Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _LINUX_PERF_EVENT_H
15#define _LINUX_PERF_EVENT_H
16
17#include <uapi/linux/perf_event.h>
18#include <uapi/linux/bpf_perf_event.h>
19
20/*
21 * Kernel-internal data types and definitions:
22 */
23
24#ifdef CONFIG_PERF_EVENTS
25# include <asm/perf_event.h>
26# include <asm/local64.h>
27#endif
28
29struct perf_guest_info_callbacks {
30 int (*is_in_guest)(void);
31 int (*is_user_mode)(void);
32 unsigned long (*get_guest_ip)(void);
33 void (*handle_intel_pt_intr)(void);
34};
35
36#ifdef CONFIG_HAVE_HW_BREAKPOINT
37#include <asm/hw_breakpoint.h>
38#endif
39
40#include <linux/list.h>
41#include <linux/mutex.h>
42#include <linux/rculist.h>
43#include <linux/rcupdate.h>
44#include <linux/spinlock.h>
45#include <linux/hrtimer.h>
46#include <linux/fs.h>
47#include <linux/pid_namespace.h>
48#include <linux/workqueue.h>
49#include <linux/ftrace.h>
50#include <linux/cpu.h>
51#include <linux/irq_work.h>
52#include <linux/static_key.h>
53#include <linux/jump_label_ratelimit.h>
54#include <linux/atomic.h>
55#include <linux/sysfs.h>
56#include <linux/perf_regs.h>
57#include <linux/cgroup.h>
58#include <linux/refcount.h>
59#include <linux/security.h>
60#include <asm/local.h>
61
62struct perf_callchain_entry {
63 __u64 nr;
64 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */
65};
66
67struct perf_callchain_entry_ctx {
68 struct perf_callchain_entry *entry;
69 u32 max_stack;
70 u32 nr;
71 short contexts;
72 bool contexts_maxed;
73};
74
75typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
76 unsigned long off, unsigned long len);
77
78struct perf_raw_frag {
79 union {
80 struct perf_raw_frag *next;
81 unsigned long pad;
82 };
83 perf_copy_f copy;
84 void *data;
85 u32 size;
86} __packed;
87
88struct perf_raw_record {
89 struct perf_raw_frag frag;
90 u32 size;
91};
92
93/*
94 * branch stack layout:
95 * nr: number of taken branches stored in entries[]
96 * hw_idx: The low level index of raw branch records
97 * for the most recent branch.
98 * -1ULL means invalid/unknown.
99 *
100 * Note that nr can vary from sample to sample
101 * branches (to, from) are stored from most recent
102 * to least recent, i.e., entries[0] contains the most
103 * recent branch.
104 * The entries[] is an abstraction of raw branch records,
105 * which may not be stored in age order in HW, e.g. Intel LBR.
106 * The hw_idx is to expose the low level index of raw
107 * branch record for the most recent branch aka entries[0].
108 * The hw_idx index is between -1 (unknown) and max depth,
109 * which can be retrieved in /sys/devices/cpu/caps/branches.
110 * For the architectures whose raw branch records are
111 * already stored in age order, the hw_idx should be 0.
112 */
113struct perf_branch_stack {
114 __u64 nr;
115 __u64 hw_idx;
116 struct perf_branch_entry entries[];
117};
118
119struct task_struct;
120
121/*
122 * extra PMU register associated with an event
123 */
124struct hw_perf_event_extra {
125 u64 config; /* register value */
126 unsigned int reg; /* register address or index */
127 int alloc; /* extra register already allocated */
128 int idx; /* index in shared_regs->regs[] */
129};
130
131/**
132 * struct hw_perf_event - performance event hardware details:
133 */
134struct hw_perf_event {
135#ifdef CONFIG_PERF_EVENTS
136 union {
137 struct { /* hardware */
138 u64 config;
139 u64 last_tag;
140 unsigned long config_base;
141 unsigned long event_base;
142 int event_base_rdpmc;
143 int idx;
144 int last_cpu;
145 int flags;
146
147 struct hw_perf_event_extra extra_reg;
148 struct hw_perf_event_extra branch_reg;
149 };
150 struct { /* software */
151 struct hrtimer hrtimer;
152 };
153 struct { /* tracepoint */
154 /* for tp_event->class */
155 struct list_head tp_list;
156 };
157 struct { /* amd_power */
158 u64 pwr_acc;
159 u64 ptsc;
160 };
161#ifdef CONFIG_HAVE_HW_BREAKPOINT
162 struct { /* breakpoint */
163 /*
164 * Crufty hack to avoid the chicken and egg
165 * problem hw_breakpoint has with context
166 * creation and event initalization.
167 */
168 struct arch_hw_breakpoint info;
169 struct list_head bp_list;
170 };
171#endif
172 struct { /* amd_iommu */
173 u8 iommu_bank;
174 u8 iommu_cntr;
175 u16 padding;
176 u64 conf;
177 u64 conf1;
178 };
179 };
180 /*
181 * If the event is a per task event, this will point to the task in
182 * question. See the comment in perf_event_alloc().
183 */
184 struct task_struct *target;
185
186 /*
187 * PMU would store hardware filter configuration
188 * here.
189 */
190 void *addr_filters;
191
192 /* Last sync'ed generation of filters */
193 unsigned long addr_filters_gen;
194
195/*
196 * hw_perf_event::state flags; used to track the PERF_EF_* state.
197 */
198#define PERF_HES_STOPPED 0x01 /* the counter is stopped */
199#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
200#define PERF_HES_ARCH 0x04
201
202 int state;
203
204 /*
205 * The last observed hardware counter value, updated with a
206 * local64_cmpxchg() such that pmu::read() can be called nested.
207 */
208 local64_t prev_count;
209
210 /*
211 * The period to start the next sample with.
212 */
213 u64 sample_period;
214
215 /*
216 * The period we started this sample with.
217 */
218 u64 last_period;
219
220 /*
221 * However much is left of the current period; note that this is
222 * a full 64bit value and allows for generation of periods longer
223 * than hardware might allow.
