at v5.9 27 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_RCULIST_H 3#define _LINUX_RCULIST_H 4 5#ifdef __KERNEL__ 6 7/* 8 * RCU-protected list version 9 */ 10#include <linux/list.h> 11#include <linux/rcupdate.h> 12 13/* 14 * Why is there no list_empty_rcu()? Because list_empty() serves this 15 * purpose. The list_empty() function fetches the RCU-protected pointer 16 * and compares it to the address of the list head, but neither dereferences 17 * this pointer itself nor provides this pointer to the caller. Therefore, 18 * it is not necessary to use rcu_dereference(), so that list_empty() can 19 * be used anywhere you would want to use a list_empty_rcu(). 20 */ 21 22/* 23 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers 24 * @list: list to be initialized 25 * 26 * You should instead use INIT_LIST_HEAD() for normal initialization and 27 * cleanup tasks, when readers have no access to the list being initialized. 28 * However, if the list being initialized is visible to readers, you 29 * need to keep the compiler from being too mischievous. 30 */ 31static inline void INIT_LIST_HEAD_RCU(struct list_head *list) 32{ 33 WRITE_ONCE(list->next, list); 34 WRITE_ONCE(list->prev, list); 35} 36 37/* 38 * return the ->next pointer of a list_head in an rcu safe 39 * way, we must not access it directly 40 */ 41#define list_next_rcu(list) (*((struct list_head __rcu **)(&(list)->next))) 42 43/** 44 * list_tail_rcu - returns the prev pointer of the head of the list 45 * @head: the head of the list 46 * 47 * Note: This should only be used with the list header, and even then 48 * only if list_del() and similar primitives are not also used on the 49 * list header. 50 */ 51#define list_tail_rcu(head) (*((struct list_head __rcu **)(&(head)->prev))) 52 53/* 54 * Check during list traversal that we are within an RCU reader 55 */ 56 57#define check_arg_count_one(dummy) 58 59#ifdef CONFIG_PROVE_RCU_LIST 60#define __list_check_rcu(dummy, cond, extra...) \ 61 ({ \ 62 check_arg_count_one(extra); \ 63 RCU_LOCKDEP_WARN(!(cond) && !rcu_read_lock_any_held(), \ 64 "RCU-list traversed in non-reader section!"); \ 65 }) 66#else 67#define __list_check_rcu(dummy, cond, extra...) \ 68 ({ check_arg_count_one(extra); }) 69#endif 70 71/* 72 * Insert a new entry between two known consecutive entries. 73 * 74 * This is only for internal list manipulation where we know 75 * the prev/next entries already! 76 */ 77static inline void __list_add_rcu(struct list_head *new, 78 struct list_head *prev, struct list_head *next) 79{ 80 if (!__list_add_valid(new, prev, next)) 81 return; 82 83 new->next = next; 84 new->prev = prev; 85 rcu_assign_pointer(list_next_rcu(prev), new); 86 next->prev = new; 87} 88 89/** 90 * list_add_rcu - add a new entry to rcu-protected list 91 * @new: new entry to be added 92 * @head: list head to add it after 93 * 94 * Insert a new entry after the specified head. 95 * This is good for implementing stacks. 96 * 97 * The caller must take whatever precautions are necessary 98 * (such as holding appropriate locks) to avoid racing 99 * with another list-mutation primitive, such as list_add_rcu() 100 * or list_del_rcu(), running on this same list. 101 * However, it is perfectly legal to run concurrently with 102 * the _rcu list-traversal primitives, such as 103 * list_for_each_entry_rcu(). 104 */ 105static inline void list_add_rcu(struct list_head *new, struct list_head *head) 106{ 107 __list_add_rcu(new, head, head->next); 108} 109 110/** 111 * list_add_tail_rcu - add a new entry to rcu-protected list 112 * @new: new entry to be added 113 * @head: list head to add it before 114 * 115 * Insert a new entry before the specified head. 116 * This is useful for implementing queues. 117 * 118 * The caller must take whatever precautions are necessary 119 * (such as holding appropriate locks) to avoid racing 120 * with another list-mutation primitive, such as list_add_tail_rcu() 121 * or list_del_rcu(), running on this same list. 122 * However, it is perfectly legal to run concurrently with 123 * the _rcu list-traversal primitives, such as 124 * list_for_each_entry_rcu(). 