at v5.9 55 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/fs/block_dev.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 7 */ 8 9#include <linux/init.h> 10#include <linux/mm.h> 11#include <linux/fcntl.h> 12#include <linux/slab.h> 13#include <linux/kmod.h> 14#include <linux/major.h> 15#include <linux/device_cgroup.h> 16#include <linux/highmem.h> 17#include <linux/blkdev.h> 18#include <linux/backing-dev.h> 19#include <linux/module.h> 20#include <linux/blkpg.h> 21#include <linux/magic.h> 22#include <linux/buffer_head.h> 23#include <linux/swap.h> 24#include <linux/pagevec.h> 25#include <linux/writeback.h> 26#include <linux/mpage.h> 27#include <linux/mount.h> 28#include <linux/pseudo_fs.h> 29#include <linux/uio.h> 30#include <linux/namei.h> 31#include <linux/log2.h> 32#include <linux/cleancache.h> 33#include <linux/task_io_accounting_ops.h> 34#include <linux/falloc.h> 35#include <linux/uaccess.h> 36#include <linux/suspend.h> 37#include "internal.h" 38 39struct bdev_inode { 40 struct block_device bdev; 41 struct inode vfs_inode; 42}; 43 44static const struct address_space_operations def_blk_aops; 45 46static inline struct bdev_inode *BDEV_I(struct inode *inode) 47{ 48 return container_of(inode, struct bdev_inode, vfs_inode); 49} 50 51struct block_device *I_BDEV(struct inode *inode) 52{ 53 return &BDEV_I(inode)->bdev; 54} 55EXPORT_SYMBOL(I_BDEV); 56 57static void bdev_write_inode(struct block_device *bdev) 58{ 59 struct inode *inode = bdev->bd_inode; 60 int ret; 61 62 spin_lock(&inode->i_lock); 63 while (inode->i_state & I_DIRTY) { 64 spin_unlock(&inode->i_lock); 65 ret = write_inode_now(inode, true); 66 if (ret) { 67 char name[BDEVNAME_SIZE]; 68 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 69 "for block device %s (err=%d).\n", 70 bdevname(bdev, name), ret); 71 } 72 spin_lock(&inode->i_lock); 73 } 74 spin_unlock(&inode->i_lock); 75} 76 77/* Kill _all_ buffers and pagecache , dirty or not.. */ 78static void kill_bdev(struct block_device *bdev) 79{ 80 struct address_space *mapping = bdev->bd_inode->i_mapping; 81 82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 83 return; 84 85 invalidate_bh_lrus(); 86 truncate_inode_pages(mapping, 0); 87} 88 89/* Invalidate clean unused buffers and pagecache. */ 90void invalidate_bdev(struct block_device *bdev) 91{ 92 struct address_space *mapping = bdev->bd_inode->i_mapping; 93 94 if (mapping->nrpages) { 95 invalidate_bh_lrus(); 96 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 97 invalidate_mapping_pages(mapping, 0, -1); 98 } 99 /* 99% of the time, we don't need to flush the cleancache on the bdev. 100 * But, for the strange corners, lets be cautious 101 */ 102 cleancache_invalidate_inode(mapping); 103} 104EXPORT_SYMBOL(invalidate_bdev); 105 106static void set_init_blocksize(struct block_device *bdev) 107{ 108 bdev->bd_inode->i_blkbits = blksize_bits(bdev_logical_block_size(bdev)); 109} 110 111int set_blocksize(struct block_device *bdev, int size) 112{ 113 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 114 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 115 return -EINVAL; 116 117 /* Size cannot be smaller than the size supported by the device */ 118 if (size < bdev_logical_block_size(bdev)) 119 return -EINVAL; 120 121 /* Don't change the size if it is same as current */ 122 if (bdev->bd_inode->i_blkbits != blksize_bits(size)) { 123 sync_blockdev(bdev); 124 bdev->bd_inode->i_blkbits = blksize_bits(size); 125 kill_bdev(bdev); 126 } 127 return 0; 128} 129 130EXPORT_SYMBOL(set_blocksize); 131 132int sb_set_blocksize(struct super_block *sb, int size) 133{ 134 if (set_blocksize(sb->s_bdev, size)) 135 return 0; 136 /* If we get here, we know size is power of two 137 * and it's value is between 512 and PAGE_SIZE */ 138 sb->s_blocksize = size; 139 sb->s_blocksize_bits = blksize_bits(size); 140 return sb->s_blocksize; 141} 142 143EXPORT_SYMBOL(sb_set_blocksize); 144 145int sb_min_blocksize(struct super_block *sb, int size) 146{ 147 int minsize = bdev_logical_block_size(sb->s_bdev); 148 if (size < minsize) 149 size = minsize; 150 return sb_set_blocksize(sb, size); 151} 152 153EXPORT_SYMBOL(sb_min_blocksize); 154 155static int 156blkdev_get_block(struct inode *inode, sector_t iblock, 157 struct buffer_head *bh, int create) 158{ 159 bh->b_bdev = I_BDEV(inode); 160 bh->b_blocknr = iblock; 161 set_buffer_mapped(bh); 162 return 0; 163} 164 165static struct inode *bdev_file_inode(struct file *file) 166{ 167 return file->f_mapping->host; 168} 169 170static unsigned int dio_bio_write_op(struct kiocb *iocb) 171{ 172 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 173 174 /* avoid the need for a I/O completion work item */ 175 if (iocb->ki_flags & IOCB_DSYNC) 176 op |= REQ_FUA; 177 return op; 178} 179 180#define DIO_INLINE_BIO_VECS 4 181 182static void blkdev_bio_end_io_simple(struct bio *bio) 183{ 184 struct task_struct *waiter = bio->bi_private; 185 186 WRITE_ONCE(bio->bi_private, NULL); 187 blk_wake_io_task(waiter); 188} 189 190static ssize_t 191__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter, 192 int nr_pages) 193{ 194 struct file *file = iocb->ki_filp; 195 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 196 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs; 197 loff_t pos = iocb->ki_pos; 198 bool should_dirty = false; 199 struct bio bio; 200 ssize_t ret; 201 blk_qc_t qc; 202 203 if ((pos | iov_iter_alignment(iter)) & 204 (bdev_logical_block_size(bdev) - 1)) 205 return -EINVAL; 206 207 if (nr_pages <= DIO_INLINE_BIO_VECS) 208 vecs = inline_vecs; 209 else { 210 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec), 211 GFP_KERNEL); 212 if (!vecs) 213 return -ENOMEM; 214 } 215 216 bio_init(&bio, vecs, nr_pages); 217 bio_set_dev(&bio, bdev); 218 bio.bi_iter.bi_sector = pos >> 9; 219 bio.bi_write_hint = iocb->ki_hint; 220 bio.bi_private = current; 221 bio.bi_end_io = blkdev_bio_end_io_simple; 222 bio.bi_ioprio = iocb->ki_ioprio; 223 224 ret = bio_iov_iter_get_pages(&bio, iter); 225 if (unlikely(ret)) 226 goto out; 227 ret = bio.bi_iter.bi_size; 228 229 if (iov_iter_rw(iter) == READ) { 230 bio.bi_opf = REQ_OP_READ; 231 if (iter_is_iovec(iter)) 232 should_dirty = true; 233 } else { 234 bio.bi_opf = dio_bio_write_op(iocb); 235 task_io_account_write(ret); 236 } 237 if (iocb->ki_flags & IOCB_HIPRI) 238 bio_set_polled(&bio, iocb); 239 240 qc = submit_bio(&bio); 241 for (;;) { 242 set_current_state(TASK_UNINTERRUPTIBLE); 243 if (!READ_ONCE(bio.bi_private)) 244 break; 245 if (!