at v5.9 44 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2#ifndef __KVM_HOST_H 3#define __KVM_HOST_H 4 5 6#include <linux/types.h> 7#include <linux/hardirq.h> 8#include <linux/list.h> 9#include <linux/mutex.h> 10#include <linux/spinlock.h> 11#include <linux/signal.h> 12#include <linux/sched.h> 13#include <linux/bug.h> 14#include <linux/mm.h> 15#include <linux/mmu_notifier.h> 16#include <linux/preempt.h> 17#include <linux/msi.h> 18#include <linux/slab.h> 19#include <linux/vmalloc.h> 20#include <linux/rcupdate.h> 21#include <linux/ratelimit.h> 22#include <linux/err.h> 23#include <linux/irqflags.h> 24#include <linux/context_tracking.h> 25#include <linux/irqbypass.h> 26#include <linux/rcuwait.h> 27#include <linux/refcount.h> 28#include <linux/nospec.h> 29#include <asm/signal.h> 30 31#include <linux/kvm.h> 32#include <linux/kvm_para.h> 33 34#include <linux/kvm_types.h> 35 36#include <asm/kvm_host.h> 37 38#ifndef KVM_MAX_VCPU_ID 39#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 40#endif 41 42/* 43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 44 * in kvm, other bits are visible for userspace which are defined in 45 * include/linux/kvm_h. 46 */ 47#define KVM_MEMSLOT_INVALID (1UL << 16) 48 49/* 50 * Bit 63 of the memslot generation number is an "update in-progress flag", 51 * e.g. is temporarily set for the duration of install_new_memslots(). 52 * This flag effectively creates a unique generation number that is used to 53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 54 * i.e. may (or may not) have come from the previous memslots generation. 55 * 56 * This is necessary because the actual memslots update is not atomic with 57 * respect to the generation number update. Updating the generation number 58 * first would allow a vCPU to cache a spte from the old memslots using the 59 * new generation number, and updating the generation number after switching 60 * to the new memslots would allow cache hits using the old generation number 61 * to reference the defunct memslots. 62 * 63 * This mechanism is used to prevent getting hits in KVM's caches while a 64 * memslot update is in-progress, and to prevent cache hits *after* updating 65 * the actual generation number against accesses that were inserted into the 66 * cache *before* the memslots were updated. 67 */ 68#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 69 70/* Two fragments for cross MMIO pages. */ 71#define KVM_MAX_MMIO_FRAGMENTS 2 72 73#ifndef KVM_ADDRESS_SPACE_NUM 74#define KVM_ADDRESS_SPACE_NUM 1 75#endif 76 77/* 78 * For the normal pfn, the highest 12 bits should be zero, 79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 80 * mask bit 63 to indicate the noslot pfn. 81 */ 82#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 83#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 84#define KVM_PFN_NOSLOT (0x1ULL << 63) 85 86#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 87#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 88#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 89 90/* 91 * error pfns indicate that the gfn is in slot but faild to 92 * translate it to pfn on host. 93 */ 94static inline bool is_error_pfn(kvm_pfn_t pfn) 95{ 96 return !!(pfn & KVM_PFN_ERR_MASK); 97} 98 99/* 100 * error_noslot pfns indicate that the gfn can not be 101 * translated to pfn - it is not in slot or failed to 102 * translate it to pfn. 103 */ 104static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 105{ 106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 107} 108 109/* noslot pfn indicates that the gfn is not in slot. */ 110static inline bool is_noslot_pfn(kvm_pfn_t pfn) 111{ 112 return pfn == KVM_PFN_NOSLOT; 113} 114 115/* 116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 117 * provide own defines and kvm_is_error_hva 118 */ 119#ifndef KVM_HVA_ERR_BAD 120 121#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 122#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 123 124static inline bool kvm_is_error_hva(unsigned long addr) 125{ 126 return addr >= PAGE_OFFSET; 127} 128 129#endif 130 131#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 132 133static inline bool is_error_page(struct page *page) 134{ 135 return IS_ERR(page); 136} 137 138#define KVM_REQUEST_MASK GENMASK(7,0) 139#define KVM_REQUEST_NO_WAKEUP BIT(8) 140#define KVM_REQUEST_WAIT BIT(9) 141/* 142 * Architecture-independent vcpu->requests bit members 143 * Bits 4-7 are reserved for more arch-independent bits. 144 */ 145#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 146#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 147#define KVM_REQ_PENDING_TIMER 2 148#define KVM_REQ_UNHALT 3 149#define KVM_REQUEST_ARCH_BASE 8 150 151#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 152 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 154}) 155#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 156 157#define KVM_USERSPACE_IRQ_SOURCE_ID 0 158#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 159 160extern struct mutex kvm_lock; 161extern struct list_head vm_list; 162 163struct kvm_io_range { 164 gpa_t addr; 165 int len; 166 struct kvm_io_device *dev; 167}; 168 169#define NR_IOBUS_DEVS 1000 170 171struct kvm_io_bus { 172 int dev_count; 173 int ioeventfd_count; 174 struct kvm_io_range range[]; 175}; 176 177enum kvm_bus { 178 KVM_MMIO_BUS, 179 KVM_PIO_BUS, 180 KVM_VIRTIO_CCW_NOTIFY_BUS, 181 KVM_FAST_MMIO_BUS, 182 KVM_NR_BUSES 183}; 184 185int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 186 int len, const void *val); 187int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 188 gpa_t addr, int len, const void *val, long cookie); 189int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 190 int len, void *val); 