at v5.9 661 lines 18 kB view raw
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6#include <linux/sched.h> 7#include <linux/pagemap.h> 8#include <linux/spinlock.h> 9#include <linux/page-flags.h> 10#include <asm/bug.h> 11#include "misc.h" 12#include "ctree.h" 13#include "extent_io.h" 14#include "locking.h" 15 16/* 17 * Extent buffer locking 18 * ===================== 19 * 20 * The locks use a custom scheme that allows to do more operations than are 21 * available fromt current locking primitives. The building blocks are still 22 * rwlock and wait queues. 23 * 24 * Required semantics: 25 * 26 * - reader/writer exclusion 27 * - writer/writer exclusion 28 * - reader/reader sharing 29 * - spinning lock semantics 30 * - blocking lock semantics 31 * - try-lock semantics for readers and writers 32 * - one level nesting, allowing read lock to be taken by the same thread that 33 * already has write lock 34 * 35 * The extent buffer locks (also called tree locks) manage access to eb data 36 * related to the storage in the b-tree (keys, items, but not the individual 37 * members of eb). 38 * We want concurrency of many readers and safe updates. The underlying locking 39 * is done by read-write spinlock and the blocking part is implemented using 40 * counters and wait queues. 41 * 42 * spinning semantics - the low-level rwlock is held so all other threads that 43 * want to take it are spinning on it. 44 * 45 * blocking semantics - the low-level rwlock is not held but the counter 46 * denotes how many times the blocking lock was held; 47 * sleeping is possible 48 * 49 * Write lock always allows only one thread to access the data. 50 * 51 * 52 * Debugging 53 * --------- 54 * 55 * There are additional state counters that are asserted in various contexts, 56 * removed from non-debug build to reduce extent_buffer size and for 57 * performance reasons. 58 * 59 * 60 * Lock nesting 61 * ------------ 62 * 63 * A write operation on a tree might indirectly start a look up on the same 64 * tree. This can happen when btrfs_cow_block locks the tree and needs to 65 * lookup free extents. 66 * 67 * btrfs_cow_block 68 * .. 69 * alloc_tree_block_no_bg_flush 70 * btrfs_alloc_tree_block 71 * btrfs_reserve_extent 72 * .. 73 * load_free_space_cache 74 * .. 75 * btrfs_lookup_file_extent 76 * btrfs_search_slot 77 * 78 * 79 * Locking pattern - spinning 80 * -------------------------- 81 * 82 * The simple locking scenario, the +--+ denotes the spinning section. 83 * 84 * +- btrfs_tree_lock 85 * | - extent_buffer::rwlock is held 86 * | - no heavy operations should happen, eg. IO, memory allocations, large 87 * | structure traversals 88 * +- btrfs_tree_unock 89* 90* 91 * Locking pattern - blocking 92 * -------------------------- 93 * 94 * The blocking write uses the following scheme. The +--+ denotes the spinning 95 * section. 96 * 97 * +- btrfs_tree_lock 98 * | 99 * +- btrfs_set_lock_blocking_write 100 * 101 * - allowed: IO, memory allocations, etc. 102 * 103 * -- btrfs_tree_unlock - note, no explicit unblocking necessary 104 * 105 * 106 * Blocking read is similar. 107 * 108 * +- btrfs_tree_read_lock 109 * | 110 * +- btrfs_set_lock_blocking_read 111 * 112 * - heavy operations allowed 113 * 114 * +- btrfs_tree_read_unlock_blocking 115 * | 116 * +- btrfs_tree_read_unlock 117 * 118 */ 119 120#ifdef CONFIG_BTRFS_DEBUG 121static inline void btrfs_assert_spinning_writers_get(struct extent_buffer *eb) 122{ 123 WARN_ON(eb->spinning_writers); 124 eb->spinning_writers++; 125} 126 127static inline void btrfs_assert_spinning_writers_put(struct extent_buffer *eb) 128{ 129 WARN_ON(eb->spinning_writers != 1); 130 eb->spinning_writers--; 131} 132 133static inline void btrfs_assert_no_spinning_writers(struct extent_buffer *eb) 134{ 135 WARN_ON(eb->spinning_writers); 136} 137 138static inline void btrfs_assert_spinning_readers_get(struct extent_buffer *eb) 139{ 140 atomic_inc(&eb->spinning_readers); 141} 142 143static inline void btrfs_assert_spinning_readers_put(struct