224 */
225 local64_t period_left;
226
227 /*
228 * State for throttling the event, see __perf_event_overflow() and
229 * perf_adjust_freq_unthr_context().
230 */
231 u64 interrupts_seq;
232 u64 interrupts;
233
234 /*
235 * State for freq target events, see __perf_event_overflow() and
236 * perf_adjust_freq_unthr_context().
237 */
238 u64 freq_time_stamp;
239 u64 freq_count_stamp;
240#endif
241};
242
243struct perf_event;
244
245/*
246 * Common implementation detail of pmu::{start,commit,cancel}_txn
247 */
248#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
249#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
250
251/**
252 * pmu::capabilities flags
253 */
254#define PERF_PMU_CAP_NO_INTERRUPT 0x01
255#define PERF_PMU_CAP_NO_NMI 0x02
256#define PERF_PMU_CAP_AUX_NO_SG 0x04
257#define PERF_PMU_CAP_EXTENDED_REGS 0x08
258#define PERF_PMU_CAP_EXCLUSIVE 0x10
259#define PERF_PMU_CAP_ITRACE 0x20
260#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
261#define PERF_PMU_CAP_NO_EXCLUDE 0x80
262#define PERF_PMU_CAP_AUX_OUTPUT 0x100
263
264struct perf_output_handle;
265
266/**
267 * struct pmu - generic performance monitoring unit
268 */
269struct pmu {
270 struct list_head entry;
271
272 struct module *module;
273 struct device *dev;
274 const struct attribute_group **attr_groups;
275 const struct attribute_group **attr_update;
276 const char *name;
277 int type;
278
279 /*
280 * various common per-pmu feature flags
281 */
282 int capabilities;
283
284 int __percpu *pmu_disable_count;
285 struct perf_cpu_context __percpu *pmu_cpu_context;
286 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
287 int task_ctx_nr;
288 int hrtimer_interval_ms;
289
290 /* number of address filters this PMU can do */
291 unsigned int nr_addr_filters;
292
293 /*
294 * Fully disable/enable this PMU, can be used to protect from the PMI
295 * as well as for lazy/batch writing of the MSRs.
296 */
297 void (*pmu_enable) (struct pmu *pmu); /* optional */
298 void (*pmu_disable) (struct pmu *pmu); /* optional */
299
300 /*
301 * Try and initialize the event for this PMU.
302 *
303 * Returns:
304 * -ENOENT -- @event is not for this PMU
305 *
306 * -ENODEV -- @event is for this PMU but PMU not present
307 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
308 * -EINVAL -- @event is for this PMU but @event is not valid
309 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
310 * -EACCES -- @event is for this PMU, @event is valid, but no privileges
311 *
312 * 0 -- @event is for this PMU and valid
313 *
314 * Other error return values are allowed.
315 */
316 int (*event_init) (struct perf_event *event);
317
318 /*
319 * Notification that the event was mapped or unmapped. Called
320 * in the context of the mapping task.
321 */
322 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
323 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
324
325 /*
326 * Flags for ->add()/->del()/ ->start()/->stop(). There are
327 * matching hw_perf_event::state flags.
328 */
329#define PERF_EF_START 0x01 /* start the counter when adding */
330#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
331#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
332
333 /*
334 * Adds/Removes a counter to/from the PMU, can be done inside a
335 * transaction, see the ->*_txn() methods.
336 *
337 * The add/del callbacks will reserve all hardware resources required
338 * to service the event, this includes any counter constraint
339 * scheduling etc.
340 *
341 * Called with IRQs disabled and the PMU disabled on the CPU the event
342 * is on.
343 *
344 * ->add() called without PERF_EF_START should result in the same state
345 * as ->add() followed by ->stop().
346 *
347 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
348 * ->stop() that must deal with already being stopped without
349 * PERF_EF_UPDATE.
350 */
351 int (*add) (struct perf_event *event, int flags);
352 void (*del) (struct perf_event *event, int flags);
353
354 /*
355 * Starts/Stops a counter present on the PMU.
356 *
357 * The PMI handler should stop the counter when perf_event_overflow()
358 * returns !0. ->start() will be used to continue.
359 *
360 * Also used to change the sample period.
361 *
362 * Called with IRQs disabled and the PMU disabled on the CPU the event
363 * is on -- will be called from NMI context with the PMU generates
364 * NMIs.
365 *
366 * ->stop() with PERF_EF_UPDATE will read the counter and update
367 * period/count values like ->read() would.
368 *
369 * ->start() with PERF_EF_RELOAD will reprogram the counter
370 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
371 */
372 void (*start) (struct perf_event *event, int flags);
373 void (*stop) (struct perf_event *event, int flags);
374
375 /*
376 * Updates the counter value of the event.
377 *
378 * For sampling capable PMUs this will also update the software period
379 * hw_perf_event::period_left field.
380 */
381 void (*read) (struct perf_event *event);
382
383 /*
384 * Group events scheduling is treated as a transaction, add
385 * group events as a whole and perform one schedulability test.
386 * If the test fails, roll back the whole group
387 *
388 * Start the transaction, after this ->add() doesn't need to
389 * do schedulability tests.
390 *
391 * Optional.
392 */
393 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
394 /*
395 * If ->start_txn() disabled the ->add() schedulability test
396 * then ->commit_txn() is required to perform one. On success
397 * the transaction is closed. On error the transaction is kept
398 * open until ->cancel_txn() is called.
399 *
400 * Optional.
401 */
402 int (*commit_txn) (struct pmu *pmu);
403 /*
404 * Will cancel the transaction, assumes ->del() is called
405 * for each successful ->add() during the transaction.
406 *
407 * Optional.
408 */
409 void (*cancel_txn) (struct pmu *pmu);
410
411 /*
412 * Will return the value for perf_event_mmap_page::index for this event,
413 * if no implementation is provided it will default to: event->hw.idx + 1.
