Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/* binder_alloc.c
3 *
4 * Android IPC Subsystem
5 *
6 * Copyright (C) 2007-2017 Google, Inc.
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/list.h>
12#include <linux/sched/mm.h>
13#include <linux/module.h>
14#include <linux/rtmutex.h>
15#include <linux/rbtree.h>
16#include <linux/seq_file.h>
17#include <linux/vmalloc.h>
18#include <linux/slab.h>
19#include <linux/sched.h>
20#include <linux/list_lru.h>
21#include <linux/ratelimit.h>
22#include <asm/cacheflush.h>
23#include <linux/uaccess.h>
24#include <linux/highmem.h>
25#include <linux/sizes.h>
26#include "binder_alloc.h"
27#include "binder_trace.h"
28
29struct list_lru binder_alloc_lru;
30
31static DEFINE_MUTEX(binder_alloc_mmap_lock);
32
33enum {
34 BINDER_DEBUG_USER_ERROR = 1U << 0,
35 BINDER_DEBUG_OPEN_CLOSE = 1U << 1,
36 BINDER_DEBUG_BUFFER_ALLOC = 1U << 2,
37 BINDER_DEBUG_BUFFER_ALLOC_ASYNC = 1U << 3,
38};
39static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
40
41module_param_named(debug_mask, binder_alloc_debug_mask,
42 uint, 0644);
43
44#define binder_alloc_debug(mask, x...) \
45 do { \
46 if (binder_alloc_debug_mask & mask) \
47 pr_info_ratelimited(x); \
48 } while (0)
49
50static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
51{
52 return list_entry(buffer->entry.next, struct binder_buffer, entry);
53}
54
55static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
56{
57 return list_entry(buffer->entry.prev, struct binder_buffer, entry);
58}
59
60static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
61 struct binder_buffer *buffer)
62{
63 if (list_is_last(&buffer->entry, &alloc->buffers))
64 return alloc->buffer + alloc->buffer_size - buffer->user_data;
65 return binder_buffer_next(buffer)->user_data - buffer->user_data;
66}
67
68static void binder_insert_free_buffer(struct binder_alloc *alloc,
69 struct binder_buffer *new_buffer)
70{
71 struct rb_node **p = &alloc->free_buffers.rb_node;
72 struct rb_node *parent = NULL;
73 struct binder_buffer *buffer;
74 size_t buffer_size;
75 size_t new_buffer_size;
76
77 BUG_ON(!new_buffer->free);
78
79 new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
80
81 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
82 "%d: add free buffer, size %zd, at %pK\n",
83 alloc->pid, new_buffer_size, new_buffer);
84
85 while (*p) {
86 parent = *p;
87 buffer = rb_entry(parent, struct binder_buffer, rb_node);
88 BUG_ON(!buffer->free);
89
90 buffer_size = binder_alloc_buffer_size(alloc, buffer);
91
92 if (new_buffer_size < buffer_size)
93 p = &parent->rb_left;
94 else
95 p = &parent->rb_right;
96 }
97 rb_link_node(&new_buffer->rb_node, parent, p);
98 rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
99}
100
101static void binder_insert_allocated_buffer_locked(
102 struct binder_alloc *alloc, struct binder_buffer *new_buffer)
103{
104 struct rb_node **p = &alloc->allocated_buffers.rb_node;
105 struct rb_node *parent = NULL;
106 struct binder_buffer *buffer;
107
108 BUG_ON(new_buffer->free);
109
110 while (*p) {
111 parent = *p;
112 buffer = rb_entry(parent, struct binder_buffer, rb_node);
113 BUG_ON(buffer->free);
114
115 if (new_buffer->user_data < buffer->user_data)
116 p = &parent->rb_left;
117 else if (new_buffer->user_data > buffer->user_data)
118 p = &parent->rb_right;
119 else
120 BUG();
121 }
122 rb_link_node(&new_buffer->rb_node, parent, p);
123 rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
124}
125
126static struct binder_buffer *binder_alloc_prepare_to_free_locked(
127 struct binder_alloc *alloc,
128 uintptr_t user_ptr)
129{
130 struct rb_node *n = alloc->allocated_buffers.rb_node;
131 struct binder_buffer *buffer;
132 void __user *uptr;
133
134 uptr = (void __user *)user_ptr;
135
136 while (n) {
137 buffer = rb_entry(n, struct binder_buffer, rb_node);
138 BUG_ON(buffer->free);
139
140 if (uptr < buffer->user_data)
141 n = n->rb_left;
142 else if (uptr > buffer->user_data)
143 n = n->rb_right;
144 else {
145 /*
146 * Guard against user threads attempting to
147 * free the buffer when in use by kernel or
148 * after it's already been freed.
149 */
150 if (!buffer->allow_user_free)
151 return ERR_PTR(-EPERM);
152 buffer->allow_user_free = 0;
153 return buffer;
154 }
155 }
156 return NULL;
157}
158
159/**
160 * binder_alloc_prepare_to_free() - get buffer given user ptr
161 * @alloc: binder_alloc for this proc
162 * @user_ptr: User pointer to buffer data
163 *
164 * Validate userspace pointer to buffer data and return buffer corresponding to
165 * that user pointer. Search the rb tree for buffer that matches user data
166 * pointer.