extent_buffer *eb) 144{ 145 WARN_ON(atomic_read(&eb->spinning_readers) == 0); 146 atomic_dec(&eb->spinning_readers); 147} 148 149static inline void btrfs_assert_tree_read_locks_get(struct extent_buffer *eb) 150{ 151 atomic_inc(&eb->read_locks); 152} 153 154static inline void btrfs_assert_tree_read_locks_put(struct extent_buffer *eb) 155{ 156 atomic_dec(&eb->read_locks); 157} 158 159static inline void btrfs_assert_tree_read_locked(struct extent_buffer *eb) 160{ 161 BUG_ON(!atomic_read(&eb->read_locks)); 162} 163 164static inline void btrfs_assert_tree_write_locks_get(struct extent_buffer *eb) 165{ 166 eb->write_locks++; 167} 168 169static inline void btrfs_assert_tree_write_locks_put(struct extent_buffer *eb) 170{ 171 eb->write_locks--; 172} 173 174#else 175static void btrfs_assert_spinning_writers_get(struct extent_buffer *eb) { } 176static void btrfs_assert_spinning_writers_put(struct extent_buffer *eb) { } 177static void btrfs_assert_no_spinning_writers(struct extent_buffer *eb) { } 178static void btrfs_assert_spinning_readers_put(struct extent_buffer *eb) { } 179static void btrfs_assert_spinning_readers_get(struct extent_buffer *eb) { } 180static void btrfs_assert_tree_read_locked(struct extent_buffer *eb) { } 181static void btrfs_assert_tree_read_locks_get(struct extent_buffer *eb) { } 182static void btrfs_assert_tree_read_locks_put(struct extent_buffer *eb) { } 183static void btrfs_assert_tree_write_locks_get(struct extent_buffer *eb) { } 184static void btrfs_assert_tree_write_locks_put(struct extent_buffer *eb) { } 185#endif 186 187/* 188 * Mark already held read lock as blocking. Can be nested in write lock by the 189 * same thread. 190 * 191 * Use when there are potentially long operations ahead so other thread waiting 192 * on the lock will not actively spin but sleep instead. 193 * 194 * The rwlock is released and blocking reader counter is increased. 195 */ 196void btrfs_set_lock_blocking_read(struct extent_buffer *eb) 197{ 198 trace_btrfs_set_lock_blocking_read(eb); 199 /* 200 * No lock is required. The lock owner may change if we have a read 201 * lock, but it won't change to or away from us. If we have the write 202 * lock, we are the owner and it'll never change. 203 */ 204 if (eb->lock_nested && current->pid == eb->lock_owner) 205 return; 206 btrfs_assert_tree_read_locked(eb); 207 atomic_inc(&eb->blocking_readers); 208 btrfs_assert_spinning_readers_put(eb); 209 read_unlock(&eb->lock); 210} 211 212/* 213 * Mark already held write lock as blocking. 214 * 215 * Use when there are potentially long operations ahead so other threads 216 * waiting on the lock will not actively spin but sleep instead. 217 * 218 * The rwlock is released and blocking writers is set. 219 */ 220void btrfs_set_lock_blocking_write(struct extent_buffer *eb) 221{ 222 trace_btrfs_set_lock_blocking_write(eb); 223 /* 224 * No lock is required. The lock owner may change if we have a read 225 * lock, but it won't change to or away from us. If we have the write 226 * lock, we are the owner and it'll never change. 227 */ 228 if (eb->lock_nested && current->pid == eb->lock_owner) 229 return; 230 if (eb->blocking_writers == 0) { 231 btrfs_assert_spinning_writers_put(eb); 232 btrfs_assert_tree_locked(eb); 233 WRITE_ONCE(eb->blocking_writers, 1); 234 write_unlock(&eb->lock); 235 } 236} 237 238/* 239 * Lock the extent buffer for read. Wait for any writers (spinning or blocking). 240 * Can be nested in write lock by the same thread. 241 * 242 * Use when the locked section does only lightweight actions and busy waiting 243 * would be cheaper than making other threads do the wait/wake loop. 244 * 245 * The rwlock is held upon exit. 246 */ 247void btrfs_tree_read_lock(struct extent_buffer *eb) 248{ 249 u64 start_ns = 0; 250 251 if (trace_btrfs_tree_read_lock_enabled()) 252 start_ns = ktime_get_ns(); 253again: 254 read_lock(&eb->lock); 255 BUG_ON(eb->blocking_writers == 0 && 256 current->pid == eb->lock_owner); 257 if (eb->blocking_writers) { 258 if (current->pid == eb->lock_owner) { 259 /* 260 * This extent is already write-locked by our thread. 