Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10#include <uapi/linux/sched.h>
11
12#include <asm/current.h>
13
14#include <linux/pid.h>
15#include <linux/sem.h>
16#include <linux/shm.h>
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
21#include <linux/irqflags.h>
22#include <linux/seccomp.h>
23#include <linux/nodemask.h>
24#include <linux/rcupdate.h>
25#include <linux/refcount.h>
26#include <linux/resource.h>
27#include <linux/latencytop.h>
28#include <linux/sched/prio.h>
29#include <linux/sched/types.h>
30#include <linux/signal_types.h>
31#include <linux/mm_types_task.h>
32#include <linux/task_io_accounting.h>
33#include <linux/posix-timers.h>
34#include <linux/rseq.h>
35#include <linux/seqlock.h>
36#include <linux/kcsan.h>
37
38/* task_struct member predeclarations (sorted alphabetically): */
39struct audit_context;
40struct backing_dev_info;
41struct bio_list;
42struct blk_plug;
43struct capture_control;
44struct cfs_rq;
45struct fs_struct;
46struct futex_pi_state;
47struct io_context;
48struct mempolicy;
49struct nameidata;
50struct nsproxy;
51struct perf_event_context;
52struct pid_namespace;
53struct pipe_inode_info;
54struct rcu_node;
55struct reclaim_state;
56struct robust_list_head;
57struct root_domain;
58struct rq;
59struct sched_attr;
60struct sched_param;
61struct seq_file;
62struct sighand_struct;
63struct signal_struct;
64struct task_delay_info;
65struct task_group;
66
67/*
68 * Task state bitmask. NOTE! These bits are also
69 * encoded in fs/proc/array.c: get_task_state().
70 *
71 * We have two separate sets of flags: task->state
72 * is about runnability, while task->exit_state are
73 * about the task exiting. Confusing, but this way
74 * modifying one set can't modify the other one by
75 * mistake.
76 */
77
78/* Used in tsk->state: */
79#define TASK_RUNNING 0x0000
80#define TASK_INTERRUPTIBLE 0x0001
81#define TASK_UNINTERRUPTIBLE 0x0002
82#define __TASK_STOPPED 0x0004
83#define __TASK_TRACED 0x0008
84/* Used in tsk->exit_state: */
85#define EXIT_DEAD 0x0010
86#define EXIT_ZOMBIE 0x0020
87#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
88/* Used in tsk->state again: */
89#define TASK_PARKED 0x0040
90#define TASK_DEAD 0x0080
91#define TASK_WAKEKILL 0x0100
92#define TASK_WAKING 0x0200
93#define TASK_NOLOAD 0x0400
94#define TASK_NEW 0x0800
95#define TASK_STATE_MAX 0x1000
96
97/* Convenience macros for the sake of set_current_state: */
98#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
99#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
100#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
101
102#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
103
104/* Convenience macros for the sake of wake_up(): */
105#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
106
107/* get_task_state(): */
108#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
109 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
110 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
111 TASK_PARKED)
112
113#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
114
115#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
116
117#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
118
119#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
120
121/*
122 * Special states are those that do not use the normal wait-loop pattern. See
123 * the comment with set_special_state().
124 */
125#define is_special_task_state(state) \
126 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
127
128#define __set_current_state(state_value) \
129 do { \
130 WARN_ON_ONCE(is_special_task_state(state_value));\
131 current->task_state_change = _THIS_IP_; \
132 current->state = (state_value); \
133 } while (0)
134
135#define set_current_state(state_value) \
136 do { \
137 WARN_ON_ONCE(is_special_task_state(state_value));\
138 current->task_state_change = _THIS_IP_; \
139 smp_store_mb(current->state, (state_value)); \
140 } while (0)
141
142#define set_special_state(state_value) \
143 do { \
144 unsigned long flags; /* may shadow */ \
145 WARN_ON_ONCE(!is_special_task_state(state_value)); \
146 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
147 current->task_state_change = _THIS_IP_; \
148 current->state = (state_value); \
149 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
150 } while (0)
151#else
152/*
153 * set_current_state() includes a barrier so that the write of current->state
154 * is correctly serialised wrt the caller's subsequent test of whether to
155 * actually sleep:
156 *
157 * for (;;) {
158 * set_current_state(TASK_UNINTERRUPTIBLE);
159 * if (CONDITION)
160 * break;
161 *
162 * schedule();
163 * }
164 * __set_current_state(TASK_RUNNING);
165 *
166 * If the caller does not need such serialisation (because, for instance, the
167 * CONDITION test and condition change and wakeup are under the same lock) then
168 * use __set_current_state().
169 *
170 * The above is typically ordered against the wakeup, which does:
171 *
172 * CONDITION = 1;
173 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
174 *
175 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
176 * accessing p->state.
177 *
178 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
179 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
180 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
181 *
182 * However, with slightly different timing the wakeup TASK_RUNNING store can
183 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
184 * a problem either because that will result in one extra go around the loop
185 * and our @cond test will save the day.
186 *
187 * Also see the comments of try_to_wake_up().
188 */
189#define __set_current_state(state_value) \
190 current->state = (state_value)
191
192#define set_current_state(state_value) \
193 smp_store_mb(current->state, (state_value))
194
195/*
196 * set_special_state() should be used for those states when the blocking task
197 * can not use the regular condition based wait-loop. In that case we must
198 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
199 * will not collide with our state change.
200 */
201#define set_special_state(state_value) \
202 do { \
203 unsigned long flags; /* may shadow */ \
204 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
205 current->state = (state_value); \
206 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
207 } while (0)
208
209#endif
210
211/* Task command name length: */
212#define TASK_COMM_LEN 16
213
214extern void scheduler_tick(void);
215
216#define MAX_SCHEDULE_TIMEOUT LONG_MAX
217
218extern long schedule_timeout(long timeout);
219extern long schedule_timeout_interruptible(long timeout);
220extern long schedule_timeout_killable(long timeout);
221extern long schedule_timeout_uninterruptible(long timeout);
222extern long schedule_timeout_idle(long timeout);
223asmlinkage void schedule(void);
224extern void schedule_preempt_disabled(void);
225asmlinkage void preempt_schedule_irq(void);
226
227extern int __must_check io_schedule_prepare(void);
228extern void io_schedule_finish(int token);
229extern long io_schedule_timeout(long timeout);
230extern void io_schedule(void);
231
232/**
233 * struct prev_cputime - snapshot of system and user cputime
234 * @utime: time spent in user mode
235 * @stime: time spent in system mode
236 * @lock: protects the above two fields
237 *
238 * Stores previous user/system time values such that we can guarantee
239 * monotonicity.
240 */
241struct prev_cputime {
242#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
243 u64 utime;
244 u64 stime;
245 raw_spinlock_t lock;
246#endif
247};
248
249enum vtime_state {
250 /* Task is sleeping or running in a CPU with VTIME inactive: */
251 VTIME_INACTIVE = 0,
252 /* Task is idle */
253 VTIME_IDLE,
254 /* Task runs in kernelspace in a CPU with VTIME active: */
255 VTIME_SYS,
256 /* Task runs in userspace in a CPU with VTIME active: */
257 VTIME_USER,
258 /* Task runs as guests in a CPU with VTIME active: */
259 VTIME_GUEST,
260};
261
262struct vtime {
263 seqcount_t seqcount;
264 unsigned long long starttime;
265 enum vtime_state state;
266 unsigned int cpu;
267 u64 utime;
268 u64 stime;
269 u64 gtime;
270};
271
272/*
273 * Utilization clamp constraints.
