Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
5 */
6#include <linux/kernel.h>
7#include <linux/wait.h>
8#include <linux/blkdev.h>
9#include <linux/slab.h>
10#include <linux/raid/md_p.h>
11#include <linux/crc32c.h>
12#include <linux/random.h>
13#include <linux/kthread.h>
14#include <linux/types.h>
15#include "md.h"
16#include "raid5.h"
17#include "md-bitmap.h"
18#include "raid5-log.h"
19
20/*
21 * metadata/data stored in disk with 4k size unit (a block) regardless
22 * underneath hardware sector size. only works with PAGE_SIZE == 4096
23 */
24#define BLOCK_SECTORS (8)
25#define BLOCK_SECTOR_SHIFT (3)
26
27/*
28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
29 *
30 * In write through mode, the reclaim runs every log->max_free_space.
31 * This can prevent the recovery scans for too long
32 */
33#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
34#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
35
36/* wake up reclaim thread periodically */
37#define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
38/* start flush with these full stripes */
39#define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
40/* reclaim stripes in groups */
41#define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
42
43/*
44 * We only need 2 bios per I/O unit to make progress, but ensure we
45 * have a few more available to not get too tight.
46 */
47#define R5L_POOL_SIZE 4
48
49static char *r5c_journal_mode_str[] = {"write-through",
50 "write-back"};
51/*
52 * raid5 cache state machine
53 *
54 * With the RAID cache, each stripe works in two phases:
55 * - caching phase
56 * - writing-out phase
57 *
58 * These two phases are controlled by bit STRIPE_R5C_CACHING:
59 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
60 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
61 *
62 * When there is no journal, or the journal is in write-through mode,
63 * the stripe is always in writing-out phase.
64 *
65 * For write-back journal, the stripe is sent to caching phase on write
66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
67 * the write-out phase by clearing STRIPE_R5C_CACHING.
68 *
69 * Stripes in caching phase do not write the raid disks. Instead, all
70 * writes are committed from the log device. Therefore, a stripe in
71 * caching phase handles writes as:
72 * - write to log device
73 * - return IO
74 *
75 * Stripes in writing-out phase handle writes as:
76 * - calculate parity
77 * - write pending data and parity to journal
78 * - write data and parity to raid disks
79 * - return IO for pending writes
80 */
81
82struct r5l_log {
83 struct md_rdev *rdev;
84
85 u32 uuid_checksum;
86
87 sector_t device_size; /* log device size, round to
88 * BLOCK_SECTORS */
89 sector_t max_free_space; /* reclaim run if free space is at
90 * this size */
91
92 sector_t last_checkpoint; /* log tail. where recovery scan
93 * starts from */
94 u64 last_cp_seq; /* log tail sequence */
95
96 sector_t log_start; /* log head. where new data appends */
97 u64 seq; /* log head sequence */
98
99 sector_t next_checkpoint;
100
101 struct mutex io_mutex;
102 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
103
104 spinlock_t io_list_lock;
105 struct list_head running_ios; /* io_units which are still running,
106 * and have not yet been completely
107 * written to the log */
108 struct list_head io_end_ios; /* io_units which have been completely
109 * written to the log but not yet written
110 * to the RAID */
111 struct list_head flushing_ios; /* io_units which are waiting for log
112 * cache flush */
113 struct list_head finished_ios; /* io_units which settle down in log disk */
114 struct bio flush_bio;
115
116 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */
117
118 struct kmem_cache *io_kc;
119 mempool_t io_pool;
120 struct bio_set bs;
121 mempool_t meta_pool;
122
123 struct md_thread *reclaim_thread;
124 unsigned long reclaim_target; /* number of space that need to be
125 * reclaimed. if it's 0, reclaim spaces
126 * used by io_units which are in
127 * IO_UNIT_STRIPE_END state (eg, reclaim
128 * dones't wait for specific io_unit
129 * switching to IO_UNIT_STRIPE_END
130 * state) */
131 wait_queue_head_t iounit_wait;
132
133 struct list_head no_space_stripes; /* pending stripes, log has no space */
134 spinlock_t no_space_stripes_lock;
135
136 bool need_cache_flush;
137
138 /* for r5c_cache */
139 enum r5c_journal_mode r5c_journal_mode;
140
141 /* all stripes in r5cache, in the order of seq at sh->log_start */
142 struct list_head stripe_in_journal_list;
143
144 spinlock_t stripe_in_journal_lock;
145 atomic_t stripe_in_journal_count;
146
147 /* to submit async io_units, to fulfill ordering of flush */
148 struct work_struct deferred_io_work;
149 /* to disable write back during in degraded mode */
150 struct work_struct disable_writeback_work;
151
152 /* to for chunk_aligned_read in writeback mode, details below */
153 spinlock_t tree_lock;
154 struct radix_tree_root big_stripe_tree;
155};
156
157/*
158 * Enable chunk_aligned_read() with write back cache.
159 *
160 * Each chunk may contain more than one stripe (for example, a 256kB
161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
162 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
163 * For each big_stripe, we count how many stripes of this big_stripe
164 * are in the write back cache. These data are tracked in a radix tree
165 * (big_stripe_tree). We use radix_tree item pointer as the counter.
166 * r5c_tree_index() is used to calculate keys for the radix tree.
167 *
168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
169 * big_stripe of each chunk in the tree. If this big_stripe is in the
170 * tree, chunk_aligned_read() aborts. This look up is protected by
171 * rcu_read_lock().
172 *
173 * It is necessary to remember whether a stripe is counted in
174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
176 * two flags are set, the stripe is counted in big_stripe_tree. This
177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
178 * r5c_try_caching_write(); and moving clear_bit of
179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
180 * r5c_finish_stripe_write_out().
181 */
182
183/*
184 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
185 * So it is necessary to left shift the counter by 2 bits before using it
186 * as data pointer of the tree.
187 */
188#define R5C_RADIX_COUNT_SHIFT 2
189
190/*
191 * calculate key for big_stripe_tree
192 *
193 * sect: align_bi->bi_iter.bi_sector or sh->sector
194 */
195static inline sector_t r5c_tree_index(struct r5conf *conf,
196 sector_t sect)
197{
198 sector_div(sect, conf->chunk_sectors);
199 return sect;
200}
201
202/*
203 * an IO range starts from a meta data block and end at the next meta data
204 * block. The io unit's the meta data block tracks data/parity followed it. io
205 * unit is written to log disk with normal write, as we always flush log disk
206 * first and then start move data to raid disks, there is no requirement to
207 * write io unit with FLUSH/FUA
208 */
209struct r5l_io_unit {
210 struct r5l_log *log;
211
212 struct page *meta_page; /* store meta block */
213 int meta_offset; /* current offset in meta_page */
214
215 struct bio *current_bio;/* current_bio accepting new data */
216
217 atomic_t pending_stripe;/* how many stripes not flushed to raid */
218 u64 seq; /* seq number of the metablock */
219 sector_t log_start; /* where the io_unit starts */
220 sector_t log_end; /* where the io_unit ends */
221 struct list_head log_sibling; /* log->running_ios */
222 struct list_head stripe_list; /* stripes added to the io_unit */
223
224 int state;
225 bool need_split_bio;
226 struct bio *split_bio;
227
228 unsigned int has_flush:1; /* include flush request */
229 unsigned int has_fua:1; /* include fua request */
230 unsigned int has_null_flush:1; /* include null flush request */
231 unsigned int has_flush_payload:1; /* include flush payload */
232 /*
233 * io isn't sent yet, flush/fua request can only be submitted till it's
234 * the first IO in running_ios list
235 */
236 unsigned int io_deferred:1;
237
238 struct bio_list flush_barriers; /* size == 0 flush bios */
239};
240
241/* r5l_io_unit state */
242enum r5l_io_unit_state {
243 IO_UNIT_RUNNING = 0, /* accepting new IO */
244 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
245 * don't accepting new bio */
246 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
247 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
248};
249
250bool r5c_is_writeback(struct r5l_log *log)
251{
252 return (log != NULL &&
253 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
254}
255
256static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
257{
258 start += inc;
259 if (start >= log->device_size)
260 start = start - log->device_size;
261 return start;
262}
263
264static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
265 sector_t end)
266{
267 if (end >= start)
268 return end - start;
269 else
270 return end + log->device_size - start;
271}
272
273static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
274{
275 sector_t used_size;
276
277 used_size = r5l_ring_distance(log, log->last_checkpoint,
278 log->log_start);
279
280 return log->device_size > used_size + size;
281}
282
283static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
284 enum r5l_io_unit_state state)
285{
286 if (WARN_ON(io->state >= state))
287 return;
288 io->state = state;
289}
290
291static void
292r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
293{
294 struct bio *wbi, *wbi2;
295
296 wbi = dev->written;
297 dev->written = NULL;
298 while (wbi && wbi->bi_iter.bi_sector <
299 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
300 wbi2 = r5_next_bio(conf, wbi, dev->sector);
301 md_write_end(conf->mddev);
302 bio_endio(wbi);
303 wbi = wbi2;
304 }
305}
306
307void r5c_handle_cached_data_endio(struct r5conf *conf,
308 struct stripe_head *sh, int disks)
309{
310 int i;
311
312 for (i = sh->disks; i--; ) {
313 if (sh->dev[i].written) {
314 set_bit(R5_UPTODATE, &sh->dev[i].flags);
315 r5c_return_dev_pending_writes(conf, &sh->dev[i]);
316 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
317 RAID5_STRIPE_SECTORS(conf),
318 !test_bit(STRIPE_DEGRADED, &sh->state),
319 0);
320 }
321 }
322}
323
324void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
325
326/* Check whether we should flush some stripes to free up stripe cache */
327void r5c_check_stripe_cache_usage(struct r5conf *conf)
328{
329 int total_cached;
330
331 if (!r5c_is_writeback(conf->log))
332 return;
333
334 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
335 atomic_read(&conf->r5c_cached_full_stripes);
336
337 /*
338 * The following condition is true for either of the following:
339 * - stripe cache pressure high:
340 * total_cached > 3/4 min_nr_stripes ||
341 * empty_inactive_list_nr > 0
342 * - stripe cache pressure moderate:
343 * total_cached > 1/2 min_nr_stripes
344 */
345 if (total_cached > conf->min_nr_stripes * 1 / 2 ||
346 atomic_read(&conf->empty_inactive_list_nr) > 0)
347 r5l_wake_reclaim(conf->log, 0);
348}
349
350/*
351 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
352 * stripes in the cache
353 */
354void r5c_check_cached_full_stripe(struct r5conf *conf)
355{
356 if (!r5c_is_writeback(conf->log))
357 return;
358
359 /*
360 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
361 * or a full stripe (chunk size / 4k stripes).
362 */
363 if (atomic_read(&conf->r5c_cached_full_stripes) >=
364 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
365 conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf)))
366 r5l_wake_reclaim(conf->log, 0);
367}
368
369/*
370 * Total log space (in sectors) needed to flush all data in cache
371 *
372 * To avoid deadlock due to log space, it is necessary to reserve log
373 * space to flush critical stripes (stripes that occupying log space near
374 * last_checkpoint). This function helps check how much log space is
375 * required to flush all cached stripes.
376 *
377 * To reduce log space requirements, two mechanisms are used to give cache
378 * flush higher priorities:
379 * 1. In handle_stripe_dirtying() and schedule_reconstruction(),
380 * stripes ALREADY in journal can be flushed w/o pending writes;
381 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
382 * can be delayed (r5l_add_no_space_stripe).
383 *
384 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
385 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
386 * pages of journal space. For stripes that has not passed 1, flushing it
387 * requires (conf->raid_disks + 1) pages of journal space. There are at
388 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
389 * required to flush all cached stripes (in pages) is:
390 *
391 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
392 * (group_cnt + 1) * (raid_disks + 1)
393 * or
394 * (stripe_in_journal_count) * (max_degraded + 1) +
395 * (group_cnt + 1) * (raid_disks - max_degraded)
396 */
397static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
398{
399 struct r5l_log *log = conf->log;
400
401 if (!r5c_is_writeback(log))
402 return 0;
403
404 return BLOCK_SECTORS *
405 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
406 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
407}
408
409/*
410 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
411 *
412 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
413 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
414 * device is less than 2x of reclaim_required_space.
