Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * nvmem framework core.
4 *
5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7 */
8
9#include <linux/device.h>
10#include <linux/export.h>
11#include <linux/fs.h>
12#include <linux/idr.h>
13#include <linux/init.h>
14#include <linux/kref.h>
15#include <linux/module.h>
16#include <linux/nvmem-consumer.h>
17#include <linux/nvmem-provider.h>
18#include <linux/gpio/consumer.h>
19#include <linux/of.h>
20#include <linux/slab.h>
21
22struct nvmem_device {
23 struct module *owner;
24 struct device dev;
25 int stride;
26 int word_size;
27 int id;
28 struct kref refcnt;
29 size_t size;
30 bool read_only;
31 bool root_only;
32 int flags;
33 enum nvmem_type type;
34 struct bin_attribute eeprom;
35 struct device *base_dev;
36 struct list_head cells;
37 const struct nvmem_keepout *keepout;
38 unsigned int nkeepout;
39 nvmem_reg_read_t reg_read;
40 nvmem_reg_write_t reg_write;
41 nvmem_cell_post_process_t cell_post_process;
42 struct gpio_desc *wp_gpio;
43 void *priv;
44};
45
46#define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
47
48#define FLAG_COMPAT BIT(0)
49struct nvmem_cell_entry {
50 const char *name;
51 int offset;
52 int bytes;
53 int bit_offset;
54 int nbits;
55 struct device_node *np;
56 struct nvmem_device *nvmem;
57 struct list_head node;
58};
59
60struct nvmem_cell {
61 struct nvmem_cell_entry *entry;
62 const char *id;
63};
64
65static DEFINE_MUTEX(nvmem_mutex);
66static DEFINE_IDA(nvmem_ida);
67
68static DEFINE_MUTEX(nvmem_cell_mutex);
69static LIST_HEAD(nvmem_cell_tables);
70
71static DEFINE_MUTEX(nvmem_lookup_mutex);
72static LIST_HEAD(nvmem_lookup_list);
73
74static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
75
76static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
77 void *val, size_t bytes)
78{
79 if (nvmem->reg_read)
80 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
81
82 return -EINVAL;
83}
84
85static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
86 void *val, size_t bytes)
87{
88 int ret;
89
90 if (nvmem->reg_write) {
91 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
92 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
93 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
94 return ret;
95 }
96
97 return -EINVAL;
98}
99
100static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
101 unsigned int offset, void *val,
102 size_t bytes, int write)
103{
104
105 unsigned int end = offset + bytes;
106 unsigned int kend, ksize;
107 const struct nvmem_keepout *keepout = nvmem->keepout;
108 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
109 int rc;
110
111 /*
112 * Skip all keepouts before the range being accessed.
113 * Keepouts are sorted.
114 */
115 while ((keepout < keepoutend) && (keepout->end <= offset))
116 keepout++;
117
118 while ((offset < end) && (keepout < keepoutend)) {
119 /* Access the valid portion before the keepout. */
120 if (offset < keepout->start) {
121 kend = min(end, keepout->start);
122 ksize = kend - offset;
123 if (write)
124 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
125 else
126 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
127
128 if (rc)
129 return rc;
130
131 offset += ksize;
132 val += ksize;
133 }
134
135 /*
136 * Now we're aligned to the start of this keepout zone. Go
137 * through it.
138 */
139 kend = min(end, keepout->end);
140 ksize = kend - offset;
141 if (!write)
142 memset(val, keepout->value, ksize);
143
144 val += ksize;
145 offset += ksize;
146 keepout++;
147 }
148
149 /*
150 * If we ran out of keepouts but there's still stuff to do, send it
151 * down directly
152 */
153 if (offset < end) {
154 ksize = end - offset;
155 if (write)
156 return __nvmem_reg_write(nvmem, offset, val, ksize);
157 else
158 return __nvmem_reg_read(nvmem, offset, val, ksize);
159 }
160
161 return 0;
162}
163
164static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
165 void *val, size_t bytes)
166{
167 if (!nvmem->nkeepout)
168 return __nvmem_reg_read(nvmem, offset, val, bytes);
169
170 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
171}
172
173static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
174 void *val, size_t bytes)
175{
176 if (!nvmem->nkeepout)
177 return __nvmem_reg_write(nvmem, offset, val, bytes);
178
179 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
180}
181
182#ifdef CONFIG_NVMEM_SYSFS
183static const char * const nvmem_type_str[] = {
184 [NVMEM_TYPE_UNKNOWN] = "Unknown",
185 [NVMEM_TYPE_EEPROM] = "EEPROM",
186 [NVMEM_TYPE_OTP] = "OTP",
187 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
188 [NVMEM_TYPE_FRAM] = "FRAM",
189};
190
191#ifdef CONFIG_DEBUG_LOCK_ALLOC
192static struct lock_class_key eeprom_lock_key;
193#endif
194
195static ssize_t type_show(struct device *dev,
196 struct device_attribute *attr, char *buf)
197{
198 struct nvmem_device *nvmem = to_nvmem_device(dev);
199
200 return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
201}
202
203static DEVICE_ATTR_RO(type);
204
205static struct attribute *nvmem_attrs[] = {
206 &dev_attr_type.attr,
207 NULL,
208};
209
210static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
211 struct bin_attribute *attr, char *buf,
212 loff_t pos, size_t count)
213{
214 struct device *dev;
215 struct nvmem_device *nvmem;
216 int rc;
217
218 if (attr->private)
219 dev = attr->private;
220 else
221 dev = kobj_to_dev(kobj);
222 nvmem = to_nvmem_device(dev);
223
224 /* Stop the user from reading */
225 if (pos >= nvmem->size)
226 return 0;
227
228 if (!IS_ALIGNED(pos, nvmem->stride))
229 return -EINVAL;
230
231 if (count < nvmem->word_size)
232 return -EINVAL;
233
234 if (pos + count > nvmem->size)
235 count = nvmem->size - pos;
236
237 count = round_down(count, nvmem->word_size);
238
239 if (!nvmem->reg_read)
240 return -EPERM;
241
242 rc = nvmem_reg_read(nvmem, pos, buf, count);
243
244 if (rc)
245 return rc;
246
247 return count;
248}
249
250static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
251 struct bin_attribute *attr, char *buf,
252 loff_t pos, size_t count)
253{
254 struct device *dev;
255 struct nvmem_device *nvmem;
256 int rc;
257