414 */
415 int (*event_idx) (struct perf_event *event); /*optional */
416
417 /*
418 * context-switches callback
419 */
420 void (*sched_task) (struct perf_event_context *ctx,
421 bool sched_in);
422
423 /*
424 * Kmem cache of PMU specific data
425 */
426 struct kmem_cache *task_ctx_cache;
427
428 /*
429 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
430 * can be synchronized using this function. See Intel LBR callstack support
431 * implementation and Perf core context switch handling callbacks for usage
432 * examples.
433 */
434 void (*swap_task_ctx) (struct perf_event_context *prev,
435 struct perf_event_context *next);
436 /* optional */
437
438 /*
439 * Set up pmu-private data structures for an AUX area
440 */
441 void *(*setup_aux) (struct perf_event *event, void **pages,
442 int nr_pages, bool overwrite);
443 /* optional */
444
445 /*
446 * Free pmu-private AUX data structures
447 */
448 void (*free_aux) (void *aux); /* optional */
449
450 /*
451 * Take a snapshot of the AUX buffer without touching the event
452 * state, so that preempting ->start()/->stop() callbacks does
453 * not interfere with their logic. Called in PMI context.
454 *
455 * Returns the size of AUX data copied to the output handle.
456 *
457 * Optional.
458 */
459 long (*snapshot_aux) (struct perf_event *event,
460 struct perf_output_handle *handle,
461 unsigned long size);
462
463 /*
464 * Validate address range filters: make sure the HW supports the
465 * requested configuration and number of filters; return 0 if the
466 * supplied filters are valid, -errno otherwise.
467 *
468 * Runs in the context of the ioctl()ing process and is not serialized
469 * with the rest of the PMU callbacks.
470 */
471 int (*addr_filters_validate) (struct list_head *filters);
472 /* optional */
473
474 /*
475 * Synchronize address range filter configuration:
476 * translate hw-agnostic filters into hardware configuration in
477 * event::hw::addr_filters.
478 *
479 * Runs as a part of filter sync sequence that is done in ->start()
480 * callback by calling perf_event_addr_filters_sync().
481 *
482 * May (and should) traverse event::addr_filters::list, for which its
483 * caller provides necessary serialization.
484 */
485 void (*addr_filters_sync) (struct perf_event *event);
486 /* optional */
487
488 /*
489 * Check if event can be used for aux_output purposes for
490 * events of this PMU.
491 *
492 * Runs from perf_event_open(). Should return 0 for "no match"
493 * or non-zero for "match".
494 */
495 int (*aux_output_match) (struct perf_event *event);
496 /* optional */
497
498 /*
499 * Filter events for PMU-specific reasons.
500 */
501 int (*filter_match) (struct perf_event *event); /* optional */
502
503 /*
504 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
505 */
506 int (*check_period) (struct perf_event *event, u64 value); /* optional */
507};
508
509enum perf_addr_filter_action_t {
510 PERF_ADDR_FILTER_ACTION_STOP = 0,
511 PERF_ADDR_FILTER_ACTION_START,
512 PERF_ADDR_FILTER_ACTION_FILTER,
513};
514
515/**
516 * struct perf_addr_filter - address range filter definition
517 * @entry: event's filter list linkage
518 * @path: object file's path for file-based filters
519 * @offset: filter range offset
520 * @size: filter range size (size==0 means single address trigger)
521 * @action: filter/start/stop
522 *
523 * This is a hardware-agnostic filter configuration as specified by the user.
524 */
525struct perf_addr_filter {
526 struct list_head entry;
527 struct path path;
528 unsigned long offset;
529 unsigned long size;
530 enum perf_addr_filter_action_t action;
531};
532
533/**
534 * struct perf_addr_filters_head - container for address range filters
535 * @list: list of filters for this event
536 * @lock: spinlock that serializes accesses to the @list and event's
537 * (and its children's) filter generations.
538 * @nr_file_filters: number of file-based filters
539 *
540 * A child event will use parent's @list (and therefore @lock), so they are
541 * bundled together; see perf_event_addr_filters().
542 */
543struct perf_addr_filters_head {
544 struct list_head list;
545 raw_spinlock_t lock;
546 unsigned int nr_file_filters;
547};
548
549struct perf_addr_filter_range {
550 unsigned long start;
551 unsigned long size;
552};
553
554/**
555 * enum perf_event_state - the states of an event:
556 */
557enum perf_event_state {
558 PERF_EVENT_STATE_DEAD = -4,
559 PERF_EVENT_STATE_EXIT = -3,
560 PERF_EVENT_STATE_ERROR = -2,
561 PERF_EVENT_STATE_OFF = -1,
562 PERF_EVENT_STATE_INACTIVE = 0,
563 PERF_EVENT_STATE_ACTIVE = 1,
564};
565
566struct file;
567struct perf_sample_data;
568
569typedef void (*perf_overflow_handler_t)(struct perf_event *,
570 struct perf_sample_data *,
571 struct pt_regs *regs);
572
573/*
574 * Event capabilities. For event_caps and groups caps.
575 *
576 * PERF_EV_CAP_SOFTWARE: Is a software event.
577 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
578 * from any CPU in the package where it is active.
579 */
580#define PERF_EV_CAP_SOFTWARE BIT(0)
581#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
582
583#define SWEVENT_HLIST_BITS 8
584#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
585
586struct swevent_hlist {
587 struct hlist_head heads[SWEVENT_HLIST_SIZE];
588 struct rcu_head rcu_head;
589};
590
591#define PERF_ATTACH_CONTEXT 0x01
592#define PERF_ATTACH_GROUP 0x02
593#define PERF_ATTACH_TASK 0x04
594#define PERF_ATTACH_TASK_DATA 0x08
595#define PERF_ATTACH_ITRACE 0x10
596
597struct perf_cgroup;
598struct perf_buffer;
599
600struct pmu_event_list {
601 raw_spinlock_t lock;
602 struct list_head list;
603};
604
605#define for_each_sibling_event(sibling, event) \
606 if ((event)->group_leader == (event)) \
607 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
608
609/**
610 * struct perf_event - performance event kernel representation:
611 */
612struct perf_event {
613#ifdef CONFIG_PERF_EVENTS
614 /*
615 * entry onto perf_event_context::event_list;
616 * modifications require ctx->lock
617 * RCU safe iterations.
