at v5.9 27 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PAGEMAP_H 3#define _LINUX_PAGEMAP_H 4 5/* 6 * Copyright 1995 Linus Torvalds 7 */ 8#include <linux/mm.h> 9#include <linux/fs.h> 10#include <linux/list.h> 11#include <linux/highmem.h> 12#include <linux/compiler.h> 13#include <linux/uaccess.h> 14#include <linux/gfp.h> 15#include <linux/bitops.h> 16#include <linux/hardirq.h> /* for in_interrupt() */ 17#include <linux/hugetlb_inline.h> 18 19struct pagevec; 20 21/* 22 * Bits in mapping->flags. 23 */ 24enum mapping_flags { 25 AS_EIO = 0, /* IO error on async write */ 26 AS_ENOSPC = 1, /* ENOSPC on async write */ 27 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 28 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 29 AS_EXITING = 4, /* final truncate in progress */ 30 /* writeback related tags are not used */ 31 AS_NO_WRITEBACK_TAGS = 5, 32}; 33 34/** 35 * mapping_set_error - record a writeback error in the address_space 36 * @mapping: the mapping in which an error should be set 37 * @error: the error to set in the mapping 38 * 39 * When writeback fails in some way, we must record that error so that 40 * userspace can be informed when fsync and the like are called. We endeavor 41 * to report errors on any file that was open at the time of the error. Some 42 * internal callers also need to know when writeback errors have occurred. 43 * 44 * When a writeback error occurs, most filesystems will want to call 45 * mapping_set_error to record the error in the mapping so that it can be 46 * reported when the application calls fsync(2). 47 */ 48static inline void mapping_set_error(struct address_space *mapping, int error) 49{ 50 if (likely(!error)) 51 return; 52 53 /* Record in wb_err for checkers using errseq_t based tracking */ 54 __filemap_set_wb_err(mapping, error); 55 56 /* Record it in superblock */ 57 if (mapping->host) 58 errseq_set(&mapping->host->i_sb->s_wb_err, error); 59 60 /* Record it in flags for now, for legacy callers */ 61 if (error == -ENOSPC) 62 set_bit(AS_ENOSPC, &mapping->flags); 63 else 64 set_bit(AS_EIO, &mapping->flags); 65} 66 67static inline void mapping_set_unevictable(struct address_space *mapping) 68{ 69 set_bit(AS_UNEVICTABLE, &mapping->flags); 70} 71 72static inline void mapping_clear_unevictable(struct address_space *mapping) 73{ 74 clear_bit(AS_UNEVICTABLE, &mapping->flags); 75} 76 77static inline bool mapping_unevictable(struct address_space *mapping) 78{ 79 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); 80} 81 82static inline void mapping_set_exiting(struct address_space *mapping) 83{ 84 set_bit(AS_EXITING, &mapping->flags); 85} 86 87static inline int mapping_exiting(struct address_space *mapping) 88{ 89 return test_bit(AS_EXITING, &mapping->flags); 90} 91 92static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 93{ 94 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 95} 96 97static inline int mapping_use_writeback_tags(struct address_space *mapping) 98{ 99 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 100} 101 102static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 103{ 104 return mapping->gfp_mask; 105} 106 107/* Restricts the given gfp_mask to what the mapping allows. */ 108static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 109 gfp_t gfp_mask) 110{ 111 return mapping_gfp_mask(mapping) & gfp_mask; 112} 113 114/* 115 * This is non-atomic. Only to be used before the mapping is activated. 116 * Probably needs a barrier... 117 */ 118static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 119{ 120 m->gfp_mask = mask; 121} 122 123void release_pages(struct page **pages, int nr); 124 125/* 126 * speculatively take a reference to a page. 127 * If the page is free (_refcount == 0), then _refcount is untouched, and 0 128 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. 129 * 130 * This function must be called inside the same rcu_read_lock() section as has 131 * been used to lookup the page in the pagecache radix-tree (or page table): 132 * this allows allocators to use a synchronize_rcu() to stabilize _refcount. 