258 if (attr->private)
259 dev = attr->private;
260 else
261 dev = kobj_to_dev(kobj);
262 nvmem = to_nvmem_device(dev);
263
264 /* Stop the user from writing */
265 if (pos >= nvmem->size)
266 return -EFBIG;
267
268 if (!IS_ALIGNED(pos, nvmem->stride))
269 return -EINVAL;
270
271 if (count < nvmem->word_size)
272 return -EINVAL;
273
274 if (pos + count > nvmem->size)
275 count = nvmem->size - pos;
276
277 count = round_down(count, nvmem->word_size);
278
279 if (!nvmem->reg_write)
280 return -EPERM;
281
282 rc = nvmem_reg_write(nvmem, pos, buf, count);
283
284 if (rc)
285 return rc;
286
287 return count;
288}
289
290static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
291{
292 umode_t mode = 0400;
293
294 if (!nvmem->root_only)
295 mode |= 0044;
296
297 if (!nvmem->read_only)
298 mode |= 0200;
299
300 if (!nvmem->reg_write)
301 mode &= ~0200;
302
303 if (!nvmem->reg_read)
304 mode &= ~0444;
305
306 return mode;
307}
308
309static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
310 struct bin_attribute *attr, int i)
311{
312 struct device *dev = kobj_to_dev(kobj);
313 struct nvmem_device *nvmem = to_nvmem_device(dev);
314
315 attr->size = nvmem->size;
316
317 return nvmem_bin_attr_get_umode(nvmem);
318}
319
320/* default read/write permissions */
321static struct bin_attribute bin_attr_rw_nvmem = {
322 .attr = {
323 .name = "nvmem",
324 .mode = 0644,
325 },
326 .read = bin_attr_nvmem_read,
327 .write = bin_attr_nvmem_write,
328};
329
330static struct bin_attribute *nvmem_bin_attributes[] = {
331 &bin_attr_rw_nvmem,
332 NULL,
333};
334
335static const struct attribute_group nvmem_bin_group = {
336 .bin_attrs = nvmem_bin_attributes,
337 .attrs = nvmem_attrs,
338 .is_bin_visible = nvmem_bin_attr_is_visible,
339};
340
341static const struct attribute_group *nvmem_dev_groups[] = {
342 &nvmem_bin_group,
343 NULL,
344};
345
346static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
347 .attr = {
348 .name = "eeprom",
349 },
350 .read = bin_attr_nvmem_read,
351 .write = bin_attr_nvmem_write,
352};
353
354/*
355 * nvmem_setup_compat() - Create an additional binary entry in
356 * drivers sys directory, to be backwards compatible with the older
357 * drivers/misc/eeprom drivers.
358 */
359static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
360 const struct nvmem_config *config)
361{
362 int rval;
363
364 if (!config->compat)
365 return 0;
366
367 if (!config->base_dev)
368 return -EINVAL;
369
370 if (config->type == NVMEM_TYPE_FRAM)
371 bin_attr_nvmem_eeprom_compat.attr.name = "fram";
372
373 nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
374 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
375 nvmem->eeprom.size = nvmem->size;
376#ifdef CONFIG_DEBUG_LOCK_ALLOC
377 nvmem->eeprom.attr.key = &eeprom_lock_key;
378#endif
379 nvmem->eeprom.private = &nvmem->dev;
380 nvmem->base_dev = config->base_dev;
381
382 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
383 if (rval) {
384 dev_err(&nvmem->dev,
385 "Failed to create eeprom binary file %d\n", rval);
386 return rval;
387 }
388
389 nvmem->flags |= FLAG_COMPAT;
390
391 return 0;
392}
393
394static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
395 const struct nvmem_config *config)
396{
397 if (config->compat)
398 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
399}
400
401#else /* CONFIG_NVMEM_SYSFS */
402
403static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
404 const struct nvmem_config *config)
405{
406 return -ENOSYS;
407}
408static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
409 const struct nvmem_config *config)
410{
411}
412
413#endif /* CONFIG_NVMEM_SYSFS */
414
415static void nvmem_release(struct device *dev)
416{
417 struct nvmem_device *nvmem = to_nvmem_device(dev);
418
419 ida_free(&nvmem_ida, nvmem->id);
420 gpiod_put(nvmem->wp_gpio);
421 kfree(nvmem);
422}
423
424static const struct device_type nvmem_provider_type = {
425 .release = nvmem_release,
426};
427
428static struct bus_type nvmem_bus_type = {
429 .name = "nvmem",
430};
431
432static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
433{
434 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
435 mutex_lock(&nvmem_mutex);
436 list_del(&cell->node);
437 mutex_unlock(&nvmem_mutex);
438 of_node_put(cell->np);
439 kfree_const(cell->name);
440 kfree(cell);
441}
442
443static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
444{
445 struct nvmem_cell_entry *cell, *p;
446
447 list_for_each_entry_safe(cell, p, &nvmem->cells, node)
448 nvmem_cell_entry_drop(cell);
449}
450
451static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
452{
453 mutex_lock(&nvmem_mutex);
454 list_add_tail(&cell->node, &cell->nvmem->cells);
455 mutex_unlock(&nvmem_mutex);
456 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
457}
458
459static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
460 const struct nvmem_cell_info *info,
461 struct nvmem_cell_entry *cell)
462{
463 cell->nvmem = nvmem;
464 cell->offset = info->offset;
465 cell->bytes = info->bytes;
466 cell->name = info->name;
467
468 cell->bit_offset = info->bit_offset;
469 cell->nbits = info->nbits;
470 cell->np = info->np;
471
472 if (cell->nbits)
473 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
474 BITS_PER_BYTE);
475
476 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
477 dev_err(&nvmem->dev,
478 "cell %s unaligned to nvmem stride %d\n",
479 cell->name ?: "<unknown>", nvmem->stride);
480 return -EINVAL;
481 }
482
483 return 0;
484}
485
486static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
487 const struct nvmem_cell_info *info,
488 struct nvmem_cell_entry *cell)
489{
490 int err;
491
492 err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
493 if (err)
494 return err;
495
496 cell->name = kstrdup_const(info->name, GFP_KERNEL);
497 if (!cell->name)
498 return -ENOMEM;
499
500 return 0;
501}
502
503/**
504 * nvmem_add_cells() - Add cell information to an nvmem device
505 *
506 * @nvmem: nvmem device to add cells to.
507 * @info: nvmem cell info to add to the device
508 * @ncells: number of cells in info
509 *
510 * Return: 0 or negative error code on failure.