191int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 192 int len, struct kvm_io_device *dev); 193void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 194 struct kvm_io_device *dev); 195struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 196 gpa_t addr); 197 198#ifdef CONFIG_KVM_ASYNC_PF 199struct kvm_async_pf { 200 struct work_struct work; 201 struct list_head link; 202 struct list_head queue; 203 struct kvm_vcpu *vcpu; 204 struct mm_struct *mm; 205 gpa_t cr2_or_gpa; 206 unsigned long addr; 207 struct kvm_arch_async_pf arch; 208 bool wakeup_all; 209 bool notpresent_injected; 210}; 211 212void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 213void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 214bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 215 unsigned long hva, struct kvm_arch_async_pf *arch); 216int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 217#endif 218 219enum { 220 OUTSIDE_GUEST_MODE, 221 IN_GUEST_MODE, 222 EXITING_GUEST_MODE, 223 READING_SHADOW_PAGE_TABLES, 224}; 225 226#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 227 228struct kvm_host_map { 229 /* 230 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 231 * a 'struct page' for it. When using mem= kernel parameter some memory 232 * can be used as guest memory but they are not managed by host 233 * kernel). 234 * If 'pfn' is not managed by the host kernel, this field is 235 * initialized to KVM_UNMAPPED_PAGE. 236 */ 237 struct page *page; 238 void *hva; 239 kvm_pfn_t pfn; 240 kvm_pfn_t gfn; 241}; 242 243/* 244 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 245 * directly to check for that. 246 */ 247static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 248{ 249 return !!map->hva; 250} 251 252/* 253 * Sometimes a large or cross-page mmio needs to be broken up into separate 254 * exits for userspace servicing. 255 */ 256struct kvm_mmio_fragment { 257 gpa_t gpa; 258 void *data; 259 unsigned len; 260}; 261 262struct kvm_vcpu { 263 struct kvm *kvm; 264#ifdef CONFIG_PREEMPT_NOTIFIERS 265 struct preempt_notifier preempt_notifier; 266#endif 267 int cpu; 268 int vcpu_id; /* id given by userspace at creation */ 269 int vcpu_idx; /* index in kvm->vcpus array */ 270 int srcu_idx; 271 int mode; 272 u64 requests; 273 unsigned long guest_debug; 274 275 int pre_pcpu; 276 struct list_head blocked_vcpu_list; 277 278 struct mutex mutex; 279 struct kvm_run *run; 280 281 struct rcuwait wait; 282 struct pid __rcu *pid; 283 int sigset_active; 284 sigset_t sigset; 285 struct kvm_vcpu_stat stat; 286 unsigned int halt_poll_ns; 287 bool valid_wakeup; 288 289#ifdef CONFIG_HAS_IOMEM 290 int mmio_needed; 291 int mmio_read_completed; 292 int mmio_is_write; 293 int mmio_cur_fragment; 294 int mmio_nr_fragments; 295 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 296#endif 297 298#ifdef CONFIG_KVM_ASYNC_PF 299 struct { 300 u32 queued; 301 struct list_head queue; 302 struct list_head done; 303 spinlock_t lock; 304 } async_pf; 305#endif 306 307#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 308 /* 309 * Cpu relax intercept or pause loop exit optimization 310 * in_spin_loop: set when a vcpu does a pause loop exit 311 * or cpu relax intercepted. 312 * dy_eligible: indicates whether vcpu is eligible for directed yield. 313 */ 314 struct { 315 bool in_spin_loop; 316 bool dy_eligible; 317 } spin_loop; 318#endif 319 bool preempted; 320 bool ready; 321 struct kvm_vcpu_arch arch; 322}; 323 324static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 325{ 326 /* 327 * The memory barrier ensures a previous write to vcpu->requests cannot 328 * be reordered with the read of vcpu->mode. It pairs with the general 329 * memory barrier following the write of vcpu->mode in VCPU RUN. 330 */ 331 smp_mb__before_atomic(); 332 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 333} 334 335/* 336 * Some of the bitops functions do not support too long bitmaps. 337 * This number must be determined not to exceed such limits. 338 */ 339#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 340 341struct kvm_memory_slot { 342 gfn_t base_gfn; 343 unsigned long npages; 344 unsigned long *dirty_bitmap; 345 struct kvm_arch_memory_slot arch; 346 unsigned long userspace_addr; 347 u32 flags; 348 short id; 349}; 350 351static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 352{ 353 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 354} 355 356static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 357{ 358 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 359 360 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 361} 362 363#ifndef KVM_DIRTY_LOG_MANUAL_CAPS 364#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 365#endif 366 367struct kvm_s390_adapter_int { 368 u64 ind_addr; 369 u64 summary_addr; 370 u64 ind_offset; 371 u32 summary_offset; 372 u32 adapter_id; 373}; 374 375struct kvm_hv_sint { 376 u32 vcpu; 377 u32 sint; 378}; 379 380struct kvm_kernel_irq_routing_entry { 381 u32 gsi; 382 u32 type; 383 int (*set)(struct kvm_kernel_irq_routing_entry *e, 384 struct kvm *kvm, int irq_source_id, int level, 385 bool line_status); 386 union { 387 struct { 388 unsigned irqchip; 389 unsigned pin; 390 } irqchip; 391 struct { 392 u32 address_lo; 393 u32 address_hi; 394 u32 data; 395 u32 flags; 396 u32 devid; 397 } msi; 398 struct kvm_s390_adapter_int adapter; 399 struct kvm_hv_sint hv_sint; 400 }; 401 struct hlist_node link; 402}; 403 404#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 405struct kvm_irq_routing_table { 406 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 407 u32 nr_rt_entries; 408 /* 409 * Array indexed by gsi. Each entry contains list of irq chips 410 * the gsi is connected to. 411 */ 412 struct hlist_head map[]; 413}; 