Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * processor_idle - idle state submodule to the ACPI processor driver
4 *
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 * - Added processor hotplug support
10 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11 * - Added support for C3 on SMP
12 */
13#define pr_fmt(fmt) "ACPI: " fmt
14
15#include <linux/module.h>
16#include <linux/acpi.h>
17#include <linux/dmi.h>
18#include <linux/sched.h> /* need_resched() */
19#include <linux/sort.h>
20#include <linux/tick.h>
21#include <linux/cpuidle.h>
22#include <linux/cpu.h>
23#include <linux/minmax.h>
24#include <linux/perf_event.h>
25#include <acpi/processor.h>
26#include <linux/context_tracking.h>
27
28/*
29 * Include the apic definitions for x86 to have the APIC timer related defines
30 * available also for UP (on SMP it gets magically included via linux/smp.h).
31 * asm/acpi.h is not an option, as it would require more include magic. Also
32 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
33 */
34#ifdef CONFIG_X86
35#include <asm/apic.h>
36#include <asm/cpu.h>
37#endif
38
39#define ACPI_IDLE_STATE_START (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
40
41static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
42module_param(max_cstate, uint, 0400);
43static bool nocst __read_mostly;
44module_param(nocst, bool, 0400);
45static bool bm_check_disable __read_mostly;
46module_param(bm_check_disable, bool, 0400);
47
48static unsigned int latency_factor __read_mostly = 2;
49module_param(latency_factor, uint, 0644);
50
51static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
52
53struct cpuidle_driver acpi_idle_driver = {
54 .name = "acpi_idle",
55 .owner = THIS_MODULE,
56};
57
58#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
59static
60DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
61
62static int disabled_by_idle_boot_param(void)
63{
64 return boot_option_idle_override == IDLE_POLL ||
65 boot_option_idle_override == IDLE_HALT;
66}
67
68/*
69 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
70 * For now disable this. Probably a bug somewhere else.
71 *
72 * To skip this limit, boot/load with a large max_cstate limit.
73 */
74static int set_max_cstate(const struct dmi_system_id *id)
75{
76 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
77 return 0;
78
79 pr_notice("%s detected - limiting to C%ld max_cstate."
80 " Override with \"processor.max_cstate=%d\"\n", id->ident,
81 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
82
83 max_cstate = (long)id->driver_data;
84
85 return 0;
86}
87
88static const struct dmi_system_id processor_power_dmi_table[] = {
89 { set_max_cstate, "Clevo 5600D", {
90 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
91 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
92 (void *)2},
93 { set_max_cstate, "Pavilion zv5000", {
94 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
95 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
96 (void *)1},
97 { set_max_cstate, "Asus L8400B", {
98 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
99 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
100 (void *)1},
101 {},
102};
103
104
105/*
106 * Callers should disable interrupts before the call and enable
107 * interrupts after return.
108 */
109static void __cpuidle acpi_safe_halt(void)
110{
111 if (!tif_need_resched()) {
112 safe_halt();
113 local_irq_disable();
114 }
115}
116
117#ifdef ARCH_APICTIMER_STOPS_ON_C3
118
119/*
120 * Some BIOS implementations switch to C3 in the published C2 state.
121 * This seems to be a common problem on AMD boxen, but other vendors
122 * are affected too. We pick the most conservative approach: we assume
123 * that the local APIC stops in both C2 and C3.
124 */
125static void lapic_timer_check_state(int state, struct acpi_processor *pr,
126 struct acpi_processor_cx *cx)
127{
128 struct acpi_processor_power *pwr = &pr->power;
129 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
130
131 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
132 return;
133
134 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
135 type = ACPI_STATE_C1;
136
137 /*
138 * Check, if one of the previous states already marked the lapic
139 * unstable
140 */
141 if (pwr->timer_broadcast_on_state < state)
142 return;
143
144 if (cx->type >= type)
145 pr->power.timer_broadcast_on_state = state;
146}
147
148static void __lapic_timer_propagate_broadcast(void *arg)
149{
150 struct acpi_processor *pr = (struct acpi_processor *) arg;
151
152 if (pr->power.timer_broadcast_on_state < INT_MAX)
153 tick_broadcast_enable();
154 else
155 tick_broadcast_disable();
156}
157
158static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
159{
160 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
161 (void *)pr, 1);
162}
163
164/* Power(C) State timer broadcast control */
165static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
166 struct acpi_processor_cx *cx)
167{
168 return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
169}
170
171#else
172
173static void lapic_timer_check_state(int state, struct acpi_processor *pr,
174 struct acpi_processor_cx *cstate) { }
175static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
176
177static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
178 struct acpi_processor_cx *cx)
179{
180 return false;
181}
182
183#endif
184
185#if defined(CONFIG_X86)
186static void tsc_check_state(int state)
187{
188 switch (boot_cpu_data.x86_vendor) {
189 case X86_VENDOR_HYGON:
190 case X86_VENDOR_AMD:
191 case X86_VENDOR_INTEL:
192 case X86_VENDOR_CENTAUR:
193 case X86_VENDOR_ZHAOXIN:
194 /*
195 * AMD Fam10h TSC will tick in all
196 * C/P/S0/S1 states when this bit is set.
