Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/slab.h>
11#include <linux/export.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/property.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/delay.h>
18#include <linux/log2.h>
19#include <linux/hwspinlock.h>
20#include <asm/unaligned.h>
21
22#define CREATE_TRACE_POINTS
23#include "trace.h"
24
25#include "internal.h"
26
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
35#ifdef LOG_DEVICE
36static inline bool regmap_should_log(struct regmap *map)
37{
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39}
40#else
41static inline bool regmap_should_log(struct regmap *map) { return false; }
42#endif
43
44
45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
60bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63{
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71}
72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76{
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87}
88EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90bool regmap_writeable(struct regmap *map, unsigned int reg)
91{
92 if (map->max_register && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102}
103
104bool regmap_cached(struct regmap *map, unsigned int reg)
105{
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125}
126
127bool regmap_readable(struct regmap *map, unsigned int reg)
128{
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145}
146
147bool regmap_volatile(struct regmap *map, unsigned int reg)
148{
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162}
163
164bool regmap_precious(struct regmap *map, unsigned int reg)
165{
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176}
177
178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179{
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187}
188
189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190{
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198}
199
200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202{
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210}
211
212static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214{
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221}
222
223
224static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226{
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230}
231
232static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234{
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237}
238
239static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241{
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244}
245
246static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248{
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254}
255
256static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258{
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264}
265
266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267{
268 u8 *b = buf;
269
270 b[0] = val << shift;
271}
272
273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274{
275 put_unaligned_be16(val << shift, buf);
276}
277
278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279{
280 put_unaligned_le16(val << shift, buf);
281}
282
283static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285{
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
289}
290
291static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
292{
293 u8 *b = buf;
294
295 val <<= shift;
296
297 b[0] = val >> 16;
298 b[1] = val >> 8;
299 b[2] = val;
300}
301
302static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
303{
304 put_unaligned_be32(val << shift, buf);
305}
306
307static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
308{
309 put_unaligned_le32(val << shift, buf);
310}
311
312static void regmap_format_32_native(void *buf, unsigned int val,
313 unsigned int shift)
314{
315 u32 v = val << shift;
316
317 memcpy(buf, &v, sizeof(v));
318}
319
320#ifdef CONFIG_64BIT
321static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
322{
323 put_unaligned_be64((u64) val << shift, buf);
324}
325
326static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
327{
328 put_unaligned_le64((u64) val << shift, buf);
329}
330
331static void regmap_format_64_native(void *buf, unsigned int val,
332 unsigned int shift)
333{
334 u64 v = (u64) val << shift;
335
336 memcpy(buf, &v, sizeof(v));
337}
338#endif
339
340static void regmap_parse_inplace_noop(void *buf)
341{
342}
343
344static unsigned int regmap_parse_8(const void *buf)
345{
346 const u8 *b = buf;
347
348 return b[0];
349}
350
351static unsigned int regmap_parse_16_be(const void *buf)
352{
353 return get_unaligned_be16(buf);
354}
355
356static unsigned int regmap_parse_16_le(const void *buf)
357{
358 return get_unaligned_le16(buf);
359}
360
361static void regmap_parse_16_be_inplace(void *buf)
362{
363 u16 v = get_unaligned_be16(buf);
364
365 memcpy(buf, &v, sizeof(v));
366}
367
368static void regmap_parse_16_le_inplace(void *buf)
369{
370 u16 v = get_unaligned_le16(buf);
371
372 memcpy(buf, &v, sizeof(v));
373}
374
375static unsigned int regmap_parse_16_native(const void *buf)
376{
377 u16 v;
378
379 memcpy(&v, buf, sizeof(v));
380 return v;
381}
382
383static unsigned int regmap_parse_24(const void *buf)
384{
385 const u8 *b = buf;
386 unsigned int ret = b[2];
387 ret |= ((unsigned int)b[1]) << 8;
388 ret |= ((unsigned int)b[0]) << 16;
389
390 return ret;
391}
392
393static unsigned int regmap_parse_32_be(const void *buf)
394{
395 return get_unaligned_be32(buf);
396}
397
398static unsigned int regmap_parse_32_le(const void *buf)
399{
400 return get_unaligned_le32(buf);
401}
402
403static void regmap_parse_32_be_inplace(void *buf)
404{
405 u32 v = get_unaligned_be32(buf);
406
407 memcpy(buf, &v, sizeof(v));
408}
409
410static void regmap_parse_32_le_inplace(void *buf)
411{
412 u32 v = get_unaligned_le32(buf);
413
414 memcpy(buf, &v, sizeof(v));
415}
416
417static unsigned int regmap_parse_32_native(const void *buf)
418{
419 u32 v;
420
421 memcpy(&v, buf, sizeof(v));
422 return v;
423}
424
425#ifdef CONFIG_64BIT
426static unsigned int regmap_parse_64_be(const void *buf)
427{
428 return get_unaligned_be64(buf);
429}
430
431static unsigned int regmap_parse_64_le(const void *buf)
432{
433 return get_unaligned_le64(buf);
434}
435
436static void regmap_parse_64_be_inplace(void *buf)
437{
438 u64 v = get_unaligned_be64(buf);
439
440 memcpy(buf, &v, sizeof(v));
441}
442
443static void regmap_parse_64_le_inplace(void *buf)
444{
445 u64 v = get_unaligned_le64(buf);
446
447 memcpy(buf, &v, sizeof(v));
448}
449
450static unsigned int regmap_parse_64_native(const void *buf)
451{
452 u64 v;
453
454 memcpy(&v, buf, sizeof(v));
455 return v;
456}
457#endif
458
459static void regmap_lock_hwlock(void *__map)
460{
461 struct regmap *map = __map;
462
463 hwspin_lock_timeout(map->hwlock, UINT_MAX);
464}
465
466static void regmap_lock_hwlock_irq(void *__map)
467{
468 struct regmap *map = __map;
469
470 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
471}
472
473static void regmap_lock_hwlock_irqsave(void *__map)
474{
475 struct regmap *map = __map;
476
477 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
478 &map->spinlock_flags);
479}
480
481static void regmap_unlock_hwlock(void *__map)
482{
483 struct regmap *map = __map;
484
485 hwspin_unlock(map->hwlock);
486}
487
488static void regmap_unlock_hwlock_irq(void *__map)
489{
490 struct regmap *map = __map;
491
492 hwspin_unlock_irq(map->hwlock);
493}
494
495static void regmap_unlock_hwlock_irqrestore(void *__map)
496{
497 struct regmap *map = __map;
498
499 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
500}
501
502static void regmap_lock_unlock_none(void *__map)
503{
504
505}
506
507static void regmap_lock_mutex(void *__map)
508{
509 struct regmap *map = __map;
510 mutex_lock(&map->mutex);
511}
512
513static void regmap_unlock_mutex(void *__map)
514{
515 struct regmap *map = __map;
516 mutex_unlock(&map->mutex);
517}
518
519static void regmap_lock_spinlock(void *__map)
520__acquires(&map->spinlock)
521{
522 struct regmap *map = __map;
523 unsigned long flags;
524
525 spin_lock_irqsave(&map->spinlock, flags);
526 map->spinlock_flags = flags;
527}
528
529static void regmap_unlock_spinlock(void *__map)
530__releases(&map->spinlock)
531{
532 struct regmap *map = __map;
533 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
534}
535
536static void regmap_lock_raw_spinlock(void *__map)
537__acquires(&map->raw_spinlock)
538{
539 struct regmap *map = __map;
540 unsigned long flags;
541
542 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
543 map->raw_spinlock_flags = flags;
544}
545
546static void regmap_unlock_raw_spinlock(void *__map)
547__releases(&map->raw_spinlock)
548{
549 struct regmap *map = __map;
550 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
551}
552
553static void dev_get_regmap_release(struct device *dev, void *res)
554{
555 /*
556 * We don't actually have anything to do here; the goal here
557 * is not to manage the regmap but to provide a simple way to
558 * get the regmap back given a struct device.
559 */
560}
561
562static bool _regmap_range_add(struct regmap *map,
563 struct regmap_range_node *data)
564{
565 struct rb_root *root = &map->range_tree;
566 struct rb_node **new = &(root->rb_node), *parent = NULL;
567
568 while (*new) {
569 struct regmap_range_node *this =
570 rb_entry(*new, struct regmap_range_node, node);
571
572 parent = *new;
573 if (data->range_max < this->range_min)
574 new = &((*new)->rb_left);
575 else if (data->range_min > this->range_max)
576 new = &((*new)->rb_right);
577 else
578 return false;
579 }
580
581 rb_link_node(&data->node, parent, new);
582 rb_insert_color(&data->node, root);
583
584 return true;
585}
586
587static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
588 unsigned int reg)
589{
590 struct rb_node *node = map->range_tree.rb_node;
591
592 while (node) {
593 struct regmap_range_node *this =
594 rb_entry(node, struct regmap_range_node, node);
595
596 if (reg < this->range_min)
597 node = node->rb_left;
598 else if (reg > this->range_max)
599 node = node->rb_right;
600 else
601 return this;
602 }
603
604 return NULL;
605}
606
607static void regmap_range_exit(struct regmap *map)
608{
609 struct rb_node *next;
610 struct regmap_range_node *range_node;
611
612 next = rb_first(&map->range_tree);
613 while (next) {
614 range_node = rb_entry(next, struct regmap_range_node, node);
615 next = rb_next(&range_node->node);
616 rb_erase(&range_node->node, &map->range_tree);
617 kfree(range_node);
618 }
619
620 kfree(map->selector_work_buf);
621}
622
623static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
624{
625 if (config->name) {
626 const char *name = kstrdup_const(config->name, GFP_KERNEL);
627
628 if (!name)
629 return -ENOMEM;
630
631 kfree_const(map->name);
632 map->name = name;
633 }
634
635 return 0;
636}
637
638int regmap_attach_dev(struct device *dev, struct regmap *map,
639 const struct regmap_config *config)
640{
641 struct regmap **m;
