 folio_unlock(folio);
3178 goto out_retry;
3179 }
3180 if (mapping_locked)
3181 filemap_invalidate_unlock_shared(mapping);
3182
3183 /*
3184 * Found the page and have a reference on it.
3185 * We must recheck i_size under page lock.
3186 */
3187 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3188 if (unlikely(index >= max_idx)) {
3189 folio_unlock(folio);
3190 folio_put(folio);
3191 return VM_FAULT_SIGBUS;
3192 }
3193
3194 vmf->page = folio_file_page(folio, index);
3195 return ret | VM_FAULT_LOCKED;
3196
3197page_not_uptodate:
3198 /*
3199 * Umm, take care of errors if the page isn't up-to-date.
3200 * Try to re-read it _once_. We do this synchronously,
3201 * because there really aren't any performance issues here
3202 * and we need to check for errors.
3203 */
3204 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3205 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3206 if (fpin)
3207 goto out_retry;
3208 folio_put(folio);
3209
3210 if (!error || error == AOP_TRUNCATED_PAGE)
3211 goto retry_find;
3212 filemap_invalidate_unlock_shared(mapping);
3213
3214 return VM_FAULT_SIGBUS;
3215
3216out_retry:
3217 /*
3218 * We dropped the mmap_lock, we need to return to the fault handler to
3219 * re-find the vma and come back and find our hopefully still populated
3220 * page.
3221 */
3222 if (folio)
3223 folio_put(folio);
3224 if (mapping_locked)
3225 filemap_invalidate_unlock_shared(mapping);
3226 if (fpin)
3227 fput(fpin);
3228 return ret | VM_FAULT_RETRY;
3229}
3230EXPORT_SYMBOL(filemap_fault);
3231
3232static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3233{
3234 struct mm_struct *mm = vmf->vma->vm_mm;
3235
3236 /* Huge page is mapped? No need to proceed. */
3237 if (pmd_trans_huge(*vmf->pmd)) {
3238 unlock_page(page);
3239 put_page(page);
3240 return true;
3241 }
3242
3243 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3244 vm_fault_t ret = do_set_pmd(vmf, page);
3245 if (!ret) {
3246 /* The page is mapped successfully, reference consumed. */
3247 unlock_page(page);
3248 return true;
3249 }
3250 }
3251
3252 if (pmd_none(*vmf->pmd))
3253 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3254
3255 /* See comment in handle_pte_fault() */
3256 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3257 unlock_page(page);
3258 put_page(page);
3259 return true;
3260 }
3261
3262 return false;
3263}
3264
3265static struct folio *next_uptodate_page(struct folio *folio,
3266 struct address_space *mapping,
3267 struct xa_state *xas, pgoff_t end_pgoff)
3268{
3269 unsigned long max_idx;
3270
3271 do {
3272 if (!folio)
3273 return NULL;
3274 if (xas_retry(xas, folio))
3275 continue;
3276 if (xa_is_value(folio))
3277 continue;
3278 if (folio_test_locked(folio))
3279 continue;
3280 if (!folio_try_get_rcu(folio))
3281 continue;
3282 /* Has the page moved or been split? */
3283 if (unlikely(folio != xas_reload(xas)))
3284 goto skip;
3285 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3286 goto skip;
3287 if (!folio_trylock(folio))
3288 goto skip;
3289 if (folio->mapping != mapping)
3290 goto unlock;
3291 if (!folio_test_uptodate(folio))
3292 goto unlock;
3293 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3294 if (xas->xa_index >= max_idx)
3295 goto unlock;
3296 return folio;
3297unlock:
3298 folio_unlock(folio);
3299skip:
3300 folio_put(folio);
3301 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3302
3303 return NULL;
3304}
3305
3306static inline struct folio *first_map_page(struct address_space *mapping,
3307 struct xa_state *xas,
3308 pgoff_t end_pgoff)
3309{
3310 return next_uptodate_page(xas_find(xas, end_pgoff),
3311 mapping, xas, end_pgoff);
3312}
3313
3314static inline struct folio *next_map_page(struct address_space *mapping,
3315 struct xa_state *xas,