133 * 134 * Unless an RCU grace period has passed, the count of all pages coming out 135 * of the allocator must be considered unstable. page_count may return higher 136 * than expected, and put_page must be able to do the right thing when the 137 * page has been finished with, no matter what it is subsequently allocated 138 * for (because put_page is what is used here to drop an invalid speculative 139 * reference). 140 * 141 * This is the interesting part of the lockless pagecache (and lockless 142 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 143 * has the following pattern: 144 * 1. find page in radix tree 145 * 2. conditionally increment refcount 146 * 3. check the page is still in pagecache (if no, goto 1) 147 * 148 * Remove-side that cares about stability of _refcount (eg. reclaim) has the 149 * following (with the i_pages lock held): 150 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 151 * B. remove page from pagecache 152 * C. free the page 153 * 154 * There are 2 critical interleavings that matter: 155 * - 2 runs before A: in this case, A sees elevated refcount and bails out 156 * - A runs before 2: in this case, 2 sees zero refcount and retries; 157 * subsequently, B will complete and 1 will find no page, causing the 158 * lookup to return NULL. 159 * 160 * It is possible that between 1 and 2, the page is removed then the exact same 161 * page is inserted into the same position in pagecache. That's OK: the 162 * old find_get_page using a lock could equally have run before or after 163 * such a re-insertion, depending on order that locks are granted. 164 * 165 * Lookups racing against pagecache insertion isn't a big problem: either 1 166 * will find the page or it will not. Likewise, the old find_get_page could run 167 * either before the insertion or afterwards, depending on timing. 168 */ 169static inline int __page_cache_add_speculative(struct page *page, int count) 170{ 171#ifdef CONFIG_TINY_RCU 172# ifdef CONFIG_PREEMPT_COUNT 173 VM_BUG_ON(!in_atomic() && !irqs_disabled()); 174# endif 175 /* 176 * Preempt must be disabled here - we rely on rcu_read_lock doing 177 * this for us. 178 * 179 * Pagecache won't be truncated from interrupt context, so if we have 180 * found a page in the radix tree here, we have pinned its refcount by 181 * disabling preempt, and hence no need for the "speculative get" that 182 * SMP requires. 183 */ 184 VM_BUG_ON_PAGE(page_count(page) == 0, page); 185 page_ref_add(page, count); 186 187#else 188 if (unlikely(!page_ref_add_unless(page, count, 0))) { 189 /* 190 * Either the page has been freed, or will be freed. 191 * In either case, retry here and the caller should 192 * do the right thing (see comments above). 193 */ 194 return 0; 195 } 196#endif 197 VM_BUG_ON_PAGE(PageTail(page), page); 198 199 return 1; 200} 201 202static inline int page_cache_get_speculative(struct page *page) 203{ 204 return __page_cache_add_speculative(page, 1); 205} 206 207static inline int page_cache_add_speculative(struct page *page, int count) 208{ 209 return __page_cache_add_speculative(page, count); 210} 211 212/** 213 * attach_page_private - Attach private data to a page. 214 * @page: Page to attach data to. 215 * @data: Data to attach to page. 216 * 217 * Attaching private data to a page increments the page's reference count. 218 * The data must be detached before the page will be freed. 219 */ 220static inline void attach_page_private(struct page *page, void *data) 221{ 222 get_page(page); 223 set_page_private(page, (unsigned long)data); 224 SetPagePrivate(page); 225} 226 227/** 228 * detach_page_private - Detach private data from a page. 229 * @page: Page to detach data from. 230 * 231 * Removes the data that was previously attached to the page and decrements 232 * the refcount on the page. 233 * 234 * Return: Data that was attached to the page. 235 */ 236static inline void *detach_page_private(struct page *page) 237{ 238 void *data = (void *)page_private(page); 239 240 if (!PagePrivate(page)) 241 return NULL; 242 