642 int ret;
643
644 map->dev = dev;
645
646 ret = regmap_set_name(map, config);
647 if (ret)
648 return ret;
649
650 regmap_debugfs_exit(map);
651 regmap_debugfs_init(map);
652
653 /* Add a devres resource for dev_get_regmap() */
654 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
655 if (!m) {
656 regmap_debugfs_exit(map);
657 return -ENOMEM;
658 }
659 *m = map;
660 devres_add(dev, m);
661
662 return 0;
663}
664EXPORT_SYMBOL_GPL(regmap_attach_dev);
665
666static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
667 const struct regmap_config *config)
668{
669 enum regmap_endian endian;
670
671 /* Retrieve the endianness specification from the regmap config */
672 endian = config->reg_format_endian;
673
674 /* If the regmap config specified a non-default value, use that */
675 if (endian != REGMAP_ENDIAN_DEFAULT)
676 return endian;
677
678 /* Retrieve the endianness specification from the bus config */
679 if (bus && bus->reg_format_endian_default)
680 endian = bus->reg_format_endian_default;
681
682 /* If the bus specified a non-default value, use that */
683 if (endian != REGMAP_ENDIAN_DEFAULT)
684 return endian;
685
686 /* Use this if no other value was found */
687 return REGMAP_ENDIAN_BIG;
688}
689
690enum regmap_endian regmap_get_val_endian(struct device *dev,
691 const struct regmap_bus *bus,
692 const struct regmap_config *config)
693{
694 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
695 enum regmap_endian endian;
696
697 /* Retrieve the endianness specification from the regmap config */
698 endian = config->val_format_endian;
699
700 /* If the regmap config specified a non-default value, use that */
701 if (endian != REGMAP_ENDIAN_DEFAULT)
702 return endian;
703
704 /* If the firmware node exist try to get endianness from it */
705 if (fwnode_property_read_bool(fwnode, "big-endian"))
706 endian = REGMAP_ENDIAN_BIG;
707 else if (fwnode_property_read_bool(fwnode, "little-endian"))
708 endian = REGMAP_ENDIAN_LITTLE;
709 else if (fwnode_property_read_bool(fwnode, "native-endian"))
710 endian = REGMAP_ENDIAN_NATIVE;
711
712 /* If the endianness was specified in fwnode, use that */
713 if (endian != REGMAP_ENDIAN_DEFAULT)
714 return endian;
715
716 /* Retrieve the endianness specification from the bus config */
717 if (bus && bus->val_format_endian_default)
718 endian = bus->val_format_endian_default;
719
720 /* If the bus specified a non-default value, use that */
721 if (endian != REGMAP_ENDIAN_DEFAULT)
722 return endian;
723
724 /* Use this if no other value was found */
725 return REGMAP_ENDIAN_BIG;
726}
727EXPORT_SYMBOL_GPL(regmap_get_val_endian);
728
729struct regmap *__regmap_init(struct device *dev,
730 const struct regmap_bus *bus,
731 void *bus_context,
732 const struct regmap_config *config,
733 struct lock_class_key *lock_key,
734 const char *lock_name)
735{
736 struct regmap *map;
737 int ret = -EINVAL;
738 enum regmap_endian reg_endian, val_endian;
739 int i, j;
740
741 if (!config)
742 goto err;
743
744 map = kzalloc(sizeof(*map), GFP_KERNEL);
745 if (map == NULL) {
746 ret = -ENOMEM;
747 goto err;
748 }
749
750 ret = regmap_set_name(map, config);
751 if (ret)
752 goto err_map;
753
754 ret = -EINVAL; /* Later error paths rely on this */
755
756 if (config->disable_locking) {
757 map->lock = map->unlock = regmap_lock_unlock_none;
758 map->can_sleep = config->can_sleep;
759 regmap_debugfs_disable(map);
760 } else if (config->lock && config->unlock) {
761 map->lock = config->lock;
762 map->unlock = config->unlock;
763 map->lock_arg = config->lock_arg;
764 map->can_sleep = config->can_sleep;
765 } else if (config->use_hwlock) {
766 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
767 if (!map->hwlock) {
768 ret = -ENXIO;
769 goto err_name;
770 }
771
772 switch (config->hwlock_mode) {
773 case HWLOCK_IRQSTATE:
774 map->lock = regmap_lock_hwlock_irqsave;
775 map->unlock = regmap_unlock_hwlock_irqrestore;
776 break;
777 case HWLOCK_IRQ:
778 map->lock = regmap_lock_hwlock_irq;
779 map->unlock = regmap_unlock_hwlock_irq;
780 break;
781 default:
782 map->lock = regmap_lock_hwlock;
783 map->unlock = regmap_unlock_hwlock;
784 break;
785 }
786
787 map->lock_arg = map;
788 } else {
789 if ((bus && bus->fast_io) ||
790 config->fast_io) {
791 if (config->use_raw_spinlock) {
792 raw_spin_lock_init(&map->raw_spinlock);
793 map->lock = regmap_lock_raw_spinlock;
794 map->unlock = regmap_unlock_raw_spinlock;
795 lockdep_set_class_and_name(&map->raw_spinlock,
796 lock_key, lock_name);
797 } else {
798 spin_lock_init(&map->spinlock);
799 map->lock = regmap_lock_spinlock;
800 map->unlock = regmap_unlock_spinlock;
801 lockdep_set_class_and_name(&map->spinlock,
802 lock_key, lock_name);
803 }
804 } else {
805 mutex_init(&map->mutex);
806 map->lock = regmap_lock_mutex;
807 map->unlock = regmap_unlock_mutex;
808 map->can_sleep = true;
809 lockdep_set_class_and_name(&map->mutex,
810 lock_key, lock_name);
811 }
812 map->lock_arg = map;
813 }
814
815 /*
816 * When we write in fast-paths with regmap_bulk_write() don't allocate
817 * scratch buffers with sleeping allocations.
818 */
819 if ((bus && bus->fast_io) || config->fast_io)
820 map->alloc_flags = GFP_ATOMIC;
821 else
822 map->alloc_flags = GFP_KERNEL;
823
824 map->reg_base = config->reg_base;
825
826 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
827 map->format.pad_bytes = config->pad_bits / 8;
828 map->format.reg_downshift = config->reg_downshift;
829 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
830 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
831 config->val_bits + config->pad_bits, 8);
832 map->reg_shift = config->pad_bits % 8;
833 if (config->reg_stride)
834 map->reg_stride = config->reg_stride;
835 else
836 map->reg_stride = 1;
837 if (is_power_of_2(map->reg_stride))
838 map->reg_stride_order = ilog2(map->reg_stride);
839 else
840 map->reg_stride_order = -1;
841 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
842 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
843 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
844 if (bus) {
845 map->max_raw_read = bus->max_raw_read;
846 map->max_raw_write = bus->max_raw_write;
847 } else if (config->max_raw_read && config->max_raw_write) {
848 map->max_raw_read = config->max_raw_read;
849 map->max_raw_write = config->max_raw_write;
850 }
851 map->dev = dev;
852 map->bus = bus;
853 map->bus_context = bus_context;
854 map->max_register = config->max_register;
855 map->wr_table = config->wr_table;
856 map->rd_table = config->rd_table;
857 map->volatile_table = config->volatile_table;
858 map->precious_table = config->precious_table;
859 map->wr_noinc_table = config->wr_noinc_table;
860 map->rd_noinc_table = config->rd_noinc_table;
861 map->writeable_reg = config->writeable_reg;
862 map->readable_reg = config->readable_reg;
863 map->volatile_reg = config->volatile_reg;
864 map->precious_reg = config->precious_reg;
865 map->writeable_noinc_reg = config->writeable_noinc_reg;
866 map->readable_noinc_reg = config->readable_noinc_reg;
867 map->cache_type = config->cache_type;
868
869 spin_lock_init(&map->async_lock);
870 INIT_LIST_HEAD(&map->async_list);
871 INIT_LIST_HEAD(&map->async_free);
872 init_waitqueue_head(&map->async_waitq);
873
874 if (config->read_flag_mask ||
875 config->write_flag_mask ||
876 config->zero_flag_mask) {
877 map->read_flag_mask = config->read_flag_mask;
878 map->write_flag_mask = config->write_flag_mask;
879 } else if (bus) {
880 map->read_flag_mask = bus->read_flag_mask;
881 }
882
883 if (config && config->read && config->write) {
884 map->reg_read = _regmap_bus_read;
885 if (config->reg_update_bits)
886 map->reg_update_bits = config->reg_update_bits;
887
888 /* Bulk read/write */
889 map->read = config->read;
890 map->write = config->write;
891
892 reg_endian = REGMAP_ENDIAN_NATIVE;
893 val_endian = REGMAP_ENDIAN_NATIVE;
894 } else if (!bus) {
895 map->reg_read = config->reg_read;
896 map->reg_write = config->reg_write;
897 map->reg_update_bits = config->reg_update_bits;
898
899 map->defer_caching = false;
900 goto skip_format_initialization;
901 } else if (!bus->read || !bus->write) {
902 map->reg_read = _regmap_bus_reg_read;
903 map->reg_write = _regmap_bus_reg_write;
904 map->reg_update_bits = bus->reg_update_bits;
905
906 map->defer_caching = false;
907 goto skip_format_initialization;
908 } else {
909 map->reg_read = _regmap_bus_read;
910 map->reg_update_bits = bus->reg_update_bits;
911 /* Bulk read/write */
912 map->read = bus->read;
913 map->write = bus->write;
914
915 reg_endian = regmap_get_reg_endian(bus, config);
916 val_endian = regmap_get_val_endian(dev, bus, config);
917 }
918
919 switch (config->reg_bits + map->reg_shift) {
920 case 2:
921 switch (config->val_bits) {
922 case 6:
923 map->format.format_write = regmap_format_2_6_write;
924 break;
925 default:
926 goto err_hwlock;
927 }
928 break;
929
930 case 4:
931 switch (config->val_bits) {
932 case 12:
933 map->format.format_write = regmap_format_4_12_write;
934 break;
935 default:
936 goto err_hwlock;
937 }
938 break;
939
940 case 7:
941 switch (config->val_bits) {
942 case 9:
943 map->format.format_write = regmap_format_7_9_write;
944 break;
945 case 17:
946 map->format.format_write = regmap_format_7_17_write;
947 break;
948 default:
949 goto err_hwlock;
950 }
951 break;
952
953 case 10:
954 switch (config->val_bits) {
955 case 14:
956 map->format.format_write = regmap_format_10_14_write;
957 break;
958 default:
959 goto err_hwlock;
960 }
961 break;
962
963 case 12:
964 switch (config->val_bits) {
965 case 20:
966 map->format.format_write = regmap_format_12_20_write;
967 break;
968 default:
969 goto err_hwlock;
970 }
971 break;
972
973 case 8:
974 map->format.format_reg = regmap_format_8;
975 break;
976
977 case 16:
978 switch (reg_endian) {
979 case REGMAP_ENDIAN_BIG:
980 map->format.format_reg = regmap_format_16_be;
981 break;
982 case REGMAP_ENDIAN_LITTLE:
983 map->format.format_reg = regmap_format_16_le;
984 break;
985 case REGMAP_ENDIAN_NATIVE:
986 map->format.format_reg = regmap_format_16_native;
987 break;
988 default:
989 goto err_hwlock;
990 }
991 break;
992
993 case 24:
994 if (reg_endian != REGMAP_ENDIAN_BIG)
995 goto err_hwlock;
996 map->format.format_reg = regmap_format_24;
997 break;
998
999 case 32:
1000 switch (reg_endian) {
1001 case REGMAP_ENDIAN_BIG:
1002 map->format.format_reg = regmap_format_32_be;
1003 break;
1004 case REGMAP_ENDIAN_LITTLE:
1005 map->format.format_reg = regmap_format_32_le;
1006 break;
1007 case REGMAP_ENDIAN_NATIVE:
1008 map->format.format_reg = regmap_format_32_native;
1009 break;
1010 default:
1011 goto err_hwlock;
1012 }
1013 break;
1014
1015#ifdef CONFIG_64BIT
1016 case 64:
1017 switch (reg_endian) {
1018 case REGMAP_ENDIAN_BIG:
1019 map->format.format_reg = regmap_format_64_be;
1020 break;
1021 case REGMAP_ENDIAN_LITTLE:
1022 map->format.format_reg = regmap_format_64_le;
1023 break;
1024 case REGMAP_ENDIAN_NATIVE:
1025 map->format.format_reg = regmap_format_64_native;
1026 break;
1027 default:
