Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
4 * Steven J. Hill <sjhill@realitydiluted.com>
5 * Thomas Gleixner <tglx@linutronix.de>
6 *
7 * Info:
8 * Contains standard defines and IDs for NAND flash devices
9 *
10 * Changelog:
11 * See git changelog.
12 */
13#ifndef __LINUX_MTD_RAWNAND_H
14#define __LINUX_MTD_RAWNAND_H
15
16#include <linux/mtd/mtd.h>
17#include <linux/mtd/flashchip.h>
18#include <linux/mtd/bbm.h>
19#include <linux/mtd/jedec.h>
20#include <linux/mtd/nand.h>
21#include <linux/mtd/onfi.h>
22#include <linux/mutex.h>
23#include <linux/of.h>
24#include <linux/types.h>
25
26struct nand_chip;
27
28/* The maximum number of NAND chips in an array */
29#define NAND_MAX_CHIPS 8
30
31/*
32 * Constants for hardware specific CLE/ALE/NCE function
33 *
34 * These are bits which can be or'ed to set/clear multiple
35 * bits in one go.
36 */
37/* Select the chip by setting nCE to low */
38#define NAND_NCE 0x01
39/* Select the command latch by setting CLE to high */
40#define NAND_CLE 0x02
41/* Select the address latch by setting ALE to high */
42#define NAND_ALE 0x04
43
44#define NAND_CTRL_CLE (NAND_NCE | NAND_CLE)
45#define NAND_CTRL_ALE (NAND_NCE | NAND_ALE)
46#define NAND_CTRL_CHANGE 0x80
47
48/*
49 * Standard NAND flash commands
50 */
51#define NAND_CMD_READ0 0
52#define NAND_CMD_READ1 1
53#define NAND_CMD_RNDOUT 5
54#define NAND_CMD_PAGEPROG 0x10
55#define NAND_CMD_READOOB 0x50
56#define NAND_CMD_ERASE1 0x60
57#define NAND_CMD_STATUS 0x70
58#define NAND_CMD_SEQIN 0x80
59#define NAND_CMD_RNDIN 0x85
60#define NAND_CMD_READID 0x90
61#define NAND_CMD_ERASE2 0xd0
62#define NAND_CMD_PARAM 0xec
63#define NAND_CMD_GET_FEATURES 0xee
64#define NAND_CMD_SET_FEATURES 0xef
65#define NAND_CMD_RESET 0xff
66
67/* Extended commands for large page devices */
68#define NAND_CMD_READSTART 0x30
69#define NAND_CMD_RNDOUTSTART 0xE0
70#define NAND_CMD_CACHEDPROG 0x15
71
72#define NAND_CMD_NONE -1
73
74/* Status bits */
75#define NAND_STATUS_FAIL 0x01
76#define NAND_STATUS_FAIL_N1 0x02
77#define NAND_STATUS_TRUE_READY 0x20
78#define NAND_STATUS_READY 0x40
79#define NAND_STATUS_WP 0x80
80
81#define NAND_DATA_IFACE_CHECK_ONLY -1
82
83/*
84 * Constants for ECC_MODES
85 */
86enum nand_ecc_mode {
87 NAND_ECC_INVALID,
88 NAND_ECC_NONE,
89 NAND_ECC_SOFT,
90 NAND_ECC_HW,
91 NAND_ECC_HW_SYNDROME,
92 NAND_ECC_ON_DIE,
93};
94
95enum nand_ecc_algo {
96 NAND_ECC_UNKNOWN,
97 NAND_ECC_HAMMING,
98 NAND_ECC_BCH,
99 NAND_ECC_RS,
100};
101
102/*
103 * Constants for Hardware ECC
104 */
105/* Reset Hardware ECC for read */
106#define NAND_ECC_READ 0
107/* Reset Hardware ECC for write */
108#define NAND_ECC_WRITE 1
109/* Enable Hardware ECC before syndrome is read back from flash */
110#define NAND_ECC_READSYN 2
111
112/*
113 * Enable generic NAND 'page erased' check. This check is only done when
114 * ecc.correct() returns -EBADMSG.
115 * Set this flag if your implementation does not fix bitflips in erased
116 * pages and you want to rely on the default implementation.
117 */
118#define NAND_ECC_GENERIC_ERASED_CHECK BIT(0)
119#define NAND_ECC_MAXIMIZE BIT(1)
120
121/*
122 * Option constants for bizarre disfunctionality and real
123 * features.
124 */
125
126/* Buswidth is 16 bit */
127#define NAND_BUSWIDTH_16 BIT(1)
128
129/*
130 * When using software implementation of Hamming, we can specify which byte
131 * ordering should be used.
132 */
133#define NAND_ECC_SOFT_HAMMING_SM_ORDER BIT(2)
134
135/* Chip has cache program function */
136#define NAND_CACHEPRG BIT(3)
137/* Options valid for Samsung large page devices */
138#define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
139
140/*
141 * Chip requires ready check on read (for auto-incremented sequential read).
142 * True only for small page devices; large page devices do not support
143 * autoincrement.
144 */
145#define NAND_NEED_READRDY BIT(8)
146
147/* Chip does not allow subpage writes */
148#define NAND_NO_SUBPAGE_WRITE BIT(9)
149
150/* Device is one of 'new' xD cards that expose fake nand command set */
151#define NAND_BROKEN_XD BIT(10)
152
153/* Device behaves just like nand, but is readonly */
154#define NAND_ROM BIT(11)
155
156/* Device supports subpage reads */
157#define NAND_SUBPAGE_READ BIT(12)
158/* Macros to identify the above */
159#define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
160
161/*
162 * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
163 * patterns.
164 */
165#define NAND_NEED_SCRAMBLING BIT(13)
166
167/* Device needs 3rd row address cycle */
168#define NAND_ROW_ADDR_3 BIT(14)
169
170/* Non chip related options */
171/* This option skips the bbt scan during initialization. */
172#define NAND_SKIP_BBTSCAN BIT(16)
173/* Chip may not exist, so silence any errors in scan */
174#define NAND_SCAN_SILENT_NODEV BIT(18)
175
176/*
177 * Autodetect nand buswidth with readid/onfi.
178 * This suppose the driver will configure the hardware in 8 bits mode
179 * when calling nand_scan_ident, and update its configuration
180 * before calling nand_scan_tail.