618 */
619 struct list_head event_entry;
620
621 /*
622 * Locked for modification by both ctx->mutex and ctx->lock; holding
623 * either sufficies for read.
624 */
625 struct list_head sibling_list;
626 struct list_head active_list;
627 /*
628 * Node on the pinned or flexible tree located at the event context;
629 */
630 struct rb_node group_node;
631 u64 group_index;
632 /*
633 * We need storage to track the entries in perf_pmu_migrate_context; we
634 * cannot use the event_entry because of RCU and we want to keep the
635 * group in tact which avoids us using the other two entries.
636 */
637 struct list_head migrate_entry;
638
639 struct hlist_node hlist_entry;
640 struct list_head active_entry;
641 int nr_siblings;
642
643 /* Not serialized. Only written during event initialization. */
644 int event_caps;
645 /* The cumulative AND of all event_caps for events in this group. */
646 int group_caps;
647
648 struct perf_event *group_leader;
649 struct pmu *pmu;
650 void *pmu_private;
651
652 enum perf_event_state state;
653 unsigned int attach_state;
654 local64_t count;
655 atomic64_t child_count;
656
657 /*
658 * These are the total time in nanoseconds that the event
659 * has been enabled (i.e. eligible to run, and the task has
660 * been scheduled in, if this is a per-task event)
661 * and running (scheduled onto the CPU), respectively.
662 */
663 u64 total_time_enabled;
664 u64 total_time_running;
665 u64 tstamp;
666
667 /*
668 * timestamp shadows the actual context timing but it can
669 * be safely used in NMI interrupt context. It reflects the
670 * context time as it was when the event was last scheduled in.
671 *
672 * ctx_time already accounts for ctx->timestamp. Therefore to
673 * compute ctx_time for a sample, simply add perf_clock().
674 */
675 u64 shadow_ctx_time;
676
677 struct perf_event_attr attr;
678 u16 header_size;
679 u16 id_header_size;
680 u16 read_size;
681 struct hw_perf_event hw;
682
683 struct perf_event_context *ctx;
684 atomic_long_t refcount;
685
686 /*
687 * These accumulate total time (in nanoseconds) that children
688 * events have been enabled and running, respectively.
689 */
690 atomic64_t child_total_time_enabled;
691 atomic64_t child_total_time_running;
692
693 /*
694 * Protect attach/detach and child_list:
695 */
696 struct mutex child_mutex;
697 struct list_head child_list;
698 struct perf_event *parent;
699
700 int oncpu;
701 int cpu;
702
703 struct list_head owner_entry;
704 struct task_struct *owner;
705
706 /* mmap bits */
707 struct mutex mmap_mutex;
708 atomic_t mmap_count;
709
710 struct perf_buffer *rb;
711 struct list_head rb_entry;
712 unsigned long rcu_batches;
713 int rcu_pending;
714
715 /* poll related */
716 wait_queue_head_t waitq;
717 struct fasync_struct *fasync;
718
719 /* delayed work for NMIs and such */
720 int pending_wakeup;
721 int pending_kill;
722 int pending_disable;
723 struct irq_work pending;
724
725 atomic_t event_limit;
726
727 /* address range filters */
728 struct perf_addr_filters_head addr_filters;
729 /* vma address array for file-based filders */
730 struct perf_addr_filter_range *addr_filter_ranges;
731 unsigned long addr_filters_gen;
732
733 /* for aux_output events */
734 struct perf_event *aux_event;
735
736 void (*destroy)(struct perf_event *);
737 struct rcu_head rcu_head;
738
739 struct pid_namespace *ns;
740 u64 id;
741
742 u64 (*clock)(void);
743 perf_overflow_handler_t overflow_handler;
744 void *overflow_handler_context;
745#ifdef CONFIG_BPF_SYSCALL
746 perf_overflow_handler_t orig_overflow_handler;
747 struct bpf_prog *prog;
748#endif
749
750#ifdef CONFIG_EVENT_TRACING
751 struct trace_event_call *tp_event;
752 struct event_filter *filter;
753#ifdef CONFIG_FUNCTION_TRACER
754 struct ftrace_ops ftrace_ops;
755#endif
756#endif
757
758#ifdef CONFIG_CGROUP_PERF
759 struct perf_cgroup *cgrp; /* cgroup event is attach to */
760#endif
761
762#ifdef CONFIG_SECURITY
763 void *security;
764#endif
765 struct list_head sb_list;
766#endif /* CONFIG_PERF_EVENTS */
767};
768
769
770struct perf_event_groups {
771 struct rb_root tree;
772 u64 index;
773};
774
775/**
776 * struct perf_event_context - event context structure
777 *
778 * Used as a container for task events and CPU events as well:
779 */
780struct perf_event_context {
781 struct pmu *pmu;
782 /*
783 * Protect the states of the events in the list,
784 * nr_active, and the list:
785 */
786 raw_spinlock_t lock;
787 /*
788 * Protect the list of events. Locking either mutex or lock
789 * is sufficient to ensure the list doesn't change; to change
790 * the list you need to lock both the mutex and the spinlock.
791 */
792 struct mutex mutex;
793
794 struct list_head active_ctx_list;
795 struct perf_event_groups pinned_groups;
796 struct perf_event_groups flexible_groups;
797 struct list_head event_list;
798
799 struct list_head pinned_active;
800 struct list_head flexible_active;
801
802 int nr_events;
803 int nr_active;
804 int is_active;
805 int nr_stat;
806 int nr_freq;
807 int rotate_disable;
808 /*
809 * Set when nr_events != nr_active, except tolerant to events not
810 * necessary to be active due to scheduling constraints, such as cgroups.
811 */
812 int rotate_necessary;
813 refcount_t refcount;
814 struct task_struct *task;
815
816 /*
817 * Context clock, runs when context enabled.
818 */
819 u64 time;
820 u64 timestamp;
821
822 /*
823 * These fields let us detect when two contexts have both
824 * been cloned (inherited) from a common ancestor.
