at v5.9 47 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> 4 * Steven J. Hill <sjhill@realitydiluted.com> 5 * Thomas Gleixner <tglx@linutronix.de> 6 * 7 * Info: 8 * Contains standard defines and IDs for NAND flash devices 9 * 10 * Changelog: 11 * See git changelog. 12 */ 13#ifndef __LINUX_MTD_RAWNAND_H 14#define __LINUX_MTD_RAWNAND_H 15 16#include <linux/mtd/mtd.h> 17#include <linux/mtd/flashchip.h> 18#include <linux/mtd/bbm.h> 19#include <linux/mtd/jedec.h> 20#include <linux/mtd/nand.h> 21#include <linux/mtd/onfi.h> 22#include <linux/mutex.h> 23#include <linux/of.h> 24#include <linux/types.h> 25 26struct nand_chip; 27 28/* The maximum number of NAND chips in an array */ 29#define NAND_MAX_CHIPS 8 30 31/* 32 * Constants for hardware specific CLE/ALE/NCE function 33 * 34 * These are bits which can be or'ed to set/clear multiple 35 * bits in one go. 36 */ 37/* Select the chip by setting nCE to low */ 38#define NAND_NCE 0x01 39/* Select the command latch by setting CLE to high */ 40#define NAND_CLE 0x02 41/* Select the address latch by setting ALE to high */ 42#define NAND_ALE 0x04 43 44#define NAND_CTRL_CLE (NAND_NCE | NAND_CLE) 45#define NAND_CTRL_ALE (NAND_NCE | NAND_ALE) 46#define NAND_CTRL_CHANGE 0x80 47 48/* 49 * Standard NAND flash commands 50 */ 51#define NAND_CMD_READ0 0 52#define NAND_CMD_READ1 1 53#define NAND_CMD_RNDOUT 5 54#define NAND_CMD_PAGEPROG 0x10 55#define NAND_CMD_READOOB 0x50 56#define NAND_CMD_ERASE1 0x60 57#define NAND_CMD_STATUS 0x70 58#define NAND_CMD_SEQIN 0x80 59#define NAND_CMD_RNDIN 0x85 60#define NAND_CMD_READID 0x90 61#define NAND_CMD_ERASE2 0xd0 62#define NAND_CMD_PARAM 0xec 63#define NAND_CMD_GET_FEATURES 0xee 64#define NAND_CMD_SET_FEATURES 0xef 65#define NAND_CMD_RESET 0xff 66 67/* Extended commands for large page devices */ 68#define NAND_CMD_READSTART 0x30 69#define NAND_CMD_RNDOUTSTART 0xE0 70#define NAND_CMD_CACHEDPROG 0x15 71 72#define NAND_CMD_NONE -1 73 74/* Status bits */ 75#define NAND_STATUS_FAIL 0x01 76#define NAND_STATUS_FAIL_N1 0x02 77#define NAND_STATUS_TRUE_READY 0x20 78#define NAND_STATUS_READY 0x40 79#define NAND_STATUS_WP 0x80 80 81#define NAND_DATA_IFACE_CHECK_ONLY -1 82 83/* 84 * Constants for ECC_MODES 85 */ 86enum nand_ecc_mode { 87 NAND_ECC_INVALID, 88 NAND_ECC_NONE, 89 NAND_ECC_SOFT, 90 NAND_ECC_HW, 91 NAND_ECC_HW_SYNDROME, 92 NAND_ECC_ON_DIE, 93}; 94 95enum nand_ecc_algo { 96 NAND_ECC_UNKNOWN, 97 NAND_ECC_HAMMING, 98 NAND_ECC_BCH, 99 NAND_ECC_RS, 100}; 101 102/* 103 * Constants for Hardware ECC 104 */ 105/* Reset Hardware ECC for read */ 106#define NAND_ECC_READ 0 107/* Reset Hardware ECC for write */ 108#define NAND_ECC_WRITE 1 109/* Enable Hardware ECC before syndrome is read back from flash */ 110#define NAND_ECC_READSYN 2 111 112/* 113 * Enable generic NAND 'page erased' check. This check is only done when 114 * ecc.correct() returns -EBADMSG. 115 * Set this flag if your implementation does not fix bitflips in erased 116 * pages and you want to rely on the default implementation. 117 */ 118#define NAND_ECC_GENERIC_ERASED_CHECK BIT(0) 119#define NAND_ECC_MAXIMIZE BIT(1) 120 121/* 122 * Option constants for bizarre disfunctionality and real 123 * features. 124 */ 125 126/* Buswidth is 16 bit */ 127#define NAND_BUSWIDTH_16 BIT(1) 128 129/* 130 * When using software implementation of Hamming, we can specify which byte 131 * ordering should be used. 132 */ 133#define NAND_ECC_SOFT_HAMMING_SM_ORDER BIT(2) 134 135/* Chip has cache program function */ 136#define NAND_CACHEPRG BIT(3) 137/* Options valid for Samsung large page devices */ 138#define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG 139 140/* 141 * Chip requires ready check on read (for auto-incremented sequential read). 142 * True only for small page devices; large page devices do not support 143 * autoincrement. 144 */ 145#define NAND_NEED_READRDY BIT(8) 146 147/* Chip does not allow subpage writes */ 148#define NAND_NO_SUBPAGE_WRITE BIT(9) 149 150/* Device is one of 'new' xD cards that expose fake nand command set */ 151#define NAND_BROKEN_XD BIT(10) 152 153/* Device behaves just like nand, but is readonly */ 154#define NAND_ROM BIT(11) 155 156/* Device supports subpage reads */ 157#define NAND_SUBPAGE_READ BIT(12) 158/* Macros to identify the above */ 159#define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ)) 160 161/* 162 * Some MLC NANDs need data scrambling to limit bitflips caused by repeated 163 * patterns. 164 */ 165#define NAND_NEED_SCRAMBLING BIT(13) 166 167/* Device needs 3rd row address cycle */ 168#define NAND_ROW_ADDR_3 BIT(14) 169 170/* Non chip related options */ 171/* This option skips the bbt scan during initialization. */ 172#define NAND_SKIP_BBTSCAN BIT(16) 173/* Chip may not exist, so silence any errors in scan */ 174#define NAND_SCAN_SILENT_NODEV BIT(18) 175 176/* 177 * Autodetect nand buswidth with readid/onfi. 178 * This suppose the driver will configure the hardware in 8 bits mode 179 * when calling nand_scan_ident, and update its configuration 180 * before calling nand_scan_tail. 181 */ 182#define NAND_BUSWIDTH_AUTO BIT(19) 183 184/* 185 * This option could be defined by controller drivers to protect against 186 * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers 187 */ 188#define NAND_USES_DMA BIT(20) 189 190/* 191 * In case your controller is implementing ->legacy.cmd_ctrl() and is relying 192 * on the default ->cmdfunc() implementation, you may want to let the core 193 * handle the tCCS delay which is required when a column change (RNDIN or 194 * RNDOUT) is requested. 195 * If your controller already takes care of this delay, you don't need to set 196 * this flag. 197 */ 198#define NAND_WAIT_TCCS BIT(21) 199 200/* 201 * Whether the NAND chip is a boot medium. Drivers might use this information 202 * to select ECC algorithms supported by the boot ROM or similar restrictions. 203 */ 204#define NAND_IS_BOOT_MEDIUM BIT(22) 205 206/* 207 * Do not try to tweak the timings at runtime. This is needed when the 208 * controller initializes the timings on itself or when it relies on 209 * configuration done by the bootloader. 210 */ 211#define NAND_KEEP_TIMINGS BIT(23) 212 213/* 214 * There are different places where the manufacturer stores the factory bad 215 * block markers. 