Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31/*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/slab.h>
45#include <linux/tcp.h>
46#include <linux/udp.h>
47#include <linux/sctp.h>
48#include <linux/netdevice.h>
49#ifdef CONFIG_NET_CLS_ACT
50#include <net/pkt_sched.h>
51#endif
52#include <linux/string.h>
53#include <linux/skbuff.h>
54#include <linux/splice.h>
55#include <linux/cache.h>
56#include <linux/rtnetlink.h>
57#include <linux/init.h>
58#include <linux/scatterlist.h>
59#include <linux/errqueue.h>
60#include <linux/prefetch.h>
61#include <linux/if_vlan.h>
62#include <linux/mpls.h>
63#include <linux/kcov.h>
64
65#include <net/protocol.h>
66#include <net/dst.h>
67#include <net/sock.h>
68#include <net/checksum.h>
69#include <net/ip6_checksum.h>
70#include <net/xfrm.h>
71#include <net/mpls.h>
72#include <net/mptcp.h>
73#include <net/mctp.h>
74#include <net/page_pool.h>
75
76#include <linux/uaccess.h>
77#include <trace/events/skb.h>
78#include <linux/highmem.h>
79#include <linux/capability.h>
80#include <linux/user_namespace.h>
81#include <linux/indirect_call_wrapper.h>
82
83#include "dev.h"
84#include "sock_destructor.h"
85
86struct kmem_cache *skbuff_head_cache __ro_after_init;
87static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88#ifdef CONFIG_SKB_EXTENSIONS
89static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90#endif
91int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92EXPORT_SYMBOL(sysctl_max_skb_frags);
93
94/* The array 'drop_reasons' is auto-generated in dropreason_str.c */
95EXPORT_SYMBOL(drop_reasons);
96
97/**
98 * skb_panic - private function for out-of-line support
99 * @skb: buffer
100 * @sz: size
101 * @addr: address
102 * @msg: skb_over_panic or skb_under_panic
103 *
104 * Out-of-line support for skb_put() and skb_push().
105 * Called via the wrapper skb_over_panic() or skb_under_panic().
106 * Keep out of line to prevent kernel bloat.
107 * __builtin_return_address is not used because it is not always reliable.
108 */
109static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
110 const char msg[])
111{
112 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
113 msg, addr, skb->len, sz, skb->head, skb->data,
114 (unsigned long)skb->tail, (unsigned long)skb->end,
115 skb->dev ? skb->dev->name : "<NULL>");
116 BUG();
117}
118
119static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
120{
121 skb_panic(skb, sz, addr, __func__);
122}
123
124static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
125{
126 skb_panic(skb, sz, addr, __func__);
127}
128
129#define NAPI_SKB_CACHE_SIZE 64
130#define NAPI_SKB_CACHE_BULK 16
131#define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
132
133struct napi_alloc_cache {
134 struct page_frag_cache page;
135 unsigned int skb_count;
136 void *skb_cache[NAPI_SKB_CACHE_SIZE];
137};
138
139static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
140static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
141
142void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
143{
144 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
145
146 fragsz = SKB_DATA_ALIGN(fragsz);
147
148 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
149}
150EXPORT_SYMBOL(__napi_alloc_frag_align);
151
152void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
153{
154 void *data;
155
156 fragsz = SKB_DATA_ALIGN(fragsz);
157 if (in_hardirq() || irqs_disabled()) {
158 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
159
160 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
161 } else {
162 struct napi_alloc_cache *nc;
163
164 local_bh_disable();
165 nc = this_cpu_ptr(&napi_alloc_cache);
166 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
167 local_bh_enable();
168 }
169 return data;
170}
171EXPORT_SYMBOL(__netdev_alloc_frag_align);
172
173static struct sk_buff *napi_skb_cache_get(void)
174{
175 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
176 struct sk_buff *skb;
177
178 if (unlikely(!nc->skb_count)) {
179 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
180 GFP_ATOMIC,
181 NAPI_SKB_CACHE_BULK,
182 nc->skb_cache);
183 if (unlikely(!nc->skb_count))
184 return NULL;
185 }
186
187 skb = nc->skb_cache[--nc->skb_count];
188 kasan_unpoison_object_data(skbuff_head_cache, skb);
189
190 return skb;
191}
192
193/* Caller must provide SKB that is memset cleared */
194static void __build_skb_around(struct sk_buff *skb, void *data,
195 unsigned int frag_size)
196{
197 struct skb_shared_info *shinfo;
198 unsigned int size = frag_size ? : ksize(data);
199
200 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
201
202 /* Assumes caller memset cleared SKB */
203 skb->truesize = SKB_TRUESIZE(size);
204 refcount_set(&skb->users, 1);
205 skb->head = data;
206 skb->data = data;
207 skb_reset_tail_pointer(skb);
208 skb_set_end_offset(skb, size);
209 skb->mac_header = (typeof(skb->mac_header))~0U;
210 skb->transport_header = (typeof(skb->transport_header))~0U;
211 skb->alloc_cpu = raw_smp_processor_id();
212 /* make sure we initialize shinfo sequentially */
213 shinfo = skb_shinfo(skb);
214 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
215 atomic_set(&shinfo->dataref, 1);
216
217 skb_set_kcov_handle(skb, kcov_common_handle());
218}
219
220/**
221 * __build_skb - build a network buffer
222 * @data: data buffer provided by caller
223 * @frag_size: size of data, or 0 if head was kmalloced
224 *
225 * Allocate a new &sk_buff. Caller provides space holding head and
226 * skb_shared_info. @data must have been allocated by kmalloc() only if
227 * @frag_size is 0, otherwise data should come from the page allocator
228 * or vmalloc()
229 * The return is the new skb buffer.
230 * On a failure the return is %NULL, and @data is not freed.
231 * Notes :
232 * Before IO, driver allocates only data buffer where NIC put incoming frame
233 * Driver should add room at head (NET_SKB_PAD) and
234 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
235 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
236 * before giving packet to stack.
237 * RX rings only contains data buffers, not full skbs.
238 */
239struct sk_buff *__build_skb(void *data, unsigned int frag_size)
240{
241 struct sk_buff *skb;
242
243 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
244 if (unlikely(!skb))
245 return NULL;
246
247 memset(skb, 0, offsetof(struct sk_buff, tail));
248 __build_skb_around(skb, data, frag_size);
249
250 return skb;
251}
252
253/* build_skb() is wrapper over __build_skb(), that specifically
254 * takes care of skb->head and skb->pfmemalloc
255 * This means that if @frag_size is not zero, then @data must be backed
256 * by a page fragment, not kmalloc() or vmalloc()
257 */
258struct sk_buff *build_skb(void *data, unsigned int frag_size)
259{
260 struct sk_buff *skb = __build_skb(data, frag_size);
261
262 if (skb && frag_size) {
263 skb->head_frag = 1;
264 if (page_is_pfmemalloc(virt_to_head_page(data)))
265 skb->pfmemalloc = 1;
266 }
267 return skb;
268}
269EXPORT_SYMBOL(build_skb);
270
271/**
272 * build_skb_around - build a network buffer around provided skb
273 * @skb: sk_buff provide by caller, must be memset cleared
274 * @data: data buffer provided by caller
275 * @frag_size: size of data, or 0 if head was kmalloced
276 */
277struct sk_buff *build_skb_around(struct sk_buff *skb,
278 void *data, unsigned int frag_size)
279{
280 if (unlikely(!skb))
281 return NULL;
282
283 __build_skb_around(skb, data, frag_size);
284
285 if (frag_size) {
286 skb->head_frag = 1;
287 if (page_is_pfmemalloc(virt_to_head_page(data)))
288 skb->pfmemalloc = 1;
289 }
290 return skb;
291}
292EXPORT_SYMBOL(build_skb_around);
293
294/**
295 * __napi_build_skb - build a network buffer
296 * @data: data buffer provided by caller
297 * @frag_size: size of data, or 0 if head was kmalloced
298 *
299 * Version of __build_skb() that uses NAPI percpu caches to obtain
300 * skbuff_head instead of inplace allocation.
301 *
302 * Returns a new &sk_buff on success, %NULL on allocation failure.
303 */
304static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
305{
306 struct sk_buff *skb;
307
308 skb = napi_skb_cache_get();
309 if (unlikely(!skb))
310 return NULL;
311
312 memset(skb, 0, offsetof(struct sk_buff, tail));
313 __build_skb_around(skb, data, frag_size);
314
315 return skb;
316}
317
318/**
319 * napi_build_skb - build a network buffer
320 * @data: data buffer provided by caller
321 * @frag_size: size of data, or 0 if head was kmalloced
322 *
323 * Version of __napi_build_skb() that takes care of skb->head_frag
324 * and skb->pfmemalloc when the data is a page or page fragment.
325 *
326 * Returns a new &sk_buff on success, %NULL on allocation failure.
327 */
328struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
329{
330 struct sk_buff *skb = __napi_build_skb(data, frag_size);
331
332 if (likely(skb) && frag_size) {
333 skb->head_frag = 1;
334 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
335 }
336
337 return skb;
338}
339EXPORT_SYMBOL(napi_build_skb);
340
341/*
342 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
343 * the caller if emergency pfmemalloc reserves are being used. If it is and
344 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
345 * may be used. Otherwise, the packet data may be discarded until enough
346 * memory is free
347 */
348static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
349 bool *pfmemalloc)
350{
351 void *obj;
352 bool ret_pfmemalloc = false;
353
354 /*
355 * Try a regular allocation, when that fails and we're not entitled
356 * to the reserves, fail.
357 */
358 obj = kmalloc_node_track_caller(size,
359 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
360 node);
361 if (obj || !(gfp_pfmemalloc_allowed(flags)))
362 goto out;
363
364 /* Try again but now we are using pfmemalloc reserves */
365 ret_pfmemalloc = true;
366 obj = kmalloc_node_track_caller(size, flags, node);
367
368out:
369 if (pfmemalloc)
370 *pfmemalloc = ret_pfmemalloc;
371
372 return obj;
373}
374
375/* Allocate a new skbuff. We do this ourselves so we can fill in a few
376 * 'private' fields and also do memory statistics to find all the
377 * [BEEP] leaks.
378 *
379 */
380
381/**
382 * __alloc_skb - allocate a network buffer
383 * @size: size to allocate
384 * @gfp_mask: allocation mask
385 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
386 * instead of head cache and allocate a cloned (child) skb.
387 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
388 * allocations in case the data is required for writeback
389 * @node: numa node to allocate memory on
390 *
391 * Allocate a new &sk_buff. The returned buffer has no headroom and a
392 * tail room of at least size bytes. The object has a reference count
393 * of one. The return is the buffer. On a failure the return is %NULL.
394 *
395 * Buffers may only be allocated from interrupts using a @gfp_mask of
396 * %GFP_ATOMIC.
397 */
398struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
399 int flags, int node)
400{
401 struct kmem_cache *cache;
402 struct sk_buff *skb;
403 unsigned int osize;
404 bool pfmemalloc;
405 u8 *data;
406
407 cache = (flags & SKB_ALLOC_FCLONE)
408 ? skbuff_fclone_cache : skbuff_head_cache;
409
410 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
411 gfp_mask |= __GFP_MEMALLOC;
412
413 /* Get the HEAD */
414 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
415 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
416 skb = napi_skb_cache_get();
417 else
418 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
419 if (unlikely(!skb))
420 return NULL;
421 prefetchw(skb);
422
423 /* We do our best to align skb_shared_info on a separate cache
424 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
425 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
426 * Both skb->head and skb_shared_info are cache line aligned.
427 */
428 size = SKB_DATA_ALIGN(size);
429 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
430 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
431 if (unlikely(!data))
432 goto nodata;
433 /* kmalloc(size) might give us more room than requested.
434 * Put skb_shared_info exactly at the end of allocated zone,
435 * to allow max possible filling before reallocation.
436 */
437 osize = ksize(data);
438 size = SKB_WITH_OVERHEAD(osize);
439 prefetchw(data + size);
440
441 /*
442 * Only clear those fields we need to clear, not those that we will
443 * actually initialise below. Hence, don't put any more fields after
444 * the tail pointer in struct sk_buff!
445 */
446 memset(skb, 0, offsetof(struct sk_buff, tail));
447 __build_skb_around(skb, data, osize);
448 skb->pfmemalloc = pfmemalloc;
449
450 if (flags & SKB_ALLOC_FCLONE) {
451 struct sk_buff_fclones *fclones;
452
453 fclones = container_of(skb, struct sk_buff_fclones, skb1);
454
455 skb->fclone = SKB_FCLONE_ORIG;
456 refcount_set(&fclones->fclone_ref, 1);
457 }
458
459 return skb;
460
461nodata:
462 kmem_cache_free(cache, skb);
463 return NULL;
464}
465EXPORT_SYMBOL(__alloc_skb);
466
467/**
468 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
469 * @dev: network device to receive on
470 * @len: length to allocate
471 * @gfp_mask: get_free_pages mask, passed to alloc_skb
472 *
473 * Allocate a new &sk_buff and assign it a usage count of one. The
474 * buffer has NET_SKB_PAD headroom built in. Users should allocate
475 * the headroom they think they need without accounting for the
476 * built in space. The built in space is used for optimisations.
477 *
478 * %NULL is returned if there is no free memory.
479 */
480struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
481 gfp_t gfp_mask)
482{
483 struct page_frag_cache *nc;
484 struct sk_buff *skb;
485 bool pfmemalloc;
486 void *data;
487
488 len += NET_SKB_PAD;
489
490 /* If requested length is either too small or too big,
491 * we use kmalloc() for skb->head allocation.
492 */
493 if (len <= SKB_WITH_OVERHEAD(1024) ||
494 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
495 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
496 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
497 if (!skb)
498 goto skb_fail;
499 goto skb_success;
500 }
501
502 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
503 len = SKB_DATA_ALIGN(len);
504
505 if (sk_memalloc_socks())
506 gfp_mask |= __GFP_MEMALLOC;
507
508 if (in_hardirq() || irqs_disabled()) {
509 nc = this_cpu_ptr(&netdev_alloc_cache);
510 data = page_frag_alloc(nc, len, gfp_mask);
511 pfmemalloc = nc->pfmemalloc;
512 } else {
513 local_bh_disable();
514 nc = this_cpu_ptr(&napi_alloc_cache.page);
515 data = page_frag_alloc(nc, len, gfp_mask);
516 pfmemalloc = nc->pfmemalloc;
517 local_bh_enable();
518 }
519
520 if (unlikely(!data))
521 return NULL;
522
523 skb = __build_skb(data, len);
524 if (unlikely(!skb)) {
525 skb_free_frag(data);
526 return NULL;
527 }
528
529 if (pfmemalloc)
530 skb->pfmemalloc = 1;
531 skb->head_frag = 1;
532
533skb_success:
534 skb_reserve(skb, NET_SKB_PAD);
535 skb->dev = dev;
536
537skb_fail:
538 return skb;
539}
540EXPORT_SYMBOL(__netdev_alloc_skb);
541
542/**
543 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
544 * @napi: napi instance this buffer was allocated for
545 * @len: length to allocate
546 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
547 *
548 * Allocate a new sk_buff for use in NAPI receive. This buffer will
549 * attempt to allocate the head from a special reserved region used
550 * only for NAPI Rx allocation. By doing this we can save several
551 * CPU cycles by avoiding having to disable and re-enable IRQs.
552 *
553 * %NULL is returned if there is no free memory.
554 */
555struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
556 gfp_t gfp_mask)
557{
558 struct napi_alloc_cache *nc;
559 struct sk_buff *skb;
560 void *data;
561
562 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
563 len += NET_SKB_PAD + NET_IP_ALIGN;
564
565 /* If requested length is either too small or too big,
566 * we use kmalloc() for skb->head allocation.
567 */
568 if (len <= SKB_WITH_OVERHEAD(1024) ||
569 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
570 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
571 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
572 NUMA_NO_NODE);
573 if (!skb)
574 goto skb_fail;
575 goto skb_success;
576 }
577
578 nc = this_cpu_ptr(&napi_alloc_cache);
579 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
580 len = SKB_DATA_ALIGN(len);
581
582 if (sk_memalloc_socks())
583 gfp_mask |= __GFP_MEMALLOC;
584
585 data = page_frag_alloc(&nc->page, len, gfp_mask);
586 if (unlikely(!data))
587 return NULL;
588
589 skb = __napi_build_skb(data, len);
590 if (unlikely(!skb)) {
591 skb_free_frag(data);
592 return NULL;
593 }
594
595 if (nc->page.pfmemalloc)
596 skb->pfmemalloc = 1;
597 skb->head_frag = 1;
598
599skb_success:
600 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
601 skb->dev = napi->dev;
602
603skb_fail:
604 return skb;
605}
606EXPORT_SYMBOL(__napi_alloc_skb);
607
608void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
609 int size, unsigned int truesize)
610{
611 skb_fill_page_desc(skb, i, page, off, size);
612 skb->len += size;
613 skb->data_len += size;
614 skb->truesize += truesize;
615}
616EXPORT_SYMBOL(skb_add_rx_frag);
617
618void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
619 unsigned int truesize)
620{
621 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
622
623 skb_frag_size_add(frag, size);
624 skb->len += size;
625 skb->data_len += size;
626 skb->truesize += truesize;
627}
628EXPORT_SYMBOL(skb_coalesce_rx_frag);
629
630static void skb_drop_list(struct sk_buff **listp)
631{
632 kfree_skb_list(*listp);
633 *listp = NULL;
634}
635
636static inline void skb_drop_fraglist(struct sk_buff *skb)
637{
638 skb_drop_list(&skb_shinfo(skb)->frag_list);
639}
640
641static void skb_clone_fraglist(struct sk_buff *skb)
642{
643 struct sk_buff *list;
644
645 skb_walk_frags(skb, list)
646 skb_get(list);
647}
648
649static void skb_free_head(struct sk_buff *skb)
650{
651 unsigned char *head = skb->head;
652
653 if (skb->head_frag) {
654 if (skb_pp_recycle(skb, head))
655 return;
656 skb_free_frag(head);
657 } else {
658 kfree(head);
659 }
660}
661
662static void skb_release_data(struct sk_buff *skb)
663{
664 struct skb_shared_info *shinfo = skb_shinfo(skb);
665 int i;
666
667 if (skb->cloned &&
668 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
669 &shinfo->dataref))
670 goto exit;
671
672 if (skb_zcopy(skb)) {
673 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
674
675 skb_zcopy_clear(skb, true);
676 if (skip_unref)
677 goto free_head;
678 }
679
680 for (i = 0; i < shinfo->nr_frags; i++)
681 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
682
683free_head:
684 if (shinfo->frag_list)
685 kfree_skb_list(shinfo->frag_list);
686
687 skb_free_head(skb);
688exit:
689 /* When we clone an SKB we copy the reycling bit. The pp_recycle
690 * bit is only set on the head though, so in order to avoid races
691 * while trying to recycle fragments on __skb_frag_unref() we need
692 * to make one SKB responsible for triggering the recycle path.
693 * So disable the recycling bit if an SKB is cloned and we have
694 * additional references to the fragmented part of the SKB.
695 * Eventually the last SKB will have the recycling bit set and it's
696 * dataref set to 0, which will trigger the recycling
697 */
698 skb->pp_recycle = 0;
699}
700
701/*
702 * Free an skbuff by memory without cleaning the state.
703 */
704static void kfree_skbmem(struct sk_buff *skb)
705{
706 struct sk_buff_fclones *fclones;
707
708 switch (skb->fclone) {
709 case SKB_FCLONE_UNAVAILABLE:
710 kmem_cache_free(skbuff_head_cache, skb);
711 return;
712
713 case SKB_FCLONE_ORIG:
714 fclones = container_of(skb, struct sk_buff_fclones, skb1);
715
716 /* We usually free the clone (TX completion) before original skb
717 * This test would have no chance to be true for the clone,
718 * while here, branch prediction will be good.
719 */
720 if (refcount_read(&fclones->fclone_ref) == 1)
721 goto fastpath;
722 break;
723
724 default: /* SKB_FCLONE_CLONE */
725 fclones = container_of(skb, struct sk_buff_fclones, skb2);
726 break;
727 }
728 if (!refcount_dec_and_test(&fclones->fclone_ref))
729 return;
730fastpath:
731 kmem_cache_free(skbuff_fclone_cache, fclones);
732}
733
734void skb_release_head_state(struct sk_buff *skb)
735{
736 skb_dst_drop(skb);
737 if (skb->destructor) {
738 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
739 skb->destructor(skb);
740 }
741#if IS_ENABLED(CONFIG_NF_CONNTRACK)
742 nf_conntrack_put(skb_nfct(skb));
743#endif
744 skb_ext_put(skb);
745}
746
747/* Free everything but the sk_buff shell. */
748static void skb_release_all(struct sk_buff *skb)
749{
750 skb_release_head_state(skb);
751 if (likely(skb->head))
752 skb_release_data(skb);
753}
754
755/**
756 * __kfree_skb - private function
757 * @skb: buffer
758 *
759 * Free an sk_buff. Release anything attached to the buffer.
760 * Clean the state. This is an internal helper function. Users should
761 * always call kfree_skb
762 */
763
764void __kfree_skb(struct sk_buff *skb)
765{
766 skb_release_all(skb);
767 kfree_skbmem(skb);
768}
769EXPORT_SYMBOL(__kfree_skb);
770
771/**
772 * kfree_skb_reason - free an sk_buff with special reason
773 * @skb: buffer to free
774 * @reason: reason why this skb is dropped
775 *
776 * Drop a reference to the buffer and free it if the usage count has
777 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
778 * tracepoint.
779 */
780void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
781{
782 if (!skb_unref(skb))
783 return;
784
785 DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
786
787 trace_kfree_skb(skb, __builtin_return_address(0), reason);
788 __kfree_skb(skb);
789}
790EXPORT_SYMBOL(kfree_skb_reason);
791
792void kfree_skb_list_reason(struct sk_buff *segs,
793 enum skb_drop_reason reason)
794{
795 while (segs) {
796 struct sk_buff *next = segs->next;
797
798 kfree_skb_reason(segs, reason);
799 segs = next;
800 }
801}
802EXPORT_SYMBOL(kfree_skb_list_reason);
803
804/* Dump skb information and contents.
805 *
806 * Must only be called from net_ratelimit()-ed paths.
807 *
808 * Dumps whole packets if full_pkt, only headers otherwise.