415 */
416static inline void r5c_update_log_state(struct r5l_log *log)
417{
418 struct r5conf *conf = log->rdev->mddev->private;
419 sector_t free_space;
420 sector_t reclaim_space;
421 bool wake_reclaim = false;
422
423 if (!r5c_is_writeback(log))
424 return;
425
426 free_space = r5l_ring_distance(log, log->log_start,
427 log->last_checkpoint);
428 reclaim_space = r5c_log_required_to_flush_cache(conf);
429 if (free_space < 2 * reclaim_space)
430 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
431 else {
432 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
433 wake_reclaim = true;
434 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
435 }
436 if (free_space < 3 * reclaim_space)
437 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
438 else
439 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
440
441 if (wake_reclaim)
442 r5l_wake_reclaim(log, 0);
443}
444
445/*
446 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
447 * This function should only be called in write-back mode.
448 */
449void r5c_make_stripe_write_out(struct stripe_head *sh)
450{
451 struct r5conf *conf = sh->raid_conf;
452 struct r5l_log *log = conf->log;
453
454 BUG_ON(!r5c_is_writeback(log));
455
456 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
457 clear_bit(STRIPE_R5C_CACHING, &sh->state);
458
459 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
460 atomic_inc(&conf->preread_active_stripes);
461}
462
463static void r5c_handle_data_cached(struct stripe_head *sh)
464{
465 int i;
466
467 for (i = sh->disks; i--; )
468 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
469 set_bit(R5_InJournal, &sh->dev[i].flags);
470 clear_bit(R5_LOCKED, &sh->dev[i].flags);
471 }
472 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
473}
474
475/*
476 * this journal write must contain full parity,
477 * it may also contain some data pages
478 */
479static void r5c_handle_parity_cached(struct stripe_head *sh)
480{
481 int i;
482
483 for (i = sh->disks; i--; )
484 if (test_bit(R5_InJournal, &sh->dev[i].flags))
485 set_bit(R5_Wantwrite, &sh->dev[i].flags);
486}
487
488/*
489 * Setting proper flags after writing (or flushing) data and/or parity to the
490 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
491 */
492static void r5c_finish_cache_stripe(struct stripe_head *sh)
493{
494 struct r5l_log *log = sh->raid_conf->log;
495
496 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
497 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
498 /*
499 * Set R5_InJournal for parity dev[pd_idx]. This means
500 * all data AND parity in the journal. For RAID 6, it is
501 * NOT necessary to set the flag for dev[qd_idx], as the
502 * two parities are written out together.
503 */
504 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
505 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
506 r5c_handle_data_cached(sh);
507 } else {
508 r5c_handle_parity_cached(sh);
509 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
510 }
511}
512
513static void r5l_io_run_stripes(struct r5l_io_unit *io)
514{
515 struct stripe_head *sh, *next;
516
517 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
518 list_del_init(&sh->log_list);
519
520 r5c_finish_cache_stripe(sh);
521
522 set_bit(STRIPE_HANDLE, &sh->state);
523 raid5_release_stripe(sh);
524 }
525}
526
527static void r5l_log_run_stripes(struct r5l_log *log)
528{
529 struct r5l_io_unit *io, *next;
530
531 lockdep_assert_held(&log->io_list_lock);
532
533 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
534 /* don't change list order */
535 if (io->state < IO_UNIT_IO_END)
536 break;
537
538 list_move_tail(&io->log_sibling, &log->finished_ios);
539 r5l_io_run_stripes(io);
540 }
541}
542
543static void r5l_move_to_end_ios(struct r5l_log *log)
544{
545 struct r5l_io_unit *io, *next;
546
547 lockdep_assert_held(&log->io_list_lock);
548
549 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
550 /* don't change list order */
551 if (io->state < IO_UNIT_IO_END)
552 break;
553 list_move_tail(&io->log_sibling, &log->io_end_ios);
554 }
555}
556
557static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
558static void r5l_log_endio(struct bio *bio)
559{
560 struct r5l_io_unit *io = bio->bi_private;
561 struct r5l_io_unit *io_deferred;
562 struct r5l_log *log = io->log;
563 unsigned long flags;
564 bool has_null_flush;
565 bool has_flush_payload;
566
567 if (bio->bi_status)
568 md_error(log->rdev->mddev, log->rdev);
569
570 bio_put(bio);
571 mempool_free(io->meta_page, &log->meta_pool);
572
573 spin_lock_irqsave(&log->io_list_lock, flags);
574 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
575
576 /*
577 * if the io doesn't not have null_flush or flush payload,
578 * it is not safe to access it after releasing io_list_lock.
579 * Therefore, it is necessary to check the condition with
580 * the lock held.
581 */
582 has_null_flush = io->has_null_flush;
583 has_flush_payload = io->has_flush_payload;
584
585 if (log->need_cache_flush && !list_empty(&io->stripe_list))
586 r5l_move_to_end_ios(log);
587 else
588 r5l_log_run_stripes(log);
589 if (!list_empty(&log->running_ios)) {
590 /*
591 * FLUSH/FUA io_unit is deferred because of ordering, now we
592 * can dispatch it
593 */
594 io_deferred = list_first_entry(&log->running_ios,
595 struct r5l_io_unit, log_sibling);
596 if (io_deferred->io_deferred)
597 schedule_work(&log->deferred_io_work);
598 }
599
600 spin_unlock_irqrestore(&log->io_list_lock, flags);
601
602 if (log->need_cache_flush)
603 md_wakeup_thread(log->rdev->mddev->thread);
604
605 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
606 if (has_null_flush) {
607 struct bio *bi;
608
609 WARN_ON(bio_list_empty(&io->flush_barriers));
610 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
611 bio_endio(bi);
612 if (atomic_dec_and_test(&io->pending_stripe)) {
613 __r5l_stripe_write_finished(io);
614 return;
615 }
616 }
617 }
618 /* decrease pending_stripe for flush payload */
619 if (has_flush_payload)
620 if (atomic_dec_and_test(&io->pending_stripe))
621 __r5l_stripe_write_finished(io);
622}
623
624static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
625{
626 unsigned long flags;
627
628 spin_lock_irqsave(&log->io_list_lock, flags);
629 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
630 spin_unlock_irqrestore(&log->io_list_lock, flags);
631
632 /*
633 * In case of journal device failures, submit_bio will get error
634 * and calls endio, then active stripes will continue write
635 * process. Therefore, it is not necessary to check Faulty bit
636 * of journal device here.
637 *
638 * We can't check split_bio after current_bio is submitted. If
639 * io->split_bio is null, after current_bio is submitted, current_bio
640 * might already be completed and the io_unit is freed. We submit
641 * split_bio first to avoid the issue.
642 */
643 if (io->split_bio) {
644 if (io->has_flush)
645 io->split_bio->bi_opf |= REQ_PREFLUSH;
646 if (io->has_fua)
647 io->split_bio->bi_opf |= REQ_FUA;
648 submit_bio(io->split_bio);
649 }
650
651 if (io->has_flush)
652 io->current_bio->bi_opf |= REQ_PREFLUSH;
653 if (io->has_fua)
654 io->current_bio->bi_opf |= REQ_FUA;
655 submit_bio(io->current_bio);
656}
657
658/* deferred io_unit will be dispatched here */
659static void r5l_submit_io_async(struct work_struct *work)
660{
661 struct r5l_log *log = container_of(work, struct r5l_log,
662 deferred_io_work);
663 struct r5l_io_unit *io = NULL;
664 unsigned long flags;
665
666 spin_lock_irqsave(&log->io_list_lock, flags);
667 if (!list_empty(&log->running_ios)) {
668 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
669 log_sibling);
670 if (!io->io_deferred)
671 io = NULL;
672 else
673 io->io_deferred = 0;
674 }
675 spin_unlock_irqrestore(&log->io_list_lock, flags);
676 if (io)
677 r5l_do_submit_io(log, io);
678}
679
680static void r5c_disable_writeback_async(struct work_struct *work)
681{
682 struct r5l_log *log = container_of(work, struct r5l_log,
683 disable_writeback_work);
684 struct mddev *mddev = log->rdev->mddev;
685 struct r5conf *conf = mddev->private;
686 int locked = 0;
687
688 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
689 return;
690 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
691 mdname(mddev));
692
693 /* wait superblock change before suspend */
694 wait_event(mddev->sb_wait,
695 conf->log == NULL ||
696 (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
697 (locked = mddev_trylock(mddev))));
698 if (locked) {
699 mddev_suspend(mddev);
700 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
701 mddev_resume(mddev);
702 mddev_unlock(mddev);
703 }
704}
705
706static void r5l_submit_current_io(struct r5l_log *log)
707{
708 struct r5l_io_unit *io = log->current_io;
709 struct r5l_meta_block *block;
710 unsigned long flags;
711 u32 crc;
712 bool do_submit = true;
713
714 if (!io)
715 return;
716
717 block = page_address(io->meta_page);
718 block->meta_size = cpu_to_le32(io->meta_offset);
719 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
720 block->checksum = cpu_to_le32(crc);
721
722 log->current_io = NULL;
723 spin_lock_irqsave(&log->io_list_lock, flags);
724 if (io->has_flush || io->has_fua) {
725 if (io != list_first_entry(&log->running_ios,
726 struct r5l_io_unit, log_sibling)) {
727 io->io_deferred = 1;
728 do_submit = false;
729 }
730 }
731 spin_unlock_irqrestore(&log->io_list_lock, flags);
732 if (do_submit)
733 r5l_do_submit_io(log, io);
734}
735
736static struct bio *r5l_bio_alloc(struct r5l_log *log)
737{
738 struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS,
739 REQ_OP_WRITE, GFP_NOIO, &log->bs);
740
741 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
742
743 return bio;
744}
745
746static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
747{
748 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
749
750 r5c_update_log_state(log);
751 /*
752 * If we filled up the log device start from the beginning again,
753 * which will require a new bio.
754 *
755 * Note: for this to work properly the log size needs to me a multiple
756 * of BLOCK_SECTORS.
757 */
758 if (log->log_start == 0)
759 io->need_split_bio = true;
760
761 io->log_end = log->log_start;
762}
763
764static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
765{
766 struct r5l_io_unit *io;
767 struct r5l_meta_block *block;
768
769 io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
770 if (!io)
771 return NULL;
772 memset(io, 0, sizeof(*io));
773
774 io->log = log;
775 INIT_LIST_HEAD(&io->log_sibling);
776 INIT_LIST_HEAD(&io->stripe_list);
777 bio_list_init(&io->flush_barriers);
778 io->state = IO_UNIT_RUNNING;
779
780 io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
781 block = page_address(io->meta_page);
782 clear_page(block);
783 block->magic = cpu_to_le32(R5LOG_MAGIC);
784 block->version = R5LOG_VERSION;
785 block->seq = cpu_to_le64(log->seq);
786 block->position = cpu_to_le64(log->log_start);
787
788 io->log_start = log->log_start;
789 io->meta_offset = sizeof(struct r5l_meta_block);
790 io->seq = log->seq++;
791
792 io->current_bio = r5l_bio_alloc(log);
793 io->current_bio->bi_end_io = r5l_log_endio;
794 io->current_bio->bi_private = io;
795 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
796
797 r5_reserve_log_entry(log, io);
798
799 spin_lock_irq(&log->io_list_lock);
800 list_add_tail(&io->log_sibling, &log->running_ios);
801 spin_unlock_irq(&log->io_list_lock);
802
803 return io;
804}
805
806static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
807{
808 if (log->current_io &&
809 log->current_io->meta_offset + payload_size > PAGE_SIZE)
810 r5l_submit_current_io(log);
811
812 if (!log->current_io) {
813 log->current_io = r5l_new_meta(log);
814 if (!log->current_io)
815 return -ENOMEM;
816 }
817
818 return 0;
819}
820
821static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
822 sector_t location,
823 u32 checksum1, u32 checksum2,
824 bool checksum2_valid)
825{
826 struct r5l_io_unit *io = log->current_io;
827 struct r5l_payload_data_parity *payload;
828
829 payload = page_address(io->meta_page) + io->meta_offset;
830 payload->header.type = cpu_to_le16(type);
831 payload->header.flags = cpu_to_le16(0);
832 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
833 (PAGE_SHIFT - 9));
834 payload->location = cpu_to_le64(location);
835 payload->checksum[0] = cpu_to_le32(checksum1);
836 if (checksum2_valid)
837 payload->checksum[1] = cpu_to_le32(checksum2);
838
839 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
840 sizeof(__le32) * (1 + !!checksum2_valid);
841}
842
843static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
844{
845 struct r5l_io_unit *io = log->current_io;
846
847 if (io->need_split_bio) {
848 BUG_ON(io->split_bio);
849 io->split_bio = io->current_bio;
850 io->current_bio = r5l_bio_alloc(log);
851 bio_chain(io->current_bio, io->split_bio);
852 io->need_split_bio = false;
853 }
854
855 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
856 BUG();
857
858 r5_reserve_log_entry(log, io);
859}
860
861static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
862{
863 struct mddev *mddev = log->rdev->mddev;
864 struct r5conf *conf = mddev->private;
865 struct r5l_io_unit *io;
866 struct r5l_payload_flush *payload;
867 int meta_size;
868
869 /*
870 * payload_flush requires extra writes to the journal.