125 */ 126static inline void list_add_tail_rcu(struct list_head *new, 127 struct list_head *head) 128{ 129 __list_add_rcu(new, head->prev, head); 130} 131 132/** 133 * list_del_rcu - deletes entry from list without re-initialization 134 * @entry: the element to delete from the list. 135 * 136 * Note: list_empty() on entry does not return true after this, 137 * the entry is in an undefined state. It is useful for RCU based 138 * lockfree traversal. 139 * 140 * In particular, it means that we can not poison the forward 141 * pointers that may still be used for walking the list. 142 * 143 * The caller must take whatever precautions are necessary 144 * (such as holding appropriate locks) to avoid racing 145 * with another list-mutation primitive, such as list_del_rcu() 146 * or list_add_rcu(), running on this same list. 147 * However, it is perfectly legal to run concurrently with 148 * the _rcu list-traversal primitives, such as 149 * list_for_each_entry_rcu(). 150 * 151 * Note that the caller is not permitted to immediately free 152 * the newly deleted entry. Instead, either synchronize_rcu() 153 * or call_rcu() must be used to defer freeing until an RCU 154 * grace period has elapsed. 155 */ 156static inline void list_del_rcu(struct list_head *entry) 157{ 158 __list_del_entry(entry); 159 entry->prev = LIST_POISON2; 160} 161 162/** 163 * hlist_del_init_rcu - deletes entry from hash list with re-initialization 164 * @n: the element to delete from the hash list. 165 * 166 * Note: list_unhashed() on the node return true after this. It is 167 * useful for RCU based read lockfree traversal if the writer side 168 * must know if the list entry is still hashed or already unhashed. 169 * 170 * In particular, it means that we can not poison the forward pointers 171 * that may still be used for walking the hash list and we can only 172 * zero the pprev pointer so list_unhashed() will return true after 173 * this. 174 * 175 * The caller must take whatever precautions are necessary (such as 176 * holding appropriate locks) to avoid racing with another 177 * list-mutation primitive, such as hlist_add_head_rcu() or 178 * hlist_del_rcu(), running on this same list. However, it is 179 * perfectly legal to run concurrently with the _rcu list-traversal 180 * primitives, such as hlist_for_each_entry_rcu(). 181 */ 182static inline void hlist_del_init_rcu(struct hlist_node *n) 183{ 184 if (!hlist_unhashed(n)) { 185 __hlist_del(n); 186 WRITE_ONCE(n->pprev, NULL); 187 } 188} 189 190/** 191 * list_replace_rcu - replace old entry by new one 192 * @old : the element to be replaced 193 * @new : the new element to insert 194 * 195 * The @old entry will be replaced with the @new entry atomically. 196 * Note: @old should not be empty. 197 */ 198static inline void list_replace_rcu(struct list_head *old, 199 struct list_head *new) 200{ 201 new->next = old->next; 202 new->prev = old->prev; 203 rcu_assign_pointer(list_next_rcu(new->prev), new); 204 new->next->prev = new; 205 old->prev = LIST_POISON2; 206} 207 208/** 209 * __list_splice_init_rcu - join an RCU-protected list into an existing list. 210 * @list: the RCU-protected list to splice 211 * @prev: points to the last element of the existing list 212 * @next: points to the first element of the existing list 213 * @sync: synchronize_rcu, synchronize_rcu_expedited, ... 214 * 215 * The list pointed to by @prev and @next can be RCU-read traversed 216 * concurrently with this function. 217 * 218 * Note that this function blocks. 219 * 220 * Important note: the caller must take whatever action is necessary to prevent 221 * any other updates to the existing list. In principle, it is possible to 222 * modify the list as soon as sync() begins execution. If this sort of thing 223 * becomes necessary, an alternative version based on call_rcu() could be 224 * created. But only if -really- needed -- there is no shortage of RCU API 225 * members. 