809 */
810void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
811{
812 struct skb_shared_info *sh = skb_shinfo(skb);
813 struct net_device *dev = skb->dev;
814 struct sock *sk = skb->sk;
815 struct sk_buff *list_skb;
816 bool has_mac, has_trans;
817 int headroom, tailroom;
818 int i, len, seg_len;
819
820 if (full_pkt)
821 len = skb->len;
822 else
823 len = min_t(int, skb->len, MAX_HEADER + 128);
824
825 headroom = skb_headroom(skb);
826 tailroom = skb_tailroom(skb);
827
828 has_mac = skb_mac_header_was_set(skb);
829 has_trans = skb_transport_header_was_set(skb);
830
831 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
832 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
833 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
834 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
835 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
836 level, skb->len, headroom, skb_headlen(skb), tailroom,
837 has_mac ? skb->mac_header : -1,
838 has_mac ? skb_mac_header_len(skb) : -1,
839 skb->network_header,
840 has_trans ? skb_network_header_len(skb) : -1,
841 has_trans ? skb->transport_header : -1,
842 sh->tx_flags, sh->nr_frags,
843 sh->gso_size, sh->gso_type, sh->gso_segs,
844 skb->csum, skb->ip_summed, skb->csum_complete_sw,
845 skb->csum_valid, skb->csum_level,
846 skb->hash, skb->sw_hash, skb->l4_hash,
847 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
848
849 if (dev)
850 printk("%sdev name=%s feat=%pNF\n",
851 level, dev->name, &dev->features);
852 if (sk)
853 printk("%ssk family=%hu type=%u proto=%u\n",
854 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
855
856 if (full_pkt && headroom)
857 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
858 16, 1, skb->head, headroom, false);
859
860 seg_len = min_t(int, skb_headlen(skb), len);
861 if (seg_len)
862 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
863 16, 1, skb->data, seg_len, false);
864 len -= seg_len;
865
866 if (full_pkt && tailroom)
867 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
868 16, 1, skb_tail_pointer(skb), tailroom, false);
869
870 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
871 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
872 u32 p_off, p_len, copied;
873 struct page *p;
874 u8 *vaddr;
875
876 skb_frag_foreach_page(frag, skb_frag_off(frag),
877 skb_frag_size(frag), p, p_off, p_len,
878 copied) {
879 seg_len = min_t(int, p_len, len);
880 vaddr = kmap_atomic(p);
881 print_hex_dump(level, "skb frag: ",
882 DUMP_PREFIX_OFFSET,
883 16, 1, vaddr + p_off, seg_len, false);
884 kunmap_atomic(vaddr);
885 len -= seg_len;
886 if (!len)
887 break;
888 }
889 }
890
891 if (full_pkt && skb_has_frag_list(skb)) {
892 printk("skb fraglist:\n");
893 skb_walk_frags(skb, list_skb)
894 skb_dump(level, list_skb, true);
895 }
896}
897EXPORT_SYMBOL(skb_dump);
898
899/**
900 * skb_tx_error - report an sk_buff xmit error
901 * @skb: buffer that triggered an error
902 *
903 * Report xmit error if a device callback is tracking this skb.
904 * skb must be freed afterwards.
905 */
906void skb_tx_error(struct sk_buff *skb)
907{
908 if (skb) {
909 skb_zcopy_downgrade_managed(skb);
910 skb_zcopy_clear(skb, true);
911 }
912}
913EXPORT_SYMBOL(skb_tx_error);
914
915#ifdef CONFIG_TRACEPOINTS
916/**
917 * consume_skb - free an skbuff
918 * @skb: buffer to free
919 *
920 * Drop a ref to the buffer and free it if the usage count has hit zero
921 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
922 * is being dropped after a failure and notes that
923 */
924void consume_skb(struct sk_buff *skb)
925{
926 if (!skb_unref(skb))
927 return;
928
929 trace_consume_skb(skb);
930 __kfree_skb(skb);
931}
932EXPORT_SYMBOL(consume_skb);
933#endif
934
935/**
936 * __consume_stateless_skb - free an skbuff, assuming it is stateless
937 * @skb: buffer to free
938 *
939 * Alike consume_skb(), but this variant assumes that this is the last
940 * skb reference and all the head states have been already dropped
941 */
942void __consume_stateless_skb(struct sk_buff *skb)
943{
944 trace_consume_skb(skb);
945 skb_release_data(skb);
946 kfree_skbmem(skb);
947}
948
949static void napi_skb_cache_put(struct sk_buff *skb)
950{
951 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
952 u32 i;
953
954 kasan_poison_object_data(skbuff_head_cache, skb);
955 nc->skb_cache[nc->skb_count++] = skb;
956
957 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
958 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
959 kasan_unpoison_object_data(skbuff_head_cache,
960 nc->skb_cache[i]);
961
962 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
963 nc->skb_cache + NAPI_SKB_CACHE_HALF);
964 nc->skb_count = NAPI_SKB_CACHE_HALF;
965 }
966}
967
968void __kfree_skb_defer(struct sk_buff *skb)
969{
970 skb_release_all(skb);
971 napi_skb_cache_put(skb);
972}
973
974void napi_skb_free_stolen_head(struct sk_buff *skb)
975{
976 if (unlikely(skb->slow_gro)) {
977 nf_reset_ct(skb);
978 skb_dst_drop(skb);
979 skb_ext_put(skb);
980 skb_orphan(skb);
981 skb->slow_gro = 0;
982 }
983 napi_skb_cache_put(skb);
984}
985
986void napi_consume_skb(struct sk_buff *skb, int budget)
987{
988 /* Zero budget indicate non-NAPI context called us, like netpoll */
989 if (unlikely(!budget)) {
990 dev_consume_skb_any(skb);
991 return;
992 }
993
994 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
995
996 if (!skb_unref(skb))
997 return;
998
999 /* if reaching here SKB is ready to free */
1000 trace_consume_skb(skb);
1001
1002 /* if SKB is a clone, don't handle this case */
1003 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1004 __kfree_skb(skb);
1005 return;
1006 }
1007
1008 skb_release_all(skb);
1009 napi_skb_cache_put(skb);
1010}
1011EXPORT_SYMBOL(napi_consume_skb);
1012
1013/* Make sure a field is contained by headers group */
1014#define CHECK_SKB_FIELD(field) \
1015 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1016 offsetof(struct sk_buff, headers.field)); \
1017
1018static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1019{
1020 new->tstamp = old->tstamp;
1021 /* We do not copy old->sk */
1022 new->dev = old->dev;
1023 memcpy(new->cb, old->cb, sizeof(old->cb));
1024 skb_dst_copy(new, old);
1025 __skb_ext_copy(new, old);
1026 __nf_copy(new, old, false);
1027
1028 /* Note : this field could be in the headers group.
1029 * It is not yet because we do not want to have a 16 bit hole
1030 */
1031 new->queue_mapping = old->queue_mapping;
1032
1033 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1034 CHECK_SKB_FIELD(protocol);
1035 CHECK_SKB_FIELD(csum);
1036 CHECK_SKB_FIELD(hash);
1037 CHECK_SKB_FIELD(priority);
1038 CHECK_SKB_FIELD(skb_iif);
1039 CHECK_SKB_FIELD(vlan_proto);
1040 CHECK_SKB_FIELD(vlan_tci);
1041 CHECK_SKB_FIELD(transport_header);
1042 CHECK_SKB_FIELD(network_header);
1043 CHECK_SKB_FIELD(mac_header);
1044 CHECK_SKB_FIELD(inner_protocol);
1045 CHECK_SKB_FIELD(inner_transport_header);
1046 CHECK_SKB_FIELD(inner_network_header);
1047 CHECK_SKB_FIELD(inner_mac_header);
1048 CHECK_SKB_FIELD(mark);
1049#ifdef CONFIG_NETWORK_SECMARK
1050 CHECK_SKB_FIELD(secmark);
1051#endif
1052#ifdef CONFIG_NET_RX_BUSY_POLL
1053 CHECK_SKB_FIELD(napi_id);
1054#endif
1055 CHECK_SKB_FIELD(alloc_cpu);
1056#ifdef CONFIG_XPS
1057 CHECK_SKB_FIELD(sender_cpu);
1058#endif
1059#ifdef CONFIG_NET_SCHED
1060 CHECK_SKB_FIELD(tc_index);
1061#endif
1062
1063}
1064
1065/*
1066 * You should not add any new code to this function. Add it to
1067 * __copy_skb_header above instead.
1068 */
1069static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1070{
1071#define C(x) n->x = skb->x
1072
1073 n->next = n->prev = NULL;
1074 n->sk = NULL;
1075 __copy_skb_header(n, skb);
1076
1077 C(len);
1078 C(data_len);
1079 C(mac_len);
1080 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1081 n->cloned = 1;
1082 n->nohdr = 0;
1083 n->peeked = 0;
1084 C(pfmemalloc);
1085 C(pp_recycle);
1086 n->destructor = NULL;
1087 C(tail);
1088 C(end);
1089 C(head);
1090 C(head_frag);
1091 C(data);
1092 C(truesize);
1093 refcount_set(&n->users, 1);
1094
1095 atomic_inc(&(skb_shinfo(skb)->dataref));
1096 skb->cloned = 1;
1097
1098 return n;
1099#undef C
1100}
1101
1102/**
1103 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1104 * @first: first sk_buff of the msg
1105 */
1106struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1107{
1108 struct sk_buff *n;
1109
1110 n = alloc_skb(0, GFP_ATOMIC);
1111 if (!n)
1112 return NULL;
1113
1114 n->len = first->len;
1115 n->data_len = first->len;
1116 n->truesize = first->truesize;
1117
1118 skb_shinfo(n)->frag_list = first;
1119
1120 __copy_skb_header(n, first);
1121 n->destructor = NULL;
1122
1123 return n;
1124}
1125EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1126
1127/**
1128 * skb_morph - morph one skb into another
1129 * @dst: the skb to receive the contents
1130 * @src: the skb to supply the contents
1131 *
1132 * This is identical to skb_clone except that the target skb is
1133 * supplied by the user.
1134 *
1135 * The target skb is returned upon exit.
1136 */
1137struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1138{
1139 skb_release_all(dst);
1140 return __skb_clone(dst, src);
1141}
1142EXPORT_SYMBOL_GPL(skb_morph);
1143
1144int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1145{
1146 unsigned long max_pg, num_pg, new_pg, old_pg;
1147 struct user_struct *user;
1148
1149 if (capable(CAP_IPC_LOCK) || !size)
1150 return 0;
1151
1152 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1153 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1154 user = mmp->user ? : current_user();
1155
1156 do {
1157 old_pg = atomic_long_read(&user->locked_vm);
1158 new_pg = old_pg + num_pg;
1159 if (new_pg > max_pg)
1160 return -ENOBUFS;
1161 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1162 old_pg);
1163
1164 if (!mmp->user) {
1165 mmp->user = get_uid(user);
1166 mmp->num_pg = num_pg;
1167 } else {
1168 mmp->num_pg += num_pg;
1169 }
1170
1171 return 0;
1172}
1173EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1174
1175void mm_unaccount_pinned_pages(struct mmpin *mmp)
1176{
1177 if (mmp->user) {
1178 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1179 free_uid(mmp->user);
1180 }
1181}
1182EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1183
1184static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1185{
1186 struct ubuf_info *uarg;
1187 struct sk_buff *skb;
1188
1189 WARN_ON_ONCE(!in_task());
1190
1191 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1192 if (!skb)
1193 return NULL;
1194
1195 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1196 uarg = (void *)skb->cb;
1197 uarg->mmp.user = NULL;
1198
1199 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1200 kfree_skb(skb);
1201 return NULL;
1202 }
1203
1204 uarg->callback = msg_zerocopy_callback;
1205 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1206 uarg->len = 1;
1207 uarg->bytelen = size;
1208 uarg->zerocopy = 1;
1209 uarg->flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1210 refcount_set(&uarg->refcnt, 1);
1211 sock_hold(sk);
1212
1213 return uarg;
1214}
1215
1216static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1217{
1218 return container_of((void *)uarg, struct sk_buff, cb);
1219}
1220
1221struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1222 struct ubuf_info *uarg)
1223{
1224 if (uarg) {
1225 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1226 u32 bytelen, next;
1227
1228 /* there might be non MSG_ZEROCOPY users */
1229 if (uarg->callback != msg_zerocopy_callback)
1230 return NULL;
1231
1232 /* realloc only when socket is locked (TCP, UDP cork),
1233 * so uarg->len and sk_zckey access is serialized
1234 */
1235 if (!sock_owned_by_user(sk)) {
1236 WARN_ON_ONCE(1);
1237 return NULL;
1238 }
1239
1240 bytelen = uarg->bytelen + size;
1241 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1242 /* TCP can create new skb to attach new uarg */
1243 if (sk->sk_type == SOCK_STREAM)
1244 goto new_alloc;
1245 return NULL;
1246 }
1247
1248 next = (u32)atomic_read(&sk->sk_zckey);
1249 if ((u32)(uarg->id + uarg->len) == next) {
1250 if (mm_account_pinned_pages(&uarg->mmp, size))
1251 return NULL;
1252 uarg->len++;
1253 uarg->bytelen = bytelen;
1254 atomic_set(&sk->sk_zckey, ++next);
1255
1256 /* no extra ref when appending to datagram (MSG_MORE) */
1257 if (sk->sk_type == SOCK_STREAM)
1258 net_zcopy_get(uarg);
1259
1260 return uarg;
1261 }
1262 }
1263
1264new_alloc:
1265 return msg_zerocopy_alloc(sk, size);
1266}
1267EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1268
1269static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1270{
1271 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1272 u32 old_lo, old_hi;
1273 u64 sum_len;
1274
1275 old_lo = serr->ee.ee_info;
1276 old_hi = serr->ee.ee_data;
1277 sum_len = old_hi - old_lo + 1ULL + len;
1278
1279 if (sum_len >= (1ULL << 32))
1280 return false;
1281
1282 if (lo != old_hi + 1)
1283 return false;
1284
1285 serr->ee.ee_data += len;
1286 return true;
1287}
1288
1289static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1290{
1291 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1292 struct sock_exterr_skb *serr;
1293 struct sock *sk = skb->sk;
1294 struct sk_buff_head *q;
1295 unsigned long flags;
1296 bool is_zerocopy;
1297 u32 lo, hi;
1298 u16 len;
1299
1300 mm_unaccount_pinned_pages(&uarg->mmp);
1301
1302 /* if !len, there was only 1 call, and it was aborted
1303 * so do not queue a completion notification
1304 */
1305 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1306 goto release;
1307
1308 len = uarg->len;
1309 lo = uarg->id;
1310 hi = uarg->id + len - 1;
1311 is_zerocopy = uarg->zerocopy;
1312
1313 serr = SKB_EXT_ERR(skb);
1314 memset(serr, 0, sizeof(*serr));
1315 serr->ee.ee_errno = 0;
1316 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1317 serr->ee.ee_data = hi;
1318 serr->ee.ee_info = lo;
1319 if (!is_zerocopy)
1320 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1321
1322 q = &sk->sk_error_queue;
1323 spin_lock_irqsave(&q->lock, flags);
1324 tail = skb_peek_tail(q);
1325 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1326 !skb_zerocopy_notify_extend(tail, lo, len)) {
1327 __skb_queue_tail(q, skb);
1328 skb = NULL;
1329 }
1330 spin_unlock_irqrestore(&q->lock, flags);
1331
1332 sk_error_report(sk);
1333
1334release:
1335 consume_skb(skb);
1336 sock_put(sk);
1337}
1338
1339void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1340 bool success)
1341{
1342 uarg->zerocopy = uarg->zerocopy & success;
1343
1344 if (refcount_dec_and_test(&uarg->refcnt))
1345 __msg_zerocopy_callback(uarg);
1346}
1347EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1348
1349void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1350{
1351 struct sock *sk = skb_from_uarg(uarg)->sk;
1352
1353 atomic_dec(&sk->sk_zckey);
1354 uarg->len--;
1355
1356 if (have_uref)
1357 msg_zerocopy_callback(NULL, uarg, true);
1358}
1359EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1360
1361int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1362 struct msghdr *msg, int len,
1363 struct ubuf_info *uarg)
1364{
1365 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1366 int err, orig_len = skb->len;
1367
1368 /* An skb can only point to one uarg. This edge case happens when
1369 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1370 */
1371 if (orig_uarg && uarg != orig_uarg)
1372 return -EEXIST;
1373
1374 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1375 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1376 struct sock *save_sk = skb->sk;
1377
1378 /* Streams do not free skb on error. Reset to prev state. */
1379 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1380 skb->sk = sk;
1381 ___pskb_trim(skb, orig_len);
1382 skb->sk = save_sk;
1383 return err;
1384 }
1385
1386 skb_zcopy_set(skb, uarg, NULL);
1387 return skb->len - orig_len;
1388}
1389EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1390
1391void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1392{
1393 int i;
1394
1395 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1396 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1397 skb_frag_ref(skb, i);
1398}
1399EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1400
1401static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1402 gfp_t gfp_mask)
1403{
1404 if (skb_zcopy(orig)) {
1405 if (skb_zcopy(nskb)) {
1406 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1407 if (!gfp_mask) {
1408 WARN_ON_ONCE(1);
1409 return -ENOMEM;
1410 }
1411 if (skb_uarg(nskb) == skb_uarg(orig))
1412 return 0;
1413 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1414 return -EIO;
1415 }
1416 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1417 }
1418 return 0;
1419}
1420
1421/**
1422 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1423 * @skb: the skb to modify
1424 * @gfp_mask: allocation priority
1425 *
1426 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1427 * It will copy all frags into kernel and drop the reference
1428 * to userspace pages.
1429 *
1430 * If this function is called from an interrupt gfp_mask() must be
1431 * %GFP_ATOMIC.
1432 *
1433 * Returns 0 on success or a negative error code on failure
1434 * to allocate kernel memory to copy to.
1435 */
1436int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1437{
1438 int num_frags = skb_shinfo(skb)->nr_frags;
1439 struct page *page, *head = NULL;
1440 int i, new_frags;
1441 u32 d_off;
1442
1443 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1444 return -EINVAL;
1445
1446 if (!num_frags)
1447 goto release;
1448
1449 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1450 for (i = 0; i < new_frags; i++) {
1451 page = alloc_page(gfp_mask);
1452 if (!page) {
1453 while (head) {
1454 struct page *next = (struct page *)page_private(head);
1455 put_page(head);
1456 head = next;
1457 }
1458 return -ENOMEM;
1459 }
1460 set_page_private(page, (unsigned long)head);
1461 head = page;
1462 }
1463
1464 page = head;
1465 d_off = 0;
1466 for (i = 0; i < num_frags; i++) {
1467 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1468 u32 p_off, p_len, copied;
1469 struct page *p;
1470 u8 *vaddr;
1471
1472 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1473 p, p_off, p_len, copied) {
1474 u32 copy, done = 0;
1475 vaddr = kmap_atomic(p);
1476
1477 while (done < p_len) {
1478 if (d_off == PAGE_SIZE) {
1479 d_off = 0;
1480 page = (struct page *)page_private(page);
1481 }
1482 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1483 memcpy(page_address(page) + d_off,
1484 vaddr + p_off + done, copy);
1485 done += copy;
1486 d_off += copy;
1487 }
1488 kunmap_atomic(vaddr);
1489 }
1490 }
1491
1492 /* skb frags release userspace buffers */
1493 for (i = 0; i < num_frags; i++)
1494 skb_frag_unref(skb, i);
1495
1496 /* skb frags point to kernel buffers */
1497 for (i = 0; i < new_frags - 1; i++) {
1498 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1499 head = (struct page *)page_private(head);
1500 }
1501 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1502 skb_shinfo(skb)->nr_frags = new_frags;
1503
1504release:
1505 skb_zcopy_clear(skb, false);
1506 return 0;
1507}
1508EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1509
1510/**
1511 * skb_clone - duplicate an sk_buff
1512 * @skb: buffer to clone
1513 * @gfp_mask: allocation priority
1514 *
1515 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1516 * copies share the same packet data but not structure. The new
1517 * buffer has a reference count of 1. If the allocation fails the
1518 * function returns %NULL otherwise the new buffer is returned.
1519 *
1520 * If this function is called from an interrupt gfp_mask() must be
1521 * %GFP_ATOMIC.
1522 */
1523
1524struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1525{
1526 struct sk_buff_fclones *fclones = container_of(skb,
1527 struct sk_buff_fclones,
1528 skb1);
1529 struct sk_buff *n;
1530
1531 if (skb_orphan_frags(skb, gfp_mask))
1532 return NULL;
1533
1534 if (skb->fclone == SKB_FCLONE_ORIG &&
1535 refcount_read(&fclones->fclone_ref) == 1) {
1536 n = &fclones->skb2;
1537 refcount_set(&fclones->fclone_ref, 2);
1538 n->fclone = SKB_FCLONE_CLONE;
1539 } else {
1540 if (skb_pfmemalloc(skb))
1541 gfp_mask |= __GFP_MEMALLOC;
1542
1543 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1544 if (!n)
1545 return NULL;
1546
1547 n->fclone = SKB_FCLONE_UNAVAILABLE;
1548 }
1549
1550 return __skb_clone(n, skb);
1551}
1552EXPORT_SYMBOL(skb_clone);
1553
1554void skb_headers_offset_update(struct sk_buff *skb, int off)
1555{
1556 /* Only adjust this if it actually is csum_start rather than csum */
1557 if (skb->ip_summed == CHECKSUM_PARTIAL)
1558 skb->csum_start += off;
1559 /* {transport,network,mac}_header and tail are relative to skb->head */
1560 skb->transport_header += off;
1561 skb->network_header += off;
1562 if (skb_mac_header_was_set(skb))
1563 skb->mac_header += off;
1564 skb->inner_transport_header += off;
1565 skb->inner_network_header += off;
1566 skb->inner_mac_header += off;
1567}
1568EXPORT_SYMBOL(skb_headers_offset_update);
1569
1570void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1571{
1572 __copy_skb_header(new, old);
1573
1574 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1575 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1576 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1577}
1578EXPORT_SYMBOL(skb_copy_header);
1579
1580static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1581{
1582 if (skb_pfmemalloc(skb))
1583 return SKB_ALLOC_RX;
1584 return 0;
1585}
1586
1587/**
1588 * skb_copy - create private copy of an sk_buff
1589 * @skb: buffer to copy
1590 * @gfp_mask: allocation priority
1591 *
1592 * Make a copy of both an &sk_buff and its data. This is used when the
1593 * caller wishes to modify the data and needs a private copy of the
1594 * data to alter. Returns %NULL on failure or the pointer to the buffer
1595 * on success. The returned buffer has a reference count of 1.
1596 *
1597 * As by-product this function converts non-linear &sk_buff to linear
1598 * one, so that &sk_buff becomes completely private and caller is allowed
1599 * to modify all the data of returned buffer. This means that this
1600 * function is not recommended for use in circumstances when only
1601 * header is going to be modified. Use pskb_copy() instead.
1602 */
1603
1604struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1605{
1606 int headerlen = skb_headroom(skb);
1607 unsigned int size = skb_end_offset(skb) + skb->data_len;
1608 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1609 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1610
1611 if (!n)
1612 return NULL;
1613
1614 /* Set the data pointer */
1615 skb_reserve(n, headerlen);
1616 /* Set the tail pointer and length */
1617 skb_put(n, skb->len);
1618
1619 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1620
1621 skb_copy_header(n, skb);
1622 return n;
1623}
1624EXPORT_SYMBOL(skb_copy);
1625
1626/**
1627 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1628 * @skb: buffer to copy
1629 * @headroom: headroom of new skb
1630 * @gfp_mask: allocation priority
1631 * @fclone: if true allocate the copy of the skb from the fclone
1632 * cache instead of the head cache; it is recommended to set this
1633 * to true for the cases where the copy will likely be cloned
1634 *
1635 * Make a copy of both an &sk_buff and part of its data, located
1636 * in header. Fragmented data remain shared. This is used when
1637 * the caller wishes to modify only header of &sk_buff and needs
1638 * private copy of the header to alter. Returns %NULL on failure
1639 * or the pointer to the buffer on success.
1640 * The returned buffer has a reference count of 1.