414#endif 415 416#ifndef KVM_PRIVATE_MEM_SLOTS 417#define KVM_PRIVATE_MEM_SLOTS 0 418#endif 419 420#ifndef KVM_MEM_SLOTS_NUM 421#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 422#endif 423 424#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 425static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 426{ 427 return 0; 428} 429#endif 430 431/* 432 * Note: 433 * memslots are not sorted by id anymore, please use id_to_memslot() 434 * to get the memslot by its id. 435 */ 436struct kvm_memslots { 437 u64 generation; 438 /* The mapping table from slot id to the index in memslots[]. */ 439 short id_to_index[KVM_MEM_SLOTS_NUM]; 440 atomic_t lru_slot; 441 int used_slots; 442 struct kvm_memory_slot memslots[]; 443}; 444 445struct kvm { 446 spinlock_t mmu_lock; 447 struct mutex slots_lock; 448 struct mm_struct *mm; /* userspace tied to this vm */ 449 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 450 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 451 452 /* 453 * created_vcpus is protected by kvm->lock, and is incremented 454 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 455 * incremented after storing the kvm_vcpu pointer in vcpus, 456 * and is accessed atomically. 457 */ 458 atomic_t online_vcpus; 459 int created_vcpus; 460 int last_boosted_vcpu; 461 struct list_head vm_list; 462 struct mutex lock; 463 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 464#ifdef CONFIG_HAVE_KVM_EVENTFD 465 struct { 466 spinlock_t lock; 467 struct list_head items; 468 struct list_head resampler_list; 469 struct mutex resampler_lock; 470 } irqfds; 471 struct list_head ioeventfds; 472#endif 473 struct kvm_vm_stat stat; 474 struct kvm_arch arch; 475 refcount_t users_count; 476#ifdef CONFIG_KVM_MMIO 477 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 478 spinlock_t ring_lock; 479 struct list_head coalesced_zones; 480#endif 481 482 struct mutex irq_lock; 483#ifdef CONFIG_HAVE_KVM_IRQCHIP 484 /* 485 * Update side is protected by irq_lock. 486 */ 487 struct kvm_irq_routing_table __rcu *irq_routing; 488#endif 489#ifdef CONFIG_HAVE_KVM_IRQFD 490 struct hlist_head irq_ack_notifier_list; 491#endif 492 493#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 494 struct mmu_notifier mmu_notifier; 495 unsigned long mmu_notifier_seq; 496 long mmu_notifier_count; 497#endif 498 long tlbs_dirty; 499 struct list_head devices; 500 u64 manual_dirty_log_protect; 501 struct dentry *debugfs_dentry; 502 struct kvm_stat_data **debugfs_stat_data; 503 struct srcu_struct srcu; 504 struct srcu_struct irq_srcu; 505 pid_t userspace_pid; 506 unsigned int max_halt_poll_ns; 507}; 508 509#define kvm_err(fmt, ...) \ 510 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 511#define kvm_info(fmt, ...) \ 512 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 513#define kvm_debug(fmt, ...) \ 514 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 515#define kvm_debug_ratelimited(fmt, ...) \ 516 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 517 ## __VA_ARGS__) 518#define kvm_pr_unimpl(fmt, ...) \ 519 pr_err_ratelimited("kvm [%i]: " fmt, \ 520 task_tgid_nr(current), ## __VA_ARGS__) 521 522/* The guest did something we don't support. */ 523#define vcpu_unimpl(vcpu, fmt, ...) \ 524 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 525 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 526 527#define vcpu_debug(vcpu, fmt, ...) \ 528 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 529#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 530 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 531 ## __VA_ARGS__) 532#define vcpu_err(vcpu, fmt, ...) \ 533 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 534 535static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 536{ 537 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 538} 539 540static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 541{ 542 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 543 lockdep_is_held(&kvm->slots_lock) || 544 !refcount_read(&kvm->users_count)); 545} 546 547static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 548{ 549 int num_vcpus = atomic_read(&kvm->online_vcpus); 550 i = array_index_nospec(i, num_vcpus); 551 552 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 553 smp_rmb(); 554 return kvm->vcpus[i]; 555} 556 557#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 558 for (idx = 0; \ 559 idx < atomic_read(&kvm->online_vcpus) && \ 560 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 561 idx++) 562 563static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 564{ 565 struct kvm_vcpu *vcpu = NULL; 566 int i; 567 568 if (id < 0) 569 return NULL; 570 if (id < KVM_MAX_VCPUS) 571 vcpu = kvm_get_vcpu(kvm, id); 572 if (vcpu && vcpu->vcpu_id == id) 573 return vcpu; 574 kvm_for_each_vcpu(i, vcpu, kvm) 575 if (vcpu->vcpu_id == id) 576 return vcpu; 577 return NULL; 578} 579 580static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 581{ 582 return vcpu->vcpu_idx; 583} 584 585#define kvm_for_each_memslot(memslot, slots) \ 586 for (memslot = &slots->memslots[0]; \ 587 memslot < slots->memslots + slots->used_slots; memslot++) \ 588 if (WARN_ON_ONCE(!memslot->npages)) { \ 589 } else 590 591void kvm_vcpu_destroy(struct kvm_vcpu *vcpu); 592 593void vcpu_load(struct kvm_vcpu *vcpu); 594void vcpu_put(struct kvm_vcpu *vcpu); 595 596#ifdef __KVM_HAVE_IOAPIC 597void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 598void kvm_arch_post_irq_routing_update(struct kvm *kvm); 599#else 600static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 601{ 602} 603static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 604{ 605} 606#endif 607 608#ifdef CONFIG_HAVE_KVM_IRQFD 609int kvm_irqfd_init(void); 610void