197 */
198 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
199 return;
200 fallthrough;
201 default:
202 /* TSC could halt in idle, so notify users */
203 if (state > ACPI_STATE_C1)
204 mark_tsc_unstable("TSC halts in idle");
205 }
206}
207#else
208static void tsc_check_state(int state) { return; }
209#endif
210
211static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
212{
213
214 if (!pr->pblk)
215 return -ENODEV;
216
217 /* if info is obtained from pblk/fadt, type equals state */
218 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
219 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
220
221#ifndef CONFIG_HOTPLUG_CPU
222 /*
223 * Check for P_LVL2_UP flag before entering C2 and above on
224 * an SMP system.
225 */
226 if ((num_online_cpus() > 1) &&
227 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
228 return -ENODEV;
229#endif
230
231 /* determine C2 and C3 address from pblk */
232 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
233 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
234
235 /* determine latencies from FADT */
236 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
237 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
238
239 /*
240 * FADT specified C2 latency must be less than or equal to
241 * 100 microseconds.
242 */
243 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
244 acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
245 acpi_gbl_FADT.c2_latency);
246 /* invalidate C2 */
247 pr->power.states[ACPI_STATE_C2].address = 0;
248 }
249
250 /*
251 * FADT supplied C3 latency must be less than or equal to
252 * 1000 microseconds.
253 */
254 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
255 acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
256 acpi_gbl_FADT.c3_latency);
257 /* invalidate C3 */
258 pr->power.states[ACPI_STATE_C3].address = 0;
259 }
260
261 acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
262 pr->power.states[ACPI_STATE_C2].address,
263 pr->power.states[ACPI_STATE_C3].address);
264
265 snprintf(pr->power.states[ACPI_STATE_C2].desc,
266 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
267 pr->power.states[ACPI_STATE_C2].address);
268 snprintf(pr->power.states[ACPI_STATE_C3].desc,
269 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
270 pr->power.states[ACPI_STATE_C3].address);
271
272 return 0;
273}
274
275static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
276{
277 if (!pr->power.states[ACPI_STATE_C1].valid) {
278 /* set the first C-State to C1 */
279 /* all processors need to support C1 */
280 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
281 pr->power.states[ACPI_STATE_C1].valid = 1;
282 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
283
284 snprintf(pr->power.states[ACPI_STATE_C1].desc,
285 ACPI_CX_DESC_LEN, "ACPI HLT");
286 }
287 /* the C0 state only exists as a filler in our array */
288 pr->power.states[ACPI_STATE_C0].valid = 1;
289 return 0;
290}
291
292static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
293{
294 int ret;
295
296 if (nocst)
297 return -ENODEV;
298
299 ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
300 if (ret)
301 return ret;
302
303 if (!pr->power.count)
304 return -EFAULT;
305
306 pr->flags.has_cst = 1;
307 return 0;
308}
309
310static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
311 struct acpi_processor_cx *cx)
312{
313 static int bm_check_flag = -1;
314 static int bm_control_flag = -1;
315
316
317 if (!cx->address)
318 return;
319
320 /*
321 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
322 * DMA transfers are used by any ISA device to avoid livelock.
323 * Note that we could disable Type-F DMA (as recommended by
324 * the erratum), but this is known to disrupt certain ISA
325 * devices thus we take the conservative approach.
326 */
327 else if (errata.piix4.fdma) {
328 acpi_handle_debug(pr->handle,
329 "C3 not supported on PIIX4 with Type-F DMA\n");
330 return;
331 }
332
333 /* All the logic here assumes flags.bm_check is same across all CPUs */
334 if (bm_check_flag == -1) {
335 /* Determine whether bm_check is needed based on CPU */
336 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
337 bm_check_flag = pr->flags.bm_check;
338 bm_control_flag = pr->flags.bm_control;
339 } else {
340 pr->flags.bm_check = bm_check_flag;
341 pr->flags.bm_control = bm_control_flag;
342 }
343
344 if (pr->flags.bm_check) {
345 if (!pr->flags.bm_control) {
346 if (pr->flags.has_cst != 1) {
347 /* bus mastering control is necessary */
348 acpi_handle_debug(pr->handle,
349 "C3 support requires BM control\n");
350 return;
351 } else {
352 /* Here we enter C3 without bus mastering */
353 acpi_handle_debug(pr->handle,
354 "C3 support without BM control\n");
355 }
356 }
357 } else {
358 /*
359 * WBINVD should be set in fadt, for C3 state to be
360 * supported on when bm_check is not required.
361 */
362 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
363 acpi_handle_debug(pr->handle,
364 "Cache invalidation should work properly"
365 " for C3 to be enabled on SMP systems\n");
366 return;
367 }
368 }
369
370 /*
371 * Otherwise we've met all of our C3 requirements.