1641 */
1642
1643struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1644 gfp_t gfp_mask, bool fclone)
1645{
1646 unsigned int size = skb_headlen(skb) + headroom;
1647 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1648 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1649
1650 if (!n)
1651 goto out;
1652
1653 /* Set the data pointer */
1654 skb_reserve(n, headroom);
1655 /* Set the tail pointer and length */
1656 skb_put(n, skb_headlen(skb));
1657 /* Copy the bytes */
1658 skb_copy_from_linear_data(skb, n->data, n->len);
1659
1660 n->truesize += skb->data_len;
1661 n->data_len = skb->data_len;
1662 n->len = skb->len;
1663
1664 if (skb_shinfo(skb)->nr_frags) {
1665 int i;
1666
1667 if (skb_orphan_frags(skb, gfp_mask) ||
1668 skb_zerocopy_clone(n, skb, gfp_mask)) {
1669 kfree_skb(n);
1670 n = NULL;
1671 goto out;
1672 }
1673 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1674 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1675 skb_frag_ref(skb, i);
1676 }
1677 skb_shinfo(n)->nr_frags = i;
1678 }
1679
1680 if (skb_has_frag_list(skb)) {
1681 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1682 skb_clone_fraglist(n);
1683 }
1684
1685 skb_copy_header(n, skb);
1686out:
1687 return n;
1688}
1689EXPORT_SYMBOL(__pskb_copy_fclone);
1690
1691/**
1692 * pskb_expand_head - reallocate header of &sk_buff
1693 * @skb: buffer to reallocate
1694 * @nhead: room to add at head
1695 * @ntail: room to add at tail
1696 * @gfp_mask: allocation priority
1697 *
1698 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1699 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1700 * reference count of 1. Returns zero in the case of success or error,
1701 * if expansion failed. In the last case, &sk_buff is not changed.
1702 *
1703 * All the pointers pointing into skb header may change and must be
1704 * reloaded after call to this function.
1705 */
1706
1707int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1708 gfp_t gfp_mask)
1709{
1710 int i, osize = skb_end_offset(skb);
1711 int size = osize + nhead + ntail;
1712 long off;
1713 u8 *data;
1714
1715 BUG_ON(nhead < 0);
1716
1717 BUG_ON(skb_shared(skb));
1718
1719 skb_zcopy_downgrade_managed(skb);
1720
1721 size = SKB_DATA_ALIGN(size);
1722
1723 if (skb_pfmemalloc(skb))
1724 gfp_mask |= __GFP_MEMALLOC;
1725 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1726 gfp_mask, NUMA_NO_NODE, NULL);
1727 if (!data)
1728 goto nodata;
1729 size = SKB_WITH_OVERHEAD(ksize(data));
1730
1731 /* Copy only real data... and, alas, header. This should be
1732 * optimized for the cases when header is void.
1733 */
1734 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1735
1736 memcpy((struct skb_shared_info *)(data + size),
1737 skb_shinfo(skb),
1738 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1739
1740 /*
1741 * if shinfo is shared we must drop the old head gracefully, but if it
1742 * is not we can just drop the old head and let the existing refcount
1743 * be since all we did is relocate the values
1744 */
1745 if (skb_cloned(skb)) {
1746 if (skb_orphan_frags(skb, gfp_mask))
1747 goto nofrags;
1748 if (skb_zcopy(skb))
1749 refcount_inc(&skb_uarg(skb)->refcnt);
1750 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1751 skb_frag_ref(skb, i);
1752
1753 if (skb_has_frag_list(skb))
1754 skb_clone_fraglist(skb);
1755
1756 skb_release_data(skb);
1757 } else {
1758 skb_free_head(skb);
1759 }
1760 off = (data + nhead) - skb->head;
1761
1762 skb->head = data;
1763 skb->head_frag = 0;
1764 skb->data += off;
1765
1766 skb_set_end_offset(skb, size);
1767#ifdef NET_SKBUFF_DATA_USES_OFFSET
1768 off = nhead;
1769#endif
1770 skb->tail += off;
1771 skb_headers_offset_update(skb, nhead);
1772 skb->cloned = 0;
1773 skb->hdr_len = 0;
1774 skb->nohdr = 0;
1775 atomic_set(&skb_shinfo(skb)->dataref, 1);
1776
1777 skb_metadata_clear(skb);
1778
1779 /* It is not generally safe to change skb->truesize.
1780 * For the moment, we really care of rx path, or
1781 * when skb is orphaned (not attached to a socket).
1782 */
1783 if (!skb->sk || skb->destructor == sock_edemux)
1784 skb->truesize += size - osize;
1785
1786 return 0;
1787
1788nofrags:
1789 kfree(data);
1790nodata:
1791 return -ENOMEM;
1792}
1793EXPORT_SYMBOL(pskb_expand_head);
1794
1795/* Make private copy of skb with writable head and some headroom */
1796
1797struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1798{
1799 struct sk_buff *skb2;
1800 int delta = headroom - skb_headroom(skb);
1801
1802 if (delta <= 0)
1803 skb2 = pskb_copy(skb, GFP_ATOMIC);
1804 else {
1805 skb2 = skb_clone(skb, GFP_ATOMIC);
1806 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1807 GFP_ATOMIC)) {
1808 kfree_skb(skb2);
1809 skb2 = NULL;
1810 }
1811 }
1812 return skb2;
1813}
1814EXPORT_SYMBOL(skb_realloc_headroom);
1815
1816int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1817{
1818 unsigned int saved_end_offset, saved_truesize;
1819 struct skb_shared_info *shinfo;
1820 int res;
1821
1822 saved_end_offset = skb_end_offset(skb);
1823 saved_truesize = skb->truesize;
1824
1825 res = pskb_expand_head(skb, 0, 0, pri);
1826 if (res)
1827 return res;
1828
1829 skb->truesize = saved_truesize;
1830
1831 if (likely(skb_end_offset(skb) == saved_end_offset))
1832 return 0;
1833
1834 shinfo = skb_shinfo(skb);
1835
1836 /* We are about to change back skb->end,
1837 * we need to move skb_shinfo() to its new location.
1838 */
1839 memmove(skb->head + saved_end_offset,
1840 shinfo,
1841 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
1842
1843 skb_set_end_offset(skb, saved_end_offset);
1844
1845 return 0;
1846}
1847
1848/**
1849 * skb_expand_head - reallocate header of &sk_buff
1850 * @skb: buffer to reallocate
1851 * @headroom: needed headroom
1852 *
1853 * Unlike skb_realloc_headroom, this one does not allocate a new skb
1854 * if possible; copies skb->sk to new skb as needed
1855 * and frees original skb in case of failures.
1856 *
1857 * It expect increased headroom and generates warning otherwise.
1858 */
1859
1860struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1861{
1862 int delta = headroom - skb_headroom(skb);
1863 int osize = skb_end_offset(skb);
1864 struct sock *sk = skb->sk;
1865
1866 if (WARN_ONCE(delta <= 0,
1867 "%s is expecting an increase in the headroom", __func__))
1868 return skb;
1869
1870 delta = SKB_DATA_ALIGN(delta);
1871 /* pskb_expand_head() might crash, if skb is shared. */
1872 if (skb_shared(skb) || !is_skb_wmem(skb)) {
1873 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1874
1875 if (unlikely(!nskb))
1876 goto fail;
1877
1878 if (sk)
1879 skb_set_owner_w(nskb, sk);
1880 consume_skb(skb);
1881 skb = nskb;
1882 }
1883 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1884 goto fail;
1885
1886 if (sk && is_skb_wmem(skb)) {
1887 delta = skb_end_offset(skb) - osize;
1888 refcount_add(delta, &sk->sk_wmem_alloc);
1889 skb->truesize += delta;
1890 }
1891 return skb;
1892
1893fail:
1894 kfree_skb(skb);
1895 return NULL;
1896}
1897EXPORT_SYMBOL(skb_expand_head);
1898
1899/**
1900 * skb_copy_expand - copy and expand sk_buff
1901 * @skb: buffer to copy
1902 * @newheadroom: new free bytes at head
1903 * @newtailroom: new free bytes at tail
1904 * @gfp_mask: allocation priority
1905 *
1906 * Make a copy of both an &sk_buff and its data and while doing so
1907 * allocate additional space.
1908 *
1909 * This is used when the caller wishes to modify the data and needs a
1910 * private copy of the data to alter as well as more space for new fields.
1911 * Returns %NULL on failure or the pointer to the buffer
1912 * on success. The returned buffer has a reference count of 1.
1913 *
1914 * You must pass %GFP_ATOMIC as the allocation priority if this function
1915 * is called from an interrupt.
1916 */
1917struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1918 int newheadroom, int newtailroom,
1919 gfp_t gfp_mask)
1920{
1921 /*
1922 * Allocate the copy buffer
1923 */
1924 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1925 gfp_mask, skb_alloc_rx_flag(skb),
1926 NUMA_NO_NODE);
1927 int oldheadroom = skb_headroom(skb);
1928 int head_copy_len, head_copy_off;
1929
1930 if (!n)
1931 return NULL;
1932
1933 skb_reserve(n, newheadroom);
1934
1935 /* Set the tail pointer and length */
1936 skb_put(n, skb->len);
1937
1938 head_copy_len = oldheadroom;
1939 head_copy_off = 0;
1940 if (newheadroom <= head_copy_len)
1941 head_copy_len = newheadroom;
1942 else
1943 head_copy_off = newheadroom - head_copy_len;
1944
1945 /* Copy the linear header and data. */
1946 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1947 skb->len + head_copy_len));
1948
1949 skb_copy_header(n, skb);
1950
1951 skb_headers_offset_update(n, newheadroom - oldheadroom);
1952
1953 return n;
1954}
1955EXPORT_SYMBOL(skb_copy_expand);
1956
1957/**
1958 * __skb_pad - zero pad the tail of an skb
1959 * @skb: buffer to pad
1960 * @pad: space to pad
1961 * @free_on_error: free buffer on error
1962 *
1963 * Ensure that a buffer is followed by a padding area that is zero
1964 * filled. Used by network drivers which may DMA or transfer data
1965 * beyond the buffer end onto the wire.
1966 *
1967 * May return error in out of memory cases. The skb is freed on error
1968 * if @free_on_error is true.
1969 */
1970
1971int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1972{
1973 int err;
1974 int ntail;
1975
1976 /* If the skbuff is non linear tailroom is always zero.. */
1977 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1978 memset(skb->data+skb->len, 0, pad);
1979 return 0;
1980 }
1981
1982 ntail = skb->data_len + pad - (skb->end - skb->tail);
1983 if (likely(skb_cloned(skb) || ntail > 0)) {
1984 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1985 if (unlikely(err))
1986 goto free_skb;
1987 }
1988
1989 /* FIXME: The use of this function with non-linear skb's really needs
1990 * to be audited.
1991 */
1992 err = skb_linearize(skb);
1993 if (unlikely(err))
1994 goto free_skb;
1995
1996 memset(skb->data + skb->len, 0, pad);
1997 return 0;
1998
1999free_skb:
2000 if (free_on_error)
2001 kfree_skb(skb);
2002 return err;
2003}
2004EXPORT_SYMBOL(__skb_pad);
2005
2006/**
2007 * pskb_put - add data to the tail of a potentially fragmented buffer
2008 * @skb: start of the buffer to use
2009 * @tail: tail fragment of the buffer to use
2010 * @len: amount of data to add
2011 *
2012 * This function extends the used data area of the potentially
2013 * fragmented buffer. @tail must be the last fragment of @skb -- or
2014 * @skb itself. If this would exceed the total buffer size the kernel
2015 * will panic. A pointer to the first byte of the extra data is
2016 * returned.
2017 */
2018
2019void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2020{
2021 if (tail != skb) {
2022 skb->data_len += len;
2023 skb->len += len;
2024 }
2025 return skb_put(tail, len);
2026}
2027EXPORT_SYMBOL_GPL(pskb_put);
2028
2029/**
2030 * skb_put - add data to a buffer
2031 * @skb: buffer to use
2032 * @len: amount of data to add
2033 *
2034 * This function extends the used data area of the buffer. If this would
2035 * exceed the total buffer size the kernel will panic. A pointer to the
2036 * first byte of the extra data is returned.
2037 */
2038void *skb_put(struct sk_buff *skb, unsigned int len)
2039{
2040 void *tmp = skb_tail_pointer(skb);
2041 SKB_LINEAR_ASSERT(skb);
2042 skb->tail += len;
2043 skb->len += len;
2044 if (unlikely(skb->tail > skb->end))
2045 skb_over_panic(skb, len, __builtin_return_address(0));
2046 return tmp;
2047}
2048EXPORT_SYMBOL(skb_put);
2049
2050/**
2051 * skb_push - add data to the start of a buffer
2052 * @skb: buffer to use
2053 * @len: amount of data to add
2054 *
2055 * This function extends the used data area of the buffer at the buffer
2056 * start. If this would exceed the total buffer headroom the kernel will
2057 * panic. A pointer to the first byte of the extra data is returned.
2058 */
2059void *skb_push(struct sk_buff *skb, unsigned int len)
2060{
2061 skb->data -= len;
2062 skb->len += len;
2063 if (unlikely(skb->data < skb->head))
2064 skb_under_panic(skb, len, __builtin_return_address(0));
2065 return skb->data;
2066}
2067EXPORT_SYMBOL(skb_push);
2068
2069/**
2070 * skb_pull - remove data from the start of a buffer
2071 * @skb: buffer to use
2072 * @len: amount of data to remove
2073 *
2074 * This function removes data from the start of a buffer, returning
2075 * the memory to the headroom. A pointer to the next data in the buffer
2076 * is returned. Once the data has been pulled future pushes will overwrite
2077 * the old data.
2078 */
2079void *skb_pull(struct sk_buff *skb, unsigned int len)
2080{
2081 return skb_pull_inline(skb, len);
2082}
2083EXPORT_SYMBOL(skb_pull);
2084
2085/**
2086 * skb_pull_data - remove data from the start of a buffer returning its
2087 * original position.
2088 * @skb: buffer to use
2089 * @len: amount of data to remove
2090 *
2091 * This function removes data from the start of a buffer, returning
2092 * the memory to the headroom. A pointer to the original data in the buffer
2093 * is returned after checking if there is enough data to pull. Once the
2094 * data has been pulled future pushes will overwrite the old data.
2095 */
2096void *skb_pull_data(struct sk_buff *skb, size_t len)
2097{
2098 void *data = skb->data;
2099
2100 if (skb->len < len)
2101 return NULL;
2102
2103 skb_pull(skb, len);
2104
2105 return data;
2106}
2107EXPORT_SYMBOL(skb_pull_data);
2108
2109/**
2110 * skb_trim - remove end from a buffer
2111 * @skb: buffer to alter
2112 * @len: new length
2113 *
2114 * Cut the length of a buffer down by removing data from the tail. If
2115 * the buffer is already under the length specified it is not modified.
2116 * The skb must be linear.
2117 */
2118void skb_trim(struct sk_buff *skb, unsigned int len)
2119{
2120 if (skb->len > len)
2121 __skb_trim(skb, len);
2122}
2123EXPORT_SYMBOL(skb_trim);
2124
2125/* Trims skb to length len. It can change skb pointers.
2126 */
2127
2128int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2129{
2130 struct sk_buff **fragp;
2131 struct sk_buff *frag;
2132 int offset = skb_headlen(skb);
2133 int nfrags = skb_shinfo(skb)->nr_frags;
2134 int i;
2135 int err;
2136
2137 if (skb_cloned(skb) &&
2138 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2139 return err;
2140
2141 i = 0;
2142 if (offset >= len)
2143 goto drop_pages;
2144
2145 for (; i < nfrags; i++) {
2146 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2147
2148 if (end < len) {
2149 offset = end;
2150 continue;
2151 }
2152
2153 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2154
2155drop_pages:
2156 skb_shinfo(skb)->nr_frags = i;
2157
2158 for (; i < nfrags; i++)
2159 skb_frag_unref(skb, i);
2160
2161 if (skb_has_frag_list(skb))
2162 skb_drop_fraglist(skb);
2163 goto done;
2164 }
2165
2166 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2167 fragp = &frag->next) {
2168 int end = offset + frag->len;
2169
2170 if (skb_shared(frag)) {
2171 struct sk_buff *nfrag;
2172
2173 nfrag = skb_clone(frag, GFP_ATOMIC);
2174 if (unlikely(!nfrag))
2175 return -ENOMEM;
2176
2177 nfrag->next = frag->next;
2178 consume_skb(frag);
2179 frag = nfrag;
2180 *fragp = frag;
2181 }
2182
2183 if (end < len) {
2184 offset = end;
2185 continue;
2186 }
2187
2188 if (end > len &&
2189 unlikely((err = pskb_trim(frag, len - offset))))
2190 return err;
2191
2192 if (frag->next)
2193 skb_drop_list(&frag->next);
2194 break;
2195 }
2196
2197done:
2198 if (len > skb_headlen(skb)) {
2199 skb->data_len -= skb->len - len;
2200 skb->len = len;
2201 } else {
2202 skb->len = len;
2203 skb->data_len = 0;
2204 skb_set_tail_pointer(skb, len);
2205 }
2206
2207 if (!skb->sk || skb->destructor == sock_edemux)
2208 skb_condense(skb);
2209 return 0;
2210}
2211EXPORT_SYMBOL(___pskb_trim);
2212
2213/* Note : use pskb_trim_rcsum() instead of calling this directly
2214 */
2215int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2216{
2217 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2218 int delta = skb->len - len;
2219
2220 skb->csum = csum_block_sub(skb->csum,
2221 skb_checksum(skb, len, delta, 0),
2222 len);
2223 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2224 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2225 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2226
2227 if (offset + sizeof(__sum16) > hdlen)
2228 return -EINVAL;
2229 }
2230 return __pskb_trim(skb, len);
2231}
2232EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2233
2234/**
2235 * __pskb_pull_tail - advance tail of skb header
2236 * @skb: buffer to reallocate
2237 * @delta: number of bytes to advance tail
2238 *
2239 * The function makes a sense only on a fragmented &sk_buff,
2240 * it expands header moving its tail forward and copying necessary
2241 * data from fragmented part.
2242 *
2243 * &sk_buff MUST have reference count of 1.
2244 *
2245 * Returns %NULL (and &sk_buff does not change) if pull failed
2246 * or value of new tail of skb in the case of success.
2247 *
2248 * All the pointers pointing into skb header may change and must be
2249 * reloaded after call to this function.
2250 */
2251
2252/* Moves tail of skb head forward, copying data from fragmented part,
2253 * when it is necessary.
2254 * 1. It may fail due to malloc failure.
2255 * 2. It may change skb pointers.
2256 *
2257 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2258 */
2259void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2260{
2261 /* If skb has not enough free space at tail, get new one
2262 * plus 128 bytes for future expansions. If we have enough
2263 * room at tail, reallocate without expansion only if skb is cloned.
2264 */
2265 int i, k, eat = (skb->tail + delta) - skb->end;
2266
2267 if (eat > 0 || skb_cloned(skb)) {
2268 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2269 GFP_ATOMIC))
2270 return NULL;
2271 }
2272
2273 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2274 skb_tail_pointer(skb), delta));
2275
2276 /* Optimization: no fragments, no reasons to preestimate
2277 * size of pulled pages. Superb.
2278 */
2279 if (!skb_has_frag_list(skb))
2280 goto pull_pages;
2281
2282 /* Estimate size of pulled pages. */
2283 eat = delta;
2284 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2285 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2286
2287 if (size >= eat)
2288 goto pull_pages;
2289 eat -= size;
2290 }
2291
2292 /* If we need update frag list, we are in troubles.
2293 * Certainly, it is possible to add an offset to skb data,
2294 * but taking into account that pulling is expected to
2295 * be very rare operation, it is worth to fight against
2296 * further bloating skb head and crucify ourselves here instead.
2297 * Pure masohism, indeed. 8)8)
2298 */
2299 if (eat) {
2300 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2301 struct sk_buff *clone = NULL;
2302 struct sk_buff *insp = NULL;
2303
2304 do {
2305 if (list->len <= eat) {
2306 /* Eaten as whole. */
2307 eat -= list->len;
2308 list = list->next;
2309 insp = list;
2310 } else {
2311 /* Eaten partially. */
2312
2313 if (skb_shared(list)) {
2314 /* Sucks! We need to fork list. :-( */
2315 clone = skb_clone(list, GFP_ATOMIC);
2316 if (!clone)
2317 return NULL;
2318 insp = list->next;
2319 list = clone;
2320 } else {
2321 /* This may be pulled without
2322 * problems. */
2323 insp = list;
2324 }
2325 if (!pskb_pull(list, eat)) {
2326 kfree_skb(clone);
2327 return NULL;
2328 }
2329 break;
2330 }
2331 } while (eat);
2332
2333 /* Free pulled out fragments. */
2334 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2335 skb_shinfo(skb)->frag_list = list->next;
2336 consume_skb(list);
2337 }
2338 /* And insert new clone at head. */
2339 if (clone) {
2340 clone->next = list;
2341 skb_shinfo(skb)->frag_list = clone;
2342 }
2343 }
2344 /* Success! Now we may commit changes to skb data. */
2345
2346pull_pages:
2347 eat = delta;
2348 k = 0;
2349 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2350 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2351
2352 if (size <= eat) {
2353 skb_frag_unref(skb, i);
2354 eat -= size;
2355 } else {
2356 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2357
2358 *frag = skb_shinfo(skb)->frags[i];
2359 if (eat) {
2360 skb_frag_off_add(frag, eat);
2361 skb_frag_size_sub(frag, eat);
2362 if (!i)
2363 goto end;
2364 eat = 0;
2365 }
2366 k++;
2367 }
2368 }
2369 skb_shinfo(skb)->nr_frags = k;
2370
2371end:
2372 skb->tail += delta;
2373 skb->data_len -= delta;
2374
2375 if (!skb->data_len)
2376 skb_zcopy_clear(skb, false);
2377
2378 return skb_tail_pointer(skb);
2379}
2380EXPORT_SYMBOL(__pskb_pull_tail);
2381
2382/**
2383 * skb_copy_bits - copy bits from skb to kernel buffer
2384 * @skb: source skb
2385 * @offset: offset in source
2386 * @to: destination buffer
2387 * @len: number of bytes to copy
2388 *
2389 * Copy the specified number of bytes from the source skb to the
2390 * destination buffer.
2391 *
2392 * CAUTION ! :
2393 * If its prototype is ever changed,
2394 * check arch/{*}/net/{*}.S files,
2395 * since it is called from BPF assembly code.
2396 */
2397int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2398{
2399 int start = skb_headlen(skb);
2400 struct sk_buff *frag_iter;
2401 int i, copy;
2402
2403 if (offset > (int)skb->len - len)
2404 goto fault;
2405
2406 /* Copy header. */
2407 if ((copy = start - offset) > 0) {
2408 if (copy > len)
2409 copy = len;
2410 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2411 if ((len -= copy) == 0)
2412 return 0;
2413 offset += copy;
2414 to += copy;
2415 }
2416
2417 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2418 int end;
2419 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2420
2421 WARN_ON(start > offset + len);
2422
2423 end = start + skb_frag_size(f);
2424 if ((copy = end - offset) > 0) {
2425 u32 p_off, p_len, copied;
2426 struct page *p;
2427 u8 *vaddr;
2428
2429 if (copy > len)
2430 copy = len;
2431
2432 skb_frag_foreach_page(f,
2433 skb_frag_off(f) + offset - start,
2434 copy, p, p_off, p_len, copied) {
2435 vaddr = kmap_atomic(p);
2436 memcpy(to + copied, vaddr + p_off, p_len);
2437 kunmap_atomic(vaddr);
2438 }
2439
2440 if ((len -= copy) == 0)
2441 return 0;
2442 offset += copy;
2443 to += copy;
2444 }
2445 start = end;
2446 }
2447
2448 skb_walk_frags(skb, frag_iter) {
2449 int end;
2450
2451 WARN_ON(start > offset + len);
2452
2453 end = start + frag_iter->len;
2454 if ((copy = end - offset) > 0) {
2455 if (copy > len)
2456 copy = len;
2457 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2458 goto fault;
2459 if ((len -= copy) == 0)
2460 return 0;
2461 offset += copy;
2462 to += copy;
2463 }
2464 start = end;
2465 }
2466
2467 if (!len)
2468 return 0;
2469
2470fault:
2471 return -EFAULT;
2472}
2473EXPORT_SYMBOL(skb_copy_bits);
2474
2475/*
2476 * Callback from splice_to_pipe(), if we need to release some pages
2477 * at the end of the spd in case we error'ed out in filling the pipe.