kvm_irqfd_exit(void); 611#else 612static inline int kvm_irqfd_init(void) 613{ 614 return 0; 615} 616 617static inline void kvm_irqfd_exit(void) 618{ 619} 620#endif 621int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 622 struct module *module); 623void kvm_exit(void); 624 625void kvm_get_kvm(struct kvm *kvm); 626void kvm_put_kvm(struct kvm *kvm); 627void kvm_put_kvm_no_destroy(struct kvm *kvm); 628 629static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 630{ 631 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 632 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 633 lockdep_is_held(&kvm->slots_lock) || 634 !refcount_read(&kvm->users_count)); 635} 636 637static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 638{ 639 return __kvm_memslots(kvm, 0); 640} 641 642static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 643{ 644 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 645 646 return __kvm_memslots(vcpu->kvm, as_id); 647} 648 649static inline 650struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 651{ 652 int index = slots->id_to_index[id]; 653 struct kvm_memory_slot *slot; 654 655 if (index < 0) 656 return NULL; 657 658 slot = &slots->memslots[index]; 659 660 WARN_ON(slot->id != id); 661 return slot; 662} 663 664/* 665 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 666 * - create a new memory slot 667 * - delete an existing memory slot 668 * - modify an existing memory slot 669 * -- move it in the guest physical memory space 670 * -- just change its flags 671 * 672 * Since flags can be changed by some of these operations, the following 673 * differentiation is the best we can do for __kvm_set_memory_region(): 674 */ 675enum kvm_mr_change { 676 KVM_MR_CREATE, 677 KVM_MR_DELETE, 678 KVM_MR_MOVE, 679 KVM_MR_FLAGS_ONLY, 680}; 681 682int kvm_set_memory_region(struct kvm *kvm, 683 const struct kvm_userspace_memory_region *mem); 684int __kvm_set_memory_region(struct kvm *kvm, 685 const struct kvm_userspace_memory_region *mem); 686void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 687void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 688int kvm_arch_prepare_memory_region(struct kvm *kvm, 689 struct kvm_memory_slot *memslot, 690 const struct kvm_userspace_memory_region *mem, 691 enum kvm_mr_change change); 692void kvm_arch_commit_memory_region(struct kvm *kvm, 693 const struct kvm_userspace_memory_region *mem, 694 struct kvm_memory_slot *old, 695 const struct kvm_memory_slot *new, 696 enum kvm_mr_change change); 697/* flush all memory translations */ 698void kvm_arch_flush_shadow_all(struct kvm *kvm); 699/* flush memory translations pointing to 'slot' */ 700void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 701 struct kvm_memory_slot *slot); 702 703int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 704 struct page **pages, int nr_pages); 705 706struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 707unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 708unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 709unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 710unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 711 bool *writable); 712void kvm_release_page_clean(struct page *page); 713void kvm_release_page_dirty(struct page *page); 714void kvm_set_page_accessed(struct page *page); 715 716kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 717kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 718 bool *writable); 719kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 720kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 721kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 722 bool atomic, bool *async, bool write_fault, 723 bool *writable); 724 725void kvm_release_pfn_clean(kvm_pfn_t pfn); 726void kvm_release_pfn_dirty(kvm_pfn_t pfn); 727void kvm_set_pfn_dirty(kvm_pfn_t pfn); 728void kvm_set_pfn_accessed(kvm_pfn_t pfn); 729void kvm_get_pfn(kvm_pfn_t pfn); 730 731void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache); 732int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 733 int len); 734int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 735int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 736 void *data, unsigned long len); 737int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 738 void *data, unsigned int offset, 739 unsigned long len); 740int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 741 int offset, int len); 742int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 743 unsigned long len); 744int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 745 void *data, unsigned long len); 746int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 747 void *data, unsigned int offset, 748 unsigned long len); 749int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 750 gpa_t gpa, unsigned long len); 751 752#define __kvm_get_guest(kvm, gfn, offset, v) \ 753({ \ 754 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 755 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 756 int __ret = -EFAULT; \ 757 \ 758 if (!kvm_is_error_hva(__addr)) \ 759 __ret = get_user(v, __uaddr); \ 760 __ret; \ 761}) 762 763#define kvm_get_guest(kvm, gpa, v) \ 764({ \ 765 gpa_t __gpa = gpa; \ 766 struct kvm *__kvm = kvm; \ 767 \ 768 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 769 offset_in_page(__gpa), v); \ 770}) 771 772#define __kvm_put_guest(kvm, gfn, offset, v) \ 773({ \ 774 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 775 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 776 int __ret = -EFAULT; \ 777 \ 778 if (!kvm_is_error_hva(__addr)) \ 779 __ret = put_user(v, __uaddr); \ 780 if (!