226 */ 227static inline void __list_splice_init_rcu(struct list_head *list, 228 struct list_head *prev, 229 struct list_head *next, 230 void (*sync)(void)) 231{ 232 struct list_head *first = list->next; 233 struct list_head *last = list->prev; 234 235 /* 236 * "first" and "last" tracking list, so initialize it. RCU readers 237 * have access to this list, so we must use INIT_LIST_HEAD_RCU() 238 * instead of INIT_LIST_HEAD(). 239 */ 240 241 INIT_LIST_HEAD_RCU(list); 242 243 /* 244 * At this point, the list body still points to the source list. 245 * Wait for any readers to finish using the list before splicing 246 * the list body into the new list. Any new readers will see 247 * an empty list. 248 */ 249 250 sync(); 251 ASSERT_EXCLUSIVE_ACCESS(*first); 252 ASSERT_EXCLUSIVE_ACCESS(*last); 253 254 /* 255 * Readers are finished with the source list, so perform splice. 256 * The order is important if the new list is global and accessible 257 * to concurrent RCU readers. Note that RCU readers are not 258 * permitted to traverse the prev pointers without excluding 259 * this function. 260 */ 261 262 last->next = next; 263 rcu_assign_pointer(list_next_rcu(prev), first); 264 first->prev = prev; 265 next->prev = last; 266} 267 268/** 269 * list_splice_init_rcu - splice an RCU-protected list into an existing list, 270 * designed for stacks. 271 * @list: the RCU-protected list to splice 272 * @head: the place in the existing list to splice the first list into 273 * @sync: synchronize_rcu, synchronize_rcu_expedited, ... 274 */ 275static inline void list_splice_init_rcu(struct list_head *list, 276 struct list_head *head, 277 void (*sync)(void)) 278{ 279 if (!list_empty(list)) 280 __list_splice_init_rcu(list, head, head->next, sync); 281} 282 283/** 284 * list_splice_tail_init_rcu - splice an RCU-protected list into an existing 285 * list, designed for queues. 286 * @list: the RCU-protected list to splice 287 * @head: the place in the existing list to splice the first list into 288 * @sync: synchronize_rcu, synchronize_rcu_expedited, ... 289 */ 290static inline void list_splice_tail_init_rcu(struct list_head *list, 291 struct list_head *head, 292 void (*sync)(void)) 293{ 294 if (!list_empty(list)) 295 __list_splice_init_rcu(list, head->prev, head, sync); 296} 297 298/** 299 * list_entry_rcu - get the struct for this entry 300 * @ptr: the &struct list_head pointer. 301 * @type: the type of the struct this is embedded in. 302 * @member: the name of the list_head within the struct. 303 * 304 * This primitive may safely run concurrently with the _rcu list-mutation 305 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 306 */ 307#define list_entry_rcu(ptr, type, member) \ 308 container_of(READ_ONCE(ptr), type, member) 309 310/* 311 * Where are list_empty_rcu() and list_first_entry_rcu()? 312 * 313 * Implementing those functions following their counterparts list_empty() and 314 * list_first_entry() is not advisable because they lead to subtle race 315 * conditions as the following snippet shows: 316 * 317 * if (!list_empty_rcu(mylist)) { 318 * struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member); 319 * do_something(bar); 320 * } 321 * 322 * The list may not be empty when list_empty_rcu checks it, but it may be when 323 * list_first_entry_rcu rereads the ->next pointer. 324 * 325 * Rereading the ->next pointer is not a problem for list_empty() and 326 * list_first_entry() because they would be protected by a lock that blocks 327 * writers. 328 * 329 * See list_first_or_null_rcu for an alternative. 330 */ 331 332/** 333 * list_first_or_null_rcu - get the first element from a list 334 * @ptr: the list head to take the element from. 335 * @type: the type of the struct this is embedded in. 336 * @member: the name of the list_head within the struct. 