372 * Normalize the C3 latency to expidite policy. Enable
373 * checking of bus mastering status (bm_check) so we can
374 * use this in our C3 policy
375 */
376 cx->valid = 1;
377
378 /*
379 * On older chipsets, BM_RLD needs to be set
380 * in order for Bus Master activity to wake the
381 * system from C3. Newer chipsets handle DMA
382 * during C3 automatically and BM_RLD is a NOP.
383 * In either case, the proper way to
384 * handle BM_RLD is to set it and leave it set.
385 */
386 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
387
388 return;
389}
390
391static int acpi_cst_latency_cmp(const void *a, const void *b)
392{
393 const struct acpi_processor_cx *x = a, *y = b;
394
395 if (!(x->valid && y->valid))
396 return 0;
397 if (x->latency > y->latency)
398 return 1;
399 if (x->latency < y->latency)
400 return -1;
401 return 0;
402}
403static void acpi_cst_latency_swap(void *a, void *b, int n)
404{
405 struct acpi_processor_cx *x = a, *y = b;
406
407 if (!(x->valid && y->valid))
408 return;
409 swap(x->latency, y->latency);
410}
411
412static int acpi_processor_power_verify(struct acpi_processor *pr)
413{
414 unsigned int i;
415 unsigned int working = 0;
416 unsigned int last_latency = 0;
417 unsigned int last_type = 0;
418 bool buggy_latency = false;
419
420 pr->power.timer_broadcast_on_state = INT_MAX;
421
422 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
423 struct acpi_processor_cx *cx = &pr->power.states[i];
424
425 switch (cx->type) {
426 case ACPI_STATE_C1:
427 cx->valid = 1;
428 break;
429
430 case ACPI_STATE_C2:
431 if (!cx->address)
432 break;
433 cx->valid = 1;
434 break;
435
436 case ACPI_STATE_C3:
437 acpi_processor_power_verify_c3(pr, cx);
438 break;
439 }
440 if (!cx->valid)
441 continue;
442 if (cx->type >= last_type && cx->latency < last_latency)
443 buggy_latency = true;
444 last_latency = cx->latency;
445 last_type = cx->type;
446
447 lapic_timer_check_state(i, pr, cx);
448 tsc_check_state(cx->type);
449 working++;
450 }
451
452 if (buggy_latency) {
453 pr_notice("FW issue: working around C-state latencies out of order\n");
454 sort(&pr->power.states[1], max_cstate,
455 sizeof(struct acpi_processor_cx),
456 acpi_cst_latency_cmp,
457 acpi_cst_latency_swap);
458 }
459
460 lapic_timer_propagate_broadcast(pr);
461
462 return (working);
463}
464
465static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
466{
467 unsigned int i;
468 int result;
469
470
471 /* NOTE: the idle thread may not be running while calling
472 * this function */
473
474 /* Zero initialize all the C-states info. */
475 memset(pr->power.states, 0, sizeof(pr->power.states));
476
477 result = acpi_processor_get_power_info_cst(pr);
478 if (result == -ENODEV)
479 result = acpi_processor_get_power_info_fadt(pr);
480
481 if (result)
482 return result;
483
484 acpi_processor_get_power_info_default(pr);
485
486 pr->power.count = acpi_processor_power_verify(pr);
487
488 /*
489 * if one state of type C2 or C3 is available, mark this
490 * CPU as being "idle manageable"
491 */
492 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
493 if (pr->power.states[i].valid) {
494 pr->power.count = i;
495 pr->flags.power = 1;
496 }
497 }
498
499 return 0;
500}
501
502/**
503 * acpi_idle_bm_check - checks if bus master activity was detected
504 */
505static int acpi_idle_bm_check(void)
506{
507 u32 bm_status = 0;
508
509 if (bm_check_disable)
510 return 0;
511
512 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
513 if (bm_status)
514 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
515 /*
516 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
517 * the true state of bus mastering activity; forcing us to
518 * manually check the BMIDEA bit of each IDE channel.
519 */
520 else if (errata.piix4.bmisx) {
521 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
522 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
523 bm_status = 1;
524 }
525 return bm_status;
526}
527
528static void wait_for_freeze(void)
529{
530#ifdef CONFIG_X86
531 /* No delay is needed if we are in guest */
532 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
533 return;
534#endif
535 /* Dummy wait op - must do something useless after P_LVL2 read
536 because chipsets cannot guarantee that STPCLK# signal
537 gets asserted in time to freeze execution properly. */
538 inl(acpi_gbl_FADT.xpm_timer_block.address);
539}
540
541/**
542 * acpi_idle_do_entry - enter idle state using the appropriate method
543 * @cx: cstate data
544 *
545 * Caller disables interrupt before call and enables interrupt after return.