1028 goto err_hwlock;
1029 }
1030 break;
1031#endif
1032
1033 default:
1034 goto err_hwlock;
1035 }
1036
1037 if (val_endian == REGMAP_ENDIAN_NATIVE)
1038 map->format.parse_inplace = regmap_parse_inplace_noop;
1039
1040 switch (config->val_bits) {
1041 case 8:
1042 map->format.format_val = regmap_format_8;
1043 map->format.parse_val = regmap_parse_8;
1044 map->format.parse_inplace = regmap_parse_inplace_noop;
1045 break;
1046 case 16:
1047 switch (val_endian) {
1048 case REGMAP_ENDIAN_BIG:
1049 map->format.format_val = regmap_format_16_be;
1050 map->format.parse_val = regmap_parse_16_be;
1051 map->format.parse_inplace = regmap_parse_16_be_inplace;
1052 break;
1053 case REGMAP_ENDIAN_LITTLE:
1054 map->format.format_val = regmap_format_16_le;
1055 map->format.parse_val = regmap_parse_16_le;
1056 map->format.parse_inplace = regmap_parse_16_le_inplace;
1057 break;
1058 case REGMAP_ENDIAN_NATIVE:
1059 map->format.format_val = regmap_format_16_native;
1060 map->format.parse_val = regmap_parse_16_native;
1061 break;
1062 default:
1063 goto err_hwlock;
1064 }
1065 break;
1066 case 24:
1067 if (val_endian != REGMAP_ENDIAN_BIG)
1068 goto err_hwlock;
1069 map->format.format_val = regmap_format_24;
1070 map->format.parse_val = regmap_parse_24;
1071 break;
1072 case 32:
1073 switch (val_endian) {
1074 case REGMAP_ENDIAN_BIG:
1075 map->format.format_val = regmap_format_32_be;
1076 map->format.parse_val = regmap_parse_32_be;
1077 map->format.parse_inplace = regmap_parse_32_be_inplace;
1078 break;
1079 case REGMAP_ENDIAN_LITTLE:
1080 map->format.format_val = regmap_format_32_le;
1081 map->format.parse_val = regmap_parse_32_le;
1082 map->format.parse_inplace = regmap_parse_32_le_inplace;
1083 break;
1084 case REGMAP_ENDIAN_NATIVE:
1085 map->format.format_val = regmap_format_32_native;
1086 map->format.parse_val = regmap_parse_32_native;
1087 break;
1088 default:
1089 goto err_hwlock;
1090 }
1091 break;
1092#ifdef CONFIG_64BIT
1093 case 64:
1094 switch (val_endian) {
1095 case REGMAP_ENDIAN_BIG:
1096 map->format.format_val = regmap_format_64_be;
1097 map->format.parse_val = regmap_parse_64_be;
1098 map->format.parse_inplace = regmap_parse_64_be_inplace;
1099 break;
1100 case REGMAP_ENDIAN_LITTLE:
1101 map->format.format_val = regmap_format_64_le;
1102 map->format.parse_val = regmap_parse_64_le;
1103 map->format.parse_inplace = regmap_parse_64_le_inplace;
1104 break;
1105 case REGMAP_ENDIAN_NATIVE:
1106 map->format.format_val = regmap_format_64_native;
1107 map->format.parse_val = regmap_parse_64_native;
1108 break;
1109 default:
1110 goto err_hwlock;
1111 }
1112 break;
1113#endif
1114 }
1115
1116 if (map->format.format_write) {
1117 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1118 (val_endian != REGMAP_ENDIAN_BIG))
1119 goto err_hwlock;
1120 map->use_single_write = true;
1121 }
1122
1123 if (!map->format.format_write &&
1124 !(map->format.format_reg && map->format.format_val))
1125 goto err_hwlock;
1126
1127 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1128 if (map->work_buf == NULL) {
1129 ret = -ENOMEM;
1130 goto err_hwlock;
1131 }
1132
1133 if (map->format.format_write) {
1134 map->defer_caching = false;
1135 map->reg_write = _regmap_bus_formatted_write;
1136 } else if (map->format.format_val) {
1137 map->defer_caching = true;
1138 map->reg_write = _regmap_bus_raw_write;
1139 }
1140
1141skip_format_initialization:
1142
1143 map->range_tree = RB_ROOT;
1144 for (i = 0; i < config->num_ranges; i++) {
1145 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1146 struct regmap_range_node *new;
1147
1148 /* Sanity check */
1149 if (range_cfg->range_max < range_cfg->range_min) {
1150 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1151 range_cfg->range_max, range_cfg->range_min);
1152 goto err_range;
1153 }
1154
1155 if (range_cfg->range_max > map->max_register) {
1156 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1157 range_cfg->range_max, map->max_register);
1158 goto err_range;
1159 }
1160
1161 if (range_cfg->selector_reg > map->max_register) {
1162 dev_err(map->dev,
1163 "Invalid range %d: selector out of map\n", i);
1164 goto err_range;
1165 }
1166
1167 if (range_cfg->window_len == 0) {
1168 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1169 i);
1170 goto err_range;
1171 }
1172
1173 /* Make sure, that this register range has no selector
1174 or data window within its boundary */
1175 for (j = 0; j < config->num_ranges; j++) {
1176 unsigned int sel_reg = config->ranges[j].selector_reg;
1177 unsigned int win_min = config->ranges[j].window_start;
1178 unsigned int win_max = win_min +
1179 config->ranges[j].window_len - 1;
1180
1181 /* Allow data window inside its own virtual range */
1182 if (j == i)
1183 continue;
1184
1185 if (range_cfg->range_min <= sel_reg &&
1186 sel_reg <= range_cfg->range_max) {
1187 dev_err(map->dev,
1188 "Range %d: selector for %d in window\n",
1189 i, j);
1190 goto err_range;
1191 }
1192
1193 if (!(win_max < range_cfg->range_min ||
1194 win_min > range_cfg->range_max)) {
1195 dev_err(map->dev,
1196 "Range %d: window for %d in window\n",
1197 i, j);
1198 goto err_range;
1199 }
1200 }
1201
1202 new = kzalloc(sizeof(*new), GFP_KERNEL);
1203 if (new == NULL) {
1204 ret = -ENOMEM;
1205 goto err_range;
1206 }
1207
1208 new->map = map;
1209 new->name = range_cfg->name;
1210 new->range_min = range_cfg->range_min;
1211 new->range_max = range_cfg->range_max;
1212 new->selector_reg = range_cfg->selector_reg;
1213 new->selector_mask = range_cfg->selector_mask;
1214 new->selector_shift = range_cfg->selector_shift;
1215 new->window_start = range_cfg->window_start;
1216 new->window_len = range_cfg->window_len;
1217
1218 if (!_regmap_range_add(map, new)) {
1219 dev_err(map->dev, "Failed to add range %d\n", i);
1220 kfree(new);
1221 goto err_range;
1222 }
1223
1224 if (map->selector_work_buf == NULL) {
1225 map->selector_work_buf =
1226 kzalloc(map->format.buf_size, GFP_KERNEL);
1227 if (map->selector_work_buf == NULL) {
1228 ret = -ENOMEM;
1229 goto err_range;
1230 }
1231 }
1232 }
1233
1234 ret = regcache_init(map, config);
1235 if (ret != 0)
1236 goto err_range;
1237
1238 if (dev) {
1239 ret = regmap_attach_dev(dev, map, config);
1240 if (ret != 0)
1241 goto err_regcache;
1242 } else {
1243 regmap_debugfs_init(map);
1244 }
1245
1246 return map;
1247
1248err_regcache:
1249 regcache_exit(map);
1250err_range:
1251 regmap_range_exit(map);
1252 kfree(map->work_buf);
1253err_hwlock:
1254 if (map->hwlock)
1255 hwspin_lock_free(map->hwlock);
1256err_name:
1257 kfree_const(map->name);
1258err_map:
1259 kfree(map);
1260err:
1261 return ERR_PTR(ret);
1262}
1263EXPORT_SYMBOL_GPL(__regmap_init);
1264
1265static void devm_regmap_release(struct device *dev, void *res)
1266{
1267 regmap_exit(*(struct regmap **)res);
1268}
1269
1270struct regmap *__devm_regmap_init(struct device *dev,
1271 const struct regmap_bus *bus,
1272 void *bus_context,
1273 const struct regmap_config *config,
1274 struct lock_class_key *lock_key,
1275 const char *lock_name)
1276{
1277 struct regmap **ptr, *regmap;
1278
1279 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1280 if (!ptr)
1281 return ERR_PTR(-ENOMEM);
1282
1283 regmap = __regmap_init(dev, bus, bus_context, config,
1284 lock_key, lock_name);
1285 if (!IS_ERR(regmap)) {
1286 *ptr = regmap;
1287 devres_add(dev, ptr);
1288 } else {
1289 devres_free(ptr);
1290 }
1291
1292 return regmap;
1293}
1294EXPORT_SYMBOL_GPL(__devm_regmap_init);
1295
1296static void regmap_field_init(struct regmap_field *rm_field,
1297 struct regmap *regmap, struct reg_field reg_field)
1298{
1299 rm_field->regmap = regmap;
1300 rm_field->reg = reg_field.reg;
1301 rm_field->shift = reg_field.lsb;
1302 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1303
1304 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1305
1306 rm_field->id_size = reg_field.id_size;
1307 rm_field->id_offset = reg_field.id_offset;
1308}
1309
1310/**
1311 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1312 *
1313 * @dev: Device that will be interacted with
1314 * @regmap: regmap bank in which this register field is located.
1315 * @reg_field: Register field with in the bank.
1316 *
1317 * The return value will be an ERR_PTR() on error or a valid pointer
1318 * to a struct regmap_field. The regmap_field will be automatically freed
1319 * by the device management code.
1320 */
1321struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1322 struct regmap *regmap, struct reg_field reg_field)
1323{
1324 struct regmap_field *rm_field = devm_kzalloc(dev,
1325 sizeof(*rm_field), GFP_KERNEL);
1326 if (!rm_field)
1327 return ERR_PTR(-ENOMEM);
1328
1329 regmap_field_init(rm_field, regmap, reg_field);
1330
1331 return rm_field;
1332
1333}
1334EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1335
1336
1337/**
1338 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1339 *
1340 * @regmap: regmap bank in which this register field is located.
1341 * @rm_field: regmap register fields within the bank.
1342 * @reg_field: Register fields within the bank.
1343 * @num_fields: Number of register fields.
1344 *
1345 * The return value will be an -ENOMEM on error or zero for success.
1346 * Newly allocated regmap_fields should be freed by calling
1347 * regmap_field_bulk_free()
1348 */
1349int regmap_field_bulk_alloc(struct regmap *regmap,
1350 struct regmap_field **rm_field,
1351 const struct reg_field *reg_field,
1352 int num_fields)
1353{
1354 struct regmap_field *rf;
1355 int i;
1356
1357 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1358 if (!rf)
1359 return -ENOMEM;
1360
1361 for (i = 0; i < num_fields; i++) {
1362 regmap_field_init(&rf[i], regmap, reg_field[i]);
1363 rm_field[i] = &rf[i];
1364 }
1365
1366 return 0;
1367}
1368EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1369
1370/**
1371 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1372 * fields.
1373 *
1374 * @dev: Device that will be interacted with
1375 * @regmap: regmap bank in which this register field is located.
1376 * @rm_field: regmap register fields within the bank.
1377 * @reg_field: Register fields within the bank.
1378 * @num_fields: Number of register fields.
1379 *
1380 * The return value will be an -ENOMEM on error or zero for success.
1381 * Newly allocated regmap_fields will be automatically freed by the
1382 * device management code.
1383 */
1384int devm_regmap_field_bulk_alloc(struct device *dev,
1385 struct regmap *regmap,
1386 struct regmap_field **rm_field,
1387 const struct reg_field *reg_field,
1388 int num_fields)
1389{
1390 struct regmap_field *rf;
1391 int i;
1392
1393 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1394 if (!rf)
1395 return -ENOMEM;
1396
1397 for (i = 0; i < num_fields; i++) {
1398 regmap_field_init(&rf[i], regmap, reg_field[i]);
1399 rm_field[i] = &rf[i];
1400 }
1401
1402 return 0;
1403}
1404EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1405
1406/**
1407 * regmap_field_bulk_free() - Free register field allocated using
1408 * regmap_field_bulk_alloc.