167 *
168 * Return: Pointer to buffer or NULL
169 */
170struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
171 uintptr_t user_ptr)
172{
173 struct binder_buffer *buffer;
174
175 mutex_lock(&alloc->mutex);
176 buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
177 mutex_unlock(&alloc->mutex);
178 return buffer;
179}
180
181static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
182 void __user *start, void __user *end)
183{
184 void __user *page_addr;
185 unsigned long user_page_addr;
186 struct binder_lru_page *page;
187 struct vm_area_struct *vma = NULL;
188 struct mm_struct *mm = NULL;
189 bool need_mm = false;
190
191 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
192 "%d: %s pages %pK-%pK\n", alloc->pid,
193 allocate ? "allocate" : "free", start, end);
194
195 if (end <= start)
196 return 0;
197
198 trace_binder_update_page_range(alloc, allocate, start, end);
199
200 if (allocate == 0)
201 goto free_range;
202
203 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
204 page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
205 if (!page->page_ptr) {
206 need_mm = true;
207 break;
208 }
209 }
210
211 if (need_mm && mmget_not_zero(alloc->vma_vm_mm))
212 mm = alloc->vma_vm_mm;
213
214 if (mm) {
215 mmap_read_lock(mm);
216 vma = vma_lookup(mm, alloc->vma_addr);
217 }
218
219 if (!vma && need_mm) {
220 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
221 "%d: binder_alloc_buf failed to map pages in userspace, no vma\n",
222 alloc->pid);
223 goto err_no_vma;
224 }
225
226 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
227 int ret;
228 bool on_lru;
229 size_t index;
230
231 index = (page_addr - alloc->buffer) / PAGE_SIZE;
232 page = &alloc->pages[index];
233
234 if (page->page_ptr) {
235 trace_binder_alloc_lru_start(alloc, index);
236
237 on_lru = list_lru_del(&binder_alloc_lru, &page->lru);
238 WARN_ON(!on_lru);
239
240 trace_binder_alloc_lru_end(alloc, index);
241 continue;
242 }
243
244 if (WARN_ON(!vma))
245 goto err_page_ptr_cleared;
246
247 trace_binder_alloc_page_start(alloc, index);
248 page->page_ptr = alloc_page(GFP_KERNEL |
249 __GFP_HIGHMEM |
250 __GFP_ZERO);
251 if (!page->page_ptr) {
252 pr_err("%d: binder_alloc_buf failed for page at %pK\n",
253 alloc->pid, page_addr);
254 goto err_alloc_page_failed;
255 }
256 page->alloc = alloc;
257 INIT_LIST_HEAD(&page->lru);
258
259 user_page_addr = (uintptr_t)page_addr;
260 ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr);
261 if (ret) {
262 pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
263 alloc->pid, user_page_addr);
264 goto err_vm_insert_page_failed;
265 }
266
267 if (index + 1 > alloc->pages_high)
268 alloc->pages_high = index + 1;
269
270 trace_binder_alloc_page_end(alloc, index);
271 }
272 if (mm) {
273 mmap_read_unlock(mm);
274 mmput(mm);
275 }
276 return 0;
277
278free_range:
279 for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) {
280 bool ret;
281 size_t index;
282
283 index = (page_addr - alloc->buffer) / PAGE_SIZE;
284 page = &alloc->pages[index];
285
286 trace_binder_free_lru_start(alloc, index);
287
288 ret = list_lru_add(&binder_alloc_lru, &page->lru);
289 WARN_ON(!ret);
290
291 trace_binder_free_lru_end(alloc, index);
292 if (page_addr == start)
293 break;
294 continue;
295
296err_vm_insert_page_failed:
297 __free_page(page->page_ptr);
298 page->page_ptr = NULL;
299err_alloc_page_failed:
300err_page_ptr_cleared:
301 if (page_addr == start)
302 break;
303 }
304err_no_vma:
305 if (mm) {
306 mmap_read_unlock(mm);
307 mmput(mm);
308 }
309 return vma ? -ENOMEM : -ESRCH;
310}
311
312
313static inline void binder_alloc_set_vma(struct binder_alloc *alloc,
314 struct vm_area_struct *vma)
315{
316 unsigned long vm_start = 0;
317
318 /*
319 * Allow clearing the vma with holding just the read lock to allow
320 * munmapping downgrade of the write lock before freeing and closing the
321 * file using binder_alloc_vma_close().
322 */
323 if (vma) {
324 vm_start = vma->vm_start;
325 alloc->vma_vm_mm = vma->vm_mm;
326 mmap_assert_write_locked(alloc->vma_vm_mm);
327 } else {
328 mmap_assert_locked(alloc->vma_vm_mm);
329 }
330
331 alloc->vma_addr = vm_start;
332}
333
334static inline struct vm_area_struct *binder_alloc_get_vma(
335 struct binder_alloc *alloc)
336{
337 struct vm_area_struct *vma = NULL;
338
339 if (alloc->vma_addr)
340 vma = vma_lookup(alloc->vma_vm_mm, alloc->vma_addr);
341
342 return vma;
343}
344
345static bool debug_low_async_space_locked(struct binder_alloc *alloc, int pid)
346{
347 /*
348 * Find the amount and size of buffers allocated by the current caller;
349 * The idea is that once we cross the threshold, whoever is responsible
350 * for the low async space is likely to try to send another async txn,
351 * and at some point we'll catch them in the act. This is more efficient
352 * than keeping a map per pid.