216 * 217 * Position within the block: Each of these pages needs to be checked for a 218 * bad block marking pattern. 219 */ 220#define NAND_BBM_FIRSTPAGE BIT(24) 221#define NAND_BBM_SECONDPAGE BIT(25) 222#define NAND_BBM_LASTPAGE BIT(26) 223 224/* 225 * Some controllers with pipelined ECC engines override the BBM marker with 226 * data or ECC bytes, thus making bad block detection through bad block marker 227 * impossible. Let's flag those chips so the core knows it shouldn't check the 228 * BBM and consider all blocks good. 229 */ 230#define NAND_NO_BBM_QUIRK BIT(27) 231 232/* Cell info constants */ 233#define NAND_CI_CHIPNR_MSK 0x03 234#define NAND_CI_CELLTYPE_MSK 0x0C 235#define NAND_CI_CELLTYPE_SHIFT 2 236 237/* Position within the OOB data of the page */ 238#define NAND_BBM_POS_SMALL 5 239#define NAND_BBM_POS_LARGE 0 240 241/** 242 * struct nand_parameters - NAND generic parameters from the parameter page 243 * @model: Model name 244 * @supports_set_get_features: The NAND chip supports setting/getting features 245 * @set_feature_list: Bitmap of features that can be set 246 * @get_feature_list: Bitmap of features that can be get 247 * @onfi: ONFI specific parameters 248 */ 249struct nand_parameters { 250 /* Generic parameters */ 251 const char *model; 252 bool supports_set_get_features; 253 DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER); 254 DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER); 255 256 /* ONFI parameters */ 257 struct onfi_params *onfi; 258}; 259 260/* The maximum expected count of bytes in the NAND ID sequence */ 261#define NAND_MAX_ID_LEN 8 262 263/** 264 * struct nand_id - NAND id structure 265 * @data: buffer containing the id bytes. 266 * @len: ID length. 267 */ 268struct nand_id { 269 u8 data[NAND_MAX_ID_LEN]; 270 int len; 271}; 272 273/** 274 * struct nand_ecc_step_info - ECC step information of ECC engine 275 * @stepsize: data bytes per ECC step 276 * @strengths: array of supported strengths 277 * @nstrengths: number of supported strengths 278 */ 279struct nand_ecc_step_info { 280 int stepsize; 281 const int *strengths; 282 int nstrengths; 283}; 284 285/** 286 * struct nand_ecc_caps - capability of ECC engine 287 * @stepinfos: array of ECC step information 288 * @nstepinfos: number of ECC step information 289 * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step 290 */ 291struct nand_ecc_caps { 292 const struct nand_ecc_step_info *stepinfos; 293 int nstepinfos; 294 int (*calc_ecc_bytes)(int step_size, int strength); 295}; 296 297/* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */ 298#define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...) \ 299static const int __name##_strengths[] = { __VA_ARGS__ }; \ 300static const struct nand_ecc_step_info __name##_stepinfo = { \ 301 .stepsize = __step, \ 302 .strengths = __name##_strengths, \ 303 .nstrengths = ARRAY_SIZE(__name##_strengths), \ 304}; \ 305static const struct nand_ecc_caps __name = { \ 306 .stepinfos = &__name##_stepinfo, \ 307 .nstepinfos = 1, \ 308 .calc_ecc_bytes = __calc, \ 309} 310 311/** 312 * struct nand_ecc_ctrl - Control structure for ECC 313 * @mode: ECC mode 314 * @algo: ECC algorithm 315 * @steps: number of ECC steps per page 316 * @size: data bytes per ECC step 317 * @bytes: ECC bytes per step 318 * @strength: max number of correctible bits per ECC step 319 * @total: total number of ECC bytes per page 320 * @prepad: padding information for syndrome based ECC generators 321 * @postpad: padding information for syndrome based ECC generators 322 * @options: ECC specific options (see NAND_ECC_XXX flags defined above) 323 * @priv: pointer to private ECC control data 324 * @calc_buf: buffer for calculated ECC, size is oobsize. 325 * @code_buf: buffer for ECC read from flash, size is oobsize. 326 * @hwctl: function to control hardware ECC generator. Must only 327 * be provided if an hardware ECC is available 328 * @calculate: function for ECC calculation or readback from ECC hardware 329 * @correct: function for ECC correction, matching to ECC generator (sw/hw). 330 * Should return a positive number representing the number of 331 * corrected bitflips, -EBADMSG if the number of bitflips exceed 332 * ECC strength, or any other error code if the error is not 333 * directly related to correction. 334 * If -EBADMSG is returned the input buffers should be left 335 * untouched. 336 * @read_page_raw: function to read a raw page without ECC. This function 337 * should hide the specific layout used by the ECC 338 * controller and always return contiguous in-band and 339 * out-of-band data even if they're not stored 340 * contiguously on the NAND chip (e.g. 341 * NAND_ECC_HW_SYNDROME interleaves in-band and 342 * out-of-band data). 343 * @write_page_raw: function to write a raw page without ECC. This function 344 * should hide the specific layout used by the ECC 345 * controller and consider the passed data as contiguous 346 * in-band and out-of-band data. ECC controller is 347 * responsible for doing the appropriate transformations 348 * to adapt to its specific layout (e.g. 349 * NAND_ECC_HW_SYNDROME interleaves in-band and 350 * out-of-band data). 351 * @read_page: function to read a page according to the ECC generator 352 * requirements; returns maximum number of bitflips corrected in 353 * any single ECC step, -EIO hw error 354 * @read_subpage: function to read parts of the page covered by ECC; 355 * returns same as read_page() 356 * @write_subpage: function to write parts of the page covered by ECC. 357 * @write_page: function to write a page according to the ECC generator 358 * requirements. 