__ret) \ 781 mark_page_dirty(kvm, gfn); \ 782 __ret; \ 783}) 784 785#define kvm_put_guest(kvm, gpa, v) \ 786({ \ 787 gpa_t __gpa = gpa; \ 788 struct kvm *__kvm = kvm; \ 789 \ 790 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 791 offset_in_page(__gpa), v); \ 792}) 793 794int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 795int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 796struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 797bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 798bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 799unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 800void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 801 802struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 803struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 804kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 805kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 806int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 807int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 808 struct gfn_to_pfn_cache *cache, bool atomic); 809struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 810void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 811int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 812 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic); 813unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 814unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 815int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 816 int len); 817int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 818 unsigned long len); 819int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 820 unsigned long len); 821int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 822 int offset, int len); 823int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 824 unsigned long len); 825void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 826 827void kvm_sigset_activate(struct kvm_vcpu *vcpu); 828void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 829 830void kvm_vcpu_block(struct kvm_vcpu *vcpu); 831void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 832void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 833bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 834void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 835int kvm_vcpu_yield_to(struct kvm_vcpu *target); 836void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 837 838void kvm_flush_remote_tlbs(struct kvm *kvm); 839void kvm_reload_remote_mmus(struct kvm *kvm); 840 841#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 842int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 843int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 844void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 845void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 846#endif 847 848bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 849 struct kvm_vcpu *except, 850 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 851bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 852bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 853 struct kvm_vcpu *except); 854bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 855 unsigned long *vcpu_bitmap); 856 857long kvm_arch_dev_ioctl(struct file *filp, 858 unsigned int ioctl, unsigned long arg); 859long kvm_arch_vcpu_ioctl(struct file *filp, 860 unsigned int ioctl, unsigned long arg); 861vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 862 863int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 864 865void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 866 struct kvm_memory_slot *slot, 867 gfn_t gfn_offset, 868 unsigned long mask); 869void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 870 871#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 872void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 873 struct kvm_memory_slot *memslot); 874#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 875int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 876int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 877 int *is_dirty, struct kvm_memory_slot **memslot); 878#endif 879 880int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 881 bool line_status); 882int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 883 struct kvm_enable_cap *cap); 884long kvm_arch_vm_ioctl(struct file *filp, 885 unsigned int ioctl, unsigned long arg); 886 887int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 888int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 889 890int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 891 struct kvm_translation *tr); 892 893int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 894int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 895int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 896 struct kvm_sregs *sregs); 897int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 898 struct kvm_sregs *sregs); 899int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 900 struct kvm_mp_state *mp_state); 901int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 902 struct kvm_mp_state *mp_state); 903int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 904 struct kvm_guest_debug *dbg); 905int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 906 907int kvm_arch_init(void *opaque); 908void kvm_arch_exit(void); 909 910void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 911 912void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 913void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 914int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 915int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 916void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 917void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 918 919#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 920void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 921#endif 922 923int kvm_arch_hardware_enable(void); 924void kvm_arch_hardware_disable(void); 925int kvm_arch_hardware_setup(void *opaque); 926void kvm_arch_hardware_unsetup(void); 927int kvm_arch_check_processor_compat(void *opaque); 928int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 929bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 930int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 931bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 932int kvm_arch_post_init_vm(struct kvm *kvm); 933void kvm_arch_pre_destroy_vm(struct kvm *kvm); 934 935#ifndef __KVM_HAVE_ARCH_VM_ALLOC 936/* 937 * All architectures that want to use vzalloc currently also 938 * need their own kvm_arch_alloc_vm implementation. 