871 * To avoid handling the extra IO in quiesce, just skip
872 * flush_payload
873 */
874 if (conf->quiesce)
875 return;
876
877 mutex_lock(&log->io_mutex);
878 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
879
880 if (r5l_get_meta(log, meta_size)) {
881 mutex_unlock(&log->io_mutex);
882 return;
883 }
884
885 /* current implementation is one stripe per flush payload */
886 io = log->current_io;
887 payload = page_address(io->meta_page) + io->meta_offset;
888 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
889 payload->header.flags = cpu_to_le16(0);
890 payload->size = cpu_to_le32(sizeof(__le64));
891 payload->flush_stripes[0] = cpu_to_le64(sect);
892 io->meta_offset += meta_size;
893 /* multiple flush payloads count as one pending_stripe */
894 if (!io->has_flush_payload) {
895 io->has_flush_payload = 1;
896 atomic_inc(&io->pending_stripe);
897 }
898 mutex_unlock(&log->io_mutex);
899}
900
901static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
902 int data_pages, int parity_pages)
903{
904 int i;
905 int meta_size;
906 int ret;
907 struct r5l_io_unit *io;
908
909 meta_size =
910 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
911 * data_pages) +
912 sizeof(struct r5l_payload_data_parity) +
913 sizeof(__le32) * parity_pages;
914
915 ret = r5l_get_meta(log, meta_size);
916 if (ret)
917 return ret;
918
919 io = log->current_io;
920
921 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
922 io->has_flush = 1;
923
924 for (i = 0; i < sh->disks; i++) {
925 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
926 test_bit(R5_InJournal, &sh->dev[i].flags))
927 continue;
928 if (i == sh->pd_idx || i == sh->qd_idx)
929 continue;
930 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
931 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
932 io->has_fua = 1;
933 /*
934 * we need to flush journal to make sure recovery can
935 * reach the data with fua flag
936 */
937 io->has_flush = 1;
938 }
939 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
940 raid5_compute_blocknr(sh, i, 0),
941 sh->dev[i].log_checksum, 0, false);
942 r5l_append_payload_page(log, sh->dev[i].page);
943 }
944
945 if (parity_pages == 2) {
946 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
947 sh->sector, sh->dev[sh->pd_idx].log_checksum,
948 sh->dev[sh->qd_idx].log_checksum, true);
949 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
950 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
951 } else if (parity_pages == 1) {
952 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
953 sh->sector, sh->dev[sh->pd_idx].log_checksum,
954 0, false);
955 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
956 } else /* Just writing data, not parity, in caching phase */
957 BUG_ON(parity_pages != 0);
958
959 list_add_tail(&sh->log_list, &io->stripe_list);
960 atomic_inc(&io->pending_stripe);
961 sh->log_io = io;
962
963 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
964 return 0;
965
966 if (sh->log_start == MaxSector) {
967 BUG_ON(!list_empty(&sh->r5c));
968 sh->log_start = io->log_start;
969 spin_lock_irq(&log->stripe_in_journal_lock);
970 list_add_tail(&sh->r5c,
971 &log->stripe_in_journal_list);
972 spin_unlock_irq(&log->stripe_in_journal_lock);
973 atomic_inc(&log->stripe_in_journal_count);
974 }
975 return 0;
976}
977
978/* add stripe to no_space_stripes, and then wake up reclaim */
979static inline void r5l_add_no_space_stripe(struct r5l_log *log,
980 struct stripe_head *sh)
981{
982 spin_lock(&log->no_space_stripes_lock);
983 list_add_tail(&sh->log_list, &log->no_space_stripes);
984 spin_unlock(&log->no_space_stripes_lock);
985}
986
987/*
988 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
989 * data from log to raid disks), so we shouldn't wait for reclaim here
990 */
991int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
992{
993 struct r5conf *conf = sh->raid_conf;
994 int write_disks = 0;
995 int data_pages, parity_pages;
996 int reserve;
997 int i;
998 int ret = 0;
999 bool wake_reclaim = false;
1000
1001 if (!log)
1002 return -EAGAIN;
1003 /* Don't support stripe batch */
1004 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1005 test_bit(STRIPE_SYNCING, &sh->state)) {
1006 /* the stripe is written to log, we start writing it to raid */
1007 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1008 return -EAGAIN;
1009 }
1010
1011 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1012
1013 for (i = 0; i < sh->disks; i++) {
1014 void *addr;
1015
1016 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1017 test_bit(R5_InJournal, &sh->dev[i].flags))
1018 continue;
1019
1020 write_disks++;
1021 /* checksum is already calculated in last run */
1022 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1023 continue;
1024 addr = kmap_atomic(sh->dev[i].page);
1025 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1026 addr, PAGE_SIZE);
1027 kunmap_atomic(addr);
1028 }
1029 parity_pages = 1 + !!(sh->qd_idx >= 0);
1030 data_pages = write_disks - parity_pages;
1031
1032 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1033 /*
1034 * The stripe must enter state machine again to finish the write, so
1035 * don't delay.
1036 */
1037 clear_bit(STRIPE_DELAYED, &sh->state);
1038 atomic_inc(&sh->count);
1039
1040 mutex_lock(&log->io_mutex);
1041 /* meta + data */
1042 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1043
1044 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1045 if (!r5l_has_free_space(log, reserve)) {
1046 r5l_add_no_space_stripe(log, sh);
1047 wake_reclaim = true;
1048 } else {
1049 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1050 if (ret) {
1051 spin_lock_irq(&log->io_list_lock);
1052 list_add_tail(&sh->log_list,
1053 &log->no_mem_stripes);
1054 spin_unlock_irq(&log->io_list_lock);
1055 }
1056 }
1057 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
1058 /*
1059 * log space critical, do not process stripes that are
1060 * not in cache yet (sh->log_start == MaxSector).
1061 */
1062 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1063 sh->log_start == MaxSector) {
1064 r5l_add_no_space_stripe(log, sh);
1065 wake_reclaim = true;
1066 reserve = 0;
1067 } else if (!r5l_has_free_space(log, reserve)) {
1068 if (sh->log_start == log->last_checkpoint)
1069 BUG();
1070 else
1071 r5l_add_no_space_stripe(log, sh);
1072 } else {
1073 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1074 if (ret) {
1075 spin_lock_irq(&log->io_list_lock);
1076 list_add_tail(&sh->log_list,
1077 &log->no_mem_stripes);
1078 spin_unlock_irq(&log->io_list_lock);
1079 }
1080 }
1081 }
1082
1083 mutex_unlock(&log->io_mutex);
1084 if (wake_reclaim)
1085 r5l_wake_reclaim(log, reserve);
1086 return 0;
1087}
1088
1089void r5l_write_stripe_run(struct r5l_log *log)
1090{
1091 if (!log)
1092 return;
1093 mutex_lock(&log->io_mutex);
1094 r5l_submit_current_io(log);
1095 mutex_unlock(&log->io_mutex);
1096}
1097
1098int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1099{
1100 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1101 /*
1102 * in write through (journal only)
1103 * we flush log disk cache first, then write stripe data to
1104 * raid disks. So if bio is finished, the log disk cache is
1105 * flushed already. The recovery guarantees we can recovery
1106 * the bio from log disk, so we don't need to flush again
1107 */
1108 if (bio->bi_iter.bi_size == 0) {
1109 bio_endio(bio);
1110 return 0;
1111 }
1112 bio->bi_opf &= ~REQ_PREFLUSH;
1113 } else {
1114 /* write back (with cache) */
1115 if (bio->bi_iter.bi_size == 0) {
1116 mutex_lock(&log->io_mutex);
1117 r5l_get_meta(log, 0);
1118 bio_list_add(&log->current_io->flush_barriers, bio);
1119 log->current_io->has_flush = 1;
1120 log->current_io->has_null_flush = 1;
1121 atomic_inc(&log->current_io->pending_stripe);
1122 r5l_submit_current_io(log);
1123 mutex_unlock(&log->io_mutex);
1124 return 0;
1125 }
1126 }
1127 return -EAGAIN;
1128}
1129
1130/* This will run after log space is reclaimed */
1131static void r5l_run_no_space_stripes(struct r5l_log *log)
1132{
1133 struct stripe_head *sh;
1134
1135 spin_lock(&log->no_space_stripes_lock);
1136 while (!list_empty(&log->no_space_stripes)) {
1137 sh = list_first_entry(&log->no_space_stripes,
1138 struct stripe_head, log_list);
1139 list_del_init(&sh->log_list);
1140 set_bit(STRIPE_HANDLE, &sh->state);
1141 raid5_release_stripe(sh);
1142 }
1143 spin_unlock(&log->no_space_stripes_lock);
1144}
1145
1146/*
1147 * calculate new last_checkpoint
1148 * for write through mode, returns log->next_checkpoint
1149 * for write back, returns log_start of first sh in stripe_in_journal_list
1150 */
1151static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1152{
1153 struct stripe_head *sh;
1154 struct r5l_log *log = conf->log;
1155 sector_t new_cp;
1156 unsigned long flags;
1157
1158 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1159 return log->next_checkpoint;
1160
1161 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1162 if (list_empty(&conf->log->stripe_in_journal_list)) {
1163 /* all stripes flushed */
1164 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1165 return log->next_checkpoint;
1166 }
1167 sh = list_first_entry(&conf->log->stripe_in_journal_list,
1168 struct stripe_head, r5c);
1169 new_cp = sh->log_start;
1170 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1171 return new_cp;
1172}
1173
1174static sector_t r5l_reclaimable_space(struct r5l_log *log)
1175{
1176 struct r5conf *conf = log->rdev->mddev->private;
1177
1178 return r5l_ring_distance(log, log->last_checkpoint,
1179 r5c_calculate_new_cp(conf));
1180}
1181
1182static void r5l_run_no_mem_stripe(struct r5l_log *log)
1183{
1184 struct stripe_head *sh;
1185
1186 lockdep_assert_held(&log->io_list_lock);
1187
1188 if (!list_empty(&log->no_mem_stripes)) {
1189 sh = list_first_entry(&log->no_mem_stripes,
1190 struct stripe_head, log_list);
1191 list_del_init(&sh->log_list);
1192 set_bit(STRIPE_HANDLE, &sh->state);
1193 raid5_release_stripe(sh);
1194 }
1195}
1196
1197static bool r5l_complete_finished_ios(struct r5l_log *log)
1198{
1199 struct r5l_io_unit *io, *next;
1200 bool found = false;
1201
1202 lockdep_assert_held(&log->io_list_lock);
1203
1204 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1205 /* don't change list order */
1206 if (io->state < IO_UNIT_STRIPE_END)
1207 break;
1208
1209 log->next_checkpoint = io->log_start;
1210
1211 list_del(&io->log_sibling);
1212 mempool_free(io, &log->io_pool);
1213 r5l_run_no_mem_stripe(log);
1214
1215 found = true;
1216 }
1217
1218 return found;
1219}
1220
1221static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1222{
1223 struct r5l_log *log = io->log;
1224 struct r5conf *conf = log->rdev->mddev->private;
1225 unsigned long flags;
1226
1227 spin_lock_irqsave(&log->io_list_lock, flags);
1228 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1229
1230 if (!r5l_complete_finished_ios(log)) {
1231 spin_unlock_irqrestore(&log->io_list_lock, flags);
1232 return;
1233 }
1234
1235 if (r5l_reclaimable_space(log) > log->max_free_space ||
1236 test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1237 r5l_wake_reclaim(log, 0);
1238
1239 spin_unlock_irqrestore(&log->io_list_lock, flags);
1240 wake_up(&log->iounit_wait);
1241}
1242
1243void r5l_stripe_write_finished(struct stripe_head *sh)
1244{
1245 struct r5l_io_unit *io;
1246
1247 io = sh->log_io;
1248 sh->log_io = NULL;
1249
1250 if (io && atomic_dec_and_test(&io->pending_stripe))
1251 __r5l_stripe_write_finished(io);
1252}
1253
1254static void r5l_log_flush_endio(struct bio *bio)
1255{
1256 struct r5l_log *log = container_of(bio, struct r5l_log,
1257 flush_bio);
1258 unsigned long flags;
1259 struct r5l_io_unit *io;
1260
1261 if (bio->bi_status)
1262 md_error(log->rdev->mddev, log->rdev);
1263
1264 spin_lock_irqsave(&log->io_list_lock, flags);
1265 list_for_each_entry(io, &log->flushing_ios, log_sibling)
1266 r5l_io_run_stripes(io);
1267 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1268 spin_unlock_irqrestore(&log->io_list_lock, flags);
1269
1270 bio_uninit(bio);
1271}
1272
1273/*
1274 * Starting dispatch IO to raid.