359 * @write_oob_raw: function to write chip OOB data without ECC 360 * @read_oob_raw: function to read chip OOB data without ECC 361 * @read_oob: function to read chip OOB data 362 * @write_oob: function to write chip OOB data 363 */ 364struct nand_ecc_ctrl { 365 enum nand_ecc_mode mode; 366 enum nand_ecc_algo algo; 367 int steps; 368 int size; 369 int bytes; 370 int total; 371 int strength; 372 int prepad; 373 int postpad; 374 unsigned int options; 375 void *priv; 376 u8 *calc_buf; 377 u8 *code_buf; 378 void (*hwctl)(struct nand_chip *chip, int mode); 379 int (*calculate)(struct nand_chip *chip, const uint8_t *dat, 380 uint8_t *ecc_code); 381 int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc, 382 uint8_t *calc_ecc); 383 int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf, 384 int oob_required, int page); 385 int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf, 386 int oob_required, int page); 387 int (*read_page)(struct nand_chip *chip, uint8_t *buf, 388 int oob_required, int page); 389 int (*read_subpage)(struct nand_chip *chip, uint32_t offs, 390 uint32_t len, uint8_t *buf, int page); 391 int (*write_subpage)(struct nand_chip *chip, uint32_t offset, 392 uint32_t data_len, const uint8_t *data_buf, 393 int oob_required, int page); 394 int (*write_page)(struct nand_chip *chip, const uint8_t *buf, 395 int oob_required, int page); 396 int (*write_oob_raw)(struct nand_chip *chip, int page); 397 int (*read_oob_raw)(struct nand_chip *chip, int page); 398 int (*read_oob)(struct nand_chip *chip, int page); 399 int (*write_oob)(struct nand_chip *chip, int page); 400}; 401 402/** 403 * struct nand_sdr_timings - SDR NAND chip timings 404 * 405 * This struct defines the timing requirements of a SDR NAND chip. 406 * These information can be found in every NAND datasheets and the timings 407 * meaning are described in the ONFI specifications: 408 * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing 409 * Parameters) 410 * 411 * All these timings are expressed in picoseconds. 412 * 413 * @tBERS_max: Block erase time 414 * @tCCS_min: Change column setup time 415 * @tPROG_max: Page program time 416 * @tR_max: Page read time 417 * @tALH_min: ALE hold time 418 * @tADL_min: ALE to data loading time 419 * @tALS_min: ALE setup time 420 * @tAR_min: ALE to RE# delay 421 * @tCEA_max: CE# access time 422 * @tCEH_min: CE# high hold time 423 * @tCH_min: CE# hold time 424 * @tCHZ_max: CE# high to output hi-Z 425 * @tCLH_min: CLE hold time 426 * @tCLR_min: CLE to RE# delay 427 * @tCLS_min: CLE setup time 428 * @tCOH_min: CE# high to output hold 429 * @tCS_min: CE# setup time 430 * @tDH_min: Data hold time 431 * @tDS_min: Data setup time 432 * @tFEAT_max: Busy time for Set Features and Get Features 433 * @tIR_min: Output hi-Z to RE# low 434 * @tITC_max: Interface and Timing Mode Change time 435 * @tRC_min: RE# cycle time 436 * @tREA_max: RE# access time 437 * @tREH_min: RE# high hold time 438 * @tRHOH_min: RE# high to output hold 439 * @tRHW_min: RE# high to WE# low 440 * @tRHZ_max: RE# high to output hi-Z 441 * @tRLOH_min: RE# low to output hold 442 * @tRP_min: RE# pulse width 443 * @tRR_min: Ready to RE# low (data only) 444 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the 445 * rising edge of R/B#. 446 * @tWB_max: WE# high to SR[6] low 447 * @tWC_min: WE# cycle time 448 * @tWH_min: WE# high hold time 449 * @tWHR_min: WE# high to RE# low 450 * @tWP_min: WE# pulse width 451 * @tWW_min: WP# transition to WE# low 452 */ 453struct nand_sdr_timings { 454 u64 tBERS_max; 455 u32 tCCS_min; 456 u64 tPROG_max; 457 u64 tR_max; 458 u32 tALH_min; 459 u32 tADL_min; 460 u32 tALS_min; 461 u32 tAR_min; 462 u32 tCEA_max; 463 u32 tCEH_min; 464 u32 tCH_min; 465 u32 tCHZ_max; 466 u32 tCLH_min; 467 u32 tCLR_min; 468 u32 tCLS_min; 469 u32 tCOH_min; 470 u32 tCS_min; 471 u32 tDH_min; 472 u32 tDS_min; 473 u32 tFEAT_max; 474 u32 tIR_min; 475 u32 tITC_max; 476 u32 tRC_min; 477 u32 tREA_max; 478 u32 tREH_min; 479 u32 tRHOH_min; 480 u32 tRHW_min; 481 u32 tRHZ_max; 482 u32 tRLOH_min; 483 u32 tRP_min; 484 u32 tRR_min; 485 u64 tRST_max; 486 u32 tWB_max; 487 u32 tWC_min; 488 u32 tWH_min; 489 u32 tWHR_min; 490 u32 tWP_min; 491 u32 tWW_min; 492}; 493 494/** 495 * enum nand_interface_type - NAND interface type 496 * @NAND_SDR_IFACE: Single Data Rate interface 497 */ 498enum nand_interface_type { 499 NAND_SDR_IFACE, 500}; 501 502/** 503 * struct nand_interface_config - NAND interface timing 504 * @type: type of the timing 505 * @timings: The timing information 506 * @timings.mode: Timing mode as defined in the specification 507 * @timings.sdr: Use it when @type is %NAND_SDR_IFACE. 508 */ 509struct nand_interface_config { 510 enum nand_interface_type type; 511 struct nand_timings { 512 unsigned int mode; 513 union { 514 struct nand_sdr_timings sdr; 515 }; 516 } timings; 517}; 518 519/** 520 * nand_get_sdr_timings - get SDR timing from data interface 521 * @conf: The data interface 522 */ 523static inline const struct nand_sdr_timings * 524nand_get_sdr_timings(const struct nand_interface_config *conf) 525{ 526 if (conf->type != NAND_SDR_IFACE) 527 return ERR_PTR(-EINVAL); 528 529 return &conf->timings.sdr; 530} 531 532/** 533 * struct nand_op_cmd_instr - Definition of a command instruction 534 * @opcode: the command to issue in one cycle 535 */ 536struct nand_op_cmd_instr { 537 u8 opcode; 538}; 539 540/** 541 * struct nand_op_addr_instr - Definition of an address instruction 542 * @naddrs: length of the @addrs array 543 * @addrs: array containing the address cycles to issue 544 */ 545struct nand_op_addr_instr { 546 unsigned int naddrs; 547 const u8 *addrs; 548}; 549 550/** 551 * struct nand_op_data_instr - Definition of a data instruction 552 * @len: number of data bytes to move 553 * @buf: buffer to fill 554 * @buf.in: buffer to fill when reading from the NAND chip 555 * @buf.out: buffer to read from when writing to the NAND chip 556 * @force_8bit: force 8-bit access 557 * 558 * Please note that "in" and "out" are inverted from the ONFI specification 559 * and are from the controller perspective, so a "in" is a read from the NAND 560 * chip while a "out" is a write to the NAND chip. 561 */ 562struct nand_op_data_instr { 563 unsigned int len; 564 union { 565 void *in; 566 const void *out; 567 } buf; 568 bool force_8bit; 569}; 570 571/** 572 * struct nand_op_waitrdy_instr - Definition of a wait ready instruction 573 * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms 574 */ 575struct nand_op_waitrdy_instr { 576 unsigned int timeout_ms; 577}; 578 579/** 580 * enum nand_op_instr_type - Definition of all instruction types 581 * @NAND_OP_CMD_INSTR: command instruction 582 * @NAND_OP_ADDR_INSTR: address instruction 583 * @NAND_OP_DATA_IN_INSTR: data in