181 */
182#define NAND_BUSWIDTH_AUTO BIT(19)
183
184/*
185 * This option could be defined by controller drivers to protect against
186 * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
187 */
188#define NAND_USES_DMA BIT(20)
189
190/*
191 * In case your controller is implementing ->legacy.cmd_ctrl() and is relying
192 * on the default ->cmdfunc() implementation, you may want to let the core
193 * handle the tCCS delay which is required when a column change (RNDIN or
194 * RNDOUT) is requested.
195 * If your controller already takes care of this delay, you don't need to set
196 * this flag.
197 */
198#define NAND_WAIT_TCCS BIT(21)
199
200/*
201 * Whether the NAND chip is a boot medium. Drivers might use this information
202 * to select ECC algorithms supported by the boot ROM or similar restrictions.
203 */
204#define NAND_IS_BOOT_MEDIUM BIT(22)
205
206/*
207 * Do not try to tweak the timings at runtime. This is needed when the
208 * controller initializes the timings on itself or when it relies on
209 * configuration done by the bootloader.
210 */
211#define NAND_KEEP_TIMINGS BIT(23)
212
213/*
214 * There are different places where the manufacturer stores the factory bad
215 * block markers.
216 *
217 * Position within the block: Each of these pages needs to be checked for a
218 * bad block marking pattern.
219 */
220#define NAND_BBM_FIRSTPAGE BIT(24)
221#define NAND_BBM_SECONDPAGE BIT(25)
222#define NAND_BBM_LASTPAGE BIT(26)
223
224/*
225 * Some controllers with pipelined ECC engines override the BBM marker with
226 * data or ECC bytes, thus making bad block detection through bad block marker
227 * impossible. Let's flag those chips so the core knows it shouldn't check the
228 * BBM and consider all blocks good.
229 */
230#define NAND_NO_BBM_QUIRK BIT(27)
231
232/* Cell info constants */
233#define NAND_CI_CHIPNR_MSK 0x03
234#define NAND_CI_CELLTYPE_MSK 0x0C
235#define NAND_CI_CELLTYPE_SHIFT 2
236
237/* Position within the OOB data of the page */
238#define NAND_BBM_POS_SMALL 5
239#define NAND_BBM_POS_LARGE 0
240
241/**
242 * struct nand_parameters - NAND generic parameters from the parameter page
243 * @model: Model name
244 * @supports_set_get_features: The NAND chip supports setting/getting features
245 * @set_feature_list: Bitmap of features that can be set
246 * @get_feature_list: Bitmap of features that can be get
247 * @onfi: ONFI specific parameters
248 */
249struct nand_parameters {
250 /* Generic parameters */
251 const char *model;
252 bool supports_set_get_features;
253 DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
254 DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
255
256 /* ONFI parameters */
257 struct onfi_params *onfi;
258};
259
260/* The maximum expected count of bytes in the NAND ID sequence */
261#define NAND_MAX_ID_LEN 8
262
263/**
264 * struct nand_id - NAND id structure
265 * @data: buffer containing the id bytes.
266 * @len: ID length.
267 */
268struct nand_id {
269 u8 data[NAND_MAX_ID_LEN];
270 int len;
271};
272
273/**
274 * struct nand_ecc_step_info - ECC step information of ECC engine
275 * @stepsize: data bytes per ECC step
276 * @strengths: array of supported strengths
277 * @nstrengths: number of supported strengths
278 */
279struct nand_ecc_step_info {
280 int stepsize;
281 const int *strengths;
282 int nstrengths;
283};
284
285/**
286 * struct nand_ecc_caps - capability of ECC engine
287 * @stepinfos: array of ECC step information
288 * @nstepinfos: number of ECC step information
289 * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
290 */
291struct nand_ecc_caps {
292 const struct nand_ecc_step_info *stepinfos;
293 int nstepinfos;
294 int (*calc_ecc_bytes)(int step_size, int strength);
295};
296
297/* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
298#define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...) \
299static const int __name##_strengths[] = { __VA_ARGS__ }; \
300static const struct nand_ecc_step_info __name##_stepinfo = { \
301 .stepsize = __step, \
302 .strengths = __name##_strengths, \
303 .nstrengths = ARRAY_SIZE(__name##_strengths), \
304}; \
305static const struct nand_ecc_caps __name = { \
306 .stepinfos = &__name##_stepinfo, \
307 .nstepinfos = 1, \
308 .calc_ecc_bytes = __calc, \
309}
310
311/**
312 * struct nand_ecc_ctrl - Control structure for ECC
313 * @mode: ECC mode
314 * @algo: ECC algorithm
315 * @steps: number of ECC steps per page
316 * @size: data bytes per ECC step
317 * @bytes: ECC bytes per step
318 * @strength: max number of correctible bits per ECC step
319 * @total: total number of ECC bytes per page
320 * @prepad: padding information for syndrome based ECC generators
321 * @postpad: padding information for syndrome based ECC generators
322 * @options: ECC specific options (see NAND_ECC_XXX flags defined above)
323 * @priv: pointer to private ECC control data
324 * @calc_buf: buffer for calculated ECC, size is oobsize.
325 * @code_buf: buffer for ECC read from flash, size is oobsize.
326 * @hwctl: function to control hardware ECC generator. Must only
327 * be provided if an hardware ECC is available
328 * @calculate: function for ECC calculation or readback from ECC hardware
329 * @correct: function for ECC correction, matching to ECC generator (sw/hw).
330 * Should return a positive number representing the number of
331 * corrected bitflips, -EBADMSG if the number of bitflips exceed
332 * ECC strength, or any other error code if the error is not
333 * directly related to correction.
334 * If -EBADMSG is returned the input buffers should be left
335 * untouched.
336 * @read_page_raw: function to read a raw page without ECC. This function
337 * should hide the specific layout used by the ECC
338 * controller and always return contiguous in-band and
339 * out-of-band data even if they're not stored
340 * contiguously on the NAND chip (e.g.
341 * NAND_ECC_HW_SYNDROME interleaves in-band and
342 * out-of-band data).
343 * @write_page_raw: function to write a raw page without ECC. This function
344 * should hide the specific layout used by the ECC
345 * controller and consider the passed data as contiguous
346 * in-band and out-of-band data. ECC controller is
347 * responsible for doing the appropriate transformations
348 * to adapt to its specific layout (e.g.
349 * NAND_ECC_HW_SYNDROME interleaves in-band and
350 * out-of-band data).
351 * @read_page: function to read a page according to the ECC generator
352 * requirements; returns maximum number of bitflips corrected in
353 * any single ECC step, -EIO hw error
354 * @read_subpage: function to read parts of the page covered by ECC;
355 * returns same as read_page()
356 * @write_subpage: function to write parts of the page covered by ECC.
