at v5.9 101 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/mmap_lock.h> 19#include <linux/range.h> 20#include <linux/pfn.h> 21#include <linux/percpu-refcount.h> 22#include <linux/bit_spinlock.h> 23#include <linux/shrinker.h> 24#include <linux/resource.h> 25#include <linux/page_ext.h> 26#include <linux/err.h> 27#include <linux/page-flags.h> 28#include <linux/page_ref.h> 29#include <linux/memremap.h> 30#include <linux/overflow.h> 31#include <linux/sizes.h> 32#include <linux/sched.h> 33#include <linux/pgtable.h> 34 35struct mempolicy; 36struct anon_vma; 37struct anon_vma_chain; 38struct file_ra_state; 39struct user_struct; 40struct writeback_control; 41struct bdi_writeback; 42struct pt_regs; 43 44extern int sysctl_page_lock_unfairness; 45 46void init_mm_internals(void); 47 48#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 49extern unsigned long max_mapnr; 50 51static inline void set_max_mapnr(unsigned long limit) 52{ 53 max_mapnr = limit; 54} 55#else 56static inline void set_max_mapnr(unsigned long limit) { } 57#endif 58 59extern atomic_long_t _totalram_pages; 60static inline unsigned long totalram_pages(void) 61{ 62 return (unsigned long)atomic_long_read(&_totalram_pages); 63} 64 65static inline void totalram_pages_inc(void) 66{ 67 atomic_long_inc(&_totalram_pages); 68} 69 70static inline void totalram_pages_dec(void) 71{ 72 atomic_long_dec(&_totalram_pages); 73} 74 75static inline void totalram_pages_add(long count) 76{ 77 atomic_long_add(count, &_totalram_pages); 78} 79 80extern void * high_memory; 81extern int page_cluster; 82 83#ifdef CONFIG_SYSCTL 84extern int sysctl_legacy_va_layout; 85#else 86#define sysctl_legacy_va_layout 0 87#endif 88 89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 90extern const int mmap_rnd_bits_min; 91extern const int mmap_rnd_bits_max; 92extern int mmap_rnd_bits __read_mostly; 93#endif 94#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 95extern const int mmap_rnd_compat_bits_min; 96extern const int mmap_rnd_compat_bits_max; 97extern int mmap_rnd_compat_bits __read_mostly; 98#endif 99 100#include <asm/page.h> 101#include <asm/processor.h> 102 103/* 104 * Architectures that support memory tagging (assigning tags to memory regions, 105 * embedding these tags into addresses that point to these memory regions, and 106 * checking that the memory and the pointer tags match on memory accesses) 107 * redefine this macro to strip tags from pointers. 108 * It's defined as noop for arcitectures that don't support memory tagging. 109 */ 110#ifndef untagged_addr 111#define untagged_addr(addr) (addr) 112#endif 113 114#ifndef __pa_symbol 115#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 116#endif 117 118#ifndef page_to_virt 119#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 120#endif 121 122#ifndef lm_alias 123#define lm_alias(x) __va(__pa_symbol(x)) 124#endif 125 126/* 127 * To prevent common memory management code establishing 128 * a zero page mapping on a read fault. 129 * This macro should be defined within <asm/pgtable.h>. 130 * s390 does this to prevent multiplexing of hardware bits 131 * related to the physical page in case of virtualization. 132 */ 133#ifndef mm_forbids_zeropage 134#define mm_forbids_zeropage(X) (0) 135#endif 136 137/* 138 * On some architectures it is expensive to call memset() for small sizes. 139 * If an architecture decides to implement their own version of 140 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 141 * define their own version of this macro in <asm/pgtable.h> 142 */ 143#if BITS_PER_LONG == 64 144/* This function must be updated when the size of struct page grows above 80 145 * or reduces below 56. The idea that compiler optimizes out switch() 146 * statement, and only leaves move/store instructions. Also the compiler can 147 * combine write statments if they are both assignments and can be reordered, 148 * this can result in several of the writes here being dropped. 149 */ 150#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 151static inline void __mm_zero_struct_page(struct page *page) 152{ 153 unsigned long *_pp = (void *)page; 154 155 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 156 BUILD_BUG_ON(sizeof(struct page) & 7); 157 BUILD_BUG_ON(sizeof(struct page) < 56); 158 BUILD_BUG_ON(sizeof(struct page) > 80); 159 160 switch (sizeof(struct page)) { 161 case 80: 162 _pp[9] = 0; 163 fallthrough; 164 case 72: 165 _pp[8] = 0; 166 fallthrough; 167 case 64: 168 _pp[7] = 0; 169 fallthrough; 170 case 56: 171 _pp[6] = 0; 172 _pp[5] = 0; 173 _pp[4] = 0; 174 _pp[3] = 0; 175 _pp[2] = 0; 176 _pp[1] = 0; 177 _pp[0] = 0; 178 } 179} 180#else 181#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 182#endif 183 184/* 185 * Default maximum number of active map areas, this limits the number of vmas 186 * per mm struct. Users can overwrite this number by sysctl but there is a 187 * problem. 188 * 189 * When a program's coredump is generated as ELF format, a section is created 190 * per a vma. In ELF, the number of sections is represented in unsigned short. 191 * This means the number of sections should be smaller than 65535 at coredump. 192 * Because the kernel adds some informative sections to a image of program at 193 * generating coredump, we need some margin. The number of extra sections is 194 * 1-3 now and depends on arch. We use "5" as safe margin, here. 195 * 196 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 197 * not a hard limit any more. Although some userspace tools can be surprised by 198 * that. 199 */ 200#define MAPCOUNT_ELF_CORE_MARGIN (5) 201#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 202 203extern int sysctl_max_map_count; 204 205extern unsigned long sysctl_user_reserve_kbytes; 206extern unsigned long sysctl_admin_reserve_kbytes; 207 208extern int sysctl_overcommit_memory; 209extern int sysctl_overcommit_ratio; 210extern unsigned long sysctl_overcommit_kbytes; 211 212int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 213 loff_t *); 214int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 215 loff_t *); 216int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 217 loff_t *); 218 219#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 220 221/* to align the pointer to the (next) page boundary */ 222#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 223 224/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 225#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 226 227#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 228 229/* 230 * Linux kernel virtual memory manager primitives. 231 * The idea being to have a "virtual" mm in the same way 232 * we have a virtual fs - giving a cleaner interface to the 233 * mm details, and allowing different kinds of memory mappings 234 * (from shared memory to executable loading to arbitrary 235 * mmap() functions). 236 */ 237 238struct vm_area_struct *vm_area_alloc(struct mm_struct *); 239struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 240void vm_area_free(struct vm_area_struct *); 241 242#ifndef CONFIG_MMU 243extern struct rb_root nommu_region_tree; 244extern struct rw_semaphore nommu_region_sem; 245 246extern unsigned int kobjsize(const void *objp); 247#endif 248 249/* 250 * vm_flags in vm_area_struct, see mm_types.h. 251 * When changing, update also include/trace/events/mmflags.h 252 */ 253#define VM_NONE 0x00000000 254 255#define VM_READ 0x00000001 /* currently active flags */ 256#define VM_WRITE 0x00000002 257#define VM_EXEC 0x00000004 258#define VM_SHARED 0x00000008 259 260/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 261#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 262#define VM_MAYWRITE 0x00000020 263#define VM_MAYEXEC 0x00000040 264#define VM_MAYSHARE 0x00000080 265 266#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 267#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 268#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 269#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 270#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 271 272#define VM_LOCKED 0x00002000 273#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 274 275 /* Used by sys_madvise() */ 276#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 277#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 278 279#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 280#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 281#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 282#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 283#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 284#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 285#define VM_SYNC 0x00800000 /* Synchronous page faults */ 286#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 287#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 288#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 289 290#ifdef CONFIG_MEM_SOFT_DIRTY 291# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 292#else 293# define VM_SOFTDIRTY 0 294#endif 295 296#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 297#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 298#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 299#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 300 301#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 302#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 303#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 304#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 305#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 306#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 307#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 308#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 309#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 310#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 311#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 312#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 313 314#ifdef CONFIG_ARCH_HAS_PKEYS 315# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 316# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 317# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 318# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 319# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 320#ifdef CONFIG_PPC 321# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 322#else 323# define VM_PKEY_BIT4 0 324#endif 325#endif /* CONFIG_ARCH_HAS_PKEYS */ 326 327#if defined(CONFIG_X86) 328# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 329#elif defined(CONFIG_PPC) 330# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 331#elif defined(CONFIG_PARISC) 332# define VM_GROWSUP VM_ARCH_1 333#elif defined(CONFIG_IA64) 334# define VM_GROWSUP VM_ARCH_1 335#elif defined(CONFIG_SPARC64) 336# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 337# define VM_ARCH_CLEAR VM_SPARC_ADI 338#elif defined(CONFIG_ARM64) 339# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 340# define VM_ARCH_CLEAR VM_ARM64_BTI 341#elif !defined(CONFIG_MMU) 342# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 343#endif 344 345#ifndef VM_GROWSUP 346# define VM_GROWSUP VM_NONE 347#endif 348 349/* Bits set in the VMA until the stack is in its final location */ 350#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 351 352#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 353 354/* Common data flag combinations */ 355#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 356 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 357#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 358 VM_MAYWRITE | VM_MAYEXEC) 359#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 360 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 361 362#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 363#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 364#endif 365 366#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 367#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 368#endif 369 370#ifdef CONFIG_STACK_GROWSUP 371#define VM_STACK VM_GROWSUP 372#else 373#define VM_STACK VM_GROWSDOWN 374#endif 375 376#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 377 378/* VMA basic access permission flags */ 379#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 380 381 382/* 383 * Special vmas that are non-mergable, non-mlock()able. 384 */ 385#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 386 387/* This mask prevents VMA from being scanned with khugepaged */ 388#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 389 390/* This mask defines which mm->def_flags a process can inherit its parent */ 391#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 392 393/* This mask is used to clear all the VMA flags used by mlock */ 394#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 395 396/* Arch-specific flags to clear when updating VM flags on protection change */ 397#ifndef VM_ARCH_CLEAR 398# define VM_ARCH_CLEAR VM_NONE 399#endif 400#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 401 402/* 403 * mapping from the currently active vm_flags protection bits (the 404 * low four bits) to a page protection mask.. 405 */ 406extern pgprot_t protection_map[16]; 407 408/** 409 * Fault flag definitions. 