(iocb->ki_flags & IOCB_HIPRI) || 246 !blk_poll(bdev_get_queue(bdev), qc, true)) 247 blk_io_schedule(); 248 } 249 __set_current_state(TASK_RUNNING); 250 251 bio_release_pages(&bio, should_dirty); 252 if (unlikely(bio.bi_status)) 253 ret = blk_status_to_errno(bio.bi_status); 254 255out: 256 if (vecs != inline_vecs) 257 kfree(vecs); 258 259 bio_uninit(&bio); 260 261 return ret; 262} 263 264struct blkdev_dio { 265 union { 266 struct kiocb *iocb; 267 struct task_struct *waiter; 268 }; 269 size_t size; 270 atomic_t ref; 271 bool multi_bio : 1; 272 bool should_dirty : 1; 273 bool is_sync : 1; 274 struct bio bio; 275}; 276 277static struct bio_set blkdev_dio_pool; 278 279static int blkdev_iopoll(struct kiocb *kiocb, bool wait) 280{ 281 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host); 282 struct request_queue *q = bdev_get_queue(bdev); 283 284 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait); 285} 286 287static void blkdev_bio_end_io(struct bio *bio) 288{ 289 struct blkdev_dio *dio = bio->bi_private; 290 bool should_dirty = dio->should_dirty; 291 292 if (bio->bi_status && !dio->bio.bi_status) 293 dio->bio.bi_status = bio->bi_status; 294 295 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) { 296 if (!dio->is_sync) { 297 struct kiocb *iocb = dio->iocb; 298 ssize_t ret; 299 300 if (likely(!dio->bio.bi_status)) { 301 ret = dio->size; 302 iocb->ki_pos += ret; 303 } else { 304 ret = blk_status_to_errno(dio->bio.bi_status); 305 } 306 307 dio->iocb->ki_complete(iocb, ret, 0); 308 if (dio->multi_bio) 309 bio_put(&dio->bio); 310 } else { 311 struct task_struct *waiter = dio->waiter; 312 313 WRITE_ONCE(dio->waiter, NULL); 314 blk_wake_io_task(waiter); 315 } 316 } 317 318 if (should_dirty) { 319 bio_check_pages_dirty(bio); 320 } else { 321 bio_release_pages(bio, false); 322 bio_put(bio); 323 } 324} 325 326static ssize_t 327__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages) 328{ 329 struct file *file = iocb->ki_filp; 330 struct inode *inode = bdev_file_inode(file); 331 struct block_device *bdev = I_BDEV(inode); 332 struct blk_plug plug; 333 struct blkdev_dio *dio; 334 struct bio *bio; 335 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0; 336 bool is_read = (iov_iter_rw(iter) == READ), is_sync; 337 loff_t pos = iocb->ki_pos; 338 blk_qc_t qc = BLK_QC_T_NONE; 339 int ret = 0; 340 341 if ((pos | iov_iter_alignment(iter)) & 342 (bdev_logical_block_size(bdev) - 1)) 343 return -EINVAL; 344 345 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool); 346 347 dio = container_of(bio, struct blkdev_dio, bio); 348 dio->is_sync = is_sync = is_sync_kiocb(iocb); 349 if (dio->is_sync) { 350 dio->waiter = current; 351 bio_get(bio); 352 } else { 353 dio->iocb = iocb; 354 } 355 356 dio->size = 0; 357 dio->multi_bio = false; 358 dio->should_dirty = is_read && iter_is_iovec(iter); 359 360 /* 361 * Don't plug for HIPRI/polled IO, as those should go straight 362 * to issue 363 */ 364 if (!is_poll) 365 blk_start_plug(&plug); 366 367 for (;;) { 368 bio_set_dev(bio, bdev); 369 bio->bi_iter.bi_sector = pos >> 9; 370 bio->bi_write_hint = iocb->ki_hint; 371 bio->bi_private = dio; 372 bio->bi_end_io = blkdev_bio_end_io; 373 bio->bi_ioprio = iocb->ki_ioprio; 374 375 ret = bio_iov_iter_get_pages(bio, iter); 376 if (unlikely(ret)) { 377 bio->bi_status = BLK_STS_IOERR; 378 bio_endio(bio); 379 break; 380 } 381 382 if (is_read) { 383 bio->bi_opf = REQ_OP_READ; 384 if (dio->should_dirty) 385 bio_set_pages_dirty(bio); 386 } else { 387 bio->bi_opf = dio_bio_write_op(iocb); 388 task_io_account_write(bio->bi_iter.bi_size); 389 } 390 391 dio->size += bio->bi_iter.bi_size; 392 pos += bio->bi_iter.bi_size; 393 394 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES); 395 if (!nr_pages) { 396 bool polled = false; 397 398 if (iocb->ki_flags & IOCB_HIPRI) { 399 bio_set_polled(bio, iocb); 400 polled = true; 401 } 402 403 qc = submit_bio(bio); 404 405 if (polled) 406 WRITE_ONCE(iocb->ki_cookie, qc); 407 break; 408 } 409 410 if (!dio->multi_bio) { 411 /* 412 * AIO needs an extra reference to ensure the dio 413 * structure which is embedded into the first bio 414 * stays around. 415 */ 416 if (!is_sync) 417 bio_get(bio); 418 dio->multi_bio = true; 419 atomic_set(&dio->ref, 2); 420 } else { 421 atomic_inc(&dio->ref); 422 } 423 424 submit_bio(bio); 425 bio = bio_alloc(GFP_KERNEL, nr_pages); 426 } 427 428 if (!is_poll) 429 blk_finish_plug(&plug); 430 431 if (!is_sync) 432 return -EIOCBQUEUED; 433 434 for (;;) { 435 set_current_state(TASK_UNINTERRUPTIBLE); 436 if (!READ_ONCE(dio->waiter)) 437 break; 438 439 if (!(iocb->ki_flags & IOCB_HIPRI) || 440 !blk_poll(bdev_get_queue(bdev), qc, true)) 441 blk_io_schedule(); 442 } 443 __set_current_state(TASK_RUNNING); 444 445 if (!ret) 446 ret = blk_status_to_errno(dio->bio.bi_status); 447 if (likely(!ret)) 448 ret = dio->size; 449 450 bio_put(&dio->bio); 451 return ret; 452} 453 454static ssize_t 455blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 456{ 457 int nr_pages; 458 459 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1); 460 if (!nr_pages) 461 return 0; 462 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES) 463 return __blkdev_direct_IO_simple(iocb, iter, nr_pages); 464 465 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES)); 466} 467 468static __init int blkdev_init(void) 469{ 470 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS); 471} 472module_init(blkdev_init); 473 474int __sync_blockdev(struct block_device *bdev, int wait) 475{ 476 if (!bdev) 477 return 0; 478 if (!wait) 479 return filemap_flush(bdev->bd_inode->i_mapping); 480 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 481} 482 483/* 484 * Write out and wait upon all the dirty data associated with a block 485 * device via its mapping. Does not take the superblock lock. 486 */ 487int sync_blockdev(struct block_device *bdev) 488{ 489 return __sync_blockdev(bdev, 1); 490} 491EXPORT_SYMBOL(sync_blockdev); 492 493/* 494 * Write out and wait upon all dirty data associated with this 495 * device. Filesystem data as well as the underlying block 496 * device. Takes the superblock lock. 497 */ 498int fsync_bdev(struct block_device *bdev) 499{ 500 struct super_block *sb = get_super(bdev); 501 if (sb) { 502 int res = sync_filesystem(sb); 503 drop_super(sb); 504 return res; 505 } 506 return sync_blockdev(bdev); 507} 508EXPORT_SYMBOL(fsync_bdev); 509 510/** 511 * freeze_bdev -- lock a filesystem and force it into a consistent state 512 * @bdev: blockdevice to lock 513 * 514 * If a superblock is found on this device, we take the s_umount semaphore 515 * on it to make sure nobody unmounts until the snapshot creation is done. 516 * The reference counter (bd_fsfreeze_count) guarantees that only the last 517 * unfreeze process can unfreeze the frozen filesystem actually when multiple 518 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 519 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 520 * actually. 521 */ 522struct super_block *freeze_bdev(struct block_device *bdev) 523{ 524 struct super_block *sb; 525 int error = 0; 526 527 mutex_lock(&bdev->bd_fsfreeze_mutex); 528 if (++bdev->bd_fsfreeze_count > 1) { 529 /* 530 * We don't even need to grab a reference - the first call 531 * to freeze_bdev grab an active reference and only the last 532 * thaw_bdev drops it. 533 */ 534 sb = get_super(bdev); 535 if (sb) 536 drop_super(sb); 537 mutex_unlock(&bdev->bd_fsfreeze_mutex); 538 return sb; 539 } 540 541 sb = get_active_super(bdev); 542 if (!sb) 543 goto out; 544 if (sb->s_op->freeze_super) 545 error = sb->s_op->freeze_super(sb); 546 else 547 error = freeze_super(sb); 548 if (error) { 549 deactivate_super(sb); 550 bdev->bd_fsfreeze_count--; 551 mutex_unlock(&bdev->bd_fsfreeze_mutex); 552 return ERR_PTR(error); 553 } 554 deactivate_super(sb); 555 out: 556 sync_blockdev(bdev); 557 mutex_unlock(&bdev->bd_fsfreeze_mutex); 558 return sb; /* thaw_bdev releases s->s_umount */ 559} 560EXPORT_SYMBOL(freeze_bdev); 561 562/** 563 * thaw_bdev -- unlock filesystem 564 * @bdev: blockdevice to unlock 565 * @sb: associated superblock 566 * 567 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 568 */ 569int thaw_bdev(struct block_device *bdev, struct super_block *sb) 570{ 571 int error = -EINVAL; 572 573 mutex_lock(&bdev->bd_fsfreeze_mutex); 574 if (!bdev->bd_fsfreeze_count) 575 goto out; 576 577 error = 0; 578 if (--bdev->bd_fsfreeze_count > 0) 579 goto out; 580 581 if (!sb) 582 goto out; 583 584 if (sb->s_op->thaw_super) 585 error = sb->s_op->thaw_super(sb); 586 else 587 error = thaw_super(sb); 588 if (error) 589 bdev->bd_fsfreeze_count++; 590out: 591 mutex_unlock(&bdev->bd_fsfreeze_mutex); 592 