Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39#include <linux/errno.h>
40#include <linux/err.h>
41#include <linux/export.h>
42#include <linux/string.h>
43#include <linux/slab.h>
44#include <linux/in.h>
45#include <linux/in6.h>
46#include <net/addrconf.h>
47#include <linux/security.h>
48
49#include <rdma/ib_verbs.h>
50#include <rdma/ib_cache.h>
51#include <rdma/ib_addr.h>
52#include <rdma/rw.h>
53#include <rdma/lag.h>
54
55#include "core_priv.h"
56#include <trace/events/rdma_core.h>
57
58static int ib_resolve_eth_dmac(struct ib_device *device,
59 struct rdma_ah_attr *ah_attr);
60
61static const char * const ib_events[] = {
62 [IB_EVENT_CQ_ERR] = "CQ error",
63 [IB_EVENT_QP_FATAL] = "QP fatal error",
64 [IB_EVENT_QP_REQ_ERR] = "QP request error",
65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
66 [IB_EVENT_COMM_EST] = "communication established",
67 [IB_EVENT_SQ_DRAINED] = "send queue drained",
68 [IB_EVENT_PATH_MIG] = "path migration successful",
69 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
70 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
71 [IB_EVENT_PORT_ACTIVE] = "port active",
72 [IB_EVENT_PORT_ERR] = "port error",
73 [IB_EVENT_LID_CHANGE] = "LID change",
74 [IB_EVENT_PKEY_CHANGE] = "P_key change",
75 [IB_EVENT_SM_CHANGE] = "SM change",
76 [IB_EVENT_SRQ_ERR] = "SRQ error",
77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
80 [IB_EVENT_GID_CHANGE] = "GID changed",
81};
82
83const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84{
85 size_t index = event;
86
87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88 ib_events[index] : "unrecognized event";
89}
90EXPORT_SYMBOL(ib_event_msg);
91
92static const char * const wc_statuses[] = {
93 [IB_WC_SUCCESS] = "success",
94 [IB_WC_LOC_LEN_ERR] = "local length error",
95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
97 [IB_WC_LOC_PROT_ERR] = "local protection error",
98 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
99 [IB_WC_MW_BIND_ERR] = "memory management operation error",
100 [IB_WC_BAD_RESP_ERR] = "bad response error",
101 [IB_WC_LOC_ACCESS_ERR] = "local access error",
102 [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
103 [IB_WC_REM_ACCESS_ERR] = "remote access error",
104 [IB_WC_REM_OP_ERR] = "remote operation error",
105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
109 [IB_WC_REM_ABORT_ERR] = "operation aborted",
110 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
112 [IB_WC_FATAL_ERR] = "fatal error",
113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
114 [IB_WC_GENERAL_ERR] = "general error",
115};
116
117const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118{
119 size_t index = status;
120
121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122 wc_statuses[index] : "unrecognized status";
123}
124EXPORT_SYMBOL(ib_wc_status_msg);
125
126__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127{
128 switch (rate) {
129 case IB_RATE_2_5_GBPS: return 1;
130 case IB_RATE_5_GBPS: return 2;
131 case IB_RATE_10_GBPS: return 4;
132 case IB_RATE_20_GBPS: return 8;
133 case IB_RATE_30_GBPS: return 12;
134 case IB_RATE_40_GBPS: return 16;
135 case IB_RATE_60_GBPS: return 24;
136 case IB_RATE_80_GBPS: return 32;
137 case IB_RATE_120_GBPS: return 48;
138 case IB_RATE_14_GBPS: return 6;
139 case IB_RATE_56_GBPS: return 22;
140 case IB_RATE_112_GBPS: return 45;
141 case IB_RATE_168_GBPS: return 67;
142 case IB_RATE_25_GBPS: return 10;
143 case IB_RATE_100_GBPS: return 40;
144 case IB_RATE_200_GBPS: return 80;
145 case IB_RATE_300_GBPS: return 120;
146 case IB_RATE_28_GBPS: return 11;
147 case IB_RATE_50_GBPS: return 20;
148 case IB_RATE_400_GBPS: return 160;
149 case IB_RATE_600_GBPS: return 240;
150 default: return -1;
151 }
152}
153EXPORT_SYMBOL(ib_rate_to_mult);
154
155__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
156{
157 switch (mult) {
158 case 1: return IB_RATE_2_5_GBPS;
159 case 2: return IB_RATE_5_GBPS;
160 case 4: return IB_RATE_10_GBPS;
161 case 8: return IB_RATE_20_GBPS;
162 case 12: return IB_RATE_30_GBPS;
163 case 16: return IB_RATE_40_GBPS;
164 case 24: return IB_RATE_60_GBPS;
165 case 32: return IB_RATE_80_GBPS;
166 case 48: return IB_RATE_120_GBPS;
167 case 6: return IB_RATE_14_GBPS;
168 case 22: return IB_RATE_56_GBPS;
169 case 45: return IB_RATE_112_GBPS;
170 case 67: return IB_RATE_168_GBPS;
171 case 10: return IB_RATE_25_GBPS;
172 case 40: return IB_RATE_100_GBPS;
173 case 80: return IB_RATE_200_GBPS;