274 * @UCLAMP_MIN: Minimum utilization
275 * @UCLAMP_MAX: Maximum utilization
276 * @UCLAMP_CNT: Utilization clamp constraints count
277 */
278enum uclamp_id {
279 UCLAMP_MIN = 0,
280 UCLAMP_MAX,
281 UCLAMP_CNT
282};
283
284#ifdef CONFIG_SMP
285extern struct root_domain def_root_domain;
286extern struct mutex sched_domains_mutex;
287#endif
288
289struct sched_info {
290#ifdef CONFIG_SCHED_INFO
291 /* Cumulative counters: */
292
293 /* # of times we have run on this CPU: */
294 unsigned long pcount;
295
296 /* Time spent waiting on a runqueue: */
297 unsigned long long run_delay;
298
299 /* Timestamps: */
300
301 /* When did we last run on a CPU? */
302 unsigned long long last_arrival;
303
304 /* When were we last queued to run? */
305 unsigned long long last_queued;
306
307#endif /* CONFIG_SCHED_INFO */
308};
309
310/*
311 * Integer metrics need fixed point arithmetic, e.g., sched/fair
312 * has a few: load, load_avg, util_avg, freq, and capacity.
313 *
314 * We define a basic fixed point arithmetic range, and then formalize
315 * all these metrics based on that basic range.
316 */
317# define SCHED_FIXEDPOINT_SHIFT 10
318# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
319
320/* Increase resolution of cpu_capacity calculations */
321# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
322# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
323
324struct load_weight {
325 unsigned long weight;
326 u32 inv_weight;
327};
328
329/**
330 * struct util_est - Estimation utilization of FAIR tasks
331 * @enqueued: instantaneous estimated utilization of a task/cpu
332 * @ewma: the Exponential Weighted Moving Average (EWMA)
333 * utilization of a task
334 *
335 * Support data structure to track an Exponential Weighted Moving Average
336 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
337 * average each time a task completes an activation. Sample's weight is chosen
338 * so that the EWMA will be relatively insensitive to transient changes to the
339 * task's workload.
340 *
341 * The enqueued attribute has a slightly different meaning for tasks and cpus:
342 * - task: the task's util_avg at last task dequeue time
343 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
344 * Thus, the util_est.enqueued of a task represents the contribution on the
345 * estimated utilization of the CPU where that task is currently enqueued.
346 *
347 * Only for tasks we track a moving average of the past instantaneous
348 * estimated utilization. This allows to absorb sporadic drops in utilization
349 * of an otherwise almost periodic task.
350 */
351struct util_est {
352 unsigned int enqueued;
353 unsigned int ewma;
354#define UTIL_EST_WEIGHT_SHIFT 2
355} __attribute__((__aligned__(sizeof(u64))));
356
357/*
358 * The load/runnable/util_avg accumulates an infinite geometric series
359 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
360 *
361 * [load_avg definition]
362 *
363 * load_avg = runnable% * scale_load_down(load)
364 *
365 * [runnable_avg definition]
366 *
367 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
368 *
369 * [util_avg definition]
370 *
371 * util_avg = running% * SCHED_CAPACITY_SCALE
372 *
373 * where runnable% is the time ratio that a sched_entity is runnable and
374 * running% the time ratio that a sched_entity is running.
375 *
376 * For cfs_rq, they are the aggregated values of all runnable and blocked
377 * sched_entities.
378 *
379 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
380 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
381 * for computing those signals (see update_rq_clock_pelt())
382 *
383 * N.B., the above ratios (runnable% and running%) themselves are in the
384 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
385 * to as large a range as necessary. This is for example reflected by
386 * util_avg's SCHED_CAPACITY_SCALE.
387 *
388 * [Overflow issue]
389 *
390 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
391 * with the highest load (=88761), always runnable on a single cfs_rq,
392 * and should not overflow as the number already hits PID_MAX_LIMIT.
393 *
394 * For all other cases (including 32-bit kernels), struct load_weight's
395 * weight will overflow first before we do, because:
396 *
397 * Max(load_avg) <= Max(load.weight)
398 *
399 * Then it is the load_weight's responsibility to consider overflow
400 * issues.
401 */
402struct sched_avg {
403 u64 last_update_time;
404 u64 load_sum;
405 u64 runnable_sum;
406 u32 util_sum;
407 u32 period_contrib;
408 unsigned long load_avg;
409 unsigned long runnable_avg;
410 unsigned long util_avg;
411 struct util_est util_est;
412} ____cacheline_aligned;
413
414struct sched_statistics {
415#ifdef CONFIG_SCHEDSTATS
416 u64 wait_start;
417 u64 wait_max;
418 u64 wait_count;
419 u64 wait_sum;
420 u64 iowait_count;
421 u64 iowait_sum;
422
423 u64 sleep_start;
424 u64 sleep_max;
425 s64 sum_sleep_runtime;
426
427 u64 block_start;
428 u64 block_max;
429 u64 exec_max;
430 u64 slice_max;
431
432 u64 nr_migrations_cold;
433 u64 nr_failed_migrations_affine;
434 u64 nr_failed_migrations_running;
435 u64 nr_failed_migrations_hot;
436 u64 nr_forced_migrations;
437
438 u64 nr_wakeups;
439 u64 nr_wakeups_sync;
440 u64 nr_wakeups_migrate;
441 u64 nr_wakeups_local;
442 u64 nr_wakeups_remote;
443 u64 nr_wakeups_affine;
444 u64 nr_wakeups_affine_attempts;
445 u64 nr_wakeups_passive;
446 u64 nr_wakeups_idle;
447#endif
448};
449
450struct sched_entity {
451 /* For load-balancing: */
452 struct load_weight load;
453 struct rb_node run_node;
454 struct list_head group_node;
455 unsigned int on_rq;
456
457 u64 exec_start;
458 u64 sum_exec_runtime;
459 u64 vruntime;
460 u64 prev_sum_exec_runtime;
461
462 u64 nr_migrations;
463
464 struct sched_statistics statistics;
465
466#ifdef CONFIG_FAIR_GROUP_SCHED
467 int depth;
468 struct sched_entity *parent;
469 /* rq on which this entity is (to be) queued: */
470 struct cfs_rq *cfs_rq;
471 /* rq "owned" by this entity/group: */
472 struct cfs_rq *my_q;
473 /* cached value of my_q->h_nr_running */
474 unsigned long runnable_weight;
475#endif
476
477#ifdef CONFIG_SMP
478 /*
479 * Per entity load average tracking.
480 *
481 * Put into separate cache line so it does not
482 * collide with read-mostly values above.
483 */
484 struct sched_avg avg;
485#endif
486};
487
488struct sched_rt_entity {
489 struct list_head run_list;
490 unsigned long timeout;
491 unsigned long watchdog_stamp;
492 unsigned int time_slice;
493 unsigned short on_rq;
494 unsigned short on_list;
495
496 struct sched_rt_entity *back;
497#ifdef CONFIG_RT_GROUP_SCHED
498 struct sched_rt_entity *parent;
499 /* rq on which this entity is (to be) queued: */
500 struct rt_rq *rt_rq;
501 /* rq "owned" by this entity/group: */
502 struct rt_rq *my_q;
503#endif
504} __randomize_layout;
505
506struct sched_dl_entity {
507 struct rb_node rb_node;
508
509 /*
510 * Original scheduling parameters. Copied here from sched_attr
511 * during sched_setattr(), they will remain the same until
512 * the next sched_setattr().