2478 */
2479static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2480{
2481 put_page(spd->pages[i]);
2482}
2483
2484static struct page *linear_to_page(struct page *page, unsigned int *len,
2485 unsigned int *offset,
2486 struct sock *sk)
2487{
2488 struct page_frag *pfrag = sk_page_frag(sk);
2489
2490 if (!sk_page_frag_refill(sk, pfrag))
2491 return NULL;
2492
2493 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2494
2495 memcpy(page_address(pfrag->page) + pfrag->offset,
2496 page_address(page) + *offset, *len);
2497 *offset = pfrag->offset;
2498 pfrag->offset += *len;
2499
2500 return pfrag->page;
2501}
2502
2503static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2504 struct page *page,
2505 unsigned int offset)
2506{
2507 return spd->nr_pages &&
2508 spd->pages[spd->nr_pages - 1] == page &&
2509 (spd->partial[spd->nr_pages - 1].offset +
2510 spd->partial[spd->nr_pages - 1].len == offset);
2511}
2512
2513/*
2514 * Fill page/offset/length into spd, if it can hold more pages.
2515 */
2516static bool spd_fill_page(struct splice_pipe_desc *spd,
2517 struct pipe_inode_info *pipe, struct page *page,
2518 unsigned int *len, unsigned int offset,
2519 bool linear,
2520 struct sock *sk)
2521{
2522 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2523 return true;
2524
2525 if (linear) {
2526 page = linear_to_page(page, len, &offset, sk);
2527 if (!page)
2528 return true;
2529 }
2530 if (spd_can_coalesce(spd, page, offset)) {
2531 spd->partial[spd->nr_pages - 1].len += *len;
2532 return false;
2533 }
2534 get_page(page);
2535 spd->pages[spd->nr_pages] = page;
2536 spd->partial[spd->nr_pages].len = *len;
2537 spd->partial[spd->nr_pages].offset = offset;
2538 spd->nr_pages++;
2539
2540 return false;
2541}
2542
2543static bool __splice_segment(struct page *page, unsigned int poff,
2544 unsigned int plen, unsigned int *off,
2545 unsigned int *len,
2546 struct splice_pipe_desc *spd, bool linear,
2547 struct sock *sk,
2548 struct pipe_inode_info *pipe)
2549{
2550 if (!*len)
2551 return true;
2552
2553 /* skip this segment if already processed */
2554 if (*off >= plen) {
2555 *off -= plen;
2556 return false;
2557 }
2558
2559 /* ignore any bits we already processed */
2560 poff += *off;
2561 plen -= *off;
2562 *off = 0;
2563
2564 do {
2565 unsigned int flen = min(*len, plen);
2566
2567 if (spd_fill_page(spd, pipe, page, &flen, poff,
2568 linear, sk))
2569 return true;
2570 poff += flen;
2571 plen -= flen;
2572 *len -= flen;
2573 } while (*len && plen);
2574
2575 return false;
2576}
2577
2578/*
2579 * Map linear and fragment data from the skb to spd. It reports true if the
2580 * pipe is full or if we already spliced the requested length.
2581 */
2582static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2583 unsigned int *offset, unsigned int *len,
2584 struct splice_pipe_desc *spd, struct sock *sk)
2585{
2586 int seg;
2587 struct sk_buff *iter;
2588
2589 /* map the linear part :
2590 * If skb->head_frag is set, this 'linear' part is backed by a
2591 * fragment, and if the head is not shared with any clones then
2592 * we can avoid a copy since we own the head portion of this page.
2593 */
2594 if (__splice_segment(virt_to_page(skb->data),
2595 (unsigned long) skb->data & (PAGE_SIZE - 1),
2596 skb_headlen(skb),
2597 offset, len, spd,
2598 skb_head_is_locked(skb),
2599 sk, pipe))
2600 return true;
2601
2602 /*
2603 * then map the fragments
2604 */
2605 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2606 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2607
2608 if (__splice_segment(skb_frag_page(f),
2609 skb_frag_off(f), skb_frag_size(f),
2610 offset, len, spd, false, sk, pipe))
2611 return true;
2612 }
2613
2614 skb_walk_frags(skb, iter) {
2615 if (*offset >= iter->len) {
2616 *offset -= iter->len;
2617 continue;
2618 }
2619 /* __skb_splice_bits() only fails if the output has no room
2620 * left, so no point in going over the frag_list for the error
2621 * case.
2622 */
2623 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2624 return true;
2625 }
2626
2627 return false;
2628}
2629
2630/*
2631 * Map data from the skb to a pipe. Should handle both the linear part,
2632 * the fragments, and the frag list.
2633 */
2634int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2635 struct pipe_inode_info *pipe, unsigned int tlen,
2636 unsigned int flags)
2637{
2638 struct partial_page partial[MAX_SKB_FRAGS];
2639 struct page *pages[MAX_SKB_FRAGS];
2640 struct splice_pipe_desc spd = {
2641 .pages = pages,
2642 .partial = partial,
2643 .nr_pages_max = MAX_SKB_FRAGS,
2644 .ops = &nosteal_pipe_buf_ops,
2645 .spd_release = sock_spd_release,
2646 };
2647 int ret = 0;
2648
2649 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2650
2651 if (spd.nr_pages)
2652 ret = splice_to_pipe(pipe, &spd);
2653
2654 return ret;
2655}
2656EXPORT_SYMBOL_GPL(skb_splice_bits);
2657
2658static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2659 struct kvec *vec, size_t num, size_t size)
2660{
2661 struct socket *sock = sk->sk_socket;
2662
2663 if (!sock)
2664 return -EINVAL;
2665 return kernel_sendmsg(sock, msg, vec, num, size);
2666}
2667
2668static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2669 size_t size, int flags)
2670{
2671 struct socket *sock = sk->sk_socket;
2672
2673 if (!sock)
2674 return -EINVAL;
2675 return kernel_sendpage(sock, page, offset, size, flags);
2676}
2677
2678typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2679 struct kvec *vec, size_t num, size_t size);
2680typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2681 size_t size, int flags);
2682static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2683 int len, sendmsg_func sendmsg, sendpage_func sendpage)
2684{
2685 unsigned int orig_len = len;
2686 struct sk_buff *head = skb;
2687 unsigned short fragidx;
2688 int slen, ret;
2689
2690do_frag_list:
2691
2692 /* Deal with head data */
2693 while (offset < skb_headlen(skb) && len) {
2694 struct kvec kv;
2695 struct msghdr msg;
2696
2697 slen = min_t(int, len, skb_headlen(skb) - offset);
2698 kv.iov_base = skb->data + offset;
2699 kv.iov_len = slen;
2700 memset(&msg, 0, sizeof(msg));
2701 msg.msg_flags = MSG_DONTWAIT;
2702
2703 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2704 sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2705 if (ret <= 0)
2706 goto error;
2707
2708 offset += ret;
2709 len -= ret;
2710 }
2711
2712 /* All the data was skb head? */
2713 if (!len)
2714 goto out;
2715
2716 /* Make offset relative to start of frags */
2717 offset -= skb_headlen(skb);
2718
2719 /* Find where we are in frag list */
2720 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2721 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2722
2723 if (offset < skb_frag_size(frag))
2724 break;
2725
2726 offset -= skb_frag_size(frag);
2727 }
2728
2729 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2730 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2731
2732 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2733
2734 while (slen) {
2735 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2736 sendpage_unlocked, sk,
2737 skb_frag_page(frag),
2738 skb_frag_off(frag) + offset,
2739 slen, MSG_DONTWAIT);
2740 if (ret <= 0)
2741 goto error;
2742
2743 len -= ret;
2744 offset += ret;
2745 slen -= ret;
2746 }
2747
2748 offset = 0;
2749 }
2750
2751 if (len) {
2752 /* Process any frag lists */
2753
2754 if (skb == head) {
2755 if (skb_has_frag_list(skb)) {
2756 skb = skb_shinfo(skb)->frag_list;
2757 goto do_frag_list;
2758 }
2759 } else if (skb->next) {
2760 skb = skb->next;
2761 goto do_frag_list;
2762 }
2763 }
2764
2765out:
2766 return orig_len - len;
2767
2768error:
2769 return orig_len == len ? ret : orig_len - len;
2770}
2771
2772/* Send skb data on a socket. Socket must be locked. */
2773int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2774 int len)
2775{
2776 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2777 kernel_sendpage_locked);
2778}
2779EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2780
2781/* Send skb data on a socket. Socket must be unlocked. */
2782int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2783{
2784 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2785 sendpage_unlocked);
2786}
2787
2788/**
2789 * skb_store_bits - store bits from kernel buffer to skb
2790 * @skb: destination buffer
2791 * @offset: offset in destination
2792 * @from: source buffer
2793 * @len: number of bytes to copy
2794 *
2795 * Copy the specified number of bytes from the source buffer to the
2796 * destination skb. This function handles all the messy bits of
2797 * traversing fragment lists and such.
2798 */
2799
2800int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2801{
2802 int start = skb_headlen(skb);
2803 struct sk_buff *frag_iter;
2804 int i, copy;
2805
2806 if (offset > (int)skb->len - len)
2807 goto fault;
2808
2809 if ((copy = start - offset) > 0) {
2810 if (copy > len)
2811 copy = len;
2812 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2813 if ((len -= copy) == 0)
2814 return 0;
2815 offset += copy;
2816 from += copy;
2817 }
2818
2819 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2820 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2821 int end;
2822
2823 WARN_ON(start > offset + len);
2824
2825 end = start + skb_frag_size(frag);
2826 if ((copy = end - offset) > 0) {
2827 u32 p_off, p_len, copied;
2828 struct page *p;
2829 u8 *vaddr;
2830
2831 if (copy > len)
2832 copy = len;
2833
2834 skb_frag_foreach_page(frag,
2835 skb_frag_off(frag) + offset - start,
2836 copy, p, p_off, p_len, copied) {
2837 vaddr = kmap_atomic(p);
2838 memcpy(vaddr + p_off, from + copied, p_len);
2839 kunmap_atomic(vaddr);
2840 }
2841
2842 if ((len -= copy) == 0)
2843 return 0;
2844 offset += copy;
2845 from += copy;
2846 }
2847 start = end;
2848 }
2849
2850 skb_walk_frags(skb, frag_iter) {
2851 int end;
2852
2853 WARN_ON(start > offset + len);
2854
2855 end = start + frag_iter->len;
2856 if ((copy = end - offset) > 0) {
2857 if (copy > len)
2858 copy = len;
2859 if (skb_store_bits(frag_iter, offset - start,
2860 from, copy))
2861 goto fault;
2862 if ((len -= copy) == 0)
2863 return 0;
2864 offset += copy;
2865 from += copy;
2866 }
2867 start = end;
2868 }
2869 if (!len)
2870 return 0;
2871
2872fault:
2873 return -EFAULT;
2874}
2875EXPORT_SYMBOL(skb_store_bits);
2876
2877/* Checksum skb data. */
2878__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2879 __wsum csum, const struct skb_checksum_ops *ops)
2880{
2881 int start = skb_headlen(skb);
2882 int i, copy = start - offset;
2883 struct sk_buff *frag_iter;
2884 int pos = 0;
2885
2886 /* Checksum header. */
2887 if (copy > 0) {
2888 if (copy > len)
2889 copy = len;
2890 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2891 skb->data + offset, copy, csum);
2892 if ((len -= copy) == 0)
2893 return csum;
2894 offset += copy;
2895 pos = copy;
2896 }
2897
2898 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2899 int end;
2900 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2901
2902 WARN_ON(start > offset + len);
2903
2904 end = start + skb_frag_size(frag);
2905 if ((copy = end - offset) > 0) {
2906 u32 p_off, p_len, copied;
2907 struct page *p;
2908 __wsum csum2;
2909 u8 *vaddr;
2910
2911 if (copy > len)
2912 copy = len;
2913
2914 skb_frag_foreach_page(frag,
2915 skb_frag_off(frag) + offset - start,
2916 copy, p, p_off, p_len, copied) {
2917 vaddr = kmap_atomic(p);
2918 csum2 = INDIRECT_CALL_1(ops->update,
2919 csum_partial_ext,
2920 vaddr + p_off, p_len, 0);
2921 kunmap_atomic(vaddr);
2922 csum = INDIRECT_CALL_1(ops->combine,
2923 csum_block_add_ext, csum,
2924 csum2, pos, p_len);
2925 pos += p_len;
2926 }
2927
2928 if (!(len -= copy))
2929 return csum;
2930 offset += copy;
2931 }
2932 start = end;
2933 }
2934
2935 skb_walk_frags(skb, frag_iter) {
2936 int end;
2937
2938 WARN_ON(start > offset + len);
2939
2940 end = start + frag_iter->len;
2941 if ((copy = end - offset) > 0) {
2942 __wsum csum2;
2943 if (copy > len)
2944 copy = len;
2945 csum2 = __skb_checksum(frag_iter, offset - start,
2946 copy, 0, ops);
2947 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2948 csum, csum2, pos, copy);
2949 if ((len -= copy) == 0)
2950 return csum;
2951 offset += copy;
2952 pos += copy;
2953 }
2954 start = end;
2955 }
2956 BUG_ON(len);
2957
2958 return csum;
2959}
2960EXPORT_SYMBOL(__skb_checksum);
2961
2962__wsum skb_checksum(const struct sk_buff *skb, int offset,
2963 int len, __wsum csum)
2964{
2965 const struct skb_checksum_ops ops = {
2966 .update = csum_partial_ext,
2967 .combine = csum_block_add_ext,
2968 };
2969
2970 return __skb_checksum(skb, offset, len, csum, &ops);
2971}
2972EXPORT_SYMBOL(skb_checksum);
2973
2974/* Both of above in one bottle. */
2975
2976__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2977 u8 *to, int len)
2978{
2979 int start = skb_headlen(skb);
2980 int i, copy = start - offset;
2981 struct sk_buff *frag_iter;
2982 int pos = 0;
2983 __wsum csum = 0;
2984
2985 /* Copy header. */
2986 if (copy > 0) {
2987 if (copy > len)
2988 copy = len;
2989 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2990 copy);
2991 if ((len -= copy) == 0)
2992 return csum;
2993 offset += copy;
2994 to += copy;
2995 pos = copy;
2996 }
2997
2998 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2999 int end;
3000
3001 WARN_ON(start > offset + len);
3002
3003 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3004 if ((copy = end - offset) > 0) {
3005 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3006 u32 p_off, p_len, copied;
3007 struct page *p;
3008 __wsum csum2;
3009 u8 *vaddr;
3010
3011 if (copy > len)
3012 copy = len;
3013
3014 skb_frag_foreach_page(frag,
3015 skb_frag_off(frag) + offset - start,
3016 copy, p, p_off, p_len, copied) {
3017 vaddr = kmap_atomic(p);
3018 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3019 to + copied,
3020 p_len);
3021 kunmap_atomic(vaddr);
3022 csum = csum_block_add(csum, csum2, pos);
3023 pos += p_len;
3024 }
3025
3026 if (!(len -= copy))
3027 return csum;
3028 offset += copy;
3029 to += copy;
3030 }
3031 start = end;
3032 }
3033
3034 skb_walk_frags(skb, frag_iter) {
3035 __wsum csum2;
3036 int end;
3037
3038 WARN_ON(start > offset + len);
3039
3040 end = start + frag_iter->len;
3041 if ((copy = end - offset) > 0) {
3042 if (copy > len)
3043 copy = len;
3044 csum2 = skb_copy_and_csum_bits(frag_iter,
3045 offset - start,
3046 to, copy);
3047 csum = csum_block_add(csum, csum2, pos);
3048 if ((len -= copy) == 0)
3049 return csum;
3050 offset += copy;
3051 to += copy;
3052 pos += copy;
3053 }
3054 start = end;
3055 }
3056 BUG_ON(len);
3057 return csum;
3058}
3059EXPORT_SYMBOL(skb_copy_and_csum_bits);
3060
3061__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3062{
3063 __sum16 sum;
3064
3065 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3066 /* See comments in __skb_checksum_complete(). */
3067 if (likely(!sum)) {
3068 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3069 !skb->csum_complete_sw)
3070 netdev_rx_csum_fault(skb->dev, skb);
3071 }
3072 if (!skb_shared(skb))
3073 skb->csum_valid = !sum;
3074 return sum;
3075}
3076EXPORT_SYMBOL(__skb_checksum_complete_head);
3077
3078/* This function assumes skb->csum already holds pseudo header's checksum,
3079 * which has been changed from the hardware checksum, for example, by
3080 * __skb_checksum_validate_complete(). And, the original skb->csum must
3081 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3082 *
3083 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3084 * zero. The new checksum is stored back into skb->csum unless the skb is
3085 * shared.
3086 */
3087__sum16 __skb_checksum_complete(struct sk_buff *skb)
3088{
3089 __wsum csum;
3090 __sum16 sum;
3091
3092 csum = skb_checksum(skb, 0, skb->len, 0);
3093
3094 sum = csum_fold(csum_add(skb->csum, csum));
3095 /* This check is inverted, because we already knew the hardware
3096 * checksum is invalid before calling this function. So, if the
3097 * re-computed checksum is valid instead, then we have a mismatch
3098 * between the original skb->csum and skb_checksum(). This means either
3099 * the original hardware checksum is incorrect or we screw up skb->csum
3100 * when moving skb->data around.
3101 */
3102 if (likely(!sum)) {
3103 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3104 !skb->csum_complete_sw)
3105 netdev_rx_csum_fault(skb->dev, skb);
3106 }
3107
3108 if (!skb_shared(skb)) {
3109 /* Save full packet checksum */
3110 skb->csum = csum;
3111 skb->ip_summed = CHECKSUM_COMPLETE;
3112 skb->csum_complete_sw = 1;
3113 skb->csum_valid = !sum;
3114 }
3115
3116 return sum;
3117}
3118EXPORT_SYMBOL(__skb_checksum_complete);
3119
3120static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3121{
3122 net_warn_ratelimited(
3123 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3124 __func__);
3125 return 0;
3126}
3127
3128static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3129 int offset, int len)
3130{
3131 net_warn_ratelimited(
3132 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3133 __func__);
3134 return 0;
3135}
3136
3137static const struct skb_checksum_ops default_crc32c_ops = {
3138 .update = warn_crc32c_csum_update,
3139 .combine = warn_crc32c_csum_combine,
3140};
3141
3142const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3143 &default_crc32c_ops;
3144EXPORT_SYMBOL(crc32c_csum_stub);
3145
3146 /**
3147 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3148 * @from: source buffer
3149 *
3150 * Calculates the amount of linear headroom needed in the 'to' skb passed
3151 * into skb_zerocopy().
3152 */
3153unsigned int
3154skb_zerocopy_headlen(const struct sk_buff *from)
3155{
3156 unsigned int hlen = 0;
3157
3158 if (!from->head_frag ||
3159 skb_headlen(from) < L1_CACHE_BYTES ||
3160 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3161 hlen = skb_headlen(from);
3162 if (!hlen)
3163 hlen = from->len;
3164 }
3165
3166 if (skb_has_frag_list(from))
3167 hlen = from->len;
3168
3169 return hlen;
3170}
3171EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3172
3173/**
3174 * skb_zerocopy - Zero copy skb to skb
3175 * @to: destination buffer
3176 * @from: source buffer
3177 * @len: number of bytes to copy from source buffer
3178 * @hlen: size of linear headroom in destination buffer
3179 *
3180 * Copies up to `len` bytes from `from` to `to` by creating references
3181 * to the frags in the source buffer.
3182 *
3183 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3184 * headroom in the `to` buffer.
3185 *
3186 * Return value:
3187 * 0: everything is OK
3188 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3189 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3190 */
3191int
3192skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3193{
3194 int i, j = 0;
3195 int plen = 0; /* length of skb->head fragment */
3196 int ret;
3197 struct page *page;
3198 unsigned int offset;
3199
3200 BUG_ON(!from->head_frag && !hlen);
3201
3202 /* dont bother with small payloads */
3203 if (len <= skb_tailroom(to))
3204 return skb_copy_bits(from, 0, skb_put(to, len), len);
3205
3206 if (hlen) {
3207 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3208 if (unlikely(ret))
3209 return ret;
3210 len -= hlen;
3211 } else {
3212 plen = min_t(int, skb_headlen(from), len);
3213 if (plen) {
3214 page = virt_to_head_page(from->head);
3215 offset = from->data - (unsigned char *)page_address(page);
3216 __skb_fill_page_desc(to, 0, page, offset, plen);
3217 get_page(page);
3218 j = 1;
3219 len -= plen;
3220 }
3221 }
3222
3223 skb_len_add(to, len + plen);
3224
3225 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3226 skb_tx_error(from);
3227 return -ENOMEM;
3228 }
3229 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3230
3231 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3232 int size;
3233
3234 if (!len)
3235 break;
3236 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3237 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3238 len);
3239 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3240 len -= size;
3241 skb_frag_ref(to, j);
3242 j++;
3243 }
3244 skb_shinfo(to)->nr_frags = j;
3245
3246 return 0;
3247}
3248EXPORT_SYMBOL_GPL(skb_zerocopy);
3249
3250void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3251{
3252 __wsum csum;
3253 long csstart;
3254
3255 if (skb->ip_summed == CHECKSUM_PARTIAL)
3256 csstart = skb_checksum_start_offset(skb);
3257 else
3258 csstart = skb_headlen(skb);
3259
3260 BUG_ON(csstart > skb_headlen(skb));
3261
3262 skb_copy_from_linear_data(skb, to, csstart);
3263
3264 csum = 0;
3265 if (csstart != skb->len)
3266 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3267 skb->len - csstart);
3268
3269 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3270 long csstuff = csstart + skb->csum_offset;
3271
3272 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3273 }
3274}
3275EXPORT_SYMBOL(skb_copy_and_csum_dev);
3276
3277/**
3278 * skb_dequeue - remove from the head of the queue
3279 * @list: list to dequeue from
3280 *
3281 * Remove the head of the list. The list lock is taken so the function
3282 * may be used safely with other locking list functions. The head item is
3283 * returned or %NULL if the list is empty.
3284 */
3285
3286struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3287{
3288 unsigned long flags;
3289 struct sk_buff *result;
3290
3291 spin_lock_irqsave(&list->lock, flags);
3292 result = __skb_dequeue(list);
3293 spin_unlock_irqrestore(&list->lock, flags);
3294 return result;
3295}
3296EXPORT_SYMBOL(skb_dequeue);
3297
3298/**
3299 * skb_dequeue_tail - remove from the tail of the queue
3300 * @list: list to dequeue from
3301 *
3302 * Remove the tail of the list. The list lock is taken so the function
3303 * may be used safely with other locking list functions. The tail item is
3304 * returned or %NULL if the list is empty.
3305 */
3306struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3307{
3308 unsigned long flags;
3309 struct sk_buff *result;
3310
3311 spin_lock_irqsave(&list->lock, flags);
3312 result = __skb_dequeue_tail(list);
3313 spin_unlock_irqrestore(&list->lock, flags);
3314 return result;
3315}
3316EXPORT_SYMBOL(skb_dequeue_tail);
3317
3318/**
3319 * skb_queue_purge - empty a list
3320 * @list: list to empty
3321 *
3322 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3323 * the list and one reference dropped. This function takes the list
3324 * lock and is atomic with respect to other list locking functions.