return error; 593} 594EXPORT_SYMBOL(thaw_bdev); 595 596static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 597{ 598 return block_write_full_page(page, blkdev_get_block, wbc); 599} 600 601static int blkdev_readpage(struct file * file, struct page * page) 602{ 603 return block_read_full_page(page, blkdev_get_block); 604} 605 606static void blkdev_readahead(struct readahead_control *rac) 607{ 608 mpage_readahead(rac, blkdev_get_block); 609} 610 611static int blkdev_write_begin(struct file *file, struct address_space *mapping, 612 loff_t pos, unsigned len, unsigned flags, 613 struct page **pagep, void **fsdata) 614{ 615 return block_write_begin(mapping, pos, len, flags, pagep, 616 blkdev_get_block); 617} 618 619static int blkdev_write_end(struct file *file, struct address_space *mapping, 620 loff_t pos, unsigned len, unsigned copied, 621 struct page *page, void *fsdata) 622{ 623 int ret; 624 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 625 626 unlock_page(page); 627 put_page(page); 628 629 return ret; 630} 631 632/* 633 * private llseek: 634 * for a block special file file_inode(file)->i_size is zero 635 * so we compute the size by hand (just as in block_read/write above) 636 */ 637static loff_t block_llseek(struct file *file, loff_t offset, int whence) 638{ 639 struct inode *bd_inode = bdev_file_inode(file); 640 loff_t retval; 641 642 inode_lock(bd_inode); 643 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 644 inode_unlock(bd_inode); 645 return retval; 646} 647 648int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 649{ 650 struct inode *bd_inode = bdev_file_inode(filp); 651 struct block_device *bdev = I_BDEV(bd_inode); 652 int error; 653 654 error = file_write_and_wait_range(filp, start, end); 655 if (error) 656 return error; 657 658 /* 659 * There is no need to serialise calls to blkdev_issue_flush with 660 * i_mutex and doing so causes performance issues with concurrent 661 * O_SYNC writers to a block device. 662 */ 663 error = blkdev_issue_flush(bdev, GFP_KERNEL); 664 if (error == -EOPNOTSUPP) 665 error = 0; 666 667 return error; 668} 669EXPORT_SYMBOL(blkdev_fsync); 670 671/** 672 * bdev_read_page() - Start reading a page from a block device 673 * @bdev: The device to read the page from 674 * @sector: The offset on the device to read the page to (need not be aligned) 675 * @page: The page to read 676 * 677 * On entry, the page should be locked. It will be unlocked when the page 678 * has been read. If the block driver implements rw_page synchronously, 679 * that will be true on exit from this function, but it need not be. 680 * 681 * Errors returned by this function are usually "soft", eg out of memory, or 682 * queue full; callers should try a different route to read this page rather 683 * than propagate an error back up the stack. 684 * 685 * Return: negative errno if an error occurs, 0 if submission was successful. 686 */ 687int bdev_read_page(struct block_device *bdev, sector_t sector, 688 struct page *page) 689{ 690 const struct block_device_operations *ops = bdev->bd_disk->fops; 691 int result = -EOPNOTSUPP; 692 693 if (!ops->rw_page || bdev_get_integrity(bdev)) 694 return result; 695 696 result = blk_queue_enter(bdev->bd_disk->queue, 0); 697 if (result) 698 return result; 699 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 700 REQ_OP_READ); 701 blk_queue_exit(bdev->bd_disk->queue); 702 return result; 703} 704 705/** 706 * bdev_write_page() - Start writing a page to a block device 707 * @bdev: The device to write the page to 708 * @sector: The offset on the device to write the page to (need not be aligned) 709 * @page: The page to write 710 * @wbc: The writeback_control for the write 711 * 712 * On entry, the page should be locked and not currently under writeback. 713 * On exit, if the write started successfully, the page will be unlocked and 714 * under writeback. If the write failed already (eg the driver failed to 715 * queue the page to the device), the page will still be locked. If the 716 * caller is a ->writepage implementation, it will need to unlock the page. 717 * 718 * Errors returned by this function are usually "soft", eg out of memory, or 719 * queue full; callers should try a different route to write this page rather 720 * than propagate an error back up the stack. 721 * 722 * Return: negative errno if an error occurs, 0 if submission was successful. 723 */ 724int bdev_write_page(struct block_device *bdev, sector_t sector, 725 struct page *page, struct writeback_control *wbc) 726{ 727 int result; 728 const struct block_device_operations *ops = bdev->bd_disk->fops; 729 730 if (!ops->rw_page || bdev_get_integrity(bdev)) 731 return -EOPNOTSUPP; 732 result = blk_queue_enter(bdev->bd_disk->queue, 0); 733 if (result) 734 return result; 735 736 set_page_writeback(page); 737 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 738 REQ_OP_WRITE); 739 if (result) { 740 end_page_writeback(page); 741 } else { 742 clean_page_buffers(page); 743 unlock_page(page); 744 } 745 blk_queue_exit(bdev->bd_disk->queue); 746 return result; 747} 748 749/* 750 * pseudo-fs 751 */ 752 753static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 754static struct kmem_cache * bdev_cachep __read_mostly; 755 756static struct inode *bdev_alloc_inode(struct super_block *sb) 757{ 758 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 759 if (!ei) 760 return NULL; 761 return &ei->vfs_inode; 762} 763 764static void bdev_free_inode(struct inode *inode) 765{ 766 kmem_cache_free(bdev_cachep, BDEV_I(inode)); 767} 768 769static void init_once(void *foo) 770{ 771 struct bdev_inode *ei = (struct bdev_inode *) foo; 772 struct block_device *bdev = &ei->bdev; 773 774 memset(bdev, 0, sizeof(*bdev)); 775 mutex_init(&bdev->bd_mutex); 776#ifdef CONFIG_SYSFS 777 INIT_LIST_HEAD(&bdev->bd_holder_disks); 778#endif 779 bdev->bd_bdi = &noop_backing_dev_info; 780 inode_init_once(&ei->vfs_inode); 781 /* Initialize mutex for freeze. */ 782 mutex_init(&bdev->bd_fsfreeze_mutex); 783} 784 785static void bdev_evict_inode(struct inode *inode) 786{ 787 struct block_device *bdev = &BDEV_I(inode)->bdev; 788 truncate_inode_pages_final(&inode->i_data); 789 invalidate_inode_buffers(inode); /* is it needed here? */ 790 clear_inode(inode); 791 /* Detach inode from wb early as bdi_put() may free bdi->wb */ 792 inode_detach_wb(inode); 793 if (bdev->bd_bdi != &noop_backing_dev_info) { 794 bdi_put(bdev->bd_bdi); 795 bdev->bd_bdi = &noop_backing_dev_info; 796 } 797} 798 799static const struct super_operations bdev_sops = { 800 .statfs = simple_statfs, 801 .alloc_inode = bdev_alloc_inode, 802 .free_inode = bdev_free_inode, 803 .drop_inode = generic_delete_inode, 804 .evict_inode = bdev_evict_inode, 805}; 806 807static int bd_init_fs_context(struct fs_context *fc) 808{ 809 struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC); 810 if (!ctx) 811 return -ENOMEM; 812 fc->s_iflags |= SB_I_CGROUPWB; 813 ctx->ops = &bdev_sops; 814 return 0; 815} 816 817static struct file_system_type bd_type = { 818 .name = "bdev", 819 .init_fs_context = bd_init_fs_context, 820 .kill_sb = kill_anon_super, 821}; 822 823struct super_block *blockdev_superblock __read_mostly; 824EXPORT_SYMBOL_GPL(blockdev_superblock); 825 826void __init bdev_cache_init(void) 827{ 828 int err; 829 static struct vfsmount *bd_mnt; 830 831 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 832 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 833 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 834 init_once); 835 err = register_filesystem(&bd_type); 836 if (err) 837 