instruction 584 * @NAND_OP_DATA_OUT_INSTR: data out instruction 585 * @NAND_OP_WAITRDY_INSTR: wait ready instruction 586 */ 587enum nand_op_instr_type { 588 NAND_OP_CMD_INSTR, 589 NAND_OP_ADDR_INSTR, 590 NAND_OP_DATA_IN_INSTR, 591 NAND_OP_DATA_OUT_INSTR, 592 NAND_OP_WAITRDY_INSTR, 593}; 594 595/** 596 * struct nand_op_instr - Instruction object 597 * @type: the instruction type 598 * @ctx: extra data associated to the instruction. You'll have to use the 599 * appropriate element depending on @type 600 * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR 601 * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR 602 * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR 603 * or %NAND_OP_DATA_OUT_INSTR 604 * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR 605 * @delay_ns: delay the controller should apply after the instruction has been 606 * issued on the bus. Most modern controllers have internal timings 607 * control logic, and in this case, the controller driver can ignore 608 * this field. 609 */ 610struct nand_op_instr { 611 enum nand_op_instr_type type; 612 union { 613 struct nand_op_cmd_instr cmd; 614 struct nand_op_addr_instr addr; 615 struct nand_op_data_instr data; 616 struct nand_op_waitrdy_instr waitrdy; 617 } ctx; 618 unsigned int delay_ns; 619}; 620 621/* 622 * Special handling must be done for the WAITRDY timeout parameter as it usually 623 * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or 624 * tBERS (during an erase) which all of them are u64 values that cannot be 625 * divided by usual kernel macros and must be handled with the special 626 * DIV_ROUND_UP_ULL() macro. 627 * 628 * Cast to type of dividend is needed here to guarantee that the result won't 629 * be an unsigned long long when the dividend is an unsigned long (or smaller), 630 * which is what the compiler does when it sees ternary operator with 2 631 * different return types (picks the largest type to make sure there's no 632 * loss). 633 */ 634#define __DIVIDE(dividend, divisor) ({ \ 635 (__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ? \ 636 DIV_ROUND_UP(dividend, divisor) : \ 637 DIV_ROUND_UP_ULL(dividend, divisor)); \ 638 }) 639#define PSEC_TO_NSEC(x) __DIVIDE(x, 1000) 640#define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000) 641 642#define NAND_OP_CMD(id, ns) \ 643 { \ 644 .type = NAND_OP_CMD_INSTR, \ 645 .ctx.cmd.opcode = id, \ 646 .delay_ns = ns, \ 647 } 648 649#define NAND_OP_ADDR(ncycles, cycles, ns) \ 650 { \ 651 .type = NAND_OP_ADDR_INSTR, \ 652 .ctx.addr = { \ 653 .naddrs = ncycles, \ 654 .addrs = cycles, \ 655 }, \ 656 .delay_ns = ns, \ 657 } 658 659#define NAND_OP_DATA_IN(l, b, ns) \ 660 { \ 661 .type = NAND_OP_DATA_IN_INSTR, \ 662 .ctx.data = { \ 663 .len = l, \ 664 .buf.in = b, \ 665 .force_8bit = false, \ 666 }, \ 667 .delay_ns = ns, \ 668 } 669 670#define NAND_OP_DATA_OUT(l, b, ns) \ 671 { \ 672 .type = NAND_OP_DATA_OUT_INSTR, \ 673 .ctx.data = { \ 674 .len = l, \ 675 .buf.out = b, \ 676 .force_8bit = false, \ 677 }, \ 678 .delay_ns = ns, \ 679 } 680 681#define NAND_OP_8BIT_DATA_IN(l, b, ns) \ 682 { \ 683 .type = NAND_OP_DATA_IN_INSTR, \ 684 .ctx.data = { \ 685 .len = l, \ 686 .buf.in = b, \ 687 .force_8bit = true, \ 688 }, \ 689 .delay_ns = ns, \ 690 } 691 692#define NAND_OP_8BIT_DATA_OUT(l, b, ns) \ 693 { \ 694 .type = NAND_OP_DATA_OUT_INSTR, \ 695 .ctx.data = { \ 696 .len = l, \ 697 .buf.out = b, \ 698 .force_8bit = true, \ 699 }, \ 700 .delay_ns = ns, \ 701 } 702 703#define NAND_OP_WAIT_RDY(tout_ms, ns) \ 704 { \ 705 .type = NAND_OP_WAITRDY_INSTR, \ 706 .ctx.waitrdy.timeout_ms = tout_ms, \ 707 .delay_ns = ns, \ 708 } 709 710/** 711 * struct nand_subop - a sub operation 712 * @cs: the CS line to select for this NAND sub-operation 713 * @instrs: array of instructions 714 * @ninstrs: length of the @instrs array 715 * @first_instr_start_off: offset to start from for the first instruction 716 * of the sub-operation 717 * @last_instr_end_off: offset to end at (excluded) for the last instruction 718 * of the sub-operation 719 * 720 * Both @first_instr_start_off and @last_instr_end_off only apply to data or 721 * address instructions. 722 * 723 * When an operation cannot be handled as is by the NAND controller, it will 724 * be split by the parser into sub-operations which will be passed to the 725 * controller driver. 726 */ 727struct nand_subop { 728 unsigned int cs; 729 const struct nand_op_instr *instrs; 730 unsigned int ninstrs; 731 unsigned int first_instr_start_off; 732 unsigned int last_instr_end_off; 733}; 734 735unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, 736 unsigned int op_id); 737unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, 738 unsigned int op_id); 739unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, 740 unsigned int op_id); 741unsigned int nand_subop_get_data_len(const struct nand_subop *subop, 742 unsigned int op_id); 743 744/** 745 * struct nand_op_parser_addr_constraints - Constraints for address instructions 746 * @maxcycles: maximum number of address cycles the controller can issue in a 747 * single step 748 */ 749struct nand_op_parser_addr_constraints { 750 unsigned int maxcycles; 751}; 752 753/** 754 * struct nand_op_parser_data_constraints - Constraints for data instructions 755 * @maxlen: maximum data length that the controller can handle in a single step 756 */ 757struct nand_op_parser_data_constraints { 758 unsigned int maxlen; 759}; 760 761/** 762 * struct nand_op_parser_pattern_elem - One element of a pattern 763 * @type: the instructuction type 764 * @optional: whether this element of the pattern is optional or mandatory 765 * @ctx: address or data constraint 766 * @ctx.addr: address constraint (number of cycles) 767 * @ctx.data: data constraint (data length) 768 */ 769struct nand_op_parser_pattern_elem { 770 enum nand_op_instr_type type; 771 bool optional; 772 union { 773 struct nand_op_parser_addr_constraints addr; 774 struct nand_op_parser_data_constraints data; 775 } ctx; 776}; 777 778#define NAND_OP_PARSER_PAT_CMD_ELEM(_opt) \ 779 { \ 780 .type = NAND_OP_CMD_INSTR, \ 781 .optional = _opt, \ 782 } 783 784#define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles) \ 785 { \ 786 .type = NAND_OP_ADDR_INSTR, \ 