337 * 338 * Note that if the list is empty, it returns NULL. 339 * 340 * This primitive may safely run concurrently with the _rcu list-mutation 341 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 342 */ 343#define list_first_or_null_rcu(ptr, type, member) \ 344({ \ 345 struct list_head *__ptr = (ptr); \ 346 struct list_head *__next = READ_ONCE(__ptr->next); \ 347 likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \ 348}) 349 350/** 351 * list_next_or_null_rcu - get the first element from a list 352 * @head: the head for the list. 353 * @ptr: the list head to take the next element from. 354 * @type: the type of the struct this is embedded in. 355 * @member: the name of the list_head within the struct. 356 * 357 * Note that if the ptr is at the end of the list, NULL is returned. 358 * 359 * This primitive may safely run concurrently with the _rcu list-mutation 360 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 361 */ 362#define list_next_or_null_rcu(head, ptr, type, member) \ 363({ \ 364 struct list_head *__head = (head); \ 365 struct list_head *__ptr = (ptr); \ 366 struct list_head *__next = READ_ONCE(__ptr->next); \ 367 likely(__next != __head) ? list_entry_rcu(__next, type, \ 368 member) : NULL; \ 369}) 370 371/** 372 * list_for_each_entry_rcu - iterate over rcu list of given type 373 * @pos: the type * to use as a loop cursor. 374 * @head: the head for your list. 375 * @member: the name of the list_head within the struct. 376 * @cond: optional lockdep expression if called from non-RCU protection. 377 * 378 * This list-traversal primitive may safely run concurrently with 379 * the _rcu list-mutation primitives such as list_add_rcu() 380 * as long as the traversal is guarded by rcu_read_lock(). 381 */ 382#define list_for_each_entry_rcu(pos, head, member, cond...) \ 383 for (__list_check_rcu(dummy, ## cond, 0), \ 384 pos = list_entry_rcu((head)->next, typeof(*pos), member); \ 385 &pos->member != (head); \ 386 pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) 387 388/** 389 * list_entry_lockless - get the struct for this entry 390 * @ptr: the &struct list_head pointer. 391 * @type: the type of the struct this is embedded in. 392 * @member: the name of the list_head within the struct. 393 * 394 * This primitive may safely run concurrently with the _rcu 395 * list-mutation primitives such as list_add_rcu(), but requires some 396 * implicit RCU read-side guarding. One example is running within a special 397 * exception-time environment where preemption is disabled and where lockdep 398 * cannot be invoked. Another example is when items are added to the list, 399 * but never deleted. 400 */ 401#define list_entry_lockless(ptr, type, member) \ 402 container_of((typeof(ptr))READ_ONCE(ptr), type, member) 403 404/** 405 * list_for_each_entry_lockless - iterate over rcu list of given type 406 * @pos: the type * to use as a loop cursor. 407 * @head: the head for your list. 408 * @member: the name of the list_struct within the struct. 409 * 410 * This primitive may safely run concurrently with the _rcu 411 * list-mutation primitives such as list_add_rcu(), but requires some 412 * implicit RCU read-side guarding. One example is running within a special 413 * exception-time environment where preemption is disabled and where lockdep 414 * cannot be invoked. Another example is when items are added to the list, 415 * but never deleted. 416 */ 417#define list_for_each_entry_lockless(pos, head, member) \ 418 for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \ 419 &pos->member != (head); \ 420 pos = list_entry_lockless(pos->member.next, typeof(*pos), member)) 421 422/** 423 * list_for_each_entry_continue_rcu - continue iteration over list of given type 424 * @pos: the type * to use as a loop cursor. 425 * @head: the head for your list. 426 * @member: the name of the list_head within the struct. 427 * 428 * Continue to iterate over list of given type, continuing after 429 * the current position which must have been in the list when the RCU read 430 * lock was taken. 431 * This would typically require either that you obtained the node from a 432 * previous walk of the list in the same RCU read-side critical section, or 433 * that you held some sort of non-RCU reference (such as a reference count) 434 * to keep the node alive *and* in the list. 435 * 436 * This iterator is similar to list_for_each_entry_from_rcu() except 437 * this starts after the given position and that one starts at the given 438 * position. 