3325 */
3326void skb_queue_purge(struct sk_buff_head *list)
3327{
3328 struct sk_buff *skb;
3329 while ((skb = skb_dequeue(list)) != NULL)
3330 kfree_skb(skb);
3331}
3332EXPORT_SYMBOL(skb_queue_purge);
3333
3334/**
3335 * skb_rbtree_purge - empty a skb rbtree
3336 * @root: root of the rbtree to empty
3337 * Return value: the sum of truesizes of all purged skbs.
3338 *
3339 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3340 * the list and one reference dropped. This function does not take
3341 * any lock. Synchronization should be handled by the caller (e.g., TCP
3342 * out-of-order queue is protected by the socket lock).
3343 */
3344unsigned int skb_rbtree_purge(struct rb_root *root)
3345{
3346 struct rb_node *p = rb_first(root);
3347 unsigned int sum = 0;
3348
3349 while (p) {
3350 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3351
3352 p = rb_next(p);
3353 rb_erase(&skb->rbnode, root);
3354 sum += skb->truesize;
3355 kfree_skb(skb);
3356 }
3357 return sum;
3358}
3359
3360/**
3361 * skb_queue_head - queue a buffer at the list head
3362 * @list: list to use
3363 * @newsk: buffer to queue
3364 *
3365 * Queue a buffer at the start of the list. This function takes the
3366 * list lock and can be used safely with other locking &sk_buff functions
3367 * safely.
3368 *
3369 * A buffer cannot be placed on two lists at the same time.
3370 */
3371void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3372{
3373 unsigned long flags;
3374
3375 spin_lock_irqsave(&list->lock, flags);
3376 __skb_queue_head(list, newsk);
3377 spin_unlock_irqrestore(&list->lock, flags);
3378}
3379EXPORT_SYMBOL(skb_queue_head);
3380
3381/**
3382 * skb_queue_tail - queue a buffer at the list tail
3383 * @list: list to use
3384 * @newsk: buffer to queue
3385 *
3386 * Queue a buffer at the tail of the list. This function takes the
3387 * list lock and can be used safely with other locking &sk_buff functions
3388 * safely.
3389 *
3390 * A buffer cannot be placed on two lists at the same time.
3391 */
3392void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3393{
3394 unsigned long flags;
3395
3396 spin_lock_irqsave(&list->lock, flags);
3397 __skb_queue_tail(list, newsk);
3398 spin_unlock_irqrestore(&list->lock, flags);
3399}
3400EXPORT_SYMBOL(skb_queue_tail);
3401
3402/**
3403 * skb_unlink - remove a buffer from a list
3404 * @skb: buffer to remove
3405 * @list: list to use
3406 *
3407 * Remove a packet from a list. The list locks are taken and this
3408 * function is atomic with respect to other list locked calls
3409 *
3410 * You must know what list the SKB is on.
3411 */
3412void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3413{
3414 unsigned long flags;
3415
3416 spin_lock_irqsave(&list->lock, flags);
3417 __skb_unlink(skb, list);
3418 spin_unlock_irqrestore(&list->lock, flags);
3419}
3420EXPORT_SYMBOL(skb_unlink);
3421
3422/**
3423 * skb_append - append a buffer
3424 * @old: buffer to insert after
3425 * @newsk: buffer to insert
3426 * @list: list to use
3427 *
3428 * Place a packet after a given packet in a list. The list locks are taken
3429 * and this function is atomic with respect to other list locked calls.
3430 * A buffer cannot be placed on two lists at the same time.
3431 */
3432void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3433{
3434 unsigned long flags;
3435
3436 spin_lock_irqsave(&list->lock, flags);
3437 __skb_queue_after(list, old, newsk);
3438 spin_unlock_irqrestore(&list->lock, flags);
3439}
3440EXPORT_SYMBOL(skb_append);
3441
3442static inline void skb_split_inside_header(struct sk_buff *skb,
3443 struct sk_buff* skb1,
3444 const u32 len, const int pos)
3445{
3446 int i;
3447
3448 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3449 pos - len);
3450 /* And move data appendix as is. */
3451 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3452 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3453
3454 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3455 skb_shinfo(skb)->nr_frags = 0;
3456 skb1->data_len = skb->data_len;
3457 skb1->len += skb1->data_len;
3458 skb->data_len = 0;
3459 skb->len = len;
3460 skb_set_tail_pointer(skb, len);
3461}
3462
3463static inline void skb_split_no_header(struct sk_buff *skb,
3464 struct sk_buff* skb1,
3465 const u32 len, int pos)
3466{
3467 int i, k = 0;
3468 const int nfrags = skb_shinfo(skb)->nr_frags;
3469
3470 skb_shinfo(skb)->nr_frags = 0;
3471 skb1->len = skb1->data_len = skb->len - len;
3472 skb->len = len;
3473 skb->data_len = len - pos;
3474
3475 for (i = 0; i < nfrags; i++) {
3476 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3477
3478 if (pos + size > len) {
3479 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3480
3481 if (pos < len) {
3482 /* Split frag.
3483 * We have two variants in this case:
3484 * 1. Move all the frag to the second
3485 * part, if it is possible. F.e.
3486 * this approach is mandatory for TUX,
3487 * where splitting is expensive.
3488 * 2. Split is accurately. We make this.
3489 */
3490 skb_frag_ref(skb, i);
3491 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3492 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3493 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3494 skb_shinfo(skb)->nr_frags++;
3495 }
3496 k++;
3497 } else
3498 skb_shinfo(skb)->nr_frags++;
3499 pos += size;
3500 }
3501 skb_shinfo(skb1)->nr_frags = k;
3502}
3503
3504/**
3505 * skb_split - Split fragmented skb to two parts at length len.
3506 * @skb: the buffer to split
3507 * @skb1: the buffer to receive the second part
3508 * @len: new length for skb
3509 */
3510void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3511{
3512 int pos = skb_headlen(skb);
3513 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3514
3515 skb_zcopy_downgrade_managed(skb);
3516
3517 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3518 skb_zerocopy_clone(skb1, skb, 0);
3519 if (len < pos) /* Split line is inside header. */
3520 skb_split_inside_header(skb, skb1, len, pos);
3521 else /* Second chunk has no header, nothing to copy. */
3522 skb_split_no_header(skb, skb1, len, pos);
3523}
3524EXPORT_SYMBOL(skb_split);
3525
3526/* Shifting from/to a cloned skb is a no-go.
3527 *
3528 * Caller cannot keep skb_shinfo related pointers past calling here!
3529 */
3530static int skb_prepare_for_shift(struct sk_buff *skb)
3531{
3532 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3533}
3534
3535/**
3536 * skb_shift - Shifts paged data partially from skb to another
3537 * @tgt: buffer into which tail data gets added
3538 * @skb: buffer from which the paged data comes from
3539 * @shiftlen: shift up to this many bytes
3540 *
3541 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3542 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3543 * It's up to caller to free skb if everything was shifted.
3544 *
3545 * If @tgt runs out of frags, the whole operation is aborted.
3546 *
3547 * Skb cannot include anything else but paged data while tgt is allowed
3548 * to have non-paged data as well.
3549 *
3550 * TODO: full sized shift could be optimized but that would need
3551 * specialized skb free'er to handle frags without up-to-date nr_frags.
3552 */
3553int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3554{
3555 int from, to, merge, todo;
3556 skb_frag_t *fragfrom, *fragto;
3557
3558 BUG_ON(shiftlen > skb->len);
3559
3560 if (skb_headlen(skb))
3561 return 0;
3562 if (skb_zcopy(tgt) || skb_zcopy(skb))
3563 return 0;
3564
3565 todo = shiftlen;
3566 from = 0;
3567 to = skb_shinfo(tgt)->nr_frags;
3568 fragfrom = &skb_shinfo(skb)->frags[from];
3569
3570 /* Actual merge is delayed until the point when we know we can
3571 * commit all, so that we don't have to undo partial changes
3572 */
3573 if (!to ||
3574 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3575 skb_frag_off(fragfrom))) {
3576 merge = -1;
3577 } else {
3578 merge = to - 1;
3579
3580 todo -= skb_frag_size(fragfrom);
3581 if (todo < 0) {
3582 if (skb_prepare_for_shift(skb) ||
3583 skb_prepare_for_shift(tgt))
3584 return 0;
3585
3586 /* All previous frag pointers might be stale! */
3587 fragfrom = &skb_shinfo(skb)->frags[from];
3588 fragto = &skb_shinfo(tgt)->frags[merge];
3589
3590 skb_frag_size_add(fragto, shiftlen);
3591 skb_frag_size_sub(fragfrom, shiftlen);
3592 skb_frag_off_add(fragfrom, shiftlen);
3593
3594 goto onlymerged;
3595 }
3596
3597 from++;
3598 }
3599
3600 /* Skip full, not-fitting skb to avoid expensive operations */
3601 if ((shiftlen == skb->len) &&
3602 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3603 return 0;
3604
3605 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3606 return 0;
3607
3608 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3609 if (to == MAX_SKB_FRAGS)
3610 return 0;
3611
3612 fragfrom = &skb_shinfo(skb)->frags[from];
3613 fragto = &skb_shinfo(tgt)->frags[to];
3614
3615 if (todo >= skb_frag_size(fragfrom)) {
3616 *fragto = *fragfrom;
3617 todo -= skb_frag_size(fragfrom);
3618 from++;
3619 to++;
3620
3621 } else {
3622 __skb_frag_ref(fragfrom);
3623 skb_frag_page_copy(fragto, fragfrom);
3624 skb_frag_off_copy(fragto, fragfrom);
3625 skb_frag_size_set(fragto, todo);
3626
3627 skb_frag_off_add(fragfrom, todo);
3628 skb_frag_size_sub(fragfrom, todo);
3629 todo = 0;
3630
3631 to++;
3632 break;
3633 }
3634 }
3635
3636 /* Ready to "commit" this state change to tgt */
3637 skb_shinfo(tgt)->nr_frags = to;
3638
3639 if (merge >= 0) {
3640 fragfrom = &skb_shinfo(skb)->frags[0];
3641 fragto = &skb_shinfo(tgt)->frags[merge];
3642
3643 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3644 __skb_frag_unref(fragfrom, skb->pp_recycle);
3645 }
3646
3647 /* Reposition in the original skb */
3648 to = 0;
3649 while (from < skb_shinfo(skb)->nr_frags)
3650 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3651 skb_shinfo(skb)->nr_frags = to;
3652
3653 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3654
3655onlymerged:
3656 /* Most likely the tgt won't ever need its checksum anymore, skb on
3657 * the other hand might need it if it needs to be resent
3658 */
3659 tgt->ip_summed = CHECKSUM_PARTIAL;
3660 skb->ip_summed = CHECKSUM_PARTIAL;
3661
3662 skb_len_add(skb, -shiftlen);
3663 skb_len_add(tgt, shiftlen);
3664
3665 return shiftlen;
3666}
3667
3668/**
3669 * skb_prepare_seq_read - Prepare a sequential read of skb data
3670 * @skb: the buffer to read
3671 * @from: lower offset of data to be read
3672 * @to: upper offset of data to be read
3673 * @st: state variable
3674 *
3675 * Initializes the specified state variable. Must be called before
3676 * invoking skb_seq_read() for the first time.
3677 */
3678void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3679 unsigned int to, struct skb_seq_state *st)
3680{
3681 st->lower_offset = from;
3682 st->upper_offset = to;
3683 st->root_skb = st->cur_skb = skb;
3684 st->frag_idx = st->stepped_offset = 0;
3685 st->frag_data = NULL;
3686 st->frag_off = 0;
3687}
3688EXPORT_SYMBOL(skb_prepare_seq_read);
3689
3690/**
3691 * skb_seq_read - Sequentially read skb data
3692 * @consumed: number of bytes consumed by the caller so far
3693 * @data: destination pointer for data to be returned
3694 * @st: state variable
3695 *
3696 * Reads a block of skb data at @consumed relative to the
3697 * lower offset specified to skb_prepare_seq_read(). Assigns
3698 * the head of the data block to @data and returns the length
3699 * of the block or 0 if the end of the skb data or the upper
3700 * offset has been reached.
3701 *
3702 * The caller is not required to consume all of the data
3703 * returned, i.e. @consumed is typically set to the number
3704 * of bytes already consumed and the next call to
3705 * skb_seq_read() will return the remaining part of the block.
3706 *
3707 * Note 1: The size of each block of data returned can be arbitrary,
3708 * this limitation is the cost for zerocopy sequential
3709 * reads of potentially non linear data.
3710 *
3711 * Note 2: Fragment lists within fragments are not implemented
3712 * at the moment, state->root_skb could be replaced with
3713 * a stack for this purpose.
3714 */
3715unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3716 struct skb_seq_state *st)
3717{
3718 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3719 skb_frag_t *frag;
3720
3721 if (unlikely(abs_offset >= st->upper_offset)) {
3722 if (st->frag_data) {
3723 kunmap_atomic(st->frag_data);
3724 st->frag_data = NULL;
3725 }
3726 return 0;
3727 }
3728
3729next_skb:
3730 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3731
3732 if (abs_offset < block_limit && !st->frag_data) {
3733 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3734 return block_limit - abs_offset;
3735 }
3736
3737 if (st->frag_idx == 0 && !st->frag_data)
3738 st->stepped_offset += skb_headlen(st->cur_skb);
3739
3740 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3741 unsigned int pg_idx, pg_off, pg_sz;
3742
3743 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3744
3745 pg_idx = 0;
3746 pg_off = skb_frag_off(frag);
3747 pg_sz = skb_frag_size(frag);
3748
3749 if (skb_frag_must_loop(skb_frag_page(frag))) {
3750 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3751 pg_off = offset_in_page(pg_off + st->frag_off);
3752 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3753 PAGE_SIZE - pg_off);
3754 }
3755
3756 block_limit = pg_sz + st->stepped_offset;
3757 if (abs_offset < block_limit) {
3758 if (!st->frag_data)
3759 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3760
3761 *data = (u8 *)st->frag_data + pg_off +
3762 (abs_offset - st->stepped_offset);
3763
3764 return block_limit - abs_offset;
3765 }
3766
3767 if (st->frag_data) {
3768 kunmap_atomic(st->frag_data);
3769 st->frag_data = NULL;
3770 }
3771
3772 st->stepped_offset += pg_sz;
3773 st->frag_off += pg_sz;
3774 if (st->frag_off == skb_frag_size(frag)) {
3775 st->frag_off = 0;
3776 st->frag_idx++;
3777 }
3778 }
3779
3780 if (st->frag_data) {
3781 kunmap_atomic(st->frag_data);
3782 st->frag_data = NULL;
3783 }
3784
3785 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3786 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3787 st->frag_idx = 0;
3788 goto next_skb;
3789 } else if (st->cur_skb->next) {
3790 st->cur_skb = st->cur_skb->next;
3791 st->frag_idx = 0;
3792 goto next_skb;
3793 }
3794
3795 return 0;
3796}
3797EXPORT_SYMBOL(skb_seq_read);
3798
3799/**
3800 * skb_abort_seq_read - Abort a sequential read of skb data
3801 * @st: state variable
3802 *
3803 * Must be called if skb_seq_read() was not called until it
3804 * returned 0.
3805 */
3806void skb_abort_seq_read(struct skb_seq_state *st)
3807{
3808 if (st->frag_data)
3809 kunmap_atomic(st->frag_data);
3810}
3811EXPORT_SYMBOL(skb_abort_seq_read);
3812
3813#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3814
3815static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3816 struct ts_config *conf,
3817 struct ts_state *state)
3818{
3819 return skb_seq_read(offset, text, TS_SKB_CB(state));
3820}
3821
3822static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3823{
3824 skb_abort_seq_read(TS_SKB_CB(state));
3825}
3826
3827/**
3828 * skb_find_text - Find a text pattern in skb data
3829 * @skb: the buffer to look in
3830 * @from: search offset
3831 * @to: search limit
3832 * @config: textsearch configuration
3833 *
3834 * Finds a pattern in the skb data according to the specified
3835 * textsearch configuration. Use textsearch_next() to retrieve
3836 * subsequent occurrences of the pattern. Returns the offset
3837 * to the first occurrence or UINT_MAX if no match was found.
3838 */
3839unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3840 unsigned int to, struct ts_config *config)
3841{
3842 struct ts_state state;
3843 unsigned int ret;
3844
3845 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3846
3847 config->get_next_block = skb_ts_get_next_block;
3848 config->finish = skb_ts_finish;
3849
3850 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3851
3852 ret = textsearch_find(config, &state);
3853 return (ret <= to - from ? ret : UINT_MAX);
3854}
3855EXPORT_SYMBOL(skb_find_text);
3856
3857int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3858 int offset, size_t size)
3859{
3860 int i = skb_shinfo(skb)->nr_frags;
3861
3862 if (skb_can_coalesce(skb, i, page, offset)) {
3863 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3864 } else if (i < MAX_SKB_FRAGS) {
3865 skb_zcopy_downgrade_managed(skb);
3866 get_page(page);
3867 skb_fill_page_desc(skb, i, page, offset, size);
3868 } else {
3869 return -EMSGSIZE;
3870 }
3871
3872 return 0;
3873}
3874EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3875
3876/**
3877 * skb_pull_rcsum - pull skb and update receive checksum
3878 * @skb: buffer to update
3879 * @len: length of data pulled
3880 *
3881 * This function performs an skb_pull on the packet and updates
3882 * the CHECKSUM_COMPLETE checksum. It should be used on
3883 * receive path processing instead of skb_pull unless you know
3884 * that the checksum difference is zero (e.g., a valid IP header)
3885 * or you are setting ip_summed to CHECKSUM_NONE.
3886 */
3887void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3888{
3889 unsigned char *data = skb->data;
3890
3891 BUG_ON(len > skb->len);
3892 __skb_pull(skb, len);
3893 skb_postpull_rcsum(skb, data, len);
3894 return skb->data;
3895}
3896EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3897
3898static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3899{
3900 skb_frag_t head_frag;
3901 struct page *page;
3902
3903 page = virt_to_head_page(frag_skb->head);
3904 __skb_frag_set_page(&head_frag, page);
3905 skb_frag_off_set(&head_frag, frag_skb->data -
3906 (unsigned char *)page_address(page));
3907 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3908 return head_frag;
3909}
3910
3911struct sk_buff *skb_segment_list(struct sk_buff *skb,
3912 netdev_features_t features,
3913 unsigned int offset)
3914{
3915 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3916 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3917 unsigned int delta_truesize = 0;
3918 unsigned int delta_len = 0;
3919 struct sk_buff *tail = NULL;
3920 struct sk_buff *nskb, *tmp;
3921 int len_diff, err;
3922
3923 skb_push(skb, -skb_network_offset(skb) + offset);
3924
3925 skb_shinfo(skb)->frag_list = NULL;
3926
3927 do {
3928 nskb = list_skb;
3929 list_skb = list_skb->next;
3930
3931 err = 0;
3932 delta_truesize += nskb->truesize;
3933 if (skb_shared(nskb)) {
3934 tmp = skb_clone(nskb, GFP_ATOMIC);
3935 if (tmp) {
3936 consume_skb(nskb);
3937 nskb = tmp;
3938 err = skb_unclone(nskb, GFP_ATOMIC);
3939 } else {
3940 err = -ENOMEM;
3941 }
3942 }
3943
3944 if (!tail)
3945 skb->next = nskb;
3946 else
3947 tail->next = nskb;
3948
3949 if (unlikely(err)) {
3950 nskb->next = list_skb;
3951 goto err_linearize;
3952 }
3953
3954 tail = nskb;
3955
3956 delta_len += nskb->len;
3957
3958 skb_push(nskb, -skb_network_offset(nskb) + offset);
3959
3960 skb_release_head_state(nskb);
3961 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
3962 __copy_skb_header(nskb, skb);
3963
3964 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3965 nskb->transport_header += len_diff;
3966 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3967 nskb->data - tnl_hlen,
3968 offset + tnl_hlen);
3969
3970 if (skb_needs_linearize(nskb, features) &&
3971 __skb_linearize(nskb))
3972 goto err_linearize;
3973
3974 } while (list_skb);
3975
3976 skb->truesize = skb->truesize - delta_truesize;
3977 skb->data_len = skb->data_len - delta_len;
3978 skb->len = skb->len - delta_len;
3979
3980 skb_gso_reset(skb);
3981
3982 skb->prev = tail;
3983
3984 if (skb_needs_linearize(skb, features) &&
3985 __skb_linearize(skb))
3986 goto err_linearize;
3987
3988 skb_get(skb);
3989
3990 return skb;
3991
3992err_linearize:
3993 kfree_skb_list(skb->next);
3994 skb->next = NULL;
3995 return ERR_PTR(-ENOMEM);
3996}
3997EXPORT_SYMBOL_GPL(skb_segment_list);
3998
3999/**
4000 * skb_segment - Perform protocol segmentation on skb.
4001 * @head_skb: buffer to segment
4002 * @features: features for the output path (see dev->features)
4003 *
4004 * This function performs segmentation on the given skb. It returns
4005 * a pointer to the first in a list of new skbs for the segments.
4006 * In case of error it returns ERR_PTR(err).
4007 */
4008struct sk_buff *skb_segment(struct sk_buff *head_skb,
4009 netdev_features_t features)
4010{
4011 struct sk_buff *segs = NULL;
4012 struct sk_buff *tail = NULL;
4013 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4014 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4015 unsigned int mss = skb_shinfo(head_skb)->gso_size;
4016 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4017 struct sk_buff *frag_skb = head_skb;
4018 unsigned int offset = doffset;
4019 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4020 unsigned int partial_segs = 0;
4021 unsigned int headroom;
4022 unsigned int len = head_skb->len;
4023 __be16 proto;
4024 bool csum, sg;
4025 int nfrags = skb_shinfo(head_skb)->nr_frags;
4026 int err = -ENOMEM;
4027 int i = 0;
4028 int pos;
4029
4030 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
4031 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
4032 /* gso_size is untrusted, and we have a frag_list with a linear
4033 * non head_frag head.
4034 *
4035 * (we assume checking the first list_skb member suffices;
4036 * i.e if either of the list_skb members have non head_frag
4037 * head, then the first one has too).
4038 *
4039 * If head_skb's headlen does not fit requested gso_size, it
4040 * means that the frag_list members do NOT terminate on exact
4041 * gso_size boundaries. Hence we cannot perform skb_frag_t page
4042 * sharing. Therefore we must fallback to copying the frag_list
4043 * skbs; we do so by disabling SG.
4044 */
4045 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
4046 features &= ~NETIF_F_SG;
4047 }
4048
4049 __skb_push(head_skb, doffset);
4050 proto = skb_network_protocol(head_skb, NULL);
4051 if (unlikely(!proto))
4052 return ERR_PTR(-EINVAL);
4053
4054 sg = !!(features & NETIF_F_SG);
4055 csum = !!can_checksum_protocol(features, proto);
4056
4057 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4058 if (!(features & NETIF_F_GSO_PARTIAL)) {
4059 struct sk_buff *iter;
4060 unsigned int frag_len;
4061
4062 if (!list_skb ||
4063 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4064 goto normal;
4065
4066 /* If we get here then all the required
4067 * GSO features except frag_list are supported.
4068 * Try to split the SKB to multiple GSO SKBs
4069 * with no frag_list.