410 * 411 * @FAULT_FLAG_WRITE: Fault was a write fault. 412 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 413 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 414 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 415 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 416 * @FAULT_FLAG_TRIED: The fault has been tried once. 417 * @FAULT_FLAG_USER: The fault originated in userspace. 418 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 419 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 420 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 421 * 422 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 423 * whether we would allow page faults to retry by specifying these two 424 * fault flags correctly. Currently there can be three legal combinations: 425 * 426 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 427 * this is the first try 428 * 429 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 430 * we've already tried at least once 431 * 432 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 433 * 434 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 435 * be used. Note that page faults can be allowed to retry for multiple times, 436 * in which case we'll have an initial fault with flags (a) then later on 437 * continuous faults with flags (b). We should always try to detect pending 438 * signals before a retry to make sure the continuous page faults can still be 439 * interrupted if necessary. 440 */ 441#define FAULT_FLAG_WRITE 0x01 442#define FAULT_FLAG_MKWRITE 0x02 443#define FAULT_FLAG_ALLOW_RETRY 0x04 444#define FAULT_FLAG_RETRY_NOWAIT 0x08 445#define FAULT_FLAG_KILLABLE 0x10 446#define FAULT_FLAG_TRIED 0x20 447#define FAULT_FLAG_USER 0x40 448#define FAULT_FLAG_REMOTE 0x80 449#define FAULT_FLAG_INSTRUCTION 0x100 450#define FAULT_FLAG_INTERRUPTIBLE 0x200 451 452/* 453 * The default fault flags that should be used by most of the 454 * arch-specific page fault handlers. 455 */ 456#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 457 FAULT_FLAG_KILLABLE | \ 458 FAULT_FLAG_INTERRUPTIBLE) 459 460/** 461 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 462 * 463 * This is mostly used for places where we want to try to avoid taking 464 * the mmap_lock for too long a time when waiting for another condition 465 * to change, in which case we can try to be polite to release the 466 * mmap_lock in the first round to avoid potential starvation of other 467 * processes that would also want the mmap_lock. 468 * 469 * Return: true if the page fault allows retry and this is the first 470 * attempt of the fault handling; false otherwise. 471 */ 472static inline bool fault_flag_allow_retry_first(unsigned int flags) 473{ 474 return (flags & FAULT_FLAG_ALLOW_RETRY) && 475 (!(flags & FAULT_FLAG_TRIED)); 476} 477 478#define FAULT_FLAG_TRACE \ 479 { FAULT_FLAG_WRITE, "WRITE" }, \ 480 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 481 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 482 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 483 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 484 { FAULT_FLAG_TRIED, "TRIED" }, \ 485 { FAULT_FLAG_USER, "USER" }, \ 486 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 487 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 488 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 489 490/* 491 * vm_fault is filled by the pagefault handler and passed to the vma's 492 * ->fault function. The vma's ->fault is responsible for returning a bitmask 493 * of VM_FAULT_xxx flags that give details about how the fault was handled. 494 * 495 * MM layer fills up gfp_mask for page allocations but fault handler might 496 * alter it if its implementation requires a different allocation context. 497 * 498 * pgoff should be used in favour of virtual_address, if possible. 499 */ 500struct vm_fault { 501 struct vm_area_struct *vma; /* Target VMA */ 502 unsigned int flags; /* FAULT_FLAG_xxx flags */ 503 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 504 pgoff_t pgoff; /* Logical page offset based on vma */ 505 unsigned long address; /* Faulting virtual address */ 506 pmd_t *pmd; /* Pointer to pmd entry matching 507 * the 'address' */ 508 pud_t *pud; /* Pointer to pud entry matching 509 * the 'address' 510 */ 511 pte_t orig_pte; /* Value of PTE at the time of fault */ 512 513 struct page *cow_page; /* Page handler may use for COW fault */ 514 struct page *page; /* ->fault handlers should return a 515 * page here, unless VM_FAULT_NOPAGE 516 * is set (which is also implied by 517 * VM_FAULT_ERROR). 518 */ 519 /* These three entries are valid only while holding ptl lock */ 520 pte_t *pte; /* Pointer to pte entry matching 521 * the 'address'. NULL if the page 522 * table hasn't been allocated. 523 */ 524 spinlock_t *ptl; /* Page table lock. 525 * Protects pte page table if 'pte' 526 * is not NULL, otherwise pmd. 527 */ 528 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 529 * vm_ops->map_pages() calls 530 * alloc_set_pte() from atomic context. 531 * do_fault_around() pre-allocates 532 * page table to avoid allocation from 533 * atomic context. 534 */ 535}; 536 537/* page entry size for vm->huge_fault() */ 538enum page_entry_size { 539 PE_SIZE_PTE = 0, 540 PE_SIZE_PMD, 541 PE_SIZE_PUD, 542}; 543 544/* 545 * These are the virtual MM functions - opening of an area, closing and 546 * unmapping it (needed to keep files on disk up-to-date etc), pointer 547 * to the functions called when a no-page or a wp-page exception occurs. 548 */ 549struct vm_operations_struct { 550 void (*open)(struct vm_area_struct * area); 551 void (*close)(struct vm_area_struct * area); 552 int (*split)(struct vm_area_struct * area, unsigned long addr); 553 int (*mremap)(struct vm_area_struct * area); 554 vm_fault_t (*fault)(struct vm_fault *vmf); 555 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 556 enum page_entry_size pe_size); 557 void (*map_pages)(struct vm_fault *vmf, 558 pgoff_t start_pgoff, pgoff_t end_pgoff); 559 unsigned long (*pagesize)(struct vm_area_struct * area); 560 561 /* notification that a previously read-only page is about to become 562 * writable, if an error is returned it will cause a SIGBUS */ 563 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 564 565 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 566 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 567 568 /* called by access_process_vm when get_user_pages() fails, typically 569 * for use by special VMAs that can switch between memory and hardware 570 */ 571 int (*access)(struct vm_area_struct *vma, unsigned long addr, 572 void *buf, int len, int write); 573 574 /* Called by the /proc/PID/maps code to ask the vma whether it 575 * has a special name. Returning non-NULL will also cause this 576 * vma to be dumped unconditionally. */ 577 const char *(*name)(struct vm_area_struct *vma); 578 579#ifdef CONFIG_NUMA 580 /* 581 * set_policy() op must add a reference to any non-NULL @new mempolicy 582 * to hold the policy upon return. Caller should pass NULL @new to 583 * remove a policy and fall back to surrounding context--i.e. do not 584 * install a MPOL_DEFAULT policy, nor the task or system default 585 * mempolicy. 586 */ 587 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 588 589 /* 590 * get_policy() op must add reference [mpol_get()] to any policy at 591 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 592 * in mm/mempolicy.c will do this automatically. 593 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 594 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 595 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 596 * must return NULL--i.e., do not "fallback" to task or system default 597 * policy. 598 */ 599 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 600 unsigned long addr); 601#endif 602 /* 603 * Called by vm_normal_page() for special PTEs to find the 604 * page for @addr. This is useful if the default behavior 605 * (using pte_page()) would not find the correct page. 606 */ 607 struct page *(*find_special_page)(struct vm_area_struct *vma, 608 unsigned long addr); 609}; 610 611static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 612{ 613 static const struct vm_operations_struct dummy_vm_ops = {}; 614 615 memset(vma, 0, sizeof(*vma)); 616 vma->vm_mm = mm; 617 vma->vm_ops = &dummy_vm_ops; 618 INIT_LIST_HEAD(&vma->anon_vma_chain); 619} 620 621static inline void vma_set_anonymous(struct vm_area_struct *vma) 622{ 623 vma->vm_ops = NULL; 624} 625 626static inline bool vma_is_anonymous(struct vm_area_struct *vma) 627{ 628 return !vma->vm_ops; 629} 630 631static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 632{ 633 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 634 635 if (!maybe_stack) 636 return false; 637 638 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 639 VM_STACK_INCOMPLETE_SETUP) 640 return true; 641 642 return false; 643} 644 645static inline bool vma_is_foreign(struct vm_area_struct *vma) 646{ 647 if (!current->mm) 648 return true; 649 650 if (current->mm != vma->vm_mm) 651 return true; 652 653 return false; 654} 655 656static inline bool vma_is_accessible(struct vm_area_struct *vma) 657{ 658 return vma->vm_flags & VM_ACCESS_FLAGS; 659} 660 661#ifdef CONFIG_SHMEM 662/* 663 * The vma_is_shmem is not inline because it is used only by slow 664 * paths in userfault. 665 */ 666bool vma_is_shmem(struct vm_area_struct *vma); 667#else 668static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 669#endif 670 671int vma_is_stack_for_current(struct vm_area_struct *vma); 672 673/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 674#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 675 676struct mmu_gather; 677struct inode; 678 679#include <linux/huge_mm.h> 680 681/* 682 * Methods to modify the page usage count. 683 * 684 * What counts for a page usage: 685 * - cache mapping (page->mapping) 686 * - private data (page->private) 687 * - page mapped in a task's page tables, each mapping 688 * is counted separately 689 * 690 * Also, many kernel routines increase the page count before a critical 691 * routine so they can be sure the page doesn't go away from under them. 692 */ 693 694/* 695 * Drop a ref, return true if the refcount fell to zero (the page has no users) 696 */ 697static inline int put_page_testzero(struct page *page) 698{ 699 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 700 return page_ref_dec_and_test(page); 701} 702 703/* 704 * Try to grab a ref unless the page has a refcount of zero, return false if 705 * that is the case. 706 * This can be called when MMU is off so it must not access 707 * any of the virtual mappings. 708 */ 709static inline int get_page_unless_zero(struct page *page) 710{ 711 return page_ref_add_unless(page, 1, 0); 712} 713 714extern int page_is_ram(unsigned long pfn); 715 716enum { 717 REGION_INTERSECTS, 718 REGION_DISJOINT, 719 REGION_MIXED, 720}; 721 722int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 723 unsigned long desc); 724 725/* Support for virtually mapped pages */ 726struct page *vmalloc_to_page(const void *addr); 727unsigned long vmalloc_to_pfn(const void *addr); 728 729/* 730 * Determine if an address is within the vmalloc range 731 * 732 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 733 * is no special casing required. 734 */ 735 736#ifndef is_ioremap_addr 737#define is_ioremap_addr(x) is_vmalloc_addr(x) 738#endif 739 740#ifdef CONFIG_MMU 741extern bool is_vmalloc_addr(const void *x); 742extern int is_vmalloc_or_module_addr(const void *x); 743#else 744static inline bool is_vmalloc_addr(const void *x) 745{ 746 return false; 747} 748static inline int is_vmalloc_or_module_addr(const void *x) 749{ 750 return 0; 751} 752#endif 753 754extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 755static inline void *kvmalloc(size_t size, gfp_t flags) 756{ 757 return kvmalloc_node(size, flags, NUMA_NO_NODE); 758} 759static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 760{ 761 return kvmalloc_node(size, flags | __GFP_ZERO, node); 762} 763static inline void *kvzalloc(size_t size, gfp_t flags) 764{ 765 return kvmalloc(size, flags | __GFP_ZERO); 766} 767 768static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 769{ 770 size_t bytes; 771 772 if (unlikely(check_mul_overflow(n, size, &bytes))) 773 return NULL; 774 775 return kvmalloc(bytes, flags); 776} 777 778static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 779{ 780 return kvmalloc_array(n, size, flags | __GFP_ZERO); 781} 782 783extern void kvfree(const void *addr); 784extern void kvfree_sensitive(const void *addr, size_t len); 785 786static inline int head_mapcount(struct page *head) 787{ 788 return atomic_read(compound_mapcount_ptr(head)) + 1; 789} 790 791/* 792 * Mapcount of compound page as a whole, does not include mapped sub-pages. 793 * 794 * Must be called only for compound pages or any their tail sub-pages. 795 */ 796static inline int compound_mapcount(struct page *page) 797{ 798 VM_BUG_ON_PAGE(!PageCompound(page), page); 799 page = compound_head(page); 800 return head_mapcount(page); 801} 802 803/* 804 * The atomic page->_mapcount, starts from -1: so that transitions 805 * both from it and to it can be tracked, using atomic_inc_and_test 806 * and atomic_add_negative(-1). 