825 */
826 struct perf_event_context *parent_ctx;
827 u64 parent_gen;
828 u64 generation;
829 int pin_count;
830#ifdef CONFIG_CGROUP_PERF
831 int nr_cgroups; /* cgroup evts */
832#endif
833 void *task_ctx_data; /* pmu specific data */
834 struct rcu_head rcu_head;
835};
836
837/*
838 * Number of contexts where an event can trigger:
839 * task, softirq, hardirq, nmi.
840 */
841#define PERF_NR_CONTEXTS 4
842
843/**
844 * struct perf_event_cpu_context - per cpu event context structure
845 */
846struct perf_cpu_context {
847 struct perf_event_context ctx;
848 struct perf_event_context *task_ctx;
849 int active_oncpu;
850 int exclusive;
851
852 raw_spinlock_t hrtimer_lock;
853 struct hrtimer hrtimer;
854 ktime_t hrtimer_interval;
855 unsigned int hrtimer_active;
856
857#ifdef CONFIG_CGROUP_PERF
858 struct perf_cgroup *cgrp;
859 struct list_head cgrp_cpuctx_entry;
860#endif
861
862 struct list_head sched_cb_entry;
863 int sched_cb_usage;
864
865 int online;
866 /*
867 * Per-CPU storage for iterators used in visit_groups_merge. The default
868 * storage is of size 2 to hold the CPU and any CPU event iterators.
869 */
870 int heap_size;
871 struct perf_event **heap;
872 struct perf_event *heap_default[2];
873};
874
875struct perf_output_handle {
876 struct perf_event *event;
877 struct perf_buffer *rb;
878 unsigned long wakeup;
879 unsigned long size;
880 u64 aux_flags;
881 union {
882 void *addr;
883 unsigned long head;
884 };
885 int page;
886};
887
888struct bpf_perf_event_data_kern {
889 bpf_user_pt_regs_t *regs;
890 struct perf_sample_data *data;
891 struct perf_event *event;
892};
893
894#ifdef CONFIG_CGROUP_PERF
895
896/*
897 * perf_cgroup_info keeps track of time_enabled for a cgroup.
898 * This is a per-cpu dynamically allocated data structure.
899 */
900struct perf_cgroup_info {
901 u64 time;
902 u64 timestamp;
903};
904
905struct perf_cgroup {
906 struct cgroup_subsys_state css;
907 struct perf_cgroup_info __percpu *info;
908};
909
910/*
911 * Must ensure cgroup is pinned (css_get) before calling
912 * this function. In other words, we cannot call this function
913 * if there is no cgroup event for the current CPU context.
914 */
915static inline struct perf_cgroup *
916perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
917{
918 return container_of(task_css_check(task, perf_event_cgrp_id,
919 ctx ? lockdep_is_held(&ctx->lock)
920 : true),
921 struct perf_cgroup, css);
922}
923#endif /* CONFIG_CGROUP_PERF */
924
925#ifdef CONFIG_PERF_EVENTS
926
927extern void *perf_aux_output_begin(struct perf_output_handle *handle,
928 struct perf_event *event);
929extern void perf_aux_output_end(struct perf_output_handle *handle,
930 unsigned long size);
931extern int perf_aux_output_skip(struct perf_output_handle *handle,
932 unsigned long size);
933extern void *perf_get_aux(struct perf_output_handle *handle);
934extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
935extern void perf_event_itrace_started(struct perf_event *event);
936
937extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
938extern void perf_pmu_unregister(struct pmu *pmu);
939
940extern int perf_num_counters(void);
941extern const char *perf_pmu_name(void);
942extern void __perf_event_task_sched_in(struct task_struct *prev,
943 struct task_struct *task);
944extern void __perf_event_task_sched_out(struct task_struct *prev,
945 struct task_struct *next);
946extern int perf_event_init_task(struct task_struct *child);
947extern void perf_event_exit_task(struct task_struct *child);
948extern void perf_event_free_task(struct task_struct *task);
949extern void perf_event_delayed_put(struct task_struct *task);
950extern struct file *perf_event_get(unsigned int fd);
951extern const struct perf_event *perf_get_event(struct file *file);
952extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
953extern void perf_event_print_debug(void);
954extern void perf_pmu_disable(struct pmu *pmu);
955extern void perf_pmu_enable(struct pmu *pmu);
956extern void perf_sched_cb_dec(struct pmu *pmu);
957extern void perf_sched_cb_inc(struct pmu *pmu);
958extern int perf_event_task_disable(void);
959extern int perf_event_task_enable(void);
960
961extern void perf_pmu_resched(struct pmu *pmu);
962
963extern int perf_event_refresh(struct perf_event *event, int refresh);
964extern void perf_event_update_userpage(struct perf_event *event);
965extern int perf_event_release_kernel(struct perf_event *event);
966extern struct perf_event *
967perf_event_create_kernel_counter(struct perf_event_attr *attr,
968 int cpu,
969 struct task_struct *task,
970 perf_overflow_handler_t callback,
971 void *context);
972extern void perf_pmu_migrate_context(struct pmu *pmu,
973 int src_cpu, int dst_cpu);
974int perf_event_read_local(struct perf_event *event, u64 *value,
975 u64 *enabled, u64 *running);
976extern u64 perf_event_read_value(struct perf_event *event,
977 u64 *enabled, u64 *running);
978
979
980struct perf_sample_data {
981 /*
982 * Fields set by perf_sample_data_init(), group so as to
983 * minimize the cachelines touched.
984 */
985 u64 addr;
986 struct perf_raw_record *raw;
987 struct perf_branch_stack *br_stack;
988 u64 period;
989 u64 weight;
990 u64 txn;
991 union perf_mem_data_src data_src;
992
993 /*
994 * The other fields, optionally {set,used} by
995 * perf_{prepare,output}_sample().