787 .optional = _opt, \ 788 .ctx.addr.maxcycles = _maxcycles, \ 789 } 790 791#define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen) \ 792 { \ 793 .type = NAND_OP_DATA_IN_INSTR, \ 794 .optional = _opt, \ 795 .ctx.data.maxlen = _maxlen, \ 796 } 797 798#define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen) \ 799 { \ 800 .type = NAND_OP_DATA_OUT_INSTR, \ 801 .optional = _opt, \ 802 .ctx.data.maxlen = _maxlen, \ 803 } 804 805#define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt) \ 806 { \ 807 .type = NAND_OP_WAITRDY_INSTR, \ 808 .optional = _opt, \ 809 } 810 811/** 812 * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor 813 * @elems: array of pattern elements 814 * @nelems: number of pattern elements in @elems array 815 * @exec: the function that will issue a sub-operation 816 * 817 * A pattern is a list of elements, each element reprensenting one instruction 818 * with its constraints. The pattern itself is used by the core to match NAND 819 * chip operation with NAND controller operations. 820 * Once a match between a NAND controller operation pattern and a NAND chip 821 * operation (or a sub-set of a NAND operation) is found, the pattern ->exec() 822 * hook is called so that the controller driver can issue the operation on the 823 * bus. 824 * 825 * Controller drivers should declare as many patterns as they support and pass 826 * this list of patterns (created with the help of the following macro) to 827 * the nand_op_parser_exec_op() helper. 828 */ 829struct nand_op_parser_pattern { 830 const struct nand_op_parser_pattern_elem *elems; 831 unsigned int nelems; 832 int (*exec)(struct nand_chip *chip, const struct nand_subop *subop); 833}; 834 835#define NAND_OP_PARSER_PATTERN(_exec, ...) \ 836 { \ 837 .exec = _exec, \ 838 .elems = (const struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }, \ 839 .nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) / \ 840 sizeof(struct nand_op_parser_pattern_elem), \ 841 } 842 843/** 844 * struct nand_op_parser - NAND controller operation parser descriptor 845 * @patterns: array of supported patterns 846 * @npatterns: length of the @patterns array 847 * 848 * The parser descriptor is just an array of supported patterns which will be 849 * iterated by nand_op_parser_exec_op() everytime it tries to execute an 850 * NAND operation (or tries to determine if a specific operation is supported). 851 * 852 * It is worth mentioning that patterns will be tested in their declaration 853 * order, and the first match will be taken, so it's important to order patterns 854 * appropriately so that simple/inefficient patterns are placed at the end of 855 * the list. Usually, this is where you put single instruction patterns. 856 */ 857struct nand_op_parser { 858 const struct nand_op_parser_pattern *patterns; 859 unsigned int npatterns; 860}; 861 862#define NAND_OP_PARSER(...) \ 863 { \ 864 .patterns = (const struct nand_op_parser_pattern[]) { __VA_ARGS__ }, \ 865 .npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) / \ 866 sizeof(struct nand_op_parser_pattern), \ 867 } 868 869/** 870 * struct nand_operation - NAND operation descriptor 871 * @cs: the CS line to select for this NAND operation 872 * @instrs: array of instructions to execute 873 * @ninstrs: length of the @instrs array 874 * 875 * The actual operation structure that will be passed to chip->exec_op(). 876 */ 877struct nand_operation { 878 unsigned int cs; 879 const struct nand_op_instr *instrs; 880 unsigned int ninstrs; 881}; 882 883#define NAND_OPERATION(_cs, _instrs) \ 884 { \ 885 .cs = _cs, \ 886 .instrs = _instrs, \ 887 .ninstrs = ARRAY_SIZE(_instrs), \ 888 } 889 890int nand_op_parser_exec_op(struct nand_chip *chip, 891 const struct nand_op_parser *parser, 892 const struct nand_operation *op, bool check_only); 893 894static inline void nand_op_trace(const char *prefix, 895 const struct nand_op_instr *instr) 896{ 897#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) 898 switch (instr->type) { 899 case NAND_OP_CMD_INSTR: 900 pr_debug("%sCMD [0x%02x]\n", prefix, 901 instr->ctx.cmd.opcode); 902 break; 903 case NAND_OP_ADDR_INSTR: 904 pr_debug("%sADDR [%d cyc: %*ph]\n", prefix, 905 instr->ctx.addr.naddrs, 906 instr->ctx.addr.naddrs < 64 ? 907 instr->ctx.addr.naddrs : 64, 908 instr->ctx.addr.addrs); 909 break; 910 case NAND_OP_DATA_IN_INSTR: 911 pr_debug("%sDATA_IN [%d B%s]\n", prefix, 912 instr->ctx.data.len, 913 instr->ctx.data.force_8bit ? 914 ", force 8-bit" : ""); 915 break; 916 case NAND_OP_DATA_OUT_INSTR: 917 pr_debug("%sDATA_OUT [%d B%s]\n", prefix, 918 instr->ctx.data.len, 919 instr->ctx.data.force_8bit ? 920 ", force 8-bit" : ""); 921 break; 922 case NAND_OP_WAITRDY_INSTR: 923 pr_debug("%sWAITRDY [max %d ms]\n", prefix, 924 instr->ctx.waitrdy.timeout_ms); 925 break; 926 } 927#endif 928} 929 930/** 931 * struct nand_controller_ops - Controller operations 932 * 933 * @attach_chip: this method is called after the NAND detection phase after 934 * flash ID and MTD fields such as erase size, page size and OOB 935 * size have been set up. ECC requirements are available if 936 * provided by the NAND chip or device tree. Typically used to 937 * choose the appropriate ECC configuration and allocate 938 * associated resources. 939 * This hook is optional. 940 * @detach_chip: free all resources allocated/claimed in 941 * nand_controller_ops->attach_chip(). 942 * This hook is optional. 943 * @exec_op: controller specific method to execute NAND operations. 944 * This method replaces chip->legacy.cmdfunc(), 945 * chip->legacy.{read,write}_{buf,byte,word}(), 946 * chip->legacy.dev_ready() and chip->legacy.waifunc(). 947 * @setup_interface: setup the data interface and timing. If chipnr is set to 948 * %NAND_DATA_IFACE_CHECK_ONLY this means the configuration 949 * should not be applied but only checked. 950 * This hook is optional. 951 */ 952struct nand_controller_ops { 953 int (*attach_chip)(struct nand_chip *chip); 954 void (*detach_chip)(struct nand_chip *chip); 955 int (*exec_op)(struct nand_chip *chip, 956 const struct nand_operation *op, 957 bool check_only); 958 int (*setup_interface)(struct nand_chip *chip, int chipnr, 959 const struct nand_interface_config *conf); 960}; 961 962/** 963 * struct nand_controller - Structure used to describe a NAND controller 964 * 965 * @lock: lock used to serialize accesses to the NAND controller 966 * @ops: NAND controller operations. 