513 */
514 u64 dl_runtime; /* Maximum runtime for each instance */
515 u64 dl_deadline; /* Relative deadline of each instance */
516 u64 dl_period; /* Separation of two instances (period) */
517 u64 dl_bw; /* dl_runtime / dl_period */
518 u64 dl_density; /* dl_runtime / dl_deadline */
519
520 /*
521 * Actual scheduling parameters. Initialized with the values above,
522 * they are continuously updated during task execution. Note that
523 * the remaining runtime could be < 0 in case we are in overrun.
524 */
525 s64 runtime; /* Remaining runtime for this instance */
526 u64 deadline; /* Absolute deadline for this instance */
527 unsigned int flags; /* Specifying the scheduler behaviour */
528
529 /*
530 * Some bool flags:
531 *
532 * @dl_throttled tells if we exhausted the runtime. If so, the
533 * task has to wait for a replenishment to be performed at the
534 * next firing of dl_timer.
535 *
536 * @dl_boosted tells if we are boosted due to DI. If so we are
537 * outside bandwidth enforcement mechanism (but only until we
538 * exit the critical section);
539 *
540 * @dl_yielded tells if task gave up the CPU before consuming
541 * all its available runtime during the last job.
542 *
543 * @dl_non_contending tells if the task is inactive while still
544 * contributing to the active utilization. In other words, it
545 * indicates if the inactive timer has been armed and its handler
546 * has not been executed yet. This flag is useful to avoid race
547 * conditions between the inactive timer handler and the wakeup
548 * code.
549 *
550 * @dl_overrun tells if the task asked to be informed about runtime
551 * overruns.
552 */
553 unsigned int dl_throttled : 1;
554 unsigned int dl_boosted : 1;
555 unsigned int dl_yielded : 1;
556 unsigned int dl_non_contending : 1;
557 unsigned int dl_overrun : 1;
558
559 /*
560 * Bandwidth enforcement timer. Each -deadline task has its
561 * own bandwidth to be enforced, thus we need one timer per task.
562 */
563 struct hrtimer dl_timer;
564
565 /*
566 * Inactive timer, responsible for decreasing the active utilization
567 * at the "0-lag time". When a -deadline task blocks, it contributes
568 * to GRUB's active utilization until the "0-lag time", hence a
569 * timer is needed to decrease the active utilization at the correct
570 * time.
571 */
572 struct hrtimer inactive_timer;
573};
574
575#ifdef CONFIG_UCLAMP_TASK
576/* Number of utilization clamp buckets (shorter alias) */
577#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
578
579/*
580 * Utilization clamp for a scheduling entity
581 * @value: clamp value "assigned" to a se
582 * @bucket_id: bucket index corresponding to the "assigned" value
583 * @active: the se is currently refcounted in a rq's bucket
584 * @user_defined: the requested clamp value comes from user-space
585 *
586 * The bucket_id is the index of the clamp bucket matching the clamp value
587 * which is pre-computed and stored to avoid expensive integer divisions from
588 * the fast path.
589 *
590 * The active bit is set whenever a task has got an "effective" value assigned,
591 * which can be different from the clamp value "requested" from user-space.
592 * This allows to know a task is refcounted in the rq's bucket corresponding
593 * to the "effective" bucket_id.
594 *
595 * The user_defined bit is set whenever a task has got a task-specific clamp
596 * value requested from userspace, i.e. the system defaults apply to this task
597 * just as a restriction. This allows to relax default clamps when a less
598 * restrictive task-specific value has been requested, thus allowing to
599 * implement a "nice" semantic. For example, a task running with a 20%
600 * default boost can still drop its own boosting to 0%.
601 */
602struct uclamp_se {
603 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
604 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
605 unsigned int active : 1;
606 unsigned int user_defined : 1;
607};
608#endif /* CONFIG_UCLAMP_TASK */
609
610union rcu_special {
611 struct {
612 u8 blocked;
613 u8 need_qs;
614 u8 exp_hint; /* Hint for performance. */
615 u8 need_mb; /* Readers need smp_mb(). */
616 } b; /* Bits. */
617 u32 s; /* Set of bits. */
618};
619
620enum perf_event_task_context {
621 perf_invalid_context = -1,
622 perf_hw_context = 0,
623 perf_sw_context,
624 perf_nr_task_contexts,
625};
626
627struct wake_q_node {
628 struct wake_q_node *next;
629};
630
631struct task_struct {
632#ifdef CONFIG_THREAD_INFO_IN_TASK
633 /*
634 * For reasons of header soup (see current_thread_info()), this
635 * must be the first element of task_struct.
636 */
637 struct thread_info thread_info;
638#endif
639 /* -1 unrunnable, 0 runnable, >0 stopped: */
640 volatile long state;
641
642 /*
643 * This begins the randomizable portion of task_struct. Only
644 * scheduling-critical items should be added above here.
645 */
646 randomized_struct_fields_start
647
648 void *stack;
649 refcount_t usage;
650 /* Per task flags (PF_*), defined further below: */
651 unsigned int flags;
652 unsigned int ptrace;
653
654#ifdef CONFIG_SMP
655 int on_cpu;
656 struct __call_single_node wake_entry;
657#ifdef CONFIG_THREAD_INFO_IN_TASK
658 /* Current CPU: */
659 unsigned int cpu;
660#endif
661 unsigned int wakee_flips;
662 unsigned long wakee_flip_decay_ts;
663 struct task_struct *last_wakee;
664
665 /*
666 * recent_used_cpu is initially set as the last CPU used by a task
667 * that wakes affine another task. Waker/wakee relationships can
668 * push tasks around a CPU where each wakeup moves to the next one.
669 * Tracking a recently used CPU allows a quick search for a recently
670 * used CPU that may be idle.
671 */
672 int recent_used_cpu;
673 int wake_cpu;
674#endif
675 int on_rq;
676
677 int prio;
678 int static_prio;
679 int normal_prio;
680 unsigned int rt_priority;
681
682 const struct sched_class *sched_class;
683 struct sched_entity se;
684 struct sched_rt_entity rt;
685#ifdef CONFIG_CGROUP_SCHED
686 struct task_group *sched_task_group;
687#endif
688 struct sched_dl_entity dl;
689
690#ifdef CONFIG_UCLAMP_TASK
691 /*
692 * Clamp values requested for a scheduling entity.
693 * Must be updated with task_rq_lock() held.
694 */
695 struct uclamp_se uclamp_req[UCLAMP_CNT];
696 /*
697 * Effective clamp values used for a scheduling entity.
698 * Must be updated with task_rq_lock() held.