996 */
997 u64 type;
998 u64 ip;
999 struct {
1000 u32 pid;
1001 u32 tid;
1002 } tid_entry;
1003 u64 time;
1004 u64 id;
1005 u64 stream_id;
1006 struct {
1007 u32 cpu;
1008 u32 reserved;
1009 } cpu_entry;
1010 struct perf_callchain_entry *callchain;
1011 u64 aux_size;
1012
1013 /*
1014 * regs_user may point to task_pt_regs or to regs_user_copy, depending
1015 * on arch details.
1016 */
1017 struct perf_regs regs_user;
1018 struct pt_regs regs_user_copy;
1019
1020 struct perf_regs regs_intr;
1021 u64 stack_user_size;
1022
1023 u64 phys_addr;
1024 u64 cgroup;
1025} ____cacheline_aligned;
1026
1027/* default value for data source */
1028#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
1029 PERF_MEM_S(LVL, NA) |\
1030 PERF_MEM_S(SNOOP, NA) |\
1031 PERF_MEM_S(LOCK, NA) |\
1032 PERF_MEM_S(TLB, NA))
1033
1034static inline void perf_sample_data_init(struct perf_sample_data *data,
1035 u64 addr, u64 period)
1036{
1037 /* remaining struct members initialized in perf_prepare_sample() */
1038 data->addr = addr;
1039 data->raw = NULL;
1040 data->br_stack = NULL;
1041 data->period = period;
1042 data->weight = 0;
1043 data->data_src.val = PERF_MEM_NA;
1044 data->txn = 0;
1045}
1046
1047extern void perf_output_sample(struct perf_output_handle *handle,
1048 struct perf_event_header *header,
1049 struct perf_sample_data *data,
1050 struct perf_event *event);
1051extern void perf_prepare_sample(struct perf_event_header *header,
1052 struct perf_sample_data *data,
1053 struct perf_event *event,
1054 struct pt_regs *regs);
1055
1056extern int perf_event_overflow(struct perf_event *event,
1057 struct perf_sample_data *data,
1058 struct pt_regs *regs);
1059
1060extern void perf_event_output_forward(struct perf_event *event,
1061 struct perf_sample_data *data,
1062 struct pt_regs *regs);
1063extern void perf_event_output_backward(struct perf_event *event,
1064 struct perf_sample_data *data,
1065 struct pt_regs *regs);
1066extern int perf_event_output(struct perf_event *event,
1067 struct perf_sample_data *data,
1068 struct pt_regs *regs);
1069
1070static inline bool
1071is_default_overflow_handler(struct perf_event *event)
1072{
1073 if (likely(event->overflow_handler == perf_event_output_forward))
1074 return true;
1075 if (unlikely(event->overflow_handler == perf_event_output_backward))
1076 return true;
1077 return false;
1078}
1079
1080extern void
1081perf_event_header__init_id(struct perf_event_header *header,
1082 struct perf_sample_data *data,
1083 struct perf_event *event);
1084extern void
1085perf_event__output_id_sample(struct perf_event *event,
1086 struct perf_output_handle *handle,
1087 struct perf_sample_data *sample);
1088
1089extern void
1090perf_log_lost_samples(struct perf_event *event, u64 lost);
1091
1092static inline bool event_has_any_exclude_flag(struct perf_event *event)
1093{
1094 struct perf_event_attr *attr = &event->attr;
1095
1096 return attr->exclude_idle || attr->exclude_user ||
1097 attr->exclude_kernel || attr->exclude_hv ||
1098 attr->exclude_guest || attr->exclude_host;
1099}
1100
1101static inline bool is_sampling_event(struct perf_event *event)
1102{
1103 return event->attr.sample_period != 0;
1104}
1105
1106/*
1107 * Return 1 for a software event, 0 for a hardware event
1108 */
1109static inline int is_software_event(struct perf_event *event)
1110{
1111 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1112}
1113
1114/*
1115 * Return 1 for event in sw context, 0 for event in hw context
1116 */
1117static inline int in_software_context(struct perf_event *event)
1118{
1119 return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1120}
1121
1122static inline int is_exclusive_pmu(struct pmu *pmu)
1123{
1124 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1125}
1126
1127extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1128
1129extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1130extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1131
1132#ifndef perf_arch_fetch_caller_regs
1133static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1134#endif
1135
1136/*
1137 * When generating a perf sample in-line, instead of from an interrupt /
1138 * exception, we lack a pt_regs. This is typically used from software events
1139 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1140 *
1141 * We typically don't need a full set, but (for x86) do require:
1142 * - ip for PERF_SAMPLE_IP
1143 * - cs for user_mode() tests
1144 * - sp for PERF_SAMPLE_CALLCHAIN
1145 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1146 *
1147 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1148 * things like PERF_SAMPLE_REGS_INTR.
1149 */
1150static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1151{
1152 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1153}
1154
1155static __always_inline void
1156perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1157{
1158 if (static_key_false(&perf_swevent_enabled[event_id]))
1159 __perf_sw_event(event_id, nr, regs, addr);
1160}
1161
1162DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1163
1164/*
1165 * 'Special' version for the scheduler, it hard assumes no recursion,
1166 * which is guaranteed by us not actually scheduling inside other swevents
1167 * because those disable preemption.