807 */ 808static inline void page_mapcount_reset(struct page *page) 809{ 810 atomic_set(&(page)->_mapcount, -1); 811} 812 813int __page_mapcount(struct page *page); 814 815/* 816 * Mapcount of 0-order page; when compound sub-page, includes 817 * compound_mapcount(). 818 * 819 * Result is undefined for pages which cannot be mapped into userspace. 820 * For example SLAB or special types of pages. See function page_has_type(). 821 * They use this place in struct page differently. 822 */ 823static inline int page_mapcount(struct page *page) 824{ 825 if (unlikely(PageCompound(page))) 826 return __page_mapcount(page); 827 return atomic_read(&page->_mapcount) + 1; 828} 829 830#ifdef CONFIG_TRANSPARENT_HUGEPAGE 831int total_mapcount(struct page *page); 832int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 833#else 834static inline int total_mapcount(struct page *page) 835{ 836 return page_mapcount(page); 837} 838static inline int page_trans_huge_mapcount(struct page *page, 839 int *total_mapcount) 840{ 841 int mapcount = page_mapcount(page); 842 if (total_mapcount) 843 *total_mapcount = mapcount; 844 return mapcount; 845} 846#endif 847 848static inline struct page *virt_to_head_page(const void *x) 849{ 850 struct page *page = virt_to_page(x); 851 852 return compound_head(page); 853} 854 855void __put_page(struct page *page); 856 857void put_pages_list(struct list_head *pages); 858 859void split_page(struct page *page, unsigned int order); 860 861/* 862 * Compound pages have a destructor function. Provide a 863 * prototype for that function and accessor functions. 864 * These are _only_ valid on the head of a compound page. 865 */ 866typedef void compound_page_dtor(struct page *); 867 868/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 869enum compound_dtor_id { 870 NULL_COMPOUND_DTOR, 871 COMPOUND_PAGE_DTOR, 872#ifdef CONFIG_HUGETLB_PAGE 873 HUGETLB_PAGE_DTOR, 874#endif 875#ifdef CONFIG_TRANSPARENT_HUGEPAGE 876 TRANSHUGE_PAGE_DTOR, 877#endif 878 NR_COMPOUND_DTORS, 879}; 880extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 881 882static inline void set_compound_page_dtor(struct page *page, 883 enum compound_dtor_id compound_dtor) 884{ 885 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 886 page[1].compound_dtor = compound_dtor; 887} 888 889static inline void destroy_compound_page(struct page *page) 890{ 891 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 892 compound_page_dtors[page[1].compound_dtor](page); 893} 894 895static inline unsigned int compound_order(struct page *page) 896{ 897 if (!PageHead(page)) 898 return 0; 899 return page[1].compound_order; 900} 901 902static inline bool hpage_pincount_available(struct page *page) 903{ 904 /* 905 * Can the page->hpage_pinned_refcount field be used? That field is in 906 * the 3rd page of the compound page, so the smallest (2-page) compound 907 * pages cannot support it. 908 */ 909 page = compound_head(page); 910 return PageCompound(page) && compound_order(page) > 1; 911} 912 913static inline int head_pincount(struct page *head) 914{ 915 return atomic_read(compound_pincount_ptr(head)); 916} 917 918static inline int compound_pincount(struct page *page) 919{ 920 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 921 page = compound_head(page); 922 return head_pincount(page); 923} 924 925static inline void set_compound_order(struct page *page, unsigned int order) 926{ 927 page[1].compound_order = order; 928 page[1].compound_nr = 1U << order; 929} 930 931/* Returns the number of pages in this potentially compound page. */ 932static inline unsigned long compound_nr(struct page *page) 933{ 934 if (!PageHead(page)) 935 return 1; 936 return page[1].compound_nr; 937} 938 939/* Returns the number of bytes in this potentially compound page. */ 940static inline unsigned long page_size(struct page *page) 941{ 942 return PAGE_SIZE << compound_order(page); 943} 944 945/* Returns the number of bits needed for the number of bytes in a page */ 946static inline unsigned int page_shift(struct page *page) 947{ 948 return PAGE_SHIFT + compound_order(page); 949} 950 951void free_compound_page(struct page *page); 952 953#ifdef CONFIG_MMU 954/* 955 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 956 * servicing faults for write access. In the normal case, do always want 957 * pte_mkwrite. But get_user_pages can cause write faults for mappings 958 * that do not have writing enabled, when used by access_process_vm. 959 */ 960static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 961{ 962 if (likely(vma->vm_flags & VM_WRITE)) 963 pte = pte_mkwrite(pte); 964 return pte; 965} 966 967vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page); 968vm_fault_t finish_fault(struct vm_fault *vmf); 969vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 970#endif 971 972/* 973 * Multiple processes may "see" the same page. E.g. for untouched 974 * mappings of /dev/null, all processes see the same page full of 975 * zeroes, and text pages of executables and shared libraries have 976 * only one copy in memory, at most, normally. 977 * 978 * For the non-reserved pages, page_count(page) denotes a reference count. 979 * page_count() == 0 means the page is free. page->lru is then used for 980 * freelist management in the buddy allocator. 981 * page_count() > 0 means the page has been allocated. 982 * 983 * Pages are allocated by the slab allocator in order to provide memory 984 * to kmalloc and kmem_cache_alloc. In this case, the management of the 985 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 986 * unless a particular usage is carefully commented. (the responsibility of 987 * freeing the kmalloc memory is the caller's, of course). 988 * 989 * A page may be used by anyone else who does a __get_free_page(). 990 * In this case, page_count still tracks the references, and should only 991 * be used through the normal accessor functions. The top bits of page->flags 992 * and page->virtual store page management information, but all other fields 993 * are unused and could be used privately, carefully. The management of this 994 * page is the responsibility of the one who allocated it, and those who have 995 * subsequently been given references to it. 996 * 997 * The other pages (we may call them "pagecache pages") are completely 998 * managed by the Linux memory manager: I/O, buffers, swapping etc. 999 * The following discussion applies only to them. 1000 * 1001 * A pagecache page contains an opaque `private' member, which belongs to the 1002 * page's address_space. Usually, this is the address of a circular list of 1003 * the page's disk buffers. PG_private must be set to tell the VM to call 1004 * into the filesystem to release these pages. 1005 * 1006 * A page may belong to an inode's memory mapping. In this case, page->mapping 1007 * is the pointer to the inode, and page->index is the file offset of the page, 1008 * in units of PAGE_SIZE. 1009 * 1010 * If pagecache pages are not associated with an inode, they are said to be 1011 * anonymous pages. These may become associated with the swapcache, and in that 1012 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1013 * 1014 * In either case (swapcache or inode backed), the pagecache itself holds one 1015 * reference to the page. Setting PG_private should also increment the 1016 * refcount. The each user mapping also has a reference to the page. 1017 * 1018 * The pagecache pages are stored in a per-mapping radix tree, which is 1019 * rooted at mapping->i_pages, and indexed by offset. 1020 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1021 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1022 * 1023 * All pagecache pages may be subject to I/O: 1024 * - inode pages may need to be read from disk, 1025 * - inode pages which have been modified and are MAP_SHARED may need 1026 * to be written back to the inode on disk, 1027 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1028 * modified may need to be swapped out to swap space and (later) to be read 1029 * back into memory. 1030 */ 1031 1032/* 1033 * The zone field is never updated after free_area_init_core() 1034 * sets it, so none of the operations on it need to be atomic. 1035 */ 1036 1037/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1038#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1039#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1040#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1041#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1042#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1043 1044/* 1045 * Define the bit shifts to access each section. For non-existent 1046 * sections we define the shift as 0; that plus a 0 mask ensures 1047 * the compiler will optimise away reference to them. 1048 */ 1049#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1050#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1051#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1052#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1053#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1054 1055/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1056#ifdef NODE_NOT_IN_PAGE_FLAGS 1057#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1058#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1059 SECTIONS_PGOFF : ZONES_PGOFF) 1060#else 1061#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1062#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1063 NODES_PGOFF : ZONES_PGOFF) 1064#endif 1065 1066#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1067 1068#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1069#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1070#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1071#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1072#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1073#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1074 1075static inline enum zone_type page_zonenum(const struct page *page) 1076{ 1077 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1078 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1079} 1080 1081#ifdef CONFIG_ZONE_DEVICE 1082static inline bool is_zone_device_page(const struct page *page) 1083{ 1084 return page_zonenum(page) == ZONE_DEVICE; 1085} 1086extern void memmap_init_zone_device(struct zone *, unsigned long, 1087 unsigned long, struct dev_pagemap *); 1088#else 1089static inline bool is_zone_device_page(const struct page *page) 1090{ 1091 return false; 1092} 1093#endif 1094 1095#ifdef CONFIG_DEV_PAGEMAP_OPS 1096void free_devmap_managed_page(struct page *page); 1097DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1098 1099static inline bool page_is_devmap_managed(struct page *page) 1100{ 1101 if (!static_branch_unlikely(&devmap_managed_key)) 1102 return false; 1103 if (!is_zone_device_page(page)) 1104 return false; 1105 switch (page->pgmap->type) { 1106 case MEMORY_DEVICE_PRIVATE: 1107 case MEMORY_DEVICE_FS_DAX: 1108 return true; 1109 default: 1110 break; 1111 } 1112 return false; 1113} 1114 1115void put_devmap_managed_page(struct page *page); 1116 1117#else /* CONFIG_DEV_PAGEMAP_OPS */ 1118static inline bool page_is_devmap_managed(struct page *page) 1119{ 1120 return false; 1121} 1122 1123static inline void put_devmap_managed_page(struct page *page) 1124{ 1125} 1126#endif /* CONFIG_DEV_PAGEMAP_OPS */ 1127 1128static inline bool is_device_private_page(const struct page *page) 1129{ 1130 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1131 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1132 is_zone_device_page(page) && 1133 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1134} 1135 1136static inline bool is_pci_p2pdma_page(const struct page *page) 1137{ 1138 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1139 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1140 is_zone_device_page(page) && 1141 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1142} 1143 1144/* 127: arbitrary random number, small enough to assemble well */ 1145#define page_ref_zero_or_close_to_overflow(page) \ 1146 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1147 1148static inline void get_page(struct page *page) 1149{ 1150 page = compound_head(page); 1151 /* 1152 * Getting a normal page or the head of a compound page 1153 * requires to already have an elevated page->_refcount. 1154 */ 1155 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1156 page_ref_inc(page); 1157} 1158 1159bool __must_check try_grab_page(struct page *page, unsigned int flags); 1160 1161static inline __must_check bool try_get_page(struct page *page) 1162{ 1163 page = compound_head(page); 1164 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1165 return false; 1166 page_ref_inc(page); 1167 return true; 1168} 1169 1170static inline void put_page(struct page *page) 1171{ 1172 page = compound_head(page); 1173 1174 /* 1175 * For devmap managed pages we need to catch refcount transition from 1176 * 2 to 1, when refcount reach one it means the page is free and we 1177 * need to inform the device driver through callback. See 1178 * include/linux/memremap.h and HMM for details. 