1409 *
1410 * @field: regmap fields which should be freed.
1411 */
1412void regmap_field_bulk_free(struct regmap_field *field)
1413{
1414 kfree(field);
1415}
1416EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1417
1418/**
1419 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1420 * devm_regmap_field_bulk_alloc.
1421 *
1422 * @dev: Device that will be interacted with
1423 * @field: regmap field which should be freed.
1424 *
1425 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1426 * drivers need not call this function, as the memory allocated via devm
1427 * will be freed as per device-driver life-cycle.
1428 */
1429void devm_regmap_field_bulk_free(struct device *dev,
1430 struct regmap_field *field)
1431{
1432 devm_kfree(dev, field);
1433}
1434EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1435
1436/**
1437 * devm_regmap_field_free() - Free a register field allocated using
1438 * devm_regmap_field_alloc.
1439 *
1440 * @dev: Device that will be interacted with
1441 * @field: regmap field which should be freed.
1442 *
1443 * Free register field allocated using devm_regmap_field_alloc(). Usually
1444 * drivers need not call this function, as the memory allocated via devm
1445 * will be freed as per device-driver life-cyle.
1446 */
1447void devm_regmap_field_free(struct device *dev,
1448 struct regmap_field *field)
1449{
1450 devm_kfree(dev, field);
1451}
1452EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1453
1454/**
1455 * regmap_field_alloc() - Allocate and initialise a register field.
1456 *
1457 * @regmap: regmap bank in which this register field is located.
1458 * @reg_field: Register field with in the bank.
1459 *
1460 * The return value will be an ERR_PTR() on error or a valid pointer
1461 * to a struct regmap_field. The regmap_field should be freed by the
1462 * user once its finished working with it using regmap_field_free().
1463 */
1464struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1465 struct reg_field reg_field)
1466{
1467 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1468
1469 if (!rm_field)
1470 return ERR_PTR(-ENOMEM);
1471
1472 regmap_field_init(rm_field, regmap, reg_field);
1473
1474 return rm_field;
1475}
1476EXPORT_SYMBOL_GPL(regmap_field_alloc);
1477
1478/**
1479 * regmap_field_free() - Free register field allocated using
1480 * regmap_field_alloc.
1481 *
1482 * @field: regmap field which should be freed.
1483 */
1484void regmap_field_free(struct regmap_field *field)
1485{
1486 kfree(field);
1487}
1488EXPORT_SYMBOL_GPL(regmap_field_free);
1489
1490/**
1491 * regmap_reinit_cache() - Reinitialise the current register cache
1492 *
1493 * @map: Register map to operate on.
1494 * @config: New configuration. Only the cache data will be used.
1495 *
1496 * Discard any existing register cache for the map and initialize a
1497 * new cache. This can be used to restore the cache to defaults or to
1498 * update the cache configuration to reflect runtime discovery of the
1499 * hardware.
1500 *
1501 * No explicit locking is done here, the user needs to ensure that
1502 * this function will not race with other calls to regmap.
1503 */
1504int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1505{
1506 int ret;
1507
1508 regcache_exit(map);
1509 regmap_debugfs_exit(map);
1510
1511 map->max_register = config->max_register;
1512 map->writeable_reg = config->writeable_reg;
1513 map->readable_reg = config->readable_reg;
1514 map->volatile_reg = config->volatile_reg;
1515 map->precious_reg = config->precious_reg;
1516 map->writeable_noinc_reg = config->writeable_noinc_reg;
1517 map->readable_noinc_reg = config->readable_noinc_reg;
1518 map->cache_type = config->cache_type;
1519
1520 ret = regmap_set_name(map, config);
1521 if (ret)
1522 return ret;
1523
1524 regmap_debugfs_init(map);
1525
1526 map->cache_bypass = false;
1527 map->cache_only = false;
1528
1529 return regcache_init(map, config);
1530}
1531EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1532
1533/**
1534 * regmap_exit() - Free a previously allocated register map
1535 *
1536 * @map: Register map to operate on.
1537 */
1538void regmap_exit(struct regmap *map)
1539{
1540 struct regmap_async *async;
1541
1542 regcache_exit(map);
1543 regmap_debugfs_exit(map);
1544 regmap_range_exit(map);
1545 if (map->bus && map->bus->free_context)
1546 map->bus->free_context(map->bus_context);
1547 kfree(map->work_buf);
1548 while (!list_empty(&map->async_free)) {
1549 async = list_first_entry_or_null(&map->async_free,
1550 struct regmap_async,
1551 list);
1552 list_del(&async->list);
1553 kfree(async->work_buf);
1554 kfree(async);
1555 }
1556 if (map->hwlock)
1557 hwspin_lock_free(map->hwlock);
1558 if (map->lock == regmap_lock_mutex)
1559 mutex_destroy(&map->mutex);
1560 kfree_const(map->name);
1561 kfree(map->patch);
1562 if (map->bus && map->bus->free_on_exit)
1563 kfree(map->bus);
1564 kfree(map);
1565}
1566EXPORT_SYMBOL_GPL(regmap_exit);
1567
1568static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1569{
1570 struct regmap **r = res;
1571 if (!r || !*r) {
1572 WARN_ON(!r || !*r);
1573 return 0;
1574 }
1575
1576 /* If the user didn't specify a name match any */
1577 if (data)
1578 return !strcmp((*r)->name, data);
1579 else
1580 return 1;
1581}
1582
1583/**
1584 * dev_get_regmap() - Obtain the regmap (if any) for a device
1585 *
1586 * @dev: Device to retrieve the map for
1587 * @name: Optional name for the register map, usually NULL.
1588 *
1589 * Returns the regmap for the device if one is present, or NULL. If
1590 * name is specified then it must match the name specified when
1591 * registering the device, if it is NULL then the first regmap found
1592 * will be used. Devices with multiple register maps are very rare,
1593 * generic code should normally not need to specify a name.
1594 */
1595struct regmap *dev_get_regmap(struct device *dev, const char *name)
1596{
1597 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1598 dev_get_regmap_match, (void *)name);
1599
1600 if (!r)
1601 return NULL;
1602 return *r;
1603}
1604EXPORT_SYMBOL_GPL(dev_get_regmap);
1605
1606/**
1607 * regmap_get_device() - Obtain the device from a regmap
1608 *
1609 * @map: Register map to operate on.
1610 *
1611 * Returns the underlying device that the regmap has been created for.
1612 */
1613struct device *regmap_get_device(struct regmap *map)
1614{
1615 return map->dev;
1616}
1617EXPORT_SYMBOL_GPL(regmap_get_device);
1618
1619static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1620 struct regmap_range_node *range,
1621 unsigned int val_num)
1622{
1623 void *orig_work_buf;
1624 unsigned int win_offset;
1625 unsigned int win_page;
1626 bool page_chg;
1627 int ret;
1628
1629 win_offset = (*reg - range->range_min) % range->window_len;
1630 win_page = (*reg - range->range_min) / range->window_len;
1631
1632 if (val_num > 1) {
1633 /* Bulk write shouldn't cross range boundary */
1634 if (*reg + val_num - 1 > range->range_max)
1635 return -EINVAL;
1636
1637 /* ... or single page boundary */
1638 if (val_num > range->window_len - win_offset)
1639 return -EINVAL;
1640 }
1641
1642 /* It is possible to have selector register inside data window.
1643 In that case, selector register is located on every page and
1644 it needs no page switching, when accessed alone. */
1645 if (val_num > 1 ||
1646 range->window_start + win_offset != range->selector_reg) {
1647 /* Use separate work_buf during page switching */
1648 orig_work_buf = map->work_buf;
1649 map->work_buf = map->selector_work_buf;
1650
1651 ret = _regmap_update_bits(map, range->selector_reg,
1652 range->selector_mask,
1653 win_page << range->selector_shift,
1654 &page_chg, false);
1655
1656 map->work_buf = orig_work_buf;
1657
1658 if (ret != 0)
1659 return ret;
1660 }
1661
1662 *reg = range->window_start + win_offset;
1663
1664 return 0;
1665}
1666
1667static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1668 unsigned long mask)
1669{
1670 u8 *buf;
1671 int i;
1672
1673 if (!mask || !map->work_buf)
1674 return;
1675
1676 buf = map->work_buf;
1677
1678 for (i = 0; i < max_bytes; i++)
1679 buf[i] |= (mask >> (8 * i)) & 0xff;
1680}
1681
1682static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1683 const void *val, size_t val_len, bool noinc)
1684{
1685 struct regmap_range_node *range;
1686 unsigned long flags;
1687 void *work_val = map->work_buf + map->format.reg_bytes +
1688 map->format.pad_bytes;
1689 void *buf;
1690 int ret = -ENOTSUPP;
1691 size_t len;
1692 int i;
1693
1694 /* Check for unwritable or noinc registers in range
1695 * before we start
1696 */
1697 if (!regmap_writeable_noinc(map, reg)) {
1698 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1699 unsigned int element =
1700 reg + regmap_get_offset(map, i);
1701 if (!regmap_writeable(map, element) ||
1702 regmap_writeable_noinc(map, element))
1703 return -EINVAL;
1704 }
1705 }
1706
1707 if (!map->cache_bypass && map->format.parse_val) {
1708 unsigned int ival;
1709 int val_bytes = map->format.val_bytes;
1710 for (i = 0; i < val_len / val_bytes; i++) {
1711 ival = map->format.parse_val(val + (i * val_bytes));
1712 ret = regcache_write(map,
1713 reg + regmap_get_offset(map, i),
1714 ival);
1715 if (ret) {
1716 dev_err(map->dev,
1717 "Error in caching of register: %x ret: %d\n",
1718 reg + regmap_get_offset(map, i), ret);
1719 return ret;
1720 }
1721 }
1722 if (map->cache_only) {
1723 map->cache_dirty = true;
1724 return 0;
1725 }
1726 }
1727
1728 range = _regmap_range_lookup(map, reg);
1729 if (range) {
1730 int val_num = val_len / map->format.val_bytes;
1731 int win_offset = (reg - range->range_min) % range->window_len;
1732 int win_residue = range->window_len - win_offset;
1733
1734 /* If the write goes beyond the end of the window split it */
1735 while (val_num > win_residue) {
1736 dev_dbg(map->dev, "Writing window %d/%zu\n",
1737 win_residue, val_len / map->format.val_bytes);
1738 ret = _regmap_raw_write_impl(map, reg, val,
1739 win_residue *
1740 map->format.val_bytes, noinc);
1741 if (ret != 0)
1742 return ret;
1743
1744 reg += win_residue;
1745 val_num -= win_residue;
1746 val += win_residue * map->format.val_bytes;
1747 val_len -= win_residue * map->format.val_bytes;
1748
1749 win_offset = (reg - range->range_min) %
1750 range->window_len;
1751 win_residue = range->window_len - win_offset;
1752 }
1753
1754 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1755 if (ret != 0)
1756 return ret;
1757 }
1758
1759 reg += map->reg_base;
1760 reg >>= map->format.reg_downshift;
1761 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1762 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1763 map->write_flag_mask);
1764
1765 /*
1766 * Essentially all I/O mechanisms will be faster with a single
1767 * buffer to write. Since register syncs often generate raw
1768 * writes of single registers optimise that case.