699 */
700 struct uclamp_se uclamp[UCLAMP_CNT];
701#endif
702
703#ifdef CONFIG_PREEMPT_NOTIFIERS
704 /* List of struct preempt_notifier: */
705 struct hlist_head preempt_notifiers;
706#endif
707
708#ifdef CONFIG_BLK_DEV_IO_TRACE
709 unsigned int btrace_seq;
710#endif
711
712 unsigned int policy;
713 int nr_cpus_allowed;
714 const cpumask_t *cpus_ptr;
715 cpumask_t cpus_mask;
716
717#ifdef CONFIG_PREEMPT_RCU
718 int rcu_read_lock_nesting;
719 union rcu_special rcu_read_unlock_special;
720 struct list_head rcu_node_entry;
721 struct rcu_node *rcu_blocked_node;
722#endif /* #ifdef CONFIG_PREEMPT_RCU */
723
724#ifdef CONFIG_TASKS_RCU
725 unsigned long rcu_tasks_nvcsw;
726 u8 rcu_tasks_holdout;
727 u8 rcu_tasks_idx;
728 int rcu_tasks_idle_cpu;
729 struct list_head rcu_tasks_holdout_list;
730#endif /* #ifdef CONFIG_TASKS_RCU */
731
732#ifdef CONFIG_TASKS_TRACE_RCU
733 int trc_reader_nesting;
734 int trc_ipi_to_cpu;
735 union rcu_special trc_reader_special;
736 bool trc_reader_checked;
737 struct list_head trc_holdout_list;
738#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
739
740 struct sched_info sched_info;
741
742 struct list_head tasks;
743#ifdef CONFIG_SMP
744 struct plist_node pushable_tasks;
745 struct rb_node pushable_dl_tasks;
746#endif
747
748 struct mm_struct *mm;
749 struct mm_struct *active_mm;
750
751 /* Per-thread vma caching: */
752 struct vmacache vmacache;
753
754#ifdef SPLIT_RSS_COUNTING
755 struct task_rss_stat rss_stat;
756#endif
757 int exit_state;
758 int exit_code;
759 int exit_signal;
760 /* The signal sent when the parent dies: */
761 int pdeath_signal;
762 /* JOBCTL_*, siglock protected: */
763 unsigned long jobctl;
764
765 /* Used for emulating ABI behavior of previous Linux versions: */
766 unsigned int personality;
767
768 /* Scheduler bits, serialized by scheduler locks: */
769 unsigned sched_reset_on_fork:1;
770 unsigned sched_contributes_to_load:1;
771 unsigned sched_migrated:1;
772 unsigned sched_remote_wakeup:1;
773#ifdef CONFIG_PSI
774 unsigned sched_psi_wake_requeue:1;
775#endif
776
777 /* Force alignment to the next boundary: */
778 unsigned :0;
779
780 /* Unserialized, strictly 'current' */
781
782 /* Bit to tell LSMs we're in execve(): */
783 unsigned in_execve:1;
784 unsigned in_iowait:1;
785#ifndef TIF_RESTORE_SIGMASK
786 unsigned restore_sigmask:1;
787#endif
788#ifdef CONFIG_MEMCG
789 unsigned in_user_fault:1;
790#endif
791#ifdef CONFIG_COMPAT_BRK
792 unsigned brk_randomized:1;
793#endif
794#ifdef CONFIG_CGROUPS
795 /* disallow userland-initiated cgroup migration */
796 unsigned no_cgroup_migration:1;
797 /* task is frozen/stopped (used by the cgroup freezer) */
798 unsigned frozen:1;
799#endif
800#ifdef CONFIG_BLK_CGROUP
801 unsigned use_memdelay:1;
802#endif
803#ifdef CONFIG_PSI
804 /* Stalled due to lack of memory */
805 unsigned in_memstall:1;
806#endif
807
808 unsigned long atomic_flags; /* Flags requiring atomic access. */
809
810 struct restart_block restart_block;
811
812 pid_t pid;
813 pid_t tgid;
814
815#ifdef CONFIG_STACKPROTECTOR
816 /* Canary value for the -fstack-protector GCC feature: */
817 unsigned long stack_canary;
818#endif
819 /*
820 * Pointers to the (original) parent process, youngest child, younger sibling,
821 * older sibling, respectively. (p->father can be replaced with
822 * p->real_parent->pid)
823 */
824
825 /* Real parent process: */
826 struct task_struct __rcu *real_parent;
827
828 /* Recipient of SIGCHLD, wait4() reports: */
829 struct task_struct __rcu *parent;
830
831 /*
832 * Children/sibling form the list of natural children:
833 */
834 struct list_head children;
835 struct list_head sibling;
836 struct task_struct *group_leader;
837
838 /*
839 * 'ptraced' is the list of tasks this task is using ptrace() on.
840 *
841 * This includes both natural children and PTRACE_ATTACH targets.
842 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
843 */
844 struct list_head ptraced;
845 struct list_head ptrace_entry;
846
847 /* PID/PID hash table linkage. */
848 struct pid *thread_pid;
849 struct hlist_node pid_links[PIDTYPE_MAX];
850 struct list_head thread_group;
851 struct list_head thread_node;
852
853 struct completion *vfork_done;
854
855 /* CLONE_CHILD_SETTID: */
856 int __user *set_child_tid;
857
858 /* CLONE_CHILD_CLEARTID: */
859 int __user *clear_child_tid;
860
861 u64 utime;
862 u64 stime;
863#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
864 u64 utimescaled;
865 u64 stimescaled;
866#endif
867 u64 gtime;
868 struct prev_cputime prev_cputime;
869#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
870 struct vtime vtime;
871#endif
872
873#ifdef CONFIG_NO_HZ_FULL
874 atomic_t tick_dep_mask;
875#endif
876 /* Context switch counts: */
877 unsigned long nvcsw;
878 unsigned long nivcsw;
879
880 /* Monotonic time in nsecs: */
881 u64 start_time;
882
883 /* Boot based time in nsecs: */
884 u64 start_boottime;
885
886 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
887 unsigned long min_flt;
888 unsigned long maj_flt;
889
890 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
891 struct posix_cputimers posix_cputimers;
892
893#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
894 struct posix_cputimers_work posix_cputimers_work;
895#endif
896
897 /* Process credentials: */
898
899 /* Tracer's credentials at attach: */
900 const struct cred __rcu *ptracer_cred;
901
902 /* Objective and real subjective task credentials (COW): */
903 const struct cred __rcu *real_cred;
904
905 /* Effective (overridable) subjective task credentials (COW): */
906 const struct cred __rcu *cred;
907
908#ifdef CONFIG_KEYS
909 /* Cached requested key. */
910 struct key *cached_requested_key;
911#endif
912
913 /*
914 * executable name, excluding path.