511 */
512static int nvmem_add_cells(struct nvmem_device *nvmem,
513 const struct nvmem_cell_info *info,
514 int ncells)
515{
516 struct nvmem_cell_entry **cells;
517 int i, rval;
518
519 cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
520 if (!cells)
521 return -ENOMEM;
522
523 for (i = 0; i < ncells; i++) {
524 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
525 if (!cells[i]) {
526 rval = -ENOMEM;
527 goto err;
528 }
529
530 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, &info[i], cells[i]);
531 if (rval) {
532 kfree(cells[i]);
533 goto err;
534 }
535
536 nvmem_cell_entry_add(cells[i]);
537 }
538
539 /* remove tmp array */
540 kfree(cells);
541
542 return 0;
543err:
544 while (i--)
545 nvmem_cell_entry_drop(cells[i]);
546
547 kfree(cells);
548
549 return rval;
550}
551
552/**
553 * nvmem_register_notifier() - Register a notifier block for nvmem events.
554 *
555 * @nb: notifier block to be called on nvmem events.
556 *
557 * Return: 0 on success, negative error number on failure.
558 */
559int nvmem_register_notifier(struct notifier_block *nb)
560{
561 return blocking_notifier_chain_register(&nvmem_notifier, nb);
562}
563EXPORT_SYMBOL_GPL(nvmem_register_notifier);
564
565/**
566 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
567 *
568 * @nb: notifier block to be unregistered.
569 *
570 * Return: 0 on success, negative error number on failure.
571 */
572int nvmem_unregister_notifier(struct notifier_block *nb)
573{
574 return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
575}
576EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
577
578static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
579{
580 const struct nvmem_cell_info *info;
581 struct nvmem_cell_table *table;
582 struct nvmem_cell_entry *cell;
583 int rval = 0, i;
584
585 mutex_lock(&nvmem_cell_mutex);
586 list_for_each_entry(table, &nvmem_cell_tables, node) {
587 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
588 for (i = 0; i < table->ncells; i++) {
589 info = &table->cells[i];
590
591 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
592 if (!cell) {
593 rval = -ENOMEM;
594 goto out;
595 }
596
597 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
598 if (rval) {
599 kfree(cell);
600 goto out;
601 }
602
603 nvmem_cell_entry_add(cell);
604 }
605 }
606 }
607
608out:
609 mutex_unlock(&nvmem_cell_mutex);
610 return rval;
611}
612
613static struct nvmem_cell_entry *
614nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
615{
616 struct nvmem_cell_entry *iter, *cell = NULL;
617
618 mutex_lock(&nvmem_mutex);
619 list_for_each_entry(iter, &nvmem->cells, node) {
620 if (strcmp(cell_id, iter->name) == 0) {
621 cell = iter;
622 break;
623 }
624 }
625 mutex_unlock(&nvmem_mutex);
626
627 return cell;
628}
629
630static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
631{
632 unsigned int cur = 0;
633 const struct nvmem_keepout *keepout = nvmem->keepout;
634 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
635
636 while (keepout < keepoutend) {
637 /* Ensure keepouts are sorted and don't overlap. */
638 if (keepout->start < cur) {
639 dev_err(&nvmem->dev,
640 "Keepout regions aren't sorted or overlap.\n");
641
642 return -ERANGE;
643 }
644
645 if (keepout->end < keepout->start) {
646 dev_err(&nvmem->dev,
647 "Invalid keepout region.\n");
648
649 return -EINVAL;
650 }
651
652 /*
653 * Validate keepouts (and holes between) don't violate
654 * word_size constraints.
655 */
656 if ((keepout->end - keepout->start < nvmem->word_size) ||
657 ((keepout->start != cur) &&
658 (keepout->start - cur < nvmem->word_size))) {
659
660 dev_err(&nvmem->dev,
661 "Keepout regions violate word_size constraints.\n");
662
663 return -ERANGE;
664 }
665
666 /* Validate keepouts don't violate stride (alignment). */
667 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
668 !IS_ALIGNED(keepout->end, nvmem->stride)) {
669
670 dev_err(&nvmem->dev,
671 "Keepout regions violate stride.\n");
672
673 return -EINVAL;
674 }
675
676 cur = keepout->end;
677 keepout++;
678 }
679
680 return 0;
681}
682
683static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
684{
685 struct device_node *parent, *child;
686 struct device *dev = &nvmem->dev;
687 struct nvmem_cell_entry *cell;
688 const __be32 *addr;
689 int len;
690
691 parent = dev->of_node;
692
693 for_each_child_of_node(parent, child) {
694 addr = of_get_property(child, "reg", &len);
695 if (!addr)
696 continue;
697 if (len < 2 * sizeof(u32)) {
698 dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
699 of_node_put(child);
700 return -EINVAL;
701 }
702
703 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
704 if (!cell) {
705 of_node_put(child);
706 return -ENOMEM;
707 }
708
709 cell->nvmem = nvmem;
710 cell->offset = be32_to_cpup(addr++);
711 cell->bytes = be32_to_cpup(addr);
712 cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
713
714 addr = of_get_property(child, "bits", &len);
715 if (addr && len == (2 * sizeof(u32))) {
716 cell->bit_offset = be32_to_cpup(addr++);
717 cell->nbits = be32_to_cpup(addr);
718 }
719
720 if (cell->nbits)
721 cell->bytes = DIV_ROUND_UP(
722 cell->nbits + cell->bit_offset,
723 BITS_PER_BYTE);
724
725 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
726 dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
727 cell->name, nvmem->stride);
728 /* Cells already added will be freed later. */
729 kfree_const(cell->name);
730 kfree(cell);
731 of_node_put(child);
732 return -EINVAL;
733 }
734
735 cell->np = of_node_get(child);
736 nvmem_cell_entry_add(cell);
737 }
738
739 return 0;
740}
741
742/**
743 * nvmem_register() - Register a nvmem device for given nvmem_config.
744 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
745 *
746 * @config: nvmem device configuration with which nvmem device is created.
747 *
748 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
749 * on success.