3316 pgoff_t end_pgoff)
3317{
3318 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3319 mapping, xas, end_pgoff);
3320}
3321
3322vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3323 pgoff_t start_pgoff, pgoff_t end_pgoff)
3324{
3325 struct vm_area_struct *vma = vmf->vma;
3326 struct file *file = vma->vm_file;
3327 struct address_space *mapping = file->f_mapping;
3328 pgoff_t last_pgoff = start_pgoff;
3329 unsigned long addr;
3330 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3331 struct folio *folio;
3332 struct page *page;
3333 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3334 vm_fault_t ret = 0;
3335
3336 rcu_read_lock();
3337 folio = first_map_page(mapping, &xas, end_pgoff);
3338 if (!folio)
3339 goto out;
3340
3341 if (filemap_map_pmd(vmf, &folio->page)) {
3342 ret = VM_FAULT_NOPAGE;
3343 goto out;
3344 }
3345
3346 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3347 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3348 do {
3349again:
3350 page = folio_file_page(folio, xas.xa_index);
3351 if (PageHWPoison(page))
3352 goto unlock;
3353
3354 if (mmap_miss > 0)
3355 mmap_miss--;
3356
3357 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3358 vmf->pte += xas.xa_index - last_pgoff;
3359 last_pgoff = xas.xa_index;
3360
3361 /*
3362 * NOTE: If there're PTE markers, we'll leave them to be
3363 * handled in the specific fault path, and it'll prohibit the
3364 * fault-around logic.
3365 */
3366 if (!pte_none(*vmf->pte))
3367 goto unlock;
3368
3369 /* We're about to handle the fault */
3370 if (vmf->address == addr)
3371 ret = VM_FAULT_NOPAGE;
3372
3373 do_set_pte(vmf, page, addr);
3374 /* no need to invalidate: a not-present page won't be cached */
3375 update_mmu_cache(vma, addr, vmf->pte);
3376 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3377 xas.xa_index++;
3378 folio_ref_inc(folio);
3379 goto again;
3380 }
3381 folio_unlock(folio);
3382 continue;
3383unlock:
3384 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3385 xas.xa_index++;
3386 goto again;
3387 }
3388 folio_unlock(folio);
3389 folio_put(folio);
3390 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3391 pte_unmap_unlock(vmf->pte, vmf->ptl);
3392out:
3393 rcu_read_unlock();
3394 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3395 return ret;
3396}
3397EXPORT_SYMBOL(filemap_map_pages);
3398
3399vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3400{
3401 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3402 struct folio *folio = page_folio(vmf->page);
3403 vm_fault_t ret = VM_FAULT_LOCKED;
3404
3405 sb_start_pagefault(mapping->host->i_sb);
3406 file_update_time(vmf->vma->vm_file);
3407 folio_lock(folio);
3408 if (folio->mapping != mapping) {
3409 folio_unlock(folio);
3410 ret = VM_FAULT_NOPAGE;
3411 goto out;
3412 }
3413 /*
3414 * We mark the folio dirty already here so that when freeze is in
3415 * progress, we are guaranteed that writeback during freezing will
3416 * see the dirty folio and writeprotect it again.
3417 */
3418 folio_mark_dirty(folio);
3419 folio_wait_stable(folio);
3420out:
3421 sb_end_pagefault(mapping->host->i_sb);
3422 return ret;
3423}
3424
3425const struct vm_operations_struct generic_file_vm_ops = {
3426 .fault = filemap_fault,
3427 .map_pages = filemap_map_pages,
3428 .page_mkwrite = filemap_page_mkwrite,
3429};
3430
3431/* This is used for a general mmap of a disk file */
3432
3433int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3434{
3435 struct address_space *mapping = file->f_mapping;
3436
3437 if (!mapping->a_ops->read_folio)
3438 return -ENOEXEC;
3439 file_accessed(file);
3440 vma->vm_ops = &generic_file_vm_ops;
3441 return 0;
3442}
3443
3444/*
3445 * This is for filesystems which do not implement ->writepage.