915 *
916 * - normally initialized setup_new_exec()
917 * - access it with [gs]et_task_comm()
918 * - lock it with task_lock()
919 */
920 char comm[TASK_COMM_LEN];
921
922 struct nameidata *nameidata;
923
924#ifdef CONFIG_SYSVIPC
925 struct sysv_sem sysvsem;
926 struct sysv_shm sysvshm;
927#endif
928#ifdef CONFIG_DETECT_HUNG_TASK
929 unsigned long last_switch_count;
930 unsigned long last_switch_time;
931#endif
932 /* Filesystem information: */
933 struct fs_struct *fs;
934
935 /* Open file information: */
936 struct files_struct *files;
937
938 /* Namespaces: */
939 struct nsproxy *nsproxy;
940
941 /* Signal handlers: */
942 struct signal_struct *signal;
943 struct sighand_struct __rcu *sighand;
944 sigset_t blocked;
945 sigset_t real_blocked;
946 /* Restored if set_restore_sigmask() was used: */
947 sigset_t saved_sigmask;
948 struct sigpending pending;
949 unsigned long sas_ss_sp;
950 size_t sas_ss_size;
951 unsigned int sas_ss_flags;
952
953 struct callback_head *task_works;
954
955#ifdef CONFIG_AUDIT
956#ifdef CONFIG_AUDITSYSCALL
957 struct audit_context *audit_context;
958#endif
959 kuid_t loginuid;
960 unsigned int sessionid;
961#endif
962 struct seccomp seccomp;
963
964 /* Thread group tracking: */
965 u64 parent_exec_id;
966 u64 self_exec_id;
967
968 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
969 spinlock_t alloc_lock;
970
971 /* Protection of the PI data structures: */
972 raw_spinlock_t pi_lock;
973
974 struct wake_q_node wake_q;
975
976#ifdef CONFIG_RT_MUTEXES
977 /* PI waiters blocked on a rt_mutex held by this task: */
978 struct rb_root_cached pi_waiters;
979 /* Updated under owner's pi_lock and rq lock */
980 struct task_struct *pi_top_task;
981 /* Deadlock detection and priority inheritance handling: */
982 struct rt_mutex_waiter *pi_blocked_on;
983#endif
984
985#ifdef CONFIG_DEBUG_MUTEXES
986 /* Mutex deadlock detection: */
987 struct mutex_waiter *blocked_on;
988#endif
989
990#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
991 int non_block_count;
992#endif
993
994#ifdef CONFIG_TRACE_IRQFLAGS
995 struct irqtrace_events irqtrace;
996 unsigned int hardirq_threaded;
997 u64 hardirq_chain_key;
998 int softirqs_enabled;
999 int softirq_context;
1000 int irq_config;
1001#endif
1002
1003#ifdef CONFIG_LOCKDEP
1004# define MAX_LOCK_DEPTH 48UL
1005 u64 curr_chain_key;
1006 int lockdep_depth;
1007 unsigned int lockdep_recursion;
1008 struct held_lock held_locks[MAX_LOCK_DEPTH];
1009#endif
1010
1011#ifdef CONFIG_UBSAN
1012 unsigned int in_ubsan;
1013#endif
1014
1015 /* Journalling filesystem info: */
1016 void *journal_info;
1017
1018 /* Stacked block device info: */
1019 struct bio_list *bio_list;
1020
1021#ifdef CONFIG_BLOCK
1022 /* Stack plugging: */
1023 struct blk_plug *plug;
1024#endif
1025
1026 /* VM state: */
1027 struct reclaim_state *reclaim_state;
1028
1029 struct backing_dev_info *backing_dev_info;
1030
1031 struct io_context *io_context;
1032
1033#ifdef CONFIG_COMPACTION
1034 struct capture_control *capture_control;
1035#endif
1036 /* Ptrace state: */
1037 unsigned long ptrace_message;
1038 kernel_siginfo_t *last_siginfo;
1039
1040 struct task_io_accounting ioac;
1041#ifdef CONFIG_PSI
1042 /* Pressure stall state */
1043 unsigned int psi_flags;
1044#endif
1045#ifdef CONFIG_TASK_XACCT
1046 /* Accumulated RSS usage: */
1047 u64 acct_rss_mem1;
1048 /* Accumulated virtual memory usage: */
1049 u64 acct_vm_mem1;
1050 /* stime + utime since last update: */
1051 u64 acct_timexpd;
1052#endif
1053#ifdef CONFIG_CPUSETS
1054 /* Protected by ->alloc_lock: */
1055 nodemask_t mems_allowed;
1056 /* Seqence number to catch updates: */
1057 seqcount_spinlock_t mems_allowed_seq;
1058 int cpuset_mem_spread_rotor;
1059 int cpuset_slab_spread_rotor;
1060#endif
1061#ifdef CONFIG_CGROUPS
1062 /* Control Group info protected by css_set_lock: */
1063 struct css_set __rcu *cgroups;
1064 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1065 struct list_head cg_list;
1066#endif
1067#ifdef CONFIG_X86_CPU_RESCTRL
1068 u32 closid;
1069 u32 rmid;
1070#endif
1071#ifdef CONFIG_FUTEX
1072 struct robust_list_head __user *robust_list;
1073#ifdef CONFIG_COMPAT
1074 struct compat_robust_list_head __user *compat_robust_list;
1075#endif
1076 struct list_head pi_state_list;
1077 struct futex_pi_state *pi_state_cache;
1078 struct mutex futex_exit_mutex;
1079 unsigned int futex_state;
1080#endif
1081#ifdef CONFIG_PERF_EVENTS
1082 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1083 struct mutex perf_event_mutex;
1084 struct list_head perf_event_list;
1085#endif
1086#ifdef CONFIG_DEBUG_PREEMPT
1087 unsigned long preempt_disable_ip;
1088#endif
1089#ifdef CONFIG_NUMA
1090 /* Protected by alloc_lock: */
1091 struct mempolicy *mempolicy;
1092 short il_prev;
1093 short pref_node_fork;
1094#endif
1095#ifdef CONFIG_NUMA_BALANCING
1096 int numa_scan_seq;
1097 unsigned int numa_scan_period;
1098 unsigned int numa_scan_period_max;
1099 int numa_preferred_nid;
1100 unsigned long numa_migrate_retry;
1101 /* Migration stamp: */
1102 u64 node_stamp;
1103 u64 last_task_numa_placement;
1104 u64 last_sum_exec_runtime;
1105 struct callback_head numa_work;
1106
1107 /*
1108 * This pointer is only modified for current in syscall and
1109 * pagefault context (and for tasks being destroyed), so it can be read
1110 * from any of the following contexts:
1111 * - RCU read-side critical section
1112 * - current->numa_group from everywhere
1113 * - task's runqueue locked, task not running
1114 */
1115 struct numa_group __rcu *numa_group;
1116
1117 /*
1118 * numa_faults is an array split into four regions:
1119 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1120 * in this precise order.
1121 *
1122 * faults_memory: Exponential decaying average of faults on a per-node
1123 * basis. Scheduling placement decisions are made based on these
1124 * counts. The values remain static for the duration of a PTE scan.
1125 * faults_cpu: Track the nodes the process was running on when a NUMA
1126 * hinting fault was incurred.
1127 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1128 * during the current scan window. When the scan completes, the counts
1129 * in faults_memory and faults_cpu decay and these values are copied.
1130 */
1131 unsigned long *numa_faults;
1132 unsigned long total_numa_faults;
1133
1134 /*
1135 * numa_faults_locality tracks if faults recorded during the last
1136 * scan window were remote/local or failed to migrate. The task scan
1137 * period is adapted based on the locality of the faults with different
1138 * weights depending on whether they were shared or private faults
1139 */
1140 unsigned long numa_faults_locality[3];
1141
1142 unsigned long numa_pages_migrated;
1143#endif /* CONFIG_NUMA_BALANCING */
1144
1145#ifdef CONFIG_RSEQ
1146 struct rseq __user *rseq;
1147 u32 rseq_sig;
1148 /*
1149 * RmW on rseq_event_mask must be performed atomically
1150 * with respect to preemption.
1151 */
1152 unsigned long rseq_event_mask;
1153#endif
1154
1155 struct tlbflush_unmap_batch tlb_ubc;
1156
1157 union {
1158 refcount_t rcu_users;
1159 struct rcu_head rcu;
1160 };
1161
1162 /* Cache last used pipe for splice(): */
1163 struct pipe_inode_info *splice_pipe;
1164
1165 struct page_frag task_frag;
1166
1167#ifdef CONFIG_TASK_DELAY_ACCT
1168 struct task_delay_info *delays;
1169#endif
1170
1171#ifdef CONFIG_FAULT_INJECTION
1172 int make_it_fail;
1173 unsigned int fail_nth;
1174#endif
1175 /*
1176 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1177 * balance_dirty_pages() for a dirty throttling pause:
1178 */
1179 int nr_dirtied;
1180 int nr_dirtied_pause;
1181 /* Start of a write-and-pause period: */
1182 unsigned long dirty_paused_when;
1183
1184#ifdef CONFIG_LATENCYTOP
1185 int latency_record_count;
1186 struct latency_record latency_record[LT_SAVECOUNT];
1187#endif
1188 /*
1189 * Time slack values; these are used to round up poll() and
1190 * select() etc timeout values. These are in nanoseconds.
