Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
4
5
6#include <linux/types.h>
7#include <linux/hardirq.h>
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/signal.h>
12#include <linux/sched.h>
13#include <linux/bug.h>
14#include <linux/mm.h>
15#include <linux/mmu_notifier.h>
16#include <linux/preempt.h>
17#include <linux/msi.h>
18#include <linux/slab.h>
19#include <linux/vmalloc.h>
20#include <linux/rcupdate.h>
21#include <linux/ratelimit.h>
22#include <linux/err.h>
23#include <linux/irqflags.h>
24#include <linux/context_tracking.h>
25#include <linux/irqbypass.h>
26#include <linux/rcuwait.h>
27#include <linux/refcount.h>
28#include <linux/nospec.h>
29#include <asm/signal.h>
30
31#include <linux/kvm.h>
32#include <linux/kvm_para.h>
33
34#include <linux/kvm_types.h>
35
36#include <asm/kvm_host.h>
37
38#ifndef KVM_MAX_VCPU_ID
39#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
40#endif
41
42/*
43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
44 * in kvm, other bits are visible for userspace which are defined in
45 * include/linux/kvm_h.
46 */
47#define KVM_MEMSLOT_INVALID (1UL << 16)
48
49/*
50 * Bit 63 of the memslot generation number is an "update in-progress flag",
51 * e.g. is temporarily set for the duration of install_new_memslots().
52 * This flag effectively creates a unique generation number that is used to
53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
54 * i.e. may (or may not) have come from the previous memslots generation.
55 *
56 * This is necessary because the actual memslots update is not atomic with
57 * respect to the generation number update. Updating the generation number
58 * first would allow a vCPU to cache a spte from the old memslots using the
59 * new generation number, and updating the generation number after switching
60 * to the new memslots would allow cache hits using the old generation number
61 * to reference the defunct memslots.
62 *
63 * This mechanism is used to prevent getting hits in KVM's caches while a
64 * memslot update is in-progress, and to prevent cache hits *after* updating
65 * the actual generation number against accesses that were inserted into the
66 * cache *before* the memslots were updated.
67 */
68#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
69
70/* Two fragments for cross MMIO pages. */
71#define KVM_MAX_MMIO_FRAGMENTS 2
72
73#ifndef KVM_ADDRESS_SPACE_NUM
74#define KVM_ADDRESS_SPACE_NUM 1
75#endif
76
77/*
78 * For the normal pfn, the highest 12 bits should be zero,
79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
80 * mask bit 63 to indicate the noslot pfn.
81 */
82#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
83#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
84#define KVM_PFN_NOSLOT (0x1ULL << 63)
85
86#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
87#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
88#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
89
90/*
91 * error pfns indicate that the gfn is in slot but faild to
92 * translate it to pfn on host.
93 */
94static inline bool is_error_pfn(kvm_pfn_t pfn)
95{
96 return !!(pfn & KVM_PFN_ERR_MASK);
97}
98
99/*
100 * error_noslot pfns indicate that the gfn can not be
101 * translated to pfn - it is not in slot or failed to
102 * translate it to pfn.
103 */
104static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
105{
106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
107}
108
109/* noslot pfn indicates that the gfn is not in slot. */
110static inline bool is_noslot_pfn(kvm_pfn_t pfn)
111{
112 return pfn == KVM_PFN_NOSLOT;
113}
114
115/*
116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
117 * provide own defines and kvm_is_error_hva
118 */
119#ifndef KVM_HVA_ERR_BAD
120
121#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
122#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
123
124static inline bool kvm_is_error_hva(unsigned long addr)
125{
126 return addr >= PAGE_OFFSET;
127}
128
129#endif
130
131#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
132
133static inline bool is_error_page(struct page *page)
134{
135 return IS_ERR(page);
136}
137
138#define KVM_REQUEST_MASK GENMASK(7,0)
139#define KVM_REQUEST_NO_WAKEUP BIT(8)
140#define KVM_REQUEST_WAIT BIT(9)
141/*
142 * Architecture-independent vcpu->requests bit members
143 * Bits 4-7 are reserved for more arch-independent bits.