3446 */
3447int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3448{
3449 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3450 return -EINVAL;
3451 return generic_file_mmap(file, vma);
3452}
3453#else
3454vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3455{
3456 return VM_FAULT_SIGBUS;
3457}
3458int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3459{
3460 return -ENOSYS;
3461}
3462int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3463{
3464 return -ENOSYS;
3465}
3466#endif /* CONFIG_MMU */
3467
3468EXPORT_SYMBOL(filemap_page_mkwrite);
3469EXPORT_SYMBOL(generic_file_mmap);
3470EXPORT_SYMBOL(generic_file_readonly_mmap);
3471
3472static struct folio *do_read_cache_folio(struct address_space *mapping,
3473 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3474{
3475 struct folio *folio;
3476 int err;
3477
3478 if (!filler)
3479 filler = mapping->a_ops->read_folio;
3480repeat:
3481 folio = filemap_get_folio(mapping, index);
3482 if (!folio) {
3483 folio = filemap_alloc_folio(gfp, 0);
3484 if (!folio)
3485 return ERR_PTR(-ENOMEM);
3486 err = filemap_add_folio(mapping, folio, index, gfp);
3487 if (unlikely(err)) {
3488 folio_put(folio);
3489 if (err == -EEXIST)
3490 goto repeat;
3491 /* Presumably ENOMEM for xarray node */
3492 return ERR_PTR(err);
3493 }
3494
3495 goto filler;
3496 }
3497 if (folio_test_uptodate(folio))
3498 goto out;
3499
3500 if (!folio_trylock(folio)) {
3501 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3502 goto repeat;
3503 }
3504
3505 /* Folio was truncated from mapping */
3506 if (!folio->mapping) {
3507 folio_unlock(folio);
3508 folio_put(folio);
3509 goto repeat;
3510 }
3511
3512 /* Someone else locked and filled the page in a very small window */
3513 if (folio_test_uptodate(folio)) {
3514 folio_unlock(folio);
3515 goto out;
3516 }
3517
3518filler:
3519 err = filemap_read_folio(file, filler, folio);
3520 if (err) {
3521 folio_put(folio);
3522 if (err == AOP_TRUNCATED_PAGE)
3523 goto repeat;
3524 return ERR_PTR(err);
3525 }
3526
3527out:
3528 folio_mark_accessed(folio);
3529 return folio;
3530}
3531
3532/**
3533 * read_cache_folio - Read into page cache, fill it if needed.
3534 * @mapping: The address_space to read from.
3535 * @index: The index to read.
3536 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3537 * @file: Passed to filler function, may be NULL if not required.
3538 *
3539 * Read one page into the page cache. If it succeeds, the folio returned
3540 * will contain @index, but it may not be the first page of the folio.
3541 *
3542 * If the filler function returns an error, it will be returned to the
3543 * caller.
3544 *
3545 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3546 * Return: An uptodate folio on success, ERR_PTR() on failure.
3547 */
3548struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3549 filler_t filler, struct file *file)
3550{
3551 return do_read_cache_folio(mapping, index, filler, file,
3552 mapping_gfp_mask(mapping));
3553}
3554EXPORT_SYMBOL(read_cache_folio);
3555
3556static struct page *do_read_cache_page(struct address_space *mapping,
3557 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3558{
3559 struct folio *folio;
3560
3561 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3562 if (IS_ERR(folio))
3563 return &folio->page;
3564 return folio_file_page(folio, index);
3565}
3566
3567struct page *read_cache_page(struct address_space *mapping,
3568 pgoff_t index, filler_t *filler, struct file *file)
3569{
3570 return do_read_cache_page(mapping, index, filler, file,
3571 mapping_gfp_mask(mapping));
3572}
3573EXPORT_SYMBOL(read_cache_page);
3574
3575/**
3576 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3577 * @mapping: the page's address_space
3578 * @index: the page index
3579 * @gfp: the page allocator flags to use if allocating
3580 *
3581 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3582 * any new page allocations done using the specified allocation flags.