261 * We allow an additional read lock to be added because 262 * it's for the same thread. btrfs_find_all_roots() 263 * depends on this as it may be called on a partly 264 * (write-)locked tree. 265 */ 266 BUG_ON(eb->lock_nested); 267 eb->lock_nested = true; 268 read_unlock(&eb->lock); 269 trace_btrfs_tree_read_lock(eb, start_ns); 270 return; 271 } 272 read_unlock(&eb->lock); 273 wait_event(eb->write_lock_wq, 274 READ_ONCE(eb->blocking_writers) == 0); 275 goto again; 276 } 277 btrfs_assert_tree_read_locks_get(eb); 278 btrfs_assert_spinning_readers_get(eb); 279 trace_btrfs_tree_read_lock(eb, start_ns); 280} 281 282/* 283 * Lock extent buffer for read, optimistically expecting that there are no 284 * contending blocking writers. If there are, don't wait. 285 * 286 * Return 1 if the rwlock has been taken, 0 otherwise 287 */ 288int btrfs_tree_read_lock_atomic(struct extent_buffer *eb) 289{ 290 if (READ_ONCE(eb->blocking_writers)) 291 return 0; 292 293 read_lock(&eb->lock); 294 /* Refetch value after lock */ 295 if (READ_ONCE(eb->blocking_writers)) { 296 read_unlock(&eb->lock); 297 return 0; 298 } 299 btrfs_assert_tree_read_locks_get(eb); 300 btrfs_assert_spinning_readers_get(eb); 301 trace_btrfs_tree_read_lock_atomic(eb); 302 return 1; 303} 304 305/* 306 * Try-lock for read. Don't block or wait for contending writers. 307 * 308 * Retrun 1 if the rwlock has been taken, 0 otherwise 309 */ 310int btrfs_try_tree_read_lock(struct extent_buffer *eb) 311{ 312 if (READ_ONCE(eb->blocking_writers)) 313 return 0; 314 315 if (!read_trylock(&eb->lock)) 316 return 0; 317 318 /* Refetch value after lock */ 319 if (READ_ONCE(eb->blocking_writers)) { 320 read_unlock(&eb->lock); 321 return 0; 322 } 323 btrfs_assert_tree_read_locks_get(eb); 324 btrfs_assert_spinning_readers_get(eb); 325 trace_btrfs_try_tree_read_lock(eb); 326 return 1; 327} 328 329/* 330 * Try-lock for write. May block until the lock is uncontended, but does not 331 * wait until it is free. 332 * 333 * Retrun 1 if the rwlock has been taken, 0 otherwise 334 */ 335int btrfs_try_tree_write_lock(struct extent_buffer *eb) 336{ 337 if (READ_ONCE(eb->blocking_writers) || atomic_read(&eb->blocking_readers)) 338 return 0; 339 340 write_lock(&eb->lock); 341 /* Refetch value after lock */ 342 if (READ_ONCE(eb->blocking_writers) || atomic_read(&eb->blocking_readers)) { 343 write_unlock(&eb->lock); 344 return 0; 345 } 346 btrfs_assert_tree_write_locks_get(eb); 347 btrfs_assert_spinning_writers_get(eb); 348 eb->lock_owner = current->pid; 349 trace_btrfs_try_tree_write_lock(eb); 350 return 1; 351} 352 353/* 354 * Release read lock. Must be used only if the lock is in spinning mode. If 355 * the read lock is nested, must pair with read lock before the write unlock. 356 * 357 * The rwlock is not held upon exit. 358 */ 359void btrfs_tree_read_unlock(struct extent_buffer *eb) 360{ 361 trace_btrfs_tree_read_unlock(eb); 362 /* 363 * if we're nested, we have the write lock. No new locking 364 * is needed as long as we are the lock owner. 365 * The write unlock will do a barrier for us, and the lock_nested 366 * field only matters to the lock owner. 367 */ 368 if (eb->lock_nested && current->pid == eb->lock_owner) { 369 eb->lock_nested = false; 370 return; 371 } 372 btrfs_assert_tree_read_locked(eb); 373 btrfs_assert_spinning_readers_put(eb); 374 btrfs_assert_tree_read_locks_put(eb); 375 read_unlock(&eb->lock); 376} 377 378/* 379 * Release read lock, previously set to blocking by a pairing call to 380 * btrfs_set_lock_blocking_read(). Can be nested in write lock by the same 381 * thread. 382 * 383 * State of rwlock is unchanged, last reader wakes waiting threads. 384 */ 385void btrfs_tree_read_unlock_blocking(struct extent_buffer *eb) 386{ 387 trace_btrfs_tree_read_unlock_blocking(eb); 388 /* 389 * if we're nested, we have the write lock. No new locking 390 * is needed as long as we are the lock owner. 