1275 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1276 * broken meta in the middle of a log causes recovery can't find meta at the
1277 * head of log. If operations require meta at the head persistent in log, we
1278 * must make sure meta before it persistent in log too. A case is:
1279 *
1280 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1281 * data/parity must be persistent in log before we do the write to raid disks.
1282 *
1283 * The solution is we restrictly maintain io_unit list order. In this case, we
1284 * only write stripes of an io_unit to raid disks till the io_unit is the first
1285 * one whose data/parity is in log.
1286 */
1287void r5l_flush_stripe_to_raid(struct r5l_log *log)
1288{
1289 bool do_flush;
1290
1291 if (!log || !log->need_cache_flush)
1292 return;
1293
1294 spin_lock_irq(&log->io_list_lock);
1295 /* flush bio is running */
1296 if (!list_empty(&log->flushing_ios)) {
1297 spin_unlock_irq(&log->io_list_lock);
1298 return;
1299 }
1300 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1301 do_flush = !list_empty(&log->flushing_ios);
1302 spin_unlock_irq(&log->io_list_lock);
1303
1304 if (!do_flush)
1305 return;
1306 bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0,
1307 REQ_OP_WRITE | REQ_PREFLUSH);
1308 log->flush_bio.bi_end_io = r5l_log_flush_endio;
1309 submit_bio(&log->flush_bio);
1310}
1311
1312static void r5l_write_super(struct r5l_log *log, sector_t cp);
1313static void r5l_write_super_and_discard_space(struct r5l_log *log,
1314 sector_t end)
1315{
1316 struct block_device *bdev = log->rdev->bdev;
1317 struct mddev *mddev;
1318
1319 r5l_write_super(log, end);
1320
1321 if (!bdev_max_discard_sectors(bdev))
1322 return;
1323
1324 mddev = log->rdev->mddev;
1325 /*
1326 * Discard could zero data, so before discard we must make sure
1327 * superblock is updated to new log tail. Updating superblock (either
1328 * directly call md_update_sb() or depend on md thread) must hold
1329 * reconfig mutex. On the other hand, raid5_quiesce is called with
1330 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1331 * for all IO finish, hence waitting for reclaim thread, while reclaim
1332 * thread is calling this function and waitting for reconfig mutex. So
1333 * there is a deadlock. We workaround this issue with a trylock.
1334 * FIXME: we could miss discard if we can't take reconfig mutex
1335 */
1336 set_mask_bits(&mddev->sb_flags, 0,
1337 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1338 if (!mddev_trylock(mddev))
1339 return;
1340 md_update_sb(mddev, 1);
1341 mddev_unlock(mddev);
1342
1343 /* discard IO error really doesn't matter, ignore it */
1344 if (log->last_checkpoint < end) {
1345 blkdev_issue_discard(bdev,
1346 log->last_checkpoint + log->rdev->data_offset,
1347 end - log->last_checkpoint, GFP_NOIO);
1348 } else {
1349 blkdev_issue_discard(bdev,
1350 log->last_checkpoint + log->rdev->data_offset,
1351 log->device_size - log->last_checkpoint,
1352 GFP_NOIO);
1353 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1354 GFP_NOIO);
1355 }
1356}
1357
1358/*
1359 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1360 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1361 *
1362 * must hold conf->device_lock
1363 */
1364static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1365{
1366 BUG_ON(list_empty(&sh->lru));
1367 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1368 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1369
1370 /*
1371 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1372 * raid5_release_stripe() while holding conf->device_lock
1373 */
1374 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1375 lockdep_assert_held(&conf->device_lock);
1376
1377 list_del_init(&sh->lru);
1378 atomic_inc(&sh->count);
1379
1380 set_bit(STRIPE_HANDLE, &sh->state);
1381 atomic_inc(&conf->active_stripes);
1382 r5c_make_stripe_write_out(sh);
1383
1384 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1385 atomic_inc(&conf->r5c_flushing_partial_stripes);
1386 else
1387 atomic_inc(&conf->r5c_flushing_full_stripes);
1388 raid5_release_stripe(sh);
1389}
1390
1391/*
1392 * if num == 0, flush all full stripes
1393 * if num > 0, flush all full stripes. If less than num full stripes are
1394 * flushed, flush some partial stripes until totally num stripes are
1395 * flushed or there is no more cached stripes.
1396 */
1397void r5c_flush_cache(struct r5conf *conf, int num)
1398{
1399 int count;
1400 struct stripe_head *sh, *next;
1401
1402 lockdep_assert_held(&conf->device_lock);
1403 if (!conf->log)
1404 return;
1405
1406 count = 0;
1407 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1408 r5c_flush_stripe(conf, sh);
1409 count++;
1410 }
1411
1412 if (count >= num)
1413 return;
1414 list_for_each_entry_safe(sh, next,
1415 &conf->r5c_partial_stripe_list, lru) {
1416 r5c_flush_stripe(conf, sh);
1417 if (++count >= num)
1418 break;
1419 }
1420}
1421
1422static void r5c_do_reclaim(struct r5conf *conf)
1423{
1424 struct r5l_log *log = conf->log;
1425 struct stripe_head *sh;
1426 int count = 0;
1427 unsigned long flags;
1428 int total_cached;
1429 int stripes_to_flush;
1430 int flushing_partial, flushing_full;
1431
1432 if (!r5c_is_writeback(log))
1433 return;
1434
1435 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1436 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1437 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1438 atomic_read(&conf->r5c_cached_full_stripes) -
1439 flushing_full - flushing_partial;
1440
1441 if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1442 atomic_read(&conf->empty_inactive_list_nr) > 0)
1443 /*
1444 * if stripe cache pressure high, flush all full stripes and
1445 * some partial stripes
1446 */
1447 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1448 else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1449 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1450 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1451 /*
1452 * if stripe cache pressure moderate, or if there is many full
1453 * stripes,flush all full stripes
1454 */
1455 stripes_to_flush = 0;
1456 else
1457 /* no need to flush */
1458 stripes_to_flush = -1;
1459
1460 if (stripes_to_flush >= 0) {
1461 spin_lock_irqsave(&conf->device_lock, flags);
1462 r5c_flush_cache(conf, stripes_to_flush);
1463 spin_unlock_irqrestore(&conf->device_lock, flags);
1464 }
1465
1466 /* if log space is tight, flush stripes on stripe_in_journal_list */
1467 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1468 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1469 spin_lock(&conf->device_lock);
1470 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1471 /*
1472 * stripes on stripe_in_journal_list could be in any
1473 * state of the stripe_cache state machine. In this
1474 * case, we only want to flush stripe on
1475 * r5c_cached_full/partial_stripes. The following
1476 * condition makes sure the stripe is on one of the
1477 * two lists.
1478 */
1479 if (!list_empty(&sh->lru) &&
1480 !test_bit(STRIPE_HANDLE, &sh->state) &&
1481 atomic_read(&sh->count) == 0) {
1482 r5c_flush_stripe(conf, sh);
1483 if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1484 break;
1485 }
1486 }
1487 spin_unlock(&conf->device_lock);
1488 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1489 }
1490
1491 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1492 r5l_run_no_space_stripes(log);
1493
1494 md_wakeup_thread(conf->mddev->thread);
1495}
1496
1497static void r5l_do_reclaim(struct r5l_log *log)
1498{
1499 struct r5conf *conf = log->rdev->mddev->private;
1500 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1501 sector_t reclaimable;
1502 sector_t next_checkpoint;
1503 bool write_super;
1504
1505 spin_lock_irq(&log->io_list_lock);
1506 write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1507 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1508 /*
1509 * move proper io_unit to reclaim list. We should not change the order.
1510 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1511 * shouldn't reuse space of an unreclaimable io_unit
1512 */
1513 while (1) {
1514 reclaimable = r5l_reclaimable_space(log);
1515 if (reclaimable >= reclaim_target ||
1516 (list_empty(&log->running_ios) &&
1517 list_empty(&log->io_end_ios) &&
1518 list_empty(&log->flushing_ios) &&
1519 list_empty(&log->finished_ios)))
1520 break;
1521
1522 md_wakeup_thread(log->rdev->mddev->thread);
1523 wait_event_lock_irq(log->iounit_wait,
1524 r5l_reclaimable_space(log) > reclaimable,
1525 log->io_list_lock);
1526 }
1527
1528 next_checkpoint = r5c_calculate_new_cp(conf);
1529 spin_unlock_irq(&log->io_list_lock);
1530
1531 if (reclaimable == 0 || !write_super)
1532 return;
1533
1534 /*
1535 * write_super will flush cache of each raid disk. We must write super
1536 * here, because the log area might be reused soon and we don't want to
1537 * confuse recovery
1538 */
1539 r5l_write_super_and_discard_space(log, next_checkpoint);
1540
1541 mutex_lock(&log->io_mutex);
1542 log->last_checkpoint = next_checkpoint;
1543 r5c_update_log_state(log);
1544 mutex_unlock(&log->io_mutex);
1545
1546 r5l_run_no_space_stripes(log);
1547}
1548
1549static void r5l_reclaim_thread(struct md_thread *thread)
1550{
1551 struct mddev *mddev = thread->mddev;
1552 struct r5conf *conf = mddev->private;
1553 struct r5l_log *log = conf->log;
1554
1555 if (!log)
1556 return;
1557 r5c_do_reclaim(conf);
1558 r5l_do_reclaim(log);
1559}
1560
1561void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1562{
1563 unsigned long target;
1564 unsigned long new = (unsigned long)space; /* overflow in theory */
1565
1566 if (!log)
1567 return;
1568 do {
1569 target = log->reclaim_target;
1570 if (new < target)
1571 return;
1572 } while (cmpxchg(&log->reclaim_target, target, new) != target);
1573 md_wakeup_thread(log->reclaim_thread);
1574}
1575
1576void r5l_quiesce(struct r5l_log *log, int quiesce)
1577{
1578 struct mddev *mddev;
1579
1580 if (quiesce) {
1581 /* make sure r5l_write_super_and_discard_space exits */
1582 mddev = log->rdev->mddev;
1583 wake_up(&mddev->sb_wait);
1584 kthread_park(log->reclaim_thread->tsk);
1585 r5l_wake_reclaim(log, MaxSector);
1586 r5l_do_reclaim(log);
1587 } else
1588 kthread_unpark(log->reclaim_thread->tsk);
1589}
1590
1591bool r5l_log_disk_error(struct r5conf *conf)
1592{
1593 struct r5l_log *log = conf->log;
1594
1595 /* don't allow write if journal disk is missing */
1596 if (!log)
1597 return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1598 else
1599 return test_bit(Faulty, &log->rdev->flags);
1600}
1601
1602#define R5L_RECOVERY_PAGE_POOL_SIZE 256
1603
1604struct r5l_recovery_ctx {
1605 struct page *meta_page; /* current meta */
1606 sector_t meta_total_blocks; /* total size of current meta and data */
1607 sector_t pos; /* recovery position */
1608 u64 seq; /* recovery position seq */
1609 int data_parity_stripes; /* number of data_parity stripes */
1610 int data_only_stripes; /* number of data_only stripes */
1611 struct list_head cached_list;
1612
1613 /*
1614 * read ahead page pool (ra_pool)
1615 * in recovery, log is read sequentially. It is not efficient to
1616 * read every page with sync_page_io(). The read ahead page pool
1617 * reads multiple pages with one IO, so further log read can
1618 * just copy data from the pool.