750 */
751
752struct nvmem_device *nvmem_register(const struct nvmem_config *config)
753{
754 struct nvmem_device *nvmem;
755 int rval;
756
757 if (!config->dev)
758 return ERR_PTR(-EINVAL);
759
760 if (!config->reg_read && !config->reg_write)
761 return ERR_PTR(-EINVAL);
762
763 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
764 if (!nvmem)
765 return ERR_PTR(-ENOMEM);
766
767 rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
768 if (rval < 0) {
769 kfree(nvmem);
770 return ERR_PTR(rval);
771 }
772
773 if (config->wp_gpio)
774 nvmem->wp_gpio = config->wp_gpio;
775 else if (!config->ignore_wp)
776 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
777 GPIOD_OUT_HIGH);
778 if (IS_ERR(nvmem->wp_gpio)) {
779 ida_free(&nvmem_ida, nvmem->id);
780 rval = PTR_ERR(nvmem->wp_gpio);
781 kfree(nvmem);
782 return ERR_PTR(rval);
783 }
784
785 kref_init(&nvmem->refcnt);
786 INIT_LIST_HEAD(&nvmem->cells);
787
788 nvmem->id = rval;
789 nvmem->owner = config->owner;
790 if (!nvmem->owner && config->dev->driver)
791 nvmem->owner = config->dev->driver->owner;
792 nvmem->stride = config->stride ?: 1;
793 nvmem->word_size = config->word_size ?: 1;
794 nvmem->size = config->size;
795 nvmem->dev.type = &nvmem_provider_type;
796 nvmem->dev.bus = &nvmem_bus_type;
797 nvmem->dev.parent = config->dev;
798 nvmem->root_only = config->root_only;
799 nvmem->priv = config->priv;
800 nvmem->type = config->type;
801 nvmem->reg_read = config->reg_read;
802 nvmem->reg_write = config->reg_write;
803 nvmem->cell_post_process = config->cell_post_process;
804 nvmem->keepout = config->keepout;
805 nvmem->nkeepout = config->nkeepout;
806 if (config->of_node)
807 nvmem->dev.of_node = config->of_node;
808 else if (!config->no_of_node)
809 nvmem->dev.of_node = config->dev->of_node;
810
811 switch (config->id) {
812 case NVMEM_DEVID_NONE:
813 dev_set_name(&nvmem->dev, "%s", config->name);
814 break;
815 case NVMEM_DEVID_AUTO:
816 dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
817 break;
818 default:
819 dev_set_name(&nvmem->dev, "%s%d",
820 config->name ? : "nvmem",
821 config->name ? config->id : nvmem->id);
822 break;
823 }
824
825 nvmem->read_only = device_property_present(config->dev, "read-only") ||
826 config->read_only || !nvmem->reg_write;
827
828#ifdef CONFIG_NVMEM_SYSFS
829 nvmem->dev.groups = nvmem_dev_groups;
830#endif
831
832 if (nvmem->nkeepout) {
833 rval = nvmem_validate_keepouts(nvmem);
834 if (rval) {
835 ida_free(&nvmem_ida, nvmem->id);
836 kfree(nvmem);
837 return ERR_PTR(rval);
838 }
839 }
840
841 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
842
843 rval = device_register(&nvmem->dev);
844 if (rval)
845 goto err_put_device;
846
847 if (config->compat) {
848 rval = nvmem_sysfs_setup_compat(nvmem, config);
849 if (rval)
850 goto err_device_del;
851 }
852
853 if (config->cells) {
854 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
855 if (rval)
856 goto err_teardown_compat;
857 }
858
859 rval = nvmem_add_cells_from_table(nvmem);
860 if (rval)
861 goto err_remove_cells;
862
863 rval = nvmem_add_cells_from_of(nvmem);
864 if (rval)
865 goto err_remove_cells;
866
867 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
868
869 return nvmem;
870
871err_remove_cells:
872 nvmem_device_remove_all_cells(nvmem);
873err_teardown_compat:
874 if (config->compat)
875 nvmem_sysfs_remove_compat(nvmem, config);
876err_device_del:
877 device_del(&nvmem->dev);
878err_put_device:
879 put_device(&nvmem->dev);
880
881 return ERR_PTR(rval);
882}
883EXPORT_SYMBOL_GPL(nvmem_register);
884
885static void nvmem_device_release(struct kref *kref)
886{
887 struct nvmem_device *nvmem;
888
889 nvmem = container_of(kref, struct nvmem_device, refcnt);
890
891 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
892
893 if (nvmem->flags & FLAG_COMPAT)
894 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
895
896 nvmem_device_remove_all_cells(nvmem);
897 device_unregister(&nvmem->dev);
898}
899
900/**
901 * nvmem_unregister() - Unregister previously registered nvmem device
902 *
903 * @nvmem: Pointer to previously registered nvmem device.
904 */
905void nvmem_unregister(struct nvmem_device *nvmem)
906{
907 if (nvmem)
908 kref_put(&nvmem->refcnt, nvmem_device_release);
909}
910EXPORT_SYMBOL_GPL(nvmem_unregister);
911
912static void devm_nvmem_unregister(void *nvmem)
913{
914 nvmem_unregister(nvmem);
915}
916
917/**
918 * devm_nvmem_register() - Register a managed nvmem device for given
919 * nvmem_config.
920 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
921 *
922 * @dev: Device that uses the nvmem device.
923 * @config: nvmem device configuration with which nvmem device is created.
924 *
925 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
926 * on success.
927 */
928struct nvmem_device *devm_nvmem_register(struct device *dev,
929 const struct nvmem_config *config)
930{
931 struct nvmem_device *nvmem;
932 int ret;
933
934 nvmem = nvmem_register(config);
935 if (IS_ERR(nvmem))
936 return nvmem;
937
938 ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
939 if (ret)
940 return ERR_PTR(ret);
941
942 return nvmem;
943}
944EXPORT_SYMBOL_GPL(devm_nvmem_register);
945
946static struct nvmem_device *__nvmem_device_get(void *data,
947 int (*match)(struct device *dev, const void *data))
948{
949 struct nvmem_device *nvmem = NULL;
950 struct device *dev;
951
952 mutex_lock(&nvmem_mutex);
953 dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
954 if (dev)
955 nvmem = to_nvmem_device(dev);
956 mutex_unlock(&nvmem_mutex);
957 if (!nvmem)
958 return ERR_PTR(-EPROBE_DEFER);
959
960 if (!try_module_get(nvmem->owner)) {
961 dev_err(&nvmem->dev,
962 "could not increase module refcount for cell %s\n",
963 nvmem_dev_name(nvmem));
964
965 put_device(&nvmem->dev);
966 return ERR_PTR(-EINVAL);
967 }
968
969 kref_get(&nvmem->refcnt);
970
971 return nvmem;
972}
973
974static void __nvmem_device_put(struct nvmem_device *nvmem)
975{
976 put_device(&nvmem->dev);
977 module_put(nvmem->owner);
978 kref_put(&nvmem->refcnt, nvmem_device_release);
979}
980
981#if IS_ENABLED(CONFIG_OF)
982/**
983 * of_nvmem_device_get() - Get nvmem device from a given id
984 *
985 * @np: Device tree node that uses the nvmem device.
986 * @id: nvmem name from nvmem-names property.
987 *
988 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
989 * on success.