1168 */
1169static __always_inline void
1170perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1171{
1172 if (static_key_false(&perf_swevent_enabled[event_id])) {
1173 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1174
1175 perf_fetch_caller_regs(regs);
1176 ___perf_sw_event(event_id, nr, regs, addr);
1177 }
1178}
1179
1180extern struct static_key_false perf_sched_events;
1181
1182static __always_inline bool
1183perf_sw_migrate_enabled(void)
1184{
1185 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1186 return true;
1187 return false;
1188}
1189
1190static inline void perf_event_task_migrate(struct task_struct *task)
1191{
1192 if (perf_sw_migrate_enabled())
1193 task->sched_migrated = 1;
1194}
1195
1196static inline void perf_event_task_sched_in(struct task_struct *prev,
1197 struct task_struct *task)
1198{
1199 if (static_branch_unlikely(&perf_sched_events))
1200 __perf_event_task_sched_in(prev, task);
1201
1202 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1203 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1204
1205 perf_fetch_caller_regs(regs);
1206 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1207 task->sched_migrated = 0;
1208 }
1209}
1210
1211static inline void perf_event_task_sched_out(struct task_struct *prev,
1212 struct task_struct *next)
1213{
1214 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1215
1216 if (static_branch_unlikely(&perf_sched_events))
1217 __perf_event_task_sched_out(prev, next);
1218}
1219
1220extern void perf_event_mmap(struct vm_area_struct *vma);
1221
1222extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1223 bool unregister, const char *sym);
1224extern void perf_event_bpf_event(struct bpf_prog *prog,
1225 enum perf_bpf_event_type type,
1226 u16 flags);
1227
1228extern struct perf_guest_info_callbacks *perf_guest_cbs;
1229extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1230extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1231
1232extern void perf_event_exec(void);
1233extern void perf_event_comm(struct task_struct *tsk, bool exec);
1234extern void perf_event_namespaces(struct task_struct *tsk);
1235extern void perf_event_fork(struct task_struct *tsk);
1236extern void perf_event_text_poke(const void *addr,
1237 const void *old_bytes, size_t old_len,
1238 const void *new_bytes, size_t new_len);
1239
1240/* Callchains */
1241DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1242
1243extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1244extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1245extern struct perf_callchain_entry *
1246get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1247 u32 max_stack, bool crosstask, bool add_mark);
1248extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1249extern int get_callchain_buffers(int max_stack);
1250extern void put_callchain_buffers(void);
1251extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1252extern void put_callchain_entry(int rctx);
1253
1254extern int sysctl_perf_event_max_stack;
1255extern int sysctl_perf_event_max_contexts_per_stack;
1256
1257static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1258{
1259 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1260 struct perf_callchain_entry *entry = ctx->entry;
1261 entry->ip[entry->nr++] = ip;
1262 ++ctx->contexts;
1263 return 0;
1264 } else {
1265 ctx->contexts_maxed = true;
1266 return -1; /* no more room, stop walking the stack */
1267 }
1268}
1269
1270static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1271{
1272 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1273 struct perf_callchain_entry *entry = ctx->entry;
1274 entry->ip[entry->nr++] = ip;
1275 ++ctx->nr;
1276 return 0;
1277 } else {
1278 return -1; /* no more room, stop walking the stack */
1279 }
1280}
1281
1282extern int sysctl_perf_event_paranoid;
1283extern int sysctl_perf_event_mlock;
1284extern int sysctl_perf_event_sample_rate;
1285extern int sysctl_perf_cpu_time_max_percent;
1286
1287extern void perf_sample_event_took(u64 sample_len_ns);
1288
1289int perf_proc_update_handler(struct ctl_table *table, int write,
1290 void *buffer, size_t *lenp, loff_t *ppos);
1291int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1292 void *buffer, size_t *lenp, loff_t *ppos);
1293int perf_event_max_stack_handler(struct ctl_table *table, int write,
1294 void *buffer, size_t *lenp, loff_t *ppos);
1295
1296/* Access to perf_event_open(2) syscall. */
1297#define PERF_SECURITY_OPEN 0
1298
1299/* Finer grained perf_event_open(2) access control. */
1300#define PERF_SECURITY_CPU 1
1301#define PERF_SECURITY_KERNEL 2
1302#define PERF_SECURITY_TRACEPOINT 3
1303
1304static inline int perf_is_paranoid(void)
1305{
1306 return sysctl_perf_event_paranoid > -1;
1307}
1308
1309static inline int perf_allow_kernel(struct perf_event_attr *attr)
1310{
1311 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1312 return -EACCES;
1313
1314 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1315}
1316
1317static inline int perf_allow_cpu(struct perf_event_attr *attr)
1318{
1319 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1320 return -EACCES;
1321
1322 return security_perf_event_open(attr, PERF_SECURITY_CPU);
1323}
1324
1325static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1326{
1327 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1328 return -EPERM;
1329
1330 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1331}
1332
1333extern void perf_event_init(void);
1334extern void perf_tp_event(u16 event_type, u64 count, void *record,
1335 int entry_size, struct pt_regs *regs,
1336 struct hlist_head *head, int rctx,
1337 struct task_struct *task);
1338extern void perf_bp_event(struct perf_event *event, void *data);
1339
1340#ifndef perf_misc_flags
1341# define perf_misc_flags(regs) \
1342 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1343# define perf_instruction_pointer(regs) instruction_pointer(regs)
1344#endif
1345#ifndef perf_arch_bpf_user_pt_regs
1346# define perf_arch_bpf_user_pt_regs(regs) regs
1347#endif
1348
1349static inline bool has_branch_stack(struct perf_event *event)
1350{
1351 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1352}
1353
1354static inline bool needs_branch_stack(struct perf_event *event)
1355{
1356 return event->attr.branch_sample_type != 0;
1357}
1358
1359static inline bool has_aux(struct perf_event *event)
1360{
1361 return event->pmu->setup_aux;
1362}
1363
1364static inline bool is_write_backward(struct perf_event *event)
1365{
1366 return !!event->attr.write_backward;
1367}
1368
1369static inline bool has_addr_filter(struct perf_event *event)
1370{
1371 return event->pmu->nr_addr_filters;
1372}
1373
1374/*
1375 * An inherited event uses parent's filters
1376 */
1377static inline struct perf_addr_filters_head *
1378perf_event_addr_filters(struct perf_event *event)
1379{
1380 struct perf_addr_filters_head *ifh = &event->addr_filters;
1381
1382 if (event->parent)
1383 ifh = &event->parent->addr_filters;
1384
1385 return ifh;
1386}
1387
1388extern void perf_event_addr_filters_sync(struct perf_event *event);
1389
1390extern int perf_output_begin(struct perf_output_handle *handle,
1391 struct perf_event *event, unsigned int size);