353 */
354 struct rb_node *n;
355 struct binder_buffer *buffer;
356 size_t total_alloc_size = 0;
357 size_t num_buffers = 0;
358
359 for (n = rb_first(&alloc->allocated_buffers); n != NULL;
360 n = rb_next(n)) {
361 buffer = rb_entry(n, struct binder_buffer, rb_node);
362 if (buffer->pid != pid)
363 continue;
364 if (!buffer->async_transaction)
365 continue;
366 total_alloc_size += binder_alloc_buffer_size(alloc, buffer)
367 + sizeof(struct binder_buffer);
368 num_buffers++;
369 }
370
371 /*
372 * Warn if this pid has more than 50 transactions, or more than 50% of
373 * async space (which is 25% of total buffer size). Oneway spam is only
374 * detected when the threshold is exceeded.
375 */
376 if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) {
377 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
378 "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n",
379 alloc->pid, pid, num_buffers, total_alloc_size);
380 if (!alloc->oneway_spam_detected) {
381 alloc->oneway_spam_detected = true;
382 return true;
383 }
384 }
385 return false;
386}
387
388static struct binder_buffer *binder_alloc_new_buf_locked(
389 struct binder_alloc *alloc,
390 size_t data_size,
391 size_t offsets_size,
392 size_t extra_buffers_size,
393 int is_async,
394 int pid)
395{
396 struct rb_node *n = alloc->free_buffers.rb_node;
397 struct binder_buffer *buffer;
398 size_t buffer_size;
399 struct rb_node *best_fit = NULL;
400 void __user *has_page_addr;
401 void __user *end_page_addr;
402 size_t size, data_offsets_size;
403 int ret;
404
405 if (!binder_alloc_get_vma(alloc)) {
406 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
407 "%d: binder_alloc_buf, no vma\n",
408 alloc->pid);
409 return ERR_PTR(-ESRCH);
410 }
411
412 data_offsets_size = ALIGN(data_size, sizeof(void *)) +
413 ALIGN(offsets_size, sizeof(void *));
414
415 if (data_offsets_size < data_size || data_offsets_size < offsets_size) {
416 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
417 "%d: got transaction with invalid size %zd-%zd\n",
418 alloc->pid, data_size, offsets_size);
419 return ERR_PTR(-EINVAL);
420 }
421 size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *));
422 if (size < data_offsets_size || size < extra_buffers_size) {
423 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
424 "%d: got transaction with invalid extra_buffers_size %zd\n",
425 alloc->pid, extra_buffers_size);
426 return ERR_PTR(-EINVAL);
427 }
428 if (is_async &&
429 alloc->free_async_space < size + sizeof(struct binder_buffer)) {
430 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
431 "%d: binder_alloc_buf size %zd failed, no async space left\n",
432 alloc->pid, size);
433 return ERR_PTR(-ENOSPC);
434 }
435
436 /* Pad 0-size buffers so they get assigned unique addresses */
437 size = max(size, sizeof(void *));
438
439 while (n) {
440 buffer = rb_entry(n, struct binder_buffer, rb_node);
441 BUG_ON(!buffer->free);
442 buffer_size = binder_alloc_buffer_size(alloc, buffer);
443
444 if (size < buffer_size) {
445 best_fit = n;
446 n = n->rb_left;
447 } else if (size > buffer_size)
448 n = n->rb_right;
449 else {
450 best_fit = n;
451 break;
452 }
453 }
454 if (best_fit == NULL) {
455 size_t allocated_buffers = 0;
456 size_t largest_alloc_size = 0;
457 size_t total_alloc_size = 0;
458 size_t free_buffers = 0;
459 size_t largest_free_size = 0;
460 size_t total_free_size = 0;
461
462 for (n = rb_first(&alloc->allocated_buffers); n != NULL;
463 n = rb_next(n)) {
464 buffer = rb_entry(n, struct binder_buffer, rb_node);
465 buffer_size = binder_alloc_buffer_size(alloc, buffer);
466 allocated_buffers++;
467 total_alloc_size += buffer_size;
468 if (buffer_size > largest_alloc_size)
469 largest_alloc_size = buffer_size;
470 }
471 for (n = rb_first(&alloc->free_buffers); n != NULL;
472 n = rb_next(n)) {
473 buffer = rb_entry(n, struct binder_buffer, rb_node);
474 buffer_size = binder_alloc_buffer_size(alloc, buffer);
475 free_buffers++;
476 total_free_size += buffer_size;
477 if (buffer_size > largest_free_size)
478 largest_free_size = buffer_size;
479 }
480 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
481 "%d: binder_alloc_buf size %zd failed, no address space\n",
482 alloc->pid, size);
483 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
484 "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
485 total_alloc_size, allocated_buffers,
486 largest_alloc_size, total_free_size,
487 free_buffers, largest_free_size);
488 return ERR_PTR(-ENOSPC);
489 }
490 if (n == NULL) {
491 buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
492 buffer_size = binder_alloc_buffer_size(alloc, buffer);
493 }
494
495 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
496 "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
497 alloc->pid, size, buffer, buffer_size);
498
499 has_page_addr = (void __user *)