4070 * Currently we can do that only when the buffers don't
4071 * have a linear part and all the buffers except
4072 * the last are of the same length.
4073 */
4074 frag_len = list_skb->len;
4075 skb_walk_frags(head_skb, iter) {
4076 if (frag_len != iter->len && iter->next)
4077 goto normal;
4078 if (skb_headlen(iter) && !iter->head_frag)
4079 goto normal;
4080
4081 len -= iter->len;
4082 }
4083
4084 if (len != frag_len)
4085 goto normal;
4086 }
4087
4088 /* GSO partial only requires that we trim off any excess that
4089 * doesn't fit into an MSS sized block, so take care of that
4090 * now.
4091 */
4092 partial_segs = len / mss;
4093 if (partial_segs > 1)
4094 mss *= partial_segs;
4095 else
4096 partial_segs = 0;
4097 }
4098
4099normal:
4100 headroom = skb_headroom(head_skb);
4101 pos = skb_headlen(head_skb);
4102
4103 do {
4104 struct sk_buff *nskb;
4105 skb_frag_t *nskb_frag;
4106 int hsize;
4107 int size;
4108
4109 if (unlikely(mss == GSO_BY_FRAGS)) {
4110 len = list_skb->len;
4111 } else {
4112 len = head_skb->len - offset;
4113 if (len > mss)
4114 len = mss;
4115 }
4116
4117 hsize = skb_headlen(head_skb) - offset;
4118
4119 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4120 (skb_headlen(list_skb) == len || sg)) {
4121 BUG_ON(skb_headlen(list_skb) > len);
4122
4123 i = 0;
4124 nfrags = skb_shinfo(list_skb)->nr_frags;
4125 frag = skb_shinfo(list_skb)->frags;
4126 frag_skb = list_skb;
4127 pos += skb_headlen(list_skb);
4128
4129 while (pos < offset + len) {
4130 BUG_ON(i >= nfrags);
4131
4132 size = skb_frag_size(frag);
4133 if (pos + size > offset + len)
4134 break;
4135
4136 i++;
4137 pos += size;
4138 frag++;
4139 }
4140
4141 nskb = skb_clone(list_skb, GFP_ATOMIC);
4142 list_skb = list_skb->next;
4143
4144 if (unlikely(!nskb))
4145 goto err;
4146
4147 if (unlikely(pskb_trim(nskb, len))) {
4148 kfree_skb(nskb);
4149 goto err;
4150 }
4151
4152 hsize = skb_end_offset(nskb);
4153 if (skb_cow_head(nskb, doffset + headroom)) {
4154 kfree_skb(nskb);
4155 goto err;
4156 }
4157
4158 nskb->truesize += skb_end_offset(nskb) - hsize;
4159 skb_release_head_state(nskb);
4160 __skb_push(nskb, doffset);
4161 } else {
4162 if (hsize < 0)
4163 hsize = 0;
4164 if (hsize > len || !sg)
4165 hsize = len;
4166
4167 nskb = __alloc_skb(hsize + doffset + headroom,
4168 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4169 NUMA_NO_NODE);
4170
4171 if (unlikely(!nskb))
4172 goto err;
4173
4174 skb_reserve(nskb, headroom);
4175 __skb_put(nskb, doffset);
4176 }
4177
4178 if (segs)
4179 tail->next = nskb;
4180 else
4181 segs = nskb;
4182 tail = nskb;
4183
4184 __copy_skb_header(nskb, head_skb);
4185
4186 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4187 skb_reset_mac_len(nskb);
4188
4189 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4190 nskb->data - tnl_hlen,
4191 doffset + tnl_hlen);
4192
4193 if (nskb->len == len + doffset)
4194 goto perform_csum_check;
4195
4196 if (!sg) {
4197 if (!csum) {
4198 if (!nskb->remcsum_offload)
4199 nskb->ip_summed = CHECKSUM_NONE;
4200 SKB_GSO_CB(nskb)->csum =
4201 skb_copy_and_csum_bits(head_skb, offset,
4202 skb_put(nskb,
4203 len),
4204 len);
4205 SKB_GSO_CB(nskb)->csum_start =
4206 skb_headroom(nskb) + doffset;
4207 } else {
4208 skb_copy_bits(head_skb, offset,
4209 skb_put(nskb, len),
4210 len);
4211 }
4212 continue;
4213 }
4214
4215 nskb_frag = skb_shinfo(nskb)->frags;
4216
4217 skb_copy_from_linear_data_offset(head_skb, offset,
4218 skb_put(nskb, hsize), hsize);
4219
4220 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4221 SKBFL_SHARED_FRAG;
4222
4223 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4224 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4225 goto err;
4226
4227 while (pos < offset + len) {
4228 if (i >= nfrags) {
4229 i = 0;
4230 nfrags = skb_shinfo(list_skb)->nr_frags;
4231 frag = skb_shinfo(list_skb)->frags;
4232 frag_skb = list_skb;
4233 if (!skb_headlen(list_skb)) {
4234 BUG_ON(!nfrags);
4235 } else {
4236 BUG_ON(!list_skb->head_frag);
4237
4238 /* to make room for head_frag. */
4239 i--;
4240 frag--;
4241 }
4242 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4243 skb_zerocopy_clone(nskb, frag_skb,
4244 GFP_ATOMIC))
4245 goto err;
4246
4247 list_skb = list_skb->next;
4248 }
4249
4250 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4251 MAX_SKB_FRAGS)) {
4252 net_warn_ratelimited(
4253 "skb_segment: too many frags: %u %u\n",
4254 pos, mss);
4255 err = -EINVAL;
4256 goto err;
4257 }
4258
4259 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4260 __skb_frag_ref(nskb_frag);
4261 size = skb_frag_size(nskb_frag);
4262
4263 if (pos < offset) {
4264 skb_frag_off_add(nskb_frag, offset - pos);
4265 skb_frag_size_sub(nskb_frag, offset - pos);
4266 }
4267
4268 skb_shinfo(nskb)->nr_frags++;
4269
4270 if (pos + size <= offset + len) {
4271 i++;
4272 frag++;
4273 pos += size;
4274 } else {
4275 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4276 goto skip_fraglist;
4277 }
4278
4279 nskb_frag++;
4280 }
4281
4282skip_fraglist:
4283 nskb->data_len = len - hsize;
4284 nskb->len += nskb->data_len;
4285 nskb->truesize += nskb->data_len;
4286
4287perform_csum_check:
4288 if (!csum) {
4289 if (skb_has_shared_frag(nskb) &&
4290 __skb_linearize(nskb))
4291 goto err;
4292
4293 if (!nskb->remcsum_offload)
4294 nskb->ip_summed = CHECKSUM_NONE;
4295 SKB_GSO_CB(nskb)->csum =
4296 skb_checksum(nskb, doffset,
4297 nskb->len - doffset, 0);
4298 SKB_GSO_CB(nskb)->csum_start =
4299 skb_headroom(nskb) + doffset;
4300 }
4301 } while ((offset += len) < head_skb->len);
4302
4303 /* Some callers want to get the end of the list.
4304 * Put it in segs->prev to avoid walking the list.
4305 * (see validate_xmit_skb_list() for example)
4306 */
4307 segs->prev = tail;
4308
4309 if (partial_segs) {
4310 struct sk_buff *iter;
4311 int type = skb_shinfo(head_skb)->gso_type;
4312 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4313
4314 /* Update type to add partial and then remove dodgy if set */
4315 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4316 type &= ~SKB_GSO_DODGY;
4317
4318 /* Update GSO info and prepare to start updating headers on
4319 * our way back down the stack of protocols.
4320 */
4321 for (iter = segs; iter; iter = iter->next) {
4322 skb_shinfo(iter)->gso_size = gso_size;
4323 skb_shinfo(iter)->gso_segs = partial_segs;
4324 skb_shinfo(iter)->gso_type = type;
4325 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4326 }
4327
4328 if (tail->len - doffset <= gso_size)
4329 skb_shinfo(tail)->gso_size = 0;
4330 else if (tail != segs)
4331 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4332 }
4333
4334 /* Following permits correct backpressure, for protocols
4335 * using skb_set_owner_w().
4336 * Idea is to tranfert ownership from head_skb to last segment.
4337 */
4338 if (head_skb->destructor == sock_wfree) {
4339 swap(tail->truesize, head_skb->truesize);
4340 swap(tail->destructor, head_skb->destructor);
4341 swap(tail->sk, head_skb->sk);
4342 }
4343 return segs;
4344
4345err:
4346 kfree_skb_list(segs);
4347 return ERR_PTR(err);
4348}
4349EXPORT_SYMBOL_GPL(skb_segment);
4350
4351#ifdef CONFIG_SKB_EXTENSIONS
4352#define SKB_EXT_ALIGN_VALUE 8
4353#define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4354
4355static const u8 skb_ext_type_len[] = {
4356#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4357 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4358#endif
4359#ifdef CONFIG_XFRM
4360 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4361#endif
4362#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4363 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4364#endif
4365#if IS_ENABLED(CONFIG_MPTCP)
4366 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4367#endif
4368#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4369 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4370#endif
4371};
4372
4373static __always_inline unsigned int skb_ext_total_length(void)
4374{
4375 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4376#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4377 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4378#endif
4379#ifdef CONFIG_XFRM
4380 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4381#endif
4382#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4383 skb_ext_type_len[TC_SKB_EXT] +
4384#endif
4385#if IS_ENABLED(CONFIG_MPTCP)
4386 skb_ext_type_len[SKB_EXT_MPTCP] +
4387#endif
4388#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4389 skb_ext_type_len[SKB_EXT_MCTP] +
4390#endif
4391 0;
4392}
4393
4394static void skb_extensions_init(void)
4395{
4396 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4397 BUILD_BUG_ON(skb_ext_total_length() > 255);
4398
4399 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4400 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4401 0,
4402 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4403 NULL);
4404}
4405#else
4406static void skb_extensions_init(void) {}
4407#endif
4408
4409void __init skb_init(void)
4410{
4411 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4412 sizeof(struct sk_buff),
4413 0,
4414 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4415 offsetof(struct sk_buff, cb),
4416 sizeof_field(struct sk_buff, cb),
4417 NULL);
4418 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4419 sizeof(struct sk_buff_fclones),
4420 0,
4421 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4422 NULL);
4423 skb_extensions_init();
4424}
4425
4426static int
4427__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4428 unsigned int recursion_level)
4429{
4430 int start = skb_headlen(skb);
4431 int i, copy = start - offset;
4432 struct sk_buff *frag_iter;
4433 int elt = 0;
4434
4435 if (unlikely(recursion_level >= 24))
4436 return -EMSGSIZE;
4437
4438 if (copy > 0) {
4439 if (copy > len)
4440 copy = len;
4441 sg_set_buf(sg, skb->data + offset, copy);
4442 elt++;
4443 if ((len -= copy) == 0)
4444 return elt;
4445 offset += copy;
4446 }
4447
4448 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4449 int end;
4450
4451 WARN_ON(start > offset + len);
4452
4453 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4454 if ((copy = end - offset) > 0) {
4455 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4456 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4457 return -EMSGSIZE;
4458
4459 if (copy > len)
4460 copy = len;
4461 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4462 skb_frag_off(frag) + offset - start);
4463 elt++;
4464 if (!(len -= copy))
4465 return elt;
4466 offset += copy;
4467 }
4468 start = end;
4469 }
4470
4471 skb_walk_frags(skb, frag_iter) {
4472 int end, ret;
4473
4474 WARN_ON(start > offset + len);
4475
4476 end = start + frag_iter->len;
4477 if ((copy = end - offset) > 0) {
4478 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4479 return -EMSGSIZE;
4480
4481 if (copy > len)
4482 copy = len;
4483 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4484 copy, recursion_level + 1);
4485 if (unlikely(ret < 0))
4486 return ret;
4487 elt += ret;
4488 if ((len -= copy) == 0)
4489 return elt;
4490 offset += copy;
4491 }
4492 start = end;
4493 }
4494 BUG_ON(len);
4495 return elt;
4496}
4497
4498/**
4499 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4500 * @skb: Socket buffer containing the buffers to be mapped
4501 * @sg: The scatter-gather list to map into
4502 * @offset: The offset into the buffer's contents to start mapping
4503 * @len: Length of buffer space to be mapped
4504 *
4505 * Fill the specified scatter-gather list with mappings/pointers into a
4506 * region of the buffer space attached to a socket buffer. Returns either
4507 * the number of scatterlist items used, or -EMSGSIZE if the contents
4508 * could not fit.
4509 */
4510int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4511{
4512 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4513
4514 if (nsg <= 0)
4515 return nsg;
4516
4517 sg_mark_end(&sg[nsg - 1]);
4518
4519 return nsg;
4520}
4521EXPORT_SYMBOL_GPL(skb_to_sgvec);
4522
4523/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4524 * sglist without mark the sg which contain last skb data as the end.
4525 * So the caller can mannipulate sg list as will when padding new data after
4526 * the first call without calling sg_unmark_end to expend sg list.
4527 *
4528 * Scenario to use skb_to_sgvec_nomark:
4529 * 1. sg_init_table
4530 * 2. skb_to_sgvec_nomark(payload1)
4531 * 3. skb_to_sgvec_nomark(payload2)
4532 *
4533 * This is equivalent to:
4534 * 1. sg_init_table
4535 * 2. skb_to_sgvec(payload1)
4536 * 3. sg_unmark_end
4537 * 4. skb_to_sgvec(payload2)
4538 *
4539 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4540 * is more preferable.
4541 */
4542int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4543 int offset, int len)
4544{
4545 return __skb_to_sgvec(skb, sg, offset, len, 0);
4546}
4547EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4548
4549
4550
4551/**
4552 * skb_cow_data - Check that a socket buffer's data buffers are writable
4553 * @skb: The socket buffer to check.
4554 * @tailbits: Amount of trailing space to be added
4555 * @trailer: Returned pointer to the skb where the @tailbits space begins
4556 *
4557 * Make sure that the data buffers attached to a socket buffer are
4558 * writable. If they are not, private copies are made of the data buffers
4559 * and the socket buffer is set to use these instead.
4560 *
4561 * If @tailbits is given, make sure that there is space to write @tailbits
4562 * bytes of data beyond current end of socket buffer. @trailer will be
4563 * set to point to the skb in which this space begins.
4564 *
4565 * The number of scatterlist elements required to completely map the
4566 * COW'd and extended socket buffer will be returned.
4567 */
4568int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4569{
4570 int copyflag;
4571 int elt;
4572 struct sk_buff *skb1, **skb_p;
4573
4574 /* If skb is cloned or its head is paged, reallocate
4575 * head pulling out all the pages (pages are considered not writable
4576 * at the moment even if they are anonymous).
4577 */
4578 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4579 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4580 return -ENOMEM;
4581
4582 /* Easy case. Most of packets will go this way. */
4583 if (!skb_has_frag_list(skb)) {
4584 /* A little of trouble, not enough of space for trailer.
4585 * This should not happen, when stack is tuned to generate
4586 * good frames. OK, on miss we reallocate and reserve even more
4587 * space, 128 bytes is fair. */
4588
4589 if (skb_tailroom(skb) < tailbits &&
4590 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4591 return -ENOMEM;
4592
4593 /* Voila! */
4594 *trailer = skb;
4595 return 1;
4596 }
4597
4598 /* Misery. We are in troubles, going to mincer fragments... */
4599
4600 elt = 1;
4601 skb_p = &skb_shinfo(skb)->frag_list;
4602 copyflag = 0;
4603
4604 while ((skb1 = *skb_p) != NULL) {
4605 int ntail = 0;
4606
4607 /* The fragment is partially pulled by someone,
4608 * this can happen on input. Copy it and everything
4609 * after it. */
4610
4611 if (skb_shared(skb1))
4612 copyflag = 1;
4613
4614 /* If the skb is the last, worry about trailer. */
4615
4616 if (skb1->next == NULL && tailbits) {
4617 if (skb_shinfo(skb1)->nr_frags ||
4618 skb_has_frag_list(skb1) ||
4619 skb_tailroom(skb1) < tailbits)
4620 ntail = tailbits + 128;
4621 }
4622
4623 if (copyflag ||
4624 skb_cloned(skb1) ||
4625 ntail ||
4626 skb_shinfo(skb1)->nr_frags ||
4627 skb_has_frag_list(skb1)) {
4628 struct sk_buff *skb2;
4629
4630 /* Fuck, we are miserable poor guys... */
4631 if (ntail == 0)
4632 skb2 = skb_copy(skb1, GFP_ATOMIC);
4633 else
4634 skb2 = skb_copy_expand(skb1,
4635 skb_headroom(skb1),
4636 ntail,
4637 GFP_ATOMIC);
4638 if (unlikely(skb2 == NULL))
4639 return -ENOMEM;
4640
4641 if (skb1->sk)
4642 skb_set_owner_w(skb2, skb1->sk);
4643
4644 /* Looking around. Are we still alive?
4645 * OK, link new skb, drop old one */
4646
4647 skb2->next = skb1->next;
4648 *skb_p = skb2;
4649 kfree_skb(skb1);
4650 skb1 = skb2;
4651 }
4652 elt++;
4653 *trailer = skb1;
4654 skb_p = &skb1->next;
4655 }
4656
4657 return elt;
4658}
4659EXPORT_SYMBOL_GPL(skb_cow_data);
4660
4661static void sock_rmem_free(struct sk_buff *skb)
4662{
4663 struct sock *sk = skb->sk;
4664
4665 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4666}
4667
4668static void skb_set_err_queue(struct sk_buff *skb)
4669{
4670 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4671 * So, it is safe to (mis)use it to mark skbs on the error queue.
4672 */
4673 skb->pkt_type = PACKET_OUTGOING;
4674 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4675}
4676
4677/*
4678 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4679 */
4680int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4681{
4682 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4683 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4684 return -ENOMEM;
4685
4686 skb_orphan(skb);
4687 skb->sk = sk;
4688 skb->destructor = sock_rmem_free;
4689 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4690 skb_set_err_queue(skb);
4691
4692 /* before exiting rcu section, make sure dst is refcounted */
4693 skb_dst_force(skb);
4694
4695 skb_queue_tail(&sk->sk_error_queue, skb);
4696 if (!sock_flag(sk, SOCK_DEAD))
4697 sk_error_report(sk);
4698 return 0;
4699}
4700EXPORT_SYMBOL(sock_queue_err_skb);
4701
4702static bool is_icmp_err_skb(const struct sk_buff *skb)
4703{
4704 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4705 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4706}
4707
4708struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4709{
4710 struct sk_buff_head *q = &sk->sk_error_queue;
4711 struct sk_buff *skb, *skb_next = NULL;
4712 bool icmp_next = false;
4713 unsigned long flags;
4714
4715 spin_lock_irqsave(&q->lock, flags);
4716 skb = __skb_dequeue(q);
4717 if (skb && (skb_next = skb_peek(q))) {
4718 icmp_next = is_icmp_err_skb(skb_next);
4719 if (icmp_next)
4720 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4721 }
4722 spin_unlock_irqrestore(&q->lock, flags);
4723
4724 if (is_icmp_err_skb(skb) && !icmp_next)
4725 sk->sk_err = 0;
4726
4727 if (skb_next)
4728 sk_error_report(sk);
4729
4730 return skb;
4731}
4732EXPORT_SYMBOL(sock_dequeue_err_skb);
4733
4734/**
4735 * skb_clone_sk - create clone of skb, and take reference to socket
4736 * @skb: the skb to clone
4737 *
4738 * This function creates a clone of a buffer that holds a reference on
4739 * sk_refcnt. Buffers created via this function are meant to be
4740 * returned using sock_queue_err_skb, or free via kfree_skb.
4741 *
4742 * When passing buffers allocated with this function to sock_queue_err_skb
4743 * it is necessary to wrap the call with sock_hold/sock_put in order to
4744 * prevent the socket from being released prior to being enqueued on
4745 * the sk_error_queue.
4746 */
4747struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4748{
4749 struct sock *sk = skb->sk;
4750 struct sk_buff *clone;
4751
4752 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4753 return NULL;
4754
4755 clone = skb_clone(skb, GFP_ATOMIC);
4756 if (!clone) {
4757 sock_put(sk);
4758 return NULL;
4759 }
4760
4761 clone->sk = sk;
4762 clone->destructor = sock_efree;
4763
4764 return clone;
4765}
4766EXPORT_SYMBOL(skb_clone_sk);
4767
4768static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4769 struct sock *sk,
4770 int tstype,
4771 bool opt_stats)
4772{
4773 struct sock_exterr_skb *serr;
4774 int err;
4775
4776 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4777
4778 serr = SKB_EXT_ERR(skb);
4779 memset(serr, 0, sizeof(*serr));
4780 serr->ee.ee_errno = ENOMSG;
4781 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4782 serr->ee.ee_info = tstype;
4783 serr->opt_stats = opt_stats;
4784 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4785 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4786 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4787 if (sk_is_tcp(sk))
4788 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4789 }
4790
4791 err = sock_queue_err_skb(sk, skb);
4792
4793 if (err)
4794 kfree_skb(skb);
4795}
4796
4797static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4798{
4799 bool ret;
4800
4801 if (likely(sysctl_tstamp_allow_data || tsonly))
4802 return true;
4803
4804 read_lock_bh(&sk->sk_callback_lock);
4805 ret = sk->sk_socket && sk->sk_socket->file &&
4806 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4807 read_unlock_bh(&sk->sk_callback_lock);
4808 return ret;
4809}
4810
4811void skb_complete_tx_timestamp(struct sk_buff *skb,
4812 struct skb_shared_hwtstamps *hwtstamps)
4813{
4814 struct sock *sk = skb->sk;
4815
4816 if (!skb_may_tx_timestamp(sk, false))
4817 goto err;
4818
4819 /* Take a reference to prevent skb_orphan() from freeing the socket,
4820 * but only if the socket refcount is not zero.
4821 */
4822 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4823 *skb_hwtstamps(skb) = *hwtstamps;
4824 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4825 sock_put(sk);
4826 return;
4827 }
4828
4829err:
4830 kfree_skb(skb);
4831}
4832EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4833
4834void __skb_tstamp_tx(struct sk_buff *orig_skb,
4835 const struct sk_buff *ack_skb,
4836 struct skb_shared_hwtstamps *hwtstamps,
4837 struct sock *sk, int tstype)
4838{
4839 struct sk_buff *skb;
4840 bool tsonly, opt_stats = false;
4841
4842 if (!sk)
4843 return;
4844
4845 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4846 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4847 return;
4848
4849 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4850 if (!skb_may_tx_timestamp(sk, tsonly))
4851 return;
4852
4853 if (tsonly) {
4854#ifdef CONFIG_INET
4855 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4856 sk_is_tcp(sk)) {
4857 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4858 ack_skb);
4859 opt_stats = true;
4860 } else
4861#endif
4862 skb = alloc_skb(0, GFP_ATOMIC);
4863 } else {
4864 skb = skb_clone(orig_skb, GFP_ATOMIC);
4865 }
4866 if (!skb)
4867 return;
4868
4869 if (tsonly) {
4870 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4871 SKBTX_ANY_TSTAMP;
4872 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4873 }
4874
4875 if (hwtstamps)
4876 *skb_hwtstamps(skb) = *hwtstamps;
4877 else
4878 __net_timestamp(skb);
4879
4880 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4881}
4882EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4883
4884void skb_tstamp_tx(struct sk_buff *orig_skb,
4885 struct skb_shared_hwtstamps *hwtstamps)
4886{
4887 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4888 SCM_TSTAMP_SND);
4889}
4890EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4891
4892void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4893{
4894 struct sock *sk = skb->sk;
4895 struct sock_exterr_skb *serr;
4896 int err = 1;
4897
4898 skb->wifi_acked_valid = 1;
4899 skb->wifi_acked = acked;
4900
4901 serr = SKB_EXT_ERR(skb);
4902 memset(serr, 0, sizeof(*serr));
4903 serr->ee.ee_errno = ENOMSG;
4904 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4905
4906 /* Take a reference to prevent skb_orphan() from freeing the socket,
4907 * but only if the socket refcount is not zero.