1769 */
1770 if (val != work_val && val_len == map->format.val_bytes) {
1771 memcpy(work_val, val, map->format.val_bytes);
1772 val = work_val;
1773 }
1774
1775 if (map->async && map->bus && map->bus->async_write) {
1776 struct regmap_async *async;
1777
1778 trace_regmap_async_write_start(map, reg, val_len);
1779
1780 spin_lock_irqsave(&map->async_lock, flags);
1781 async = list_first_entry_or_null(&map->async_free,
1782 struct regmap_async,
1783 list);
1784 if (async)
1785 list_del(&async->list);
1786 spin_unlock_irqrestore(&map->async_lock, flags);
1787
1788 if (!async) {
1789 async = map->bus->async_alloc();
1790 if (!async)
1791 return -ENOMEM;
1792
1793 async->work_buf = kzalloc(map->format.buf_size,
1794 GFP_KERNEL | GFP_DMA);
1795 if (!async->work_buf) {
1796 kfree(async);
1797 return -ENOMEM;
1798 }
1799 }
1800
1801 async->map = map;
1802
1803 /* If the caller supplied the value we can use it safely. */
1804 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1805 map->format.reg_bytes + map->format.val_bytes);
1806
1807 spin_lock_irqsave(&map->async_lock, flags);
1808 list_add_tail(&async->list, &map->async_list);
1809 spin_unlock_irqrestore(&map->async_lock, flags);
1810
1811 if (val != work_val)
1812 ret = map->bus->async_write(map->bus_context,
1813 async->work_buf,
1814 map->format.reg_bytes +
1815 map->format.pad_bytes,
1816 val, val_len, async);
1817 else
1818 ret = map->bus->async_write(map->bus_context,
1819 async->work_buf,
1820 map->format.reg_bytes +
1821 map->format.pad_bytes +
1822 val_len, NULL, 0, async);
1823
1824 if (ret != 0) {
1825 dev_err(map->dev, "Failed to schedule write: %d\n",
1826 ret);
1827
1828 spin_lock_irqsave(&map->async_lock, flags);
1829 list_move(&async->list, &map->async_free);
1830 spin_unlock_irqrestore(&map->async_lock, flags);
1831 }
1832
1833 return ret;
1834 }
1835
1836 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1837
1838 /* If we're doing a single register write we can probably just
1839 * send the work_buf directly, otherwise try to do a gather
1840 * write.
1841 */
1842 if (val == work_val)
1843 ret = map->write(map->bus_context, map->work_buf,
1844 map->format.reg_bytes +
1845 map->format.pad_bytes +
1846 val_len);
1847 else if (map->bus && map->bus->gather_write)
1848 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1849 map->format.reg_bytes +
1850 map->format.pad_bytes,
1851 val, val_len);
1852 else
1853 ret = -ENOTSUPP;
1854
1855 /* If that didn't work fall back on linearising by hand. */
1856 if (ret == -ENOTSUPP) {
1857 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1858 buf = kzalloc(len, GFP_KERNEL);
1859 if (!buf)
1860 return -ENOMEM;
1861
1862 memcpy(buf, map->work_buf, map->format.reg_bytes);
1863 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1864 val, val_len);
1865 ret = map->write(map->bus_context, buf, len);
1866
1867 kfree(buf);
1868 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1869 /* regcache_drop_region() takes lock that we already have,
1870 * thus call map->cache_ops->drop() directly
1871 */
1872 if (map->cache_ops && map->cache_ops->drop)
1873 map->cache_ops->drop(map, reg, reg + 1);
1874 }
1875
1876 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1877
1878 return ret;
1879}
1880
1881/**
1882 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1883 *
1884 * @map: Map to check.
1885 */
1886bool regmap_can_raw_write(struct regmap *map)
1887{
1888 return map->write && map->format.format_val && map->format.format_reg;
1889}
1890EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1891
1892/**
1893 * regmap_get_raw_read_max - Get the maximum size we can read
1894 *
1895 * @map: Map to check.
1896 */
1897size_t regmap_get_raw_read_max(struct regmap *map)
1898{
1899 return map->max_raw_read;
1900}
1901EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1902
1903/**
1904 * regmap_get_raw_write_max - Get the maximum size we can read
1905 *
1906 * @map: Map to check.
1907 */
1908size_t regmap_get_raw_write_max(struct regmap *map)
1909{
1910 return map->max_raw_write;
1911}
1912EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1913
1914static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1915 unsigned int val)
1916{
1917 int ret;
1918 struct regmap_range_node *range;
1919 struct regmap *map = context;
1920
1921 WARN_ON(!map->format.format_write);
1922
1923 range = _regmap_range_lookup(map, reg);
1924 if (range) {
1925 ret = _regmap_select_page(map, ®, range, 1);
1926 if (ret != 0)
1927 return ret;
1928 }
1929
1930 reg += map->reg_base;
1931 reg >>= map->format.reg_downshift;
1932 map->format.format_write(map, reg, val);
1933
1934 trace_regmap_hw_write_start(map, reg, 1);
1935
1936 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1937
1938 trace_regmap_hw_write_done(map, reg, 1);
1939
1940 return ret;
1941}
1942
1943static int _regmap_bus_reg_write(void *context, unsigned int reg,
1944 unsigned int val)
1945{
1946 struct regmap *map = context;
1947
1948 return map->bus->reg_write(map->bus_context, reg, val);
1949}
1950
1951static int _regmap_bus_raw_write(void *context, unsigned int reg,
1952 unsigned int val)
1953{
1954 struct regmap *map = context;
1955
1956 WARN_ON(!map->format.format_val);
1957
1958 map->format.format_val(map->work_buf + map->format.reg_bytes
1959 + map->format.pad_bytes, val, 0);
1960 return _regmap_raw_write_impl(map, reg,
1961 map->work_buf +
1962 map->format.reg_bytes +
1963 map->format.pad_bytes,
1964 map->format.val_bytes,
1965 false);
1966}
1967
1968static inline void *_regmap_map_get_context(struct regmap *map)
1969{
1970 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1971}
1972
1973int _regmap_write(struct regmap *map, unsigned int reg,
1974 unsigned int val)
1975{
1976 int ret;
1977 void *context = _regmap_map_get_context(map);
1978
1979 if (!regmap_writeable(map, reg))
1980 return -EIO;
1981
1982 if (!map->cache_bypass && !map->defer_caching) {
1983 ret = regcache_write(map, reg, val);
1984 if (ret != 0)
1985 return ret;
1986 if (map->cache_only) {
1987 map->cache_dirty = true;
1988 return 0;
1989 }
1990 }
1991
1992 ret = map->reg_write(context, reg, val);
1993 if (ret == 0) {
1994 if (regmap_should_log(map))
1995 dev_info(map->dev, "%x <= %x\n", reg, val);
1996
1997 trace_regmap_reg_write(map, reg, val);
1998 }
1999
2000 return ret;
2001}
2002
2003/**
2004 * regmap_write() - Write a value to a single register
2005 *
2006 * @map: Register map to write to
2007 * @reg: Register to write to
2008 * @val: Value to be written
2009 *
2010 * A value of zero will be returned on success, a negative errno will
2011 * be returned in error cases.
2012 */
2013int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
2014{
2015 int ret;
2016
2017 if (!IS_ALIGNED(reg, map->reg_stride))
2018 return -EINVAL;
2019
2020 map->lock(map->lock_arg);
2021
2022 ret = _regmap_write(map, reg, val);
2023
2024 map->unlock(map->lock_arg);
2025
2026 return ret;
2027}
2028EXPORT_SYMBOL_GPL(regmap_write);
2029
2030/**
2031 * regmap_write_async() - Write a value to a single register asynchronously
2032 *
2033 * @map: Register map to write to
2034 * @reg: Register to write to
2035 * @val: Value to be written
2036 *
2037 * A value of zero will be returned on success, a negative errno will
2038 * be returned in error cases.
2039 */
2040int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2041{
2042 int ret;
2043
2044 if (!IS_ALIGNED(reg, map->reg_stride))
2045 return -EINVAL;
2046
2047 map->lock(map->lock_arg);
2048
2049 map->async = true;
2050
2051 ret = _regmap_write(map, reg, val);
2052
2053 map->async = false;
2054
2055 map->unlock(map->lock_arg);
2056
2057 return ret;
2058}
2059EXPORT_SYMBOL_GPL(regmap_write_async);
2060
2061int _regmap_raw_write(struct regmap *map, unsigned int reg,
2062 const void *val, size_t val_len, bool noinc)
2063{
2064 size_t val_bytes = map->format.val_bytes;
2065 size_t val_count = val_len / val_bytes;
2066 size_t chunk_count, chunk_bytes;
2067 size_t chunk_regs = val_count;
2068 int ret, i;
2069
2070 if (!val_count)
2071 return -EINVAL;
2072
2073 if (map->use_single_write)
2074 chunk_regs = 1;
2075 else if (map->max_raw_write && val_len > map->max_raw_write)
2076 chunk_regs = map->max_raw_write / val_bytes;
2077
2078 chunk_count = val_count / chunk_regs;
2079 chunk_bytes = chunk_regs * val_bytes;
2080
2081 /* Write as many bytes as possible with chunk_size */
2082 for (i = 0; i < chunk_count; i++) {
2083 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2084 if (ret)
2085 return ret;
2086
2087 reg += regmap_get_offset(map, chunk_regs);
2088 val += chunk_bytes;
2089 val_len -= chunk_bytes;
2090 }
2091
2092 /* Write remaining bytes */
2093 if (val_len)
2094 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2095
2096 return ret;
2097}
2098
2099/**
2100 * regmap_raw_write() - Write raw values to one or more registers
2101 *
2102 * @map: Register map to write to
2103 * @reg: Initial register to write to
2104 * @val: Block of data to be written, laid out for direct transmission to the
2105 * device
2106 * @val_len: Length of data pointed to by val.
2107 *
2108 * This function is intended to be used for things like firmware
2109 * download where a large block of data needs to be transferred to the
2110 * device. No formatting will be done on the data provided.
2111 *
2112 * A value of zero will be returned on success, a negative errno will
2113 * be returned in error cases.
2114 */
2115int regmap_raw_write(struct regmap *map, unsigned int reg,
2116 const void *val, size_t val_len)
2117{
2118 int ret;
2119
2120 if (!regmap_can_raw_write(map))
2121 return -EINVAL;
2122 if (val_len % map->format.val_bytes)
2123 return -EINVAL;
2124
2125 map->lock(map->lock_arg);
2126
2127 ret = _regmap_raw_write(map, reg, val, val_len, false);
2128
2129 map->unlock(map->lock_arg);
2130
2131 return ret;
2132}
2133EXPORT_SYMBOL_GPL(regmap_raw_write);
2134
2135/**
2136 * regmap_noinc_write(): Write data from a register without incrementing the
2137 * register number
2138 *
2139 * @map: Register map to write to
2140 * @reg: Register to write to
2141 * @val: Pointer to data buffer
2142 * @val_len: Length of output buffer in bytes.
2143 *
2144 * The regmap API usually assumes that bulk bus write operations will write a
2145 * range of registers. Some devices have certain registers for which a write
2146 * operation can write to an internal FIFO.
2147 *
2148 * The target register must be volatile but registers after it can be
2149 * completely unrelated cacheable registers.
2150 *
2151 * This will attempt multiple writes as required to write val_len bytes.
2152 *
2153 * A value of zero will be returned on success, a negative errno will be
2154 * returned in error cases.