panic("Cannot register bdev pseudo-fs"); 838 bd_mnt = kern_mount(&bd_type); 839 if (IS_ERR(bd_mnt)) 840 panic("Cannot create bdev pseudo-fs"); 841 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 842} 843 844/* 845 * Most likely _very_ bad one - but then it's hardly critical for small 846 * /dev and can be fixed when somebody will need really large one. 847 * Keep in mind that it will be fed through icache hash function too. 848 */ 849static inline unsigned long hash(dev_t dev) 850{ 851 return MAJOR(dev)+MINOR(dev); 852} 853 854static int bdev_test(struct inode *inode, void *data) 855{ 856 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 857} 858 859static int bdev_set(struct inode *inode, void *data) 860{ 861 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 862 return 0; 863} 864 865struct block_device *bdget(dev_t dev) 866{ 867 struct block_device *bdev; 868 struct inode *inode; 869 870 inode = iget5_locked(blockdev_superblock, hash(dev), 871 bdev_test, bdev_set, &dev); 872 873 if (!inode) 874 return NULL; 875 876 bdev = &BDEV_I(inode)->bdev; 877 878 if (inode->i_state & I_NEW) { 879 bdev->bd_contains = NULL; 880 bdev->bd_super = NULL; 881 bdev->bd_inode = inode; 882 bdev->bd_part_count = 0; 883 bdev->bd_invalidated = 0; 884 inode->i_mode = S_IFBLK; 885 inode->i_rdev = dev; 886 inode->i_bdev = bdev; 887 inode->i_data.a_ops = &def_blk_aops; 888 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 889 unlock_new_inode(inode); 890 } 891 return bdev; 892} 893 894EXPORT_SYMBOL(bdget); 895 896/** 897 * bdgrab -- Grab a reference to an already referenced block device 898 * @bdev: Block device to grab a reference to. 899 */ 900struct block_device *bdgrab(struct block_device *bdev) 901{ 902 ihold(bdev->bd_inode); 903 return bdev; 904} 905EXPORT_SYMBOL(bdgrab); 906 907long nr_blockdev_pages(void) 908{ 909 struct inode *inode; 910 long ret = 0; 911 912 spin_lock(&blockdev_superblock->s_inode_list_lock); 913 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) 914 ret += inode->i_mapping->nrpages; 915 spin_unlock(&blockdev_superblock->s_inode_list_lock); 916 917 return ret; 918} 919 920void bdput(struct block_device *bdev) 921{ 922 iput(bdev->bd_inode); 923} 924 925EXPORT_SYMBOL(bdput); 926 927static struct block_device *bd_acquire(struct inode *inode) 928{ 929 struct block_device *bdev; 930 931 spin_lock(&bdev_lock); 932 bdev = inode->i_bdev; 933 if (bdev && !inode_unhashed(bdev->bd_inode)) { 934 bdgrab(bdev); 935 spin_unlock(&bdev_lock); 936 return bdev; 937 } 938 spin_unlock(&bdev_lock); 939 940 /* 941 * i_bdev references block device inode that was already shut down 942 * (corresponding device got removed). Remove the reference and look 943 * up block device inode again just in case new device got 944 * reestablished under the same device number. 945 */ 946 if (bdev) 947 bd_forget(inode); 948 949 bdev = bdget(inode->i_rdev); 950 if (bdev) { 951 spin_lock(&bdev_lock); 952 if (!inode->i_bdev) { 953 /* 954 * We take an additional reference to bd_inode, 955 * and it's released in clear_inode() of inode. 956 * So, we can access it via ->i_mapping always 957 * without igrab(). 958 */ 959 bdgrab(bdev); 960 inode->i_bdev = bdev; 961 inode->i_mapping = bdev->bd_inode->i_mapping; 962 } 963 spin_unlock(&bdev_lock); 964 } 965 return bdev; 966} 967 968/* Call when you free inode */ 969 970void bd_forget(struct inode *inode) 971{ 972 struct block_device *bdev = NULL; 973 974 spin_lock(&bdev_lock); 975 if (!sb_is_blkdev_sb(inode->i_sb)) 976 bdev = inode->i_bdev; 977 inode->i_bdev = NULL; 978 inode->i_mapping = &inode->i_data; 979 spin_unlock(&bdev_lock); 980 981 if (bdev) 982 bdput(bdev); 983} 984 985/** 986 * bd_may_claim - test whether a block device can be claimed 987 * @bdev: block device of interest 988 * @whole: whole block device containing @bdev, may equal @bdev 989 * @holder: holder trying to claim @bdev 990 * 991 * Test whether @bdev can be claimed by @holder. 992 * 993 * CONTEXT: 994 * spin_lock(&bdev_lock). 995 * 996 * RETURNS: 997 * %true if @bdev can be claimed, %false otherwise. 998 */ 999static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 1000 void *holder) 1001{ 1002 if (bdev->bd_holder == holder) 1003 return true; /* already a holder */ 1004 else if (bdev->bd_holder != NULL) 1005 return false; /* held by someone else */ 1006 else if (whole == bdev) 1007 return true; /* is a whole device which isn't held */ 1008 1009 else if (whole->bd_holder == bd_may_claim) 1010 return true; /* is a partition of a device that is being partitioned */ 1011 else if (whole->bd_holder != NULL) 1012 return false; /* is a partition of a held device */ 1013 else 1014 return true; /* is a partition of an un-held device */ 1015} 1016 1017/** 1018 * bd_prepare_to_claim - claim a block device 1019 * @bdev: block device of interest 1020 * @whole: the whole device containing @bdev, may equal @bdev 1021 * @holder: holder trying to claim @bdev 1022 * 1023 * Claim @bdev. This function fails if @bdev is already claimed by another 1024 * holder and waits if another claiming is in progress. return, the caller 1025 * has ownership of bd_claiming and bd_holder[s]. 1026 * 1027 * RETURNS: 1028 * 0 if @bdev can be claimed, -EBUSY otherwise. 1029 */ 1030int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole, 1031 void *holder) 1032{ 1033retry: 1034 spin_lock(&bdev_lock); 1035 /* if someone else claimed, fail */ 1036 if (!bd_may_claim(bdev, whole, holder)) { 1037 spin_unlock(&bdev_lock); 1038 return -EBUSY; 1039 } 1040 1041 /* if claiming is already in progress, wait for it to finish */ 1042 if (whole->bd_claiming) { 1043 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 1044 DEFINE_WAIT(wait); 1045 1046 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 1047 spin_unlock(&bdev_lock); 1048 schedule(); 1049 finish_wait(wq, &wait); 1050 goto retry; 1051 } 1052 1053 /* yay, all mine */ 1054 whole->bd_claiming = holder; 1055 spin_unlock(&bdev_lock); 1056 return 0; 1057} 1058EXPORT_SYMBOL_GPL(bd_prepare_to_claim); /* only for the loop driver */ 1059 1060static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno) 1061{ 1062 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno); 1063 1064 if (!disk) 1065 return NULL; 1066 /* 1067 * Now that we hold gendisk reference we make sure bdev we looked up is 1068 * not stale. If it is, it means device got removed and created before 1069 * we looked up gendisk and we fail open in such case. Associating 1070 * unhashed bdev with newly created gendisk could lead to two bdevs 1071 * (and thus two independent caches) being associated with one device 1072 * which is bad. 1073 */ 1074 if (inode_unhashed(bdev->bd_inode)) { 1075 put_disk_and_module(disk); 1076 return NULL; 1077 } 1078 return disk; 1079} 1080 1081static void bd_clear_claiming(struct block_device *whole, void *holder) 1082{ 1083 lockdep_assert_held(&bdev_lock); 1084 /* tell others that we're done */ 1085 BUG_ON(whole->bd_claiming != holder); 1086 whole->bd_claiming = NULL; 1087 wake_up_bit(&whole->bd_claiming, 0); 1088} 1089 1090/** 1091 * bd_finish_claiming - finish claiming of a block device 1092 * @bdev: block device of interest 1093 * @whole: whole block device 1094 * @holder: holder that has claimed @bdev 1095 * 1096 * Finish exclusive open of a block device. Mark the device as exlusively 1097 * open by the holder and wake up all waiters for exclusive open to finish. 