4908 */
4909 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4910 err = sock_queue_err_skb(sk, skb);
4911 sock_put(sk);
4912 }
4913 if (err)
4914 kfree_skb(skb);
4915}
4916EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4917
4918/**
4919 * skb_partial_csum_set - set up and verify partial csum values for packet
4920 * @skb: the skb to set
4921 * @start: the number of bytes after skb->data to start checksumming.
4922 * @off: the offset from start to place the checksum.
4923 *
4924 * For untrusted partially-checksummed packets, we need to make sure the values
4925 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4926 *
4927 * This function checks and sets those values and skb->ip_summed: if this
4928 * returns false you should drop the packet.
4929 */
4930bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4931{
4932 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4933 u32 csum_start = skb_headroom(skb) + (u32)start;
4934
4935 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4936 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4937 start, off, skb_headroom(skb), skb_headlen(skb));
4938 return false;
4939 }
4940 skb->ip_summed = CHECKSUM_PARTIAL;
4941 skb->csum_start = csum_start;
4942 skb->csum_offset = off;
4943 skb_set_transport_header(skb, start);
4944 return true;
4945}
4946EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4947
4948static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4949 unsigned int max)
4950{
4951 if (skb_headlen(skb) >= len)
4952 return 0;
4953
4954 /* If we need to pullup then pullup to the max, so we
4955 * won't need to do it again.
4956 */
4957 if (max > skb->len)
4958 max = skb->len;
4959
4960 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4961 return -ENOMEM;
4962
4963 if (skb_headlen(skb) < len)
4964 return -EPROTO;
4965
4966 return 0;
4967}
4968
4969#define MAX_TCP_HDR_LEN (15 * 4)
4970
4971static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4972 typeof(IPPROTO_IP) proto,
4973 unsigned int off)
4974{
4975 int err;
4976
4977 switch (proto) {
4978 case IPPROTO_TCP:
4979 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4980 off + MAX_TCP_HDR_LEN);
4981 if (!err && !skb_partial_csum_set(skb, off,
4982 offsetof(struct tcphdr,
4983 check)))
4984 err = -EPROTO;
4985 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4986
4987 case IPPROTO_UDP:
4988 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4989 off + sizeof(struct udphdr));
4990 if (!err && !skb_partial_csum_set(skb, off,
4991 offsetof(struct udphdr,
4992 check)))
4993 err = -EPROTO;
4994 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4995 }
4996
4997 return ERR_PTR(-EPROTO);
4998}
4999
5000/* This value should be large enough to cover a tagged ethernet header plus
5001 * maximally sized IP and TCP or UDP headers.
5002 */
5003#define MAX_IP_HDR_LEN 128
5004
5005static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5006{
5007 unsigned int off;
5008 bool fragment;
5009 __sum16 *csum;
5010 int err;
5011
5012 fragment = false;
5013
5014 err = skb_maybe_pull_tail(skb,
5015 sizeof(struct iphdr),
5016 MAX_IP_HDR_LEN);
5017 if (err < 0)
5018 goto out;
5019
5020 if (ip_is_fragment(ip_hdr(skb)))
5021 fragment = true;
5022
5023 off = ip_hdrlen(skb);
5024
5025 err = -EPROTO;
5026
5027 if (fragment)
5028 goto out;
5029
5030 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5031 if (IS_ERR(csum))
5032 return PTR_ERR(csum);
5033
5034 if (recalculate)
5035 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5036 ip_hdr(skb)->daddr,
5037 skb->len - off,
5038 ip_hdr(skb)->protocol, 0);
5039 err = 0;
5040
5041out:
5042 return err;
5043}
5044
5045/* This value should be large enough to cover a tagged ethernet header plus
5046 * an IPv6 header, all options, and a maximal TCP or UDP header.
5047 */
5048#define MAX_IPV6_HDR_LEN 256
5049
5050#define OPT_HDR(type, skb, off) \
5051 (type *)(skb_network_header(skb) + (off))
5052
5053static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5054{
5055 int err;
5056 u8 nexthdr;
5057 unsigned int off;
5058 unsigned int len;
5059 bool fragment;
5060 bool done;
5061 __sum16 *csum;
5062
5063 fragment = false;
5064 done = false;
5065
5066 off = sizeof(struct ipv6hdr);
5067
5068 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5069 if (err < 0)
5070 goto out;
5071
5072 nexthdr = ipv6_hdr(skb)->nexthdr;
5073
5074 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5075 while (off <= len && !done) {
5076 switch (nexthdr) {
5077 case IPPROTO_DSTOPTS:
5078 case IPPROTO_HOPOPTS:
5079 case IPPROTO_ROUTING: {
5080 struct ipv6_opt_hdr *hp;
5081
5082 err = skb_maybe_pull_tail(skb,
5083 off +
5084 sizeof(struct ipv6_opt_hdr),
5085 MAX_IPV6_HDR_LEN);
5086 if (err < 0)
5087 goto out;
5088
5089 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5090 nexthdr = hp->nexthdr;
5091 off += ipv6_optlen(hp);
5092 break;
5093 }
5094 case IPPROTO_AH: {
5095 struct ip_auth_hdr *hp;
5096
5097 err = skb_maybe_pull_tail(skb,
5098 off +
5099 sizeof(struct ip_auth_hdr),
5100 MAX_IPV6_HDR_LEN);
5101 if (err < 0)
5102 goto out;
5103
5104 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5105 nexthdr = hp->nexthdr;
5106 off += ipv6_authlen(hp);
5107 break;
5108 }
5109 case IPPROTO_FRAGMENT: {
5110 struct frag_hdr *hp;
5111
5112 err = skb_maybe_pull_tail(skb,
5113 off +
5114 sizeof(struct frag_hdr),
5115 MAX_IPV6_HDR_LEN);
5116 if (err < 0)
5117 goto out;
5118
5119 hp = OPT_HDR(struct frag_hdr, skb, off);
5120
5121 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5122 fragment = true;
5123
5124 nexthdr = hp->nexthdr;
5125 off += sizeof(struct frag_hdr);
5126 break;
5127 }
5128 default:
5129 done = true;
5130 break;
5131 }
5132 }
5133
5134 err = -EPROTO;
5135
5136 if (!done || fragment)
5137 goto out;
5138
5139 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5140 if (IS_ERR(csum))
5141 return PTR_ERR(csum);
5142
5143 if (recalculate)
5144 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5145 &ipv6_hdr(skb)->daddr,
5146 skb->len - off, nexthdr, 0);
5147 err = 0;
5148
5149out:
5150 return err;
5151}
5152
5153/**
5154 * skb_checksum_setup - set up partial checksum offset
5155 * @skb: the skb to set up
5156 * @recalculate: if true the pseudo-header checksum will be recalculated
5157 */
5158int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5159{
5160 int err;
5161
5162 switch (skb->protocol) {
5163 case htons(ETH_P_IP):
5164 err = skb_checksum_setup_ipv4(skb, recalculate);
5165 break;
5166
5167 case htons(ETH_P_IPV6):
5168 err = skb_checksum_setup_ipv6(skb, recalculate);
5169 break;
5170
5171 default:
5172 err = -EPROTO;
5173 break;
5174 }
5175
5176 return err;
5177}
5178EXPORT_SYMBOL(skb_checksum_setup);
5179
5180/**
5181 * skb_checksum_maybe_trim - maybe trims the given skb
5182 * @skb: the skb to check
5183 * @transport_len: the data length beyond the network header
5184 *
5185 * Checks whether the given skb has data beyond the given transport length.
5186 * If so, returns a cloned skb trimmed to this transport length.
5187 * Otherwise returns the provided skb. Returns NULL in error cases
5188 * (e.g. transport_len exceeds skb length or out-of-memory).
5189 *
5190 * Caller needs to set the skb transport header and free any returned skb if it
5191 * differs from the provided skb.
5192 */
5193static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5194 unsigned int transport_len)
5195{
5196 struct sk_buff *skb_chk;
5197 unsigned int len = skb_transport_offset(skb) + transport_len;
5198 int ret;
5199
5200 if (skb->len < len)
5201 return NULL;
5202 else if (skb->len == len)
5203 return skb;
5204
5205 skb_chk = skb_clone(skb, GFP_ATOMIC);
5206 if (!skb_chk)
5207 return NULL;
5208
5209 ret = pskb_trim_rcsum(skb_chk, len);
5210 if (ret) {
5211 kfree_skb(skb_chk);
5212 return NULL;
5213 }
5214
5215 return skb_chk;
5216}
5217
5218/**
5219 * skb_checksum_trimmed - validate checksum of an skb
5220 * @skb: the skb to check
5221 * @transport_len: the data length beyond the network header
5222 * @skb_chkf: checksum function to use
5223 *
5224 * Applies the given checksum function skb_chkf to the provided skb.
5225 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5226 *
5227 * If the skb has data beyond the given transport length, then a
5228 * trimmed & cloned skb is checked and returned.
5229 *
5230 * Caller needs to set the skb transport header and free any returned skb if it
5231 * differs from the provided skb.
5232 */
5233struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5234 unsigned int transport_len,
5235 __sum16(*skb_chkf)(struct sk_buff *skb))
5236{
5237 struct sk_buff *skb_chk;
5238 unsigned int offset = skb_transport_offset(skb);
5239 __sum16 ret;
5240
5241 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5242 if (!skb_chk)
5243 goto err;
5244
5245 if (!pskb_may_pull(skb_chk, offset))
5246 goto err;
5247
5248 skb_pull_rcsum(skb_chk, offset);
5249 ret = skb_chkf(skb_chk);
5250 skb_push_rcsum(skb_chk, offset);
5251
5252 if (ret)
5253 goto err;
5254
5255 return skb_chk;
5256
5257err:
5258 if (skb_chk && skb_chk != skb)
5259 kfree_skb(skb_chk);
5260
5261 return NULL;
5262
5263}
5264EXPORT_SYMBOL(skb_checksum_trimmed);
5265
5266void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5267{
5268 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5269 skb->dev->name);
5270}
5271EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5272
5273void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5274{
5275 if (head_stolen) {
5276 skb_release_head_state(skb);
5277 kmem_cache_free(skbuff_head_cache, skb);
5278 } else {
5279 __kfree_skb(skb);
5280 }
5281}
5282EXPORT_SYMBOL(kfree_skb_partial);
5283
5284/**
5285 * skb_try_coalesce - try to merge skb to prior one
5286 * @to: prior buffer
5287 * @from: buffer to add
5288 * @fragstolen: pointer to boolean
5289 * @delta_truesize: how much more was allocated than was requested
5290 */
5291bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5292 bool *fragstolen, int *delta_truesize)
5293{
5294 struct skb_shared_info *to_shinfo, *from_shinfo;
5295 int i, delta, len = from->len;
5296
5297 *fragstolen = false;
5298
5299 if (skb_cloned(to))
5300 return false;
5301
5302 /* In general, avoid mixing slab allocated and page_pool allocated
5303 * pages within the same SKB. However when @to is not pp_recycle and
5304 * @from is cloned, we can transition frag pages from page_pool to
5305 * reference counted.
5306 *
5307 * On the other hand, don't allow coalescing two pp_recycle SKBs if
5308 * @from is cloned, in case the SKB is using page_pool fragment
5309 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5310 * references for cloned SKBs at the moment that would result in
5311 * inconsistent reference counts.
5312 */
5313 if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5314 return false;
5315
5316 if (len <= skb_tailroom(to)) {
5317 if (len)
5318 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5319 *delta_truesize = 0;
5320 return true;
5321 }
5322
5323 to_shinfo = skb_shinfo(to);
5324 from_shinfo = skb_shinfo(from);
5325 if (to_shinfo->frag_list || from_shinfo->frag_list)
5326 return false;
5327 if (skb_zcopy(to) || skb_zcopy(from))
5328 return false;
5329
5330 if (skb_headlen(from) != 0) {
5331 struct page *page;
5332 unsigned int offset;
5333
5334 if (to_shinfo->nr_frags +
5335 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5336 return false;
5337
5338 if (skb_head_is_locked(from))
5339 return false;
5340
5341 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5342
5343 page = virt_to_head_page(from->head);
5344 offset = from->data - (unsigned char *)page_address(page);
5345
5346 skb_fill_page_desc(to, to_shinfo->nr_frags,
5347 page, offset, skb_headlen(from));
5348 *fragstolen = true;
5349 } else {
5350 if (to_shinfo->nr_frags +
5351 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5352 return false;
5353
5354 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5355 }
5356
5357 WARN_ON_ONCE(delta < len);
5358
5359 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5360 from_shinfo->frags,
5361 from_shinfo->nr_frags * sizeof(skb_frag_t));
5362 to_shinfo->nr_frags += from_shinfo->nr_frags;
5363
5364 if (!skb_cloned(from))
5365 from_shinfo->nr_frags = 0;
5366
5367 /* if the skb is not cloned this does nothing
5368 * since we set nr_frags to 0.
5369 */
5370 for (i = 0; i < from_shinfo->nr_frags; i++)
5371 __skb_frag_ref(&from_shinfo->frags[i]);
5372
5373 to->truesize += delta;
5374 to->len += len;
5375 to->data_len += len;
5376
5377 *delta_truesize = delta;
5378 return true;
5379}
5380EXPORT_SYMBOL(skb_try_coalesce);
5381
5382/**
5383 * skb_scrub_packet - scrub an skb
5384 *
5385 * @skb: buffer to clean
5386 * @xnet: packet is crossing netns
5387 *
5388 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5389 * into/from a tunnel. Some information have to be cleared during these
5390 * operations.
5391 * skb_scrub_packet can also be used to clean a skb before injecting it in
5392 * another namespace (@xnet == true). We have to clear all information in the
5393 * skb that could impact namespace isolation.
5394 */
5395void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5396{
5397 skb->pkt_type = PACKET_HOST;
5398 skb->skb_iif = 0;
5399 skb->ignore_df = 0;
5400 skb_dst_drop(skb);
5401 skb_ext_reset(skb);
5402 nf_reset_ct(skb);
5403 nf_reset_trace(skb);
5404
5405#ifdef CONFIG_NET_SWITCHDEV
5406 skb->offload_fwd_mark = 0;
5407 skb->offload_l3_fwd_mark = 0;
5408#endif
5409
5410 if (!xnet)
5411 return;
5412
5413 ipvs_reset(skb);
5414 skb->mark = 0;
5415 skb_clear_tstamp(skb);
5416}
5417EXPORT_SYMBOL_GPL(skb_scrub_packet);
5418
5419/**
5420 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5421 *
5422 * @skb: GSO skb
5423 *
5424 * skb_gso_transport_seglen is used to determine the real size of the
5425 * individual segments, including Layer4 headers (TCP/UDP).
5426 *
5427 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5428 */
5429static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5430{
5431 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5432 unsigned int thlen = 0;
5433
5434 if (skb->encapsulation) {
5435 thlen = skb_inner_transport_header(skb) -
5436 skb_transport_header(skb);
5437
5438 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5439 thlen += inner_tcp_hdrlen(skb);
5440 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5441 thlen = tcp_hdrlen(skb);
5442 } else if (unlikely(skb_is_gso_sctp(skb))) {
5443 thlen = sizeof(struct sctphdr);
5444 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5445 thlen = sizeof(struct udphdr);
5446 }
5447 /* UFO sets gso_size to the size of the fragmentation
5448 * payload, i.e. the size of the L4 (UDP) header is already
5449 * accounted for.
5450 */
5451 return thlen + shinfo->gso_size;
5452}
5453
5454/**
5455 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5456 *
5457 * @skb: GSO skb
5458 *
5459 * skb_gso_network_seglen is used to determine the real size of the
5460 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5461 *
5462 * The MAC/L2 header is not accounted for.
5463 */
5464static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5465{
5466 unsigned int hdr_len = skb_transport_header(skb) -
5467 skb_network_header(skb);
5468
5469 return hdr_len + skb_gso_transport_seglen(skb);
5470}
5471
5472/**
5473 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5474 *
5475 * @skb: GSO skb
5476 *
5477 * skb_gso_mac_seglen is used to determine the real size of the
5478 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5479 * headers (TCP/UDP).
5480 */
5481static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5482{
5483 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5484
5485 return hdr_len + skb_gso_transport_seglen(skb);
5486}
5487
5488/**
5489 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5490 *
5491 * There are a couple of instances where we have a GSO skb, and we
5492 * want to determine what size it would be after it is segmented.
5493 *
5494 * We might want to check:
5495 * - L3+L4+payload size (e.g. IP forwarding)
5496 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5497 *
5498 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5499 *
5500 * @skb: GSO skb
5501 *
5502 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5503 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5504 *
5505 * @max_len: The maximum permissible length.
5506 *
5507 * Returns true if the segmented length <= max length.
5508 */
5509static inline bool skb_gso_size_check(const struct sk_buff *skb,
5510 unsigned int seg_len,
5511 unsigned int max_len) {
5512 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5513 const struct sk_buff *iter;
5514
5515 if (shinfo->gso_size != GSO_BY_FRAGS)
5516 return seg_len <= max_len;
5517
5518 /* Undo this so we can re-use header sizes */
5519 seg_len -= GSO_BY_FRAGS;
5520
5521 skb_walk_frags(skb, iter) {
5522 if (seg_len + skb_headlen(iter) > max_len)
5523 return false;
5524 }
5525
5526 return true;
5527}
5528
5529/**
5530 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5531 *
5532 * @skb: GSO skb
5533 * @mtu: MTU to validate against
5534 *
5535 * skb_gso_validate_network_len validates if a given skb will fit a
5536 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5537 * payload.
5538 */
5539bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5540{
5541 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5542}
5543EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5544
5545/**
5546 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5547 *
5548 * @skb: GSO skb
5549 * @len: length to validate against
5550 *
5551 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5552 * length once split, including L2, L3 and L4 headers and the payload.
5553 */
5554bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5555{
5556 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5557}
5558EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5559
5560static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5561{
5562 int mac_len, meta_len;
5563 void *meta;
5564
5565 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5566 kfree_skb(skb);
5567 return NULL;
5568 }
5569
5570 mac_len = skb->data - skb_mac_header(skb);
5571 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5572 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5573 mac_len - VLAN_HLEN - ETH_TLEN);
5574 }
5575
5576 meta_len = skb_metadata_len(skb);
5577 if (meta_len) {
5578 meta = skb_metadata_end(skb) - meta_len;
5579 memmove(meta + VLAN_HLEN, meta, meta_len);
5580 }
5581
5582 skb->mac_header += VLAN_HLEN;
5583 return skb;
5584}
5585
5586struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5587{
5588 struct vlan_hdr *vhdr;
5589 u16 vlan_tci;
5590
5591 if (unlikely(skb_vlan_tag_present(skb))) {
5592 /* vlan_tci is already set-up so leave this for another time */
5593 return skb;
5594 }
5595
5596 skb = skb_share_check(skb, GFP_ATOMIC);
5597 if (unlikely(!skb))
5598 goto err_free;
5599 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5600 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5601 goto err_free;
5602
5603 vhdr = (struct vlan_hdr *)skb->data;
5604 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5605 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5606
5607 skb_pull_rcsum(skb, VLAN_HLEN);
5608 vlan_set_encap_proto(skb, vhdr);
5609
5610 skb = skb_reorder_vlan_header(skb);
5611 if (unlikely(!skb))
5612 goto err_free;
5613
5614 skb_reset_network_header(skb);
5615 if (!skb_transport_header_was_set(skb))
5616 skb_reset_transport_header(skb);
5617 skb_reset_mac_len(skb);
5618
5619 return skb;
5620
5621err_free:
5622 kfree_skb(skb);
5623 return NULL;
5624}
5625EXPORT_SYMBOL(skb_vlan_untag);
5626
5627int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5628{
5629 if (!pskb_may_pull(skb, write_len))
5630 return -ENOMEM;
5631
5632 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5633 return 0;
5634
5635 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5636}
5637EXPORT_SYMBOL(skb_ensure_writable);
5638
5639/* remove VLAN header from packet and update csum accordingly.
5640 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5641 */
5642int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5643{
5644 struct vlan_hdr *vhdr;
5645 int offset = skb->data - skb_mac_header(skb);
5646 int err;
5647
5648 if (WARN_ONCE(offset,
5649 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5650 offset)) {
5651 return -EINVAL;
5652 }
5653
5654 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5655 if (unlikely(err))
5656 return err;
5657
5658 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5659
5660 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5661 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5662
5663 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5664 __skb_pull(skb, VLAN_HLEN);
5665
5666 vlan_set_encap_proto(skb, vhdr);
5667 skb->mac_header += VLAN_HLEN;
5668
5669 if (skb_network_offset(skb) < ETH_HLEN)
5670 skb_set_network_header(skb, ETH_HLEN);
5671
5672 skb_reset_mac_len(skb);
5673
5674 return err;
5675}
5676EXPORT_SYMBOL(__skb_vlan_pop);
5677
5678/* Pop a vlan tag either from hwaccel or from payload.
5679 * Expects skb->data at mac header.
5680 */
5681int skb_vlan_pop(struct sk_buff *skb)
5682{
5683 u16 vlan_tci;
5684 __be16 vlan_proto;
5685 int err;
5686
5687 if (likely(skb_vlan_tag_present(skb))) {
5688 __vlan_hwaccel_clear_tag(skb);
5689 } else {
5690 if (unlikely(!eth_type_vlan(skb->protocol)))
5691 return 0;
5692
5693 err = __skb_vlan_pop(skb, &vlan_tci);
5694 if (err)
5695 return err;
5696 }
5697 /* move next vlan tag to hw accel tag */
5698 if (likely(!eth_type_vlan(skb->protocol)))
5699 return 0;
5700
5701 vlan_proto = skb->protocol;
5702 err = __skb_vlan_pop(skb, &vlan_tci);
5703 if (unlikely(err))
5704 return err;
5705
5706 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5707 return 0;
5708}
5709EXPORT_SYMBOL(skb_vlan_pop);
5710
5711/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5712 * Expects skb->data at mac header.
5713 */
5714int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5715{
5716 if (skb_vlan_tag_present(skb)) {
5717 int offset = skb->data - skb_mac_header(skb);
5718 int err;
5719
5720 if (WARN_ONCE(offset,
5721 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5722 offset)) {
5723 return -EINVAL;
5724 }
5725
5726 err = __vlan_insert_tag(skb, skb->vlan_proto,
5727 skb_vlan_tag_get(skb));
5728 if (err)
5729 return err;
5730
5731 skb->protocol = skb->vlan_proto;
5732 skb->mac_len += VLAN_HLEN;
5733
5734 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5735 }
5736 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5737 return 0;
5738}
5739EXPORT_SYMBOL(skb_vlan_push);
5740
5741/**
5742 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5743 *
5744 * @skb: Socket buffer to modify
5745 *
5746 * Drop the Ethernet header of @skb.
5747 *
5748 * Expects that skb->data points to the mac header and that no VLAN tags are
5749 * present.
5750 *
5751 * Returns 0 on success, -errno otherwise.