3583 *
3584 * If the page does not get brought uptodate, return -EIO.
3585 *
3586 * The function expects mapping->invalidate_lock to be already held.
3587 *
3588 * Return: up to date page on success, ERR_PTR() on failure.
3589 */
3590struct page *read_cache_page_gfp(struct address_space *mapping,
3591 pgoff_t index,
3592 gfp_t gfp)
3593{
3594 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3595}
3596EXPORT_SYMBOL(read_cache_page_gfp);
3597
3598/*
3599 * Warn about a page cache invalidation failure during a direct I/O write.
3600 */
3601void dio_warn_stale_pagecache(struct file *filp)
3602{
3603 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3604 char pathname[128];
3605 char *path;
3606
3607 errseq_set(&filp->f_mapping->wb_err, -EIO);
3608 if (__ratelimit(&_rs)) {
3609 path = file_path(filp, pathname, sizeof(pathname));
3610 if (IS_ERR(path))
3611 path = "(unknown)";
3612 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3613 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3614 current->comm);
3615 }
3616}
3617
3618ssize_t
3619generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3620{
3621 struct file *file = iocb->ki_filp;
3622 struct address_space *mapping = file->f_mapping;
3623 struct inode *inode = mapping->host;
3624 loff_t pos = iocb->ki_pos;
3625 ssize_t written;
3626 size_t write_len;
3627 pgoff_t end;
3628
3629 write_len = iov_iter_count(from);
3630 end = (pos + write_len - 1) >> PAGE_SHIFT;
3631
3632 if (iocb->ki_flags & IOCB_NOWAIT) {
3633 /* If there are pages to writeback, return */
3634 if (filemap_range_has_page(file->f_mapping, pos,
3635 pos + write_len - 1))
3636 return -EAGAIN;
3637 } else {
3638 written = filemap_write_and_wait_range(mapping, pos,
3639 pos + write_len - 1);
3640 if (written)
3641 goto out;
3642 }
3643
3644 /*
3645 * After a write we want buffered reads to be sure to go to disk to get
3646 * the new data. We invalidate clean cached page from the region we're
3647 * about to write. We do this *before* the write so that we can return
3648 * without clobbering -EIOCBQUEUED from ->direct_IO().
3649 */
3650 written = invalidate_inode_pages2_range(mapping,
3651 pos >> PAGE_SHIFT, end);
3652 /*
3653 * If a page can not be invalidated, return 0 to fall back
3654 * to buffered write.
3655 */
3656 if (written) {
3657 if (written == -EBUSY)
3658 return 0;
3659 goto out;
3660 }
3661
3662 written = mapping->a_ops->direct_IO(iocb, from);
3663
3664 /*
3665 * Finally, try again to invalidate clean pages which might have been
3666 * cached by non-direct readahead, or faulted in by get_user_pages()
3667 * if the source of the write was an mmap'ed region of the file
3668 * we're writing. Either one is a pretty crazy thing to do,
3669 * so we don't support it 100%. If this invalidation
3670 * fails, tough, the write still worked...
3671 *
3672 * Most of the time we do not need this since dio_complete() will do
3673 * the invalidation for us. However there are some file systems that
3674 * do not end up with dio_complete() being called, so let's not break
3675 * them by removing it completely.
3676 *
3677 * Noticeable example is a blkdev_direct_IO().
3678 *
3679 * Skip invalidation for async writes or if mapping has no pages.