546 */
547static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
548{
549 perf_lopwr_cb(true);
550
551 if (cx->entry_method == ACPI_CSTATE_FFH) {
552 /* Call into architectural FFH based C-state */
553 acpi_processor_ffh_cstate_enter(cx);
554 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
555 acpi_safe_halt();
556 } else {
557 /* IO port based C-state */
558 inb(cx->address);
559 wait_for_freeze();
560 }
561
562 perf_lopwr_cb(false);
563}
564
565/**
566 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
567 * @dev: the target CPU
568 * @index: the index of suggested state
569 */
570static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
571{
572 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
573
574 ACPI_FLUSH_CPU_CACHE();
575
576 while (1) {
577
578 if (cx->entry_method == ACPI_CSTATE_HALT)
579 safe_halt();
580 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
581 inb(cx->address);
582 wait_for_freeze();
583 } else
584 return -ENODEV;
585
586#if defined(CONFIG_X86) && defined(CONFIG_HOTPLUG_CPU)
587 cond_wakeup_cpu0();
588#endif
589 }
590
591 /* Never reached */
592 return 0;
593}
594
595static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
596{
597 return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
598 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
599}
600
601static int c3_cpu_count;
602static DEFINE_RAW_SPINLOCK(c3_lock);
603
604/**
605 * acpi_idle_enter_bm - enters C3 with proper BM handling
606 * @drv: cpuidle driver
607 * @pr: Target processor
608 * @cx: Target state context
609 * @index: index of target state
610 */
611static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv,
612 struct acpi_processor *pr,
613 struct acpi_processor_cx *cx,
614 int index)
615{
616 static struct acpi_processor_cx safe_cx = {
617 .entry_method = ACPI_CSTATE_HALT,
618 };
619
620 /*
621 * disable bus master
622 * bm_check implies we need ARB_DIS
623 * bm_control implies whether we can do ARB_DIS
624 *
625 * That leaves a case where bm_check is set and bm_control is not set.
626 * In that case we cannot do much, we enter C3 without doing anything.
627 */
628 bool dis_bm = pr->flags.bm_control;
629
630 /* If we can skip BM, demote to a safe state. */
631 if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
632 dis_bm = false;
633 index = drv->safe_state_index;
634 if (index >= 0) {
635 cx = this_cpu_read(acpi_cstate[index]);
636 } else {
637 cx = &safe_cx;
638 index = -EBUSY;
639 }
640 }
641
642 if (dis_bm) {
643 raw_spin_lock(&c3_lock);
644 c3_cpu_count++;
645 /* Disable bus master arbitration when all CPUs are in C3 */
646 if (c3_cpu_count == num_online_cpus())
647 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
648 raw_spin_unlock(&c3_lock);
649 }
650
651 ct_idle_enter();
652
653 acpi_idle_do_entry(cx);
654
655 ct_idle_exit();
656
657 /* Re-enable bus master arbitration */
658 if (dis_bm) {
659 raw_spin_lock(&c3_lock);
660 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
661 c3_cpu_count--;
662 raw_spin_unlock(&c3_lock);
663 }
664
665 return index;
666}
667
668static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev,
669 struct cpuidle_driver *drv, int index)
670{
671 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
672 struct acpi_processor *pr;
673
674 pr = __this_cpu_read(processors);
675 if (unlikely(!pr))
676 return -EINVAL;
677
678 if (cx->type != ACPI_STATE_C1) {
679 if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
680 return acpi_idle_enter_bm(drv, pr, cx, index);
681
682 /* C2 to C1 demotion. */
683 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
684 index = ACPI_IDLE_STATE_START;
685 cx = per_cpu(acpi_cstate[index], dev->cpu);
686 }
687 }
688
689 if (cx->type == ACPI_STATE_C3)
690 ACPI_FLUSH_CPU_CACHE();
691
692 acpi_idle_do_entry(cx);
693
694 return index;
695}
696
697static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev,
698 struct cpuidle_driver *drv, int index)
699{
700 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
701
702 if (cx->type == ACPI_STATE_C3) {
703 struct acpi_processor *pr = __this_cpu_read(processors);
704
705 if (unlikely(!pr))
706 return 0;
707
708 if (pr->flags.bm_check) {
709 u8 bm_sts_skip = cx->bm_sts_skip;
710
711 /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
712 cx->bm_sts_skip = 1;
713 acpi_idle_enter_bm(drv, pr, cx, index);
714 cx->bm_sts_skip = bm_sts_skip;
715
716 return 0;
717 } else {
718 ACPI_FLUSH_CPU_CACHE();
719 }
720 }
721 acpi_idle_do_entry(cx);
722
723 return 0;
724}
725
726static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
727 struct cpuidle_device *dev)
728{
729 int i, count = ACPI_IDLE_STATE_START;
730 struct acpi_processor_cx *cx;
731 struct cpuidle_state *state;
732
733 if (max_cstate == 0)
734 max_cstate = 1;
735
736 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
737 state = &acpi_idle_driver.states[count];
738 cx = &pr->power.states[i];
739
740 if (!cx->valid)
741 continue;
742
743 per_cpu(acpi_cstate[count], dev->cpu) = cx;
744
745 if (lapic_timer_needs_broadcast(pr, cx))
746 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
747
748 if (cx->type == ACPI_STATE_C3) {