967 */ 968struct nand_controller { 969 struct mutex lock; 970 const struct nand_controller_ops *ops; 971}; 972 973static inline void nand_controller_init(struct nand_controller *nfc) 974{ 975 mutex_init(&nfc->lock); 976} 977 978/** 979 * struct nand_legacy - NAND chip legacy fields/hooks 980 * @IO_ADDR_R: address to read the 8 I/O lines of the flash device 981 * @IO_ADDR_W: address to write the 8 I/O lines of the flash device 982 * @select_chip: select/deselect a specific target/die 983 * @read_byte: read one byte from the chip 984 * @write_byte: write a single byte to the chip on the low 8 I/O lines 985 * @write_buf: write data from the buffer to the chip 986 * @read_buf: read data from the chip into the buffer 987 * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used 988 * to write command and address 989 * @cmdfunc: hardware specific function for writing commands to the chip. 990 * @dev_ready: hardware specific function for accessing device ready/busy line. 991 * If set to NULL no access to ready/busy is available and the 992 * ready/busy information is read from the chip status register. 993 * @waitfunc: hardware specific function for wait on ready. 994 * @block_bad: check if a block is bad, using OOB markers 995 * @block_markbad: mark a block bad 996 * @set_features: set the NAND chip features 997 * @get_features: get the NAND chip features 998 * @chip_delay: chip dependent delay for transferring data from array to read 999 * regs (tR). 1000 * @dummy_controller: dummy controller implementation for drivers that can 1001 * only control a single chip 1002 * 1003 * If you look at this structure you're already wrong. These fields/hooks are 1004 * all deprecated. 1005 */ 1006struct nand_legacy { 1007 void __iomem *IO_ADDR_R; 1008 void __iomem *IO_ADDR_W; 1009 void (*select_chip)(struct nand_chip *chip, int cs); 1010 u8 (*read_byte)(struct nand_chip *chip); 1011 void (*write_byte)(struct nand_chip *chip, u8 byte); 1012 void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len); 1013 void (*read_buf)(struct nand_chip *chip, u8 *buf, int len); 1014 void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl); 1015 void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column, 1016 int page_addr); 1017 int (*dev_ready)(struct nand_chip *chip); 1018 int (*waitfunc)(struct nand_chip *chip); 1019 int (*block_bad)(struct nand_chip *chip, loff_t ofs); 1020 int (*block_markbad)(struct nand_chip *chip, loff_t ofs); 1021 int (*set_features)(struct nand_chip *chip, int feature_addr, 1022 u8 *subfeature_para); 1023 int (*get_features)(struct nand_chip *chip, int feature_addr, 1024 u8 *subfeature_para); 1025 int chip_delay; 1026 struct nand_controller dummy_controller; 1027}; 1028 1029/** 1030 * struct nand_chip_ops - NAND chip operations 1031 * @suspend: Suspend operation 1032 * @resume: Resume operation 1033 * @lock_area: Lock operation 1034 * @unlock_area: Unlock operation 1035 * @setup_read_retry: Set the read-retry mode (mostly needed for MLC NANDs) 1036 * @choose_interface_config: Choose the best interface configuration 1037 */ 1038struct nand_chip_ops { 1039 int (*suspend)(struct nand_chip *chip); 1040 void (*resume)(struct nand_chip *chip); 1041 int (*lock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len); 1042 int (*unlock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len); 1043 int (*setup_read_retry)(struct nand_chip *chip, int retry_mode); 1044 int (*choose_interface_config)(struct nand_chip *chip, 1045 struct nand_interface_config *iface); 1046}; 1047 1048/** 1049 * struct nand_manufacturer - NAND manufacturer structure 1050 * @desc: The manufacturer description 1051 * @priv: Private information for the manufacturer driver 1052 */ 1053struct nand_manufacturer { 1054 const struct nand_manufacturer_desc *desc; 1055 void *priv; 1056}; 1057 1058/** 1059 * struct nand_chip - NAND Private Flash Chip Data 1060 * @base: Inherit from the generic NAND device 1061 * @id: Holds NAND ID 1062 * @parameters: Holds generic parameters under an easily readable form 1063 * @manufacturer: Manufacturer information 1064 * @ops: NAND chip operations 1065 * @legacy: All legacy fields/hooks. If you develop a new driver, don't even try 1066 * to use any of these fields/hooks, and if you're modifying an 1067 * existing driver that is using those fields/hooks, you should 1068 * consider reworking the driver and avoid using them. 1069 * @options: Various chip options. They can partly be set to inform nand_scan 1070 * about special functionality. See the defines for further 1071 * explanation. 1072 * @current_interface_config: The currently used NAND interface configuration 1073 * @best_interface_config: The best NAND interface configuration which fits both 1074 * the NAND chip and NAND controller constraints. If 1075 * unset, the default reset interface configuration must 1076 * be used. 1077 * @bbt_erase_shift: Number of address bits in a bbt entry 1078 * @bbt_options: Bad block table specific options. All options used here must 1079 * come from bbm.h. By default, these options will be copied to 1080 * the appropriate nand_bbt_descr's. 1081 * @badblockpos: Bad block marker position in the oob area 1082 * @badblockbits: Minimum number of set bits in a good block's bad block marker 1083 * position; i.e., BBM = 11110111b is good when badblockbits = 7 1084 * @bbt_td: Bad block table descriptor for flash lookup 1085 * @bbt_md: Bad block table mirror descriptor 1086 * @badblock_pattern: Bad block scan pattern used for initial bad block scan 1087 * @bbt: Bad block table pointer 1088 * @page_shift: Number of address bits in a page (column address bits) 1089 * @phys_erase_shift: Number of address bits in a physical eraseblock 1090 * @chip_shift: Number of address bits in one chip 1091 * @pagemask: Page number mask = number of (pages / chip) - 1 1092 * @subpagesize: Holds the subpagesize 1093 * @data_buf: Buffer for data, size is (page size + oobsize) 1094 * @oob_poi: pointer on the OOB area covered by data_buf 1095 * @pagecache: Structure containing page cache related fields 1096 * @pagecache.bitflips: Number of bitflips of the cached page 1097 * @pagecache.page: Page number currently in the cache. -1 means no page is 1098 * currently cached 1099 * @buf_align: Minimum buffer alignment required by a platform 1100 * @lock: Lock protecting the suspended field. Also used to serialize accesses 1101 * to the NAND device 1102 * @suspended: Set to 1 when the device is suspended, 0 when it's not 1103 * @cur_cs: Currently selected target. -1 means no target selected, otherwise we 1104 * should always have cur_cs >= 0 && cur_cs < nanddev_ntargets(). 