1619 */
1620 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1621 struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE];
1622 sector_t pool_offset; /* offset of first page in the pool */
1623 int total_pages; /* total allocated pages */
1624 int valid_pages; /* pages with valid data */
1625};
1626
1627static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1628 struct r5l_recovery_ctx *ctx)
1629{
1630 struct page *page;
1631
1632 ctx->valid_pages = 0;
1633 ctx->total_pages = 0;
1634 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1635 page = alloc_page(GFP_KERNEL);
1636
1637 if (!page)
1638 break;
1639 ctx->ra_pool[ctx->total_pages] = page;
1640 ctx->total_pages += 1;
1641 }
1642
1643 if (ctx->total_pages == 0)
1644 return -ENOMEM;
1645
1646 ctx->pool_offset = 0;
1647 return 0;
1648}
1649
1650static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1651 struct r5l_recovery_ctx *ctx)
1652{
1653 int i;
1654
1655 for (i = 0; i < ctx->total_pages; ++i)
1656 put_page(ctx->ra_pool[i]);
1657}
1658
1659/*
1660 * fetch ctx->valid_pages pages from offset
1661 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1662 * However, if the offset is close to the end of the journal device,
1663 * ctx->valid_pages could be smaller than ctx->total_pages
1664 */
1665static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1666 struct r5l_recovery_ctx *ctx,
1667 sector_t offset)
1668{
1669 struct bio bio;
1670 int ret;
1671
1672 bio_init(&bio, log->rdev->bdev, ctx->ra_bvec,
1673 R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ);
1674 bio.bi_iter.bi_sector = log->rdev->data_offset + offset;
1675
1676 ctx->valid_pages = 0;
1677 ctx->pool_offset = offset;
1678
1679 while (ctx->valid_pages < ctx->total_pages) {
1680 __bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE,
1681 0);
1682 ctx->valid_pages += 1;
1683
1684 offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1685
1686 if (offset == 0) /* reached end of the device */
1687 break;
1688 }
1689
1690 ret = submit_bio_wait(&bio);
1691 bio_uninit(&bio);
1692 return ret;
1693}
1694
1695/*
1696 * try read a page from the read ahead page pool, if the page is not in the
1697 * pool, call r5l_recovery_fetch_ra_pool
1698 */
1699static int r5l_recovery_read_page(struct r5l_log *log,
1700 struct r5l_recovery_ctx *ctx,
1701 struct page *page,
1702 sector_t offset)
1703{
1704 int ret;
1705
1706 if (offset < ctx->pool_offset ||
1707 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1708 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1709 if (ret)
1710 return ret;
1711 }
1712
1713 BUG_ON(offset < ctx->pool_offset ||
1714 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1715
1716 memcpy(page_address(page),
1717 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1718 BLOCK_SECTOR_SHIFT]),
1719 PAGE_SIZE);
1720 return 0;
1721}
1722
1723static int r5l_recovery_read_meta_block(struct r5l_log *log,
1724 struct r5l_recovery_ctx *ctx)
1725{
1726 struct page *page = ctx->meta_page;
1727 struct r5l_meta_block *mb;
1728 u32 crc, stored_crc;
1729 int ret;
1730
1731 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1732 if (ret != 0)
1733 return ret;
1734
1735 mb = page_address(page);
1736 stored_crc = le32_to_cpu(mb->checksum);
1737 mb->checksum = 0;
1738
1739 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1740 le64_to_cpu(mb->seq) != ctx->seq ||
1741 mb->version != R5LOG_VERSION ||
1742 le64_to_cpu(mb->position) != ctx->pos)
1743 return -EINVAL;
1744
1745 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1746 if (stored_crc != crc)
1747 return -EINVAL;
1748
1749 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1750 return -EINVAL;
1751
1752 ctx->meta_total_blocks = BLOCK_SECTORS;
1753
1754 return 0;
1755}
1756
1757static void
1758r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1759 struct page *page,
1760 sector_t pos, u64 seq)
1761{
1762 struct r5l_meta_block *mb;
1763
1764 mb = page_address(page);
1765 clear_page(mb);
1766 mb->magic = cpu_to_le32(R5LOG_MAGIC);
1767 mb->version = R5LOG_VERSION;
1768 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1769 mb->seq = cpu_to_le64(seq);
1770 mb->position = cpu_to_le64(pos);
1771}
1772
1773static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1774 u64 seq)
1775{
1776 struct page *page;
1777 struct r5l_meta_block *mb;
1778
1779 page = alloc_page(GFP_KERNEL);
1780 if (!page)
1781 return -ENOMEM;
1782 r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1783 mb = page_address(page);
1784 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1785 mb, PAGE_SIZE));
1786 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE |
1787 REQ_SYNC | REQ_FUA, false)) {
1788 __free_page(page);
1789 return -EIO;
1790 }
1791 __free_page(page);
1792 return 0;
1793}
1794
1795/*
1796 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1797 * to mark valid (potentially not flushed) data in the journal.
1798 *
1799 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1800 * so there should not be any mismatch here.
1801 */
1802static void r5l_recovery_load_data(struct r5l_log *log,
1803 struct stripe_head *sh,
1804 struct r5l_recovery_ctx *ctx,
1805 struct r5l_payload_data_parity *payload,
1806 sector_t log_offset)
1807{
1808 struct mddev *mddev = log->rdev->mddev;
1809 struct r5conf *conf = mddev->private;
1810 int dd_idx;
1811
1812 raid5_compute_sector(conf,
1813 le64_to_cpu(payload->location), 0,
1814 &dd_idx, sh);
1815 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1816 sh->dev[dd_idx].log_checksum =
1817 le32_to_cpu(payload->checksum[0]);
1818 ctx->meta_total_blocks += BLOCK_SECTORS;
1819
1820 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1821 set_bit(STRIPE_R5C_CACHING, &sh->state);
1822}
1823
1824static void r5l_recovery_load_parity(struct r5l_log *log,
1825 struct stripe_head *sh,
1826 struct r5l_recovery_ctx *ctx,
1827 struct r5l_payload_data_parity *payload,
1828 sector_t log_offset)
1829{
1830 struct mddev *mddev = log->rdev->mddev;
1831 struct r5conf *conf = mddev->private;
1832
1833 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1834 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1835 sh->dev[sh->pd_idx].log_checksum =
1836 le32_to_cpu(payload->checksum[0]);
1837 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1838
1839 if (sh->qd_idx >= 0) {
1840 r5l_recovery_read_page(
1841 log, ctx, sh->dev[sh->qd_idx].page,
1842 r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1843 sh->dev[sh->qd_idx].log_checksum =
1844 le32_to_cpu(payload->checksum[1]);
1845 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1846 }
1847 clear_bit(STRIPE_R5C_CACHING, &sh->state);
1848}
1849
1850static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1851{
1852 int i;
1853
1854 sh->state = 0;
1855 sh->log_start = MaxSector;
1856 for (i = sh->disks; i--; )
1857 sh->dev[i].flags = 0;
1858}
1859
1860static void
1861r5l_recovery_replay_one_stripe(struct r5conf *conf,
1862 struct stripe_head *sh,
1863 struct r5l_recovery_ctx *ctx)
1864{
1865 struct md_rdev *rdev, *rrdev;
1866 int disk_index;
1867 int data_count = 0;
1868
1869 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1870 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1871 continue;
1872 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1873 continue;
1874 data_count++;
1875 }
1876
1877 /*
1878 * stripes that only have parity must have been flushed
1879 * before the crash that we are now recovering from, so
1880 * there is nothing more to recovery.