3680 */
3681 if (written > 0 && mapping->nrpages &&
3682 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3683 dio_warn_stale_pagecache(file);
3684
3685 if (written > 0) {
3686 pos += written;
3687 write_len -= written;
3688 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3689 i_size_write(inode, pos);
3690 mark_inode_dirty(inode);
3691 }
3692 iocb->ki_pos = pos;
3693 }
3694 if (written != -EIOCBQUEUED)
3695 iov_iter_revert(from, write_len - iov_iter_count(from));
3696out:
3697 return written;
3698}
3699EXPORT_SYMBOL(generic_file_direct_write);
3700
3701ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3702{
3703 struct file *file = iocb->ki_filp;
3704 loff_t pos = iocb->ki_pos;
3705 struct address_space *mapping = file->f_mapping;
3706 const struct address_space_operations *a_ops = mapping->a_ops;
3707 long status = 0;
3708 ssize_t written = 0;
3709
3710 do {
3711 struct page *page;
3712 unsigned long offset; /* Offset into pagecache page */
3713 unsigned long bytes; /* Bytes to write to page */
3714 size_t copied; /* Bytes copied from user */
3715 void *fsdata;
3716
3717 offset = (pos & (PAGE_SIZE - 1));
3718 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3719 iov_iter_count(i));
3720
3721again:
3722 /*
3723 * Bring in the user page that we will copy from _first_.
3724 * Otherwise there's a nasty deadlock on copying from the
3725 * same page as we're writing to, without it being marked
3726 * up-to-date.
3727 */
3728 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3729 status = -EFAULT;
3730 break;
3731 }
3732
3733 if (fatal_signal_pending(current)) {
3734 status = -EINTR;
3735 break;
3736 }
3737
3738 status = a_ops->write_begin(file, mapping, pos, bytes,
3739 &page, &fsdata);
3740 if (unlikely(status < 0))
3741 break;
3742
3743 if (mapping_writably_mapped(mapping))
3744 flush_dcache_page(page);
3745
3746 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3747 flush_dcache_page(page);
3748
3749 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3750 page, fsdata);
3751 if (unlikely(status != copied)) {
3752 iov_iter_revert(i, copied - max(status, 0L));
3753 if (unlikely(status < 0))
3754 break;
3755 }
3756 cond_resched();
3757
3758 if (unlikely(status == 0)) {
3759 /*
3760 * A short copy made ->write_end() reject the
3761 * thing entirely. Might be memory poisoning
3762 * halfway through, might be a race with munmap,
3763 * might be severe memory pressure.
3764 */
3765 if (copied)
3766 bytes = copied;
3767 goto again;
3768 }
3769 pos += status;
3770 written += status;
3771
3772 balance_dirty_pages_ratelimited(mapping);
3773 } while (iov_iter_count(i));
3774
3775 return written ? written : status;
3776}
3777EXPORT_SYMBOL(generic_perform_write);
3778
3779/**
3780 * __generic_file_write_iter - write data to a file
3781 * @iocb: IO state structure (file, offset, etc.)
3782 * @from: iov_iter with data to write
3783 *
3784 * This function does all the work needed for actually writing data to a
3785 * file. It does all basic checks, removes SUID from the file, updates
3786 * modification times and calls proper subroutines depending on whether we
3787 * do direct IO or a standard buffered write.
3788 *
3789 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3790 * object which does not need locking at all.
3791 *
3792 * This function does *not* take care of syncing data in case of O_SYNC write.
3793 * A caller has to handle it. This is mainly due to the fact that we want to
3794 * avoid syncing under i_rwsem.
3795 *
3796 * Return:
3797 * * number of bytes written, even for truncated writes
3798 * * negative error code if no data has been written at all
3799 */
3800ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3801{
3802 struct file *file = iocb->ki_filp;
3803 struct address_space *mapping = file->f_mapping;
3804 struct inode *inode = mapping->host;
3805 ssize_t written = 0;
3806 ssize_t err;
3807 ssize_t status;
3808
3809 /* We can write back this queue in page reclaim */
3810 current->backing_dev_info = inode_to_bdi(inode);
3811 err = file_remove_privs(file);
3812 if (err)
3813 goto out;
3814
3815 err = file_update_time(file);
3816 if (err)
3817 goto out;
3818
3819 if (iocb->ki_flags & IOCB_DIRECT) {
3820 loff_t pos, endbyte;
3821
3822 written = generic_file_direct_write(iocb, from);
3823 /*
3824 * If the write stopped short of completing, fall back to
3825 * buffered writes. Some filesystems do this for writes to
3826 * holes, for example. For DAX files, a buffered write will
3827 * not succeed (even if it did, DAX does not handle dirty
3828 * page-cache pages correctly).