1179 */ 1180 if (page_is_devmap_managed(page)) { 1181 put_devmap_managed_page(page); 1182 return; 1183 } 1184 1185 if (put_page_testzero(page)) 1186 __put_page(page); 1187} 1188 1189/* 1190 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1191 * the page's refcount so that two separate items are tracked: the original page 1192 * reference count, and also a new count of how many pin_user_pages() calls were 1193 * made against the page. ("gup-pinned" is another term for the latter). 1194 * 1195 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1196 * distinct from normal pages. As such, the unpin_user_page() call (and its 1197 * variants) must be used in order to release gup-pinned pages. 1198 * 1199 * Choice of value: 1200 * 1201 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1202 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1203 * simpler, due to the fact that adding an even power of two to the page 1204 * refcount has the effect of using only the upper N bits, for the code that 1205 * counts up using the bias value. This means that the lower bits are left for 1206 * the exclusive use of the original code that increments and decrements by one 1207 * (or at least, by much smaller values than the bias value). 1208 * 1209 * Of course, once the lower bits overflow into the upper bits (and this is 1210 * OK, because subtraction recovers the original values), then visual inspection 1211 * no longer suffices to directly view the separate counts. However, for normal 1212 * applications that don't have huge page reference counts, this won't be an 1213 * issue. 1214 * 1215 * Locking: the lockless algorithm described in page_cache_get_speculative() 1216 * and page_cache_gup_pin_speculative() provides safe operation for 1217 * get_user_pages and page_mkclean and other calls that race to set up page 1218 * table entries. 1219 */ 1220#define GUP_PIN_COUNTING_BIAS (1U << 10) 1221 1222void unpin_user_page(struct page *page); 1223void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1224 bool make_dirty); 1225void unpin_user_pages(struct page **pages, unsigned long npages); 1226 1227/** 1228 * page_maybe_dma_pinned() - report if a page is pinned for DMA. 1229 * 1230 * This function checks if a page has been pinned via a call to 1231 * pin_user_pages*(). 1232 * 1233 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1234 * because it means "definitely not pinned for DMA", but true means "probably 1235 * pinned for DMA, but possibly a false positive due to having at least 1236 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1237 * 1238 * False positives are OK, because: a) it's unlikely for a page to get that many 1239 * refcounts, and b) all the callers of this routine are expected to be able to 1240 * deal gracefully with a false positive. 1241 * 1242 * For huge pages, the result will be exactly correct. That's because we have 1243 * more tracking data available: the 3rd struct page in the compound page is 1244 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1245 * scheme). 1246 * 1247 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1248 * 1249 * @page: pointer to page to be queried. 1250 * @Return: True, if it is likely that the page has been "dma-pinned". 1251 * False, if the page is definitely not dma-pinned. 1252 */ 1253static inline bool page_maybe_dma_pinned(struct page *page) 1254{ 1255 if (hpage_pincount_available(page)) 1256 return compound_pincount(page) > 0; 1257 1258 /* 1259 * page_ref_count() is signed. If that refcount overflows, then 1260 * page_ref_count() returns a negative value, and callers will avoid 1261 * further incrementing the refcount. 1262 * 1263 * Here, for that overflow case, use the signed bit to count a little 1264 * bit higher via unsigned math, and thus still get an accurate result. 1265 */ 1266 return ((unsigned int)page_ref_count(compound_head(page))) >= 1267 GUP_PIN_COUNTING_BIAS; 1268} 1269 1270#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1271#define SECTION_IN_PAGE_FLAGS 1272#endif 1273 1274/* 1275 * The identification function is mainly used by the buddy allocator for 1276 * determining if two pages could be buddies. We are not really identifying 1277 * the zone since we could be using the section number id if we do not have 1278 * node id available in page flags. 1279 * We only guarantee that it will return the same value for two combinable 1280 * pages in a zone. 1281 */ 1282static inline int page_zone_id(struct page *page) 1283{ 1284 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1285} 1286 1287#ifdef NODE_NOT_IN_PAGE_FLAGS 1288extern int page_to_nid(const struct page *page); 1289#else 1290static inline int page_to_nid(const struct page *page) 1291{ 1292 struct page *p = (struct page *)page; 1293 1294 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1295} 1296#endif 1297 1298#ifdef CONFIG_NUMA_BALANCING 1299static inline int cpu_pid_to_cpupid(int cpu, int pid) 1300{ 1301 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1302} 1303 1304static inline int cpupid_to_pid(int cpupid) 1305{ 1306 return cpupid & LAST__PID_MASK; 1307} 1308 1309static inline int cpupid_to_cpu(int cpupid) 1310{ 1311 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1312} 1313 1314static inline int cpupid_to_nid(int cpupid) 1315{ 1316 return cpu_to_node(cpupid_to_cpu(cpupid)); 1317} 1318 1319static inline bool cpupid_pid_unset(int cpupid) 1320{ 1321 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1322} 1323 1324static inline bool cpupid_cpu_unset(int cpupid) 1325{ 1326 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1327} 1328 1329static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1330{ 1331 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1332} 1333 1334#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1335#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1336static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1337{ 1338 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1339} 1340 1341static inline int page_cpupid_last(struct page *page) 1342{ 1343 return page->_last_cpupid; 1344} 1345static inline void page_cpupid_reset_last(struct page *page) 1346{ 1347 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1348} 1349#else 1350static inline int page_cpupid_last(struct page *page) 1351{ 1352 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1353} 1354 1355extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1356 1357static inline void page_cpupid_reset_last(struct page *page) 1358{ 1359 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1360} 1361#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1362#else /* !CONFIG_NUMA_BALANCING */ 1363static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1364{ 1365 return page_to_nid(page); /* XXX */ 1366} 1367 1368static inline int page_cpupid_last(struct page *page) 1369{ 1370 return page_to_nid(page); /* XXX */ 1371} 1372 1373static inline int cpupid_to_nid(int cpupid) 1374{ 1375 return -1; 1376} 1377 1378static inline int cpupid_to_pid(int cpupid) 1379{ 1380 return -1; 1381} 1382 1383static inline int cpupid_to_cpu(int cpupid) 1384{ 1385 return -1; 1386} 1387 1388static inline int cpu_pid_to_cpupid(int nid, int pid) 1389{ 1390 return -1; 1391} 1392 1393static inline bool cpupid_pid_unset(int cpupid) 1394{ 1395 return true; 1396} 1397 1398static inline void page_cpupid_reset_last(struct page *page) 1399{ 1400} 1401 1402static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1403{ 1404 return false; 1405} 1406#endif /* CONFIG_NUMA_BALANCING */ 1407 1408#ifdef CONFIG_KASAN_SW_TAGS 1409static inline u8 page_kasan_tag(const struct page *page) 1410{ 1411 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1412} 1413 1414static inline void page_kasan_tag_set(struct page *page, u8 tag) 1415{ 1416 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1417 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1418} 1419 1420static inline void page_kasan_tag_reset(struct page *page) 1421{ 1422 page_kasan_tag_set(page, 0xff); 1423} 1424#else 1425static inline u8 page_kasan_tag(const struct page *page) 1426{ 1427 return 0xff; 1428} 1429 1430static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1431static inline void page_kasan_tag_reset(struct page *page) { } 1432#endif 1433 1434static inline struct zone *page_zone(const struct page *page) 1435{ 1436 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1437} 1438 1439static inline pg_data_t *page_pgdat(const struct page *page) 1440{ 1441 return NODE_DATA(page_to_nid(page)); 1442} 1443 1444#ifdef SECTION_IN_PAGE_FLAGS 1445static inline void set_page_section(struct page *page, unsigned long section) 1446{ 1447 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1448 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1449} 1450 1451static inline unsigned long page_to_section(const struct page *page) 1452{ 1453 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1454} 1455#endif 1456 1457static inline void set_page_zone(struct page *page, enum zone_type zone) 1458{ 1459 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1460 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1461} 1462 1463static inline void set_page_node(struct page *page, unsigned long node) 1464{ 1465 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1466 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1467} 1468 1469static inline void set_page_links(struct page *page, enum zone_type zone, 1470 unsigned long node, unsigned long pfn) 1471{ 1472 set_page_zone(page, zone); 1473 set_page_node(page, node); 1474#ifdef SECTION_IN_PAGE_FLAGS 1475 set_page_section(page, pfn_to_section_nr(pfn)); 1476#endif 1477} 1478 1479#ifdef CONFIG_MEMCG 1480static inline struct mem_cgroup *page_memcg(struct page *page) 1481{ 1482 return page->mem_cgroup; 1483} 1484static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1485{ 1486 WARN_ON_ONCE(!rcu_read_lock_held()); 1487 return READ_ONCE(page->mem_cgroup); 1488} 1489#else 1490static inline struct mem_cgroup *page_memcg(struct page *page) 1491{ 1492 return NULL; 1493} 1494static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1495{ 1496 WARN_ON_ONCE(!rcu_read_lock_held()); 1497 return NULL; 1498} 1499#endif 1500 1501/* 1502 * Some inline functions in vmstat.h depend on page_zone() 1503 */ 1504#include <linux/vmstat.h> 1505 1506static __always_inline void *lowmem_page_address(const struct page *page) 1507{ 1508 return page_to_virt(page); 1509} 1510 1511#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1512#define HASHED_PAGE_VIRTUAL 1513#endif 1514 1515#if defined(WANT_PAGE_VIRTUAL) 1516static inline void *page_address(const struct page *page) 1517{ 1518 return page->virtual; 1519} 1520static inline void set_page_address(struct page *page, void *address) 1521{ 1522 page->virtual = address; 1523} 1524#define page_address_init() do { } while(0) 1525#endif 1526 1527#if defined(HASHED_PAGE_VIRTUAL) 1528void *page_address(const struct page *page); 1529void set_page_address(struct page *page, void *virtual); 1530void page_address_init(void); 1531#endif 1532 1533#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1534#define page_address(page) lowmem_page_address(page) 1535#define set_page_address(page, address) do { } while(0) 1536#define page_address_init() do { } while(0) 1537#endif 1538 1539extern void *page_rmapping(struct page *page); 1540extern struct anon_vma *page_anon_vma(struct page *page); 1541extern struct address_space *page_mapping(struct page *page); 1542 1543extern struct address_space *__page_file_mapping(struct page *); 1544 1545static inline 1546struct address_space *page_file_mapping(struct page *page) 1547{ 1548 if (unlikely(PageSwapCache(page))) 1549 return __page_file_mapping(page); 1550 1551 return page->mapping; 1552} 1553 1554extern pgoff_t __page_file_index(struct page *page); 1555 1556/* 1557 * Return the pagecache index of the passed page. Regular pagecache pages 1558 * use ->index whereas swapcache pages use swp_offset(->private) 1559 */ 1560static inline pgoff_t page_index(struct page *page) 1561{ 1562 if (unlikely(PageSwapCache(page))) 1563 return __page_file_index(page); 1564 return page->index; 1565} 1566 1567bool page_mapped(struct page *page); 1568struct address_space *page_mapping(struct page *page); 1569struct address_space *page_mapping_file(struct page *page); 1570 1571/* 1572 * Return true only if the page has been allocated with 1573 * ALLOC_NO_WATERMARKS and the low watermark was not 1574 * met implying that the system is under some pressure. 1575 */ 1576static inline bool page_is_pfmemalloc(struct page *page) 1577{ 1578 /* 1579 * Page index cannot be this large so this must be 1580 * a pfmemalloc page. 1581 */ 1582 return page->index == -1UL; 1583} 1584 1585/* 1586 * Only to be called by the page allocator on a freshly allocated 1587 * page. 1588 */ 1589static inline void set_page_pfmemalloc(struct page *page) 1590{ 1591 page->index = -1UL; 1592} 1593 1594static inline void clear_page_pfmemalloc(struct page *page) 1595{ 1596 page->index = 0; 1597} 1598 1599/* 1600 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1601 */ 1602extern void pagefault_out_of_memory(void); 1603 1604#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1605#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1606 1607/* 1608 * Flags passed to show_mem() and show_free_areas() to suppress output in 1609 * various contexts. 