357 * @write_page: function to write a page according to the ECC generator
358 * requirements.
359 * @write_oob_raw: function to write chip OOB data without ECC
360 * @read_oob_raw: function to read chip OOB data without ECC
361 * @read_oob: function to read chip OOB data
362 * @write_oob: function to write chip OOB data
363 */
364struct nand_ecc_ctrl {
365 enum nand_ecc_mode mode;
366 enum nand_ecc_algo algo;
367 int steps;
368 int size;
369 int bytes;
370 int total;
371 int strength;
372 int prepad;
373 int postpad;
374 unsigned int options;
375 void *priv;
376 u8 *calc_buf;
377 u8 *code_buf;
378 void (*hwctl)(struct nand_chip *chip, int mode);
379 int (*calculate)(struct nand_chip *chip, const uint8_t *dat,
380 uint8_t *ecc_code);
381 int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc,
382 uint8_t *calc_ecc);
383 int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf,
384 int oob_required, int page);
385 int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf,
386 int oob_required, int page);
387 int (*read_page)(struct nand_chip *chip, uint8_t *buf,
388 int oob_required, int page);
389 int (*read_subpage)(struct nand_chip *chip, uint32_t offs,
390 uint32_t len, uint8_t *buf, int page);
391 int (*write_subpage)(struct nand_chip *chip, uint32_t offset,
392 uint32_t data_len, const uint8_t *data_buf,
393 int oob_required, int page);
394 int (*write_page)(struct nand_chip *chip, const uint8_t *buf,
395 int oob_required, int page);
396 int (*write_oob_raw)(struct nand_chip *chip, int page);
397 int (*read_oob_raw)(struct nand_chip *chip, int page);
398 int (*read_oob)(struct nand_chip *chip, int page);
399 int (*write_oob)(struct nand_chip *chip, int page);
400};
401
402/**
403 * struct nand_sdr_timings - SDR NAND chip timings
404 *
405 * This struct defines the timing requirements of a SDR NAND chip.
406 * These information can be found in every NAND datasheets and the timings
407 * meaning are described in the ONFI specifications:
408 * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing
409 * Parameters)
410 *
411 * All these timings are expressed in picoseconds.
412 *
413 * @tBERS_max: Block erase time
414 * @tCCS_min: Change column setup time
415 * @tPROG_max: Page program time
416 * @tR_max: Page read time
417 * @tALH_min: ALE hold time
418 * @tADL_min: ALE to data loading time
419 * @tALS_min: ALE setup time
420 * @tAR_min: ALE to RE# delay
421 * @tCEA_max: CE# access time
422 * @tCEH_min: CE# high hold time
423 * @tCH_min: CE# hold time
424 * @tCHZ_max: CE# high to output hi-Z
425 * @tCLH_min: CLE hold time
426 * @tCLR_min: CLE to RE# delay
427 * @tCLS_min: CLE setup time
428 * @tCOH_min: CE# high to output hold
429 * @tCS_min: CE# setup time
430 * @tDH_min: Data hold time
431 * @tDS_min: Data setup time
432 * @tFEAT_max: Busy time for Set Features and Get Features
433 * @tIR_min: Output hi-Z to RE# low
434 * @tITC_max: Interface and Timing Mode Change time
435 * @tRC_min: RE# cycle time
436 * @tREA_max: RE# access time
437 * @tREH_min: RE# high hold time
438 * @tRHOH_min: RE# high to output hold
439 * @tRHW_min: RE# high to WE# low
440 * @tRHZ_max: RE# high to output hi-Z
441 * @tRLOH_min: RE# low to output hold
442 * @tRP_min: RE# pulse width
443 * @tRR_min: Ready to RE# low (data only)
444 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
445 * rising edge of R/B#.
446 * @tWB_max: WE# high to SR[6] low
447 * @tWC_min: WE# cycle time
448 * @tWH_min: WE# high hold time
449 * @tWHR_min: WE# high to RE# low
450 * @tWP_min: WE# pulse width
451 * @tWW_min: WP# transition to WE# low
452 */
453struct nand_sdr_timings {
454 u64 tBERS_max;
455 u32 tCCS_min;
456 u64 tPROG_max;
457 u64 tR_max;
458 u32 tALH_min;
459 u32 tADL_min;
460 u32 tALS_min;
461 u32 tAR_min;
462 u32 tCEA_max;
463 u32 tCEH_min;
464 u32 tCH_min;
465 u32 tCHZ_max;
466 u32 tCLH_min;
467 u32 tCLR_min;
468 u32 tCLS_min;
469 u32 tCOH_min;
470 u32 tCS_min;
471 u32 tDH_min;
472 u32 tDS_min;
473 u32 tFEAT_max;
474 u32 tIR_min;
475 u32 tITC_max;
476 u32 tRC_min;
477 u32 tREA_max;
478 u32 tREH_min;
479 u32 tRHOH_min;
480 u32 tRHW_min;
481 u32 tRHZ_max;
482 u32 tRLOH_min;
483 u32 tRP_min;
484 u32 tRR_min;
485 u64 tRST_max;
486 u32 tWB_max;
487 u32 tWC_min;
488 u32 tWH_min;
489 u32 tWHR_min;
490 u32 tWP_min;
491 u32 tWW_min;
492};
493
494/**
495 * enum nand_interface_type - NAND interface type
496 * @NAND_SDR_IFACE: Single Data Rate interface
497 */
498enum nand_interface_type {
499 NAND_SDR_IFACE,
500};
501
502/**
503 * struct nand_interface_config - NAND interface timing
504 * @type: type of the timing
505 * @timings: The timing information
506 * @timings.mode: Timing mode as defined in the specification
507 * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
508 */
509struct nand_interface_config {
510 enum nand_interface_type type;
511 struct nand_timings {
512 unsigned int mode;
513 union {
514 struct nand_sdr_timings sdr;
515 };
516 } timings;
517};
518
519/**
520 * nand_get_sdr_timings - get SDR timing from data interface
521 * @conf: The data interface
522 */
523static inline const struct nand_sdr_timings *
524nand_get_sdr_timings(const struct nand_interface_config *conf)
525{
526 if (conf->type != NAND_SDR_IFACE)
527 return ERR_PTR(-EINVAL);
528
529 return &conf->timings.sdr;
530}
531
532/**
533 * struct nand_op_cmd_instr - Definition of a command instruction
534 * @opcode: the command to issue in one cycle
535 */
536struct nand_op_cmd_instr {
537 u8 opcode;
538};
539
540/**
541 * struct nand_op_addr_instr - Definition of an address instruction
542 * @naddrs: length of the @addrs array
543 * @addrs: array containing the address cycles to issue
544 */
545struct nand_op_addr_instr {
546 unsigned int naddrs;
547 const u8 *addrs;
548};
549
550/**
551 * struct nand_op_data_instr - Definition of a data instruction
552 * @len: number of data bytes to move
553 * @buf: buffer to fill
554 * @buf.in: buffer to fill when reading from the NAND chip
555 * @buf.out: buffer to read from when writing to the NAND chip
556 * @force_8bit: force 8-bit access
557 *
558 * Please note that "in" and "out" are inverted from the ONFI specification
559 * and are from the controller perspective, so a "in" is a read from the NAND
560 * chip while a "out" is a write to the NAND chip.