144 */
145#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
146#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
147#define KVM_REQ_PENDING_TIMER 2
148#define KVM_REQ_UNHALT 3
149#define KVM_REQUEST_ARCH_BASE 8
150
151#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
152 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
154})
155#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
156
157#define KVM_USERSPACE_IRQ_SOURCE_ID 0
158#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
159
160extern struct mutex kvm_lock;
161extern struct list_head vm_list;
162
163struct kvm_io_range {
164 gpa_t addr;
165 int len;
166 struct kvm_io_device *dev;
167};
168
169#define NR_IOBUS_DEVS 1000
170
171struct kvm_io_bus {
172 int dev_count;
173 int ioeventfd_count;
174 struct kvm_io_range range[];
175};
176
177enum kvm_bus {
178 KVM_MMIO_BUS,
179 KVM_PIO_BUS,
180 KVM_VIRTIO_CCW_NOTIFY_BUS,
181 KVM_FAST_MMIO_BUS,
182 KVM_NR_BUSES
183};
184
185int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
186 int len, const void *val);
187int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
188 gpa_t addr, int len, const void *val, long cookie);
189int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
190 int len, void *val);
191int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
192 int len, struct kvm_io_device *dev);
193void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
194 struct kvm_io_device *dev);
195struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
196 gpa_t addr);
197
198#ifdef CONFIG_KVM_ASYNC_PF
199struct kvm_async_pf {
200 struct work_struct work;
201 struct list_head link;
202 struct list_head queue;
203 struct kvm_vcpu *vcpu;
204 struct mm_struct *mm;
205 gpa_t cr2_or_gpa;
206 unsigned long addr;
207 struct kvm_arch_async_pf arch;
208 bool wakeup_all;
209 bool notpresent_injected;
210};
211
212void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
213void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
214bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
215 unsigned long hva, struct kvm_arch_async_pf *arch);
216int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
217#endif
218
219enum {
220 OUTSIDE_GUEST_MODE,
221 IN_GUEST_MODE,
222 EXITING_GUEST_MODE,
223 READING_SHADOW_PAGE_TABLES,
224};
225
226#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
227
228struct kvm_host_map {
229 /*
230 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
231 * a 'struct page' for it. When using mem= kernel parameter some memory
232 * can be used as guest memory but they are not managed by host
233 * kernel).
234 * If 'pfn' is not managed by the host kernel, this field is
235 * initialized to KVM_UNMAPPED_PAGE.
236 */
237 struct page *page;
238 void *hva;
239 kvm_pfn_t pfn;
240 kvm_pfn_t gfn;
241};
242
243/*
244 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
245 * directly to check for that.
246 */
247static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
248{
249 return !!map->hva;
250}
251
252/*
253 * Sometimes a large or cross-page mmio needs to be broken up into separate
254 * exits for userspace servicing.
255 */
256struct kvm_mmio_fragment {
257 gpa_t gpa;
258 void *data;
259 unsigned len;
260};
261
262struct kvm_vcpu {
263 struct kvm *kvm;
264#ifdef CONFIG_PREEMPT_NOTIFIERS
265 struct preempt_notifier preempt_notifier;
266#endif
267 int cpu;
268 int vcpu_id; /* id given by userspace at creation */
269 int vcpu_idx; /* index in kvm->vcpus array */
270 int srcu_idx;
271 int mode;
272 u64 requests;
273 unsigned long guest_debug;
274
275 int pre_pcpu;
276 struct list_head blocked_vcpu_list;
277
278 struct mutex mutex;
279 struct kvm_run *run;
280
281 struct rcuwait wait;
282 struct pid __rcu *pid;
283 int sigset_active;
284 sigset_t sigset;
285 struct kvm_vcpu_stat stat;
286 unsigned int halt_poll_ns;
287 bool valid_wakeup;
288
289#ifdef CONFIG_HAS_IOMEM
290 int mmio_needed;
291 int mmio_read_completed;
292 int mmio_is_write;
293 int mmio_cur_fragment;
294 int mmio_nr_fragments;
295 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
296#endif
297
298#ifdef CONFIG_KVM_ASYNC_PF
299 struct {
300 u32 queued;
301 struct list_head queue;
302 struct list_head done;
303 spinlock_t lock;
304 } async_pf;
305#endif
306
307#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
308 /*
309 * Cpu relax intercept or pause loop exit optimization
310 * in_spin_loop: set when a vcpu does a pause loop exit
311 * or cpu relax intercepted.
312 * dy_eligible: indicates whether vcpu is eligible for directed yield.
313 */
314 struct {
315 bool in_spin_loop;
316 bool dy_eligible;
317 } spin_loop;
318#endif
319 bool preempted;
320 bool ready;
321 struct kvm_vcpu_arch arch;
322};
323
324static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
325{
326 /*
327 * The memory barrier ensures a previous write to vcpu->requests cannot
328 * be reordered with the read of vcpu->mode. It pairs with the general
329 * memory barrier following the write of vcpu->mode in VCPU RUN.
330 */
331 smp_mb__before_atomic();
332 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
333}
334
335/*
336 * Some of the bitops functions do not support too long bitmaps.
337 * This number must be determined not to exceed such limits.