391 * The write unlock will do a barrier for us, and the lock_nested 392 * field only matters to the lock owner. 393 */ 394 if (eb->lock_nested && current->pid == eb->lock_owner) { 395 eb->lock_nested = false; 396 return; 397 } 398 btrfs_assert_tree_read_locked(eb); 399 WARN_ON(atomic_read(&eb->blocking_readers) == 0); 400 /* atomic_dec_and_test implies a barrier */ 401 if (atomic_dec_and_test(&eb->blocking_readers)) 402 cond_wake_up_nomb(&eb->read_lock_wq); 403 btrfs_assert_tree_read_locks_put(eb); 404} 405 406/* 407 * Lock for write. Wait for all blocking and spinning readers and writers. This 408 * starts context where reader lock could be nested by the same thread. 409 * 410 * The rwlock is held for write upon exit. 411 */ 412void btrfs_tree_lock(struct extent_buffer *eb) 413 __acquires(&eb->lock) 414{ 415 u64 start_ns = 0; 416 417 if (trace_btrfs_tree_lock_enabled()) 418 start_ns = ktime_get_ns(); 419 420 WARN_ON(eb->lock_owner == current->pid); 421again: 422 wait_event(eb->read_lock_wq, atomic_read(&eb->blocking_readers) == 0); 423 wait_event(eb->write_lock_wq, READ_ONCE(eb->blocking_writers) == 0); 424 write_lock(&eb->lock); 425 /* Refetch value after lock */ 426 if (atomic_read(&eb->blocking_readers) || 427 READ_ONCE(eb->blocking_writers)) { 428 write_unlock(&eb->lock); 429 goto again; 430 } 431 btrfs_assert_spinning_writers_get(eb); 432 btrfs_assert_tree_write_locks_get(eb); 433 eb->lock_owner = current->pid; 434 trace_btrfs_tree_lock(eb, start_ns); 435} 436 437/* 438 * Release the write lock, either blocking or spinning (ie. there's no need 439 * for an explicit blocking unlock, like btrfs_tree_read_unlock_blocking). 440 * This also ends the context for nesting, the read lock must have been 441 * released already. 442 * 443 * Tasks blocked and waiting are woken, rwlock is not held upon exit. 444 */ 445void btrfs_tree_unlock(struct extent_buffer *eb) 446{ 447 /* 448 * This is read both locked and unlocked but always by the same thread 449 * that already owns the lock so we don't need to use READ_ONCE 450 */ 451 int blockers = eb->blocking_writers; 452 453 BUG_ON(blockers > 1); 454 455 btrfs_assert_tree_locked(eb); 456 trace_btrfs_tree_unlock(eb); 457 eb->lock_owner = 0; 458 btrfs_assert_tree_write_locks_put(eb); 459 460 if (blockers) { 461 btrfs_assert_no_spinning_writers(eb); 462 /* Unlocked write */ 463 WRITE_ONCE(eb->blocking_writers, 0); 464 /* 465 * We need to order modifying blocking_writers above with 466 * actually waking up the sleepers to ensure they see the 467 * updated value of blocking_writers 468 */ 469 cond_wake_up(&eb->write_lock_wq); 470 } else { 471 btrfs_assert_spinning_writers_put(eb); 472 write_unlock(&eb->lock); 473 } 474} 475 476/* 477 * Set all locked nodes in the path to blocking locks. This should be done 478 * before scheduling 479 */ 480void btrfs_set_path_blocking(struct btrfs_path *p) 481{ 482 int i; 483 484 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 485 if (!p->nodes[i] || !p->locks[i]) 486 continue; 487 /* 488 * If we currently have a spinning reader or writer lock this 489 * will bump the count of blocking holders and drop the 490 * spinlock. 491 */ 492 if (p->locks[i] == BTRFS_READ_LOCK) { 493 btrfs_set_lock_blocking_read(p->nodes[i]); 494 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 495 } else if (p->locks[i] == BTRFS_WRITE_LOCK) { 496 btrfs_set_lock_blocking_write(p->nodes[i]); 497 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 498 } 499 } 500} 501 502/* 503 * This releases any locks held in the path starting at level and going all the 504 * way up to the root. 505 * 506 * btrfs_search_slot will keep the lock held on higher nodes in a few corner 507 * cases, such as COW of the block at slot zero in the node. This ignores 508 * those rules, and it should only be called when there are no more updates to 509 * be done higher up in the tree. 510 */ 