439 */ 440#define list_for_each_entry_continue_rcu(pos, head, member) \ 441 for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \ 442 &pos->member != (head); \ 443 pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) 444 445/** 446 * list_for_each_entry_from_rcu - iterate over a list from current point 447 * @pos: the type * to use as a loop cursor. 448 * @head: the head for your list. 449 * @member: the name of the list_node within the struct. 450 * 451 * Iterate over the tail of a list starting from a given position, 452 * which must have been in the list when the RCU read lock was taken. 453 * This would typically require either that you obtained the node from a 454 * previous walk of the list in the same RCU read-side critical section, or 455 * that you held some sort of non-RCU reference (such as a reference count) 456 * to keep the node alive *and* in the list. 457 * 458 * This iterator is similar to list_for_each_entry_continue_rcu() except 459 * this starts from the given position and that one starts from the position 460 * after the given position. 461 */ 462#define list_for_each_entry_from_rcu(pos, head, member) \ 463 for (; &(pos)->member != (head); \ 464 pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member)) 465 466/** 467 * hlist_del_rcu - deletes entry from hash list without re-initialization 468 * @n: the element to delete from the hash list. 469 * 470 * Note: list_unhashed() on entry does not return true after this, 471 * the entry is in an undefined state. It is useful for RCU based 472 * lockfree traversal. 473 * 474 * In particular, it means that we can not poison the forward 475 * pointers that may still be used for walking the hash list. 476 * 477 * The caller must take whatever precautions are necessary 478 * (such as holding appropriate locks) to avoid racing 479 * with another list-mutation primitive, such as hlist_add_head_rcu() 480 * or hlist_del_rcu(), running on this same list. 481 * However, it is perfectly legal to run concurrently with 482 * the _rcu list-traversal primitives, such as 483 * hlist_for_each_entry(). 484 */ 485static inline void hlist_del_rcu(struct hlist_node *n) 486{ 487 __hlist_del(n); 488 WRITE_ONCE(n->pprev, LIST_POISON2); 489} 490 491/** 492 * hlist_replace_rcu - replace old entry by new one 493 * @old : the element to be replaced 494 * @new : the new element to insert 495 * 496 * The @old entry will be replaced with the @new entry atomically. 497 */ 498static inline void hlist_replace_rcu(struct hlist_node *old, 499 struct hlist_node *new) 500{ 501 struct hlist_node *next = old->next; 502 503 new->next = next; 504 WRITE_ONCE(new->pprev, old->pprev); 505 rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new); 506 if (next) 507 WRITE_ONCE(new->next->pprev, &new->next); 508 WRITE_ONCE(old->pprev, LIST_POISON2); 509} 510 511/** 512 * hlists_swap_heads_rcu - swap the lists the hlist heads point to 513 * @left: The hlist head on the left 514 * @right: The hlist head on the right 515 * 516 * The lists start out as [@left ][node1 ... ] and 517 * [@right ][node2 ... ] 518 * The lists end up as [@left ][node2 ... ] 519 * [@right ][node1 ... ] 520 */ 521static inline void hlists_swap_heads_rcu(struct hlist_head *left, struct hlist_head *right) 522{ 523 struct hlist_node *node1 = left->first; 524 struct hlist_node *node2 = right->first; 525 526 rcu_assign_pointer(left->first, node2); 527 rcu_assign_pointer(right->first, node1); 528 WRITE_ONCE(node2->pprev, &left->first); 529 WRITE_ONCE(node1->pprev, &right->first); 530} 531 532/* 533 * return the first or the next element in an RCU protected hlist 534 */ 535#define hlist_first_rcu(head) (*((struct hlist_node __rcu **)(&(head)->first))) 536#define hlist_next_rcu(node) (*((struct hlist_node __rcu **)(&(node)->next))) 537#define hlist_pprev_rcu(node) (*((struct hlist_node __rcu **)((node)->pprev))) 538 539/** 540 * hlist_add_head_rcu 541 * @n: the element to add to the hash list. 542 * @h: the list to add to. 543 * 544 * Description: 545 * Adds the specified element to the specified hlist, 546 * while permitting racing traversals. 