1098 */ 1099static void bd_finish_claiming(struct block_device *bdev, 1100 struct block_device *whole, void *holder) 1101{ 1102 spin_lock(&bdev_lock); 1103 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1104 /* 1105 * Note that for a whole device bd_holders will be incremented twice, 1106 * and bd_holder will be set to bd_may_claim before being set to holder 1107 */ 1108 whole->bd_holders++; 1109 whole->bd_holder = bd_may_claim; 1110 bdev->bd_holders++; 1111 bdev->bd_holder = holder; 1112 bd_clear_claiming(whole, holder); 1113 spin_unlock(&bdev_lock); 1114} 1115 1116/** 1117 * bd_abort_claiming - abort claiming of a block device 1118 * @bdev: block device of interest 1119 * @whole: whole block device 1120 * @holder: holder that has claimed @bdev 1121 * 1122 * Abort claiming of a block device when the exclusive open failed. This can be 1123 * also used when exclusive open is not actually desired and we just needed 1124 * to block other exclusive openers for a while. 1125 */ 1126void bd_abort_claiming(struct block_device *bdev, struct block_device *whole, 1127 void *holder) 1128{ 1129 spin_lock(&bdev_lock); 1130 bd_clear_claiming(whole, holder); 1131 spin_unlock(&bdev_lock); 1132} 1133EXPORT_SYMBOL(bd_abort_claiming); 1134 1135#ifdef CONFIG_SYSFS 1136struct bd_holder_disk { 1137 struct list_head list; 1138 struct gendisk *disk; 1139 int refcnt; 1140}; 1141 1142static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 1143 struct gendisk *disk) 1144{ 1145 struct bd_holder_disk *holder; 1146 1147 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 1148 if (holder->disk == disk) 1149 return holder; 1150 return NULL; 1151} 1152 1153static int add_symlink(struct kobject *from, struct kobject *to) 1154{ 1155 return sysfs_create_link(from, to, kobject_name(to)); 1156} 1157 1158static void del_symlink(struct kobject *from, struct kobject *to) 1159{ 1160 sysfs_remove_link(from, kobject_name(to)); 1161} 1162 1163/** 1164 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 1165 * @bdev: the claimed slave bdev 1166 * @disk: the holding disk 1167 * 1168 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1169 * 1170 * This functions creates the following sysfs symlinks. 1171 * 1172 * - from "slaves" directory of the holder @disk to the claimed @bdev 1173 * - from "holders" directory of the @bdev to the holder @disk 1174 * 1175 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1176 * passed to bd_link_disk_holder(), then: 1177 * 1178 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1179 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1180 * 1181 * The caller must have claimed @bdev before calling this function and 1182 * ensure that both @bdev and @disk are valid during the creation and 1183 * lifetime of these symlinks. 1184 * 1185 * CONTEXT: 1186 * Might sleep. 1187 * 1188 * RETURNS: 1189 * 0 on success, -errno on failure. 1190 */ 1191int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1192{ 1193 struct bd_holder_disk *holder; 1194 int ret = 0; 1195 1196 mutex_lock(&bdev->bd_mutex); 1197 1198 WARN_ON_ONCE(!bdev->bd_holder); 1199 1200 /* FIXME: remove the following once add_disk() handles errors */ 1201 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1202 goto out_unlock; 1203 1204 holder = bd_find_holder_disk(bdev, disk); 1205 if (holder) { 1206 holder->refcnt++; 1207 goto out_unlock; 1208 } 1209 1210 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1211 if (!holder) { 1212 ret = -ENOMEM; 1213 goto out_unlock; 1214 } 1215 1216 INIT_LIST_HEAD(&holder->list); 1217 holder->disk = disk; 1218 holder->refcnt = 1; 1219 1220 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1221 if (ret) 1222 goto out_free; 1223 1224 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1225 if (ret) 1226 goto out_del; 1227 /* 1228 * bdev could be deleted beneath us which would implicitly destroy 1229 * the holder directory. Hold on to it. 1230 */ 1231 kobject_get(bdev->bd_part->holder_dir); 1232 1233 list_add(&holder->list, &bdev->bd_holder_disks); 1234 goto out_unlock; 1235 1236out_del: 1237 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1238out_free: 1239 kfree(holder); 1240out_unlock: 1241 mutex_unlock(&bdev->bd_mutex); 1242 return ret; 1243} 1244EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1245 1246/** 1247 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1248 * @bdev: the calimed slave bdev 1249 * @disk: the holding disk 1250 * 1251 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1252 * 1253 * CONTEXT: 1254 * Might sleep. 1255 */ 1256void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1257{ 1258 struct bd_holder_disk *holder; 1259 1260 mutex_lock(&bdev->bd_mutex); 1261 1262 holder = bd_find_holder_disk(bdev, disk); 1263 1264 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1265 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1266 del_symlink(bdev->bd_part->holder_dir, 1267 &disk_to_dev(disk)->kobj); 1268 kobject_put(bdev->bd_part->holder_dir); 1269 list_del_init(&holder->list); 1270 kfree(holder); 1271 } 1272 1273 mutex_unlock(&bdev->bd_mutex); 1274} 1275EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1276#endif 1277 1278/** 1279 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1280 * @disk: struct gendisk to check 1281 * @bdev: struct bdev to adjust. 1282 * @verbose: if %true log a message about a size change if there is any 1283 * 1284 * This routine checks to see if the bdev size does not match the disk size 1285 * and adjusts it if it differs. When shrinking the bdev size, its all caches 1286 * are freed. 1287 */ 1288static void check_disk_size_change(struct gendisk *disk, 1289 struct block_device *bdev, bool verbose) 1290{ 1291 loff_t disk_size, bdev_size; 1292 1293 disk_size = (loff_t)get_capacity(disk) << 9; 1294 bdev_size = i_size_read(bdev->bd_inode); 1295 if (disk_size != bdev_size) { 1296 if (verbose) { 1297 printk(KERN_INFO 1298 "%s: detected capacity change from %lld to %lld\n", 1299 disk->disk_name, bdev_size, disk_size); 1300 } 1301 i_size_write(bdev->bd_inode, disk_size); 1302 if (bdev_size > disk_size && __invalidate_device(bdev, false)) 1303 pr_warn("VFS: busy inodes on resized disk %s\n", 1304 disk->disk_name); 1305 } 1306 bdev->bd_invalidated = 0; 1307} 1308 1309/** 1310 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1311 * @disk: struct gendisk to be revalidated 1312 * 1313 * This routine is a wrapper for lower-level driver's revalidate_disk 1314 * call-backs. It is used to do common pre and post operations needed 1315 * for all revalidate_disk operations. 1316 */ 1317int revalidate_disk(struct gendisk *disk) 1318{ 1319 int ret = 0; 1320 1321 if (disk->fops->revalidate_disk) 1322 ret = disk->fops->revalidate_disk(disk); 1323 1324 /* 1325 * Hidden disks don't have associated bdev so there's no point in 1326 * revalidating it. 1327 */ 1328 if (!(disk->flags & GENHD_FL_HIDDEN)) { 1329 struct block_device *bdev = bdget_disk(disk, 0); 1330 1331 if (!bdev) 1332 return ret; 1333 1334 mutex_lock(&bdev->bd_mutex); 1335 check_disk_size_change(disk, bdev, ret == 0); 1336 mutex_unlock(&bdev->bd_mutex); 1337 bdput(bdev); 1338 } 1339 return ret; 1340} 1341EXPORT_SYMBOL(revalidate_disk); 1342 1343/* 1344 * This routine checks whether a removable media has been changed, 1345 * and invalidates all buffer-cache-entries in that case. This 1346 * is a relatively slow routine, so we have to try to minimize using 1347 * it. Thus it is called only upon a 'mount' or 'open'. This 1348 * is the best way of combining speed and utility, I think. 