561 */
562struct nand_op_data_instr {
563 unsigned int len;
564 union {
565 void *in;
566 const void *out;
567 } buf;
568 bool force_8bit;
569};
570
571/**
572 * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
573 * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
574 */
575struct nand_op_waitrdy_instr {
576 unsigned int timeout_ms;
577};
578
579/**
580 * enum nand_op_instr_type - Definition of all instruction types
581 * @NAND_OP_CMD_INSTR: command instruction
582 * @NAND_OP_ADDR_INSTR: address instruction
583 * @NAND_OP_DATA_IN_INSTR: data in instruction
584 * @NAND_OP_DATA_OUT_INSTR: data out instruction
585 * @NAND_OP_WAITRDY_INSTR: wait ready instruction
586 */
587enum nand_op_instr_type {
588 NAND_OP_CMD_INSTR,
589 NAND_OP_ADDR_INSTR,
590 NAND_OP_DATA_IN_INSTR,
591 NAND_OP_DATA_OUT_INSTR,
592 NAND_OP_WAITRDY_INSTR,
593};
594
595/**
596 * struct nand_op_instr - Instruction object
597 * @type: the instruction type
598 * @ctx: extra data associated to the instruction. You'll have to use the
599 * appropriate element depending on @type
600 * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
601 * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
602 * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
603 * or %NAND_OP_DATA_OUT_INSTR
604 * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
605 * @delay_ns: delay the controller should apply after the instruction has been
606 * issued on the bus. Most modern controllers have internal timings
607 * control logic, and in this case, the controller driver can ignore
608 * this field.
609 */
610struct nand_op_instr {
611 enum nand_op_instr_type type;
612 union {
613 struct nand_op_cmd_instr cmd;
614 struct nand_op_addr_instr addr;
615 struct nand_op_data_instr data;
616 struct nand_op_waitrdy_instr waitrdy;
617 } ctx;
618 unsigned int delay_ns;
619};
620
621/*
622 * Special handling must be done for the WAITRDY timeout parameter as it usually
623 * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
624 * tBERS (during an erase) which all of them are u64 values that cannot be
625 * divided by usual kernel macros and must be handled with the special
626 * DIV_ROUND_UP_ULL() macro.
627 *
628 * Cast to type of dividend is needed here to guarantee that the result won't
629 * be an unsigned long long when the dividend is an unsigned long (or smaller),
630 * which is what the compiler does when it sees ternary operator with 2
631 * different return types (picks the largest type to make sure there's no
632 * loss).
633 */
634#define __DIVIDE(dividend, divisor) ({ \
635 (__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ? \
636 DIV_ROUND_UP(dividend, divisor) : \
637 DIV_ROUND_UP_ULL(dividend, divisor)); \
638 })
639#define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
640#define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)
641
642#define NAND_OP_CMD(id, ns) \
643 { \
644 .type = NAND_OP_CMD_INSTR, \
645 .ctx.cmd.opcode = id, \
646 .delay_ns = ns, \
647 }
648
649#define NAND_OP_ADDR(ncycles, cycles, ns) \
650 { \
651 .type = NAND_OP_ADDR_INSTR, \
652 .ctx.addr = { \
653 .naddrs = ncycles, \
654 .addrs = cycles, \
655 }, \
656 .delay_ns = ns, \
657 }
658
659#define NAND_OP_DATA_IN(l, b, ns) \
660 { \
661 .type = NAND_OP_DATA_IN_INSTR, \
662 .ctx.data = { \
663 .len = l, \
664 .buf.in = b, \
665 .force_8bit = false, \
666 }, \
667 .delay_ns = ns, \
668 }
669
670#define NAND_OP_DATA_OUT(l, b, ns) \
671 { \
672 .type = NAND_OP_DATA_OUT_INSTR, \
673 .ctx.data = { \
674 .len = l, \
675 .buf.out = b, \
676 .force_8bit = false, \
677 }, \
678 .delay_ns = ns, \
679 }
680
681#define NAND_OP_8BIT_DATA_IN(l, b, ns) \
682 { \
683 .type = NAND_OP_DATA_IN_INSTR, \
684 .ctx.data = { \
685 .len = l, \
686 .buf.in = b, \
687 .force_8bit = true, \
688 }, \
689 .delay_ns = ns, \
690 }
691
692#define NAND_OP_8BIT_DATA_OUT(l, b, ns) \
693 { \
694 .type = NAND_OP_DATA_OUT_INSTR, \
695 .ctx.data = { \
696 .len = l, \
697 .buf.out = b, \
698 .force_8bit = true, \
699 }, \
700 .delay_ns = ns, \
701 }
702
703#define NAND_OP_WAIT_RDY(tout_ms, ns) \
704 { \
705 .type = NAND_OP_WAITRDY_INSTR, \
706 .ctx.waitrdy.timeout_ms = tout_ms, \
707 .delay_ns = ns, \
708 }
709
710/**
711 * struct nand_subop - a sub operation
712 * @cs: the CS line to select for this NAND sub-operation
713 * @instrs: array of instructions
714 * @ninstrs: length of the @instrs array
715 * @first_instr_start_off: offset to start from for the first instruction
716 * of the sub-operation
717 * @last_instr_end_off: offset to end at (excluded) for the last instruction
718 * of the sub-operation
719 *
720 * Both @first_instr_start_off and @last_instr_end_off only apply to data or
721 * address instructions.
722 *
723 * When an operation cannot be handled as is by the NAND controller, it will
724 * be split by the parser into sub-operations which will be passed to the
725 * controller driver.