1610 */ 1611#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1612 1613extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1614 1615#ifdef CONFIG_MMU 1616extern bool can_do_mlock(void); 1617#else 1618static inline bool can_do_mlock(void) { return false; } 1619#endif 1620extern int user_shm_lock(size_t, struct user_struct *); 1621extern void user_shm_unlock(size_t, struct user_struct *); 1622 1623/* 1624 * Parameter block passed down to zap_pte_range in exceptional cases. 1625 */ 1626struct zap_details { 1627 struct address_space *check_mapping; /* Check page->mapping if set */ 1628 pgoff_t first_index; /* Lowest page->index to unmap */ 1629 pgoff_t last_index; /* Highest page->index to unmap */ 1630}; 1631 1632struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1633 pte_t pte); 1634struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1635 pmd_t pmd); 1636 1637void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1638 unsigned long size); 1639void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1640 unsigned long size); 1641void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1642 unsigned long start, unsigned long end); 1643 1644struct mmu_notifier_range; 1645 1646void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1647 unsigned long end, unsigned long floor, unsigned long ceiling); 1648int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1649 struct vm_area_struct *vma, struct vm_area_struct *new); 1650int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1651 struct mmu_notifier_range *range, 1652 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1653int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1654 unsigned long *pfn); 1655int follow_phys(struct vm_area_struct *vma, unsigned long address, 1656 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1657int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1658 void *buf, int len, int write); 1659 1660extern void truncate_pagecache(struct inode *inode, loff_t new); 1661extern void truncate_setsize(struct inode *inode, loff_t newsize); 1662void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1663void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1664int truncate_inode_page(struct address_space *mapping, struct page *page); 1665int generic_error_remove_page(struct address_space *mapping, struct page *page); 1666int invalidate_inode_page(struct page *page); 1667 1668#ifdef CONFIG_MMU 1669extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1670 unsigned long address, unsigned int flags, 1671 struct pt_regs *regs); 1672extern int fixup_user_fault(struct mm_struct *mm, 1673 unsigned long address, unsigned int fault_flags, 1674 bool *unlocked); 1675void unmap_mapping_pages(struct address_space *mapping, 1676 pgoff_t start, pgoff_t nr, bool even_cows); 1677void unmap_mapping_range(struct address_space *mapping, 1678 loff_t const holebegin, loff_t const holelen, int even_cows); 1679#else 1680static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1681 unsigned long address, unsigned int flags, 1682 struct pt_regs *regs) 1683{ 1684 /* should never happen if there's no MMU */ 1685 BUG(); 1686 return VM_FAULT_SIGBUS; 1687} 1688static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1689 unsigned int fault_flags, bool *unlocked) 1690{ 1691 /* should never happen if there's no MMU */ 1692 BUG(); 1693 return -EFAULT; 1694} 1695static inline void unmap_mapping_pages(struct address_space *mapping, 1696 pgoff_t start, pgoff_t nr, bool even_cows) { } 1697static inline void unmap_mapping_range(struct address_space *mapping, 1698 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1699#endif 1700 1701static inline void unmap_shared_mapping_range(struct address_space *mapping, 1702 loff_t const holebegin, loff_t const holelen) 1703{ 1704 unmap_mapping_range(mapping, holebegin, holelen, 0); 1705} 1706 1707extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1708 void *buf, int len, unsigned int gup_flags); 1709extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1710 void *buf, int len, unsigned int gup_flags); 1711extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1712 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1713 1714long get_user_pages_remote(struct mm_struct *mm, 1715 unsigned long start, unsigned long nr_pages, 1716 unsigned int gup_flags, struct page **pages, 1717 struct vm_area_struct **vmas, int *locked); 1718long pin_user_pages_remote(struct mm_struct *mm, 1719 unsigned long start, unsigned long nr_pages, 1720 unsigned int gup_flags, struct page **pages, 1721 struct vm_area_struct **vmas, int *locked); 1722long get_user_pages(unsigned long start, unsigned long nr_pages, 1723 unsigned int gup_flags, struct page **pages, 1724 struct vm_area_struct **vmas); 1725long pin_user_pages(unsigned long start, unsigned long nr_pages, 1726 unsigned int gup_flags, struct page **pages, 1727 struct vm_area_struct **vmas); 1728long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1729 unsigned int gup_flags, struct page **pages, int *locked); 1730long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1731 unsigned int gup_flags, struct page **pages, int *locked); 1732long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1733 struct page **pages, unsigned int gup_flags); 1734long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1735 struct page **pages, unsigned int gup_flags); 1736 1737int get_user_pages_fast(unsigned long start, int nr_pages, 1738 unsigned int gup_flags, struct page **pages); 1739int pin_user_pages_fast(unsigned long start, int nr_pages, 1740 unsigned int gup_flags, struct page **pages); 1741 1742int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1743int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1744 struct task_struct *task, bool bypass_rlim); 1745 1746/* Container for pinned pfns / pages */ 1747struct frame_vector { 1748 unsigned int nr_allocated; /* Number of frames we have space for */ 1749 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1750 bool got_ref; /* Did we pin pages by getting page ref? */ 1751 bool is_pfns; /* Does array contain pages or pfns? */ 1752 void *ptrs[]; /* Array of pinned pfns / pages. Use 1753 * pfns_vector_pages() or pfns_vector_pfns() 1754 * for access */ 1755}; 1756 1757struct frame_vector *frame_vector_create(unsigned int nr_frames); 1758void frame_vector_destroy(struct frame_vector *vec); 1759int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1760 unsigned int gup_flags, struct frame_vector *vec); 1761void put_vaddr_frames(struct frame_vector *vec); 1762int frame_vector_to_pages(struct frame_vector *vec); 1763void frame_vector_to_pfns(struct frame_vector *vec); 1764 1765static inline unsigned int frame_vector_count(struct frame_vector *vec) 1766{ 1767 return vec->nr_frames; 1768} 1769 1770static inline struct page **frame_vector_pages(struct frame_vector *vec) 1771{ 1772 if (vec->is_pfns) { 1773 int err = frame_vector_to_pages(vec); 1774 1775 if (err) 1776 return ERR_PTR(err); 1777 } 1778 return (struct page **)(vec->ptrs); 1779} 1780 1781static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1782{ 1783 if (!vec->is_pfns) 1784 frame_vector_to_pfns(vec); 1785 return (unsigned long *)(vec->ptrs); 1786} 1787 1788struct kvec; 1789int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1790 struct page **pages); 1791int get_kernel_page(unsigned long start, int write, struct page **pages); 1792struct page *get_dump_page(unsigned long addr); 1793 1794extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1795extern void do_invalidatepage(struct page *page, unsigned int offset, 1796 unsigned int length); 1797 1798void __set_page_dirty(struct page *, struct address_space *, int warn); 1799int __set_page_dirty_nobuffers(struct page *page); 1800int __set_page_dirty_no_writeback(struct page *page); 1801int redirty_page_for_writepage(struct writeback_control *wbc, 1802 struct page *page); 1803void account_page_dirtied(struct page *page, struct address_space *mapping); 1804void account_page_cleaned(struct page *page, struct address_space *mapping, 1805 struct bdi_writeback *wb); 1806int set_page_dirty(struct page *page); 1807int set_page_dirty_lock(struct page *page); 1808void __cancel_dirty_page(struct page *page); 1809static inline void cancel_dirty_page(struct page *page) 1810{ 1811 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1812 if (PageDirty(page)) 1813 __cancel_dirty_page(page); 1814} 1815int clear_page_dirty_for_io(struct page *page); 1816 1817int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1818 1819extern unsigned long move_page_tables(struct vm_area_struct *vma, 1820 unsigned long old_addr, struct vm_area_struct *new_vma, 1821 unsigned long new_addr, unsigned long len, 1822 bool need_rmap_locks); 1823 1824/* 1825 * Flags used by change_protection(). For now we make it a bitmap so 1826 * that we can pass in multiple flags just like parameters. However 1827 * for now all the callers are only use one of the flags at the same 1828 * time. 1829 */ 1830/* Whether we should allow dirty bit accounting */ 1831#define MM_CP_DIRTY_ACCT (1UL << 0) 1832/* Whether this protection change is for NUMA hints */ 1833#define MM_CP_PROT_NUMA (1UL << 1) 1834/* Whether this change is for write protecting */ 1835#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1836#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1837#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1838 MM_CP_UFFD_WP_RESOLVE) 1839 1840extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1841 unsigned long end, pgprot_t newprot, 1842 unsigned long cp_flags); 1843extern int mprotect_fixup(struct vm_area_struct *vma, 1844 struct vm_area_struct **pprev, unsigned long start, 1845 unsigned long end, unsigned long newflags); 1846 1847/* 1848 * doesn't attempt to fault and will return short. 1849 */ 1850int get_user_pages_fast_only(unsigned long start, int nr_pages, 1851 unsigned int gup_flags, struct page **pages); 1852int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1853 unsigned int gup_flags, struct page **pages); 1854 1855static inline bool get_user_page_fast_only(unsigned long addr, 1856 unsigned int gup_flags, struct page **pagep) 1857{ 1858 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1859} 1860/* 1861 * per-process(per-mm_struct) statistics. 1862 */ 1863static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1864{ 1865 long val = atomic_long_read(&mm->rss_stat.count[member]); 1866 1867#ifdef SPLIT_RSS_COUNTING 1868 /* 1869 * counter is updated in asynchronous manner and may go to minus. 1870 * But it's never be expected number for users. 1871 */ 1872 if (val < 0) 1873 val = 0; 1874#endif 1875 return (unsigned long)val; 1876} 1877 1878void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1879 1880static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1881{ 1882 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1883 1884 mm_trace_rss_stat(mm, member, count); 1885} 1886 1887static inline void inc_mm_counter(struct mm_struct *mm, int member) 1888{ 1889 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1890 1891 mm_trace_rss_stat(mm, member, count); 1892} 1893 1894static inline void dec_mm_counter(struct mm_struct *mm, int member) 1895{ 1896 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1897 1898 mm_trace_rss_stat(mm, member, count); 1899} 1900 1901/* Optimized variant when page is already known not to be PageAnon */ 1902static inline int mm_counter_file(struct page *page) 1903{ 1904 if (PageSwapBacked(page)) 1905 return MM_SHMEMPAGES; 1906 return MM_FILEPAGES; 1907} 1908 1909static inline int mm_counter(struct page *page) 1910{ 1911 if (PageAnon(page)) 1912 return MM_ANONPAGES; 1913 return mm_counter_file(page); 1914} 1915 1916static inline unsigned long get_mm_rss(struct mm_struct *mm) 1917{ 1918 return get_mm_counter(mm, MM_FILEPAGES) + 1919 get_mm_counter(mm, MM_ANONPAGES) + 1920 get_mm_counter(mm, MM_SHMEMPAGES); 1921} 1922 1923static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1924{ 1925 return max(mm->hiwater_rss, get_mm_rss(mm)); 1926} 1927 1928static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1929{ 1930 return max(mm->hiwater_vm, mm->total_vm); 1931} 1932 1933static inline void update_hiwater_rss(struct mm_struct *mm) 1934{ 1935 unsigned long _rss = get_mm_rss(mm); 1936 1937 if ((mm)->hiwater_rss < _rss) 1938 (mm)->hiwater_rss = _rss; 1939} 1940 1941static inline void update_hiwater_vm(struct mm_struct *mm) 1942{ 1943 if (mm->hiwater_vm < mm->total_vm) 1944 mm->hiwater_vm = mm->total_vm; 1945} 1946 1947static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1948{ 1949 mm->hiwater_rss = get_mm_rss(mm); 1950} 1951 1952static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1953 struct mm_struct *mm) 1954{ 1955 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1956 1957 if (*maxrss < hiwater_rss) 