2155 */
2156int regmap_noinc_write(struct regmap *map, unsigned int reg,
2157 const void *val, size_t val_len)
2158{
2159 size_t write_len;
2160 int ret;
2161
2162 if (!map->write)
2163 return -ENOTSUPP;
2164
2165 if (val_len % map->format.val_bytes)
2166 return -EINVAL;
2167 if (!IS_ALIGNED(reg, map->reg_stride))
2168 return -EINVAL;
2169 if (val_len == 0)
2170 return -EINVAL;
2171
2172 map->lock(map->lock_arg);
2173
2174 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2175 ret = -EINVAL;
2176 goto out_unlock;
2177 }
2178
2179 while (val_len) {
2180 if (map->max_raw_write && map->max_raw_write < val_len)
2181 write_len = map->max_raw_write;
2182 else
2183 write_len = val_len;
2184 ret = _regmap_raw_write(map, reg, val, write_len, true);
2185 if (ret)
2186 goto out_unlock;
2187 val = ((u8 *)val) + write_len;
2188 val_len -= write_len;
2189 }
2190
2191out_unlock:
2192 map->unlock(map->lock_arg);
2193 return ret;
2194}
2195EXPORT_SYMBOL_GPL(regmap_noinc_write);
2196
2197/**
2198 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2199 * register field.
2200 *
2201 * @field: Register field to write to
2202 * @mask: Bitmask to change
2203 * @val: Value to be written
2204 * @change: Boolean indicating if a write was done
2205 * @async: Boolean indicating asynchronously
2206 * @force: Boolean indicating use force update
2207 *
2208 * Perform a read/modify/write cycle on the register field with change,
2209 * async, force option.
2210 *
2211 * A value of zero will be returned on success, a negative errno will
2212 * be returned in error cases.
2213 */
2214int regmap_field_update_bits_base(struct regmap_field *field,
2215 unsigned int mask, unsigned int val,
2216 bool *change, bool async, bool force)
2217{
2218 mask = (mask << field->shift) & field->mask;
2219
2220 return regmap_update_bits_base(field->regmap, field->reg,
2221 mask, val << field->shift,
2222 change, async, force);
2223}
2224EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2225
2226/**
2227 * regmap_field_test_bits() - Check if all specified bits are set in a
2228 * register field.
2229 *
2230 * @field: Register field to operate on
2231 * @bits: Bits to test
2232 *
2233 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2234 * tested bits is not set and 1 if all tested bits are set.
2235 */
2236int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2237{
2238 unsigned int val, ret;
2239
2240 ret = regmap_field_read(field, &val);
2241 if (ret)
2242 return ret;
2243
2244 return (val & bits) == bits;
2245}
2246EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2247
2248/**
2249 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2250 * register field with port ID
2251 *
2252 * @field: Register field to write to
2253 * @id: port ID
2254 * @mask: Bitmask to change
2255 * @val: Value to be written
2256 * @change: Boolean indicating if a write was done
2257 * @async: Boolean indicating asynchronously
2258 * @force: Boolean indicating use force update
2259 *
2260 * A value of zero will be returned on success, a negative errno will
2261 * be returned in error cases.
2262 */
2263int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2264 unsigned int mask, unsigned int val,
2265 bool *change, bool async, bool force)
2266{
2267 if (id >= field->id_size)
2268 return -EINVAL;
2269
2270 mask = (mask << field->shift) & field->mask;
2271
2272 return regmap_update_bits_base(field->regmap,
2273 field->reg + (field->id_offset * id),
2274 mask, val << field->shift,
2275 change, async, force);
2276}
2277EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2278
2279/**
2280 * regmap_bulk_write() - Write multiple registers to the device
2281 *
2282 * @map: Register map to write to
2283 * @reg: First register to be write from
2284 * @val: Block of data to be written, in native register size for device
2285 * @val_count: Number of registers to write
2286 *
2287 * This function is intended to be used for writing a large block of
2288 * data to the device either in single transfer or multiple transfer.
2289 *
2290 * A value of zero will be returned on success, a negative errno will
2291 * be returned in error cases.
2292 */
2293int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2294 size_t val_count)
2295{
2296 int ret = 0, i;
2297 size_t val_bytes = map->format.val_bytes;
2298
2299 if (!IS_ALIGNED(reg, map->reg_stride))
2300 return -EINVAL;
2301
2302 /*
2303 * Some devices don't support bulk write, for them we have a series of
2304 * single write operations.
2305 */
2306 if (!map->write || !map->format.parse_inplace) {
2307 map->lock(map->lock_arg);
2308 for (i = 0; i < val_count; i++) {
2309 unsigned int ival;
2310
2311 switch (val_bytes) {
2312 case 1:
2313 ival = *(u8 *)(val + (i * val_bytes));
2314 break;
2315 case 2:
2316 ival = *(u16 *)(val + (i * val_bytes));
2317 break;
2318 case 4:
2319 ival = *(u32 *)(val + (i * val_bytes));
2320 break;
2321#ifdef CONFIG_64BIT
2322 case 8:
2323 ival = *(u64 *)(val + (i * val_bytes));
2324 break;
2325#endif
2326 default:
2327 ret = -EINVAL;
2328 goto out;
2329 }
2330
2331 ret = _regmap_write(map,
2332 reg + regmap_get_offset(map, i),
2333 ival);
2334 if (ret != 0)
2335 goto out;
2336 }
2337out:
2338 map->unlock(map->lock_arg);
2339 } else {
2340 void *wval;
2341
2342 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2343 if (!wval)
2344 return -ENOMEM;
2345
2346 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2347 map->format.parse_inplace(wval + i);
2348
2349 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2350
2351 kfree(wval);
2352 }
2353 return ret;
2354}
2355EXPORT_SYMBOL_GPL(regmap_bulk_write);
2356
2357/*
2358 * _regmap_raw_multi_reg_write()
2359 *
2360 * the (register,newvalue) pairs in regs have not been formatted, but
2361 * they are all in the same page and have been changed to being page
2362 * relative. The page register has been written if that was necessary.
2363 */
2364static int _regmap_raw_multi_reg_write(struct regmap *map,
2365 const struct reg_sequence *regs,
2366 size_t num_regs)
2367{
2368 int ret;
2369 void *buf;
2370 int i;
2371 u8 *u8;
2372 size_t val_bytes = map->format.val_bytes;
2373 size_t reg_bytes = map->format.reg_bytes;
2374 size_t pad_bytes = map->format.pad_bytes;
2375 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2376 size_t len = pair_size * num_regs;
2377
2378 if (!len)
2379 return -EINVAL;
2380
2381 buf = kzalloc(len, GFP_KERNEL);
2382 if (!buf)
2383 return -ENOMEM;
2384
2385 /* We have to linearise by hand. */
2386
2387 u8 = buf;
2388
2389 for (i = 0; i < num_regs; i++) {
2390 unsigned int reg = regs[i].reg;
2391 unsigned int val = regs[i].def;
2392 trace_regmap_hw_write_start(map, reg, 1);
2393 reg += map->reg_base;
2394 reg >>= map->format.reg_downshift;
2395 map->format.format_reg(u8, reg, map->reg_shift);
2396 u8 += reg_bytes + pad_bytes;
2397 map->format.format_val(u8, val, 0);
2398 u8 += val_bytes;
2399 }
2400 u8 = buf;
2401 *u8 |= map->write_flag_mask;
2402
2403 ret = map->write(map->bus_context, buf, len);
2404
2405 kfree(buf);
2406
2407 for (i = 0; i < num_regs; i++) {
2408 int reg = regs[i].reg;
2409 trace_regmap_hw_write_done(map, reg, 1);
2410 }
2411 return ret;
2412}
2413
2414static unsigned int _regmap_register_page(struct regmap *map,
2415 unsigned int reg,
2416 struct regmap_range_node *range)
2417{
2418 unsigned int win_page = (reg - range->range_min) / range->window_len;
2419
2420 return win_page;
2421}
2422
2423static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2424 struct reg_sequence *regs,
2425 size_t num_regs)
2426{
2427 int ret;
2428 int i, n;
2429 struct reg_sequence *base;
2430 unsigned int this_page = 0;
2431 unsigned int page_change = 0;
2432 /*
2433 * the set of registers are not neccessarily in order, but
2434 * since the order of write must be preserved this algorithm
2435 * chops the set each time the page changes. This also applies
2436 * if there is a delay required at any point in the sequence.
2437 */
2438 base = regs;
2439 for (i = 0, n = 0; i < num_regs; i++, n++) {
2440 unsigned int reg = regs[i].reg;
2441 struct regmap_range_node *range;
2442
2443 range = _regmap_range_lookup(map, reg);
2444 if (range) {
2445 unsigned int win_page = _regmap_register_page(map, reg,
2446 range);
2447
2448 if (i == 0)
2449 this_page = win_page;
2450 if (win_page != this_page) {
2451 this_page = win_page;
2452 page_change = 1;
2453 }
2454 }
2455
2456 /* If we have both a page change and a delay make sure to
2457 * write the regs and apply the delay before we change the
2458 * page.
2459 */
2460
2461 if (page_change || regs[i].delay_us) {
2462
2463 /* For situations where the first write requires
2464 * a delay we need to make sure we don't call
2465 * raw_multi_reg_write with n=0
2466 * This can't occur with page breaks as we
2467 * never write on the first iteration
2468 */
2469 if (regs[i].delay_us && i == 0)
2470 n = 1;
2471
2472 ret = _regmap_raw_multi_reg_write(map, base, n);
2473 if (ret != 0)
2474 return ret;
2475
2476 if (regs[i].delay_us) {
2477 if (map->can_sleep)
2478 fsleep(regs[i].delay_us);
2479 else
2480 udelay(regs[i].delay_us);
2481 }
2482
2483 base += n;
2484 n = 0;
2485
2486 if (page_change) {
2487 ret = _regmap_select_page(map,
2488 &base[n].reg,
2489 range, 1);
2490 if (ret != 0)
2491 return ret;
2492
2493 page_change = 0;
2494 }
2495
2496 }
2497
2498 }
2499 if (n > 0)
2500 return _regmap_raw_multi_reg_write(map, base, n);
2501 return 0;
2502}
2503
2504static int _regmap_multi_reg_write(struct regmap *map,
2505 const struct reg_sequence *regs,
2506 size_t num_regs)
2507{
2508 int i;
2509 int ret;
2510
2511 if (!map->can_multi_write) {
2512 for (i = 0; i < num_regs; i++) {
2513 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2514 if (ret != 0)
2515 return ret;
2516
2517 if (regs[i].delay_us) {
2518 if (map->can_sleep)
2519 fsleep(regs[i].delay_us);
2520 else
2521 udelay(regs[i].delay_us);
2522 }
2523 }
2524 return 0;
2525 }
2526
2527 if (!map->format.parse_inplace)
2528 return -EINVAL;
2529
2530 if (map->writeable_reg)
2531 for (i = 0; i < num_regs; i++) {
2532 int reg = regs[i].reg;
2533 if (!map->writeable_reg(map->dev, reg))
2534 return -EINVAL;
2535 if (!IS_ALIGNED(reg, map->reg_stride))
2536 return -EINVAL;
2537 }
2538
2539 if (!map->cache_bypass) {
2540 for (i = 0; i < num_regs; i++) {
2541 unsigned int val = regs[i].def;
2542 unsigned int reg = regs[i].reg;
2543 ret = regcache_write(map, reg, val);
2544 if (ret) {
2545 dev_err(map->dev,
2546 "Error in caching of register: %x ret: %d\n",
2547 reg, ret);
2548 return ret;
2549 }
2550 }
2551 if (map->cache_only) {
2552 map->cache_dirty = true;
2553 return 0;
2554 }
2555 }
2556
2557 WARN_ON(!map->bus);
2558
2559 for (i = 0; i < num_regs; i++) {
2560 unsigned int reg = regs[i].reg;
2561 struct regmap_range_node *range;
2562
2563 /* Coalesce all the writes between a page break or a delay
2564 * in a sequence
2565 */
2566 range = _regmap_range_lookup(map, reg);
2567 if (range || regs[i].delay_us) {
2568 size_t len = sizeof(struct reg_sequence)*num_regs;
2569 struct reg_sequence *base = kmemdup(regs, len,
2570 GFP_KERNEL);
2571 if (!base)
2572 return -ENOMEM;
2573 ret = _regmap_range_multi_paged_reg_write(map, base,
2574 num_regs);
2575 kfree(base);
2576
2577 return ret;
2578 }
2579 }
2580 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2581}
2582
2583/**
2584 * regmap_multi_reg_write() - Write multiple registers to the device
2585 *
2586 * @map: Register map to write to
2587 * @regs: Array of structures containing register,value to be written
2588 * @num_regs: Number of registers to write
2589 *
2590 * Write multiple registers to the device where the set of register, value
2591 * pairs are supplied in any order, possibly not all in a single range.