726 */
727struct nand_subop {
728 unsigned int cs;
729 const struct nand_op_instr *instrs;
730 unsigned int ninstrs;
731 unsigned int first_instr_start_off;
732 unsigned int last_instr_end_off;
733};
734
735unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
736 unsigned int op_id);
737unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
738 unsigned int op_id);
739unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
740 unsigned int op_id);
741unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
742 unsigned int op_id);
743
744/**
745 * struct nand_op_parser_addr_constraints - Constraints for address instructions
746 * @maxcycles: maximum number of address cycles the controller can issue in a
747 * single step
748 */
749struct nand_op_parser_addr_constraints {
750 unsigned int maxcycles;
751};
752
753/**
754 * struct nand_op_parser_data_constraints - Constraints for data instructions
755 * @maxlen: maximum data length that the controller can handle in a single step
756 */
757struct nand_op_parser_data_constraints {
758 unsigned int maxlen;
759};
760
761/**
762 * struct nand_op_parser_pattern_elem - One element of a pattern
763 * @type: the instructuction type
764 * @optional: whether this element of the pattern is optional or mandatory
765 * @ctx: address or data constraint
766 * @ctx.addr: address constraint (number of cycles)
767 * @ctx.data: data constraint (data length)
768 */
769struct nand_op_parser_pattern_elem {
770 enum nand_op_instr_type type;
771 bool optional;
772 union {
773 struct nand_op_parser_addr_constraints addr;
774 struct nand_op_parser_data_constraints data;
775 } ctx;
776};
777
778#define NAND_OP_PARSER_PAT_CMD_ELEM(_opt) \
779 { \
780 .type = NAND_OP_CMD_INSTR, \
781 .optional = _opt, \
782 }
783
784#define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles) \
785 { \
786 .type = NAND_OP_ADDR_INSTR, \
787 .optional = _opt, \
788 .ctx.addr.maxcycles = _maxcycles, \
789 }
790
791#define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen) \
792 { \
793 .type = NAND_OP_DATA_IN_INSTR, \
794 .optional = _opt, \
795 .ctx.data.maxlen = _maxlen, \
796 }
797
798#define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen) \
799 { \
800 .type = NAND_OP_DATA_OUT_INSTR, \
801 .optional = _opt, \
802 .ctx.data.maxlen = _maxlen, \
803 }
804
805#define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt) \
806 { \
807 .type = NAND_OP_WAITRDY_INSTR, \
808 .optional = _opt, \
809 }
810
811/**
812 * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
813 * @elems: array of pattern elements
814 * @nelems: number of pattern elements in @elems array
815 * @exec: the function that will issue a sub-operation
816 *
817 * A pattern is a list of elements, each element reprensenting one instruction
818 * with its constraints. The pattern itself is used by the core to match NAND
819 * chip operation with NAND controller operations.
820 * Once a match between a NAND controller operation pattern and a NAND chip
821 * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
822 * hook is called so that the controller driver can issue the operation on the
823 * bus.
824 *
825 * Controller drivers should declare as many patterns as they support and pass
826 * this list of patterns (created with the help of the following macro) to
827 * the nand_op_parser_exec_op() helper.
828 */
829struct nand_op_parser_pattern {
830 const struct nand_op_parser_pattern_elem *elems;
831 unsigned int nelems;
832 int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
833};
834
835#define NAND_OP_PARSER_PATTERN(_exec, ...) \
836 { \
837 .exec = _exec, \
838 .elems = (const struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }, \
839 .nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) / \
840 sizeof(struct nand_op_parser_pattern_elem), \
841 }
842
843/**
844 * struct nand_op_parser - NAND controller operation parser descriptor
845 * @patterns: array of supported patterns
846 * @npatterns: length of the @patterns array
847 *
848 * The parser descriptor is just an array of supported patterns which will be
849 * iterated by nand_op_parser_exec_op() everytime it tries to execute an
850 * NAND operation (or tries to determine if a specific operation is supported).
851 *
852 * It is worth mentioning that patterns will be tested in their declaration
853 * order, and the first match will be taken, so it's important to order patterns
854 * appropriately so that simple/inefficient patterns are placed at the end of
855 * the list. Usually, this is where you put single instruction patterns.
856 */
857struct nand_op_parser {
858 const struct nand_op_parser_pattern *patterns;
859 unsigned int npatterns;
860};
861
862#define NAND_OP_PARSER(...) \
863 { \
864 .patterns = (const struct nand_op_parser_pattern[]) { __VA_ARGS__ }, \
865 .npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) / \
866 sizeof(struct nand_op_parser_pattern), \
867 }
868
869/**
870 * struct nand_operation - NAND operation descriptor
871 * @cs: the CS line to select for this NAND operation
872 * @instrs: array of instructions to execute
873 * @ninstrs: length of the @instrs array
874 *
875 * The actual operation structure that will be passed to chip->exec_op().
876 */
877struct nand_operation {
878 unsigned int cs;
879 const struct nand_op_instr *instrs;
880 unsigned int ninstrs;
881};
882
883#define NAND_OPERATION(_cs, _instrs) \
884 { \
885 .cs = _cs, \
886 .instrs = _instrs, \
887 .ninstrs = ARRAY_SIZE(_instrs), \
888 }
889
890int nand_op_parser_exec_op(struct nand_chip *chip,
891 const struct nand_op_parser *parser,
892 const struct nand_operation *op, bool check_only);
893
894static inline void nand_op_trace(const char *prefix,
895 const struct nand_op_instr *instr)
896{
897#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
898 switch (instr->type) {
899 case NAND_OP_CMD_INSTR:
900 pr_debug("%sCMD [0x%02x]\n", prefix,
901 instr->ctx.cmd.opcode);
902 break;
903 case NAND_OP_ADDR_INSTR:
904 pr_debug("%sADDR [%d cyc: %*ph]\n", prefix,
905 instr->ctx.addr.naddrs,
906 instr->ctx.addr.naddrs < 64 ?
907 instr->ctx.addr.naddrs : 64,
908 instr->ctx.addr.addrs);
909 break;
910 case NAND_OP_DATA_IN_INSTR:
911 pr_debug("%sDATA_IN [%d B%s]\n", prefix,
912 instr->ctx.data.len,
913 instr->ctx.data.force_8bit ?
914 ", force 8-bit" : "");
915 break;
916 case NAND_OP_DATA_OUT_INSTR:
917 pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
918 instr->ctx.data.len,
919 instr->ctx.data.force_8bit ?