1958 *maxrss = hiwater_rss; 1959} 1960 1961#if defined(SPLIT_RSS_COUNTING) 1962void sync_mm_rss(struct mm_struct *mm); 1963#else 1964static inline void sync_mm_rss(struct mm_struct *mm) 1965{ 1966} 1967#endif 1968 1969#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1970static inline int pte_special(pte_t pte) 1971{ 1972 return 0; 1973} 1974 1975static inline pte_t pte_mkspecial(pte_t pte) 1976{ 1977 return pte; 1978} 1979#endif 1980 1981#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1982static inline int pte_devmap(pte_t pte) 1983{ 1984 return 0; 1985} 1986#endif 1987 1988int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1989 1990extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1991 spinlock_t **ptl); 1992static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1993 spinlock_t **ptl) 1994{ 1995 pte_t *ptep; 1996 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1997 return ptep; 1998} 1999 2000#ifdef __PAGETABLE_P4D_FOLDED 2001static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2002 unsigned long address) 2003{ 2004 return 0; 2005} 2006#else 2007int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2008#endif 2009 2010#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2011static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2012 unsigned long address) 2013{ 2014 return 0; 2015} 2016static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2017static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2018 2019#else 2020int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2021 2022static inline void mm_inc_nr_puds(struct mm_struct *mm) 2023{ 2024 if (mm_pud_folded(mm)) 2025 return; 2026 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2027} 2028 2029static inline void mm_dec_nr_puds(struct mm_struct *mm) 2030{ 2031 if (mm_pud_folded(mm)) 2032 return; 2033 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2034} 2035#endif 2036 2037#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2038static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2039 unsigned long address) 2040{ 2041 return 0; 2042} 2043 2044static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2045static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2046 2047#else 2048int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2049 2050static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2051{ 2052 if (mm_pmd_folded(mm)) 2053 return; 2054 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2055} 2056 2057static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2058{ 2059 if (mm_pmd_folded(mm)) 2060 return; 2061 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2062} 2063#endif 2064 2065#ifdef CONFIG_MMU 2066static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2067{ 2068 atomic_long_set(&mm->pgtables_bytes, 0); 2069} 2070 2071static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2072{ 2073 return atomic_long_read(&mm->pgtables_bytes); 2074} 2075 2076static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2077{ 2078 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2079} 2080 2081static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2082{ 2083 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2084} 2085#else 2086 2087static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2088static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2089{ 2090 return 0; 2091} 2092 2093static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2094static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2095#endif 2096 2097int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2098int __pte_alloc_kernel(pmd_t *pmd); 2099 2100#if defined(CONFIG_MMU) 2101 2102static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2103 unsigned long address) 2104{ 2105 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2106 NULL : p4d_offset(pgd, address); 2107} 2108 2109static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2110 unsigned long address) 2111{ 2112 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2113 NULL : pud_offset(p4d, address); 2114} 2115 2116static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2117{ 2118 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2119 NULL: pmd_offset(pud, address); 2120} 2121#endif /* CONFIG_MMU */ 2122 2123#if USE_SPLIT_PTE_PTLOCKS 2124#if ALLOC_SPLIT_PTLOCKS 2125void __init ptlock_cache_init(void); 2126extern bool ptlock_alloc(struct page *page); 2127extern void ptlock_free(struct page *page); 2128 2129static inline spinlock_t *ptlock_ptr(struct page *page) 2130{ 2131 return page->ptl; 2132} 2133#else /* ALLOC_SPLIT_PTLOCKS */ 2134static inline void ptlock_cache_init(void) 2135{ 2136} 2137 2138static inline bool ptlock_alloc(struct page *page) 2139{ 2140 return true; 2141} 2142 2143static inline void ptlock_free(struct page *page) 2144{ 2145} 2146 2147static inline spinlock_t *ptlock_ptr(struct page *page) 2148{ 2149 return &page->ptl; 2150} 2151#endif /* ALLOC_SPLIT_PTLOCKS */ 2152 2153static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2154{ 2155 return ptlock_ptr(pmd_page(*pmd)); 2156} 2157 2158static inline bool ptlock_init(struct page *page) 2159{ 2160 /* 2161 * prep_new_page() initialize page->private (and therefore page->ptl) 2162 * with 0. Make sure nobody took it in use in between. 2163 * 2164 * It can happen if arch try to use slab for page table allocation: 2165 * slab code uses page->slab_cache, which share storage with page->ptl. 2166 */ 2167 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2168 if (!ptlock_alloc(page)) 2169 return false; 2170 spin_lock_init(ptlock_ptr(page)); 2171 return true; 2172} 2173 2174#else /* !USE_SPLIT_PTE_PTLOCKS */ 2175/* 2176 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2177 */ 2178static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2179{ 2180 return &mm->page_table_lock; 2181} 2182static inline void ptlock_cache_init(void) {} 2183static inline bool ptlock_init(struct page *page) { return true; } 2184static inline void ptlock_free(struct page *page) {} 2185#endif /* USE_SPLIT_PTE_PTLOCKS */ 2186 2187static inline void pgtable_init(void) 2188{ 2189 ptlock_cache_init(); 2190 pgtable_cache_init(); 2191} 2192 2193static inline bool pgtable_pte_page_ctor(struct page *page) 2194{ 2195 if (!ptlock_init(page)) 2196 return false; 2197 __SetPageTable(page); 2198 inc_zone_page_state(page, NR_PAGETABLE); 2199 return true; 2200} 2201 2202static inline void pgtable_pte_page_dtor(struct page *page) 2203{ 2204 ptlock_free(page); 2205 __ClearPageTable(page); 2206 dec_zone_page_state(page, NR_PAGETABLE); 2207} 2208 2209#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2210({ \ 2211 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2212 pte_t *__pte = pte_offset_map(pmd, address); \ 2213 *(ptlp) = __ptl; \ 2214 spin_lock(__ptl); \ 2215 __pte; \ 2216}) 2217 2218#define pte_unmap_unlock(pte, ptl) do { \ 2219 spin_unlock(ptl); \ 2220 pte_unmap(pte); \ 2221} while (0) 2222 2223#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2224 2225#define pte_alloc_map(mm, pmd, address) \ 2226 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2227 2228#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2229 (pte_alloc(mm, pmd) ? \ 2230 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2231 2232#define pte_alloc_kernel(pmd, address) \ 2233 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2234 NULL: pte_offset_kernel(pmd, address)) 2235 2236#if USE_SPLIT_PMD_PTLOCKS 2237 2238static struct page *pmd_to_page(pmd_t *pmd) 2239{ 2240 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2241 return virt_to_page((void *)((unsigned long) pmd & mask)); 2242} 2243 2244static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2245{ 2246 return ptlock_ptr(pmd_to_page(pmd)); 2247} 2248 2249static inline bool pgtable_pmd_page_ctor(struct page *page) 2250{ 2251#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2252 page->pmd_huge_pte = NULL; 2253#endif 2254 return ptlock_init(page); 2255} 2256 2257static inline void pgtable_pmd_page_dtor(struct page *page) 2258{ 2259#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2260 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2261#endif 2262 ptlock_free(page); 2263} 2264 2265#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2266 2267#else 2268 2269static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2270{ 2271 return &mm->page_table_lock; 2272} 2273 2274static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2275static inline void pgtable_pmd_page_dtor(struct page *page) {} 2276 2277#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2278 2279#endif 2280 2281static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2282{ 2283 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2284 spin_lock(ptl); 2285 return ptl; 2286} 2287 2288/* 2289 * No scalability reason to split PUD locks yet, but follow the same pattern 2290 * as the PMD locks to make it easier if we decide to. The VM should not be 2291 * considered ready to switch to split PUD locks yet; there may be places 2292 * which need to be converted from page_table_lock. 2293 */ 2294static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2295{ 2296 return &mm->page_table_lock; 2297} 2298 2299static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2300{ 2301 spinlock_t *ptl = pud_lockptr(mm, pud); 2302 2303 spin_lock(ptl); 2304 return ptl; 2305} 2306 2307extern void __init pagecache_init(void); 2308extern void __init free_area_init_memoryless_node(int nid); 2309extern void free_initmem(void); 2310 2311/* 2312 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2313 * into the buddy system. The freed pages will be poisoned with pattern 2314 * "poison" if it's within range [0, UCHAR_MAX]. 2315 * Return pages freed into the buddy system. 2316 */ 2317extern unsigned long free_reserved_area(void *start, void *end, 2318 int poison, const char *s); 2319 2320#ifdef CONFIG_HIGHMEM 2321/* 2322 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2323 * and totalram_pages. 2324 */ 2325extern void free_highmem_page(struct page *page); 2326#endif 2327 2328extern void adjust_managed_page_count(struct page *page, long count); 2329extern void mem_init_print_info(const char *str); 2330 2331extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2332 2333/* Free the reserved page into the buddy system, so it gets managed. */ 2334static inline void __free_reserved_page(struct page *page) 2335{ 2336 ClearPageReserved(page); 2337 init_page_count(page); 2338 __free_page(page); 2339} 2340 2341static inline void free_reserved_page(struct page *page) 2342{ 2343 __free_reserved_page(page); 2344 adjust_managed_page_count(page, 1); 2345} 2346 2347static inline void mark_page_reserved(struct page *page) 2348{ 2349 SetPageReserved(page); 2350 adjust_managed_page_count(page, -1); 2351} 2352 2353/* 2354 * Default method to free all the __init memory into the buddy system. 2355 * The freed pages will be poisoned with pattern "poison" if it's within 2356 * range [0, UCHAR_MAX]. 2357 * Return pages freed into the buddy system. 2358 */ 2359static inline unsigned long free_initmem_default(int poison) 2360{ 2361 extern char __init_begin[], __init_end[]; 2362 2363 return free_reserved_area(&__init_begin, &__init_end, 2364 poison, "unused kernel"); 2365} 2366 2367static inline unsigned long get_num_physpages(void) 2368{ 2369 int nid; 2370 unsigned long phys_pages = 0; 2371 2372 for_each_online_node(nid) 2373 phys_pages += node_present_pages(nid); 2374 2375 return phys_pages; 2376} 2377 2378/* 2379 * Using memblock node mappings, an architecture may initialise its 2380 * zones, allocate the backing mem_map and account for memory holes in an 2381 * architecture independent manner. 