2592 *
2593 * The 'normal' block write mode will send ultimately send data on the
2594 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2595 * addressed. However, this alternative block multi write mode will send
2596 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2597 * must of course support the mode.
2598 *
2599 * A value of zero will be returned on success, a negative errno will be
2600 * returned in error cases.
2601 */
2602int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2603 int num_regs)
2604{
2605 int ret;
2606
2607 map->lock(map->lock_arg);
2608
2609 ret = _regmap_multi_reg_write(map, regs, num_regs);
2610
2611 map->unlock(map->lock_arg);
2612
2613 return ret;
2614}
2615EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2616
2617/**
2618 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2619 * device but not the cache
2620 *
2621 * @map: Register map to write to
2622 * @regs: Array of structures containing register,value to be written
2623 * @num_regs: Number of registers to write
2624 *
2625 * Write multiple registers to the device but not the cache where the set
2626 * of register are supplied in any order.
2627 *
2628 * This function is intended to be used for writing a large block of data
2629 * atomically to the device in single transfer for those I2C client devices
2630 * that implement this alternative block write mode.
2631 *
2632 * A value of zero will be returned on success, a negative errno will
2633 * be returned in error cases.
2634 */
2635int regmap_multi_reg_write_bypassed(struct regmap *map,
2636 const struct reg_sequence *regs,
2637 int num_regs)
2638{
2639 int ret;
2640 bool bypass;
2641
2642 map->lock(map->lock_arg);
2643
2644 bypass = map->cache_bypass;
2645 map->cache_bypass = true;
2646
2647 ret = _regmap_multi_reg_write(map, regs, num_regs);
2648
2649 map->cache_bypass = bypass;
2650
2651 map->unlock(map->lock_arg);
2652
2653 return ret;
2654}
2655EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2656
2657/**
2658 * regmap_raw_write_async() - Write raw values to one or more registers
2659 * asynchronously
2660 *
2661 * @map: Register map to write to
2662 * @reg: Initial register to write to
2663 * @val: Block of data to be written, laid out for direct transmission to the
2664 * device. Must be valid until regmap_async_complete() is called.
2665 * @val_len: Length of data pointed to by val.
2666 *
2667 * This function is intended to be used for things like firmware
2668 * download where a large block of data needs to be transferred to the
2669 * device. No formatting will be done on the data provided.
2670 *
2671 * If supported by the underlying bus the write will be scheduled
2672 * asynchronously, helping maximise I/O speed on higher speed buses
2673 * like SPI. regmap_async_complete() can be called to ensure that all
2674 * asynchrnous writes have been completed.
2675 *
2676 * A value of zero will be returned on success, a negative errno will
2677 * be returned in error cases.
2678 */
2679int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2680 const void *val, size_t val_len)
2681{
2682 int ret;
2683
2684 if (val_len % map->format.val_bytes)
2685 return -EINVAL;
2686 if (!IS_ALIGNED(reg, map->reg_stride))
2687 return -EINVAL;
2688
2689 map->lock(map->lock_arg);
2690
2691 map->async = true;
2692
2693 ret = _regmap_raw_write(map, reg, val, val_len, false);
2694
2695 map->async = false;
2696
2697 map->unlock(map->lock_arg);
2698
2699 return ret;
2700}
2701EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2702
2703static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2704 unsigned int val_len, bool noinc)
2705{
2706 struct regmap_range_node *range;
2707 int ret;
2708
2709 if (!map->read)
2710 return -EINVAL;
2711
2712 range = _regmap_range_lookup(map, reg);
2713 if (range) {
2714 ret = _regmap_select_page(map, ®, range,
2715 noinc ? 1 : val_len / map->format.val_bytes);
2716 if (ret != 0)
2717 return ret;
2718 }
2719
2720 reg += map->reg_base;
2721 reg >>= map->format.reg_downshift;
2722 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2723 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2724 map->read_flag_mask);
2725 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2726
2727 ret = map->read(map->bus_context, map->work_buf,
2728 map->format.reg_bytes + map->format.pad_bytes,
2729 val, val_len);
2730
2731 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2732
2733 return ret;
2734}
2735
2736static int _regmap_bus_reg_read(void *context, unsigned int reg,
2737 unsigned int *val)
2738{
2739 struct regmap *map = context;
2740
2741 return map->bus->reg_read(map->bus_context, reg, val);
2742}
2743
2744static int _regmap_bus_read(void *context, unsigned int reg,
2745 unsigned int *val)
2746{
2747 int ret;
2748 struct regmap *map = context;
2749 void *work_val = map->work_buf + map->format.reg_bytes +
2750 map->format.pad_bytes;
2751
2752 if (!map->format.parse_val)
2753 return -EINVAL;
2754
2755 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2756 if (ret == 0)
2757 *val = map->format.parse_val(work_val);
2758
2759 return ret;
2760}
2761
2762static int _regmap_read(struct regmap *map, unsigned int reg,
2763 unsigned int *val)
2764{
2765 int ret;
2766 void *context = _regmap_map_get_context(map);
2767
2768 if (!map->cache_bypass) {
2769 ret = regcache_read(map, reg, val);
2770 if (ret == 0)
2771 return 0;
2772 }
2773
2774 if (map->cache_only)
2775 return -EBUSY;
2776
2777 if (!regmap_readable(map, reg))
2778 return -EIO;
2779
2780 ret = map->reg_read(context, reg, val);
2781 if (ret == 0) {
2782 if (regmap_should_log(map))
2783 dev_info(map->dev, "%x => %x\n", reg, *val);
2784
2785 trace_regmap_reg_read(map, reg, *val);
2786
2787 if (!map->cache_bypass)
2788 regcache_write(map, reg, *val);
2789 }
2790
2791 return ret;
2792}
2793
2794/**
2795 * regmap_read() - Read a value from a single register
2796 *
2797 * @map: Register map to read from
2798 * @reg: Register to be read from
2799 * @val: Pointer to store read value
2800 *
2801 * A value of zero will be returned on success, a negative errno will
2802 * be returned in error cases.
2803 */
2804int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2805{
2806 int ret;
2807
2808 if (!IS_ALIGNED(reg, map->reg_stride))
2809 return -EINVAL;
2810
2811 map->lock(map->lock_arg);
2812
2813 ret = _regmap_read(map, reg, val);
2814
2815 map->unlock(map->lock_arg);
2816
2817 return ret;
2818}
2819EXPORT_SYMBOL_GPL(regmap_read);
2820
2821/**
2822 * regmap_raw_read() - Read raw data from the device
2823 *
2824 * @map: Register map to read from
2825 * @reg: First register to be read from
2826 * @val: Pointer to store read value
2827 * @val_len: Size of data to read
2828 *
2829 * A value of zero will be returned on success, a negative errno will
2830 * be returned in error cases.
2831 */
2832int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2833 size_t val_len)
2834{
2835 size_t val_bytes = map->format.val_bytes;
2836 size_t val_count = val_len / val_bytes;
2837 unsigned int v;
2838 int ret, i;
2839
2840 if (val_len % map->format.val_bytes)
2841 return -EINVAL;
2842 if (!IS_ALIGNED(reg, map->reg_stride))
2843 return -EINVAL;
2844 if (val_count == 0)
2845 return -EINVAL;
2846
2847 map->lock(map->lock_arg);
2848
2849 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2850 map->cache_type == REGCACHE_NONE) {
2851 size_t chunk_count, chunk_bytes;
2852 size_t chunk_regs = val_count;
2853
2854 if (!map->read) {
2855 ret = -ENOTSUPP;
2856 goto out;
2857 }
2858
2859 if (map->use_single_read)
2860 chunk_regs = 1;
2861 else if (map->max_raw_read && val_len > map->max_raw_read)
2862 chunk_regs = map->max_raw_read / val_bytes;
2863
2864 chunk_count = val_count / chunk_regs;
2865 chunk_bytes = chunk_regs * val_bytes;
2866
2867 /* Read bytes that fit into whole chunks */
2868 for (i = 0; i < chunk_count; i++) {
2869 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2870 if (ret != 0)
2871 goto out;
2872
2873 reg += regmap_get_offset(map, chunk_regs);
2874 val += chunk_bytes;
2875 val_len -= chunk_bytes;
2876 }
2877
2878 /* Read remaining bytes */
2879 if (val_len) {
2880 ret = _regmap_raw_read(map, reg, val, val_len, false);
2881 if (ret != 0)
2882 goto out;
2883 }
2884 } else {
2885 /* Otherwise go word by word for the cache; should be low
2886 * cost as we expect to hit the cache.
2887 */
2888 for (i = 0; i < val_count; i++) {
2889 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2890 &v);
2891 if (ret != 0)
2892 goto out;
2893
2894 map->format.format_val(val + (i * val_bytes), v, 0);
2895 }
2896 }
2897
2898 out:
2899 map->unlock(map->lock_arg);
2900
2901 return ret;
2902}
2903EXPORT_SYMBOL_GPL(regmap_raw_read);
2904
2905/**
2906 * regmap_noinc_read(): Read data from a register without incrementing the
2907 * register number
2908 *
2909 * @map: Register map to read from
2910 * @reg: Register to read from
2911 * @val: Pointer to data buffer
2912 * @val_len: Length of output buffer in bytes.
2913 *
2914 * The regmap API usually assumes that bulk read operations will read a
2915 * range of registers. Some devices have certain registers for which a read
2916 * operation read will read from an internal FIFO.
2917 *
2918 * The target register must be volatile but registers after it can be
2919 * completely unrelated cacheable registers.
2920 *
2921 * This will attempt multiple reads as required to read val_len bytes.
2922 *
2923 * A value of zero will be returned on success, a negative errno will be
2924 * returned in error cases.
2925 */
2926int regmap_noinc_read(struct regmap *map, unsigned int reg,
2927 void *val, size_t val_len)
2928{
2929 size_t read_len;
2930 int ret;
2931
2932 if (!map->read)
2933 return -ENOTSUPP;
2934
2935 if (val_len % map->format.val_bytes)
2936 return -EINVAL;
2937 if (!IS_ALIGNED(reg, map->reg_stride))
2938 return -EINVAL;
2939 if (val_len == 0)
2940 return -EINVAL;
2941
2942 map->lock(map->lock_arg);
2943
2944 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2945 ret = -EINVAL;
2946 goto out_unlock;
2947 }
2948
2949 while (val_len) {
2950 if (map->max_raw_read && map->max_raw_read < val_len)
2951 read_len = map->max_raw_read;
2952 else
2953 read_len = val_len;
2954 ret = _regmap_raw_read(map, reg, val, read_len, true);
2955 if (ret)
2956 goto out_unlock;
2957 val = ((u8 *)val) + read_len;
2958 val_len -= read_len;
2959 }
2960
2961out_unlock:
2962 map->unlock(map->lock_arg);
2963 return ret;
2964}
2965EXPORT_SYMBOL_GPL(regmap_noinc_read);
2966
2967/**
2968 * regmap_field_read(): Read a value to a single register field
2969 *
2970 * @field: Register field to read from
2971 * @val: Pointer to store read value
2972 *
2973 * A value of zero will be returned on success, a negative errno will
2974 * be returned in error cases.