ClearPagePrivate(page); 243 set_page_private(page, 0); 244 put_page(page); 245 246 return data; 247} 248 249#ifdef CONFIG_NUMA 250extern struct page *__page_cache_alloc(gfp_t gfp); 251#else 252static inline struct page *__page_cache_alloc(gfp_t gfp) 253{ 254 return alloc_pages(gfp, 0); 255} 256#endif 257 258static inline struct page *page_cache_alloc(struct address_space *x) 259{ 260 return __page_cache_alloc(mapping_gfp_mask(x)); 261} 262 263static inline gfp_t readahead_gfp_mask(struct address_space *x) 264{ 265 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; 266} 267 268typedef int filler_t(void *, struct page *); 269 270pgoff_t page_cache_next_miss(struct address_space *mapping, 271 pgoff_t index, unsigned long max_scan); 272pgoff_t page_cache_prev_miss(struct address_space *mapping, 273 pgoff_t index, unsigned long max_scan); 274 275#define FGP_ACCESSED 0x00000001 276#define FGP_LOCK 0x00000002 277#define FGP_CREAT 0x00000004 278#define FGP_WRITE 0x00000008 279#define FGP_NOFS 0x00000010 280#define FGP_NOWAIT 0x00000020 281#define FGP_FOR_MMAP 0x00000040 282 283struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 284 int fgp_flags, gfp_t cache_gfp_mask); 285 286/** 287 * find_get_page - find and get a page reference 288 * @mapping: the address_space to search 289 * @offset: the page index 290 * 291 * Looks up the page cache slot at @mapping & @offset. If there is a 292 * page cache page, it is returned with an increased refcount. 293 * 294 * Otherwise, %NULL is returned. 295 */ 296static inline struct page *find_get_page(struct address_space *mapping, 297 pgoff_t offset) 298{ 299 return pagecache_get_page(mapping, offset, 0, 0); 300} 301 302static inline struct page *find_get_page_flags(struct address_space *mapping, 303 pgoff_t offset, int fgp_flags) 304{ 305 return pagecache_get_page(mapping, offset, fgp_flags, 0); 306} 307 308/** 309 * find_lock_page - locate, pin and lock a pagecache page 310 * @mapping: the address_space to search 311 * @offset: the page index 312 * 313 * Looks up the page cache slot at @mapping & @offset. If there is a 314 * page cache page, it is returned locked and with an increased 315 * refcount. 316 * 317 * Otherwise, %NULL is returned. 318 * 319 * find_lock_page() may sleep. 320 */ 321static inline struct page *find_lock_page(struct address_space *mapping, 322 pgoff_t offset) 323{ 324 return pagecache_get_page(mapping, offset, FGP_LOCK, 0); 325} 326 327/** 328 * find_or_create_page - locate or add a pagecache page 329 * @mapping: the page's address_space 330 * @index: the page's index into the mapping 331 * @gfp_mask: page allocation mode 332 * 333 * Looks up the page cache slot at @mapping & @offset. If there is a 334 * page cache page, it is returned locked and with an increased 335 * refcount. 336 * 337 * If the page is not present, a new page is allocated using @gfp_mask 338 * and added to the page cache and the VM's LRU list. The page is 339 * returned locked and with an increased refcount. 340 * 341 * On memory exhaustion, %NULL is returned. 342 * 343 * find_or_create_page() may sleep, even if @gfp_flags specifies an 344 * atomic allocation! 345 */ 346static inline struct page *find_or_create_page(struct address_space *mapping, 347 pgoff_t index, gfp_t gfp_mask) 348{ 349 return pagecache_get_page(mapping, index, 350 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 351 gfp_mask); 352} 353 354/** 355 * grab_cache_page_nowait - returns locked page at given index in given cache 356 * @mapping: target address_space 357 * @index: the page index 358 * 359 * Same as grab_cache_page(), but do not wait if the page is unavailable. 