1881 */
1882 if (data_count == 0)
1883 goto out;
1884
1885 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1886 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1887 continue;
1888
1889 /* in case device is broken */
1890 rcu_read_lock();
1891 rdev = rcu_dereference(conf->disks[disk_index].rdev);
1892 if (rdev) {
1893 atomic_inc(&rdev->nr_pending);
1894 rcu_read_unlock();
1895 sync_page_io(rdev, sh->sector, PAGE_SIZE,
1896 sh->dev[disk_index].page, REQ_OP_WRITE,
1897 false);
1898 rdev_dec_pending(rdev, rdev->mddev);
1899 rcu_read_lock();
1900 }
1901 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1902 if (rrdev) {
1903 atomic_inc(&rrdev->nr_pending);
1904 rcu_read_unlock();
1905 sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1906 sh->dev[disk_index].page, REQ_OP_WRITE,
1907 false);
1908 rdev_dec_pending(rrdev, rrdev->mddev);
1909 rcu_read_lock();
1910 }
1911 rcu_read_unlock();
1912 }
1913 ctx->data_parity_stripes++;
1914out:
1915 r5l_recovery_reset_stripe(sh);
1916}
1917
1918static struct stripe_head *
1919r5c_recovery_alloc_stripe(
1920 struct r5conf *conf,
1921 sector_t stripe_sect,
1922 int noblock)
1923{
1924 struct stripe_head *sh;
1925
1926 sh = raid5_get_active_stripe(conf, stripe_sect, 0, noblock, 0);
1927 if (!sh)
1928 return NULL; /* no more stripe available */
1929
1930 r5l_recovery_reset_stripe(sh);
1931
1932 return sh;
1933}
1934
1935static struct stripe_head *
1936r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1937{
1938 struct stripe_head *sh;
1939
1940 list_for_each_entry(sh, list, lru)
1941 if (sh->sector == sect)
1942 return sh;
1943 return NULL;
1944}
1945
1946static void
1947r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1948 struct r5l_recovery_ctx *ctx)
1949{
1950 struct stripe_head *sh, *next;
1951
1952 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1953 r5l_recovery_reset_stripe(sh);
1954 list_del_init(&sh->lru);
1955 raid5_release_stripe(sh);
1956 }
1957}
1958
1959static void
1960r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1961 struct r5l_recovery_ctx *ctx)
1962{
1963 struct stripe_head *sh, *next;
1964
1965 list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1966 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1967 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1968 list_del_init(&sh->lru);
1969 raid5_release_stripe(sh);
1970 }
1971}
1972
1973/* if matches return 0; otherwise return -EINVAL */
1974static int
1975r5l_recovery_verify_data_checksum(struct r5l_log *log,
1976 struct r5l_recovery_ctx *ctx,
1977 struct page *page,
1978 sector_t log_offset, __le32 log_checksum)
1979{
1980 void *addr;
1981 u32 checksum;
1982
1983 r5l_recovery_read_page(log, ctx, page, log_offset);
1984 addr = kmap_atomic(page);
1985 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1986 kunmap_atomic(addr);
1987 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1988}
1989
1990/*
1991 * before loading data to stripe cache, we need verify checksum for all data,
1992 * if there is mismatch for any data page, we drop all data in the mata block
1993 */
1994static int
1995r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1996 struct r5l_recovery_ctx *ctx)
1997{
1998 struct mddev *mddev = log->rdev->mddev;
1999 struct r5conf *conf = mddev->private;
2000 struct r5l_meta_block *mb = page_address(ctx->meta_page);
2001 sector_t mb_offset = sizeof(struct r5l_meta_block);
2002 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2003 struct page *page;
2004 struct r5l_payload_data_parity *payload;
2005 struct r5l_payload_flush *payload_flush;
2006
2007 page = alloc_page(GFP_KERNEL);
2008 if (!page)
2009 return -ENOMEM;
2010
2011 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2012 payload = (void *)mb + mb_offset;
2013 payload_flush = (void *)mb + mb_offset;
2014
2015 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2016 if (r5l_recovery_verify_data_checksum(
2017 log, ctx, page, log_offset,
2018 payload->checksum[0]) < 0)
2019 goto mismatch;
2020 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2021 if (r5l_recovery_verify_data_checksum(
2022 log, ctx, page, log_offset,
2023 payload->checksum[0]) < 0)
2024 goto mismatch;
2025 if (conf->max_degraded == 2 && /* q for RAID 6 */
2026 r5l_recovery_verify_data_checksum(
2027 log, ctx, page,
2028 r5l_ring_add(log, log_offset,
2029 BLOCK_SECTORS),
2030 payload->checksum[1]) < 0)
2031 goto mismatch;
2032 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2033 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2034 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2035 goto mismatch;
2036
2037 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2038 mb_offset += sizeof(struct r5l_payload_flush) +
2039 le32_to_cpu(payload_flush->size);
2040 } else {
2041 /* DATA or PARITY payload */
2042 log_offset = r5l_ring_add(log, log_offset,
2043 le32_to_cpu(payload->size));
2044 mb_offset += sizeof(struct r5l_payload_data_parity) +
2045 sizeof(__le32) *
2046 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2047 }
2048
2049 }
2050
2051 put_page(page);
2052 return 0;
2053
2054mismatch:
2055 put_page(page);
2056 return -EINVAL;
2057}
2058
2059/*
2060 * Analyze all data/parity pages in one meta block
2061 * Returns:
2062 * 0 for success
2063 * -EINVAL for unknown playload type
2064 * -EAGAIN for checksum mismatch of data page
2065 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2066 */
2067static int
2068r5c_recovery_analyze_meta_block(struct r5l_log *log,
2069 struct r5l_recovery_ctx *ctx,
2070 struct list_head *cached_stripe_list)
2071{
2072 struct mddev *mddev = log->rdev->mddev;
2073 struct r5conf *conf = mddev->private;
2074 struct r5l_meta_block *mb;
2075 struct r5l_payload_data_parity *payload;
2076 struct r5l_payload_flush *payload_flush;
2077 int mb_offset;
2078 sector_t log_offset;
2079 sector_t stripe_sect;
2080 struct stripe_head *sh;
2081 int ret;
2082
2083 /*
2084 * for mismatch in data blocks, we will drop all data in this mb, but
2085 * we will still read next mb for other data with FLUSH flag, as
2086 * io_unit could finish out of order.
2087 */
2088 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2089 if (ret == -EINVAL)
2090 return -EAGAIN;
2091 else if (ret)
2092 return ret; /* -ENOMEM duo to alloc_page() failed */
2093
2094 mb = page_address(ctx->meta_page);
2095 mb_offset = sizeof(struct r5l_meta_block);
2096 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2097
2098 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2099 int dd;
2100
2101 payload = (void *)mb + mb_offset;
2102 payload_flush = (void *)mb + mb_offset;
2103
2104 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2105 int i, count;
2106
2107 count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2108 for (i = 0; i < count; ++i) {
2109 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2110 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2111 stripe_sect);
2112 if (sh) {
2113 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2114 r5l_recovery_reset_stripe(sh);
2115 list_del_init(&sh->lru);
2116 raid5_release_stripe(sh);
2117 }
2118 }
2119
2120 mb_offset += sizeof(struct r5l_payload_flush) +
2121 le32_to_cpu(payload_flush->size);
2122 continue;
2123 }
2124
2125 /* DATA or PARITY payload */
2126 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2127 raid5_compute_sector(
2128 conf, le64_to_cpu(payload->location), 0, &dd,
2129 NULL)
2130 : le64_to_cpu(payload->location);
2131
2132 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2133 stripe_sect);
2134
2135 if (!sh) {
2136 sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2137 /*
2138 * cannot get stripe from raid5_get_active_stripe
2139 * try replay some stripes
2140 */
2141 if (!sh) {
2142 r5c_recovery_replay_stripes(
2143 cached_stripe_list, ctx);
2144 sh = r5c_recovery_alloc_stripe(
2145 conf, stripe_sect, 1);
2146 }
2147 if (!sh) {
2148 int new_size = conf->min_nr_stripes * 2;
2149 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2150 mdname(mddev),
2151 new_size);
2152 ret = raid5_set_cache_size(mddev, new_size);
2153 if (conf->min_nr_stripes <= new_size / 2) {
2154 pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2155 mdname(mddev),
2156 ret,
2157 new_size,
2158 conf->min_nr_stripes,
2159 conf->max_nr_stripes);
2160 return -ENOMEM;
2161 }
2162 sh = r5c_recovery_alloc_stripe(
2163 conf, stripe_sect, 0);
2164 }
2165 if (!sh) {
2166 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2167 mdname(mddev));
2168 return -ENOMEM;
2169 }
2170 list_add_tail(&sh->lru, cached_stripe_list);
2171 }
2172
2173 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2174 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2175 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2176 r5l_recovery_replay_one_stripe(conf, sh, ctx);
2177 list_move_tail(&sh->lru, cached_stripe_list);
2178 }
2179 r5l_recovery_load_data(log, sh, ctx, payload,
2180 log_offset);
2181 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2182 r5l_recovery_load_parity(log, sh, ctx, payload,
2183 log_offset);
2184 else
2185 return -EINVAL;
2186
2187 log_offset = r5l_ring_add(log, log_offset,
2188 le32_to_cpu(payload->size));
2189
2190 mb_offset += sizeof(struct r5l_payload_data_parity) +
2191 sizeof(__le32) *
2192 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2193 }
2194
2195 return 0;
2196}
2197
2198/*
2199 * Load the stripe into cache. The stripe will be written out later by
2200 * the stripe cache state machine.
2201 */
2202static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2203 struct stripe_head *sh)
2204{
2205 struct r5dev *dev;
2206 int i;
2207
2208 for (i = sh->disks; i--; ) {
2209 dev = sh->dev + i;
2210 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2211 set_bit(R5_InJournal, &dev->flags);
2212 set_bit(R5_UPTODATE, &dev->flags);
2213 }
2214 }
2215}
2216
2217/*
2218 * Scan through the log for all to-be-flushed data
2219 *
2220 * For stripes with data and parity, namely Data-Parity stripe
2221 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2222 *
2223 * For stripes with only data, namely Data-Only stripe
2224 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2225 *
2226 * For a stripe, if we see data after parity, we should discard all previous
2227 * data and parity for this stripe, as these data are already flushed to
2228 * the array.
2229 *
2230 * At the end of the scan, we return the new journal_tail, which points to
2231 * first data-only stripe on the journal device, or next invalid meta block.
2232 */
2233static int r5c_recovery_flush_log(struct r5l_log *log,
2234 struct r5l_recovery_ctx *ctx)
2235{
2236 struct stripe_head *sh;
2237 int ret = 0;
2238
2239 /* scan through the log */
2240 while (1) {
2241 if (r5l_recovery_read_meta_block(log, ctx))
2242 break;
2243
2244 ret = r5c_recovery_analyze_meta_block(log, ctx,
2245 &ctx->cached_list);
2246 /*
2247 * -EAGAIN means mismatch in data block, in this case, we still
2248 * try scan the next metablock
2249 */
2250 if (ret && ret != -EAGAIN)
2251 break; /* ret == -EINVAL or -ENOMEM */
2252 ctx->seq++;
2253 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2254 }
2255
2256 if (ret == -ENOMEM) {
2257 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2258 return ret;
2259 }
2260
2261 /* replay data-parity stripes */
2262 r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2263
2264 /* load data-only stripes to stripe cache */
2265 list_for_each_entry(sh, &ctx->cached_list, lru) {
2266 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2267 r5c_recovery_load_one_stripe(log, sh);
2268 ctx->data_only_stripes++;
2269 }
2270
2271 return 0;
2272}
2273
2274/*
2275 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2276 * log will start here. but we can't let superblock point to last valid
2277 * meta block. The log might looks like:
2278 * | meta 1| meta 2| meta 3|
2279 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2280 * superblock points to meta 1, we write a new valid meta 2n. if crash
2281 * happens again, new recovery will start from meta 1. Since meta 2n is
2282 * valid now, recovery will think meta 3 is valid, which is wrong.
2283 * The solution is we create a new meta in meta2 with its seq == meta
2284 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2285 * will not think meta 3 is a valid meta, because its seq doesn't match
2286 */
2287
2288/*
2289 * Before recovery, the log looks like the following
2290 *
2291 * ---------------------------------------------
2292 * | valid log | invalid log |
2293 * ---------------------------------------------
2294 * ^
2295 * |- log->last_checkpoint
2296 * |- log->last_cp_seq
2297 *
2298 * Now we scan through the log until we see invalid entry
2299 *
2300 * ---------------------------------------------
2301 * | valid log | invalid log |
2302 * ---------------------------------------------
2303 * ^ ^
2304 * |- log->last_checkpoint |- ctx->pos
2305 * |- log->last_cp_seq |- ctx->seq
2306 *
2307 * From this point, we need to increase seq number by 10 to avoid
2308 * confusing next recovery.
2309 *
2310 * ---------------------------------------------
2311 * | valid log | invalid log |
2312 * ---------------------------------------------
2313 * ^ ^
2314 * |- log->last_checkpoint |- ctx->pos+1
2315 * |- log->last_cp_seq |- ctx->seq+10001
2316 *
2317 * However, it is not safe to start the state machine yet, because data only
2318 * parities are not yet secured in RAID. To save these data only parities, we
2319 * rewrite them from seq+11.
2320 *
2321 * -----------------------------------------------------------------
2322 * | valid log | data only stripes | invalid log |
2323 * -----------------------------------------------------------------
2324 * ^ ^
2325 * |- log->last_checkpoint |- ctx->pos+n
2326 * |- log->last_cp_seq |- ctx->seq+10000+n
2327 *
2328 * If failure happens again during this process, the recovery can safe start
2329 * again from log->last_checkpoint.
2330 *
2331 * Once data only stripes are rewritten to journal, we move log_tail
2332 *
2333 * -----------------------------------------------------------------
2334 * | old log | data only stripes | invalid log |
2335 * -----------------------------------------------------------------
2336 * ^ ^
2337 * |- log->last_checkpoint |- ctx->pos+n
2338 * |- log->last_cp_seq |- ctx->seq+10000+n
2339 *
2340 * Then we can safely start the state machine. If failure happens from this
2341 * point on, the recovery will start from new log->last_checkpoint.