2975 */
2976int regmap_field_read(struct regmap_field *field, unsigned int *val)
2977{
2978 int ret;
2979 unsigned int reg_val;
2980 ret = regmap_read(field->regmap, field->reg, ®_val);
2981 if (ret != 0)
2982 return ret;
2983
2984 reg_val &= field->mask;
2985 reg_val >>= field->shift;
2986 *val = reg_val;
2987
2988 return ret;
2989}
2990EXPORT_SYMBOL_GPL(regmap_field_read);
2991
2992/**
2993 * regmap_fields_read() - Read a value to a single register field with port ID
2994 *
2995 * @field: Register field to read from
2996 * @id: port ID
2997 * @val: Pointer to store read value
2998 *
2999 * A value of zero will be returned on success, a negative errno will
3000 * be returned in error cases.
3001 */
3002int regmap_fields_read(struct regmap_field *field, unsigned int id,
3003 unsigned int *val)
3004{
3005 int ret;
3006 unsigned int reg_val;
3007
3008 if (id >= field->id_size)
3009 return -EINVAL;
3010
3011 ret = regmap_read(field->regmap,
3012 field->reg + (field->id_offset * id),
3013 ®_val);
3014 if (ret != 0)
3015 return ret;
3016
3017 reg_val &= field->mask;
3018 reg_val >>= field->shift;
3019 *val = reg_val;
3020
3021 return ret;
3022}
3023EXPORT_SYMBOL_GPL(regmap_fields_read);
3024
3025/**
3026 * regmap_bulk_read() - Read multiple registers from the device
3027 *
3028 * @map: Register map to read from
3029 * @reg: First register to be read from
3030 * @val: Pointer to store read value, in native register size for device
3031 * @val_count: Number of registers to read
3032 *
3033 * A value of zero will be returned on success, a negative errno will
3034 * be returned in error cases.
3035 */
3036int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3037 size_t val_count)
3038{
3039 int ret, i;
3040 size_t val_bytes = map->format.val_bytes;
3041 bool vol = regmap_volatile_range(map, reg, val_count);
3042
3043 if (!IS_ALIGNED(reg, map->reg_stride))
3044 return -EINVAL;
3045 if (val_count == 0)
3046 return -EINVAL;
3047
3048 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3049 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3050 if (ret != 0)
3051 return ret;
3052
3053 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3054 map->format.parse_inplace(val + i);
3055 } else {
3056#ifdef CONFIG_64BIT
3057 u64 *u64 = val;
3058#endif
3059 u32 *u32 = val;
3060 u16 *u16 = val;
3061 u8 *u8 = val;
3062
3063 map->lock(map->lock_arg);
3064
3065 for (i = 0; i < val_count; i++) {
3066 unsigned int ival;
3067
3068 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3069 &ival);
3070 if (ret != 0)
3071 goto out;
3072
3073 switch (map->format.val_bytes) {
3074#ifdef CONFIG_64BIT
3075 case 8:
3076 u64[i] = ival;
3077 break;
3078#endif
3079 case 4:
3080 u32[i] = ival;
3081 break;
3082 case 2:
3083 u16[i] = ival;
3084 break;
3085 case 1:
3086 u8[i] = ival;
3087 break;
3088 default:
3089 ret = -EINVAL;
3090 goto out;
3091 }
3092 }
3093
3094out:
3095 map->unlock(map->lock_arg);
3096 }
3097
3098 return ret;
3099}
3100EXPORT_SYMBOL_GPL(regmap_bulk_read);
3101
3102static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3103 unsigned int mask, unsigned int val,
3104 bool *change, bool force_write)
3105{
3106 int ret;
3107 unsigned int tmp, orig;
3108
3109 if (change)
3110 *change = false;
3111
3112 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3113 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3114 if (ret == 0 && change)
3115 *change = true;
3116 } else {
3117 ret = _regmap_read(map, reg, &orig);
3118 if (ret != 0)
3119 return ret;
3120
3121 tmp = orig & ~mask;
3122 tmp |= val & mask;
3123
3124 if (force_write || (tmp != orig)) {
3125 ret = _regmap_write(map, reg, tmp);
3126 if (ret == 0 && change)
3127 *change = true;
3128 }
3129 }
3130
3131 return ret;
3132}
3133
3134/**
3135 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3136 *
3137 * @map: Register map to update
3138 * @reg: Register to update
3139 * @mask: Bitmask to change
3140 * @val: New value for bitmask
3141 * @change: Boolean indicating if a write was done
3142 * @async: Boolean indicating asynchronously
3143 * @force: Boolean indicating use force update
3144 *
3145 * Perform a read/modify/write cycle on a register map with change, async, force
3146 * options.
3147 *
3148 * If async is true:
3149 *
3150 * With most buses the read must be done synchronously so this is most useful
3151 * for devices with a cache which do not need to interact with the hardware to
3152 * determine the current register value.
3153 *
3154 * Returns zero for success, a negative number on error.
3155 */
3156int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3157 unsigned int mask, unsigned int val,
3158 bool *change, bool async, bool force)
3159{
3160 int ret;
3161
3162 map->lock(map->lock_arg);
3163
3164 map->async = async;
3165
3166 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3167
3168 map->async = false;
3169
3170 map->unlock(map->lock_arg);
3171
3172 return ret;
3173}
3174EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3175
3176/**
3177 * regmap_test_bits() - Check if all specified bits are set in a register.
3178 *
3179 * @map: Register map to operate on
3180 * @reg: Register to read from
3181 * @bits: Bits to test
3182 *
3183 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3184 * bits are set and a negative error number if the underlying regmap_read()
3185 * fails.
3186 */
3187int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3188{
3189 unsigned int val, ret;
3190
3191 ret = regmap_read(map, reg, &val);
3192 if (ret)
3193 return ret;
3194
3195 return (val & bits) == bits;
3196}
3197EXPORT_SYMBOL_GPL(regmap_test_bits);
3198
3199void regmap_async_complete_cb(struct regmap_async *async, int ret)
3200{
3201 struct regmap *map = async->map;
3202 bool wake;
3203
3204 trace_regmap_async_io_complete(map);
3205
3206 spin_lock(&map->async_lock);
3207 list_move(&async->list, &map->async_free);
3208 wake = list_empty(&map->async_list);
3209
3210 if (ret != 0)
3211 map->async_ret = ret;
3212
3213 spin_unlock(&map->async_lock);
3214
3215 if (wake)
3216 wake_up(&map->async_waitq);
3217}
3218EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3219
3220static int regmap_async_is_done(struct regmap *map)
3221{
3222 unsigned long flags;
3223 int ret;
3224
3225 spin_lock_irqsave(&map->async_lock, flags);
3226 ret = list_empty(&map->async_list);
3227 spin_unlock_irqrestore(&map->async_lock, flags);
3228
3229 return ret;
3230}
3231
3232/**
3233 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3234 *
3235 * @map: Map to operate on.
3236 *
3237 * Blocks until any pending asynchronous I/O has completed. Returns
3238 * an error code for any failed I/O operations.
3239 */
3240int regmap_async_complete(struct regmap *map)
3241{
3242 unsigned long flags;
3243 int ret;
3244
3245 /* Nothing to do with no async support */
3246 if (!map->bus || !map->bus->async_write)
3247 return 0;
3248
3249 trace_regmap_async_complete_start(map);
3250
3251 wait_event(map->async_waitq, regmap_async_is_done(map));
3252
3253 spin_lock_irqsave(&map->async_lock, flags);
3254 ret = map->async_ret;
3255 map->async_ret = 0;
3256 spin_unlock_irqrestore(&map->async_lock, flags);
3257
3258 trace_regmap_async_complete_done(map);
3259
3260 return ret;
3261}
3262EXPORT_SYMBOL_GPL(regmap_async_complete);
3263
3264/**
3265 * regmap_register_patch - Register and apply register updates to be applied
3266 * on device initialistion
3267 *
3268 * @map: Register map to apply updates to.
3269 * @regs: Values to update.
3270 * @num_regs: Number of entries in regs.
3271 *
3272 * Register a set of register updates to be applied to the device
3273 * whenever the device registers are synchronised with the cache and
3274 * apply them immediately. Typically this is used to apply
3275 * corrections to be applied to the device defaults on startup, such
3276 * as the updates some vendors provide to undocumented registers.
3277 *
3278 * The caller must ensure that this function cannot be called
3279 * concurrently with either itself or regcache_sync().
3280 */
3281int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3282 int num_regs)
3283{
3284 struct reg_sequence *p;
3285 int ret;
3286 bool bypass;
3287
3288 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3289 num_regs))
3290 return 0;
3291
3292 p = krealloc(map->patch,
3293 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3294 GFP_KERNEL);
3295 if (p) {
3296 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3297 map->patch = p;
3298 map->patch_regs += num_regs;
3299 } else {
3300 return -ENOMEM;
3301 }
3302
3303 map->lock(map->lock_arg);
3304
3305 bypass = map->cache_bypass;
3306
3307 map->cache_bypass = true;
3308 map->async = true;
3309
3310 ret = _regmap_multi_reg_write(map, regs, num_regs);
3311
3312 map->async = false;
3313 map->cache_bypass = bypass;
3314
3315 map->unlock(map->lock_arg);
3316
3317 regmap_async_complete(map);
3318
3319 return ret;
3320}
3321EXPORT_SYMBOL_GPL(regmap_register_patch);
3322
3323/**
3324 * regmap_get_val_bytes() - Report the size of a register value
3325 *
3326 * @map: Register map to operate on.
3327 *
3328 * Report the size of a register value, mainly intended to for use by
3329 * generic infrastructure built on top of regmap.
3330 */
3331int regmap_get_val_bytes(struct regmap *map)
3332{
3333 if (map->format.format_write)
3334 return -EINVAL;
3335
3336 return map->format.val_bytes;
3337}
3338EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3339
3340/**
3341 * regmap_get_max_register() - Report the max register value
3342 *
3343 * @map: Register map to operate on.
3344 *
3345 * Report the max register value, mainly intended to for use by
3346 * generic infrastructure built on top of regmap.
3347 */
3348int regmap_get_max_register(struct regmap *map)
3349{
3350 return map->max_register ? map->max_register : -EINVAL;
3351}
3352EXPORT_SYMBOL_GPL(regmap_get_max_register);
3353
3354/**
3355 * regmap_get_reg_stride() - Report the register address stride
3356 *
3357 * @map: Register map to operate on.
3358 *
3359 * Report the register address stride, mainly intended to for use by
3360 * generic infrastructure built on top of regmap.
3361 */
3362int regmap_get_reg_stride(struct regmap *map)
3363{
3364 return map->reg_stride;
3365}
3366EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3367
3368int regmap_parse_val(struct regmap *map, const void *buf,
3369 unsigned int *val)
3370{
3371 if (!map->format.parse_val)
3372 return -EINVAL;
3373
3374 *val = map->format.parse_val(buf);
3375
3376 return 0;
3377}
3378EXPORT_SYMBOL_GPL(regmap_parse_val);
3379
3380static int __init regmap_initcall(void)
3381{
3382 regmap_debugfs_initcall();
3383
3384 return 0;
3385}
3386postcore_initcall(regmap_initcall);