500 (((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK);
501 WARN_ON(n && buffer_size != size);
502 end_page_addr =
503 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size);
504 if (end_page_addr > has_page_addr)
505 end_page_addr = has_page_addr;
506 ret = binder_update_page_range(alloc, 1, (void __user *)
507 PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr);
508 if (ret)
509 return ERR_PTR(ret);
510
511 if (buffer_size != size) {
512 struct binder_buffer *new_buffer;
513
514 new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
515 if (!new_buffer) {
516 pr_err("%s: %d failed to alloc new buffer struct\n",
517 __func__, alloc->pid);
518 goto err_alloc_buf_struct_failed;
519 }
520 new_buffer->user_data = (u8 __user *)buffer->user_data + size;
521 list_add(&new_buffer->entry, &buffer->entry);
522 new_buffer->free = 1;
523 binder_insert_free_buffer(alloc, new_buffer);
524 }
525
526 rb_erase(best_fit, &alloc->free_buffers);
527 buffer->free = 0;
528 buffer->allow_user_free = 0;
529 binder_insert_allocated_buffer_locked(alloc, buffer);
530 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
531 "%d: binder_alloc_buf size %zd got %pK\n",
532 alloc->pid, size, buffer);
533 buffer->data_size = data_size;
534 buffer->offsets_size = offsets_size;
535 buffer->async_transaction = is_async;
536 buffer->extra_buffers_size = extra_buffers_size;
537 buffer->pid = pid;
538 buffer->oneway_spam_suspect = false;
539 if (is_async) {
540 alloc->free_async_space -= size + sizeof(struct binder_buffer);
541 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
542 "%d: binder_alloc_buf size %zd async free %zd\n",
543 alloc->pid, size, alloc->free_async_space);
544 if (alloc->free_async_space < alloc->buffer_size / 10) {
545 /*
546 * Start detecting spammers once we have less than 20%
547 * of async space left (which is less than 10% of total
548 * buffer size).
549 */
550 buffer->oneway_spam_suspect = debug_low_async_space_locked(alloc, pid);
551 } else {
552 alloc->oneway_spam_detected = false;
553 }
554 }
555 return buffer;
556
557err_alloc_buf_struct_failed:
558 binder_update_page_range(alloc, 0, (void __user *)
559 PAGE_ALIGN((uintptr_t)buffer->user_data),
560 end_page_addr);
561 return ERR_PTR(-ENOMEM);
562}
563
564/**
565 * binder_alloc_new_buf() - Allocate a new binder buffer
566 * @alloc: binder_alloc for this proc
567 * @data_size: size of user data buffer
568 * @offsets_size: user specified buffer offset
569 * @extra_buffers_size: size of extra space for meta-data (eg, security context)
570 * @is_async: buffer for async transaction
571 * @pid: pid to attribute allocation to (used for debugging)
572 *
573 * Allocate a new buffer given the requested sizes. Returns
574 * the kernel version of the buffer pointer. The size allocated
575 * is the sum of the three given sizes (each rounded up to
576 * pointer-sized boundary)
577 *
578 * Return: The allocated buffer or %NULL if error
579 */
580struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
581 size_t data_size,
582 size_t offsets_size,
583 size_t extra_buffers_size,
584 int is_async,
585 int pid)
586{
587 struct binder_buffer *buffer;
588
589 mutex_lock(&alloc->mutex);
590 buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size,
591 extra_buffers_size, is_async, pid);
592 mutex_unlock(&alloc->mutex);
593 return buffer;
594}
595
596static void __user *buffer_start_page(struct binder_buffer *buffer)
597{
598 return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK);
599}
600
601static void __user *prev_buffer_end_page(struct binder_buffer *buffer)
602{
603 return (void __user *)
604 (((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK);
605}
606
607static void binder_delete_free_buffer(struct binder_alloc *alloc,
608 struct binder_buffer *buffer)
609{
610 struct binder_buffer *prev, *next = NULL;
611 bool to_free = true;
612
613 BUG_ON(alloc->buffers.next == &buffer->entry);
614 prev = binder_buffer_prev(buffer);
615 BUG_ON(!prev->free);
616 if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) {
617 to_free = false;
618 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
619 "%d: merge free, buffer %pK share page with %pK\n",
620 alloc->pid, buffer->user_data,
621 prev->user_data);
622 }
623
624 if (!list_is_last(&buffer->entry, &alloc->buffers)) {
625 next = binder_buffer_next(buffer);
626 if (buffer_start_page(next) == buffer_start_page(buffer)) {
627 to_free = false;
628 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
629 "%d: merge free, buffer %pK share page with %pK\n",
630 alloc->pid,
631 buffer->user_data,
632 next->user_data);
633 }
634 }
635
636 if (PAGE_ALIGNED(buffer->user_data)) {
637 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
638 "%d: merge free, buffer start %pK is page aligned\n",
639 alloc->pid, buffer->user_data);
640 to_free = false;
641 }
642
643 if (to_free) {