5752 */
5753int skb_eth_pop(struct sk_buff *skb)
5754{
5755 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5756 skb_network_offset(skb) < ETH_HLEN)
5757 return -EPROTO;
5758
5759 skb_pull_rcsum(skb, ETH_HLEN);
5760 skb_reset_mac_header(skb);
5761 skb_reset_mac_len(skb);
5762
5763 return 0;
5764}
5765EXPORT_SYMBOL(skb_eth_pop);
5766
5767/**
5768 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5769 *
5770 * @skb: Socket buffer to modify
5771 * @dst: Destination MAC address of the new header
5772 * @src: Source MAC address of the new header
5773 *
5774 * Prepend @skb with a new Ethernet header.
5775 *
5776 * Expects that skb->data points to the mac header, which must be empty.
5777 *
5778 * Returns 0 on success, -errno otherwise.
5779 */
5780int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5781 const unsigned char *src)
5782{
5783 struct ethhdr *eth;
5784 int err;
5785
5786 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5787 return -EPROTO;
5788
5789 err = skb_cow_head(skb, sizeof(*eth));
5790 if (err < 0)
5791 return err;
5792
5793 skb_push(skb, sizeof(*eth));
5794 skb_reset_mac_header(skb);
5795 skb_reset_mac_len(skb);
5796
5797 eth = eth_hdr(skb);
5798 ether_addr_copy(eth->h_dest, dst);
5799 ether_addr_copy(eth->h_source, src);
5800 eth->h_proto = skb->protocol;
5801
5802 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5803
5804 return 0;
5805}
5806EXPORT_SYMBOL(skb_eth_push);
5807
5808/* Update the ethertype of hdr and the skb csum value if required. */
5809static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5810 __be16 ethertype)
5811{
5812 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5813 __be16 diff[] = { ~hdr->h_proto, ethertype };
5814
5815 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5816 }
5817
5818 hdr->h_proto = ethertype;
5819}
5820
5821/**
5822 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5823 * the packet
5824 *
5825 * @skb: buffer
5826 * @mpls_lse: MPLS label stack entry to push
5827 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5828 * @mac_len: length of the MAC header
5829 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5830 * ethernet
5831 *
5832 * Expects skb->data at mac header.
5833 *
5834 * Returns 0 on success, -errno otherwise.
5835 */
5836int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5837 int mac_len, bool ethernet)
5838{
5839 struct mpls_shim_hdr *lse;
5840 int err;
5841
5842 if (unlikely(!eth_p_mpls(mpls_proto)))
5843 return -EINVAL;
5844
5845 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5846 if (skb->encapsulation)
5847 return -EINVAL;
5848
5849 err = skb_cow_head(skb, MPLS_HLEN);
5850 if (unlikely(err))
5851 return err;
5852
5853 if (!skb->inner_protocol) {
5854 skb_set_inner_network_header(skb, skb_network_offset(skb));
5855 skb_set_inner_protocol(skb, skb->protocol);
5856 }
5857
5858 skb_push(skb, MPLS_HLEN);
5859 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5860 mac_len);
5861 skb_reset_mac_header(skb);
5862 skb_set_network_header(skb, mac_len);
5863 skb_reset_mac_len(skb);
5864
5865 lse = mpls_hdr(skb);
5866 lse->label_stack_entry = mpls_lse;
5867 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5868
5869 if (ethernet && mac_len >= ETH_HLEN)
5870 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5871 skb->protocol = mpls_proto;
5872
5873 return 0;
5874}
5875EXPORT_SYMBOL_GPL(skb_mpls_push);
5876
5877/**
5878 * skb_mpls_pop() - pop the outermost MPLS header
5879 *
5880 * @skb: buffer
5881 * @next_proto: ethertype of header after popped MPLS header
5882 * @mac_len: length of the MAC header
5883 * @ethernet: flag to indicate if the packet is ethernet
5884 *
5885 * Expects skb->data at mac header.
5886 *
5887 * Returns 0 on success, -errno otherwise.
5888 */
5889int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5890 bool ethernet)
5891{
5892 int err;
5893
5894 if (unlikely(!eth_p_mpls(skb->protocol)))
5895 return 0;
5896
5897 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5898 if (unlikely(err))
5899 return err;
5900
5901 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5902 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5903 mac_len);
5904
5905 __skb_pull(skb, MPLS_HLEN);
5906 skb_reset_mac_header(skb);
5907 skb_set_network_header(skb, mac_len);
5908
5909 if (ethernet && mac_len >= ETH_HLEN) {
5910 struct ethhdr *hdr;
5911
5912 /* use mpls_hdr() to get ethertype to account for VLANs. */
5913 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5914 skb_mod_eth_type(skb, hdr, next_proto);
5915 }
5916 skb->protocol = next_proto;
5917
5918 return 0;
5919}
5920EXPORT_SYMBOL_GPL(skb_mpls_pop);
5921
5922/**
5923 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5924 *
5925 * @skb: buffer
5926 * @mpls_lse: new MPLS label stack entry to update to
5927 *
5928 * Expects skb->data at mac header.
5929 *
5930 * Returns 0 on success, -errno otherwise.
5931 */
5932int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5933{
5934 int err;
5935
5936 if (unlikely(!eth_p_mpls(skb->protocol)))
5937 return -EINVAL;
5938
5939 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5940 if (unlikely(err))
5941 return err;
5942
5943 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5944 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5945
5946 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5947 }
5948
5949 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5950
5951 return 0;
5952}
5953EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5954
5955/**
5956 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5957 *
5958 * @skb: buffer
5959 *
5960 * Expects skb->data at mac header.
5961 *
5962 * Returns 0 on success, -errno otherwise.
5963 */
5964int skb_mpls_dec_ttl(struct sk_buff *skb)
5965{
5966 u32 lse;
5967 u8 ttl;
5968
5969 if (unlikely(!eth_p_mpls(skb->protocol)))
5970 return -EINVAL;
5971
5972 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5973 return -ENOMEM;
5974
5975 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5976 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5977 if (!--ttl)
5978 return -EINVAL;
5979
5980 lse &= ~MPLS_LS_TTL_MASK;
5981 lse |= ttl << MPLS_LS_TTL_SHIFT;
5982
5983 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5984}
5985EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5986
5987/**
5988 * alloc_skb_with_frags - allocate skb with page frags
5989 *
5990 * @header_len: size of linear part
5991 * @data_len: needed length in frags
5992 * @max_page_order: max page order desired.
5993 * @errcode: pointer to error code if any
5994 * @gfp_mask: allocation mask
5995 *
5996 * This can be used to allocate a paged skb, given a maximal order for frags.
5997 */
5998struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5999 unsigned long data_len,
6000 int max_page_order,
6001 int *errcode,
6002 gfp_t gfp_mask)
6003{
6004 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6005 unsigned long chunk;
6006 struct sk_buff *skb;
6007 struct page *page;
6008 int i;
6009
6010 *errcode = -EMSGSIZE;
6011 /* Note this test could be relaxed, if we succeed to allocate
6012 * high order pages...
6013 */
6014 if (npages > MAX_SKB_FRAGS)
6015 return NULL;
6016
6017 *errcode = -ENOBUFS;
6018 skb = alloc_skb(header_len, gfp_mask);
6019 if (!skb)
6020 return NULL;
6021
6022 skb->truesize += npages << PAGE_SHIFT;
6023
6024 for (i = 0; npages > 0; i++) {
6025 int order = max_page_order;
6026
6027 while (order) {
6028 if (npages >= 1 << order) {
6029 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6030 __GFP_COMP |
6031 __GFP_NOWARN,
6032 order);
6033 if (page)
6034 goto fill_page;
6035 /* Do not retry other high order allocations */
6036 order = 1;
6037 max_page_order = 0;
6038 }
6039 order--;
6040 }
6041 page = alloc_page(gfp_mask);
6042 if (!page)
6043 goto failure;
6044fill_page:
6045 chunk = min_t(unsigned long, data_len,
6046 PAGE_SIZE << order);
6047 skb_fill_page_desc(skb, i, page, 0, chunk);
6048 data_len -= chunk;
6049 npages -= 1 << order;
6050 }
6051 return skb;
6052
6053failure:
6054 kfree_skb(skb);
6055 return NULL;
6056}
6057EXPORT_SYMBOL(alloc_skb_with_frags);
6058
6059/* carve out the first off bytes from skb when off < headlen */
6060static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6061 const int headlen, gfp_t gfp_mask)
6062{
6063 int i;
6064 int size = skb_end_offset(skb);
6065 int new_hlen = headlen - off;
6066 u8 *data;
6067
6068 size = SKB_DATA_ALIGN(size);
6069
6070 if (skb_pfmemalloc(skb))
6071 gfp_mask |= __GFP_MEMALLOC;
6072 data = kmalloc_reserve(size +
6073 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6074 gfp_mask, NUMA_NO_NODE, NULL);
6075 if (!data)
6076 return -ENOMEM;
6077
6078 size = SKB_WITH_OVERHEAD(ksize(data));
6079
6080 /* Copy real data, and all frags */
6081 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6082 skb->len -= off;
6083
6084 memcpy((struct skb_shared_info *)(data + size),
6085 skb_shinfo(skb),
6086 offsetof(struct skb_shared_info,
6087 frags[skb_shinfo(skb)->nr_frags]));
6088 if (skb_cloned(skb)) {
6089 /* drop the old head gracefully */
6090 if (skb_orphan_frags(skb, gfp_mask)) {
6091 kfree(data);
6092 return -ENOMEM;
6093 }
6094 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6095 skb_frag_ref(skb, i);
6096 if (skb_has_frag_list(skb))
6097 skb_clone_fraglist(skb);
6098 skb_release_data(skb);
6099 } else {
6100 /* we can reuse existing recount- all we did was
6101 * relocate values
6102 */
6103 skb_free_head(skb);
6104 }
6105
6106 skb->head = data;
6107 skb->data = data;
6108 skb->head_frag = 0;
6109 skb_set_end_offset(skb, size);
6110 skb_set_tail_pointer(skb, skb_headlen(skb));
6111 skb_headers_offset_update(skb, 0);
6112 skb->cloned = 0;
6113 skb->hdr_len = 0;
6114 skb->nohdr = 0;
6115 atomic_set(&skb_shinfo(skb)->dataref, 1);
6116
6117 return 0;
6118}
6119
6120static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6121
6122/* carve out the first eat bytes from skb's frag_list. May recurse into
6123 * pskb_carve()
6124 */
6125static int pskb_carve_frag_list(struct sk_buff *skb,
6126 struct skb_shared_info *shinfo, int eat,
6127 gfp_t gfp_mask)
6128{
6129 struct sk_buff *list = shinfo->frag_list;
6130 struct sk_buff *clone = NULL;
6131 struct sk_buff *insp = NULL;
6132
6133 do {
6134 if (!list) {
6135 pr_err("Not enough bytes to eat. Want %d\n", eat);
6136 return -EFAULT;
6137 }
6138 if (list->len <= eat) {
6139 /* Eaten as whole. */
6140 eat -= list->len;
6141 list = list->next;
6142 insp = list;
6143 } else {
6144 /* Eaten partially. */
6145 if (skb_shared(list)) {
6146 clone = skb_clone(list, gfp_mask);
6147 if (!clone)
6148 return -ENOMEM;
6149 insp = list->next;
6150 list = clone;
6151 } else {
6152 /* This may be pulled without problems. */
6153 insp = list;
6154 }
6155 if (pskb_carve(list, eat, gfp_mask) < 0) {
6156 kfree_skb(clone);
6157 return -ENOMEM;
6158 }
6159 break;
6160 }
6161 } while (eat);
6162
6163 /* Free pulled out fragments. */
6164 while ((list = shinfo->frag_list) != insp) {
6165 shinfo->frag_list = list->next;
6166 consume_skb(list);
6167 }
6168 /* And insert new clone at head. */
6169 if (clone) {
6170 clone->next = list;
6171 shinfo->frag_list = clone;
6172 }
6173 return 0;
6174}
6175
6176/* carve off first len bytes from skb. Split line (off) is in the
6177 * non-linear part of skb
6178 */
6179static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6180 int pos, gfp_t gfp_mask)
6181{
6182 int i, k = 0;
6183 int size = skb_end_offset(skb);
6184 u8 *data;
6185 const int nfrags = skb_shinfo(skb)->nr_frags;
6186 struct skb_shared_info *shinfo;
6187
6188 size = SKB_DATA_ALIGN(size);
6189
6190 if (skb_pfmemalloc(skb))
6191 gfp_mask |= __GFP_MEMALLOC;
6192 data = kmalloc_reserve(size +
6193 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6194 gfp_mask, NUMA_NO_NODE, NULL);
6195 if (!data)
6196 return -ENOMEM;
6197
6198 size = SKB_WITH_OVERHEAD(ksize(data));
6199
6200 memcpy((struct skb_shared_info *)(data + size),
6201 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6202 if (skb_orphan_frags(skb, gfp_mask)) {
6203 kfree(data);
6204 return -ENOMEM;
6205 }
6206 shinfo = (struct skb_shared_info *)(data + size);
6207 for (i = 0; i < nfrags; i++) {
6208 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6209
6210 if (pos + fsize > off) {
6211 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6212
6213 if (pos < off) {
6214 /* Split frag.
6215 * We have two variants in this case:
6216 * 1. Move all the frag to the second
6217 * part, if it is possible. F.e.
6218 * this approach is mandatory for TUX,
6219 * where splitting is expensive.
6220 * 2. Split is accurately. We make this.
6221 */
6222 skb_frag_off_add(&shinfo->frags[0], off - pos);
6223 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6224 }
6225 skb_frag_ref(skb, i);
6226 k++;
6227 }
6228 pos += fsize;
6229 }
6230 shinfo->nr_frags = k;
6231 if (skb_has_frag_list(skb))
6232 skb_clone_fraglist(skb);
6233
6234 /* split line is in frag list */
6235 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6236 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6237 if (skb_has_frag_list(skb))
6238 kfree_skb_list(skb_shinfo(skb)->frag_list);
6239 kfree(data);
6240 return -ENOMEM;
6241 }
6242 skb_release_data(skb);
6243
6244 skb->head = data;
6245 skb->head_frag = 0;
6246 skb->data = data;
6247 skb_set_end_offset(skb, size);
6248 skb_reset_tail_pointer(skb);
6249 skb_headers_offset_update(skb, 0);
6250 skb->cloned = 0;
6251 skb->hdr_len = 0;
6252 skb->nohdr = 0;
6253 skb->len -= off;
6254 skb->data_len = skb->len;
6255 atomic_set(&skb_shinfo(skb)->dataref, 1);
6256 return 0;
6257}
6258
6259/* remove len bytes from the beginning of the skb */
6260static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6261{
6262 int headlen = skb_headlen(skb);
6263
6264 if (len < headlen)
6265 return pskb_carve_inside_header(skb, len, headlen, gfp);
6266 else
6267 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6268}
6269
6270/* Extract to_copy bytes starting at off from skb, and return this in
6271 * a new skb
6272 */
6273struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6274 int to_copy, gfp_t gfp)
6275{
6276 struct sk_buff *clone = skb_clone(skb, gfp);
6277
6278 if (!clone)
6279 return NULL;
6280
6281 if (pskb_carve(clone, off, gfp) < 0 ||
6282 pskb_trim(clone, to_copy)) {
6283 kfree_skb(clone);
6284 return NULL;
6285 }
6286 return clone;
6287}
6288EXPORT_SYMBOL(pskb_extract);
6289
6290/**
6291 * skb_condense - try to get rid of fragments/frag_list if possible
6292 * @skb: buffer
6293 *
6294 * Can be used to save memory before skb is added to a busy queue.
6295 * If packet has bytes in frags and enough tail room in skb->head,
6296 * pull all of them, so that we can free the frags right now and adjust
6297 * truesize.
6298 * Notes:
6299 * We do not reallocate skb->head thus can not fail.
6300 * Caller must re-evaluate skb->truesize if needed.
6301 */
6302void skb_condense(struct sk_buff *skb)
6303{
6304 if (skb->data_len) {
6305 if (skb->data_len > skb->end - skb->tail ||
6306 skb_cloned(skb))
6307 return;
6308
6309 /* Nice, we can free page frag(s) right now */
6310 __pskb_pull_tail(skb, skb->data_len);
6311 }
6312 /* At this point, skb->truesize might be over estimated,
6313 * because skb had a fragment, and fragments do not tell
6314 * their truesize.
6315 * When we pulled its content into skb->head, fragment
6316 * was freed, but __pskb_pull_tail() could not possibly
6317 * adjust skb->truesize, not knowing the frag truesize.
6318 */
6319 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6320}
6321
6322#ifdef CONFIG_SKB_EXTENSIONS
6323static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6324{
6325 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6326}
6327
6328/**
6329 * __skb_ext_alloc - allocate a new skb extensions storage
6330 *
6331 * @flags: See kmalloc().
6332 *
6333 * Returns the newly allocated pointer. The pointer can later attached to a
6334 * skb via __skb_ext_set().
6335 * Note: caller must handle the skb_ext as an opaque data.
6336 */
6337struct skb_ext *__skb_ext_alloc(gfp_t flags)
6338{
6339 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6340
6341 if (new) {
6342 memset(new->offset, 0, sizeof(new->offset));
6343 refcount_set(&new->refcnt, 1);
6344 }
6345
6346 return new;
6347}
6348
6349static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6350 unsigned int old_active)
6351{
6352 struct skb_ext *new;
6353
6354 if (refcount_read(&old->refcnt) == 1)
6355 return old;
6356
6357 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6358 if (!new)
6359 return NULL;
6360
6361 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6362 refcount_set(&new->refcnt, 1);
6363
6364#ifdef CONFIG_XFRM
6365 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6366 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6367 unsigned int i;
6368
6369 for (i = 0; i < sp->len; i++)
6370 xfrm_state_hold(sp->xvec[i]);
6371 }
6372#endif
6373 __skb_ext_put(old);
6374 return new;
6375}
6376
6377/**
6378 * __skb_ext_set - attach the specified extension storage to this skb
6379 * @skb: buffer
6380 * @id: extension id
6381 * @ext: extension storage previously allocated via __skb_ext_alloc()
6382 *
6383 * Existing extensions, if any, are cleared.
6384 *
6385 * Returns the pointer to the extension.
6386 */
6387void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6388 struct skb_ext *ext)
6389{
6390 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6391
6392 skb_ext_put(skb);
6393 newlen = newoff + skb_ext_type_len[id];
6394 ext->chunks = newlen;
6395 ext->offset[id] = newoff;
6396 skb->extensions = ext;
6397 skb->active_extensions = 1 << id;
6398 return skb_ext_get_ptr(ext, id);
6399}
6400
6401/**
6402 * skb_ext_add - allocate space for given extension, COW if needed
6403 * @skb: buffer
6404 * @id: extension to allocate space for
6405 *
6406 * Allocates enough space for the given extension.
6407 * If the extension is already present, a pointer to that extension
6408 * is returned.
6409 *
6410 * If the skb was cloned, COW applies and the returned memory can be
6411 * modified without changing the extension space of clones buffers.
6412 *
6413 * Returns pointer to the extension or NULL on allocation failure.
6414 */
6415void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6416{
6417 struct skb_ext *new, *old = NULL;
6418 unsigned int newlen, newoff;
6419
6420 if (skb->active_extensions) {
6421 old = skb->extensions;
6422
6423 new = skb_ext_maybe_cow(old, skb->active_extensions);
6424 if (!new)
6425 return NULL;
6426
6427 if (__skb_ext_exist(new, id))
6428 goto set_active;
6429
6430 newoff = new->chunks;
6431 } else {
6432 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6433
6434 new = __skb_ext_alloc(GFP_ATOMIC);
6435 if (!new)
6436 return NULL;
6437 }
6438
6439 newlen = newoff + skb_ext_type_len[id];
6440 new->chunks = newlen;
6441 new->offset[id] = newoff;
6442set_active:
6443 skb->slow_gro = 1;
6444 skb->extensions = new;
6445 skb->active_extensions |= 1 << id;
6446 return skb_ext_get_ptr(new, id);
6447}
6448EXPORT_SYMBOL(skb_ext_add);
6449
6450#ifdef CONFIG_XFRM
6451static void skb_ext_put_sp(struct sec_path *sp)
6452{
6453 unsigned int i;
6454
6455 for (i = 0; i < sp->len; i++)
6456 xfrm_state_put(sp->xvec[i]);
6457}
6458#endif
6459
6460#ifdef CONFIG_MCTP_FLOWS
6461static void skb_ext_put_mctp(struct mctp_flow *flow)
6462{
6463 if (flow->key)
6464 mctp_key_unref(flow->key);
6465}
6466#endif
6467
6468void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6469{
6470 struct skb_ext *ext = skb->extensions;
6471
6472 skb->active_extensions &= ~(1 << id);
6473 if (skb->active_extensions == 0) {
6474 skb->extensions = NULL;
6475 __skb_ext_put(ext);
6476#ifdef CONFIG_XFRM
6477 } else if (id == SKB_EXT_SEC_PATH &&
6478 refcount_read(&ext->refcnt) == 1) {
6479 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6480
6481 skb_ext_put_sp(sp);
6482 sp->len = 0;
6483#endif
6484 }
6485}
6486EXPORT_SYMBOL(__skb_ext_del);
6487
6488void __skb_ext_put(struct skb_ext *ext)
6489{
6490 /* If this is last clone, nothing can increment
6491 * it after check passes. Avoids one atomic op.
6492 */
6493 if (refcount_read(&ext->refcnt) == 1)
6494 goto free_now;
6495
6496 if (!refcount_dec_and_test(&ext->refcnt))
6497 return;
6498free_now:
6499#ifdef CONFIG_XFRM
6500 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6501 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6502#endif
6503#ifdef CONFIG_MCTP_FLOWS
6504 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6505 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6506#endif
6507
6508 kmem_cache_free(skbuff_ext_cache, ext);
6509}
6510EXPORT_SYMBOL(__skb_ext_put);
6511#endif /* CONFIG_SKB_EXTENSIONS */
6512
6513/**
6514 * skb_attempt_defer_free - queue skb for remote freeing
6515 * @skb: buffer
6516 *
6517 * Put @skb in a per-cpu list, using the cpu which
6518 * allocated the skb/pages to reduce false sharing
6519 * and memory zone spinlock contention.
6520 */
6521void skb_attempt_defer_free(struct sk_buff *skb)
6522{
6523 int cpu = skb->alloc_cpu;
6524 struct softnet_data *sd;
6525 unsigned long flags;
6526 unsigned int defer_max;
6527 bool kick;
6528
6529 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6530 !cpu_online(cpu) ||
6531 cpu == raw_smp_processor_id()) {
6532nodefer: __kfree_skb(skb);
6533 return;
6534 }
6535
6536 sd = &per_cpu(softnet_data, cpu);
6537 defer_max = READ_ONCE(sysctl_skb_defer_max);
6538 if (READ_ONCE(sd->defer_count) >= defer_max)
6539 goto nodefer;
6540
6541 spin_lock_irqsave(&sd->defer_lock, flags);
6542 /* Send an IPI every time queue reaches half capacity. */
6543 kick = sd->defer_count == (defer_max >> 1);
6544 /* Paired with the READ_ONCE() few lines above */
6545 WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6546
6547 skb->next = sd->defer_list;
6548 /* Paired with READ_ONCE() in skb_defer_free_flush() */
6549 WRITE_ONCE(sd->defer_list, skb);
6550 spin_unlock_irqrestore(&sd->defer_lock, flags);
6551
6552 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6553 * if we are unlucky enough (this seems very unlikely).
6554 */
6555 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6556 smp_call_function_single_async(cpu, &sd->defer_csd);
6557}