338 */
339#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
340
341struct kvm_memory_slot {
342 gfn_t base_gfn;
343 unsigned long npages;
344 unsigned long *dirty_bitmap;
345 struct kvm_arch_memory_slot arch;
346 unsigned long userspace_addr;
347 u32 flags;
348 short id;
349};
350
351static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
352{
353 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
354}
355
356static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
357{
358 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
359
360 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
361}
362
363#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
364#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
365#endif
366
367struct kvm_s390_adapter_int {
368 u64 ind_addr;
369 u64 summary_addr;
370 u64 ind_offset;
371 u32 summary_offset;
372 u32 adapter_id;
373};
374
375struct kvm_hv_sint {
376 u32 vcpu;
377 u32 sint;
378};
379
380struct kvm_kernel_irq_routing_entry {
381 u32 gsi;
382 u32 type;
383 int (*set)(struct kvm_kernel_irq_routing_entry *e,
384 struct kvm *kvm, int irq_source_id, int level,
385 bool line_status);
386 union {
387 struct {
388 unsigned irqchip;
389 unsigned pin;
390 } irqchip;
391 struct {
392 u32 address_lo;
393 u32 address_hi;
394 u32 data;
395 u32 flags;
396 u32 devid;
397 } msi;
398 struct kvm_s390_adapter_int adapter;
399 struct kvm_hv_sint hv_sint;
400 };
401 struct hlist_node link;
402};
403
404#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
405struct kvm_irq_routing_table {
406 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
407 u32 nr_rt_entries;
408 /*
409 * Array indexed by gsi. Each entry contains list of irq chips
410 * the gsi is connected to.
411 */
412 struct hlist_head map[];
413};
414#endif
415
416#ifndef KVM_PRIVATE_MEM_SLOTS
417#define KVM_PRIVATE_MEM_SLOTS 0
418#endif
419
420#ifndef KVM_MEM_SLOTS_NUM
421#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
422#endif
423
424#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
425static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
426{
427 return 0;
428}
429#endif
430
431/*
432 * Note:
433 * memslots are not sorted by id anymore, please use id_to_memslot()
434 * to get the memslot by its id.
435 */
436struct kvm_memslots {
437 u64 generation;
438 /* The mapping table from slot id to the index in memslots[]. */
439 short id_to_index[KVM_MEM_SLOTS_NUM];
440 atomic_t lru_slot;
441 int used_slots;
442 struct kvm_memory_slot memslots[];
443};
444
445struct kvm {
446 spinlock_t mmu_lock;
447 struct mutex slots_lock;
448 struct mm_struct *mm; /* userspace tied to this vm */
449 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
450 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
451
452 /*
453 * created_vcpus is protected by kvm->lock, and is incremented
454 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
455 * incremented after storing the kvm_vcpu pointer in vcpus,
456 * and is accessed atomically.
457 */
458 atomic_t online_vcpus;
459 int created_vcpus;
460 int last_boosted_vcpu;
461 struct list_head vm_list;
462 struct mutex lock;
463 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
464#ifdef CONFIG_HAVE_KVM_EVENTFD
465 struct {
466 spinlock_t lock;
467 struct list_head items;
468 struct list_head resampler_list;
469 struct mutex resampler_lock;
470 } irqfds;
471 struct list_head ioeventfds;
472#endif
473 struct kvm_vm_stat stat;
474 struct kvm_arch arch;
475 refcount_t users_count;
476#ifdef CONFIG_KVM_MMIO
477 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
478 spinlock_t ring_lock;
479 struct list_head coalesced_zones;
480#endif
481
482 struct mutex irq_lock;
483#ifdef CONFIG_HAVE_KVM_IRQCHIP
484 /*
485 * Update side is protected by irq_lock.