1191 */
1192 u64 timer_slack_ns;
1193 u64 default_timer_slack_ns;
1194
1195#ifdef CONFIG_KASAN
1196 unsigned int kasan_depth;
1197#endif
1198
1199#ifdef CONFIG_KCSAN
1200 struct kcsan_ctx kcsan_ctx;
1201#ifdef CONFIG_TRACE_IRQFLAGS
1202 struct irqtrace_events kcsan_save_irqtrace;
1203#endif
1204#endif
1205
1206#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1207 /* Index of current stored address in ret_stack: */
1208 int curr_ret_stack;
1209 int curr_ret_depth;
1210
1211 /* Stack of return addresses for return function tracing: */
1212 struct ftrace_ret_stack *ret_stack;
1213
1214 /* Timestamp for last schedule: */
1215 unsigned long long ftrace_timestamp;
1216
1217 /*
1218 * Number of functions that haven't been traced
1219 * because of depth overrun:
1220 */
1221 atomic_t trace_overrun;
1222
1223 /* Pause tracing: */
1224 atomic_t tracing_graph_pause;
1225#endif
1226
1227#ifdef CONFIG_TRACING
1228 /* State flags for use by tracers: */
1229 unsigned long trace;
1230
1231 /* Bitmask and counter of trace recursion: */
1232 unsigned long trace_recursion;
1233#endif /* CONFIG_TRACING */
1234
1235#ifdef CONFIG_KCOV
1236 /* See kernel/kcov.c for more details. */
1237
1238 /* Coverage collection mode enabled for this task (0 if disabled): */
1239 unsigned int kcov_mode;
1240
1241 /* Size of the kcov_area: */
1242 unsigned int kcov_size;
1243
1244 /* Buffer for coverage collection: */
1245 void *kcov_area;
1246
1247 /* KCOV descriptor wired with this task or NULL: */
1248 struct kcov *kcov;
1249
1250 /* KCOV common handle for remote coverage collection: */
1251 u64 kcov_handle;
1252
1253 /* KCOV sequence number: */
1254 int kcov_sequence;
1255
1256 /* Collect coverage from softirq context: */
1257 unsigned int kcov_softirq;
1258#endif
1259
1260#ifdef CONFIG_MEMCG
1261 struct mem_cgroup *memcg_in_oom;
1262 gfp_t memcg_oom_gfp_mask;
1263 int memcg_oom_order;
1264
1265 /* Number of pages to reclaim on returning to userland: */
1266 unsigned int memcg_nr_pages_over_high;
1267
1268 /* Used by memcontrol for targeted memcg charge: */
1269 struct mem_cgroup *active_memcg;
1270#endif
1271
1272#ifdef CONFIG_BLK_CGROUP
1273 struct request_queue *throttle_queue;
1274#endif
1275
1276#ifdef CONFIG_UPROBES
1277 struct uprobe_task *utask;
1278#endif
1279#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1280 unsigned int sequential_io;
1281 unsigned int sequential_io_avg;
1282#endif
1283#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1284 unsigned long task_state_change;
1285#endif
1286 int pagefault_disabled;
1287#ifdef CONFIG_MMU
1288 struct task_struct *oom_reaper_list;
1289#endif
1290#ifdef CONFIG_VMAP_STACK
1291 struct vm_struct *stack_vm_area;
1292#endif
1293#ifdef CONFIG_THREAD_INFO_IN_TASK
1294 /* A live task holds one reference: */
1295 refcount_t stack_refcount;
1296#endif
1297#ifdef CONFIG_LIVEPATCH
1298 int patch_state;
1299#endif
1300#ifdef CONFIG_SECURITY
1301 /* Used by LSM modules for access restriction: */
1302 void *security;
1303#endif
1304
1305#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1306 unsigned long lowest_stack;
1307 unsigned long prev_lowest_stack;
1308#endif
1309
1310#ifdef CONFIG_X86_MCE
1311 u64 mce_addr;
1312 __u64 mce_ripv : 1,
1313 mce_whole_page : 1,
1314 __mce_reserved : 62;
1315 struct callback_head mce_kill_me;
1316#endif
1317
1318 /*
1319 * New fields for task_struct should be added above here, so that
1320 * they are included in the randomized portion of task_struct.
1321 */
1322 randomized_struct_fields_end
1323
1324 /* CPU-specific state of this task: */
1325 struct thread_struct thread;
1326
1327 /*
1328 * WARNING: on x86, 'thread_struct' contains a variable-sized
1329 * structure. It *MUST* be at the end of 'task_struct'.
1330 *
1331 * Do not put anything below here!
1332 */
1333};
1334
1335static inline struct pid *task_pid(struct task_struct *task)
1336{
1337 return task->thread_pid;
1338}
1339
1340/*
1341 * the helpers to get the task's different pids as they are seen
1342 * from various namespaces
1343 *
1344 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1345 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1346 * current.
1347 * task_xid_nr_ns() : id seen from the ns specified;
1348 *
1349 * see also pid_nr() etc in include/linux/pid.h
1350 */
1351pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1352
1353static inline pid_t task_pid_nr(struct task_struct *tsk)
1354{
1355 return tsk->pid;
1356}
1357
1358static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1359{
1360 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1361}
1362
1363static inline pid_t task_pid_vnr(struct task_struct *tsk)
1364{
1365 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1366}
1367
1368
1369static inline pid_t task_tgid_nr(struct task_struct *tsk)
1370{
1371 return tsk->tgid;
1372}
1373
1374/**
1375 * pid_alive - check that a task structure is not stale
1376 * @p: Task structure to be checked.
1377 *
1378 * Test if a process is not yet dead (at most zombie state)
1379 * If pid_alive fails, then pointers within the task structure
1380 * can be stale and must not be dereferenced.
1381 *
1382 * Return: 1 if the process is alive. 0 otherwise.
1383 */
1384static inline int pid_alive(const struct task_struct *p)
1385{
1386 return p->thread_pid != NULL;
1387}
1388
1389static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1390{
1391 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1392}
1393
1394static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1395{
1396 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1397}
1398
1399
1400static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1401{
1402 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1403}
1404
1405static inline pid_t task_session_vnr(struct task_struct *tsk)
1406{
1407 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1408}
1409
1410static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1411{
1412 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1413}
1414
1415static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1416{
1417 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1418}
1419
1420static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1421{
1422 pid_t pid = 0;
1423
1424 rcu_read_lock();
1425 if (pid_alive(tsk))
1426 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1427 rcu_read_unlock();
1428
1429 return pid;
1430}
1431
1432static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1433{
1434 return task_ppid_nr_ns(tsk, &init_pid_ns);
1435}
1436
1437/* Obsolete, do not use: */
1438static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1439{
1440 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1441}
1442
1443#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1444#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1445
1446static inline unsigned int task_state_index(struct task_struct *tsk)
1447{
1448 unsigned int tsk_state = READ_ONCE(tsk->state);
1449 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1450
1451 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1452
1453 if (tsk_state == TASK_IDLE)
1454 state = TASK_REPORT_IDLE;
1455
1456 return fls(state);
1457}
1458
1459static inline char task_index_to_char(unsigned int state)
1460{
1461 static const char state_char[] = "RSDTtXZPI";
1462
1463 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1464
1465 return state_char[state];
1466}
1467
1468static inline char task_state_to_char(struct task_struct *tsk)
1469{
1470 return task_index_to_char(task_state_index(tsk));
1471}
1472
1473/**
1474 * is_global_init - check if a task structure is init. Since init
1475 * is free to have sub-threads we need to check tgid.