3829 */
3830 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3831 goto out;
3832
3833 pos = iocb->ki_pos;
3834 status = generic_perform_write(iocb, from);
3835 /*
3836 * If generic_perform_write() returned a synchronous error
3837 * then we want to return the number of bytes which were
3838 * direct-written, or the error code if that was zero. Note
3839 * that this differs from normal direct-io semantics, which
3840 * will return -EFOO even if some bytes were written.
3841 */
3842 if (unlikely(status < 0)) {
3843 err = status;
3844 goto out;
3845 }
3846 /*
3847 * We need to ensure that the page cache pages are written to
3848 * disk and invalidated to preserve the expected O_DIRECT
3849 * semantics.
3850 */
3851 endbyte = pos + status - 1;
3852 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3853 if (err == 0) {
3854 iocb->ki_pos = endbyte + 1;
3855 written += status;
3856 invalidate_mapping_pages(mapping,
3857 pos >> PAGE_SHIFT,
3858 endbyte >> PAGE_SHIFT);
3859 } else {
3860 /*
3861 * We don't know how much we wrote, so just return
3862 * the number of bytes which were direct-written
3863 */
3864 }
3865 } else {
3866 written = generic_perform_write(iocb, from);
3867 if (likely(written > 0))
3868 iocb->ki_pos += written;
3869 }
3870out:
3871 current->backing_dev_info = NULL;
3872 return written ? written : err;
3873}
3874EXPORT_SYMBOL(__generic_file_write_iter);
3875
3876/**
3877 * generic_file_write_iter - write data to a file
3878 * @iocb: IO state structure
3879 * @from: iov_iter with data to write
3880 *
3881 * This is a wrapper around __generic_file_write_iter() to be used by most
3882 * filesystems. It takes care of syncing the file in case of O_SYNC file
3883 * and acquires i_rwsem as needed.
3884 * Return:
3885 * * negative error code if no data has been written at all of
3886 * vfs_fsync_range() failed for a synchronous write
3887 * * number of bytes written, even for truncated writes
3888 */
3889ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3890{
3891 struct file *file = iocb->ki_filp;
3892 struct inode *inode = file->f_mapping->host;
3893 ssize_t ret;
3894
3895 inode_lock(inode);
3896 ret = generic_write_checks(iocb, from);
3897 if (ret > 0)
3898 ret = __generic_file_write_iter(iocb, from);
3899 inode_unlock(inode);
3900
3901 if (ret > 0)
3902 ret = generic_write_sync(iocb, ret);
3903 return ret;
3904}
3905EXPORT_SYMBOL(generic_file_write_iter);
3906
3907/**
3908 * filemap_release_folio() - Release fs-specific metadata on a folio.
3909 * @folio: The folio which the kernel is trying to free.
3910 * @gfp: Memory allocation flags (and I/O mode).
3911 *
3912 * The address_space is trying to release any data attached to a folio
3913 * (presumably at folio->private).
3914 *
3915 * This will also be called if the private_2 flag is set on a page,
3916 * indicating that the folio has other metadata associated with it.
3917 *
3918 * The @gfp argument specifies whether I/O may be performed to release
3919 * this page (__GFP_IO), and whether the call may block
3920 * (__GFP_RECLAIM & __GFP_FS).
3921 *
3922 * Return: %true if the release was successful, otherwise %false.
3923 */
3924bool filemap_release_folio(struct folio *folio, gfp_t gfp)
3925{
3926 struct address_space * const mapping = folio->mapping;
3927
3928 BUG_ON(!folio_test_locked(folio));
3929 if (folio_test_writeback(folio))
3930 return false;
3931
3932 if (mapping && mapping->a_ops->release_folio)
3933 return mapping->a_ops->release_folio(folio, gfp);
3934 return try_to_free_buffers(folio);
3935}
3936EXPORT_SYMBOL(filemap_release_folio);