486 */
487 struct kvm_irq_routing_table __rcu *irq_routing;
488#endif
489#ifdef CONFIG_HAVE_KVM_IRQFD
490 struct hlist_head irq_ack_notifier_list;
491#endif
492
493#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
494 struct mmu_notifier mmu_notifier;
495 unsigned long mmu_notifier_seq;
496 long mmu_notifier_count;
497#endif
498 long tlbs_dirty;
499 struct list_head devices;
500 u64 manual_dirty_log_protect;
501 struct dentry *debugfs_dentry;
502 struct kvm_stat_data **debugfs_stat_data;
503 struct srcu_struct srcu;
504 struct srcu_struct irq_srcu;
505 pid_t userspace_pid;
506 unsigned int max_halt_poll_ns;
507};
508
509#define kvm_err(fmt, ...) \
510 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
511#define kvm_info(fmt, ...) \
512 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
513#define kvm_debug(fmt, ...) \
514 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
515#define kvm_debug_ratelimited(fmt, ...) \
516 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
517 ## __VA_ARGS__)
518#define kvm_pr_unimpl(fmt, ...) \
519 pr_err_ratelimited("kvm [%i]: " fmt, \
520 task_tgid_nr(current), ## __VA_ARGS__)
521
522/* The guest did something we don't support. */
523#define vcpu_unimpl(vcpu, fmt, ...) \
524 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
525 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
526
527#define vcpu_debug(vcpu, fmt, ...) \
528 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
529#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
530 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
531 ## __VA_ARGS__)
532#define vcpu_err(vcpu, fmt, ...) \
533 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
534
535static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
536{
537 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
538}
539
540static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
541{
542 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
543 lockdep_is_held(&kvm->slots_lock) ||
544 !refcount_read(&kvm->users_count));
545}
546
547static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
548{
549 int num_vcpus = atomic_read(&kvm->online_vcpus);
550 i = array_index_nospec(i, num_vcpus);
551
552 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
553 smp_rmb();
554 return kvm->vcpus[i];
555}
556
557#define kvm_for_each_vcpu(idx, vcpup, kvm) \
558 for (idx = 0; \
559 idx < atomic_read(&kvm->online_vcpus) && \
560 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
561 idx++)
562
563static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
564{
565 struct kvm_vcpu *vcpu = NULL;
566 int i;
567
568 if (id < 0)
569 return NULL;
570 if (id < KVM_MAX_VCPUS)
571 vcpu = kvm_get_vcpu(kvm, id);
572 if (vcpu && vcpu->vcpu_id == id)
573 return vcpu;
574 kvm_for_each_vcpu(i, vcpu, kvm)
575 if (vcpu->vcpu_id == id)
576 return vcpu;
577 return NULL;
578}
579
580static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
581{
582 return vcpu->vcpu_idx;
583}
584
585#define kvm_for_each_memslot(memslot, slots) \
586 for (memslot = &slots->memslots[0]; \
587 memslot < slots->memslots + slots->used_slots; memslot++) \
588 if (WARN_ON_ONCE(!memslot->npages)) { \
589 } else
590
591void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
592
593void vcpu_load(struct kvm_vcpu *vcpu);
594void vcpu_put(struct kvm_vcpu *vcpu);
595
596#ifdef __KVM_HAVE_IOAPIC
597void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
598void kvm_arch_post_irq_routing_update(struct kvm *kvm);
599#else
600static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
601{
602}
603static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
604{
605}
606#endif
607
608#ifdef CONFIG_HAVE_KVM_IRQFD
609int kvm_irqfd_init(void);
610void kvm_irqfd_exit(void);
611#else
612static inline int kvm_irqfd_init(void)
613{
614 return 0;
615}
616
617static inline void kvm_irqfd_exit(void)
618{
619}
620#endif
621int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
622 struct module *module);
623void kvm_exit(void);
624
625void kvm_get_kvm(struct kvm *kvm);
626void kvm_put_kvm(struct kvm *kvm);
627void kvm_put_kvm_no_destroy(struct kvm *kvm);
628
629static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
630{
631 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
632 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
633 lockdep_is_held(&kvm->slots_lock) ||
634 !refcount_read(&kvm->users_count));
635}
636
637static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
638{
639 return __kvm_memslots(kvm, 0);
640}
641
642static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
643{
644 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
645
646 return __kvm_memslots(vcpu->kvm, as_id);
647}
648
649static inline
650struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
651{
652 int index = slots->id_to_index[id];
653 struct kvm_memory_slot *slot;
654
655 if (index < 0)
656 return NULL;
657
658 slot = &slots->memslots[index];
659
660 WARN_ON(slot->id != id);
661 return slot;
662}
663
664/*
665 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
666 * - create a new memory slot
667 * - delete an existing memory slot
668 * - modify an existing memory slot
669 * -- move it in the guest physical memory space
670 * -- just change its flags
671 *
672 * Since flags can be changed by some of these operations, the following
673 * differentiation is the best we can do for __kvm_set_memory_region():
674 */
675enum kvm_mr_change {
676 KVM_MR_CREATE,
677 KVM_MR_DELETE,
678 KVM_MR_MOVE,
679 KVM_MR_FLAGS_ONLY,
680};
681
682int kvm_set_memory_region(struct kvm *kvm,
683 const struct kvm_userspace_memory_region *mem);
684int __kvm_set_memory_region(struct kvm *kvm,
685 const struct kvm_userspace_memory_region *mem);
686void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
687void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
688int kvm_arch_prepare_memory_region(struct kvm *kvm,
689 struct kvm_memory_slot *memslot,
690 const struct kvm_userspace_memory_region *mem,
691 enum kvm_mr_change change);
692void kvm_arch_commit_memory_region(struct kvm *kvm,
693 const struct kvm_userspace_memory_region *mem,
694 struct kvm_memory_slot *old,
695 const struct kvm_memory_slot *new,
696 enum kvm_mr_change change);
697/* flush all memory translations */
698void kvm_arch_flush_shadow_all(struct kvm *kvm);
699/* flush memory translations pointing to 'slot' */
700void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
701 struct kvm_memory_slot *slot);
702
703int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
704 struct page **pages, int nr_pages);
705
706struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
707unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
708unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
709unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
710unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
711 bool *writable);
712void kvm_release_page_clean(struct page *page);
713void kvm_release_page_dirty(struct page *page);
714void kvm_set_page_accessed(struct page *page);
715
716kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
717kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
718 bool *writable);
719kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
720kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
721kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
722 bool atomic, bool *async, bool write_fault,
723 bool *writable);
724
725void kvm_release_pfn_clean(kvm_pfn_t pfn);
726void kvm_release_pfn_dirty(kvm_pfn_t pfn);
727void kvm_set_pfn_dirty(kvm_pfn_t pfn);
728void kvm_set_pfn_accessed(kvm_pfn_t pfn);
729void kvm_get_pfn(kvm_pfn_t pfn);
730
731void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
732int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
733 int len);
734int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
735int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
736 void *data, unsigned long len);
737int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