2382 * 2383 * An architecture is expected to register range of page frames backed by 2384 * physical memory with memblock_add[_node]() before calling 2385 * free_area_init() passing in the PFN each zone ends at. At a basic 2386 * usage, an architecture is expected to do something like 2387 * 2388 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2389 * max_highmem_pfn}; 2390 * for_each_valid_physical_page_range() 2391 * memblock_add_node(base, size, nid) 2392 * free_area_init(max_zone_pfns); 2393 */ 2394void free_area_init(unsigned long *max_zone_pfn); 2395unsigned long node_map_pfn_alignment(void); 2396unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2397 unsigned long end_pfn); 2398extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2399 unsigned long end_pfn); 2400extern void get_pfn_range_for_nid(unsigned int nid, 2401 unsigned long *start_pfn, unsigned long *end_pfn); 2402extern unsigned long find_min_pfn_with_active_regions(void); 2403 2404#ifndef CONFIG_NEED_MULTIPLE_NODES 2405static inline int early_pfn_to_nid(unsigned long pfn) 2406{ 2407 return 0; 2408} 2409#else 2410/* please see mm/page_alloc.c */ 2411extern int __meminit early_pfn_to_nid(unsigned long pfn); 2412/* there is a per-arch backend function. */ 2413extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2414 struct mminit_pfnnid_cache *state); 2415#endif 2416 2417extern void set_dma_reserve(unsigned long new_dma_reserve); 2418extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2419 enum meminit_context, struct vmem_altmap *); 2420extern void setup_per_zone_wmarks(void); 2421extern int __meminit init_per_zone_wmark_min(void); 2422extern void mem_init(void); 2423extern void __init mmap_init(void); 2424extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2425extern long si_mem_available(void); 2426extern void si_meminfo(struct sysinfo * val); 2427extern void si_meminfo_node(struct sysinfo *val, int nid); 2428#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2429extern unsigned long arch_reserved_kernel_pages(void); 2430#endif 2431 2432extern __printf(3, 4) 2433void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2434 2435extern void setup_per_cpu_pageset(void); 2436 2437/* page_alloc.c */ 2438extern int min_free_kbytes; 2439extern int watermark_boost_factor; 2440extern int watermark_scale_factor; 2441extern bool arch_has_descending_max_zone_pfns(void); 2442 2443/* nommu.c */ 2444extern atomic_long_t mmap_pages_allocated; 2445extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2446 2447/* interval_tree.c */ 2448void vma_interval_tree_insert(struct vm_area_struct *node, 2449 struct rb_root_cached *root); 2450void vma_interval_tree_insert_after(struct vm_area_struct *node, 2451 struct vm_area_struct *prev, 2452 struct rb_root_cached *root); 2453void vma_interval_tree_remove(struct vm_area_struct *node, 2454 struct rb_root_cached *root); 2455struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2456 unsigned long start, unsigned long last); 2457struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2458 unsigned long start, unsigned long last); 2459 2460#define vma_interval_tree_foreach(vma, root, start, last) \ 2461 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2462 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2463 2464void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2465 struct rb_root_cached *root); 2466void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2467 struct rb_root_cached *root); 2468struct anon_vma_chain * 2469anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2470 unsigned long start, unsigned long last); 2471struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2472 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2473#ifdef CONFIG_DEBUG_VM_RB 2474void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2475#endif 2476 2477#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2478 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2479 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2480 2481/* mmap.c */ 2482extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2483extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2484 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2485 struct vm_area_struct *expand); 2486static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2487 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2488{ 2489 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2490} 2491extern struct vm_area_struct *vma_merge(struct mm_struct *, 2492 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2493 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2494 struct mempolicy *, struct vm_userfaultfd_ctx); 2495extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2496extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2497 unsigned long addr, int new_below); 2498extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2499 unsigned long addr, int new_below); 2500extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2501extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2502 struct rb_node **, struct rb_node *); 2503extern void unlink_file_vma(struct vm_area_struct *); 2504extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2505 unsigned long addr, unsigned long len, pgoff_t pgoff, 2506 bool *need_rmap_locks); 2507extern void exit_mmap(struct mm_struct *); 2508 2509static inline int check_data_rlimit(unsigned long rlim, 2510 unsigned long new, 2511 unsigned long start, 2512 unsigned long end_data, 2513 unsigned long start_data) 2514{ 2515 if (rlim < RLIM_INFINITY) { 2516 if (((new - start) + (end_data - start_data)) > rlim) 2517 return -ENOSPC; 2518 } 2519 2520 return 0; 2521} 2522 2523extern int mm_take_all_locks(struct mm_struct *mm); 2524extern void mm_drop_all_locks(struct mm_struct *mm); 2525 2526extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2527extern struct file *get_mm_exe_file(struct mm_struct *mm); 2528extern struct file *get_task_exe_file(struct task_struct *task); 2529 2530extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2531extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2532 2533extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2534 const struct vm_special_mapping *sm); 2535extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2536 unsigned long addr, unsigned long len, 2537 unsigned long flags, 2538 const struct vm_special_mapping *spec); 2539/* This is an obsolete alternative to _install_special_mapping. */ 2540extern int install_special_mapping(struct mm_struct *mm, 2541 unsigned long addr, unsigned long len, 2542 unsigned long flags, struct page **pages); 2543 2544unsigned long randomize_stack_top(unsigned long stack_top); 2545 2546extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2547 2548extern unsigned long mmap_region(struct file *file, unsigned long addr, 2549 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2550 struct list_head *uf); 2551extern unsigned long do_mmap(struct file *file, unsigned long addr, 2552 unsigned long len, unsigned long prot, unsigned long flags, 2553 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2554extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2555 struct list_head *uf, bool downgrade); 2556extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2557 struct list_head *uf); 2558extern int do_madvise(unsigned long start, size_t len_in, int behavior); 2559 2560#ifdef CONFIG_MMU 2561extern int __mm_populate(unsigned long addr, unsigned long len, 2562 int ignore_errors); 2563static inline void mm_populate(unsigned long addr, unsigned long len) 2564{ 2565 /* Ignore errors */ 2566 (void) __mm_populate(addr, len, 1); 2567} 2568#else 2569static inline void mm_populate(unsigned long addr, unsigned long len) {} 2570#endif 2571 2572/* These take the mm semaphore themselves */ 2573extern int __must_check vm_brk(unsigned long, unsigned long); 2574extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2575extern int vm_munmap(unsigned long, size_t); 2576extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2577 unsigned long, unsigned long, 2578 unsigned long, unsigned long); 2579 2580struct vm_unmapped_area_info { 2581#define VM_UNMAPPED_AREA_TOPDOWN 1 2582 unsigned long flags; 2583 unsigned long length; 2584 unsigned long low_limit; 2585 unsigned long high_limit; 2586 unsigned long align_mask; 2587 unsigned long align_offset; 2588}; 2589 2590extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2591 2592/* truncate.c */ 2593extern void truncate_inode_pages(struct address_space *, loff_t); 2594extern void truncate_inode_pages_range(struct address_space *, 2595 loff_t lstart, loff_t lend); 2596extern void truncate_inode_pages_final(struct address_space *); 2597 2598/* generic vm_area_ops exported for stackable file systems */ 2599extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2600extern void filemap_map_pages(struct vm_fault *vmf, 2601 pgoff_t start_pgoff, pgoff_t end_pgoff); 2602extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2603 2604/* mm/page-writeback.c */ 2605int __must_check write_one_page(struct page *page); 2606void task_dirty_inc(struct task_struct *tsk); 2607 2608extern unsigned long stack_guard_gap; 2609/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2610extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2611 2612/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2613extern int expand_downwards(struct vm_area_struct *vma, 2614 unsigned long address); 2615#if VM_GROWSUP 2616extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2617#else 2618 #define expand_upwards(vma, address) (0) 2619#endif 2620 2621/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2622extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2623extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2624 struct vm_area_struct **pprev); 2625 2626/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2627 NULL if none. Assume start_addr < end_addr. */ 2628static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2629{ 2630 struct vm_area_struct * vma = find_vma(mm,start_addr); 2631 2632 if (vma && end_addr <= vma->vm_start) 2633 vma = NULL; 2634 return vma; 2635} 2636 2637static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2638{ 2639 unsigned long vm_start = vma->vm_start; 2640 2641 if (vma->vm_flags & VM_GROWSDOWN) { 2642 vm_start -= stack_guard_gap; 2643 if (vm_start > vma->vm_start) 2644 vm_start = 0; 2645 } 2646 return vm_start; 2647} 2648 2649static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2650{ 2651 unsigned long vm_end = vma->vm_end; 2652 2653 if (vma->vm_flags & VM_GROWSUP) { 2654 vm_end += stack_guard_gap; 2655 if (vm_end < vma->vm_end) 2656 vm_end = -PAGE_SIZE; 2657 } 2658 return vm_end; 2659} 2660 2661static inline unsigned long vma_pages(struct vm_area_struct *vma) 2662{ 2663 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2664} 2665 2666/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2667static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2668 unsigned long vm_start, unsigned long vm_end) 2669{ 2670 struct vm_area_struct *vma = find_vma(mm, vm_start); 2671 2672 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2673 vma = NULL; 2674 2675 return vma; 2676} 2677 2678static inline bool range_in_vma(struct vm_area_struct *vma, 2679 unsigned long start, unsigned long end) 2680{ 2681 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2682} 2683 2684#ifdef CONFIG_MMU 2685pgprot_t vm_get_page_prot(unsigned long vm_flags); 2686void vma_set_page_prot(struct vm_area_struct *vma); 2687#else 2688static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2689{ 2690 return __pgprot(0); 2691} 2692static inline void vma_set_page_prot(struct vm_area_struct *vma) 2693{ 2694 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2695} 2696#endif 2697 2698#ifdef CONFIG_NUMA_BALANCING 2699unsigned long change_prot_numa(struct vm_area_struct *vma, 2700 unsigned long start, unsigned long end); 2701#endif 2702 2703struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2704int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2705 unsigned long pfn, unsigned long size, pgprot_t); 2706int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2707int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2708 struct page **pages, unsigned long *num); 2709int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2710 unsigned long num); 2711int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2712 unsigned long num); 2713vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2714 unsigned long pfn); 2715vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2716 unsigned long pfn, pgprot_t pgprot); 2717vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2718 pfn_t pfn); 2719vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2720 pfn_t pfn, pgprot_t pgprot); 2721vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2722 unsigned long addr, pfn_t pfn); 2723int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2724 2725static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2726 unsigned long addr, struct page *page) 2727{ 2728 int err = vm_insert_page(vma, addr, page); 2729 2730 if (err == -ENOMEM) 2731 return VM_FAULT_OOM; 2732 if (err < 0 && err != -EBUSY) 2733 return VM_FAULT_SIGBUS; 2734 2735 return VM_FAULT_NOPAGE; 2736} 2737 2738static inline vm_fault_t vmf_error(int err) 2739{ 2740 if (err == -ENOMEM) 2741 return VM_FAULT_OOM; 2742 return VM_FAULT_SIGBUS; 2743} 2744 2745struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2746 unsigned int foll_flags); 2747 2748#define FOLL_WRITE 0x01 /* check pte is writable */ 2749#define FOLL_TOUCH 0x02 /* mark page accessed */ 2750#define FOLL_GET 0x04 /* do get_page on page */ 2751#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2752#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2753#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2754 * and return without waiting upon it */ 2755#define FOLL_POPULATE 0x40 /* fault in page */ 2756#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2757#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2758#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2759#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2760#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2761#define FOLL_MLOCK 0x1000 /* lock present pages */ 2762#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2763#define FOLL_COW 0x4000 /* internal GUP flag */ 2764#define FOLL_ANON 0x8000 /* don't do file mappings */ 2765#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2766#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2767#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2768#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2769 2770/* 2771 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2772 * other. Here is what they mean, and how to use them: 2773 * 2774 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2775 * period _often_ under userspace control. This is in contrast to 2776 * iov_iter_get_pages(), whose usages are transient. 