920 ", force 8-bit" : "");
921 break;
922 case NAND_OP_WAITRDY_INSTR:
923 pr_debug("%sWAITRDY [max %d ms]\n", prefix,
924 instr->ctx.waitrdy.timeout_ms);
925 break;
926 }
927#endif
928}
929
930/**
931 * struct nand_controller_ops - Controller operations
932 *
933 * @attach_chip: this method is called after the NAND detection phase after
934 * flash ID and MTD fields such as erase size, page size and OOB
935 * size have been set up. ECC requirements are available if
936 * provided by the NAND chip or device tree. Typically used to
937 * choose the appropriate ECC configuration and allocate
938 * associated resources.
939 * This hook is optional.
940 * @detach_chip: free all resources allocated/claimed in
941 * nand_controller_ops->attach_chip().
942 * This hook is optional.
943 * @exec_op: controller specific method to execute NAND operations.
944 * This method replaces chip->legacy.cmdfunc(),
945 * chip->legacy.{read,write}_{buf,byte,word}(),
946 * chip->legacy.dev_ready() and chip->legacy.waifunc().
947 * @setup_interface: setup the data interface and timing. If chipnr is set to
948 * %NAND_DATA_IFACE_CHECK_ONLY this means the configuration
949 * should not be applied but only checked.
950 * This hook is optional.
951 */
952struct nand_controller_ops {
953 int (*attach_chip)(struct nand_chip *chip);
954 void (*detach_chip)(struct nand_chip *chip);
955 int (*exec_op)(struct nand_chip *chip,
956 const struct nand_operation *op,
957 bool check_only);
958 int (*setup_interface)(struct nand_chip *chip, int chipnr,
959 const struct nand_interface_config *conf);
960};
961
962/**
963 * struct nand_controller - Structure used to describe a NAND controller
964 *
965 * @lock: lock used to serialize accesses to the NAND controller
966 * @ops: NAND controller operations.
967 */
968struct nand_controller {
969 struct mutex lock;
970 const struct nand_controller_ops *ops;
971};
972
973static inline void nand_controller_init(struct nand_controller *nfc)
974{
975 mutex_init(&nfc->lock);
976}
977
978/**
979 * struct nand_legacy - NAND chip legacy fields/hooks
980 * @IO_ADDR_R: address to read the 8 I/O lines of the flash device
981 * @IO_ADDR_W: address to write the 8 I/O lines of the flash device
982 * @select_chip: select/deselect a specific target/die
983 * @read_byte: read one byte from the chip
984 * @write_byte: write a single byte to the chip on the low 8 I/O lines
985 * @write_buf: write data from the buffer to the chip
986 * @read_buf: read data from the chip into the buffer
987 * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used
988 * to write command and address
989 * @cmdfunc: hardware specific function for writing commands to the chip.
990 * @dev_ready: hardware specific function for accessing device ready/busy line.
991 * If set to NULL no access to ready/busy is available and the
992 * ready/busy information is read from the chip status register.
993 * @waitfunc: hardware specific function for wait on ready.
994 * @block_bad: check if a block is bad, using OOB markers
995 * @block_markbad: mark a block bad
996 * @set_features: set the NAND chip features
997 * @get_features: get the NAND chip features
998 * @chip_delay: chip dependent delay for transferring data from array to read
999 * regs (tR).
1000 * @dummy_controller: dummy controller implementation for drivers that can
1001 * only control a single chip
1002 *
1003 * If you look at this structure you're already wrong. These fields/hooks are
1004 * all deprecated.
1005 */
1006struct nand_legacy {
1007 void __iomem *IO_ADDR_R;
1008 void __iomem *IO_ADDR_W;
1009 void (*select_chip)(struct nand_chip *chip, int cs);
1010 u8 (*read_byte)(struct nand_chip *chip);
1011 void (*write_byte)(struct nand_chip *chip, u8 byte);
1012 void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len);
1013 void (*read_buf)(struct nand_chip *chip, u8 *buf, int len);
1014 void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
1015 void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column,
1016 int page_addr);
1017 int (*dev_ready)(struct nand_chip *chip);
1018 int (*waitfunc)(struct nand_chip *chip);
1019 int (*block_bad)(struct nand_chip *chip, loff_t ofs);
1020 int (*block_markbad)(struct nand_chip *chip, loff_t ofs);
1021 int (*set_features)(struct nand_chip *chip, int feature_addr,
1022 u8 *subfeature_para);
1023 int (*get_features)(struct nand_chip *chip, int feature_addr,
1024 u8 *subfeature_para);
1025 int chip_delay;
1026 struct nand_controller dummy_controller;
1027};
1028
1029/**
1030 * struct nand_chip_ops - NAND chip operations
1031 * @suspend: Suspend operation
1032 * @resume: Resume operation
1033 * @lock_area: Lock operation
1034 * @unlock_area: Unlock operation
1035 * @setup_read_retry: Set the read-retry mode (mostly needed for MLC NANDs)
1036 * @choose_interface_config: Choose the best interface configuration
1037 */
1038struct nand_chip_ops {
1039 int (*suspend)(struct nand_chip *chip);
1040 void (*resume)(struct nand_chip *chip);
1041 int (*lock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
1042 int (*unlock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
1043 int (*setup_read_retry)(struct nand_chip *chip, int retry_mode);
1044 int (*choose_interface_config)(struct nand_chip *chip,
1045 struct nand_interface_config *iface);
1046};
1047
1048/**
1049 * struct nand_manufacturer - NAND manufacturer structure
1050 * @desc: The manufacturer description
1051 * @priv: Private information for the manufacturer driver
1052 */
1053struct nand_manufacturer {
1054 const struct nand_manufacturer_desc *desc;
1055 void *priv;
1056};
1057
1058/**
1059 * struct nand_chip - NAND Private Flash Chip Data
1060 * @base: Inherit from the generic NAND device
1061 * @id: Holds NAND ID
1062 * @parameters: Holds generic parameters under an easily readable form
1063 * @manufacturer: Manufacturer information
1064 * @ops: NAND chip operations
1065 * @legacy: All legacy fields/hooks. If you develop a new driver, don't even try
1066 * to use any of these fields/hooks, and if you're modifying an
1067 * existing driver that is using those fields/hooks, you should
1068 * consider reworking the driver and avoid using them.
1069 * @options: Various chip options. They can partly be set to inform nand_scan
1070 * about special functionality. See the defines for further
1071 * explanation.
1072 * @current_interface_config: The currently used NAND interface configuration
1073 * @best_interface_config: The best NAND interface configuration which fits both
1074 * the NAND chip and NAND controller constraints. If
1075 * unset, the default reset interface configuration must
1076 * be used.