749 state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
750 if (pr->flags.bm_check)
751 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
752 }
753
754 count++;
755 if (count == CPUIDLE_STATE_MAX)
756 break;
757 }
758
759 if (!count)
760 return -EINVAL;
761
762 return 0;
763}
764
765static int acpi_processor_setup_cstates(struct acpi_processor *pr)
766{
767 int i, count;
768 struct acpi_processor_cx *cx;
769 struct cpuidle_state *state;
770 struct cpuidle_driver *drv = &acpi_idle_driver;
771
772 if (max_cstate == 0)
773 max_cstate = 1;
774
775 if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
776 cpuidle_poll_state_init(drv);
777 count = 1;
778 } else {
779 count = 0;
780 }
781
782 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
783 cx = &pr->power.states[i];
784
785 if (!cx->valid)
786 continue;
787
788 state = &drv->states[count];
789 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
790 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
791 state->exit_latency = cx->latency;
792 state->target_residency = cx->latency * latency_factor;
793 state->enter = acpi_idle_enter;
794
795 state->flags = 0;
796 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2 ||
797 cx->type == ACPI_STATE_C3) {
798 state->enter_dead = acpi_idle_play_dead;
799 if (cx->type != ACPI_STATE_C3)
800 drv->safe_state_index = count;
801 }
802 /*
803 * Halt-induced C1 is not good for ->enter_s2idle, because it
804 * re-enables interrupts on exit. Moreover, C1 is generally not
805 * particularly interesting from the suspend-to-idle angle, so
806 * avoid C1 and the situations in which we may need to fall back
807 * to it altogether.
808 */
809 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
810 state->enter_s2idle = acpi_idle_enter_s2idle;
811
812 count++;
813 if (count == CPUIDLE_STATE_MAX)
814 break;
815 }
816
817 drv->state_count = count;
818
819 if (!count)
820 return -EINVAL;
821
822 return 0;
823}
824
825static inline void acpi_processor_cstate_first_run_checks(void)
826{
827 static int first_run;
828
829 if (first_run)
830 return;
831 dmi_check_system(processor_power_dmi_table);
832 max_cstate = acpi_processor_cstate_check(max_cstate);
833 if (max_cstate < ACPI_C_STATES_MAX)
834 pr_notice("processor limited to max C-state %d\n", max_cstate);
835
836 first_run++;
837
838 if (nocst)
839 return;
840
841 acpi_processor_claim_cst_control();
842}
843#else
844
845static inline int disabled_by_idle_boot_param(void) { return 0; }
846static inline void acpi_processor_cstate_first_run_checks(void) { }
847static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
848{
849 return -ENODEV;
850}
851
852static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
853 struct cpuidle_device *dev)
854{
855 return -EINVAL;
856}
857
858static int acpi_processor_setup_cstates(struct acpi_processor *pr)
859{
860 return -EINVAL;
861}
862
863#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
864
865struct acpi_lpi_states_array {
866 unsigned int size;
867 unsigned int composite_states_size;
868 struct acpi_lpi_state *entries;
869 struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
870};
871
872static int obj_get_integer(union acpi_object *obj, u32 *value)
873{
874 if (obj->type != ACPI_TYPE_INTEGER)
875 return -EINVAL;
876
877 *value = obj->integer.value;
878 return 0;
879}
880
881static int acpi_processor_evaluate_lpi(acpi_handle handle,
882 struct acpi_lpi_states_array *info)
883{
884 acpi_status status;
885 int ret = 0;
886 int pkg_count, state_idx = 1, loop;
887 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
888 union acpi_object *lpi_data;
889 struct acpi_lpi_state *lpi_state;
890
891 status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
892 if (ACPI_FAILURE(status)) {
893 acpi_handle_debug(handle, "No _LPI, giving up\n");
894 return -ENODEV;
895 }
896
897 lpi_data = buffer.pointer;
898
899 /* There must be at least 4 elements = 3 elements + 1 package */
900 if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
901 lpi_data->package.count < 4) {
902 pr_debug("not enough elements in _LPI\n");
903 ret = -ENODATA;
904 goto end;
905 }
906
907 pkg_count = lpi_data->package.elements[2].integer.value;
908
909 /* Validate number of power states. */
910 if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
911 pr_debug("count given by _LPI is not valid\n");
912 ret = -ENODATA;
913 goto end;
914 }
915
916 lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
917 if (!lpi_state) {
918 ret = -ENOMEM;
919 goto end;
920 }
921
922 info->size = pkg_count;
923 info->entries = lpi_state;
924
925 /* LPI States start at index 3 */
926 for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
927 union acpi_object *element, *pkg_elem, *obj;
928
929 element = &lpi_data->package.elements[loop];
930 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
931 continue;
932
933 pkg_elem = element->package.elements;
934
935 obj = pkg_elem + 6;
936 if (obj->type == ACPI_TYPE_BUFFER) {
937 struct acpi_power_register *reg;
938
939 reg = (struct acpi_power_register *)obj->buffer.pointer;
940 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
941 reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
942 continue;