511void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 512{ 513 int i; 514 515 if (path->keep_locks) 516 return; 517 518 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 519 if (!path->nodes[i]) 520 continue; 521 if (!path->locks[i]) 522 continue; 523 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 524 path->locks[i] = 0; 525 } 526} 527 528/* 529 * Loop around taking references on and locking the root node of the tree until 530 * we end up with a lock on the root node. 531 * 532 * Return: root extent buffer with write lock held 533 */ 534struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 535{ 536 struct extent_buffer *eb; 537 538 while (1) { 539 eb = btrfs_root_node(root); 540 btrfs_tree_lock(eb); 541 if (eb == root->node) 542 break; 543 btrfs_tree_unlock(eb); 544 free_extent_buffer(eb); 545 } 546 return eb; 547} 548 549/* 550 * Loop around taking references on and locking the root node of the tree until 551 * we end up with a lock on the root node. 552 * 553 * Return: root extent buffer with read lock held 554 */ 555struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 556{ 557 struct extent_buffer *eb; 558 559 while (1) { 560 eb = btrfs_root_node(root); 561 btrfs_tree_read_lock(eb); 562 if (eb == root->node) 563 break; 564 btrfs_tree_read_unlock(eb); 565 free_extent_buffer(eb); 566 } 567 return eb; 568} 569 570/* 571 * DREW locks 572 * ========== 573 * 574 * DREW stands for double-reader-writer-exclusion lock. It's used in situation 575 * where you want to provide A-B exclusion but not AA or BB. 576 * 577 * Currently implementation gives more priority to reader. If a reader and a 578 * writer both race to acquire their respective sides of the lock the writer 579 * would yield its lock as soon as it detects a concurrent reader. Additionally 580 * if there are pending readers no new writers would be allowed to come in and 581 * acquire the lock. 582 */ 583 584int btrfs_drew_lock_init(struct btrfs_drew_lock *lock) 585{ 586 int ret; 587 588 ret = percpu_counter_init(&lock->writers, 0, GFP_KERNEL); 589 if (ret) 590 return ret; 591 592 atomic_set(&lock->readers, 0); 593 init_waitqueue_head(&lock->pending_readers); 594 init_waitqueue_head(&lock->pending_writers); 595 596 return 0; 597} 598 599void btrfs_drew_lock_destroy(struct btrfs_drew_lock *lock) 600{ 601 percpu_counter_destroy(&lock->writers); 602} 603 604/* Return true if acquisition is successful, false otherwise */ 605bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock) 606{ 607 if (atomic_read(&lock->readers)) 608 return false; 609 610 percpu_counter_inc(&lock->writers); 611 612 /* Ensure writers count is updated before we check for pending readers */ 613 smp_mb(); 614 if (atomic_read(&lock->readers)) { 615 btrfs_drew_write_unlock(lock); 616 return false; 617 } 618 619 return true; 620} 621 622void btrfs_drew_write_lock(struct btrfs_drew_lock *lock) 623{ 624 while (true) { 625 if (btrfs_drew_try_write_lock(lock)) 626 return; 627 wait_event(lock->pending_writers, !atomic_read(&lock->readers)); 628 } 629} 630 631void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock) 632{ 633 percpu_counter_dec(&lock->writers); 634 cond_wake_up(&lock->pending_readers); 635} 636 637void btrfs_drew_read_lock(struct btrfs_drew_lock *lock) 638{ 639 atomic_inc(&lock->readers); 640 641 /* 642 * Ensure the pending reader count is perceieved BEFORE this reader 643 * goes to sleep in case of active writers. This guarantees new writers 644 * won't be allowed and that the current reader will be woken up when 645 * the last active writer finishes its jobs. 646 */ 647 smp_mb__after_atomic(); 648 649 wait_event(lock->pending_readers, 650 percpu_counter_sum(&lock->writers) == 0); 651} 652 653void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock) 654{ 655 /* 656 * atomic_dec_and_test implies a full barrier, so woken up writers 657 * are guaranteed to see the decrement 658 */ 659 if (atomic_dec_and_test(&lock->readers)) 660 wake_up(&lock->pending_writers); 661}