1077 * @bbt_erase_shift: Number of address bits in a bbt entry
1078 * @bbt_options: Bad block table specific options. All options used here must
1079 * come from bbm.h. By default, these options will be copied to
1080 * the appropriate nand_bbt_descr's.
1081 * @badblockpos: Bad block marker position in the oob area
1082 * @badblockbits: Minimum number of set bits in a good block's bad block marker
1083 * position; i.e., BBM = 11110111b is good when badblockbits = 7
1084 * @bbt_td: Bad block table descriptor for flash lookup
1085 * @bbt_md: Bad block table mirror descriptor
1086 * @badblock_pattern: Bad block scan pattern used for initial bad block scan
1087 * @bbt: Bad block table pointer
1088 * @page_shift: Number of address bits in a page (column address bits)
1089 * @phys_erase_shift: Number of address bits in a physical eraseblock
1090 * @chip_shift: Number of address bits in one chip
1091 * @pagemask: Page number mask = number of (pages / chip) - 1
1092 * @subpagesize: Holds the subpagesize
1093 * @data_buf: Buffer for data, size is (page size + oobsize)
1094 * @oob_poi: pointer on the OOB area covered by data_buf
1095 * @pagecache: Structure containing page cache related fields
1096 * @pagecache.bitflips: Number of bitflips of the cached page
1097 * @pagecache.page: Page number currently in the cache. -1 means no page is
1098 * currently cached
1099 * @buf_align: Minimum buffer alignment required by a platform
1100 * @lock: Lock protecting the suspended field. Also used to serialize accesses
1101 * to the NAND device
1102 * @suspended: Set to 1 when the device is suspended, 0 when it's not
1103 * @cur_cs: Currently selected target. -1 means no target selected, otherwise we
1104 * should always have cur_cs >= 0 && cur_cs < nanddev_ntargets().
1105 * NAND Controller drivers should not modify this value, but they're
1106 * allowed to read it.
1107 * @read_retries: The number of read retry modes supported
1108 * @controller: The hardware controller structure which is shared among multiple
1109 * independent devices
1110 * @ecc: The ECC controller structure
1111 * @priv: Chip private data
1112 */
1113struct nand_chip {
1114 struct nand_device base;
1115 struct nand_id id;
1116 struct nand_parameters parameters;
1117 struct nand_manufacturer manufacturer;
1118 struct nand_chip_ops ops;
1119 struct nand_legacy legacy;
1120 unsigned int options;
1121
1122 /* Data interface */
1123 const struct nand_interface_config *current_interface_config;
1124 struct nand_interface_config *best_interface_config;
1125
1126 /* Bad block information */
1127 unsigned int bbt_erase_shift;
1128 unsigned int bbt_options;
1129 unsigned int badblockpos;
1130 unsigned int badblockbits;
1131 struct nand_bbt_descr *bbt_td;
1132 struct nand_bbt_descr *bbt_md;
1133 struct nand_bbt_descr *badblock_pattern;
1134 u8 *bbt;
1135
1136 /* Device internal layout */
1137 unsigned int page_shift;
1138 unsigned int phys_erase_shift;
1139 unsigned int chip_shift;
1140 unsigned int pagemask;
1141 unsigned int subpagesize;
1142
1143 /* Buffers */
1144 u8 *data_buf;
1145 u8 *oob_poi;
1146 struct {
1147 unsigned int bitflips;
1148 int page;
1149 } pagecache;
1150 unsigned long buf_align;
1151
1152 /* Internals */
1153 struct mutex lock;
1154 unsigned int suspended : 1;
1155 int cur_cs;
1156 int read_retries;
1157
1158 /* Externals */
1159 struct nand_controller *controller;
1160 struct nand_ecc_ctrl ecc;
1161 void *priv;
1162};
1163
1164extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops;
1165extern const struct mtd_ooblayout_ops nand_ooblayout_lp_ops;
1166
1167static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
1168{
1169 return container_of(mtd, struct nand_chip, base.mtd);
1170}
1171
1172static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
1173{
1174 return &chip->base.mtd;
1175}
1176
1177static inline void *nand_get_controller_data(struct nand_chip *chip)
1178{
1179 return chip->priv;
1180}
1181
1182static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
1183{
1184 chip->priv = priv;
1185}
1186
1187static inline void nand_set_manufacturer_data(struct nand_chip *chip,
1188 void *priv)
1189{
1190 chip->manufacturer.priv = priv;
1191}
1192
1193static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
1194{
1195 return chip->manufacturer.priv;
1196}
1197
1198static inline void nand_set_flash_node(struct nand_chip *chip,
1199 struct device_node *np)
1200{
1201 mtd_set_of_node(nand_to_mtd(chip), np);
1202}
1203
1204static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
1205{
1206 return mtd_get_of_node(nand_to_mtd(chip));
1207}
1208
1209/**
1210 * nand_get_interface_config - Retrieve the current interface configuration
1211 * of a NAND chip
1212 * @chip: The NAND chip
1213 */
1214static inline const struct nand_interface_config *
1215nand_get_interface_config(struct nand_chip *chip)
1216{
1217 return chip->current_interface_config;
1218}
1219
1220/*
1221 * A helper for defining older NAND chips where the second ID byte fully
1222 * defined the chip, including the geometry (chip size, eraseblock size, page
1223 * size). All these chips have 512 bytes NAND page size.
1224 */
1225#define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts) \
1226 { .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
1227 .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
1228
1229/*
1230 * A helper for defining newer chips which report their page size and
1231 * eraseblock size via the extended ID bytes.
1232 *
1233 * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
1234 * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
1235 * device ID now only represented a particular total chip size (and voltage,
1236 * buswidth), and the page size, eraseblock size, and OOB size could vary while
1237 * using the same device ID.
1238 */
1239#define EXTENDED_ID_NAND(nm, devid, chipsz, opts) \
1240 { .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
1241 .options = (opts) }
1242
1243#define NAND_ECC_INFO(_strength, _step) \
1244 { .strength_ds = (_strength), .step_ds = (_step) }
1245#define NAND_ECC_STRENGTH(type) ((type)->ecc.strength_ds)
1246#define NAND_ECC_STEP(type) ((type)->ecc.step_ds)
1247
1248/**
1249 * struct nand_flash_dev - NAND Flash Device ID Structure
1250 * @name: a human-readable name of the NAND chip
1251 * @dev_id: the device ID (the second byte of the full chip ID array)
1252 * @mfr_id: manufacturer ID part of the full chip ID array (refers the same
1253 * memory address as ``id[0]``)
1254 * @dev_id: device ID part of the full chip ID array (refers the same memory
1255 * address as ``id[1]``)
1256 * @id: full device ID array
1257 * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
1258 * well as the eraseblock size) is determined from the extended NAND
1259 * chip ID array)
1260 * @chipsize: total chip size in MiB
1261 * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
1262 * @options: stores various chip bit options
1263 * @id_len: The valid length of the @id.