943
944 lpi_state->address = reg->address;
945 lpi_state->entry_method =
946 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
947 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
948 } else if (obj->type == ACPI_TYPE_INTEGER) {
949 lpi_state->entry_method = ACPI_CSTATE_INTEGER;
950 lpi_state->address = obj->integer.value;
951 } else {
952 continue;
953 }
954
955 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
956
957 obj = pkg_elem + 9;
958 if (obj->type == ACPI_TYPE_STRING)
959 strlcpy(lpi_state->desc, obj->string.pointer,
960 ACPI_CX_DESC_LEN);
961
962 lpi_state->index = state_idx;
963 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
964 pr_debug("No min. residency found, assuming 10 us\n");
965 lpi_state->min_residency = 10;
966 }
967
968 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
969 pr_debug("No wakeup residency found, assuming 10 us\n");
970 lpi_state->wake_latency = 10;
971 }
972
973 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
974 lpi_state->flags = 0;
975
976 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
977 lpi_state->arch_flags = 0;
978
979 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
980 lpi_state->res_cnt_freq = 1;
981
982 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
983 lpi_state->enable_parent_state = 0;
984 }
985
986 acpi_handle_debug(handle, "Found %d power states\n", state_idx);
987end:
988 kfree(buffer.pointer);
989 return ret;
990}
991
992/*
993 * flat_state_cnt - the number of composite LPI states after the process of flattening
994 */
995static int flat_state_cnt;
996
997/**
998 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
999 *
1000 * @local: local LPI state
1001 * @parent: parent LPI state
1002 * @result: composite LPI state
1003 */
1004static bool combine_lpi_states(struct acpi_lpi_state *local,
1005 struct acpi_lpi_state *parent,
1006 struct acpi_lpi_state *result)
1007{
1008 if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1009 if (!parent->address) /* 0 means autopromotable */
1010 return false;
1011 result->address = local->address + parent->address;
1012 } else {
1013 result->address = parent->address;
1014 }
1015
1016 result->min_residency = max(local->min_residency, parent->min_residency);
1017 result->wake_latency = local->wake_latency + parent->wake_latency;
1018 result->enable_parent_state = parent->enable_parent_state;
1019 result->entry_method = local->entry_method;
1020
1021 result->flags = parent->flags;
1022 result->arch_flags = parent->arch_flags;
1023 result->index = parent->index;
1024
1025 strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1026 strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1027 strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1028 return true;
1029}
1030
1031#define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0)
1032
1033static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1034 struct acpi_lpi_state *t)
1035{
1036 curr_level->composite_states[curr_level->composite_states_size++] = t;
1037}
1038
1039static int flatten_lpi_states(struct acpi_processor *pr,
1040 struct acpi_lpi_states_array *curr_level,
1041 struct acpi_lpi_states_array *prev_level)
1042{
1043 int i, j, state_count = curr_level->size;
1044 struct acpi_lpi_state *p, *t = curr_level->entries;
1045
1046 curr_level->composite_states_size = 0;
1047 for (j = 0; j < state_count; j++, t++) {
1048 struct acpi_lpi_state *flpi;
1049
1050 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1051 continue;
1052
1053 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1054 pr_warn("Limiting number of LPI states to max (%d)\n",
1055 ACPI_PROCESSOR_MAX_POWER);
1056 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1057 break;
1058 }
1059
1060 flpi = &pr->power.lpi_states[flat_state_cnt];
1061
1062 if (!prev_level) { /* leaf/processor node */
1063 memcpy(flpi, t, sizeof(*t));
1064 stash_composite_state(curr_level, flpi);
1065 flat_state_cnt++;
1066 continue;
1067 }
1068
1069 for (i = 0; i < prev_level->composite_states_size; i++) {
1070 p = prev_level->composite_states[i];
1071 if (t->index <= p->enable_parent_state &&
1072 combine_lpi_states(p, t, flpi)) {
1073 stash_composite_state(curr_level, flpi);
1074 flat_state_cnt++;
1075 flpi++;
1076 }
1077 }
1078 }
1079
1080 kfree(curr_level->entries);
1081 return 0;
1082}
1083
1084int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1085{
1086 return -EOPNOTSUPP;
1087}
1088
1089static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1090{
1091 int ret, i;
1092 acpi_status status;
1093 acpi_handle handle = pr->handle, pr_ahandle;
1094 struct acpi_device *d = NULL;
1095 struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1096
1097 /* make sure our architecture has support */
1098 ret = acpi_processor_ffh_lpi_probe(pr->id);
1099 if (ret == -EOPNOTSUPP)
1100 return ret;
1101
1102 if (!osc_pc_lpi_support_confirmed)
1103 return -EOPNOTSUPP;
1104
1105 if (!acpi_has_method(handle, "_LPI"))
1106 return -EINVAL;
1107
1108 flat_state_cnt = 0;
1109 prev = &info[0];
1110 curr = &info[1];
1111 handle = pr->handle;
1112 ret = acpi_processor_evaluate_lpi(handle, prev);
1113 if (ret)
1114 return ret;