1476 * @tsk: Task structure to be checked.
1477 *
1478 * Check if a task structure is the first user space task the kernel created.
1479 *
1480 * Return: 1 if the task structure is init. 0 otherwise.
1481 */
1482static inline int is_global_init(struct task_struct *tsk)
1483{
1484 return task_tgid_nr(tsk) == 1;
1485}
1486
1487extern struct pid *cad_pid;
1488
1489/*
1490 * Per process flags
1491 */
1492#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1493#define PF_EXITING 0x00000004 /* Getting shut down */
1494#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1495#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1496#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1497#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1498#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1499#define PF_DUMPCORE 0x00000200 /* Dumped core */
1500#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1501#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1502#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1503#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1504#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1505#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1506#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1507#define PF_KSWAPD 0x00020000 /* I am kswapd */
1508#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1509#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1510#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1511 * I am cleaning dirty pages from some other bdi. */
1512#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1513#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1514#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1515#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1516#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1517#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
1518#define PF_IO_WORKER 0x20000000 /* Task is an IO worker */
1519#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1520#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1521
1522/*
1523 * Only the _current_ task can read/write to tsk->flags, but other
1524 * tasks can access tsk->flags in readonly mode for example
1525 * with tsk_used_math (like during threaded core dumping).
1526 * There is however an exception to this rule during ptrace
1527 * or during fork: the ptracer task is allowed to write to the
1528 * child->flags of its traced child (same goes for fork, the parent
1529 * can write to the child->flags), because we're guaranteed the
1530 * child is not running and in turn not changing child->flags
1531 * at the same time the parent does it.
1532 */
1533#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1534#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1535#define clear_used_math() clear_stopped_child_used_math(current)
1536#define set_used_math() set_stopped_child_used_math(current)
1537
1538#define conditional_stopped_child_used_math(condition, child) \
1539 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1540
1541#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1542
1543#define copy_to_stopped_child_used_math(child) \
1544 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1545
1546/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1547#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1548#define used_math() tsk_used_math(current)
1549
1550static inline bool is_percpu_thread(void)
1551{
1552#ifdef CONFIG_SMP
1553 return (current->flags & PF_NO_SETAFFINITY) &&
1554 (current->nr_cpus_allowed == 1);
1555#else
1556 return true;
1557#endif
1558}
1559
1560/* Per-process atomic flags. */
1561#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1562#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1563#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1564#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1565#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1566#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1567#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1568#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1569
1570#define TASK_PFA_TEST(name, func) \
1571 static inline bool task_##func(struct task_struct *p) \
1572 { return test_bit(PFA_##name, &p->atomic_flags); }
1573
1574#define TASK_PFA_SET(name, func) \
1575 static inline void task_set_##func(struct task_struct *p) \
1576 { set_bit(PFA_##name, &p->atomic_flags); }
1577
1578#define TASK_PFA_CLEAR(name, func) \
1579 static inline void task_clear_##func(struct task_struct *p) \
1580 { clear_bit(PFA_##name, &p->atomic_flags); }
1581
1582TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1583TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1584
1585TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1586TASK_PFA_SET(SPREAD_PAGE, spread_page)
1587TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1588
1589TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1590TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1591TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1592
1593TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1594TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1595TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1596
1597TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1598TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1599TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1600
1601TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1602TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1603
1604TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1605TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1606TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1607
1608TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1609TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1610
1611static inline void
1612current_restore_flags(unsigned long orig_flags, unsigned long flags)
1613{
1614 current->flags &= ~flags;
1615 current->flags |= orig_flags & flags;
1616}
1617
1618extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1619extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1620#ifdef CONFIG_SMP
1621extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1622extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1623#else
1624static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1625{
1626}
1627static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1628{
1629 if (!cpumask_test_cpu(0, new_mask))
1630 return -EINVAL;
1631 return 0;
1632}
1633#endif
1634
1635extern int yield_to(struct task_struct *p, bool preempt);
1636extern void set_user_nice(struct task_struct *p, long nice);
1637extern int task_prio(const struct task_struct *p);
1638
1639/**
1640 * task_nice - return the nice value of a given task.
1641 * @p: the task in question.
1642 *
1643 * Return: The nice value [ -20 ... 0 ... 19 ].
1644 */
1645static inline int task_nice(const struct task_struct *p)
1646{
1647 return PRIO_TO_NICE((p)->static_prio);
1648}
1649
1650extern int can_nice(const struct task_struct *p, const int nice);
1651extern int task_curr(const struct task_struct *p);
1652extern int idle_cpu(int cpu);
1653extern int available_idle_cpu(int cpu);
1654extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1655extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1656extern void sched_set_fifo(struct task_struct *p);
1657extern void sched_set_fifo_low(struct task_struct *p);
1658extern void sched_set_normal(struct task_struct *p, int nice);
1659extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1660extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1661extern struct task_struct *idle_task(int cpu);
1662
1663/**
1664 * is_idle_task - is the specified task an idle task?
1665 * @p: the task in question.
1666 *
1667 * Return: 1 if @p is an idle task. 0 otherwise.
1668 */
1669static __always_inline bool is_idle_task(const struct task_struct *p)
1670{
1671 return !!(p->flags & PF_IDLE);
1672}
1673
1674extern struct task_struct *curr_task(int cpu);
1675extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1676
1677void yield(void);
1678
1679union thread_union {
1680#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1681 struct task_struct task;
1682#endif
1683#ifndef CONFIG_THREAD_INFO_IN_TASK
1684 struct thread_info thread_info;
1685#endif
1686 unsigned long stack[THREAD_SIZE/sizeof(long)];
1687};
1688
1689#ifndef CONFIG_THREAD_INFO_IN_TASK
1690extern struct thread_info init_thread_info;
1691#endif
1692
1693extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1694
1695#ifdef CONFIG_THREAD_INFO_IN_TASK
1696static inline struct thread_info *task_thread_info(struct task_struct *task)
1697{
1698 return &task->thread_info;
1699}
1700#elif !defined(__HAVE_THREAD_FUNCTIONS)
1701# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1702#endif
1703
1704/*
1705 * find a task by one of its numerical ids
1706 *
1707 * find_task_by_pid_ns():
1708 * finds a task by its pid in the specified namespace
1709 * find_task_by_vpid():
1710 * finds a task by its virtual pid
1711 *
1712 * see also find_vpid() etc in include/linux/pid.h
1713 */
1714
1715extern struct task_struct *find_task_by_vpid(pid_t nr);
1716extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1717
1718/*
1719 * find a task by its virtual pid and get the task struct
1720 */
1721extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1722
1723extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1724extern int wake_up_process(struct task_struct *tsk);
1725extern void wake_up_new_task(struct task_struct *tsk);
1726
1727#ifdef CONFIG_SMP
1728extern void kick_process(struct task_struct *tsk);
1729#else
1730static inline void kick_process(struct task_struct *tsk) { }
1731#endif
1732
1733extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1734
1735static inline void set_task_comm(struct task_struct *tsk, const char *from)
1736{
1737 __set_task_comm(tsk, from, false);
1738}
1739
1740extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1741#define get_task_comm(buf, tsk) ({ \
1742 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1743 __get_task_comm(buf, sizeof(buf), tsk); \
1744})
1745
1746#ifdef CONFIG_SMP
1747static __always_inline void scheduler_ipi(void)
1748{
1749 /*
1750 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1751 * TIF_NEED_RESCHED remotely (for the first time) will also send
1752 * this IPI.