990 */
991struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
992{
993
994 struct device_node *nvmem_np;
995 struct nvmem_device *nvmem;
996 int index = 0;
997
998 if (id)
999 index = of_property_match_string(np, "nvmem-names", id);
1000
1001 nvmem_np = of_parse_phandle(np, "nvmem", index);
1002 if (!nvmem_np)
1003 return ERR_PTR(-ENOENT);
1004
1005 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1006 of_node_put(nvmem_np);
1007 return nvmem;
1008}
1009EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1010#endif
1011
1012/**
1013 * nvmem_device_get() - Get nvmem device from a given id
1014 *
1015 * @dev: Device that uses the nvmem device.
1016 * @dev_name: name of the requested nvmem device.
1017 *
1018 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1019 * on success.
1020 */
1021struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1022{
1023 if (dev->of_node) { /* try dt first */
1024 struct nvmem_device *nvmem;
1025
1026 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1027
1028 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1029 return nvmem;
1030
1031 }
1032
1033 return __nvmem_device_get((void *)dev_name, device_match_name);
1034}
1035EXPORT_SYMBOL_GPL(nvmem_device_get);
1036
1037/**
1038 * nvmem_device_find() - Find nvmem device with matching function
1039 *
1040 * @data: Data to pass to match function
1041 * @match: Callback function to check device
1042 *
1043 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1044 * on success.
1045 */
1046struct nvmem_device *nvmem_device_find(void *data,
1047 int (*match)(struct device *dev, const void *data))
1048{
1049 return __nvmem_device_get(data, match);
1050}
1051EXPORT_SYMBOL_GPL(nvmem_device_find);
1052
1053static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1054{
1055 struct nvmem_device **nvmem = res;
1056
1057 if (WARN_ON(!nvmem || !*nvmem))
1058 return 0;
1059
1060 return *nvmem == data;
1061}
1062
1063static void devm_nvmem_device_release(struct device *dev, void *res)
1064{
1065 nvmem_device_put(*(struct nvmem_device **)res);
1066}
1067
1068/**
1069 * devm_nvmem_device_put() - put alredy got nvmem device
1070 *
1071 * @dev: Device that uses the nvmem device.
1072 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1073 * that needs to be released.
1074 */
1075void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1076{
1077 int ret;
1078
1079 ret = devres_release(dev, devm_nvmem_device_release,
1080 devm_nvmem_device_match, nvmem);
1081
1082 WARN_ON(ret);
1083}
1084EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1085
1086/**
1087 * nvmem_device_put() - put alredy got nvmem device
1088 *
1089 * @nvmem: pointer to nvmem device that needs to be released.
1090 */
1091void nvmem_device_put(struct nvmem_device *nvmem)
1092{
1093 __nvmem_device_put(nvmem);
1094}
1095EXPORT_SYMBOL_GPL(nvmem_device_put);
1096
1097/**
1098 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1099 *
1100 * @dev: Device that requests the nvmem device.
1101 * @id: name id for the requested nvmem device.
1102 *
1103 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1104 * on success. The nvmem_cell will be freed by the automatically once the
1105 * device is freed.
1106 */
1107struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1108{
1109 struct nvmem_device **ptr, *nvmem;
1110
1111 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1112 if (!ptr)
1113 return ERR_PTR(-ENOMEM);
1114
1115 nvmem = nvmem_device_get(dev, id);
1116 if (!IS_ERR(nvmem)) {
1117 *ptr = nvmem;
1118 devres_add(dev, ptr);
1119 } else {
1120 devres_free(ptr);
1121 }
1122
1123 return nvmem;
1124}
1125EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1126
1127static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry, const char *id)
1128{
1129 struct nvmem_cell *cell;
1130 const char *name = NULL;
1131
1132 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1133 if (!cell)
1134 return ERR_PTR(-ENOMEM);
1135
1136 if (id) {
1137 name = kstrdup_const(id, GFP_KERNEL);
1138 if (!name) {
1139 kfree(cell);
1140 return ERR_PTR(-ENOMEM);
1141 }
1142 }
1143
1144 cell->id = name;
1145 cell->entry = entry;
1146
1147 return cell;
1148}
1149
1150static struct nvmem_cell *
1151nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1152{
1153 struct nvmem_cell_entry *cell_entry;
1154 struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1155 struct nvmem_cell_lookup *lookup;
1156 struct nvmem_device *nvmem;
1157 const char *dev_id;
1158
1159 if (!dev)
1160 return ERR_PTR(-EINVAL);
1161
1162 dev_id = dev_name(dev);
1163
1164 mutex_lock(&nvmem_lookup_mutex);
1165
1166 list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1167 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1168 (strcmp(lookup->con_id, con_id) == 0)) {
1169 /* This is the right entry. */
1170 nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1171 device_match_name);
1172 if (IS_ERR(nvmem)) {
1173 /* Provider may not be registered yet. */
1174 cell = ERR_CAST(nvmem);
1175 break;
1176 }
1177
1178 cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1179 lookup->cell_name);
1180 if (!cell_entry) {
1181 __nvmem_device_put(nvmem);
1182 cell = ERR_PTR(-ENOENT);
1183 } else {
1184 cell = nvmem_create_cell(cell_entry, con_id);
1185 if (IS_ERR(cell))
1186 __nvmem_device_put(nvmem);
1187 }
1188 break;
1189 }
1190 }
1191
1192 mutex_unlock(&nvmem_lookup_mutex);
1193 return cell;
1194}
1195
1196#if IS_ENABLED(CONFIG_OF)
1197static struct nvmem_cell_entry *
1198nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1199{
1200 struct nvmem_cell_entry *iter, *cell = NULL;
1201
1202 mutex_lock(&nvmem_mutex);
1203 list_for_each_entry(iter, &nvmem->cells, node) {
1204 if (np == iter->np) {
1205 cell = iter;
1206 break;
1207 }
1208 }
1209 mutex_unlock(&nvmem_mutex);
1210
1211 return cell;
1212}
1213
1214/**
1215 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1216 *
1217 * @np: Device tree node that uses the nvmem cell.
1218 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1219 * for the cell at index 0 (the lone cell with no accompanying
1220 * nvmem-cell-names property).
1221 *
1222 * Return: Will be an ERR_PTR() on error or a valid pointer
1223 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1224 * nvmem_cell_put().