1115 flatten_lpi_states(pr, prev, NULL);
1116
1117 status = acpi_get_parent(handle, &pr_ahandle);
1118 while (ACPI_SUCCESS(status)) {
1119 d = acpi_fetch_acpi_dev(pr_ahandle);
1120 handle = pr_ahandle;
1121
1122 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1123 break;
1124
1125 /* can be optional ? */
1126 if (!acpi_has_method(handle, "_LPI"))
1127 break;
1128
1129 ret = acpi_processor_evaluate_lpi(handle, curr);
1130 if (ret)
1131 break;
1132
1133 /* flatten all the LPI states in this level of hierarchy */
1134 flatten_lpi_states(pr, curr, prev);
1135
1136 tmp = prev, prev = curr, curr = tmp;
1137
1138 status = acpi_get_parent(handle, &pr_ahandle);
1139 }
1140
1141 pr->power.count = flat_state_cnt;
1142 /* reset the index after flattening */
1143 for (i = 0; i < pr->power.count; i++)
1144 pr->power.lpi_states[i].index = i;
1145
1146 /* Tell driver that _LPI is supported. */
1147 pr->flags.has_lpi = 1;
1148 pr->flags.power = 1;
1149
1150 return 0;
1151}
1152
1153int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1154{
1155 return -ENODEV;
1156}
1157
1158/**
1159 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1160 * @dev: the target CPU
1161 * @drv: cpuidle driver containing cpuidle state info
1162 * @index: index of target state
1163 *
1164 * Return: 0 for success or negative value for error
1165 */
1166static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1167 struct cpuidle_driver *drv, int index)
1168{
1169 struct acpi_processor *pr;
1170 struct acpi_lpi_state *lpi;
1171
1172 pr = __this_cpu_read(processors);
1173
1174 if (unlikely(!pr))
1175 return -EINVAL;
1176
1177 lpi = &pr->power.lpi_states[index];
1178 if (lpi->entry_method == ACPI_CSTATE_FFH)
1179 return acpi_processor_ffh_lpi_enter(lpi);
1180
1181 return -EINVAL;
1182}
1183
1184static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1185{
1186 int i;
1187 struct acpi_lpi_state *lpi;
1188 struct cpuidle_state *state;
1189 struct cpuidle_driver *drv = &acpi_idle_driver;
1190
1191 if (!pr->flags.has_lpi)
1192 return -EOPNOTSUPP;
1193
1194 for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1195 lpi = &pr->power.lpi_states[i];
1196
1197 state = &drv->states[i];
1198 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1199 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1200 state->exit_latency = lpi->wake_latency;
1201 state->target_residency = lpi->min_residency;
1202 if (lpi->arch_flags)
1203 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1204 state->enter = acpi_idle_lpi_enter;
1205 drv->safe_state_index = i;
1206 }
1207
1208 drv->state_count = i;
1209
1210 return 0;
1211}
1212
1213/**
1214 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1215 * global state data i.e. idle routines
1216 *
1217 * @pr: the ACPI processor
1218 */
1219static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1220{
1221 int i;
1222 struct cpuidle_driver *drv = &acpi_idle_driver;
1223
1224 if (!pr->flags.power_setup_done || !pr->flags.power)
1225 return -EINVAL;
1226
1227 drv->safe_state_index = -1;
1228 for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1229 drv->states[i].name[0] = '\0';
1230 drv->states[i].desc[0] = '\0';
1231 }
1232
1233 if (pr->flags.has_lpi)
1234 return acpi_processor_setup_lpi_states(pr);
1235
1236 return acpi_processor_setup_cstates(pr);
1237}
1238
1239/**
1240 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1241 * device i.e. per-cpu data
1242 *
1243 * @pr: the ACPI processor
1244 * @dev : the cpuidle device
1245 */
1246static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1247 struct cpuidle_device *dev)
1248{
1249 if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1250 return -EINVAL;
1251
1252 dev->cpu = pr->id;
1253 if (pr->flags.has_lpi)
1254 return acpi_processor_ffh_lpi_probe(pr->id);
1255
1256 return acpi_processor_setup_cpuidle_cx(pr, dev);
1257}
1258
1259static int acpi_processor_get_power_info(struct acpi_processor *pr)
1260{
1261 int ret;
1262
1263 ret = acpi_processor_get_lpi_info(pr);
1264 if (ret)
1265 ret = acpi_processor_get_cstate_info(pr);
1266
1267 return ret;
1268}
1269
1270int acpi_processor_hotplug(struct acpi_processor *pr)
1271{
1272 int ret = 0;
1273 struct cpuidle_device *dev;
1274
1275 if (disabled_by_idle_boot_param())
1276 return 0;
1277
1278 if (!pr->flags.power_setup_done)
1279 return -ENODEV;
1280
1281 dev = per_cpu(acpi_cpuidle_device, pr->id);
1282 cpuidle_pause_and_lock();
1283 cpuidle_disable_device(dev);
1284 ret = acpi_processor_get_power_info(pr);
1285 if (!ret && pr->flags.power) {
1286 acpi_processor_setup_cpuidle_dev(pr, dev);
1287 ret = cpuidle_enable_device(dev);
1288 }
1289 cpuidle_resume_and_unlock();
1290
1291 return ret;
1292}
1293
1294int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1295{
1296 int cpu;
1297 struct acpi_processor *_pr;
1298 struct cpuidle_device *dev;
1299
1300 if (disabled_by_idle_boot_param())
1301 return 0;
1302
1303 if (!pr->flags.power_setup_done)
1304 return -ENODEV;
1305
1306 /*
1307 * FIXME: Design the ACPI notification to make it once per
1308 * system instead of once per-cpu. This condition is a hack
1309 * to make the code that updates C-States be called once.