2777 * 2778 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2779 * lifetime enforced by the filesystem and we need guarantees that longterm 2780 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2781 * the filesystem. Ideas for this coordination include revoking the longterm 2782 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2783 * added after the problem with filesystems was found FS DAX VMAs are 2784 * specifically failed. Filesystem pages are still subject to bugs and use of 2785 * FOLL_LONGTERM should be avoided on those pages. 2786 * 2787 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2788 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2789 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2790 * is due to an incompatibility with the FS DAX check and 2791 * FAULT_FLAG_ALLOW_RETRY. 2792 * 2793 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2794 * that region. And so, CMA attempts to migrate the page before pinning, when 2795 * FOLL_LONGTERM is specified. 2796 * 2797 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2798 * but an additional pin counting system) will be invoked. This is intended for 2799 * anything that gets a page reference and then touches page data (for example, 2800 * Direct IO). This lets the filesystem know that some non-file-system entity is 2801 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2802 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2803 * a call to unpin_user_page(). 2804 * 2805 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2806 * and separate refcounting mechanisms, however, and that means that each has 2807 * its own acquire and release mechanisms: 2808 * 2809 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2810 * 2811 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2812 * 2813 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2814 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2815 * calls applied to them, and that's perfectly OK. This is a constraint on the 2816 * callers, not on the pages.) 2817 * 2818 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2819 * directly by the caller. That's in order to help avoid mismatches when 2820 * releasing pages: get_user_pages*() pages must be released via put_page(), 2821 * while pin_user_pages*() pages must be released via unpin_user_page(). 2822 * 2823 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2824 */ 2825 2826static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2827{ 2828 if (vm_fault & VM_FAULT_OOM) 2829 return -ENOMEM; 2830 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2831 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2832 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2833 return -EFAULT; 2834 return 0; 2835} 2836 2837typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2838extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2839 unsigned long size, pte_fn_t fn, void *data); 2840extern int apply_to_existing_page_range(struct mm_struct *mm, 2841 unsigned long address, unsigned long size, 2842 pte_fn_t fn, void *data); 2843 2844#ifdef CONFIG_PAGE_POISONING 2845extern bool page_poisoning_enabled(void); 2846extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2847#else 2848static inline bool page_poisoning_enabled(void) { return false; } 2849static inline void kernel_poison_pages(struct page *page, int numpages, 2850 int enable) { } 2851#endif 2852 2853#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2854DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2855#else 2856DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2857#endif 2858static inline bool want_init_on_alloc(gfp_t flags) 2859{ 2860 if (static_branch_unlikely(&init_on_alloc) && 2861 !page_poisoning_enabled()) 2862 return true; 2863 return flags & __GFP_ZERO; 2864} 2865 2866#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2867DECLARE_STATIC_KEY_TRUE(init_on_free); 2868#else 2869DECLARE_STATIC_KEY_FALSE(init_on_free); 2870#endif 2871static inline bool want_init_on_free(void) 2872{ 2873 return static_branch_unlikely(&init_on_free) && 2874 !page_poisoning_enabled(); 2875} 2876 2877#ifdef CONFIG_DEBUG_PAGEALLOC 2878extern void init_debug_pagealloc(void); 2879#else 2880static inline void init_debug_pagealloc(void) {} 2881#endif 2882extern bool _debug_pagealloc_enabled_early; 2883DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2884 2885static inline bool debug_pagealloc_enabled(void) 2886{ 2887 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2888 _debug_pagealloc_enabled_early; 2889} 2890 2891/* 2892 * For use in fast paths after init_debug_pagealloc() has run, or when a 2893 * false negative result is not harmful when called too early. 2894 */ 2895static inline bool debug_pagealloc_enabled_static(void) 2896{ 2897 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2898 return false; 2899 2900 return static_branch_unlikely(&_debug_pagealloc_enabled); 2901} 2902 2903#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2904extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2905 2906/* 2907 * When called in DEBUG_PAGEALLOC context, the call should most likely be 2908 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static() 2909 */ 2910static inline void 2911kernel_map_pages(struct page *page, int numpages, int enable) 2912{ 2913 __kernel_map_pages(page, numpages, enable); 2914} 2915#ifdef CONFIG_HIBERNATION 2916extern bool kernel_page_present(struct page *page); 2917#endif /* CONFIG_HIBERNATION */ 2918#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2919static inline void 2920kernel_map_pages(struct page *page, int numpages, int enable) {} 2921#ifdef CONFIG_HIBERNATION 2922static inline bool kernel_page_present(struct page *page) { return true; } 2923#endif /* CONFIG_HIBERNATION */ 2924#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2925 2926#ifdef __HAVE_ARCH_GATE_AREA 2927extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2928extern int in_gate_area_no_mm(unsigned long addr); 2929extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2930#else 2931static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2932{ 2933 return NULL; 2934} 2935static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2936static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2937{ 2938 return 0; 2939} 2940#endif /* __HAVE_ARCH_GATE_AREA */ 2941 2942extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2943 2944#ifdef CONFIG_SYSCTL 2945extern int sysctl_drop_caches; 2946int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 2947 loff_t *); 2948#endif 2949 2950void drop_slab(void); 2951void drop_slab_node(int nid); 2952 2953#ifndef CONFIG_MMU 2954#define randomize_va_space 0 2955#else 2956extern int randomize_va_space; 2957#endif 2958 2959const char * arch_vma_name(struct vm_area_struct *vma); 2960#ifdef CONFIG_MMU 2961void print_vma_addr(char *prefix, unsigned long rip); 2962#else 2963static inline void print_vma_addr(char *prefix, unsigned long rip) 2964{ 2965} 2966#endif 2967 2968void *sparse_buffer_alloc(unsigned long size); 2969struct page * __populate_section_memmap(unsigned long pfn, 2970 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 2971pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2972p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2973pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2974pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2975pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 2976 struct vmem_altmap *altmap); 2977void *vmemmap_alloc_block(unsigned long size, int node); 2978struct vmem_altmap; 2979void *vmemmap_alloc_block_buf(unsigned long size, int node, 2980 struct vmem_altmap *altmap); 2981void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2982int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2983 int node, struct vmem_altmap *altmap); 2984int vmemmap_populate(unsigned long start, unsigned long end, int node, 2985 struct vmem_altmap *altmap); 2986void vmemmap_populate_print_last(void); 2987#ifdef CONFIG_MEMORY_HOTPLUG 2988void vmemmap_free(unsigned long start, unsigned long end, 2989 struct vmem_altmap *altmap); 2990#endif 2991void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2992 unsigned long nr_pages); 2993 2994enum mf_flags { 2995 MF_COUNT_INCREASED = 1 << 0, 2996 MF_ACTION_REQUIRED = 1 << 1, 2997 MF_MUST_KILL = 1 << 2, 2998 MF_SOFT_OFFLINE = 1 << 3, 2999}; 3000extern int memory_failure(unsigned long pfn, int flags); 3001extern void memory_failure_queue(unsigned long pfn, int flags); 3002extern void memory_failure_queue_kick(int cpu); 3003extern int unpoison_memory(unsigned long pfn); 3004extern int get_hwpoison_page(struct page *page); 3005#define put_hwpoison_page(page) put_page(page) 3006extern int sysctl_memory_failure_early_kill; 3007extern int sysctl_memory_failure_recovery; 3008extern void shake_page(struct page *p, int access); 3009extern atomic_long_t num_poisoned_pages __read_mostly; 3010extern int soft_offline_page(unsigned long pfn, int flags); 3011 3012 3013/* 3014 * Error handlers for various types of pages. 3015 */ 3016enum mf_result { 3017 MF_IGNORED, /* Error: cannot be handled */ 3018 MF_FAILED, /* Error: handling failed */ 3019 MF_DELAYED, /* Will be handled later */ 3020 MF_RECOVERED, /* Successfully recovered */ 3021}; 3022 3023enum mf_action_page_type { 3024 MF_MSG_KERNEL, 3025 MF_MSG_KERNEL_HIGH_ORDER, 3026 MF_MSG_SLAB, 3027 MF_MSG_DIFFERENT_COMPOUND, 3028 MF_MSG_POISONED_HUGE, 3029 MF_MSG_HUGE, 3030 MF_MSG_FREE_HUGE, 3031 MF_MSG_NON_PMD_HUGE, 3032 MF_MSG_UNMAP_FAILED, 3033 MF_MSG_DIRTY_SWAPCACHE, 3034 MF_MSG_CLEAN_SWAPCACHE, 3035 MF_MSG_DIRTY_MLOCKED_LRU, 3036 MF_MSG_CLEAN_MLOCKED_LRU, 3037 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3038 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3039 MF_MSG_DIRTY_LRU, 3040 MF_MSG_CLEAN_LRU, 3041 MF_MSG_TRUNCATED_LRU, 3042 MF_MSG_BUDDY, 3043 MF_MSG_BUDDY_2ND, 3044 MF_MSG_DAX, 3045 MF_MSG_UNKNOWN, 3046}; 3047 3048#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3049extern void clear_huge_page(struct page *page, 3050 unsigned long addr_hint, 3051 unsigned int pages_per_huge_page); 3052extern void copy_user_huge_page(struct page *dst, struct page *src, 3053 unsigned long addr_hint, 3054 struct vm_area_struct *vma, 3055 unsigned int pages_per_huge_page); 3056extern long copy_huge_page_from_user(struct page *dst_page, 3057 const void __user *usr_src, 3058 unsigned int pages_per_huge_page, 3059 bool allow_pagefault); 3060 3061/** 3062 * vma_is_special_huge - Are transhuge page-table entries considered special? 3063 * @vma: Pointer to the struct vm_area_struct to consider 3064 * 3065 * Whether transhuge page-table entries are considered "special" following 3066 * the definition in vm_normal_page(). 3067 * 3068 * Return: true if transhuge page-table entries should be considered special, 3069 * false otherwise. 3070 */ 3071static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3072{ 3073 return vma_is_dax(vma) || (vma->vm_file && 3074 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3075} 3076 3077#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3078 3079#ifdef CONFIG_DEBUG_PAGEALLOC 3080extern unsigned int _debug_guardpage_minorder; 3081DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3082 3083static inline unsigned int debug_guardpage_minorder(void) 3084{ 3085 return _debug_guardpage_minorder; 3086} 3087 3088static inline bool debug_guardpage_enabled(void) 3089{ 3090 return static_branch_unlikely(&_debug_guardpage_enabled); 3091} 3092 3093static inline bool page_is_guard(struct page *page) 3094{ 3095 if (!debug_guardpage_enabled()) 3096 return false; 3097 3098 return PageGuard(page); 3099} 3100#else 3101static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3102static inline bool debug_guardpage_enabled(void) { return false; } 3103static inline bool page_is_guard(struct page *page) { return false; } 3104#endif /* CONFIG_DEBUG_PAGEALLOC */ 3105 3106#if MAX_NUMNODES > 1 3107void __init setup_nr_node_ids(void); 3108#else 3109static inline void setup_nr_node_ids(void) {} 3110#endif 3111 3112extern int memcmp_pages(struct page *page1, struct page *page2); 3113 3114static inline int pages_identical(struct page *page1, struct page *page2) 3115{ 3116 return !memcmp_pages(page1, page2); 3117} 3118 3119#ifdef CONFIG_MAPPING_DIRTY_HELPERS 3120unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3121 pgoff_t first_index, pgoff_t nr, 3122 pgoff_t bitmap_pgoff, 3123 unsigned long *bitmap, 3124 pgoff_t *start, 3125 pgoff_t *end); 3126 3127unsigned long wp_shared_mapping_range(struct address_space *mapping, 3128 pgoff_t first_index, pgoff_t nr); 3129#endif 3130 3131extern int sysctl_nr_trim_pages; 3132 3133#endif /* __KERNEL__ */ 3134#endif /* _LINUX_MM_H */