644 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
645 "%d: merge free, buffer %pK do not share page with %pK or %pK\n",
646 alloc->pid, buffer->user_data,
647 prev->user_data,
648 next ? next->user_data : NULL);
649 binder_update_page_range(alloc, 0, buffer_start_page(buffer),
650 buffer_start_page(buffer) + PAGE_SIZE);
651 }
652 list_del(&buffer->entry);
653 kfree(buffer);
654}
655
656static void binder_free_buf_locked(struct binder_alloc *alloc,
657 struct binder_buffer *buffer)
658{
659 size_t size, buffer_size;
660
661 buffer_size = binder_alloc_buffer_size(alloc, buffer);
662
663 size = ALIGN(buffer->data_size, sizeof(void *)) +
664 ALIGN(buffer->offsets_size, sizeof(void *)) +
665 ALIGN(buffer->extra_buffers_size, sizeof(void *));
666
667 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
668 "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
669 alloc->pid, buffer, size, buffer_size);
670
671 BUG_ON(buffer->free);
672 BUG_ON(size > buffer_size);
673 BUG_ON(buffer->transaction != NULL);
674 BUG_ON(buffer->user_data < alloc->buffer);
675 BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size);
676
677 if (buffer->async_transaction) {
678 alloc->free_async_space += buffer_size + sizeof(struct binder_buffer);
679
680 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
681 "%d: binder_free_buf size %zd async free %zd\n",
682 alloc->pid, size, alloc->free_async_space);
683 }
684
685 binder_update_page_range(alloc, 0,
686 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data),
687 (void __user *)(((uintptr_t)
688 buffer->user_data + buffer_size) & PAGE_MASK));
689
690 rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
691 buffer->free = 1;
692 if (!list_is_last(&buffer->entry, &alloc->buffers)) {
693 struct binder_buffer *next = binder_buffer_next(buffer);
694
695 if (next->free) {
696 rb_erase(&next->rb_node, &alloc->free_buffers);
697 binder_delete_free_buffer(alloc, next);
698 }
699 }
700 if (alloc->buffers.next != &buffer->entry) {
701 struct binder_buffer *prev = binder_buffer_prev(buffer);
702
703 if (prev->free) {
704 binder_delete_free_buffer(alloc, buffer);
705 rb_erase(&prev->rb_node, &alloc->free_buffers);
706 buffer = prev;
707 }
708 }
709 binder_insert_free_buffer(alloc, buffer);
710}
711
712static void binder_alloc_clear_buf(struct binder_alloc *alloc,
713 struct binder_buffer *buffer);
714/**
715 * binder_alloc_free_buf() - free a binder buffer
716 * @alloc: binder_alloc for this proc
717 * @buffer: kernel pointer to buffer
718 *
719 * Free the buffer allocated via binder_alloc_new_buf()
720 */
721void binder_alloc_free_buf(struct binder_alloc *alloc,
722 struct binder_buffer *buffer)
723{
724 /*
725 * We could eliminate the call to binder_alloc_clear_buf()
726 * from binder_alloc_deferred_release() by moving this to
727 * binder_alloc_free_buf_locked(). However, that could
728 * increase contention for the alloc mutex if clear_on_free
729 * is used frequently for large buffers. The mutex is not
730 * needed for correctness here.
731 */
732 if (buffer->clear_on_free) {
733 binder_alloc_clear_buf(alloc, buffer);
734 buffer->clear_on_free = false;
735 }
736 mutex_lock(&alloc->mutex);
737 binder_free_buf_locked(alloc, buffer);
738 mutex_unlock(&alloc->mutex);
739}
740
741/**
742 * binder_alloc_mmap_handler() - map virtual address space for proc
743 * @alloc: alloc structure for this proc
744 * @vma: vma passed to mmap()
745 *
746 * Called by binder_mmap() to initialize the space specified in
747 * vma for allocating binder buffers
748 *
749 * Return:
750 * 0 = success
751 * -EBUSY = address space already mapped
752 * -ENOMEM = failed to map memory to given address space
753 */
754int binder_alloc_mmap_handler(struct binder_alloc *alloc,
755 struct vm_area_struct *vma)
756{
757 int ret;
758 const char *failure_string;
759 struct binder_buffer *buffer;
760
761 mutex_lock(&binder_alloc_mmap_lock);
762 if (alloc->buffer_size) {
763 ret = -EBUSY;
764 failure_string = "already mapped";
765 goto err_already_mapped;
766 }
767 alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
768 SZ_4M);
769 mutex_unlock(&binder_alloc_mmap_lock);
770
771 alloc->buffer = (void __user *)vma->vm_start;
772
773 alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE,
774 sizeof(alloc->pages[0]),
775 GFP_KERNEL);
776 if (alloc->pages == NULL) {
777 ret = -ENOMEM;
778 failure_string = "alloc page array";
779 goto err_alloc_pages_failed;
780 }
781
782 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
783 if (!buffer) {
784 ret = -ENOMEM;
785 failure_string = "alloc buffer struct";
786 goto err_alloc_buf_struct_failed;
787 }
788
789 buffer->user_data = alloc->buffer;
790 list_add(&buffer->entry, &alloc->buffers);
791 buffer->free = 1;
792 binder_insert_free_buffer(alloc, buffer);
793 alloc->free_async_space = alloc->buffer_size / 2;
794 binder_alloc_set_vma(alloc, vma);