939 */ 940static inline struct kvm *kvm_arch_alloc_vm(void) 941{ 942 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 943} 944 945static inline void kvm_arch_free_vm(struct kvm *kvm) 946{ 947 kfree(kvm); 948} 949#endif 950 951#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 952static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 953{ 954 return -ENOTSUPP; 955} 956#endif 957 958#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 959void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 960void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 961bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 962#else 963static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 964{ 965} 966 967static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 968{ 969} 970 971static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 972{ 973 return false; 974} 975#endif 976#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 977void kvm_arch_start_assignment(struct kvm *kvm); 978void kvm_arch_end_assignment(struct kvm *kvm); 979bool kvm_arch_has_assigned_device(struct kvm *kvm); 980#else 981static inline void kvm_arch_start_assignment(struct kvm *kvm) 982{ 983} 984 985static inline void kvm_arch_end_assignment(struct kvm *kvm) 986{ 987} 988 989static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 990{ 991 return false; 992} 993#endif 994 995static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 996{ 997#ifdef __KVM_HAVE_ARCH_WQP 998 return vcpu->arch.waitp; 999#else 1000 return &vcpu->wait; 1001#endif 1002} 1003 1004#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1005/* 1006 * returns true if the virtual interrupt controller is initialized and 1007 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1008 * controller is dynamically instantiated and this is not always true. 1009 */ 1010bool kvm_arch_intc_initialized(struct kvm *kvm); 1011#else 1012static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1013{ 1014 return true; 1015} 1016#endif 1017 1018int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1019void kvm_arch_destroy_vm(struct kvm *kvm); 1020void kvm_arch_sync_events(struct kvm *kvm); 1021 1022int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1023 1024bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 1025bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); 1026bool kvm_is_transparent_hugepage(kvm_pfn_t pfn); 1027 1028struct kvm_irq_ack_notifier { 1029 struct hlist_node link; 1030 unsigned gsi; 1031 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1032}; 1033 1034int kvm_irq_map_gsi(struct kvm *kvm, 1035 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1036int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1037 1038int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1039 bool line_status); 1040int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1041 int irq_source_id, int level, bool line_status); 1042int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1043 struct kvm *kvm, int irq_source_id, 1044 int level, bool line_status); 1045bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1046void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1047void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1048void kvm_register_irq_ack_notifier(struct kvm *kvm, 1049 struct kvm_irq_ack_notifier *kian); 1050void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1051 struct kvm_irq_ack_notifier *kian); 1052int kvm_request_irq_source_id(struct kvm *kvm); 1053void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1054bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1055 1056/* 1057 * search_memslots() and __gfn_to_memslot() are here because they are 1058 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 1059 * gfn_to_memslot() itself isn't here as an inline because that would 1060 * bloat other code too much. 1061 * 1062 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! 1063 */ 1064static inline struct kvm_memory_slot * 1065search_memslots(struct kvm_memslots *slots, gfn_t gfn) 1066{ 1067 int start = 0, end = slots->used_slots; 1068 int slot = atomic_read(&slots->lru_slot); 1069 struct kvm_memory_slot *memslots = slots->memslots; 1070 1071 if (unlikely(!slots->used_slots)) 1072 return NULL; 1073 1074 if (gfn >= memslots[slot].base_gfn && 1075 gfn < memslots[slot].base_gfn + memslots[slot].npages) 1076 return &memslots[slot]; 1077 1078 while (start < end) { 1079 slot = start + (end - start) / 2; 1080 1081 if (gfn >= memslots[slot].base_gfn) 1082 end = slot; 1083 else 1084 start = slot + 1; 1085 } 1086 1087 if (start < slots->used_slots && gfn >= memslots[start].base_gfn && 1088 gfn < memslots[start].base_gfn + memslots[start].npages) { 1089 atomic_set(&slots->lru_slot, start); 1090 return &memslots[start]; 1091 } 1092 1093 return NULL; 1094} 1095 1096static inline struct kvm_memory_slot * 