547 * 548 * The caller must take whatever precautions are necessary 549 * (such as holding appropriate locks) to avoid racing 550 * with another list-mutation primitive, such as hlist_add_head_rcu() 551 * or hlist_del_rcu(), running on this same list. 552 * However, it is perfectly legal to run concurrently with 553 * the _rcu list-traversal primitives, such as 554 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 555 * problems on Alpha CPUs. Regardless of the type of CPU, the 556 * list-traversal primitive must be guarded by rcu_read_lock(). 557 */ 558static inline void hlist_add_head_rcu(struct hlist_node *n, 559 struct hlist_head *h) 560{ 561 struct hlist_node *first = h->first; 562 563 n->next = first; 564 WRITE_ONCE(n->pprev, &h->first); 565 rcu_assign_pointer(hlist_first_rcu(h), n); 566 if (first) 567 WRITE_ONCE(first->pprev, &n->next); 568} 569 570/** 571 * hlist_add_tail_rcu 572 * @n: the element to add to the hash list. 573 * @h: the list to add to. 574 * 575 * Description: 576 * Adds the specified element to the specified hlist, 577 * while permitting racing traversals. 578 * 579 * The caller must take whatever precautions are necessary 580 * (such as holding appropriate locks) to avoid racing 581 * with another list-mutation primitive, such as hlist_add_head_rcu() 582 * or hlist_del_rcu(), running on this same list. 583 * However, it is perfectly legal to run concurrently with 584 * the _rcu list-traversal primitives, such as 585 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 586 * problems on Alpha CPUs. Regardless of the type of CPU, the 587 * list-traversal primitive must be guarded by rcu_read_lock(). 588 */ 589static inline void hlist_add_tail_rcu(struct hlist_node *n, 590 struct hlist_head *h) 591{ 592 struct hlist_node *i, *last = NULL; 593 594 /* Note: write side code, so rcu accessors are not needed. */ 595 for (i = h->first; i; i = i->next) 596 last = i; 597 598 if (last) { 599 n->next = last->next; 600 WRITE_ONCE(n->pprev, &last->next); 601 rcu_assign_pointer(hlist_next_rcu(last), n); 602 } else { 603 hlist_add_head_rcu(n, h); 604 } 605} 606 607/** 608 * hlist_add_before_rcu 609 * @n: the new element to add to the hash list. 610 * @next: the existing element to add the new element before. 611 * 612 * Description: 613 * Adds the specified element to the specified hlist 614 * before the specified node while permitting racing traversals. 615 * 616 * The caller must take whatever precautions are necessary 617 * (such as holding appropriate locks) to avoid racing 618 * with another list-mutation primitive, such as hlist_add_head_rcu() 619 * or hlist_del_rcu(), running on this same list. 620 * However, it is perfectly legal to run concurrently with 621 * the _rcu list-traversal primitives, such as 622 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 623 * problems on Alpha CPUs. 624 */ 625static inline void hlist_add_before_rcu(struct hlist_node *n, 626 struct hlist_node *next) 627{ 628 WRITE_ONCE(n->pprev, next->pprev); 629 n->next = next; 630 rcu_assign_pointer(hlist_pprev_rcu(n), n); 631 WRITE_ONCE(next->pprev, &n->next); 632} 633 634/** 635 * hlist_add_behind_rcu 636 * @n: the new element to add to the hash list. 637 * @prev: the existing element to add the new element after. 638 * 639 * Description: 640 * Adds the specified element to the specified hlist 641 * after the specified node while permitting racing traversals. 642 * 643 * The caller must take whatever precautions are necessary 644 * (such as holding appropriate locks) to avoid racing 645 * with another list-mutation primitive, such as hlist_add_head_rcu() 646 * or hlist_del_rcu(), running on this same list. 647 * However, it is perfectly legal to run concurrently with 648 * the _rcu list-traversal primitives, such as 649 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 650 * problems on Alpha CPUs. 651 */ 652static inline void hlist_add_behind_rcu(struct hlist_node *n, 653 struct hlist_node *prev) 654{ 655 n->next = prev->next; 656 WRITE_ONCE(n->pprev, &prev->next); 657 rcu_assign_pointer(hlist_next_rcu(prev), n); 658 if (n->next) 659 WRITE_ONCE(n->next->pprev, &n->next); 660} 661 662#define __hlist_for_each_rcu(pos, head) \ 663 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 664 pos; \ 665 pos = rcu_dereference(hlist_next_rcu(pos))) 666 667/** 668 * hlist_for_each_entry_rcu - iterate over rcu list of given type 669 * @pos: the type * to use as a loop cursor. 