738 void *data, unsigned int offset,
739 unsigned long len);
740int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
741 int offset, int len);
742int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
743 unsigned long len);
744int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
745 void *data, unsigned long len);
746int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
747 void *data, unsigned int offset,
748 unsigned long len);
749int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
750 gpa_t gpa, unsigned long len);
751
752#define __kvm_get_guest(kvm, gfn, offset, v) \
753({ \
754 unsigned long __addr = gfn_to_hva(kvm, gfn); \
755 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
756 int __ret = -EFAULT; \
757 \
758 if (!kvm_is_error_hva(__addr)) \
759 __ret = get_user(v, __uaddr); \
760 __ret; \
761})
762
763#define kvm_get_guest(kvm, gpa, v) \
764({ \
765 gpa_t __gpa = gpa; \
766 struct kvm *__kvm = kvm; \
767 \
768 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
769 offset_in_page(__gpa), v); \
770})
771
772#define __kvm_put_guest(kvm, gfn, offset, v) \
773({ \
774 unsigned long __addr = gfn_to_hva(kvm, gfn); \
775 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
776 int __ret = -EFAULT; \
777 \
778 if (!kvm_is_error_hva(__addr)) \
779 __ret = put_user(v, __uaddr); \
780 if (!__ret) \
781 mark_page_dirty(kvm, gfn); \
782 __ret; \
783})
784
785#define kvm_put_guest(kvm, gpa, v) \
786({ \
787 gpa_t __gpa = gpa; \
788 struct kvm *__kvm = kvm; \
789 \
790 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
791 offset_in_page(__gpa), v); \
792})
793
794int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
795int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
796struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
797bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
798bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
799unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
800void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
801
802struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
803struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
804kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
805kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
806int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
807int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
808 struct gfn_to_pfn_cache *cache, bool atomic);
809struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
810void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
811int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
812 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
813unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
814unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
815int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
816 int len);
817int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
818 unsigned long len);
819int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
820 unsigned long len);
821int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
822 int offset, int len);
823int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
824 unsigned long len);
825void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
826
827void kvm_sigset_activate(struct kvm_vcpu *vcpu);
828void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
829
830void kvm_vcpu_block(struct kvm_vcpu *vcpu);
831void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
832void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
833bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
834void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
835int kvm_vcpu_yield_to(struct kvm_vcpu *target);
836void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
837
838void kvm_flush_remote_tlbs(struct kvm *kvm);
839void kvm_reload_remote_mmus(struct kvm *kvm);
840
841#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
842int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
843int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
844void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
845void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
846#endif
847
848bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
849 struct kvm_vcpu *except,
850 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
851bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
852bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
853 struct kvm_vcpu *except);
854bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
855 unsigned long *vcpu_bitmap);
856
857long kvm_arch_dev_ioctl(struct file *filp,
858 unsigned int ioctl, unsigned long arg);
859long kvm_arch_vcpu_ioctl(struct file *filp,
860 unsigned int ioctl, unsigned long arg);
861vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
862
863int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
864
865void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
866 struct kvm_memory_slot *slot,
867 gfn_t gfn_offset,
868 unsigned long mask);
869void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
870
871#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
872void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
873 struct kvm_memory_slot *memslot);
874#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
875int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
876int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
877 int *is_dirty, struct kvm_memory_slot **memslot);
878#endif
879
880int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
881 bool line_status);
882int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
883 struct kvm_enable_cap *cap);
884long kvm_arch_vm_ioctl(struct file *filp,
885 unsigned int ioctl, unsigned long arg);
886
887int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
888int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
889
890int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
891 struct kvm_translation *tr);
892
893int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
894int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
895int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
896 struct kvm_sregs *sregs);
897int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
898 struct kvm_sregs *sregs);
899int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
900 struct kvm_mp_state *mp_state);
901int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
902 struct kvm_mp_state *mp_state);
903int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
904 struct kvm_guest_debug *dbg);
905int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
906
907int kvm_arch_init(void *opaque);
908void kvm_arch_exit(void);
909
910void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
911
912void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
913void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
914int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
915int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
916void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
917void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
918
919#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
920void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
921#endif
922
923int kvm_arch_hardware_enable(void);
924void kvm_arch_hardware_disable(void);
925int kvm_arch_hardware_setup(void *opaque);
926void kvm_arch_hardware_unsetup(void);
927int kvm_arch_check_processor_compat(void *opaque);
928int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
929bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
930int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
931bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
932int kvm_arch_post_init_vm(struct kvm *kvm);
933void kvm_arch_pre_destroy_vm(struct kvm *kvm);
934
935#ifndef __KVM_HAVE_ARCH_VM_ALLOC
936/*
937 * All architectures that want to use vzalloc currently also
938 * need their own kvm_arch_alloc_vm implementation.