360 * This is intended for speculative data generators, where the data can 361 * be regenerated if the page couldn't be grabbed. This routine should 362 * be safe to call while holding the lock for another page. 363 * 364 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 365 * and deadlock against the caller's locked page. 366 */ 367static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 368 pgoff_t index) 369{ 370 return pagecache_get_page(mapping, index, 371 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 372 mapping_gfp_mask(mapping)); 373} 374 375/* 376 * Given the page we found in the page cache, return the page corresponding 377 * to this index in the file 378 */ 379static inline struct page *find_subpage(struct page *head, pgoff_t index) 380{ 381 /* HugeTLBfs wants the head page regardless */ 382 if (PageHuge(head)) 383 return head; 384 385 return head + (index & (thp_nr_pages(head) - 1)); 386} 387 388struct page *find_get_entry(struct address_space *mapping, pgoff_t offset); 389struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset); 390unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 391 unsigned int nr_entries, struct page **entries, 392 pgoff_t *indices); 393unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 394 pgoff_t end, unsigned int nr_pages, 395 struct page **pages); 396static inline unsigned find_get_pages(struct address_space *mapping, 397 pgoff_t *start, unsigned int nr_pages, 398 struct page **pages) 399{ 400 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages, 401 pages); 402} 403unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 404 unsigned int nr_pages, struct page **pages); 405unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 406 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 407 struct page **pages); 408static inline unsigned find_get_pages_tag(struct address_space *mapping, 409 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages, 410 struct page **pages) 411{ 412 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag, 413 nr_pages, pages); 414} 415 416struct page *grab_cache_page_write_begin(struct address_space *mapping, 417 pgoff_t index, unsigned flags); 418 419/* 420 * Returns locked page at given index in given cache, creating it if needed. 421 */ 422static inline struct page *grab_cache_page(struct address_space *mapping, 423 pgoff_t index) 424{ 425 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 426} 427 428extern struct page * read_cache_page(struct address_space *mapping, 429 pgoff_t index, filler_t *filler, void *data); 430extern struct page * read_cache_page_gfp(struct address_space *mapping, 431 pgoff_t index, gfp_t gfp_mask); 432extern int read_cache_pages(struct address_space *mapping, 433 struct list_head *pages, filler_t *filler, void *data); 434 435static inline struct page *read_mapping_page(struct address_space *mapping, 436 pgoff_t index, void *data) 437{ 438 return read_cache_page(mapping, index, NULL, data); 439} 440 441/* 442 * Get index of the page with in radix-tree 443 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) 444 */ 445static inline pgoff_t page_to_index(struct page *page) 446{ 447 pgoff_t pgoff; 448 449 if (likely(!PageTransTail(page))) 450 return page->index; 451 452 /* 453 * We don't initialize ->index for tail pages: calculate based on 454 * head page 455 */ 456 pgoff = compound_head(page)->index; 457 pgoff += page - compound_head(page); 458 return pgoff; 459} 460 461/* 462 * Get the offset in PAGE_SIZE. 463 * (TODO: hugepage should have ->index in PAGE_SIZE) 464 */ 465static inline pgoff_t page_to_pgoff(struct page *page) 466{ 467 if (unlikely(PageHeadHuge(page))) 468 return page->index << compound_order(page); 469 470 return page_to_index(page); 471} 472 473/* 474 * Return byte-offset into filesystem object for page. 475 */ 476static inline loff_t page_offset(struct page *page) 477{ 478 return ((loff_t)page->index) << PAGE_SHIFT; 479} 480 481static inline loff_t page_file_offset(struct page *page) 482{ 483 return ((loff_t)page_index(page)) << PAGE_SHIFT; 484} 485 486extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 487 unsigned long address); 488 489static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 490 unsigned long address) 491{ 492 pgoff_t pgoff; 493 if (unlikely(is_vm_hugetlb_page(vma))) 494 return linear_hugepage_index(vma, address); 495 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 496 pgoff += vma->vm_pgoff; 