2342 */
2343static int
2344r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2345 struct r5l_recovery_ctx *ctx)
2346{
2347 struct stripe_head *sh;
2348 struct mddev *mddev = log->rdev->mddev;
2349 struct page *page;
2350 sector_t next_checkpoint = MaxSector;
2351
2352 page = alloc_page(GFP_KERNEL);
2353 if (!page) {
2354 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2355 mdname(mddev));
2356 return -ENOMEM;
2357 }
2358
2359 WARN_ON(list_empty(&ctx->cached_list));
2360
2361 list_for_each_entry(sh, &ctx->cached_list, lru) {
2362 struct r5l_meta_block *mb;
2363 int i;
2364 int offset;
2365 sector_t write_pos;
2366
2367 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2368 r5l_recovery_create_empty_meta_block(log, page,
2369 ctx->pos, ctx->seq);
2370 mb = page_address(page);
2371 offset = le32_to_cpu(mb->meta_size);
2372 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2373
2374 for (i = sh->disks; i--; ) {
2375 struct r5dev *dev = &sh->dev[i];
2376 struct r5l_payload_data_parity *payload;
2377 void *addr;
2378
2379 if (test_bit(R5_InJournal, &dev->flags)) {
2380 payload = (void *)mb + offset;
2381 payload->header.type = cpu_to_le16(
2382 R5LOG_PAYLOAD_DATA);
2383 payload->size = cpu_to_le32(BLOCK_SECTORS);
2384 payload->location = cpu_to_le64(
2385 raid5_compute_blocknr(sh, i, 0));
2386 addr = kmap_atomic(dev->page);
2387 payload->checksum[0] = cpu_to_le32(
2388 crc32c_le(log->uuid_checksum, addr,
2389 PAGE_SIZE));
2390 kunmap_atomic(addr);
2391 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2392 dev->page, REQ_OP_WRITE, false);
2393 write_pos = r5l_ring_add(log, write_pos,
2394 BLOCK_SECTORS);
2395 offset += sizeof(__le32) +
2396 sizeof(struct r5l_payload_data_parity);
2397
2398 }
2399 }
2400 mb->meta_size = cpu_to_le32(offset);
2401 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2402 mb, PAGE_SIZE));
2403 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2404 REQ_OP_WRITE | REQ_SYNC | REQ_FUA, false);
2405 sh->log_start = ctx->pos;
2406 list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2407 atomic_inc(&log->stripe_in_journal_count);
2408 ctx->pos = write_pos;
2409 ctx->seq += 1;
2410 next_checkpoint = sh->log_start;
2411 }
2412 log->next_checkpoint = next_checkpoint;
2413 __free_page(page);
2414 return 0;
2415}
2416
2417static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2418 struct r5l_recovery_ctx *ctx)
2419{
2420 struct mddev *mddev = log->rdev->mddev;
2421 struct r5conf *conf = mddev->private;
2422 struct stripe_head *sh, *next;
2423 bool cleared_pending = false;
2424
2425 if (ctx->data_only_stripes == 0)
2426 return;
2427
2428 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2429 cleared_pending = true;
2430 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2431 }
2432 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2433
2434 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2435 r5c_make_stripe_write_out(sh);
2436 set_bit(STRIPE_HANDLE, &sh->state);
2437 list_del_init(&sh->lru);
2438 raid5_release_stripe(sh);
2439 }
2440
2441 /* reuse conf->wait_for_quiescent in recovery */
2442 wait_event(conf->wait_for_quiescent,
2443 atomic_read(&conf->active_stripes) == 0);
2444
2445 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2446 if (cleared_pending)
2447 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2448}
2449
2450static int r5l_recovery_log(struct r5l_log *log)
2451{
2452 struct mddev *mddev = log->rdev->mddev;
2453 struct r5l_recovery_ctx *ctx;
2454 int ret;
2455 sector_t pos;
2456
2457 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2458 if (!ctx)
2459 return -ENOMEM;
2460
2461 ctx->pos = log->last_checkpoint;
2462 ctx->seq = log->last_cp_seq;
2463 INIT_LIST_HEAD(&ctx->cached_list);
2464 ctx->meta_page = alloc_page(GFP_KERNEL);
2465
2466 if (!ctx->meta_page) {
2467 ret = -ENOMEM;
2468 goto meta_page;
2469 }
2470
2471 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2472 ret = -ENOMEM;
2473 goto ra_pool;
2474 }
2475
2476 ret = r5c_recovery_flush_log(log, ctx);
2477
2478 if (ret)
2479 goto error;
2480
2481 pos = ctx->pos;
2482 ctx->seq += 10000;
2483
2484 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2485 pr_info("md/raid:%s: starting from clean shutdown\n",
2486 mdname(mddev));
2487 else
2488 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2489 mdname(mddev), ctx->data_only_stripes,
2490 ctx->data_parity_stripes);
2491
2492 if (ctx->data_only_stripes == 0) {
2493 log->next_checkpoint = ctx->pos;
2494 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2495 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2496 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2497 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2498 mdname(mddev));
2499 ret = -EIO;
2500 goto error;
2501 }
2502
2503 log->log_start = ctx->pos;
2504 log->seq = ctx->seq;
2505 log->last_checkpoint = pos;
2506 r5l_write_super(log, pos);
2507
2508 r5c_recovery_flush_data_only_stripes(log, ctx);
2509 ret = 0;
2510error:
2511 r5l_recovery_free_ra_pool(log, ctx);
2512ra_pool:
2513 __free_page(ctx->meta_page);
2514meta_page:
2515 kfree(ctx);
2516 return ret;
2517}
2518
2519static void r5l_write_super(struct r5l_log *log, sector_t cp)
2520{
2521 struct mddev *mddev = log->rdev->mddev;
2522
2523 log->rdev->journal_tail = cp;
2524 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2525}
2526
2527static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2528{
2529 struct r5conf *conf;
2530 int ret;
2531
2532 ret = mddev_lock(mddev);
2533 if (ret)
2534 return ret;
2535
2536 conf = mddev->private;
2537 if (!conf || !conf->log)
2538 goto out_unlock;
2539
2540 switch (conf->log->r5c_journal_mode) {
2541 case R5C_JOURNAL_MODE_WRITE_THROUGH:
2542 ret = snprintf(
2543 page, PAGE_SIZE, "[%s] %s\n",
2544 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2545 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2546 break;
2547 case R5C_JOURNAL_MODE_WRITE_BACK:
2548 ret = snprintf(
2549 page, PAGE_SIZE, "%s [%s]\n",
2550 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2551 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2552 break;
2553 default:
2554 ret = 0;
2555 }
2556
2557out_unlock:
2558 mddev_unlock(mddev);
2559 return ret;
2560}
2561
2562/*
2563 * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2564 *
2565 * @mode as defined in 'enum r5c_journal_mode'.
2566 *
2567 */
2568int r5c_journal_mode_set(struct mddev *mddev, int mode)
2569{
2570 struct r5conf *conf;
2571
2572 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2573 mode > R5C_JOURNAL_MODE_WRITE_BACK)
2574 return -EINVAL;
2575
2576 conf = mddev->private;
2577 if (!conf || !conf->log)
2578 return -ENODEV;
2579
2580 if (raid5_calc_degraded(conf) > 0 &&
2581 mode == R5C_JOURNAL_MODE_WRITE_BACK)
2582 return -EINVAL;
2583
2584 mddev_suspend(mddev);
2585 conf->log->r5c_journal_mode = mode;
2586 mddev_resume(mddev);
2587
2588 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2589 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2590 return 0;
2591}
2592EXPORT_SYMBOL(r5c_journal_mode_set);
2593
2594static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2595 const char *page, size_t length)
2596{
2597 int mode = ARRAY_SIZE(r5c_journal_mode_str);
2598 size_t len = length;
2599 int ret;
2600
2601 if (len < 2)
2602 return -EINVAL;
2603
2604 if (page[len - 1] == '\n')
2605 len--;
2606
2607 while (mode--)
2608 if (strlen(r5c_journal_mode_str[mode]) == len &&
2609 !strncmp(page, r5c_journal_mode_str[mode], len))
2610 break;
2611 ret = mddev_lock(mddev);
2612 if (ret)
2613 return ret;
2614 ret = r5c_journal_mode_set(mddev, mode);
2615 mddev_unlock(mddev);
2616 return ret ?: length;
2617}
2618
2619struct md_sysfs_entry
2620r5c_journal_mode = __ATTR(journal_mode, 0644,
2621 r5c_journal_mode_show, r5c_journal_mode_store);
2622
2623/*
2624 * Try handle write operation in caching phase. This function should only
2625 * be called in write-back mode.
2626 *
2627 * If all outstanding writes can be handled in caching phase, returns 0
2628 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2629 * and returns -EAGAIN
2630 */
2631int r5c_try_caching_write(struct r5conf *conf,
2632 struct stripe_head *sh,
2633 struct stripe_head_state *s,
2634 int disks)
2635{
2636 struct r5l_log *log = conf->log;
2637 int i;
2638 struct r5dev *dev;
2639 int to_cache = 0;
2640 void __rcu **pslot;
2641 sector_t tree_index;
2642 int ret;
2643 uintptr_t refcount;
2644
2645 BUG_ON(!r5c_is_writeback(log));
2646
2647 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2648 /*
2649 * There are two different scenarios here:
2650 * 1. The stripe has some data cached, and it is sent to
2651 * write-out phase for reclaim
2652 * 2. The stripe is clean, and this is the first write
2653 *
2654 * For 1, return -EAGAIN, so we continue with
2655 * handle_stripe_dirtying().
2656 *
2657 * For 2, set STRIPE_R5C_CACHING and continue with caching
2658 * write.
2659 */
2660
2661 /* case 1: anything injournal or anything in written */
2662 if (s->injournal > 0 || s->written > 0)
2663 return -EAGAIN;
2664 /* case 2 */
2665 set_bit(STRIPE_R5C_CACHING, &sh->state);
2666 }
2667
2668 /*
2669 * When run in degraded mode, array is set to write-through mode.
2670 * This check helps drain pending write safely in the transition to
2671 * write-through mode.
2672 *
2673 * When a stripe is syncing, the write is also handled in write
2674 * through mode.
2675 */
2676 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2677 r5c_make_stripe_write_out(sh);
2678 return -EAGAIN;
2679 }
2680
2681 for (i = disks; i--; ) {
2682 dev = &sh->dev[i];
2683 /* if non-overwrite, use writing-out phase */
2684 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2685 !test_bit(R5_InJournal, &dev->flags)) {
2686 r5c_make_stripe_write_out(sh);
2687 return -EAGAIN;
2688 }
2689 }
2690
2691 /* if the stripe is not counted in big_stripe_tree, add it now */
2692 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2693 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2694 tree_index = r5c_tree_index(conf, sh->sector);
2695 spin_lock(&log->tree_lock);
2696 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2697 tree_index);
2698 if (pslot) {
2699 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2700 pslot, &log->tree_lock) >>
2701 R5C_RADIX_COUNT_SHIFT;
2702 radix_tree_replace_slot(
2703 &log->big_stripe_tree, pslot,
2704 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2705 } else {
2706 /*
2707 * this radix_tree_insert can fail safely, so no
2708 * need to call radix_tree_preload()
2709 */
2710 ret = radix_tree_insert(
2711 &log->big_stripe_tree, tree_index,
2712 (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2713 if (ret) {
2714 spin_unlock(&log->tree_lock);
2715 r5c_make_stripe_write_out(sh);
2716 return -EAGAIN;
2717 }
2718 }
2719 spin_unlock(&log->tree_lock);
2720
2721 /*
2722 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2723 * counted in the radix tree
2724 */
2725 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2726 atomic_inc(&conf->r5c_cached_partial_stripes);
2727 }
2728
2729 for (i = disks; i--; ) {
2730 dev = &sh->dev[i];
2731 if (dev->towrite) {
2732 set_bit(R5_Wantwrite, &dev->flags);
2733 set_bit(R5_Wantdrain, &dev->flags);
2734 set_bit(R5_LOCKED, &dev->flags);
2735 to_cache++;
2736 }
2737 }
2738
2739 if (to_cache) {
2740 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2741 /*
2742 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2743 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2744 * r5c_handle_data_cached()
2745 */
2746 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2747 }
2748
2749 return 0;
2750}
2751
2752/*
2753 * free extra pages (orig_page) we allocated for prexor
2754 */
2755void r5c_release_extra_page(struct stripe_head *sh)
2756{
2757 struct r5conf *conf = sh->raid_conf;
2758 int i;
2759 bool using_disk_info_extra_page;
2760
2761 using_disk_info_extra_page =
2762 sh->dev[0].orig_page == conf->disks[0].extra_page;
2763
2764 for (i = sh->disks; i--; )
2765 if (sh->dev[i].page != sh->dev[i].orig_page) {
2766 struct page *p = sh->dev[i].orig_page;
2767
2768 sh->dev[i].orig_page = sh->dev[i].page;
2769 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2770
2771 if (!using_disk_info_extra_page)
2772 put_page(p);
2773 }
2774
2775 if (using_disk_info_extra_page) {
2776 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2777 md_wakeup_thread(conf->mddev->thread);
2778 }
2779}
2780
2781void r5c_use_extra_page(struct stripe_head *sh)
2782{
2783 struct r5conf *conf = sh->raid_conf;
2784 int i;
2785 struct r5dev *dev;
2786
2787 for (i = sh->disks; i--; ) {
2788 dev = &sh->dev[i];
2789 if (dev->orig_page != dev->page)
2790 put_page(dev->orig_page);
2791 dev->orig_page = conf->disks[i].extra_page;
2792 }
2793}
2794
2795/*
2796 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2797 * stripe is committed to RAID disks.