939 */
940static inline struct kvm *kvm_arch_alloc_vm(void)
941{
942 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
943}
944
945static inline void kvm_arch_free_vm(struct kvm *kvm)
946{
947 kfree(kvm);
948}
949#endif
950
951#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
952static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
953{
954 return -ENOTSUPP;
955}
956#endif
957
958#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
959void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
960void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
961bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
962#else
963static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
964{
965}
966
967static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
968{
969}
970
971static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
972{
973 return false;
974}
975#endif
976#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
977void kvm_arch_start_assignment(struct kvm *kvm);
978void kvm_arch_end_assignment(struct kvm *kvm);
979bool kvm_arch_has_assigned_device(struct kvm *kvm);
980#else
981static inline void kvm_arch_start_assignment(struct kvm *kvm)
982{
983}
984
985static inline void kvm_arch_end_assignment(struct kvm *kvm)
986{
987}
988
989static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
990{
991 return false;
992}
993#endif
994
995static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
996{
997#ifdef __KVM_HAVE_ARCH_WQP
998 return vcpu->arch.waitp;
999#else
1000 return &vcpu->wait;
1001#endif
1002}
1003
1004#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1005/*
1006 * returns true if the virtual interrupt controller is initialized and
1007 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1008 * controller is dynamically instantiated and this is not always true.
1009 */
1010bool kvm_arch_intc_initialized(struct kvm *kvm);
1011#else
1012static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1013{
1014 return true;
1015}
1016#endif
1017
1018int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1019void kvm_arch_destroy_vm(struct kvm *kvm);
1020void kvm_arch_sync_events(struct kvm *kvm);
1021
1022int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1023
1024bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1025bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1026bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1027
1028struct kvm_irq_ack_notifier {
1029 struct hlist_node link;
1030 unsigned gsi;
1031 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1032};
1033
1034int kvm_irq_map_gsi(struct kvm *kvm,
1035 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1036int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1037
1038int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1039 bool line_status);
1040int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1041 int irq_source_id, int level, bool line_status);
1042int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1043 struct kvm *kvm, int irq_source_id,
1044 int level, bool line_status);
1045bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1046void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1047void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1048void kvm_register_irq_ack_notifier(struct kvm *kvm,
1049 struct kvm_irq_ack_notifier *kian);
1050void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1051 struct kvm_irq_ack_notifier *kian);
1052int kvm_request_irq_source_id(struct kvm *kvm);
1053void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1054bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1055
1056/*
1057 * search_memslots() and __gfn_to_memslot() are here because they are
1058 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1059 * gfn_to_memslot() itself isn't here as an inline because that would
1060 * bloat other code too much.