1225 */
1226struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1227{
1228 struct device_node *cell_np, *nvmem_np;
1229 struct nvmem_device *nvmem;
1230 struct nvmem_cell_entry *cell_entry;
1231 struct nvmem_cell *cell;
1232 int index = 0;
1233
1234 /* if cell name exists, find index to the name */
1235 if (id)
1236 index = of_property_match_string(np, "nvmem-cell-names", id);
1237
1238 cell_np = of_parse_phandle(np, "nvmem-cells", index);
1239 if (!cell_np)
1240 return ERR_PTR(-ENOENT);
1241
1242 nvmem_np = of_get_next_parent(cell_np);
1243 if (!nvmem_np)
1244 return ERR_PTR(-EINVAL);
1245
1246 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1247 of_node_put(nvmem_np);
1248 if (IS_ERR(nvmem))
1249 return ERR_CAST(nvmem);
1250
1251 cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1252 if (!cell_entry) {
1253 __nvmem_device_put(nvmem);
1254 return ERR_PTR(-ENOENT);
1255 }
1256
1257 cell = nvmem_create_cell(cell_entry, id);
1258 if (IS_ERR(cell))
1259 __nvmem_device_put(nvmem);
1260
1261 return cell;
1262}
1263EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1264#endif
1265
1266/**
1267 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1268 *
1269 * @dev: Device that requests the nvmem cell.
1270 * @id: nvmem cell name to get (this corresponds with the name from the
1271 * nvmem-cell-names property for DT systems and with the con_id from
1272 * the lookup entry for non-DT systems).
1273 *
1274 * Return: Will be an ERR_PTR() on error or a valid pointer
1275 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1276 * nvmem_cell_put().
1277 */
1278struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1279{
1280 struct nvmem_cell *cell;
1281
1282 if (dev->of_node) { /* try dt first */
1283 cell = of_nvmem_cell_get(dev->of_node, id);
1284 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1285 return cell;
1286 }
1287
1288 /* NULL cell id only allowed for device tree; invalid otherwise */
1289 if (!id)
1290 return ERR_PTR(-EINVAL);
1291
1292 return nvmem_cell_get_from_lookup(dev, id);
1293}
1294EXPORT_SYMBOL_GPL(nvmem_cell_get);
1295
1296static void devm_nvmem_cell_release(struct device *dev, void *res)
1297{
1298 nvmem_cell_put(*(struct nvmem_cell **)res);
1299}
1300
1301/**
1302 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1303 *
1304 * @dev: Device that requests the nvmem cell.
1305 * @id: nvmem cell name id to get.
1306 *
1307 * Return: Will be an ERR_PTR() on error or a valid pointer
1308 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1309 * automatically once the device is freed.
1310 */
1311struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1312{
1313 struct nvmem_cell **ptr, *cell;
1314
1315 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1316 if (!ptr)
1317 return ERR_PTR(-ENOMEM);
1318
1319 cell = nvmem_cell_get(dev, id);
1320 if (!IS_ERR(cell)) {
1321 *ptr = cell;
1322 devres_add(dev, ptr);
1323 } else {
1324 devres_free(ptr);
1325 }
1326
1327 return cell;
1328}
1329EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1330
1331static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1332{
1333 struct nvmem_cell **c = res;
1334
1335 if (WARN_ON(!c || !*c))
1336 return 0;
1337
1338 return *c == data;
1339}
1340
1341/**
1342 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1343 * from devm_nvmem_cell_get.
1344 *
1345 * @dev: Device that requests the nvmem cell.
1346 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1347 */
1348void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1349{
1350 int ret;
1351
1352 ret = devres_release(dev, devm_nvmem_cell_release,
1353 devm_nvmem_cell_match, cell);
1354
1355 WARN_ON(ret);
1356}
1357EXPORT_SYMBOL(devm_nvmem_cell_put);
1358
1359/**
1360 * nvmem_cell_put() - Release previously allocated nvmem cell.
1361 *
1362 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1363 */
1364void nvmem_cell_put(struct nvmem_cell *cell)
1365{
1366 struct nvmem_device *nvmem = cell->entry->nvmem;
1367
1368 if (cell->id)
1369 kfree_const(cell->id);
1370
1371 kfree(cell);
1372 __nvmem_device_put(nvmem);
1373}
1374EXPORT_SYMBOL_GPL(nvmem_cell_put);
1375
1376static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1377{
1378 u8 *p, *b;
1379 int i, extra, bit_offset = cell->bit_offset;
1380
1381 p = b = buf;
1382 if (bit_offset) {
1383 /* First shift */
1384 *b++ >>= bit_offset;
1385
1386 /* setup rest of the bytes if any */
1387 for (i = 1; i < cell->bytes; i++) {
1388 /* Get bits from next byte and shift them towards msb */
1389 *p |= *b << (BITS_PER_BYTE - bit_offset);
1390
1391 p = b;
1392 *b++ >>= bit_offset;
1393 }
1394 } else {
1395 /* point to the msb */
1396 p += cell->bytes - 1;
1397 }
1398
1399 /* result fits in less bytes */
1400 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1401 while (--extra >= 0)
1402 *p-- = 0;
1403
1404 /* clear msb bits if any leftover in the last byte */
1405 if (cell->nbits % BITS_PER_BYTE)
1406 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1407}
1408
1409static int __nvmem_cell_read(struct nvmem_device *nvmem,
1410 struct nvmem_cell_entry *cell,
1411 void *buf, size_t *len, const char *id)
1412{
1413 int rc;
1414
1415 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1416
1417 if (rc)
1418 return rc;
1419
1420 /* shift bits in-place */
1421 if (cell->bit_offset || cell->nbits)
1422 nvmem_shift_read_buffer_in_place(cell, buf);
1423
1424 if (nvmem->cell_post_process) {
1425 rc = nvmem->cell_post_process(nvmem->priv, id,
1426 cell->offset, buf, cell->bytes);
1427 if (rc)
1428 return rc;
1429 }
1430
1431 if (len)
1432 *len = cell->bytes;
1433
1434 return 0;
1435}
1436
1437/**
1438 * nvmem_cell_read() - Read a given nvmem cell
1439 *
1440 * @cell: nvmem cell to be read.
1441 * @len: pointer to length of cell which will be populated on successful read;
1442 * can be NULL.
1443 *
1444 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1445 * buffer should be freed by the consumer with a kfree().