497 return pgoff; 498} 499 500/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 501struct wait_page_key { 502 struct page *page; 503 int bit_nr; 504 int page_match; 505}; 506 507struct wait_page_queue { 508 struct page *page; 509 int bit_nr; 510 wait_queue_entry_t wait; 511}; 512 513static inline bool wake_page_match(struct wait_page_queue *wait_page, 514 struct wait_page_key *key) 515{ 516 if (wait_page->page != key->page) 517 return false; 518 key->page_match = 1; 519 520 if (wait_page->bit_nr != key->bit_nr) 521 return false; 522 523 return true; 524} 525 526extern void __lock_page(struct page *page); 527extern int __lock_page_killable(struct page *page); 528extern int __lock_page_async(struct page *page, struct wait_page_queue *wait); 529extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 530 unsigned int flags); 531extern void unlock_page(struct page *page); 532 533/* 534 * Return true if the page was successfully locked 535 */ 536static inline int trylock_page(struct page *page) 537{ 538 page = compound_head(page); 539 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 540} 541 542/* 543 * lock_page may only be called if we have the page's inode pinned. 544 */ 545static inline void lock_page(struct page *page) 546{ 547 might_sleep(); 548 if (!trylock_page(page)) 549 __lock_page(page); 550} 551 552/* 553 * lock_page_killable is like lock_page but can be interrupted by fatal 554 * signals. It returns 0 if it locked the page and -EINTR if it was 555 * killed while waiting. 556 */ 557static inline int lock_page_killable(struct page *page) 558{ 559 might_sleep(); 560 if (!trylock_page(page)) 561 return __lock_page_killable(page); 562 return 0; 563} 564 565/* 566 * lock_page_async - Lock the page, unless this would block. If the page 567 * is already locked, then queue a callback when the page becomes unlocked. 568 * This callback can then retry the operation. 569 * 570 * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page 571 * was already locked and the callback defined in 'wait' was queued. 572 */ 573static inline int lock_page_async(struct page *page, 574 struct wait_page_queue *wait) 575{ 576 if (!trylock_page(page)) 577 return __lock_page_async(page, wait); 578 return 0; 579} 580 581/* 582 * lock_page_or_retry - Lock the page, unless this would block and the 583 * caller indicated that it can handle a retry. 584 * 585 * Return value and mmap_lock implications depend on flags; see 586 * __lock_page_or_retry(). 587 */ 588static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, 589 unsigned int flags) 590{ 591 might_sleep(); 592 return trylock_page(page) || __lock_page_or_retry(page, mm, flags); 593} 594 595/* 596 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc., 597 * and should not be used directly. 598 */ 599extern void wait_on_page_bit(struct page *page, int bit_nr); 600extern int wait_on_page_bit_killable(struct page *page, int bit_nr); 601 602/* 603 * Wait for a page to be unlocked. 604 * 605 * This must be called with the caller "holding" the page, 606 * ie with increased "page->count" so that the page won't 607 * go away during the wait.. 608 */ 609static inline void wait_on_page_locked(struct page *page) 610{ 611 if (PageLocked(page)) 612 wait_on_page_bit(compound_head(page), PG_locked); 613} 614 615static inline int wait_on_page_locked_killable(struct page *page) 616{ 617 if (!PageLocked(page)) 618 return 0; 619 return wait_on_page_bit_killable(compound_head(page), PG_locked); 620} 621 622extern void put_and_wait_on_page_locked(struct page *page); 623 624void wait_on_page_writeback(struct page *page); 625extern void end_page_writeback(struct page *page); 626void wait_for_stable_page(struct page *page); 627 628void page_endio(struct page *page, bool is_write, int err); 629 630/* 631 * Add an arbitrary waiter to a page's wait queue 632 */ 633extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter); 634 635/* 636 * Fault everything in given userspace address range in. 637 */ 638static inline int fault_in_pages_writeable(char __user *uaddr, int size) 639{ 640 char __user *end = uaddr + size - 1; 641 642 if (unlikely(size == 0)) 643 return 0; 644 645 if (unlikely(uaddr > end)) 646 return -EFAULT; 647 /* 648 * Writing zeroes into userspace here is OK, because we know that if 649 * the zero gets there, we'll be overwriting it. 650 */ 651 do { 652 if (unlikely(__put_user(0, uaddr) != 0)) 653 return -EFAULT; 654 uaddr += PAGE_SIZE; 655 } while (uaddr <= end); 656 657 /* Check whether the range spilled into the next page. */ 658 if (((unsigned long)uaddr & PAGE_MASK) == 659 ((unsigned long)end & PAGE_MASK)) 660 return __put_user(0, end); 661 662 return 0; 663} 664 665static inline int fault_in_pages_readable(const char __user *uaddr, int size) 666{ 667 volatile char c; 668 const char __user *end = uaddr + size - 1; 669 670 if (unlikely(size == 0)) 671 return 0; 672 673 if (unlikely(uaddr > end)) 674 return -EFAULT; 675 676 do { 677 if (unlikely(__get_user(c, uaddr) != 0)) 678 return -EFAULT; 679 uaddr += PAGE_SIZE; 680 } while (uaddr <= end); 681 682 /* Check whether the range spilled into the next page. */ 683 if (((unsigned long)uaddr & PAGE_MASK) == 684 ((unsigned long)end & PAGE_MASK)) { 685 return __get_user(c, end); 686 } 687 688 (void)c; 689 return 0; 690} 691 692int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 693 pgoff_t index, gfp_t gfp_mask); 694int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 695 pgoff_t index, gfp_t gfp_mask); 696extern void delete_from_page_cache(struct page *page); 697extern void __delete_from_page_cache(struct page *page, void *shadow); 698int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); 699void delete_from_page_cache_batch(struct address_space *mapping, 700 struct pagevec *pvec); 701 702#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 703 704void page_cache_sync_readahead(struct address_space *, struct file_ra_state *, 705 struct file *, pgoff_t index, unsigned long req_count); 706void page_cache_async_readahead(struct address_space *, struct file_ra_state *, 707 struct file *, struct page *, pgoff_t index, 708 unsigned long req_count); 709void page_cache_readahead_unbounded(struct address_space *, struct file *, 710 pgoff_t index, unsigned long nr_to_read, 711 unsigned long lookahead_count); 712 713/* 714 * Like add_to_page_cache_locked, but used to add newly allocated pages: 715 * the page is new, so we can just run __SetPageLocked() against it. 716 */ 717static inline int add_to_page_cache(struct page *page, 718 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 719{ 720 int error; 721 722 __SetPageLocked(page); 723 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 724 if (unlikely(error)) 725 __ClearPageLocked(page); 726 return error; 727} 728 729/** 730 * struct readahead_control - Describes a readahead request. 731 * 732 * A readahead request is for consecutive pages. Filesystems which 733 * implement the ->readahead method should call readahead_page() or 734 * readahead_page_batch() in a loop and attempt to start I/O against 735 * each page in the request. 736 * 737 * Most of the fields in this struct are private and should be accessed 738 * by the functions below. 739 * 740 * @file: The file, used primarily by network filesystems for authentication. 741 * May be NULL if invoked internally by the filesystem. 742 * @mapping: Readahead this filesystem object. 743 */ 744struct readahead_control { 745 struct file *file; 746 struct address_space *mapping; 747/* private: use the readahead_* accessors instead */ 748 pgoff_t _index; 749 unsigned int _nr_pages; 750 unsigned int _batch_count; 751}; 752 753/** 754 * readahead_page - Get the next page to read. 755 * @rac: The current readahead request. 756 * 757 * Context: The page is locked and has an elevated refcount. The caller 758 * should decreases the refcount once the page has been submitted for I/O 759 * and unlock the page once all I/O to that page has completed. 