1349 * People changing diskettes in the middle of an operation deserve 1350 * to lose :-) 1351 */ 1352int check_disk_change(struct block_device *bdev) 1353{ 1354 struct gendisk *disk = bdev->bd_disk; 1355 const struct block_device_operations *bdops = disk->fops; 1356 unsigned int events; 1357 1358 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1359 DISK_EVENT_EJECT_REQUEST); 1360 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1361 return 0; 1362 1363 if (__invalidate_device(bdev, true)) 1364 pr_warn("VFS: busy inodes on changed media %s\n", 1365 disk->disk_name); 1366 bdev->bd_invalidated = 1; 1367 if (bdops->revalidate_disk) 1368 bdops->revalidate_disk(bdev->bd_disk); 1369 return 1; 1370} 1371 1372EXPORT_SYMBOL(check_disk_change); 1373 1374void bd_set_size(struct block_device *bdev, loff_t size) 1375{ 1376 inode_lock(bdev->bd_inode); 1377 i_size_write(bdev->bd_inode, size); 1378 inode_unlock(bdev->bd_inode); 1379} 1380EXPORT_SYMBOL(bd_set_size); 1381 1382static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1383 1384int bdev_disk_changed(struct block_device *bdev, bool invalidate) 1385{ 1386 struct gendisk *disk = bdev->bd_disk; 1387 int ret; 1388 1389 lockdep_assert_held(&bdev->bd_mutex); 1390 1391rescan: 1392 ret = blk_drop_partitions(bdev); 1393 if (ret) 1394 return ret; 1395 1396 /* 1397 * Historically we only set the capacity to zero for devices that 1398 * support partitions (independ of actually having partitions created). 1399 * Doing that is rather inconsistent, but changing it broke legacy 1400 * udisks polling for legacy ide-cdrom devices. Use the crude check 1401 * below to get the sane behavior for most device while not breaking 1402 * userspace for this particular setup. 1403 */ 1404 if (invalidate) { 1405 if (disk_part_scan_enabled(disk) || 1406 !(disk->flags & GENHD_FL_REMOVABLE)) 1407 set_capacity(disk, 0); 1408 } else { 1409 if (disk->fops->revalidate_disk) 1410 disk->fops->revalidate_disk(disk); 1411 } 1412 1413 check_disk_size_change(disk, bdev, !invalidate); 1414 1415 if (get_capacity(disk)) { 1416 ret = blk_add_partitions(disk, bdev); 1417 if (ret == -EAGAIN) 1418 goto rescan; 1419 } else if (invalidate) { 1420 /* 1421 * Tell userspace that the media / partition table may have 1422 * changed. 1423 */ 1424 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE); 1425 } 1426 1427 return ret; 1428} 1429/* 1430 * Only exported for for loop and dasd for historic reasons. Don't use in new 1431 * code! 1432 */ 1433EXPORT_SYMBOL_GPL(bdev_disk_changed); 1434 1435/* 1436 * bd_mutex locking: 1437 * 1438 * mutex_lock(part->bd_mutex) 1439 * mutex_lock_nested(whole->bd_mutex, 1) 1440 */ 1441 1442static int __blkdev_get(struct block_device *bdev, fmode_t mode, void *holder, 1443 int for_part) 1444{ 1445 struct block_device *whole = NULL, *claiming = NULL; 1446 struct gendisk *disk; 1447 int ret; 1448 int partno; 1449 int perm = 0; 1450 bool first_open = false, unblock_events = true, need_restart; 1451 1452 if (mode & FMODE_READ) 1453 perm |= MAY_READ; 1454 if (mode & FMODE_WRITE) 1455 perm |= MAY_WRITE; 1456 /* 1457 * hooks: /n/, see "layering violations". 1458 */ 1459 if (!for_part) { 1460 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1461 if (ret != 0) 1462 return ret; 1463 } 1464 1465 restart: 1466 need_restart = false; 1467 ret = -ENXIO; 1468 disk = bdev_get_gendisk(bdev, &partno); 1469 if (!disk) 1470 goto out; 1471 1472 if (partno) { 1473 whole = bdget_disk(disk, 0); 1474 if (!whole) { 1475 ret = -ENOMEM; 1476 goto out_put_disk; 1477 } 1478 } 1479 1480 if (!for_part && (mode & FMODE_EXCL)) { 1481 WARN_ON_ONCE(!holder); 1482 if (whole) 1483 claiming = whole; 1484 else 1485 claiming = bdev; 1486 ret = bd_prepare_to_claim(bdev, claiming, holder); 1487 if (ret) 1488 goto out_put_whole; 1489 } 1490 1491 disk_block_events(disk); 1492 mutex_lock_nested(&bdev->bd_mutex, for_part); 1493 if (!bdev->bd_openers) { 1494 first_open = true; 1495 bdev->bd_disk = disk; 1496 bdev->bd_contains = bdev; 1497 bdev->bd_partno = partno; 1498 1499 if (!partno) { 1500 ret = -ENXIO; 1501 bdev->bd_part = disk_get_part(disk, partno); 1502 if (!bdev->bd_part) 1503 goto out_clear; 1504 1505 ret = 0; 1506 if (disk->fops->open) { 1507 ret = disk->fops->open(bdev, mode); 1508 /* 1509 * If we lost a race with 'disk' being deleted, 1510 * try again. See md.c 1511 */ 1512 if (ret == -ERESTARTSYS) 1513 need_restart = true; 1514 } 1515 1516 if (!ret) { 1517 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1518 set_init_blocksize(bdev); 1519 } 1520 1521 /* 1522 * If the device is invalidated, rescan partition 1523 * if open succeeded or failed with -ENOMEDIUM. 1524 * The latter is necessary to prevent ghost 1525 * partitions on a removed medium. 1526 */ 1527 if (bdev->bd_invalidated && 1528 (!ret || ret == -ENOMEDIUM)) 1529 bdev_disk_changed(bdev, ret == -ENOMEDIUM); 1530 1531 if (ret) 1532 goto out_clear; 1533 } else { 1534 BUG_ON(for_part); 1535 ret = __blkdev_get(whole, mode, NULL, 1); 1536 if (ret) 1537 goto out_clear; 1538 bdev->bd_contains = bdgrab(whole); 1539 bdev->bd_part = disk_get_part(disk, partno); 1540 if (!(disk->flags & GENHD_FL_UP) || 1541 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1542 ret = -ENXIO; 1543 goto out_clear; 1544 } 1545 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1546 set_init_blocksize(bdev); 1547 } 1548 1549 if (bdev->bd_bdi == &noop_backing_dev_info) 1550 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info); 1551 } else { 1552 if (bdev->bd_contains == bdev) { 1553 ret = 0; 1554 if (bdev->bd_disk->fops->open) 1555 ret = bdev->bd_disk->fops->open(bdev, mode); 1556 /* the same as first opener case, read comment there */ 1557 if (bdev->bd_invalidated && 1558 (!ret || ret == -ENOMEDIUM)) 1559 bdev_disk_changed(bdev, ret == -ENOMEDIUM); 1560 if (ret) 1561 goto out_unlock_bdev; 1562 } 1563 } 1564 bdev->bd_openers++; 1565 if (for_part) 1566 bdev->bd_part_count++; 1567 if (claiming) 1568 bd_finish_claiming(bdev, claiming, holder); 1569 1570 /* 1571 * Block event polling for write claims if requested. Any write holder 1572 * makes the write_holder state stick until all are released. This is 1573 * good enough and tracking individual writeable reference is too 1574 * fragile given the way @mode is used in blkdev_get/put(). 1575 */ 1576 if (claiming && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1577 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1578 bdev->bd_write_holder = true; 1579 unblock_events = false; 1580 } 1581 mutex_unlock(&bdev->bd_mutex); 1582 1583 if (unblock_events) 1584 disk_unblock_events(disk); 1585 1586 /* only one opener holds refs to the module and disk */ 1587 if (!first_open) 1588 put_disk_and_module(disk); 1589 if (whole) 1590 bdput(whole); 1591 return 0; 1592 1593 out_clear: 1594 disk_put_part(bdev->bd_part); 1595 bdev->bd_disk = NULL; 1596 bdev->bd_part = NULL; 1597 if (bdev != bdev->bd_contains) 1598 __blkdev_put(bdev->bd_contains, mode, 1); 1599 bdev->bd_contains = NULL; 1600 out_unlock_bdev: 1601 if (claiming) 1602 bd_abort_claiming(bdev, claiming, holder); 1603 mutex_unlock(&bdev->bd_mutex); 1604 disk_unblock_events(disk); 1605 out_put_whole: 1606 if (whole) 1607 bdput(whole); 1608 out_put_disk: 1609 put_disk_and_module(disk); 1610 if (need_restart) 1611 goto restart; 1612 out: 1613 return ret; 1614} 1615 1616/** 1617 * blkdev_get - open a block device 1618 * @bdev: block_device to open 1619 * @mode: FMODE_* mask 1620 * @holder: exclusive holder identifier 1621 * 1622 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1623 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1624 * @holder is invalid. Exclusive opens may nest for the same @holder. 