1446 */
1447void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1448{
1449 struct nvmem_device *nvmem = cell->entry->nvmem;
1450 u8 *buf;
1451 int rc;
1452
1453 if (!nvmem)
1454 return ERR_PTR(-EINVAL);
1455
1456 buf = kzalloc(cell->entry->bytes, GFP_KERNEL);
1457 if (!buf)
1458 return ERR_PTR(-ENOMEM);
1459
1460 rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id);
1461 if (rc) {
1462 kfree(buf);
1463 return ERR_PTR(rc);
1464 }
1465
1466 return buf;
1467}
1468EXPORT_SYMBOL_GPL(nvmem_cell_read);
1469
1470static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1471 u8 *_buf, int len)
1472{
1473 struct nvmem_device *nvmem = cell->nvmem;
1474 int i, rc, nbits, bit_offset = cell->bit_offset;
1475 u8 v, *p, *buf, *b, pbyte, pbits;
1476
1477 nbits = cell->nbits;
1478 buf = kzalloc(cell->bytes, GFP_KERNEL);
1479 if (!buf)
1480 return ERR_PTR(-ENOMEM);
1481
1482 memcpy(buf, _buf, len);
1483 p = b = buf;
1484
1485 if (bit_offset) {
1486 pbyte = *b;
1487 *b <<= bit_offset;
1488
1489 /* setup the first byte with lsb bits from nvmem */
1490 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1491 if (rc)
1492 goto err;
1493 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1494
1495 /* setup rest of the byte if any */
1496 for (i = 1; i < cell->bytes; i++) {
1497 /* Get last byte bits and shift them towards lsb */
1498 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1499 pbyte = *b;
1500 p = b;
1501 *b <<= bit_offset;
1502 *b++ |= pbits;
1503 }
1504 }
1505
1506 /* if it's not end on byte boundary */
1507 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1508 /* setup the last byte with msb bits from nvmem */
1509 rc = nvmem_reg_read(nvmem,
1510 cell->offset + cell->bytes - 1, &v, 1);
1511 if (rc)
1512 goto err;
1513 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1514
1515 }
1516
1517 return buf;
1518err:
1519 kfree(buf);
1520 return ERR_PTR(rc);
1521}
1522
1523static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1524{
1525 struct nvmem_device *nvmem = cell->nvmem;
1526 int rc;
1527
1528 if (!nvmem || nvmem->read_only ||
1529 (cell->bit_offset == 0 && len != cell->bytes))
1530 return -EINVAL;
1531
1532 if (cell->bit_offset || cell->nbits) {
1533 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1534 if (IS_ERR(buf))
1535 return PTR_ERR(buf);
1536 }
1537
1538 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1539
1540 /* free the tmp buffer */
1541 if (cell->bit_offset || cell->nbits)
1542 kfree(buf);
1543
1544 if (rc)
1545 return rc;
1546
1547 return len;
1548}
1549
1550/**
1551 * nvmem_cell_write() - Write to a given nvmem cell
1552 *
1553 * @cell: nvmem cell to be written.
1554 * @buf: Buffer to be written.
1555 * @len: length of buffer to be written to nvmem cell.
1556 *
1557 * Return: length of bytes written or negative on failure.
1558 */
1559int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1560{
1561 return __nvmem_cell_entry_write(cell->entry, buf, len);
1562}
1563
1564EXPORT_SYMBOL_GPL(nvmem_cell_write);
1565
1566static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1567 void *val, size_t count)
1568{
1569 struct nvmem_cell *cell;
1570 void *buf;
1571 size_t len;
1572
1573 cell = nvmem_cell_get(dev, cell_id);
1574 if (IS_ERR(cell))
1575 return PTR_ERR(cell);
1576
1577 buf = nvmem_cell_read(cell, &len);
1578 if (IS_ERR(buf)) {
1579 nvmem_cell_put(cell);
1580 return PTR_ERR(buf);
1581 }
1582 if (len != count) {
1583 kfree(buf);
1584 nvmem_cell_put(cell);
1585 return -EINVAL;
1586 }
1587 memcpy(val, buf, count);
1588 kfree(buf);
1589 nvmem_cell_put(cell);
1590
1591 return 0;
1592}
1593
1594/**
1595 * nvmem_cell_read_u8() - Read a cell value as a u8
1596 *
1597 * @dev: Device that requests the nvmem cell.
1598 * @cell_id: Name of nvmem cell to read.
1599 * @val: pointer to output value.
1600 *
1601 * Return: 0 on success or negative errno.
1602 */
1603int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1604{
1605 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1606}
1607EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1608
1609/**
1610 * nvmem_cell_read_u16() - Read a cell value as a u16
1611 *
1612 * @dev: Device that requests the nvmem cell.
1613 * @cell_id: Name of nvmem cell to read.
1614 * @val: pointer to output value.
1615 *
1616 * Return: 0 on success or negative errno.
1617 */
1618int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1619{
1620 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1621}
1622EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1623
1624/**
1625 * nvmem_cell_read_u32() - Read a cell value as a u32
1626 *
1627 * @dev: Device that requests the nvmem cell.
1628 * @cell_id: Name of nvmem cell to read.
1629 * @val: pointer to output value.
1630 *
1631 * Return: 0 on success or negative errno.
1632 */
1633int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1634{
1635 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1636}
1637EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1638
1639/**
1640 * nvmem_cell_read_u64() - Read a cell value as a u64
1641 *
1642 * @dev: Device that requests the nvmem cell.
1643 * @cell_id: Name of nvmem cell to read.
1644 * @val: pointer to output value.
1645 *
1646 * Return: 0 on success or negative errno.
1647 */
1648int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1649{
1650 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1651}
1652EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1653
1654static const void *nvmem_cell_read_variable_common(struct device *dev,
1655 const char *cell_id,
1656 size_t max_len, size_t *len)
1657{
1658 struct nvmem_cell *cell;
1659 int nbits;
1660 void *buf;
1661
1662 cell = nvmem_cell_get(dev, cell_id);
1663 if (IS_ERR(cell))
1664 return cell;
1665
1666 nbits = cell->entry->nbits;
1667 buf = nvmem_cell_read(cell, len);
1668 nvmem_cell_put(cell);
1669 if (IS_ERR(buf))
1670 return buf;
1671
1672 /*
1673 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1674 * the length of the real data. Throw away the extra junk.
1675 */
1676 if (nbits)
1677 *len = DIV_ROUND_UP(nbits, 8);
1678
1679 if (*len > max_len) {
1680 kfree(buf);
1681 return ERR_PTR(-ERANGE);
1682 }
1683
1684 return buf;
1685}
1686
1687/**
1688 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1689 *
1690 * @dev: Device that requests the nvmem cell.
1691 * @cell_id: Name of nvmem cell to read.
1692 * @val: pointer to output value.
1693 *
1694 * Return: 0 on success or negative errno.
1695 */
1696int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1697 u32 *val)
1698{
1699 size_t len;
1700 const u8 *buf;
1701 int i;
1702
1703 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1704 if (IS_ERR(buf))
1705 return PTR_ERR(buf);
1706
1707 /* Copy w/ implicit endian conversion */
1708 *val = 0;
1709 for (i = 0; i < len; i++)
1710 *val |= buf[i] << (8 * i);
1711
1712 kfree(buf);
1713
1714 return 0;
1715}
1716EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1717
1718/**
1719 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1720 *
1721 * @dev: Device that requests the nvmem cell.