1097__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1098{ 1099 return search_memslots(slots, gfn); 1100} 1101 1102static inline unsigned long 1103__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1104{ 1105 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 1106} 1107 1108static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1109{ 1110 return gfn_to_memslot(kvm, gfn)->id; 1111} 1112 1113static inline gfn_t 1114hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1115{ 1116 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1117 1118 return slot->base_gfn + gfn_offset; 1119} 1120 1121static inline gpa_t gfn_to_gpa(gfn_t gfn) 1122{ 1123 return (gpa_t)gfn << PAGE_SHIFT; 1124} 1125 1126static inline gfn_t gpa_to_gfn(gpa_t gpa) 1127{ 1128 return (gfn_t)(gpa >> PAGE_SHIFT); 1129} 1130 1131static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1132{ 1133 return (hpa_t)pfn << PAGE_SHIFT; 1134} 1135 1136static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1137 gpa_t gpa) 1138{ 1139 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1140} 1141 1142static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1143{ 1144 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1145 1146 return kvm_is_error_hva(hva); 1147} 1148 1149enum kvm_stat_kind { 1150 KVM_STAT_VM, 1151 KVM_STAT_VCPU, 1152}; 1153 1154struct kvm_stat_data { 1155 struct kvm *kvm; 1156 struct kvm_stats_debugfs_item *dbgfs_item; 1157}; 1158 1159struct kvm_stats_debugfs_item { 1160 const char *name; 1161 int offset; 1162 enum kvm_stat_kind kind; 1163 int mode; 1164}; 1165 1166#define KVM_DBGFS_GET_MODE(dbgfs_item) \ 1167 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644) 1168 1169#define VM_STAT(n, x, ...) \ 1170 { n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ } 1171#define VCPU_STAT(n, x, ...) \ 1172 { n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ } 1173 1174extern struct kvm_stats_debugfs_item debugfs_entries[]; 1175extern struct dentry *kvm_debugfs_dir; 1176 1177#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1178static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1179{ 1180 if (unlikely(kvm->mmu_notifier_count)) 1181 return 1; 1182 /* 1183 * Ensure the read of mmu_notifier_count happens before the read 1184 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1185 * mmu_notifier_invalidate_range_end to make sure that the caller 1186 * either sees the old (non-zero) value of mmu_notifier_count or 1187 * the new (incremented) value of mmu_notifier_seq. 1188 * PowerPC Book3s HV KVM calls this under a per-page lock 1189 * rather than under kvm->mmu_lock, for scalability, so 1190 * can't rely on kvm->mmu_lock to keep things ordered. 1191 */ 1192 smp_rmb(); 1193 if (kvm->mmu_notifier_seq != mmu_seq) 1194 return 1; 1195 return 0; 1196} 1197#endif 1198 1199#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1200 1201#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1202 1203bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1204int kvm_set_irq_routing(struct kvm *kvm, 1205 const struct kvm_irq_routing_entry *entries, 1206 unsigned nr, 1207 unsigned flags); 1208int kvm_set_routing_entry(struct kvm *kvm, 1209 struct kvm_kernel_irq_routing_entry *e, 1210 const struct kvm_irq_routing_entry *ue); 1211void kvm_free_irq_routing(struct kvm *kvm); 1212 1213#else 1214 1215static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1216 1217#endif 1218 1219int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1220 1221#ifdef CONFIG_HAVE_KVM_EVENTFD 1222 1223void kvm_eventfd_init(struct kvm *kvm); 1224int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1225 1226#ifdef CONFIG_HAVE_KVM_IRQFD 1227int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1228void kvm_irqfd_release(struct kvm *kvm); 1229void kvm_irq_routing_update(struct kvm *); 1230#else 1231static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1232{ 1233 return -EINVAL; 1234} 1235 1236static inline void kvm_irqfd_release(struct kvm *kvm) {} 1237#endif 1238 1239#else 1240 1241static inline void kvm_eventfd_init(struct kvm *kvm) {} 1242 1243static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1244{ 1245 return -EINVAL; 1246} 1247 1248static inline void kvm_irqfd_release(struct kvm *kvm) {} 1249 1250#ifdef CONFIG_HAVE_KVM_IRQCHIP 1251static inline void kvm_irq_routing_update(struct kvm *kvm) 1252{ 1253} 1254#endif 1255 1256static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1257{ 1258 return -ENOSYS; 1259} 1260 1261#endif /* CONFIG_HAVE_KVM_EVENTFD */ 1262 1263void kvm_arch_irq_routing_update(struct kvm *kvm); 1264 1265static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1266{ 1267 /* 1268 * Ensure the rest of the request is published to kvm_check_request's 1269 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1270 */ 1271 smp_wmb(); 1272 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1273} 1274 1275static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1276{ 1277 return READ_ONCE(vcpu->requests); 1278} 1279 1280static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1281{ 1282 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1283} 1284 1285static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1286{ 1287 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1288} 1289 1290static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1291{ 1292 if (kvm_test_request(req, vcpu)) { 1293 kvm_clear_request(req, vcpu); 1294 1295 /* 1296 * Ensure the rest of the request is visible to kvm_check_request's 1297 * caller. Paired with the smp_wmb in kvm_make_request. 