1264 * @oobsize: OOB size
1265 * @ecc: ECC correctability and step information from the datasheet.
1266 * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
1267 * @ecc_strength_ds in nand_chip{}.
1268 * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
1269 * @ecc_step_ds in nand_chip{}, also from the datasheet.
1270 * For example, the "4bit ECC for each 512Byte" can be set with
1271 * NAND_ECC_INFO(4, 512).
1272 */
1273struct nand_flash_dev {
1274 char *name;
1275 union {
1276 struct {
1277 uint8_t mfr_id;
1278 uint8_t dev_id;
1279 };
1280 uint8_t id[NAND_MAX_ID_LEN];
1281 };
1282 unsigned int pagesize;
1283 unsigned int chipsize;
1284 unsigned int erasesize;
1285 unsigned int options;
1286 uint16_t id_len;
1287 uint16_t oobsize;
1288 struct {
1289 uint16_t strength_ds;
1290 uint16_t step_ds;
1291 } ecc;
1292};
1293
1294int nand_create_bbt(struct nand_chip *chip);
1295
1296/*
1297 * Check if it is a SLC nand.
1298 * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
1299 * We do not distinguish the MLC and TLC now.
1300 */
1301static inline bool nand_is_slc(struct nand_chip *chip)
1302{
1303 WARN(nanddev_bits_per_cell(&chip->base) == 0,
1304 "chip->bits_per_cell is used uninitialized\n");
1305 return nanddev_bits_per_cell(&chip->base) == 1;
1306}
1307
1308/**
1309 * Check if the opcode's address should be sent only on the lower 8 bits
1310 * @command: opcode to check
1311 */
1312static inline int nand_opcode_8bits(unsigned int command)
1313{
1314 switch (command) {
1315 case NAND_CMD_READID:
1316 case NAND_CMD_PARAM:
1317 case NAND_CMD_GET_FEATURES:
1318 case NAND_CMD_SET_FEATURES:
1319 return 1;
1320 default:
1321 break;
1322 }
1323 return 0;
1324}
1325
1326int nand_check_erased_ecc_chunk(void *data, int datalen,
1327 void *ecc, int ecclen,
1328 void *extraoob, int extraooblen,
1329 int threshold);
1330
1331int nand_ecc_choose_conf(struct nand_chip *chip,
1332 const struct nand_ecc_caps *caps, int oobavail);
1333
1334/* Default write_oob implementation */
1335int nand_write_oob_std(struct nand_chip *chip, int page);
1336
1337/* Default read_oob implementation */
1338int nand_read_oob_std(struct nand_chip *chip, int page);
1339
1340/* Stub used by drivers that do not support GET/SET FEATURES operations */
1341int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
1342 u8 *subfeature_param);
1343
1344/* read_page_raw implementations */
1345int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
1346 int page);
1347int nand_monolithic_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1348 int oob_required, int page);
1349
1350/* write_page_raw implementations */
1351int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1352 int oob_required, int page);
1353int nand_monolithic_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1354 int oob_required, int page);
1355
1356/* Reset and initialize a NAND device */
1357int nand_reset(struct nand_chip *chip, int chipnr);
1358
1359/* NAND operation helpers */
1360int nand_reset_op(struct nand_chip *chip);
1361int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1362 unsigned int len);
1363int nand_status_op(struct nand_chip *chip, u8 *status);
1364int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
1365int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1366 unsigned int offset_in_page, void *buf, unsigned int len);
1367int nand_change_read_column_op(struct nand_chip *chip,
1368 unsigned int offset_in_page, void *buf,
1369 unsigned int len, bool force_8bit);
1370int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1371 unsigned int offset_in_page, void *buf, unsigned int len);
1372int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1373 unsigned int offset_in_page, const void *buf,
1374 unsigned int len);
1375int nand_prog_page_end_op(struct nand_chip *chip);
1376int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1377 unsigned int offset_in_page, const void *buf,
1378 unsigned int len);
1379int nand_change_write_column_op(struct nand_chip *chip,
1380 unsigned int offset_in_page, const void *buf,
1381 unsigned int len, bool force_8bit);
1382int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1383 bool force_8bit, bool check_only);
1384int nand_write_data_op(struct nand_chip *chip, const void *buf,
1385 unsigned int len, bool force_8bit);
1386
1387/* Scan and identify a NAND device */
1388int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips,
1389 struct nand_flash_dev *ids);
1390
1391static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips)
1392{
1393 return nand_scan_with_ids(chip, max_chips, NULL);
1394}
1395
1396/* Internal helper for board drivers which need to override command function */
1397void nand_wait_ready(struct nand_chip *chip);
1398
1399/*
1400 * Free resources held by the NAND device, must be called on error after a
1401 * sucessful nand_scan().
1402 */
1403void nand_cleanup(struct nand_chip *chip);
1404
1405/*
1406 * External helper for controller drivers that have to implement the WAITRDY
1407 * instruction and have no physical pin to check it.
1408 */
1409int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
1410struct gpio_desc;
1411int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
1412 unsigned long timeout_ms);
1413
1414/* Select/deselect a NAND target. */
1415void nand_select_target(struct nand_chip *chip, unsigned int cs);
1416void nand_deselect_target(struct nand_chip *chip);
1417
1418/* Bitops */
1419void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
1420 unsigned int src_off, unsigned int nbits);
1421
1422/**
1423 * nand_get_data_buf() - Get the internal page buffer
1424 * @chip: NAND chip object
1425 *
1426 * Returns the pre-allocated page buffer after invalidating the cache. This
1427 * function should be used by drivers that do not want to allocate their own
1428 * bounce buffer and still need such a buffer for specific operations (most
1429 * commonly when reading OOB data only).
1430 *
1431 * Be careful to never call this function in the write/write_oob path, because
1432 * the core may have placed the data to be written out in this buffer.
1433 *
1434 * Return: pointer to the page cache buffer
1435 */
1436static inline void *nand_get_data_buf(struct nand_chip *chip)
1437{
1438 chip->pagecache.page = -1;
1439
1440 return chip->data_buf;
1441}
1442
1443#endif /* __LINUX_MTD_RAWNAND_H */