2798 */
2799void r5c_finish_stripe_write_out(struct r5conf *conf,
2800 struct stripe_head *sh,
2801 struct stripe_head_state *s)
2802{
2803 struct r5l_log *log = conf->log;
2804 int i;
2805 int do_wakeup = 0;
2806 sector_t tree_index;
2807 void __rcu **pslot;
2808 uintptr_t refcount;
2809
2810 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2811 return;
2812
2813 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2814 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2815
2816 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2817 return;
2818
2819 for (i = sh->disks; i--; ) {
2820 clear_bit(R5_InJournal, &sh->dev[i].flags);
2821 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2822 do_wakeup = 1;
2823 }
2824
2825 /*
2826 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2827 * We updated R5_InJournal, so we also update s->injournal.
2828 */
2829 s->injournal = 0;
2830
2831 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2832 if (atomic_dec_and_test(&conf->pending_full_writes))
2833 md_wakeup_thread(conf->mddev->thread);
2834
2835 if (do_wakeup)
2836 wake_up(&conf->wait_for_overlap);
2837
2838 spin_lock_irq(&log->stripe_in_journal_lock);
2839 list_del_init(&sh->r5c);
2840 spin_unlock_irq(&log->stripe_in_journal_lock);
2841 sh->log_start = MaxSector;
2842
2843 atomic_dec(&log->stripe_in_journal_count);
2844 r5c_update_log_state(log);
2845
2846 /* stop counting this stripe in big_stripe_tree */
2847 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2848 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2849 tree_index = r5c_tree_index(conf, sh->sector);
2850 spin_lock(&log->tree_lock);
2851 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2852 tree_index);
2853 BUG_ON(pslot == NULL);
2854 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2855 pslot, &log->tree_lock) >>
2856 R5C_RADIX_COUNT_SHIFT;
2857 if (refcount == 1)
2858 radix_tree_delete(&log->big_stripe_tree, tree_index);
2859 else
2860 radix_tree_replace_slot(
2861 &log->big_stripe_tree, pslot,
2862 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2863 spin_unlock(&log->tree_lock);
2864 }
2865
2866 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2867 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2868 atomic_dec(&conf->r5c_flushing_partial_stripes);
2869 atomic_dec(&conf->r5c_cached_partial_stripes);
2870 }
2871
2872 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2873 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2874 atomic_dec(&conf->r5c_flushing_full_stripes);
2875 atomic_dec(&conf->r5c_cached_full_stripes);
2876 }
2877
2878 r5l_append_flush_payload(log, sh->sector);
2879 /* stripe is flused to raid disks, we can do resync now */
2880 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2881 set_bit(STRIPE_HANDLE, &sh->state);
2882}
2883
2884int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2885{
2886 struct r5conf *conf = sh->raid_conf;
2887 int pages = 0;
2888 int reserve;
2889 int i;
2890 int ret = 0;
2891
2892 BUG_ON(!log);
2893
2894 for (i = 0; i < sh->disks; i++) {
2895 void *addr;
2896
2897 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2898 continue;
2899 addr = kmap_atomic(sh->dev[i].page);
2900 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2901 addr, PAGE_SIZE);
2902 kunmap_atomic(addr);
2903 pages++;
2904 }
2905 WARN_ON(pages == 0);
2906
2907 /*
2908 * The stripe must enter state machine again to call endio, so
2909 * don't delay.
2910 */
2911 clear_bit(STRIPE_DELAYED, &sh->state);
2912 atomic_inc(&sh->count);
2913
2914 mutex_lock(&log->io_mutex);
2915 /* meta + data */
2916 reserve = (1 + pages) << (PAGE_SHIFT - 9);
2917
2918 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2919 sh->log_start == MaxSector)
2920 r5l_add_no_space_stripe(log, sh);
2921 else if (!r5l_has_free_space(log, reserve)) {
2922 if (sh->log_start == log->last_checkpoint)
2923 BUG();
2924 else
2925 r5l_add_no_space_stripe(log, sh);
2926 } else {
2927 ret = r5l_log_stripe(log, sh, pages, 0);
2928 if (ret) {
2929 spin_lock_irq(&log->io_list_lock);
2930 list_add_tail(&sh->log_list, &log->no_mem_stripes);
2931 spin_unlock_irq(&log->io_list_lock);
2932 }
2933 }
2934
2935 mutex_unlock(&log->io_mutex);
2936 return 0;
2937}
2938
2939/* check whether this big stripe is in write back cache. */
2940bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2941{
2942 struct r5l_log *log = conf->log;
2943 sector_t tree_index;
2944 void *slot;
2945
2946 if (!log)
2947 return false;
2948
2949 WARN_ON_ONCE(!rcu_read_lock_held());
2950 tree_index = r5c_tree_index(conf, sect);
2951 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2952 return slot != NULL;
2953}
2954
2955static int r5l_load_log(struct r5l_log *log)
2956{
2957 struct md_rdev *rdev = log->rdev;
2958 struct page *page;
2959 struct r5l_meta_block *mb;
2960 sector_t cp = log->rdev->journal_tail;
2961 u32 stored_crc, expected_crc;
2962 bool create_super = false;
2963 int ret = 0;
2964
2965 /* Make sure it's valid */
2966 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2967 cp = 0;
2968 page = alloc_page(GFP_KERNEL);
2969 if (!page)
2970 return -ENOMEM;
2971
2972 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, false)) {
2973 ret = -EIO;
2974 goto ioerr;
2975 }
2976 mb = page_address(page);
2977
2978 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2979 mb->version != R5LOG_VERSION) {
2980 create_super = true;
2981 goto create;
2982 }
2983 stored_crc = le32_to_cpu(mb->checksum);
2984 mb->checksum = 0;
2985 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2986 if (stored_crc != expected_crc) {
2987 create_super = true;
2988 goto create;
2989 }
2990 if (le64_to_cpu(mb->position) != cp) {
2991 create_super = true;
2992 goto create;
2993 }
2994create:
2995 if (create_super) {
2996 log->last_cp_seq = prandom_u32();
2997 cp = 0;
2998 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
2999 /*
3000 * Make sure super points to correct address. Log might have
3001 * data very soon. If super hasn't correct log tail address,
3002 * recovery can't find the log
3003 */
3004 r5l_write_super(log, cp);
3005 } else
3006 log->last_cp_seq = le64_to_cpu(mb->seq);
3007
3008 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3009 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3010 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3011 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3012 log->last_checkpoint = cp;
3013
3014 __free_page(page);
3015
3016 if (create_super) {
3017 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3018 log->seq = log->last_cp_seq + 1;
3019 log->next_checkpoint = cp;
3020 } else
3021 ret = r5l_recovery_log(log);
3022
3023 r5c_update_log_state(log);
3024 return ret;
3025ioerr:
3026 __free_page(page);
3027 return ret;
3028}
3029
3030int r5l_start(struct r5l_log *log)
3031{
3032 int ret;
3033
3034 if (!log)
3035 return 0;
3036
3037 ret = r5l_load_log(log);
3038 if (ret) {
3039 struct mddev *mddev = log->rdev->mddev;
3040 struct r5conf *conf = mddev->private;
3041
3042 r5l_exit_log(conf);
3043 }
3044 return ret;
3045}
3046
3047void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3048{
3049 struct r5conf *conf = mddev->private;
3050 struct r5l_log *log = conf->log;
3051
3052 if (!log)
3053 return;
3054
3055 if ((raid5_calc_degraded(conf) > 0 ||
3056 test_bit(Journal, &rdev->flags)) &&
3057 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3058 schedule_work(&log->disable_writeback_work);
3059}
3060
3061int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3062{
3063 struct request_queue *q = bdev_get_queue(rdev->bdev);
3064 struct r5l_log *log;
3065 int ret;
3066
3067 pr_debug("md/raid:%s: using device %pg as journal\n",
3068 mdname(conf->mddev), rdev->bdev);
3069
3070 if (PAGE_SIZE != 4096)
3071 return -EINVAL;
3072
3073 /*
3074 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3075 * raid_disks r5l_payload_data_parity.
3076 *
3077 * Write journal and cache does not work for very big array
3078 * (raid_disks > 203)
3079 */
3080 if (sizeof(struct r5l_meta_block) +
3081 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3082 conf->raid_disks) > PAGE_SIZE) {
3083 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3084 mdname(conf->mddev), conf->raid_disks);
3085 return -EINVAL;
3086 }
3087
3088 log = kzalloc(sizeof(*log), GFP_KERNEL);
3089 if (!log)
3090 return -ENOMEM;
3091 log->rdev = rdev;
3092
3093 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3094
3095 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3096 sizeof(rdev->mddev->uuid));
3097
3098 mutex_init(&log->io_mutex);
3099
3100 spin_lock_init(&log->io_list_lock);
3101 INIT_LIST_HEAD(&log->running_ios);
3102 INIT_LIST_HEAD(&log->io_end_ios);
3103 INIT_LIST_HEAD(&log->flushing_ios);
3104 INIT_LIST_HEAD(&log->finished_ios);
3105
3106 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3107 if (!log->io_kc)
3108 goto io_kc;
3109
3110 ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3111 if (ret)
3112 goto io_pool;
3113
3114 ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3115 if (ret)
3116 goto io_bs;
3117
3118 ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3119 if (ret)
3120 goto out_mempool;
3121
3122 spin_lock_init(&log->tree_lock);
3123 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3124
3125 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3126 log->rdev->mddev, "reclaim");
3127 if (!log->reclaim_thread)
3128 goto reclaim_thread;
3129 log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3130
3131 init_waitqueue_head(&log->iounit_wait);
3132
3133 INIT_LIST_HEAD(&log->no_mem_stripes);
3134
3135 INIT_LIST_HEAD(&log->no_space_stripes);
3136 spin_lock_init(&log->no_space_stripes_lock);
3137
3138 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3139 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3140
3141 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3142 INIT_LIST_HEAD(&log->stripe_in_journal_list);
3143 spin_lock_init(&log->stripe_in_journal_lock);
3144 atomic_set(&log->stripe_in_journal_count, 0);
3145
3146 conf->log = log;
3147
3148 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3149 return 0;
3150
3151reclaim_thread:
3152 mempool_exit(&log->meta_pool);
3153out_mempool:
3154 bioset_exit(&log->bs);
3155io_bs:
3156 mempool_exit(&log->io_pool);
3157io_pool:
3158 kmem_cache_destroy(log->io_kc);
3159io_kc:
3160 kfree(log);
3161 return -EINVAL;
3162}
3163
3164void r5l_exit_log(struct r5conf *conf)
3165{
3166 struct r5l_log *log = conf->log;
3167
3168 /* Ensure disable_writeback_work wakes up and exits */
3169 wake_up(&conf->mddev->sb_wait);
3170 flush_work(&log->disable_writeback_work);
3171 md_unregister_thread(&log->reclaim_thread);
3172
3173 conf->log = NULL;
3174
3175 mempool_exit(&log->meta_pool);
3176 bioset_exit(&log->bs);
3177 mempool_exit(&log->io_pool);
3178 kmem_cache_destroy(log->io_kc);
3179 kfree(log);
3180}