1625 * 1626 * On success, the reference count of @bdev is unchanged. On failure, 1627 * @bdev is put. 1628 * 1629 * CONTEXT: 1630 * Might sleep. 1631 * 1632 * RETURNS: 1633 * 0 on success, -errno on failure. 1634 */ 1635int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1636{ 1637 int res; 1638 1639 res =__blkdev_get(bdev, mode, holder, 0); 1640 if (res) 1641 bdput(bdev); 1642 return res; 1643} 1644EXPORT_SYMBOL(blkdev_get); 1645 1646/** 1647 * blkdev_get_by_path - open a block device by name 1648 * @path: path to the block device to open 1649 * @mode: FMODE_* mask 1650 * @holder: exclusive holder identifier 1651 * 1652 * Open the blockdevice described by the device file at @path. @mode 1653 * and @holder are identical to blkdev_get(). 1654 * 1655 * On success, the returned block_device has reference count of one. 1656 * 1657 * CONTEXT: 1658 * Might sleep. 1659 * 1660 * RETURNS: 1661 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1662 */ 1663struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1664 void *holder) 1665{ 1666 struct block_device *bdev; 1667 int err; 1668 1669 bdev = lookup_bdev(path); 1670 if (IS_ERR(bdev)) 1671 return bdev; 1672 1673 err = blkdev_get(bdev, mode, holder); 1674 if (err) 1675 return ERR_PTR(err); 1676 1677 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1678 blkdev_put(bdev, mode); 1679 return ERR_PTR(-EACCES); 1680 } 1681 1682 return bdev; 1683} 1684EXPORT_SYMBOL(blkdev_get_by_path); 1685 1686/** 1687 * blkdev_get_by_dev - open a block device by device number 1688 * @dev: device number of block device to open 1689 * @mode: FMODE_* mask 1690 * @holder: exclusive holder identifier 1691 * 1692 * Open the blockdevice described by device number @dev. @mode and 1693 * @holder are identical to blkdev_get(). 1694 * 1695 * Use it ONLY if you really do not have anything better - i.e. when 1696 * you are behind a truly sucky interface and all you are given is a 1697 * device number. _Never_ to be used for internal purposes. If you 1698 * ever need it - reconsider your API. 1699 * 1700 * On success, the returned block_device has reference count of one. 1701 * 1702 * CONTEXT: 1703 * Might sleep. 1704 * 1705 * RETURNS: 1706 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1707 */ 1708struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1709{ 1710 struct block_device *bdev; 1711 int err; 1712 1713 bdev = bdget(dev); 1714 if (!bdev) 1715 return ERR_PTR(-ENOMEM); 1716 1717 err = blkdev_get(bdev, mode, holder); 1718 if (err) 1719 return ERR_PTR(err); 1720 1721 return bdev; 1722} 1723EXPORT_SYMBOL(blkdev_get_by_dev); 1724 1725static int blkdev_open(struct inode * inode, struct file * filp) 1726{ 1727 struct block_device *bdev; 1728 1729 /* 1730 * Preserve backwards compatibility and allow large file access 1731 * even if userspace doesn't ask for it explicitly. Some mkfs 1732 * binary needs it. We might want to drop this workaround 1733 * during an unstable branch. 1734 */ 1735 filp->f_flags |= O_LARGEFILE; 1736 1737 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 1738 1739 if (filp->f_flags & O_NDELAY) 1740 filp->f_mode |= FMODE_NDELAY; 1741 if (filp->f_flags & O_EXCL) 1742 filp->f_mode |= FMODE_EXCL; 1743 if ((filp->f_flags & O_ACCMODE) == 3) 1744 filp->f_mode |= FMODE_WRITE_IOCTL; 1745 1746 bdev = bd_acquire(inode); 1747 if (bdev == NULL) 1748 return -ENOMEM; 1749 1750 filp->f_mapping = bdev->bd_inode->i_mapping; 1751 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping); 1752 1753 return blkdev_get(bdev, filp->f_mode, filp); 1754} 1755 1756static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1757{ 1758 struct gendisk *disk = bdev->bd_disk; 1759 struct block_device *victim = NULL; 1760 1761 /* 1762 * Sync early if it looks like we're the last one. If someone else 1763 * opens the block device between now and the decrement of bd_openers 1764 * then we did a sync that we didn't need to, but that's not the end 1765 * of the world and we want to avoid long (could be several minute) 1766 * syncs while holding the mutex. 1767 */ 1768 if (bdev->bd_openers == 1) 1769 sync_blockdev(bdev); 1770 1771 mutex_lock_nested(&bdev->bd_mutex, for_part); 1772 if (for_part) 1773 bdev->bd_part_count--; 1774 1775 if (!--bdev->bd_openers) { 1776 WARN_ON_ONCE(bdev->bd_holders); 1777 sync_blockdev(bdev); 1778 kill_bdev(bdev); 1779 1780 bdev_write_inode(bdev); 1781 } 1782 if (bdev->bd_contains == bdev) { 1783 if (disk->fops->release) 1784 disk->fops->release(disk, mode); 1785 } 1786 if (!bdev->bd_openers) { 1787 disk_put_part(bdev->bd_part); 1788 bdev->bd_part = NULL; 1789 bdev->bd_disk = NULL; 1790 if (bdev != bdev->bd_contains) 1791 victim = bdev->bd_contains; 1792 bdev->bd_contains = NULL; 1793 1794 put_disk_and_module(disk); 1795 } 1796 mutex_unlock(&bdev->bd_mutex); 1797 bdput(bdev); 1798 if (victim) 1799 __blkdev_put(victim, mode, 1); 1800} 1801 1802void blkdev_put(struct block_device *bdev, fmode_t mode) 1803{ 1804 mutex_lock(&bdev->bd_mutex); 1805 1806 if (mode & FMODE_EXCL) { 1807 bool bdev_free; 1808 1809 /* 1810 * Release a claim on the device. The holder fields 1811 * are protected with bdev_lock. bd_mutex is to 1812 * synchronize disk_holder unlinking. 1813 */ 1814 spin_lock(&bdev_lock); 1815 1816 WARN_ON_ONCE(--bdev->bd_holders < 0); 1817 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1818 1819 /* bd_contains might point to self, check in a separate step */ 1820 if ((bdev_free = !bdev->bd_holders)) 1821 bdev->bd_holder = NULL; 1822 if (!bdev->bd_contains->bd_holders) 1823 bdev->bd_contains->bd_holder = NULL; 1824 1825 spin_unlock(&bdev_lock); 1826 1827 /* 1828 * If this was the last claim, remove holder link and 1829 * unblock evpoll if it was a write holder. 1830 */ 1831 if (bdev_free && bdev->bd_write_holder) { 1832 disk_unblock_events(bdev->bd_disk); 1833 bdev->bd_write_holder = false; 1834 } 1835 } 1836 1837 /* 1838 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1839 * event. This is to ensure detection of media removal commanded 1840 * from userland - e.g. eject(1). 1841 */ 1842 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1843 1844 mutex_unlock(&bdev->bd_mutex); 1845 1846 __blkdev_put(bdev, mode, 0); 1847} 1848EXPORT_SYMBOL(blkdev_put); 1849 1850static int blkdev_close(struct inode * inode, struct file * filp) 1851{ 1852 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1853 blkdev_put(bdev, filp->f_mode); 1854 return 0; 1855} 1856 1857static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1858{ 1859 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1860 fmode_t mode = file->f_mode; 1861 1862 /* 1863 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1864 * to updated it before every ioctl. 1865 */ 1866 if (file->f_flags & O_NDELAY) 1867 mode |= FMODE_NDELAY; 1868 else 1869 mode &= ~FMODE_NDELAY; 1870 1871 return blkdev_ioctl(bdev, mode, cmd, arg); 1872} 1873 1874/* 1875 * Write data to the block device. Only intended for the block device itself 1876 * and the raw driver which basically is a fake block device. 