1753 */
1754 preempt_fold_need_resched();
1755}
1756extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1757#else
1758static inline void scheduler_ipi(void) { }
1759static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1760{
1761 return 1;
1762}
1763#endif
1764
1765/*
1766 * Set thread flags in other task's structures.
1767 * See asm/thread_info.h for TIF_xxxx flags available:
1768 */
1769static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1770{
1771 set_ti_thread_flag(task_thread_info(tsk), flag);
1772}
1773
1774static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1775{
1776 clear_ti_thread_flag(task_thread_info(tsk), flag);
1777}
1778
1779static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1780 bool value)
1781{
1782 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1783}
1784
1785static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1786{
1787 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1788}
1789
1790static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1791{
1792 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1793}
1794
1795static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1796{
1797 return test_ti_thread_flag(task_thread_info(tsk), flag);
1798}
1799
1800static inline void set_tsk_need_resched(struct task_struct *tsk)
1801{
1802 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1803}
1804
1805static inline void clear_tsk_need_resched(struct task_struct *tsk)
1806{
1807 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1808}
1809
1810static inline int test_tsk_need_resched(struct task_struct *tsk)
1811{
1812 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1813}
1814
1815/*
1816 * cond_resched() and cond_resched_lock(): latency reduction via
1817 * explicit rescheduling in places that are safe. The return
1818 * value indicates whether a reschedule was done in fact.
1819 * cond_resched_lock() will drop the spinlock before scheduling,
1820 */
1821#ifndef CONFIG_PREEMPTION
1822extern int _cond_resched(void);
1823#else
1824static inline int _cond_resched(void) { return 0; }
1825#endif
1826
1827#define cond_resched() ({ \
1828 ___might_sleep(__FILE__, __LINE__, 0); \
1829 _cond_resched(); \
1830})
1831
1832extern int __cond_resched_lock(spinlock_t *lock);
1833
1834#define cond_resched_lock(lock) ({ \
1835 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1836 __cond_resched_lock(lock); \
1837})
1838
1839static inline void cond_resched_rcu(void)
1840{
1841#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1842 rcu_read_unlock();
1843 cond_resched();
1844 rcu_read_lock();
1845#endif
1846}
1847
1848/*
1849 * Does a critical section need to be broken due to another
1850 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1851 * but a general need for low latency)
1852 */
1853static inline int spin_needbreak(spinlock_t *lock)
1854{
1855#ifdef CONFIG_PREEMPTION
1856 return spin_is_contended(lock);
1857#else
1858 return 0;
1859#endif
1860}
1861
1862static __always_inline bool need_resched(void)
1863{
1864 return unlikely(tif_need_resched());
1865}
1866
1867/*
1868 * Wrappers for p->thread_info->cpu access. No-op on UP.
1869 */
1870#ifdef CONFIG_SMP
1871
1872static inline unsigned int task_cpu(const struct task_struct *p)
1873{
1874#ifdef CONFIG_THREAD_INFO_IN_TASK
1875 return READ_ONCE(p->cpu);
1876#else
1877 return READ_ONCE(task_thread_info(p)->cpu);
1878#endif
1879}
1880
1881extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1882
1883#else
1884
1885static inline unsigned int task_cpu(const struct task_struct *p)
1886{
1887 return 0;
1888}
1889
1890static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1891{
1892}
1893
1894#endif /* CONFIG_SMP */
1895
1896/*
1897 * In order to reduce various lock holder preemption latencies provide an
1898 * interface to see if a vCPU is currently running or not.
1899 *
1900 * This allows us to terminate optimistic spin loops and block, analogous to
1901 * the native optimistic spin heuristic of testing if the lock owner task is
1902 * running or not.
1903 */
1904#ifndef vcpu_is_preempted
1905static inline bool vcpu_is_preempted(int cpu)
1906{
1907 return false;
1908}
1909#endif
1910
1911extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1912extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1913
1914#ifndef TASK_SIZE_OF
1915#define TASK_SIZE_OF(tsk) TASK_SIZE
1916#endif
1917
1918#ifdef CONFIG_RSEQ
1919
1920/*
1921 * Map the event mask on the user-space ABI enum rseq_cs_flags
1922 * for direct mask checks.
1923 */
1924enum rseq_event_mask_bits {
1925 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1926 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1927 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1928};
1929
1930enum rseq_event_mask {
1931 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1932 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1933 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1934};
1935
1936static inline void rseq_set_notify_resume(struct task_struct *t)
1937{
1938 if (t->rseq)
1939 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1940}
1941
1942void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1943
1944static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1945 struct pt_regs *regs)
1946{
1947 if (current->rseq)
1948 __rseq_handle_notify_resume(ksig, regs);
1949}
1950
1951static inline void rseq_signal_deliver(struct ksignal *ksig,
1952 struct pt_regs *regs)
1953{
1954 preempt_disable();
1955 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
1956 preempt_enable();
1957 rseq_handle_notify_resume(ksig, regs);
1958}
1959
1960/* rseq_preempt() requires preemption to be disabled. */
1961static inline void rseq_preempt(struct task_struct *t)
1962{
1963 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1964 rseq_set_notify_resume(t);
1965}
1966
1967/* rseq_migrate() requires preemption to be disabled. */
1968static inline void rseq_migrate(struct task_struct *t)
1969{
1970 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1971 rseq_set_notify_resume(t);
1972}
1973
1974/*
1975 * If parent process has a registered restartable sequences area, the
1976 * child inherits. Unregister rseq for a clone with CLONE_VM set.
1977 */
1978static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1979{
1980 if (clone_flags & CLONE_VM) {
1981 t->rseq = NULL;
1982 t->rseq_sig = 0;
1983 t->rseq_event_mask = 0;
1984 } else {
1985 t->rseq = current->rseq;
1986 t->rseq_sig = current->rseq_sig;
1987 t->rseq_event_mask = current->rseq_event_mask;
1988 }
1989}
1990
1991static inline void rseq_execve(struct task_struct *t)
1992{
1993 t->rseq = NULL;
1994 t->rseq_sig = 0;
1995 t->rseq_event_mask = 0;
1996}
1997
1998#else
1999
2000static inline void rseq_set_notify_resume(struct task_struct *t)
2001{
2002}
2003static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2004 struct pt_regs *regs)
2005{
2006}
2007static inline void rseq_signal_deliver(struct ksignal *ksig,
2008 struct pt_regs *regs)
2009{
2010}
2011static inline void rseq_preempt(struct task_struct *t)
2012{
2013}
2014static inline void rseq_migrate(struct task_struct *t)
2015{
2016}
2017static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2018{
2019}
2020static inline void rseq_execve(struct task_struct *t)
2021{
2022}
2023
2024#endif
2025
2026#ifdef CONFIG_DEBUG_RSEQ
2027
2028void rseq_syscall(struct pt_regs *regs);
2029
2030#else
2031
2032static inline void rseq_syscall(struct pt_regs *regs)
2033{
2034}
2035
2036#endif
2037
2038const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2039char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2040int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2041
2042const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2043const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2044const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2045
2046int sched_trace_rq_cpu(struct rq *rq);
2047int sched_trace_rq_nr_running(struct rq *rq);
2048
2049const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2050
2051#endif