1061 *
1062 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1063 */
1064static inline struct kvm_memory_slot *
1065search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1066{
1067 int start = 0, end = slots->used_slots;
1068 int slot = atomic_read(&slots->lru_slot);
1069 struct kvm_memory_slot *memslots = slots->memslots;
1070
1071 if (unlikely(!slots->used_slots))
1072 return NULL;
1073
1074 if (gfn >= memslots[slot].base_gfn &&
1075 gfn < memslots[slot].base_gfn + memslots[slot].npages)
1076 return &memslots[slot];
1077
1078 while (start < end) {
1079 slot = start + (end - start) / 2;
1080
1081 if (gfn >= memslots[slot].base_gfn)
1082 end = slot;
1083 else
1084 start = slot + 1;
1085 }
1086
1087 if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1088 gfn < memslots[start].base_gfn + memslots[start].npages) {
1089 atomic_set(&slots->lru_slot, start);
1090 return &memslots[start];
1091 }
1092
1093 return NULL;
1094}
1095
1096static inline struct kvm_memory_slot *
1097__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1098{
1099 return search_memslots(slots, gfn);
1100}
1101
1102static inline unsigned long
1103__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1104{
1105 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1106}
1107
1108static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1109{
1110 return gfn_to_memslot(kvm, gfn)->id;
1111}
1112
1113static inline gfn_t
1114hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1115{
1116 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1117
1118 return slot->base_gfn + gfn_offset;
1119}
1120
1121static inline gpa_t gfn_to_gpa(gfn_t gfn)
1122{
1123 return (gpa_t)gfn << PAGE_SHIFT;
1124}
1125
1126static inline gfn_t gpa_to_gfn(gpa_t gpa)
1127{
1128 return (gfn_t)(gpa >> PAGE_SHIFT);
1129}
1130
1131static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1132{
1133 return (hpa_t)pfn << PAGE_SHIFT;
1134}
1135
1136static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1137 gpa_t gpa)
1138{
1139 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1140}
1141
1142static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1143{
1144 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1145
1146 return kvm_is_error_hva(hva);
1147}
1148
1149enum kvm_stat_kind {
1150 KVM_STAT_VM,
1151 KVM_STAT_VCPU,
1152};
1153
1154struct kvm_stat_data {
1155 struct kvm *kvm;
1156 struct kvm_stats_debugfs_item *dbgfs_item;
1157};
1158
1159struct kvm_stats_debugfs_item {
1160 const char *name;
1161 int offset;
1162 enum kvm_stat_kind kind;
1163 int mode;
1164};
1165
1166#define KVM_DBGFS_GET_MODE(dbgfs_item) \
1167 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1168
1169#define VM_STAT(n, x, ...) \
1170 { n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ }
1171#define VCPU_STAT(n, x, ...) \
1172 { n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ }
1173
1174extern struct kvm_stats_debugfs_item debugfs_entries[];
1175extern struct dentry *kvm_debugfs_dir;
1176
1177#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1178static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1179{
1180 if (unlikely(kvm->mmu_notifier_count))
1181 return 1;
1182 /*
1183 * Ensure the read of mmu_notifier_count happens before the read
1184 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1185 * mmu_notifier_invalidate_range_end to make sure that the caller
1186 * either sees the old (non-zero) value of mmu_notifier_count or
1187 * the new (incremented) value of mmu_notifier_seq.
1188 * PowerPC Book3s HV KVM calls this under a per-page lock
1189 * rather than under kvm->mmu_lock, for scalability, so
1190 * can't rely on kvm->mmu_lock to keep things ordered.
1191 */
1192 smp_rmb();
1193 if (kvm->mmu_notifier_seq != mmu_seq)
1194 return 1;
1195 return 0;
1196}
1197#endif
1198
1199#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1200
1201#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1202
1203bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1204int kvm_set_irq_routing(struct kvm *kvm,
1205 const struct kvm_irq_routing_entry *entries,
1206 unsigned nr,
1207 unsigned flags);
1208int kvm_set_routing_entry(struct kvm *kvm,
1209 struct kvm_kernel_irq_routing_entry *e,
1210 const struct kvm_irq_routing_entry *ue);
1211void kvm_free_irq_routing(struct kvm *kvm);
1212
1213#else
1214
1215static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1216
1217#endif
1218
1219int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1220
1221#ifdef CONFIG_HAVE_KVM_EVENTFD
1222
1223void kvm_eventfd_init(struct kvm *kvm);
1224int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1225
1226#ifdef CONFIG_HAVE_KVM_IRQFD
1227int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1228void kvm_irqfd_release(struct kvm *kvm);
1229void kvm_irq_routing_update(struct kvm *);
1230#else
1231static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1232{
1233 return -EINVAL;
1234}
1235
1236static inline void kvm_irqfd_release(struct kvm *kvm) {}
1237#endif
1238
1239#else
1240
1241static inline void kvm_eventfd_init(struct kvm *kvm) {}
1242
1243static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1244{
1245 return -EINVAL;
1246}
1247
1248static inline void kvm_irqfd_release(struct kvm *kvm) {}
1249
1250#ifdef CONFIG_HAVE_KVM_IRQCHIP
1251static inline void kvm_irq_routing_update(struct kvm *kvm)
1252{
1253}
1254#endif
1255
1256static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1257{
1258 return -ENOSYS;
1259}
1260
1261#endif /* CONFIG_HAVE_KVM_EVENTFD */
1262
1263void kvm_arch_irq_routing_update(struct kvm *kvm);
1264
1265static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1266{
1267 /*
1268 * Ensure the rest of the request is published to kvm_check_request's
1269 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1270 */
1271 smp_wmb();
1272 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1273}
1274
1275static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1276{
1277 return READ_ONCE(vcpu->requests);
1278}
1279
1280static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1281{
1282 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1283}
1284
1285static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1286{
1287 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1288}
1289
1290static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1291{
1292 if (kvm_test_request(req, vcpu)) {
1293 kvm_clear_request(req, vcpu);
1294
1295 /*
1296 * Ensure the rest of the request is visible to kvm_check_request's
1297 * caller. Paired with the smp_wmb in kvm_make_request.