670 * @head: the head for your list. 671 * @member: the name of the hlist_node within the struct. 672 * @cond: optional lockdep expression if called from non-RCU protection. 673 * 674 * This list-traversal primitive may safely run concurrently with 675 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 676 * as long as the traversal is guarded by rcu_read_lock(). 677 */ 678#define hlist_for_each_entry_rcu(pos, head, member, cond...) \ 679 for (__list_check_rcu(dummy, ## cond, 0), \ 680 pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\ 681 typeof(*(pos)), member); \ 682 pos; \ 683 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\ 684 &(pos)->member)), typeof(*(pos)), member)) 685 686/** 687 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing) 688 * @pos: the type * to use as a loop cursor. 689 * @head: the head for your list. 690 * @member: the name of the hlist_node within the struct. 691 * 692 * This list-traversal primitive may safely run concurrently with 693 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 694 * as long as the traversal is guarded by rcu_read_lock(). 695 * 696 * This is the same as hlist_for_each_entry_rcu() except that it does 697 * not do any RCU debugging or tracing. 698 */ 699#define hlist_for_each_entry_rcu_notrace(pos, head, member) \ 700 for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\ 701 typeof(*(pos)), member); \ 702 pos; \ 703 pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\ 704 &(pos)->member)), typeof(*(pos)), member)) 705 706/** 707 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type 708 * @pos: the type * to use as a loop cursor. 709 * @head: the head for your list. 710 * @member: the name of the hlist_node within the struct. 711 * 712 * This list-traversal primitive may safely run concurrently with 713 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 714 * as long as the traversal is guarded by rcu_read_lock(). 715 */ 716#define hlist_for_each_entry_rcu_bh(pos, head, member) \ 717 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\ 718 typeof(*(pos)), member); \ 719 pos; \ 720 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\ 721 &(pos)->member)), typeof(*(pos)), member)) 722 723/** 724 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point 725 * @pos: the type * to use as a loop cursor. 726 * @member: the name of the hlist_node within the struct. 727 */ 728#define hlist_for_each_entry_continue_rcu(pos, member) \ 729 for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ 730 &(pos)->member)), typeof(*(pos)), member); \ 731 pos; \ 732 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ 733 &(pos)->member)), typeof(*(pos)), member)) 734 735/** 736 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point 737 * @pos: the type * to use as a loop cursor. 738 * @member: the name of the hlist_node within the struct. 739 */ 740#define hlist_for_each_entry_continue_rcu_bh(pos, member) \ 741 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \ 742 &(pos)->member)), typeof(*(pos)), member); \ 743 pos; \ 744 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \ 745 &(pos)->member)), typeof(*(pos)), member)) 746 747/** 748 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point 749 * @pos: the type * to use as a loop cursor. 750 * @member: the name of the hlist_node within the struct. 751 */ 752#define hlist_for_each_entry_from_rcu(pos, member) \ 753 for (; pos; \ 754 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ 755 &(pos)->member)), typeof(*(pos)), member)) 756 757#endif /* __KERNEL__ */ 758#endif