1105 * NAND Controller drivers should not modify this value, but they're 1106 * allowed to read it. 1107 * @read_retries: The number of read retry modes supported 1108 * @controller: The hardware controller structure which is shared among multiple 1109 * independent devices 1110 * @ecc: The ECC controller structure 1111 * @priv: Chip private data 1112 */ 1113struct nand_chip { 1114 struct nand_device base; 1115 struct nand_id id; 1116 struct nand_parameters parameters; 1117 struct nand_manufacturer manufacturer; 1118 struct nand_chip_ops ops; 1119 struct nand_legacy legacy; 1120 unsigned int options; 1121 1122 /* Data interface */ 1123 const struct nand_interface_config *current_interface_config; 1124 struct nand_interface_config *best_interface_config; 1125 1126 /* Bad block information */ 1127 unsigned int bbt_erase_shift; 1128 unsigned int bbt_options; 1129 unsigned int badblockpos; 1130 unsigned int badblockbits; 1131 struct nand_bbt_descr *bbt_td; 1132 struct nand_bbt_descr *bbt_md; 1133 struct nand_bbt_descr *badblock_pattern; 1134 u8 *bbt; 1135 1136 /* Device internal layout */ 1137 unsigned int page_shift; 1138 unsigned int phys_erase_shift; 1139 unsigned int chip_shift; 1140 unsigned int pagemask; 1141 unsigned int subpagesize; 1142 1143 /* Buffers */ 1144 u8 *data_buf; 1145 u8 *oob_poi; 1146 struct { 1147 unsigned int bitflips; 1148 int page; 1149 } pagecache; 1150 unsigned long buf_align; 1151 1152 /* Internals */ 1153 struct mutex lock; 1154 unsigned int suspended : 1; 1155 int cur_cs; 1156 int read_retries; 1157 1158 /* Externals */ 1159 struct nand_controller *controller; 1160 struct nand_ecc_ctrl ecc; 1161 void *priv; 1162}; 1163 1164extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops; 1165extern const struct mtd_ooblayout_ops nand_ooblayout_lp_ops; 1166 1167static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd) 1168{ 1169 return container_of(mtd, struct nand_chip, base.mtd); 1170} 1171 1172static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip) 1173{ 1174 return &chip->base.mtd; 1175} 1176 1177static inline void *nand_get_controller_data(struct nand_chip *chip) 1178{ 1179 return chip->priv; 1180} 1181 1182static inline void nand_set_controller_data(struct nand_chip *chip, void *priv) 1183{ 1184 chip->priv = priv; 1185} 1186 1187static inline void nand_set_manufacturer_data(struct nand_chip *chip, 1188 void *priv) 1189{ 1190 chip->manufacturer.priv = priv; 1191} 1192 1193static inline void *nand_get_manufacturer_data(struct nand_chip *chip) 1194{ 1195 return chip->manufacturer.priv; 1196} 1197 1198static inline void nand_set_flash_node(struct nand_chip *chip, 1199 struct device_node *np) 1200{ 1201 mtd_set_of_node(nand_to_mtd(chip), np); 1202} 1203 1204static inline struct device_node *nand_get_flash_node(struct nand_chip *chip) 1205{ 1206 return mtd_get_of_node(nand_to_mtd(chip)); 1207} 1208 1209/** 1210 * nand_get_interface_config - Retrieve the current interface configuration 1211 * of a NAND chip 1212 * @chip: The NAND chip 1213 */ 1214static inline const struct nand_interface_config * 1215nand_get_interface_config(struct nand_chip *chip) 1216{ 1217 return chip->current_interface_config; 1218} 1219 1220/* 1221 * A helper for defining older NAND chips where the second ID byte fully 1222 * defined the chip, including the geometry (chip size, eraseblock size, page 1223 * size). All these chips have 512 bytes NAND page size. 1224 */ 1225#define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts) \ 1226 { .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \ 1227 .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) } 1228 1229/* 1230 * A helper for defining newer chips which report their page size and 1231 * eraseblock size via the extended ID bytes. 1232 * 1233 * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with 1234 * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the 1235 * device ID now only represented a particular total chip size (and voltage, 1236 * buswidth), and the page size, eraseblock size, and OOB size could vary while 1237 * using the same device ID. 1238 */ 1239#define EXTENDED_ID_NAND(nm, devid, chipsz, opts) \ 1240 { .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \ 1241 .options = (opts) } 1242 1243#define NAND_ECC_INFO(_strength, _step) \ 1244 { .strength_ds = (_strength), .step_ds = (_step) } 1245#define NAND_ECC_STRENGTH(type) ((type)->ecc.strength_ds) 1246#define NAND_ECC_STEP(type) ((type)->ecc.step_ds) 1247 1248/** 1249 * struct nand_flash_dev - NAND Flash Device ID Structure 1250 * @name: a human-readable name of the NAND chip 1251 * @dev_id: the device ID (the second byte of the full chip ID array) 1252 * @mfr_id: manufacturer ID part of the full chip ID array (refers the same 1253 * memory address as ``id[0]``) 1254 * @dev_id: device ID part of the full chip ID array (refers the same memory 1255 * address as ``id[1]``) 1256 * @id: full device ID array 1257 * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as 1258 * well as the eraseblock size) is determined from the extended NAND 1259 * chip ID array) 1260 * @chipsize: total chip size in MiB 1261 * @erasesize: eraseblock size in bytes (determined from the extended ID if 0) 1262 * @options: stores various chip bit options 1263 * @id_len: The valid length of the @id. 1264 * @oobsize: OOB size 1265 * @ecc: ECC correctability and step information from the datasheet. 1266 * @ecc.strength_ds: The ECC correctability from the datasheet, same as the 1267 * @ecc_strength_ds in nand_chip{}. 