1298 */ 1299 smp_mb__after_atomic(); 1300 return true; 1301 } else { 1302 return false; 1303 } 1304} 1305 1306extern bool kvm_rebooting; 1307 1308extern unsigned int halt_poll_ns; 1309extern unsigned int halt_poll_ns_grow; 1310extern unsigned int halt_poll_ns_grow_start; 1311extern unsigned int halt_poll_ns_shrink; 1312 1313struct kvm_device { 1314 const struct kvm_device_ops *ops; 1315 struct kvm *kvm; 1316 void *private; 1317 struct list_head vm_node; 1318}; 1319 1320/* create, destroy, and name are mandatory */ 1321struct kvm_device_ops { 1322 const char *name; 1323 1324 /* 1325 * create is called holding kvm->lock and any operations not suitable 1326 * to do while holding the lock should be deferred to init (see 1327 * below). 1328 */ 1329 int (*create)(struct kvm_device *dev, u32 type); 1330 1331 /* 1332 * init is called after create if create is successful and is called 1333 * outside of holding kvm->lock. 1334 */ 1335 void (*init)(struct kvm_device *dev); 1336 1337 /* 1338 * Destroy is responsible for freeing dev. 1339 * 1340 * Destroy may be called before or after destructors are called 1341 * on emulated I/O regions, depending on whether a reference is 1342 * held by a vcpu or other kvm component that gets destroyed 1343 * after the emulated I/O. 1344 */ 1345 void (*destroy)(struct kvm_device *dev); 1346 1347 /* 1348 * Release is an alternative method to free the device. It is 1349 * called when the device file descriptor is closed. Once 1350 * release is called, the destroy method will not be called 1351 * anymore as the device is removed from the device list of 1352 * the VM. kvm->lock is held. 1353 */ 1354 void (*release)(struct kvm_device *dev); 1355 1356 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1357 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1358 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1359 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1360 unsigned long arg); 1361 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1362}; 1363 1364void kvm_device_get(struct kvm_device *dev); 1365void kvm_device_put(struct kvm_device *dev); 1366struct kvm_device *kvm_device_from_filp(struct file *filp); 1367int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 1368void kvm_unregister_device_ops(u32 type); 1369 1370extern struct kvm_device_ops kvm_mpic_ops; 1371extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1372extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1373 1374#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1375 1376static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1377{ 1378 vcpu->spin_loop.in_spin_loop = val; 1379} 1380static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1381{ 1382 vcpu->spin_loop.dy_eligible = val; 1383} 1384 1385#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1386 1387static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1388{ 1389} 1390 1391static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1392{ 1393} 1394#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1395 1396static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 1397{ 1398 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 1399 !(memslot->flags & KVM_MEMSLOT_INVALID)); 1400} 1401 1402struct kvm_vcpu *kvm_get_running_vcpu(void); 1403struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 1404 1405#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1406bool kvm_arch_has_irq_bypass(void); 1407int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1408 struct irq_bypass_producer *); 1409void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1410 struct irq_bypass_producer *); 1411void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1412void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1413int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1414 uint32_t guest_irq, bool set); 1415#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1416 1417#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1418/* If we wakeup during the poll time, was it a sucessful poll? */ 1419static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1420{ 1421 return vcpu->valid_wakeup; 1422} 1423 1424#else 1425static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1426{ 1427 return true; 1428} 1429#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1430 1431#ifdef CONFIG_HAVE_KVM_NO_POLL 1432/* Callback that tells if we must not poll */ 1433bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1434#else 1435static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1436{ 1437 return false; 1438} 1439#endif /* CONFIG_HAVE_KVM_NO_POLL */ 1440 1441#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1442long kvm_arch_vcpu_async_ioctl(struct file *filp, 1443 unsigned int ioctl, unsigned long arg); 1444#else 1445static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1446 unsigned int ioctl, 1447 unsigned long arg) 1448{ 1449 return -ENOIOCTLCMD; 1450} 1451#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1452 1453void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1454 unsigned long start, unsigned long end); 1455 1456#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1457int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1458#else 1459static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1460{ 1461 return 0; 1462} 1463#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1464 1465typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 1466 1467int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 1468 uintptr_t data, const char *name, 1469 struct task_struct **thread_ptr); 1470 1471#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 1472static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 1473{ 1474 vcpu->run->exit_reason = KVM_EXIT_INTR; 1475 vcpu->stat.signal_exits++; 1476} 1477#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 1478 1479#endif