795 mmgrab(alloc->vma_vm_mm);
796
797 return 0;
798
799err_alloc_buf_struct_failed:
800 kfree(alloc->pages);
801 alloc->pages = NULL;
802err_alloc_pages_failed:
803 alloc->buffer = NULL;
804 mutex_lock(&binder_alloc_mmap_lock);
805 alloc->buffer_size = 0;
806err_already_mapped:
807 mutex_unlock(&binder_alloc_mmap_lock);
808 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
809 "%s: %d %lx-%lx %s failed %d\n", __func__,
810 alloc->pid, vma->vm_start, vma->vm_end,
811 failure_string, ret);
812 return ret;
813}
814
815
816void binder_alloc_deferred_release(struct binder_alloc *alloc)
817{
818 struct rb_node *n;
819 int buffers, page_count;
820 struct binder_buffer *buffer;
821
822 buffers = 0;
823 mutex_lock(&alloc->mutex);
824 BUG_ON(alloc->vma_addr &&
825 vma_lookup(alloc->vma_vm_mm, alloc->vma_addr));
826
827 while ((n = rb_first(&alloc->allocated_buffers))) {
828 buffer = rb_entry(n, struct binder_buffer, rb_node);
829
830 /* Transaction should already have been freed */
831 BUG_ON(buffer->transaction);
832
833 if (buffer->clear_on_free) {
834 binder_alloc_clear_buf(alloc, buffer);
835 buffer->clear_on_free = false;
836 }
837 binder_free_buf_locked(alloc, buffer);
838 buffers++;
839 }
840
841 while (!list_empty(&alloc->buffers)) {
842 buffer = list_first_entry(&alloc->buffers,
843 struct binder_buffer, entry);
844 WARN_ON(!buffer->free);
845
846 list_del(&buffer->entry);
847 WARN_ON_ONCE(!list_empty(&alloc->buffers));
848 kfree(buffer);
849 }
850
851 page_count = 0;
852 if (alloc->pages) {
853 int i;
854
855 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
856 void __user *page_addr;
857 bool on_lru;
858
859 if (!alloc->pages[i].page_ptr)
860 continue;
861
862 on_lru = list_lru_del(&binder_alloc_lru,
863 &alloc->pages[i].lru);
864 page_addr = alloc->buffer + i * PAGE_SIZE;
865 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
866 "%s: %d: page %d at %pK %s\n",
867 __func__, alloc->pid, i, page_addr,
868 on_lru ? "on lru" : "active");
869 __free_page(alloc->pages[i].page_ptr);
870 page_count++;
871 }
872 kfree(alloc->pages);
873 }
874 mutex_unlock(&alloc->mutex);
875 if (alloc->vma_vm_mm)
876 mmdrop(alloc->vma_vm_mm);
877
878 binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
879 "%s: %d buffers %d, pages %d\n",
880 __func__, alloc->pid, buffers, page_count);
881}
882
883static void print_binder_buffer(struct seq_file *m, const char *prefix,
884 struct binder_buffer *buffer)
885{
886 seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n",
887 prefix, buffer->debug_id, buffer->user_data,
888 buffer->data_size, buffer->offsets_size,
889 buffer->extra_buffers_size,
890 buffer->transaction ? "active" : "delivered");
891}
892
893/**
894 * binder_alloc_print_allocated() - print buffer info
895 * @m: seq_file for output via seq_printf()
896 * @alloc: binder_alloc for this proc
897 *
898 * Prints information about every buffer associated with
899 * the binder_alloc state to the given seq_file
900 */
901void binder_alloc_print_allocated(struct seq_file *m,
902 struct binder_alloc *alloc)
903{
904 struct rb_node *n;
905
906 mutex_lock(&alloc->mutex);
907 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
908 print_binder_buffer(m, " buffer",
909 rb_entry(n, struct binder_buffer, rb_node));
910 mutex_unlock(&alloc->mutex);
911}
912
913/**
914 * binder_alloc_print_pages() - print page usage
915 * @m: seq_file for output via seq_printf()
916 * @alloc: binder_alloc for this proc
917 */
918void binder_alloc_print_pages(struct seq_file *m,
919 struct binder_alloc *alloc)
920{
921 struct binder_lru_page *page;
922 int i;
923 int active = 0;
924 int lru = 0;
925 int free = 0;
926
927 mutex_lock(&alloc->mutex);
928 /*
929 * Make sure the binder_alloc is fully initialized, otherwise we might
930 * read inconsistent state.
931 */
932 if (binder_alloc_get_vma(alloc) != NULL) {
933 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
934 page = &alloc->pages[i];
935 if (!page->page_ptr)
936 free++;
937 else if (list_empty(&page->lru))
938 active++;
939 else
940 lru++;
941 }
942 }
943 mutex_unlock(&alloc->mutex);
944 seq_printf(m, " pages: %d:%d:%d\n", active, lru, free);
945 seq_printf(m, " pages high watermark: %zu\n", alloc->pages_high);
946}
947
948/**
949 * binder_alloc_get_allocated_count() - return count of buffers
950 * @alloc: binder_alloc for this proc
951 *
952 * Return: count of allocated buffers
953 */
954int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
955{
956 struct rb_node *n;
957 int count = 0;
958
959 mutex_lock(&alloc->mutex);
960 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
961 count++;
962 mutex_unlock(&alloc->mutex);
963 return count;
964}
965
966
967/**
968 * binder_alloc_vma_close() - invalidate address space
969 * @alloc: binder_alloc for this proc
970 *
971 * Called from binder_vma_close() when releasing address space.