1722 * @cell_id: Name of nvmem cell to read.
1723 * @val: pointer to output value.
1724 *
1725 * Return: 0 on success or negative errno.
1726 */
1727int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1728 u64 *val)
1729{
1730 size_t len;
1731 const u8 *buf;
1732 int i;
1733
1734 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1735 if (IS_ERR(buf))
1736 return PTR_ERR(buf);
1737
1738 /* Copy w/ implicit endian conversion */
1739 *val = 0;
1740 for (i = 0; i < len; i++)
1741 *val |= (uint64_t)buf[i] << (8 * i);
1742
1743 kfree(buf);
1744
1745 return 0;
1746}
1747EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1748
1749/**
1750 * nvmem_device_cell_read() - Read a given nvmem device and cell
1751 *
1752 * @nvmem: nvmem device to read from.
1753 * @info: nvmem cell info to be read.
1754 * @buf: buffer pointer which will be populated on successful read.
1755 *
1756 * Return: length of successful bytes read on success and negative
1757 * error code on error.
1758 */
1759ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1760 struct nvmem_cell_info *info, void *buf)
1761{
1762 struct nvmem_cell_entry cell;
1763 int rc;
1764 ssize_t len;
1765
1766 if (!nvmem)
1767 return -EINVAL;
1768
1769 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1770 if (rc)
1771 return rc;
1772
1773 rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL);
1774 if (rc)
1775 return rc;
1776
1777 return len;
1778}
1779EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1780
1781/**
1782 * nvmem_device_cell_write() - Write cell to a given nvmem device
1783 *
1784 * @nvmem: nvmem device to be written to.
1785 * @info: nvmem cell info to be written.
1786 * @buf: buffer to be written to cell.
1787 *
1788 * Return: length of bytes written or negative error code on failure.
1789 */
1790int nvmem_device_cell_write(struct nvmem_device *nvmem,
1791 struct nvmem_cell_info *info, void *buf)
1792{
1793 struct nvmem_cell_entry cell;
1794 int rc;
1795
1796 if (!nvmem)
1797 return -EINVAL;
1798
1799 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1800 if (rc)
1801 return rc;
1802
1803 return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1804}
1805EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1806
1807/**
1808 * nvmem_device_read() - Read from a given nvmem device
1809 *
1810 * @nvmem: nvmem device to read from.
1811 * @offset: offset in nvmem device.
1812 * @bytes: number of bytes to read.
1813 * @buf: buffer pointer which will be populated on successful read.
1814 *
1815 * Return: length of successful bytes read on success and negative
1816 * error code on error.
1817 */
1818int nvmem_device_read(struct nvmem_device *nvmem,
1819 unsigned int offset,
1820 size_t bytes, void *buf)
1821{
1822 int rc;
1823
1824 if (!nvmem)
1825 return -EINVAL;
1826
1827 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1828
1829 if (rc)
1830 return rc;
1831
1832 return bytes;
1833}
1834EXPORT_SYMBOL_GPL(nvmem_device_read);
1835
1836/**
1837 * nvmem_device_write() - Write cell to a given nvmem device
1838 *
1839 * @nvmem: nvmem device to be written to.
1840 * @offset: offset in nvmem device.
1841 * @bytes: number of bytes to write.
1842 * @buf: buffer to be written.
1843 *
1844 * Return: length of bytes written or negative error code on failure.
1845 */
1846int nvmem_device_write(struct nvmem_device *nvmem,
1847 unsigned int offset,
1848 size_t bytes, void *buf)
1849{
1850 int rc;
1851
1852 if (!nvmem)
1853 return -EINVAL;
1854
1855 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1856
1857 if (rc)
1858 return rc;
1859
1860
1861 return bytes;
1862}
1863EXPORT_SYMBOL_GPL(nvmem_device_write);
1864
1865/**
1866 * nvmem_add_cell_table() - register a table of cell info entries
1867 *
1868 * @table: table of cell info entries
1869 */
1870void nvmem_add_cell_table(struct nvmem_cell_table *table)
1871{
1872 mutex_lock(&nvmem_cell_mutex);
1873 list_add_tail(&table->node, &nvmem_cell_tables);
1874 mutex_unlock(&nvmem_cell_mutex);
1875}
1876EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1877
1878/**
1879 * nvmem_del_cell_table() - remove a previously registered cell info table
1880 *
1881 * @table: table of cell info entries
1882 */
1883void nvmem_del_cell_table(struct nvmem_cell_table *table)
1884{
1885 mutex_lock(&nvmem_cell_mutex);
1886 list_del(&table->node);
1887 mutex_unlock(&nvmem_cell_mutex);
1888}
1889EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1890
1891/**
1892 * nvmem_add_cell_lookups() - register a list of cell lookup entries
1893 *
1894 * @entries: array of cell lookup entries
1895 * @nentries: number of cell lookup entries in the array
1896 */
1897void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1898{
1899 int i;
1900
1901 mutex_lock(&nvmem_lookup_mutex);
1902 for (i = 0; i < nentries; i++)
1903 list_add_tail(&entries[i].node, &nvmem_lookup_list);
1904 mutex_unlock(&nvmem_lookup_mutex);
1905}
1906EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1907
1908/**
1909 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1910 * entries
1911 *
1912 * @entries: array of cell lookup entries
1913 * @nentries: number of cell lookup entries in the array
1914 */
1915void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1916{
1917 int i;
1918
1919 mutex_lock(&nvmem_lookup_mutex);
1920 for (i = 0; i < nentries; i++)
1921 list_del(&entries[i].node);
1922 mutex_unlock(&nvmem_lookup_mutex);
1923}
1924EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1925
1926/**
1927 * nvmem_dev_name() - Get the name of a given nvmem device.
1928 *
1929 * @nvmem: nvmem device.
1930 *
1931 * Return: name of the nvmem device.
1932 */
1933const char *nvmem_dev_name(struct nvmem_device *nvmem)
1934{
1935 return dev_name(&nvmem->dev);
1936}
1937EXPORT_SYMBOL_GPL(nvmem_dev_name);
1938
1939static int __init nvmem_init(void)
1940{
1941 return bus_register(&nvmem_bus_type);
1942}
1943
1944static void __exit nvmem_exit(void)
1945{
1946 bus_unregister(&nvmem_bus_type);
1947}
1948
1949subsys_initcall(nvmem_init);
1950module_exit(nvmem_exit);
1951
1952MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1953MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1954MODULE_DESCRIPTION("nvmem Driver Core");
1955MODULE_LICENSE("GPL v2");