1310 */
1311
1312 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1313
1314 /* Protect against cpu-hotplug */
1315 cpus_read_lock();
1316 cpuidle_pause_and_lock();
1317
1318 /* Disable all cpuidle devices */
1319 for_each_online_cpu(cpu) {
1320 _pr = per_cpu(processors, cpu);
1321 if (!_pr || !_pr->flags.power_setup_done)
1322 continue;
1323 dev = per_cpu(acpi_cpuidle_device, cpu);
1324 cpuidle_disable_device(dev);
1325 }
1326
1327 /* Populate Updated C-state information */
1328 acpi_processor_get_power_info(pr);
1329 acpi_processor_setup_cpuidle_states(pr);
1330
1331 /* Enable all cpuidle devices */
1332 for_each_online_cpu(cpu) {
1333 _pr = per_cpu(processors, cpu);
1334 if (!_pr || !_pr->flags.power_setup_done)
1335 continue;
1336 acpi_processor_get_power_info(_pr);
1337 if (_pr->flags.power) {
1338 dev = per_cpu(acpi_cpuidle_device, cpu);
1339 acpi_processor_setup_cpuidle_dev(_pr, dev);
1340 cpuidle_enable_device(dev);
1341 }
1342 }
1343 cpuidle_resume_and_unlock();
1344 cpus_read_unlock();
1345 }
1346
1347 return 0;
1348}
1349
1350static int acpi_processor_registered;
1351
1352int acpi_processor_power_init(struct acpi_processor *pr)
1353{
1354 int retval;
1355 struct cpuidle_device *dev;
1356
1357 if (disabled_by_idle_boot_param())
1358 return 0;
1359
1360 acpi_processor_cstate_first_run_checks();
1361
1362 if (!acpi_processor_get_power_info(pr))
1363 pr->flags.power_setup_done = 1;
1364
1365 /*
1366 * Install the idle handler if processor power management is supported.
1367 * Note that we use previously set idle handler will be used on
1368 * platforms that only support C1.
1369 */
1370 if (pr->flags.power) {
1371 /* Register acpi_idle_driver if not already registered */
1372 if (!acpi_processor_registered) {
1373 acpi_processor_setup_cpuidle_states(pr);
1374 retval = cpuidle_register_driver(&acpi_idle_driver);
1375 if (retval)
1376 return retval;
1377 pr_debug("%s registered with cpuidle\n",
1378 acpi_idle_driver.name);
1379 }
1380
1381 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1382 if (!dev)
1383 return -ENOMEM;
1384 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1385
1386 acpi_processor_setup_cpuidle_dev(pr, dev);
1387
1388 /* Register per-cpu cpuidle_device. Cpuidle driver
1389 * must already be registered before registering device
1390 */
1391 retval = cpuidle_register_device(dev);
1392 if (retval) {
1393 if (acpi_processor_registered == 0)
1394 cpuidle_unregister_driver(&acpi_idle_driver);
1395 return retval;
1396 }
1397 acpi_processor_registered++;
1398 }
1399 return 0;
1400}
1401
1402int acpi_processor_power_exit(struct acpi_processor *pr)
1403{
1404 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1405
1406 if (disabled_by_idle_boot_param())
1407 return 0;
1408
1409 if (pr->flags.power) {
1410 cpuidle_unregister_device(dev);
1411 acpi_processor_registered--;
1412 if (acpi_processor_registered == 0)
1413 cpuidle_unregister_driver(&acpi_idle_driver);
1414 }
1415
1416 pr->flags.power_setup_done = 0;
1417 return 0;
1418}