1392extern int perf_output_begin_forward(struct perf_output_handle *handle,
1393 struct perf_event *event,
1394 unsigned int size);
1395extern int perf_output_begin_backward(struct perf_output_handle *handle,
1396 struct perf_event *event,
1397 unsigned int size);
1398
1399extern void perf_output_end(struct perf_output_handle *handle);
1400extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1401 const void *buf, unsigned int len);
1402extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1403 unsigned int len);
1404extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1405 struct perf_output_handle *handle,
1406 unsigned long from, unsigned long to);
1407extern int perf_swevent_get_recursion_context(void);
1408extern void perf_swevent_put_recursion_context(int rctx);
1409extern u64 perf_swevent_set_period(struct perf_event *event);
1410extern void perf_event_enable(struct perf_event *event);
1411extern void perf_event_disable(struct perf_event *event);
1412extern void perf_event_disable_local(struct perf_event *event);
1413extern void perf_event_disable_inatomic(struct perf_event *event);
1414extern void perf_event_task_tick(void);
1415extern int perf_event_account_interrupt(struct perf_event *event);
1416extern int perf_event_period(struct perf_event *event, u64 value);
1417extern u64 perf_event_pause(struct perf_event *event, bool reset);
1418#else /* !CONFIG_PERF_EVENTS: */
1419static inline void *
1420perf_aux_output_begin(struct perf_output_handle *handle,
1421 struct perf_event *event) { return NULL; }
1422static inline void
1423perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1424 { }
1425static inline int
1426perf_aux_output_skip(struct perf_output_handle *handle,
1427 unsigned long size) { return -EINVAL; }
1428static inline void *
1429perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1430static inline void
1431perf_event_task_migrate(struct task_struct *task) { }
1432static inline void
1433perf_event_task_sched_in(struct task_struct *prev,
1434 struct task_struct *task) { }
1435static inline void
1436perf_event_task_sched_out(struct task_struct *prev,
1437 struct task_struct *next) { }
1438static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1439static inline void perf_event_exit_task(struct task_struct *child) { }
1440static inline void perf_event_free_task(struct task_struct *task) { }
1441static inline void perf_event_delayed_put(struct task_struct *task) { }
1442static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1443static inline const struct perf_event *perf_get_event(struct file *file)
1444{
1445 return ERR_PTR(-EINVAL);
1446}
1447static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1448{
1449 return ERR_PTR(-EINVAL);
1450}
1451static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1452 u64 *enabled, u64 *running)
1453{
1454 return -EINVAL;
1455}
1456static inline void perf_event_print_debug(void) { }
1457static inline int perf_event_task_disable(void) { return -EINVAL; }
1458static inline int perf_event_task_enable(void) { return -EINVAL; }
1459static inline int perf_event_refresh(struct perf_event *event, int refresh)
1460{
1461 return -EINVAL;
1462}
1463
1464static inline void
1465perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1466static inline void
1467perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1468static inline void
1469perf_bp_event(struct perf_event *event, void *data) { }
1470
1471static inline int perf_register_guest_info_callbacks
1472(struct perf_guest_info_callbacks *callbacks) { return 0; }
1473static inline int perf_unregister_guest_info_callbacks
1474(struct perf_guest_info_callbacks *callbacks) { return 0; }
1475
1476static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1477
1478typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1479static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1480 bool unregister, const char *sym) { }
1481static inline void perf_event_bpf_event(struct bpf_prog *prog,
1482 enum perf_bpf_event_type type,
1483 u16 flags) { }
1484static inline void perf_event_exec(void) { }
1485static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1486static inline void perf_event_namespaces(struct task_struct *tsk) { }
1487static inline void perf_event_fork(struct task_struct *tsk) { }
1488static inline void perf_event_text_poke(const void *addr,
1489 const void *old_bytes,
1490 size_t old_len,
1491 const void *new_bytes,
1492 size_t new_len) { }
1493static inline void perf_event_init(void) { }
1494static inline int perf_swevent_get_recursion_context(void) { return -1; }
1495static inline void perf_swevent_put_recursion_context(int rctx) { }
1496static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1497static inline void perf_event_enable(struct perf_event *event) { }
1498static inline void perf_event_disable(struct perf_event *event) { }
1499static inline int __perf_event_disable(void *info) { return -1; }
1500static inline void perf_event_task_tick(void) { }
1501static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1502static inline int perf_event_period(struct perf_event *event, u64 value)
1503{
1504 return -EINVAL;
1505}
1506static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1507{
1508 return 0;
1509}
1510#endif
1511
1512#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1513extern void perf_restore_debug_store(void);
1514#else
1515static inline void perf_restore_debug_store(void) { }
1516#endif
1517
1518static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1519{
1520 return frag->pad < sizeof(u64);
1521}
1522
1523#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1524
1525struct perf_pmu_events_attr {
1526 struct device_attribute attr;
1527 u64 id;
1528 const char *event_str;
1529};
1530
1531struct perf_pmu_events_ht_attr {
1532 struct device_attribute attr;
1533 u64 id;
1534 const char *event_str_ht;
1535 const char *event_str_noht;
1536};
1537
1538ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1539 char *page);
1540
1541#define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1542static struct perf_pmu_events_attr _var = { \
1543 .attr = __ATTR(_name, 0444, _show, NULL), \
1544 .id = _id, \
1545};
1546
1547#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1548static struct perf_pmu_events_attr _var = { \
1549 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1550 .id = 0, \
1551 .event_str = _str, \
1552};
1553
1554#define PMU_FORMAT_ATTR(_name, _format) \
1555static ssize_t \
1556_name##_show(struct device *dev, \
1557 struct device_attribute *attr, \
1558 char *page) \
1559{ \
1560 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1561 return sprintf(page, _format "\n"); \
1562} \
1563 \
1564static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1565
1566/* Performance counter hotplug functions */
1567#ifdef CONFIG_PERF_EVENTS
1568int perf_event_init_cpu(unsigned int cpu);
1569int perf_event_exit_cpu(unsigned int cpu);
1570#else
1571#define perf_event_init_cpu NULL
1572#define perf_event_exit_cpu NULL
1573#endif
1574
1575extern void __weak arch_perf_update_userpage(struct perf_event *event,
1576 struct perf_event_mmap_page *userpg,
1577 u64 now);
1578
1579#endif /* _LINUX_PERF_EVENT_H */