972 * Clears alloc->vma to prevent new incoming transactions from
973 * allocating more buffers.
974 */
975void binder_alloc_vma_close(struct binder_alloc *alloc)
976{
977 binder_alloc_set_vma(alloc, NULL);
978}
979
980/**
981 * binder_alloc_free_page() - shrinker callback to free pages
982 * @item: item to free
983 * @lock: lock protecting the item
984 * @cb_arg: callback argument
985 *
986 * Called from list_lru_walk() in binder_shrink_scan() to free
987 * up pages when the system is under memory pressure.
988 */
989enum lru_status binder_alloc_free_page(struct list_head *item,
990 struct list_lru_one *lru,
991 spinlock_t *lock,
992 void *cb_arg)
993 __must_hold(lock)
994{
995 struct mm_struct *mm = NULL;
996 struct binder_lru_page *page = container_of(item,
997 struct binder_lru_page,
998 lru);
999 struct binder_alloc *alloc;
1000 uintptr_t page_addr;
1001 size_t index;
1002 struct vm_area_struct *vma;
1003
1004 alloc = page->alloc;
1005 if (!mutex_trylock(&alloc->mutex))
1006 goto err_get_alloc_mutex_failed;
1007
1008 if (!page->page_ptr)
1009 goto err_page_already_freed;
1010
1011 index = page - alloc->pages;
1012 page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE;
1013
1014 mm = alloc->vma_vm_mm;
1015 if (!mmget_not_zero(mm))
1016 goto err_mmget;
1017 if (!mmap_read_trylock(mm))
1018 goto err_mmap_read_lock_failed;
1019 vma = binder_alloc_get_vma(alloc);
1020
1021 list_lru_isolate(lru, item);
1022 spin_unlock(lock);
1023
1024 if (vma) {
1025 trace_binder_unmap_user_start(alloc, index);
1026
1027 zap_page_range(vma, page_addr, PAGE_SIZE);
1028
1029 trace_binder_unmap_user_end(alloc, index);
1030 }
1031 mmap_read_unlock(mm);
1032 mmput_async(mm);
1033
1034 trace_binder_unmap_kernel_start(alloc, index);
1035
1036 __free_page(page->page_ptr);
1037 page->page_ptr = NULL;
1038
1039 trace_binder_unmap_kernel_end(alloc, index);
1040
1041 spin_lock(lock);
1042 mutex_unlock(&alloc->mutex);
1043 return LRU_REMOVED_RETRY;
1044
1045err_mmap_read_lock_failed:
1046 mmput_async(mm);
1047err_mmget:
1048err_page_already_freed:
1049 mutex_unlock(&alloc->mutex);
1050err_get_alloc_mutex_failed:
1051 return LRU_SKIP;
1052}
1053
1054static unsigned long
1055binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1056{
1057 return list_lru_count(&binder_alloc_lru);
1058}
1059
1060static unsigned long
1061binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1062{
1063 return list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
1064 NULL, sc->nr_to_scan);
1065}
1066
1067static struct shrinker binder_shrinker = {
1068 .count_objects = binder_shrink_count,
1069 .scan_objects = binder_shrink_scan,
1070 .seeks = DEFAULT_SEEKS,
1071};
1072
1073/**
1074 * binder_alloc_init() - called by binder_open() for per-proc initialization
1075 * @alloc: binder_alloc for this proc
1076 *
1077 * Called from binder_open() to initialize binder_alloc fields for
1078 * new binder proc
1079 */
1080void binder_alloc_init(struct binder_alloc *alloc)
1081{
1082 alloc->pid = current->group_leader->pid;
1083 mutex_init(&alloc->mutex);
1084 INIT_LIST_HEAD(&alloc->buffers);
1085}
1086
1087int binder_alloc_shrinker_init(void)
1088{
1089 int ret = list_lru_init(&binder_alloc_lru);
1090
1091 if (ret == 0) {
1092 ret = register_shrinker(&binder_shrinker, "android-binder");
1093 if (ret)
1094 list_lru_destroy(&binder_alloc_lru);
1095 }
1096 return ret;
1097}
1098
1099/**
1100 * check_buffer() - verify that buffer/offset is safe to access
1101 * @alloc: binder_alloc for this proc
1102 * @buffer: binder buffer to be accessed
1103 * @offset: offset into @buffer data
1104 * @bytes: bytes to access from offset
1105 *
1106 * Check that the @offset/@bytes are within the size of the given
1107 * @buffer and that the buffer is currently active and not freeable.
1108 * Offsets must also be multiples of sizeof(u32). The kernel is
1109 * allowed to touch the buffer in two cases:
1110 *
1111 * 1) when the buffer is being created:
1112 * (buffer->free == 0 && buffer->allow_user_free == 0)
1113 * 2) when the buffer is being torn down:
1114 * (buffer->free == 0 && buffer->transaction == NULL).