1268 * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the 1269 * @ecc_step_ds in nand_chip{}, also from the datasheet. 1270 * For example, the "4bit ECC for each 512Byte" can be set with 1271 * NAND_ECC_INFO(4, 512). 1272 */ 1273struct nand_flash_dev { 1274 char *name; 1275 union { 1276 struct { 1277 uint8_t mfr_id; 1278 uint8_t dev_id; 1279 }; 1280 uint8_t id[NAND_MAX_ID_LEN]; 1281 }; 1282 unsigned int pagesize; 1283 unsigned int chipsize; 1284 unsigned int erasesize; 1285 unsigned int options; 1286 uint16_t id_len; 1287 uint16_t oobsize; 1288 struct { 1289 uint16_t strength_ds; 1290 uint16_t step_ds; 1291 } ecc; 1292}; 1293 1294int nand_create_bbt(struct nand_chip *chip); 1295 1296/* 1297 * Check if it is a SLC nand. 1298 * The !nand_is_slc() can be used to check the MLC/TLC nand chips. 1299 * We do not distinguish the MLC and TLC now. 1300 */ 1301static inline bool nand_is_slc(struct nand_chip *chip) 1302{ 1303 WARN(nanddev_bits_per_cell(&chip->base) == 0, 1304 "chip->bits_per_cell is used uninitialized\n"); 1305 return nanddev_bits_per_cell(&chip->base) == 1; 1306} 1307 1308/** 1309 * Check if the opcode's address should be sent only on the lower 8 bits 1310 * @command: opcode to check 1311 */ 1312static inline int nand_opcode_8bits(unsigned int command) 1313{ 1314 switch (command) { 1315 case NAND_CMD_READID: 1316 case NAND_CMD_PARAM: 1317 case NAND_CMD_GET_FEATURES: 1318 case NAND_CMD_SET_FEATURES: 1319 return 1; 1320 default: 1321 break; 1322 } 1323 return 0; 1324} 1325 1326int nand_check_erased_ecc_chunk(void *data, int datalen, 1327 void *ecc, int ecclen, 1328 void *extraoob, int extraooblen, 1329 int threshold); 1330 1331int nand_ecc_choose_conf(struct nand_chip *chip, 1332 const struct nand_ecc_caps *caps, int oobavail); 1333 1334/* Default write_oob implementation */ 1335int nand_write_oob_std(struct nand_chip *chip, int page); 1336 1337/* Default read_oob implementation */ 1338int nand_read_oob_std(struct nand_chip *chip, int page); 1339 1340/* Stub used by drivers that do not support GET/SET FEATURES operations */ 1341int nand_get_set_features_notsupp(struct nand_chip *chip, int addr, 1342 u8 *subfeature_param); 1343 1344/* read_page_raw implementations */ 1345int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, 1346 int page); 1347int nand_monolithic_read_page_raw(struct nand_chip *chip, uint8_t *buf, 1348 int oob_required, int page); 1349 1350/* write_page_raw implementations */ 1351int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 1352 int oob_required, int page); 1353int nand_monolithic_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 1354 int oob_required, int page); 1355 1356/* Reset and initialize a NAND device */ 1357int nand_reset(struct nand_chip *chip, int chipnr); 1358 1359/* NAND operation helpers */ 1360int nand_reset_op(struct nand_chip *chip); 1361int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, 1362 unsigned int len); 1363int nand_status_op(struct nand_chip *chip, u8 *status); 1364int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock); 1365int nand_read_page_op(struct nand_chip *chip, unsigned int page, 1366 unsigned int offset_in_page, void *buf, unsigned int len); 1367int nand_change_read_column_op(struct nand_chip *chip, 1368 unsigned int offset_in_page, void *buf, 1369 unsigned int len, bool force_8bit); 1370int nand_read_oob_op(struct nand_chip *chip, unsigned int page, 1371 unsigned int offset_in_page, void *buf, unsigned int len); 1372int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, 1373 unsigned int offset_in_page, const void *buf, 1374 unsigned int len); 1375int nand_prog_page_end_op(struct nand_chip *chip); 1376int nand_prog_page_op(struct nand_chip *chip, unsigned int page, 1377 unsigned int offset_in_page, const void *buf, 1378 unsigned int len); 1379int nand_change_write_column_op(struct nand_chip *chip, 1380 unsigned int offset_in_page, const void *buf, 1381 unsigned int len, bool force_8bit); 1382int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, 1383 bool force_8bit, bool check_only); 1384int nand_write_data_op(struct nand_chip *chip, const void *buf, 1385 unsigned int len, bool force_8bit); 1386 1387/* Scan and identify a NAND device */ 1388int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips, 1389 struct nand_flash_dev *ids); 1390 1391static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips) 1392{ 1393 return nand_scan_with_ids(chip, max_chips, NULL); 1394} 1395 1396/* Internal helper for board drivers which need to override command function */ 1397void nand_wait_ready(struct nand_chip *chip); 1398 1399/* 1400 * Free resources held by the NAND device, must be called on error after a 1401 * sucessful nand_scan(). 1402 */ 1403void nand_cleanup(struct nand_chip *chip); 1404 1405/* 1406 * External helper for controller drivers that have to implement the WAITRDY 1407 * instruction and have no physical pin to check it. 1408 */ 1409int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms); 1410struct gpio_desc; 1411int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod, 1412 unsigned long timeout_ms); 1413 1414/* Select/deselect a NAND target. */ 1415void nand_select_target(struct nand_chip *chip, unsigned int cs); 1416void nand_deselect_target(struct nand_chip *chip); 1417 1418/* Bitops */ 1419void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src, 1420 unsigned int src_off, unsigned int nbits); 1421 1422/** 1423 * nand_get_data_buf() - Get the internal page buffer 1424 * @chip: NAND chip object 1425 * 1426 * Returns the pre-allocated page buffer after invalidating the cache. This 1427 * function should be used by drivers that do not want to allocate their own 1428 * bounce buffer and still need such a buffer for specific operations (most 1429 * commonly when reading OOB data only). 1430 * 1431 * Be careful to never call this function in the write/write_oob path, because 1432 * the core may have placed the data to be written out in this buffer. 1433 * 1434 * Return: pointer to the page cache buffer 1435 */ 1436static inline void *nand_get_data_buf(struct nand_chip *chip) 1437{ 1438 chip->pagecache.page = -1; 1439 1440 return chip->data_buf; 1441} 1442 1443#endif /* __LINUX_MTD_RAWNAND_H */