760 * Return: A pointer to the next page, or %NULL if we are done. 761 */ 762static inline struct page *readahead_page(struct readahead_control *rac) 763{ 764 struct page *page; 765 766 BUG_ON(rac->_batch_count > rac->_nr_pages); 767 rac->_nr_pages -= rac->_batch_count; 768 rac->_index += rac->_batch_count; 769 770 if (!rac->_nr_pages) { 771 rac->_batch_count = 0; 772 return NULL; 773 } 774 775 page = xa_load(&rac->mapping->i_pages, rac->_index); 776 VM_BUG_ON_PAGE(!PageLocked(page), page); 777 rac->_batch_count = thp_nr_pages(page); 778 779 return page; 780} 781 782static inline unsigned int __readahead_batch(struct readahead_control *rac, 783 struct page **array, unsigned int array_sz) 784{ 785 unsigned int i = 0; 786 XA_STATE(xas, &rac->mapping->i_pages, 0); 787 struct page *page; 788 789 BUG_ON(rac->_batch_count > rac->_nr_pages); 790 rac->_nr_pages -= rac->_batch_count; 791 rac->_index += rac->_batch_count; 792 rac->_batch_count = 0; 793 794 xas_set(&xas, rac->_index); 795 rcu_read_lock(); 796 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { 797 VM_BUG_ON_PAGE(!PageLocked(page), page); 798 VM_BUG_ON_PAGE(PageTail(page), page); 799 array[i++] = page; 800 rac->_batch_count += thp_nr_pages(page); 801 802 /* 803 * The page cache isn't using multi-index entries yet, 804 * so the xas cursor needs to be manually moved to the 805 * next index. This can be removed once the page cache 806 * is converted. 807 */ 808 if (PageHead(page)) 809 xas_set(&xas, rac->_index + rac->_batch_count); 810 811 if (i == array_sz) 812 break; 813 } 814 rcu_read_unlock(); 815 816 return i; 817} 818 819/** 820 * readahead_page_batch - Get a batch of pages to read. 821 * @rac: The current readahead request. 822 * @array: An array of pointers to struct page. 823 * 824 * Context: The pages are locked and have an elevated refcount. The caller 825 * should decreases the refcount once the page has been submitted for I/O 826 * and unlock the page once all I/O to that page has completed. 827 * Return: The number of pages placed in the array. 0 indicates the request 828 * is complete. 829 */ 830#define readahead_page_batch(rac, array) \ 831 __readahead_batch(rac, array, ARRAY_SIZE(array)) 832 833/** 834 * readahead_pos - The byte offset into the file of this readahead request. 835 * @rac: The readahead request. 836 */ 837static inline loff_t readahead_pos(struct readahead_control *rac) 838{ 839 return (loff_t)rac->_index * PAGE_SIZE; 840} 841 842/** 843 * readahead_length - The number of bytes in this readahead request. 844 * @rac: The readahead request. 845 */ 846static inline loff_t readahead_length(struct readahead_control *rac) 847{ 848 return (loff_t)rac->_nr_pages * PAGE_SIZE; 849} 850 851/** 852 * readahead_index - The index of the first page in this readahead request. 853 * @rac: The readahead request. 854 */ 855static inline pgoff_t readahead_index(struct readahead_control *rac) 856{ 857 return rac->_index; 858} 859 860/** 861 * readahead_count - The number of pages in this readahead request. 862 * @rac: The readahead request. 863 */ 864static inline unsigned int readahead_count(struct readahead_control *rac) 865{ 866 return rac->_nr_pages; 867} 868 869static inline unsigned long dir_pages(struct inode *inode) 870{ 871 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 872 PAGE_SHIFT; 873} 874 875/** 876 * page_mkwrite_check_truncate - check if page was truncated 877 * @page: the page to check 878 * @inode: the inode to check the page against 879 * 880 * Returns the number of bytes in the page up to EOF, 881 * or -EFAULT if the page was truncated. 882 */ 883static inline int page_mkwrite_check_truncate(struct page *page, 884 struct inode *inode) 885{ 886 loff_t size = i_size_read(inode); 887 pgoff_t index = size >> PAGE_SHIFT; 888 int offset = offset_in_page(size); 889 890 if (page->mapping != inode->i_mapping) 891 return -EFAULT; 892 893 /* page is wholly inside EOF */ 894 if (page->index < index) 895 return PAGE_SIZE; 896 /* page is wholly past EOF */ 897 if (page->index > index || !offset) 898 return -EFAULT; 899 /* page is partially inside EOF */ 900 return offset; 901} 902 903#endif /* _LINUX_PAGEMAP_H */