1877 * 1878 * Does not take i_mutex for the write and thus is not for general purpose 1879 * use. 1880 */ 1881ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1882{ 1883 struct file *file = iocb->ki_filp; 1884 struct inode *bd_inode = bdev_file_inode(file); 1885 loff_t size = i_size_read(bd_inode); 1886 struct blk_plug plug; 1887 ssize_t ret; 1888 1889 if (bdev_read_only(I_BDEV(bd_inode))) 1890 return -EPERM; 1891 1892 if (IS_SWAPFILE(bd_inode) && !is_hibernate_resume_dev(bd_inode)) 1893 return -ETXTBSY; 1894 1895 if (!iov_iter_count(from)) 1896 return 0; 1897 1898 if (iocb->ki_pos >= size) 1899 return -ENOSPC; 1900 1901 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT) 1902 return -EOPNOTSUPP; 1903 1904 iov_iter_truncate(from, size - iocb->ki_pos); 1905 1906 blk_start_plug(&plug); 1907 ret = __generic_file_write_iter(iocb, from); 1908 if (ret > 0) 1909 ret = generic_write_sync(iocb, ret); 1910 blk_finish_plug(&plug); 1911 return ret; 1912} 1913EXPORT_SYMBOL_GPL(blkdev_write_iter); 1914 1915ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1916{ 1917 struct file *file = iocb->ki_filp; 1918 struct inode *bd_inode = bdev_file_inode(file); 1919 loff_t size = i_size_read(bd_inode); 1920 loff_t pos = iocb->ki_pos; 1921 1922 if (pos >= size) 1923 return 0; 1924 1925 size -= pos; 1926 iov_iter_truncate(to, size); 1927 return generic_file_read_iter(iocb, to); 1928} 1929EXPORT_SYMBOL_GPL(blkdev_read_iter); 1930 1931/* 1932 * Try to release a page associated with block device when the system 1933 * is under memory pressure. 1934 */ 1935static int blkdev_releasepage(struct page *page, gfp_t wait) 1936{ 1937 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1938 1939 if (super && super->s_op->bdev_try_to_free_page) 1940 return super->s_op->bdev_try_to_free_page(super, page, wait); 1941 1942 return try_to_free_buffers(page); 1943} 1944 1945static int blkdev_writepages(struct address_space *mapping, 1946 struct writeback_control *wbc) 1947{ 1948 return generic_writepages(mapping, wbc); 1949} 1950 1951static const struct address_space_operations def_blk_aops = { 1952 .readpage = blkdev_readpage, 1953 .readahead = blkdev_readahead, 1954 .writepage = blkdev_writepage, 1955 .write_begin = blkdev_write_begin, 1956 .write_end = blkdev_write_end, 1957 .writepages = blkdev_writepages, 1958 .releasepage = blkdev_releasepage, 1959 .direct_IO = blkdev_direct_IO, 1960 .migratepage = buffer_migrate_page_norefs, 1961 .is_dirty_writeback = buffer_check_dirty_writeback, 1962}; 1963 1964#define BLKDEV_FALLOC_FL_SUPPORTED \ 1965 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 1966 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE) 1967 1968static long blkdev_fallocate(struct file *file, int mode, loff_t start, 1969 loff_t len) 1970{ 1971 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1972 struct address_space *mapping; 1973 loff_t end = start + len - 1; 1974 loff_t isize; 1975 int error; 1976 1977 /* Fail if we don't recognize the flags. */ 1978 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED) 1979 return -EOPNOTSUPP; 1980 1981 /* Don't go off the end of the device. */ 1982 isize = i_size_read(bdev->bd_inode); 1983 if (start >= isize) 1984 return -EINVAL; 1985 if (end >= isize) { 1986 if (mode & FALLOC_FL_KEEP_SIZE) { 1987 len = isize - start; 1988 end = start + len - 1; 1989 } else 1990 return -EINVAL; 1991 } 1992 1993 /* 1994 * Don't allow IO that isn't aligned to logical block size. 1995 */ 1996 if ((start | len) & (bdev_logical_block_size(bdev) - 1)) 1997 return -EINVAL; 1998 1999 /* Invalidate the page cache, including dirty pages. */ 2000 mapping = bdev->bd_inode->i_mapping; 2001 truncate_inode_pages_range(mapping, start, end); 2002 2003 switch (mode) { 2004 case FALLOC_FL_ZERO_RANGE: 2005 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE: 2006 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2007 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP); 2008 break; 2009 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE: 2010 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2011 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK); 2012 break; 2013 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE: 2014 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2015 GFP_KERNEL, 0); 2016 break; 2017 default: 2018 return -EOPNOTSUPP; 2019 } 2020 if (error) 2021 return error; 2022 2023 /* 2024 * Invalidate again; if someone wandered in and dirtied a page, 2025 * the caller will be given -EBUSY. The third argument is 2026 * inclusive, so the rounding here is safe. 2027 */ 2028 return invalidate_inode_pages2_range(mapping, 2029 start >> PAGE_SHIFT, 2030 end >> PAGE_SHIFT); 2031} 2032 2033const struct file_operations def_blk_fops = { 2034 .open = blkdev_open, 2035 .release = blkdev_close, 2036 .llseek = block_llseek, 2037 .read_iter = blkdev_read_iter, 2038 .write_iter = blkdev_write_iter, 2039 .iopoll = blkdev_iopoll, 2040 .mmap = generic_file_mmap, 2041 .fsync = blkdev_fsync, 2042 .unlocked_ioctl = block_ioctl, 2043#ifdef CONFIG_COMPAT 2044 .compat_ioctl = compat_blkdev_ioctl, 2045#endif 2046 .splice_read = generic_file_splice_read, 2047 .splice_write = iter_file_splice_write, 2048 .fallocate = blkdev_fallocate, 2049}; 2050 2051/** 2052 * lookup_bdev - lookup a struct block_device by name 2053 * @pathname: special file representing the block device 2054 * 2055 * Get a reference to the blockdevice at @pathname in the current 2056 * namespace if possible and return it. Return ERR_PTR(error) 2057 * otherwise. 2058 */ 2059struct block_device *lookup_bdev(const char *pathname) 2060{ 2061 struct block_device *bdev; 2062 struct inode *inode; 2063 struct path path; 2064 int error; 2065 2066 if (!pathname || !*pathname) 2067 return ERR_PTR(-EINVAL); 2068 2069 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 2070 if (error) 2071 return ERR_PTR(error); 2072 2073 inode = d_backing_inode(path.dentry); 2074 error = -ENOTBLK; 2075 if (!S_ISBLK(inode->i_mode)) 2076 goto fail; 2077 error = -EACCES; 2078 if (!may_open_dev(&path)) 2079 goto fail; 2080 error = -ENOMEM; 2081 bdev = bd_acquire(inode); 2082 if (!bdev) 2083 goto fail; 2084out: 2085 path_put(&path); 2086 return bdev; 2087fail: 2088 bdev = ERR_PTR(error); 2089 goto out; 2090} 2091EXPORT_SYMBOL(lookup_bdev); 2092 2093int __invalidate_device(struct block_device *bdev, bool kill_dirty) 2094{ 2095 struct super_block *sb = get_super(bdev); 2096 int res = 0; 2097 2098 if (sb) { 2099 /* 2100 * no need to lock the super, get_super holds the 2101 * read mutex so the filesystem cannot go away 2102 * under us (->put_super runs with the write lock 2103 * hold). 2104 */ 2105 shrink_dcache_sb(sb); 2106 res = invalidate_inodes(sb, kill_dirty); 2107 drop_super(sb); 2108 } 2109 invalidate_bdev(bdev); 2110 return res; 2111} 2112EXPORT_SYMBOL(__invalidate_device); 2113 2114void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 2115{ 2116 struct inode *inode, *old_inode = NULL; 2117 2118 spin_lock(&blockdev_superblock->s_inode_list_lock); 2119 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 2120 struct address_space *mapping = inode->i_mapping; 2121 struct block_device *bdev; 2122 2123 spin_lock(&inode->i_lock); 2124 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 2125 mapping->nrpages == 0) { 2126 spin_unlock(&inode->i_lock); 2127 continue; 2128 } 2129 __iget(inode); 2130 spin_unlock(&inode->i_lock); 2131 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2132 /* 2133 * We hold a reference to 'inode' so it couldn't have been 2134 * removed from s_inodes list while we dropped the 2135 * s_inode_list_lock We cannot iput the inode now as we can 2136 * be holding the last reference and we cannot iput it under 2137 * s_inode_list_lock. So we keep the reference and iput it 2138 * later. 2139 */ 2140 iput(old_inode); 2141 old_inode = inode; 2142 bdev = I_BDEV(inode); 2143 2144 mutex_lock(&bdev->bd_mutex); 2145 if (bdev->bd_openers) 2146 func(bdev, arg); 2147 mutex_unlock(&bdev->bd_mutex); 2148 2149 spin_lock(&blockdev_superblock->s_inode_list_lock); 2150 } 2151 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2152 iput(old_inode); 2153}