1115 *
1116 * Return: true if the buffer is safe to access
1117 */
1118static inline bool check_buffer(struct binder_alloc *alloc,
1119 struct binder_buffer *buffer,
1120 binder_size_t offset, size_t bytes)
1121{
1122 size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1123
1124 return buffer_size >= bytes &&
1125 offset <= buffer_size - bytes &&
1126 IS_ALIGNED(offset, sizeof(u32)) &&
1127 !buffer->free &&
1128 (!buffer->allow_user_free || !buffer->transaction);
1129}
1130
1131/**
1132 * binder_alloc_get_page() - get kernel pointer for given buffer offset
1133 * @alloc: binder_alloc for this proc
1134 * @buffer: binder buffer to be accessed
1135 * @buffer_offset: offset into @buffer data
1136 * @pgoffp: address to copy final page offset to
1137 *
1138 * Lookup the struct page corresponding to the address
1139 * at @buffer_offset into @buffer->user_data. If @pgoffp is not
1140 * NULL, the byte-offset into the page is written there.
1141 *
1142 * The caller is responsible to ensure that the offset points
1143 * to a valid address within the @buffer and that @buffer is
1144 * not freeable by the user. Since it can't be freed, we are
1145 * guaranteed that the corresponding elements of @alloc->pages[]
1146 * cannot change.
1147 *
1148 * Return: struct page
1149 */
1150static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
1151 struct binder_buffer *buffer,
1152 binder_size_t buffer_offset,
1153 pgoff_t *pgoffp)
1154{
1155 binder_size_t buffer_space_offset = buffer_offset +
1156 (buffer->user_data - alloc->buffer);
1157 pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
1158 size_t index = buffer_space_offset >> PAGE_SHIFT;
1159 struct binder_lru_page *lru_page;
1160
1161 lru_page = &alloc->pages[index];
1162 *pgoffp = pgoff;
1163 return lru_page->page_ptr;
1164}
1165
1166/**
1167 * binder_alloc_clear_buf() - zero out buffer
1168 * @alloc: binder_alloc for this proc
1169 * @buffer: binder buffer to be cleared
1170 *
1171 * memset the given buffer to 0
1172 */
1173static void binder_alloc_clear_buf(struct binder_alloc *alloc,
1174 struct binder_buffer *buffer)
1175{
1176 size_t bytes = binder_alloc_buffer_size(alloc, buffer);
1177 binder_size_t buffer_offset = 0;
1178
1179 while (bytes) {
1180 unsigned long size;
1181 struct page *page;
1182 pgoff_t pgoff;
1183
1184 page = binder_alloc_get_page(alloc, buffer,
1185 buffer_offset, &pgoff);
1186 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1187 memset_page(page, pgoff, 0, size);
1188 bytes -= size;
1189 buffer_offset += size;
1190 }
1191}
1192
1193/**
1194 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1195 * @alloc: binder_alloc for this proc
1196 * @buffer: binder buffer to be accessed
1197 * @buffer_offset: offset into @buffer data
1198 * @from: userspace pointer to source buffer
1199 * @bytes: bytes to copy
1200 *
1201 * Copy bytes from source userspace to target buffer.
1202 *
1203 * Return: bytes remaining to be copied
1204 */
1205unsigned long
1206binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1207 struct binder_buffer *buffer,
1208 binder_size_t buffer_offset,
1209 const void __user *from,
1210 size_t bytes)
1211{
1212 if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1213 return bytes;
1214
1215 while (bytes) {
1216 unsigned long size;
1217 unsigned long ret;
1218 struct page *page;
1219 pgoff_t pgoff;
1220 void *kptr;
1221
1222 page = binder_alloc_get_page(alloc, buffer,
1223 buffer_offset, &pgoff);
1224 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1225 kptr = kmap_local_page(page) + pgoff;
1226 ret = copy_from_user(kptr, from, size);
1227 kunmap_local(kptr);
1228 if (ret)
1229 return bytes - size + ret;
1230 bytes -= size;
1231 from += size;
1232 buffer_offset += size;
1233 }
1234 return 0;
1235}
1236
1237static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1238 bool to_buffer,
1239 struct binder_buffer *buffer,
1240 binder_size_t buffer_offset,
1241 void *ptr,
1242 size_t bytes)
1243{
1244 /* All copies must be 32-bit aligned and 32-bit size */
1245 if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1246 return -EINVAL;
1247
1248 while (bytes) {
1249 unsigned long size;
1250 struct page *page;
1251 pgoff_t pgoff;
1252
1253 page = binder_alloc_get_page(alloc, buffer,
1254 buffer_offset, &pgoff);
1255 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1256 if (to_buffer)
1257 memcpy_to_page(page, pgoff, ptr, size);
1258 else
1259 memcpy_from_page(ptr, page, pgoff, size);
1260 bytes -= size;
1261 pgoff = 0;
1262 ptr = ptr + size;
1263 buffer_offset += size;
1264 }
1265 return 0;
1266}
1267
1268int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1269 struct binder_buffer *buffer,
1270 binder_size_t buffer_offset,
1271 void *src,
1272 size_t bytes)
1273{
1274 return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1275 src, bytes);
1276}
1277
1278int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1279 void *dest,
1280 struct binder_buffer *buffer,
1281 binder_size_t buffer_offset,
1282 size_t bytes)
1283{
1284 return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1285 dest, bytes);
1286}
1287