1298 */
1299 smp_mb__after_atomic();
1300 return true;
1301 } else {
1302 return false;
1303 }
1304}
1305
1306extern bool kvm_rebooting;
1307
1308extern unsigned int halt_poll_ns;
1309extern unsigned int halt_poll_ns_grow;
1310extern unsigned int halt_poll_ns_grow_start;
1311extern unsigned int halt_poll_ns_shrink;
1312
1313struct kvm_device {
1314 const struct kvm_device_ops *ops;
1315 struct kvm *kvm;
1316 void *private;
1317 struct list_head vm_node;
1318};
1319
1320/* create, destroy, and name are mandatory */
1321struct kvm_device_ops {
1322 const char *name;
1323
1324 /*
1325 * create is called holding kvm->lock and any operations not suitable
1326 * to do while holding the lock should be deferred to init (see
1327 * below).
1328 */
1329 int (*create)(struct kvm_device *dev, u32 type);
1330
1331 /*
1332 * init is called after create if create is successful and is called
1333 * outside of holding kvm->lock.
1334 */
1335 void (*init)(struct kvm_device *dev);
1336
1337 /*
1338 * Destroy is responsible for freeing dev.
1339 *
1340 * Destroy may be called before or after destructors are called
1341 * on emulated I/O regions, depending on whether a reference is
1342 * held by a vcpu or other kvm component that gets destroyed
1343 * after the emulated I/O.
1344 */
1345 void (*destroy)(struct kvm_device *dev);
1346
1347 /*
1348 * Release is an alternative method to free the device. It is
1349 * called when the device file descriptor is closed. Once
1350 * release is called, the destroy method will not be called
1351 * anymore as the device is removed from the device list of
1352 * the VM. kvm->lock is held.
1353 */
1354 void (*release)(struct kvm_device *dev);
1355
1356 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1357 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1358 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1359 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1360 unsigned long arg);
1361 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1362};
1363
1364void kvm_device_get(struct kvm_device *dev);
1365void kvm_device_put(struct kvm_device *dev);
1366struct kvm_device *kvm_device_from_filp(struct file *filp);
1367int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1368void kvm_unregister_device_ops(u32 type);
1369
1370extern struct kvm_device_ops kvm_mpic_ops;
1371extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1372extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1373
1374#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1375
1376static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1377{
1378 vcpu->spin_loop.in_spin_loop = val;
1379}
1380static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1381{
1382 vcpu->spin_loop.dy_eligible = val;
1383}
1384
1385#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1386
1387static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1388{
1389}
1390
1391static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1392{
1393}
1394#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1395
1396static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1397{
1398 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1399 !(memslot->flags & KVM_MEMSLOT_INVALID));
1400}
1401
1402struct kvm_vcpu *kvm_get_running_vcpu(void);
1403struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1404
1405#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1406bool kvm_arch_has_irq_bypass(void);
1407int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1408 struct irq_bypass_producer *);
1409void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1410 struct irq_bypass_producer *);
1411void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1412void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1413int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1414 uint32_t guest_irq, bool set);
1415#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1416
1417#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1418/* If we wakeup during the poll time, was it a sucessful poll? */
1419static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1420{
1421 return vcpu->valid_wakeup;
1422}
1423
1424#else
1425static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1426{
1427 return true;
1428}
1429#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1430
1431#ifdef CONFIG_HAVE_KVM_NO_POLL
1432/* Callback that tells if we must not poll */
1433bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1434#else
1435static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1436{
1437 return false;
1438}
1439#endif /* CONFIG_HAVE_KVM_NO_POLL */
1440
1441#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1442long kvm_arch_vcpu_async_ioctl(struct file *filp,
1443 unsigned int ioctl, unsigned long arg);
1444#else
1445static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1446 unsigned int ioctl,
1447 unsigned long arg)
1448{
1449 return -ENOIOCTLCMD;
1450}
1451#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1452
1453void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1454 unsigned long start, unsigned long end);
1455
1456#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1457int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1458#else
1459static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1460{
1461 return 0;
1462}
1463#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1464
1465typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1466
1467int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1468 uintptr_t data, const char *name,
1469 struct task_struct **thread_ptr);
1470
1471#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
1472static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1473{
1474 vcpu->run->exit_reason = KVM_EXIT_INTR;
1475 vcpu->stat.signal_exits++;
1476}
1477#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1478
1479#endif