174 case 120: return IB_RATE_300_GBPS;
175 case 11: return IB_RATE_28_GBPS;
176 case 20: return IB_RATE_50_GBPS;
177 case 160: return IB_RATE_400_GBPS;
178 case 240: return IB_RATE_600_GBPS;
179 default: return IB_RATE_PORT_CURRENT;
180 }
181}
182EXPORT_SYMBOL(mult_to_ib_rate);
183
184__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
185{
186 switch (rate) {
187 case IB_RATE_2_5_GBPS: return 2500;
188 case IB_RATE_5_GBPS: return 5000;
189 case IB_RATE_10_GBPS: return 10000;
190 case IB_RATE_20_GBPS: return 20000;
191 case IB_RATE_30_GBPS: return 30000;
192 case IB_RATE_40_GBPS: return 40000;
193 case IB_RATE_60_GBPS: return 60000;
194 case IB_RATE_80_GBPS: return 80000;
195 case IB_RATE_120_GBPS: return 120000;
196 case IB_RATE_14_GBPS: return 14062;
197 case IB_RATE_56_GBPS: return 56250;
198 case IB_RATE_112_GBPS: return 112500;
199 case IB_RATE_168_GBPS: return 168750;
200 case IB_RATE_25_GBPS: return 25781;
201 case IB_RATE_100_GBPS: return 103125;
202 case IB_RATE_200_GBPS: return 206250;
203 case IB_RATE_300_GBPS: return 309375;
204 case IB_RATE_28_GBPS: return 28125;
205 case IB_RATE_50_GBPS: return 53125;
206 case IB_RATE_400_GBPS: return 425000;
207 case IB_RATE_600_GBPS: return 637500;
208 default: return -1;
209 }
210}
211EXPORT_SYMBOL(ib_rate_to_mbps);
212
213__attribute_const__ enum rdma_transport_type
214rdma_node_get_transport(unsigned int node_type)
215{
216
217 if (node_type == RDMA_NODE_USNIC)
218 return RDMA_TRANSPORT_USNIC;
219 if (node_type == RDMA_NODE_USNIC_UDP)
220 return RDMA_TRANSPORT_USNIC_UDP;
221 if (node_type == RDMA_NODE_RNIC)
222 return RDMA_TRANSPORT_IWARP;
223 if (node_type == RDMA_NODE_UNSPECIFIED)
224 return RDMA_TRANSPORT_UNSPECIFIED;
225
226 return RDMA_TRANSPORT_IB;
227}
228EXPORT_SYMBOL(rdma_node_get_transport);
229
230enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
231{
232 enum rdma_transport_type lt;
233 if (device->ops.get_link_layer)
234 return device->ops.get_link_layer(device, port_num);
235
236 lt = rdma_node_get_transport(device->node_type);
237 if (lt == RDMA_TRANSPORT_IB)
238 return IB_LINK_LAYER_INFINIBAND;
239
240 return IB_LINK_LAYER_ETHERNET;
241}
242EXPORT_SYMBOL(rdma_port_get_link_layer);
243
244/* Protection domains */
245
246/**
247 * ib_alloc_pd - Allocates an unused protection domain.
248 * @device: The device on which to allocate the protection domain.
249 * @flags: protection domain flags
250 * @caller: caller's build-time module name
251 *
252 * A protection domain object provides an association between QPs, shared
253 * receive queues, address handles, memory regions, and memory windows.
254 *
255 * Every PD has a local_dma_lkey which can be used as the lkey value for local
256 * memory operations.
257 */
258struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
259 const char *caller)
260{
261 struct ib_pd *pd;
262 int mr_access_flags = 0;
263 int ret;
264
265 pd = rdma_zalloc_drv_obj(device, ib_pd);
266 if (!pd)
267 return ERR_PTR(-ENOMEM);
268
269 pd->device = device;
270 pd->uobject = NULL;
271 pd->__internal_mr = NULL;
272 atomic_set(&pd->usecnt, 0);
273 pd->flags = flags;
274
275 pd->res.type = RDMA_RESTRACK_PD;
276 rdma_restrack_set_task(&pd->res, caller);
277
278 ret = device->ops.alloc_pd(pd, NULL);
279 if (ret) {
280 kfree(pd);
281 return ERR_PTR(ret);
282 }
283 rdma_restrack_kadd(&pd->res);
284
285 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
286 pd->local_dma_lkey = device->local_dma_lkey;
287 else
288 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
289
290 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
291 pr_warn("%s: enabling unsafe global rkey\n", caller);
292 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
293 }
294
295 if (mr_access_flags) {
296 struct ib_mr *mr;
297
298 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
299 if (IS_ERR(mr)) {
300 ib_dealloc_pd(pd);
301 return ERR_CAST(mr);
302 }
303
304 mr->device = pd->device;
305 mr->pd = pd;
306 mr->type = IB_MR_TYPE_DMA;
307 mr->uobject = NULL;
308 mr->need_inval = false;
309
310 pd->__internal_mr = mr;
311
312 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
313 pd->local_dma_lkey = pd->__internal_mr->lkey;
314
315 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
316 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
317 }
318
319 return pd;
320}
321EXPORT_SYMBOL(__ib_alloc_pd);
322
323/**
324 * ib_dealloc_pd_user - Deallocates a protection domain.
325 * @pd: The protection domain to deallocate.
326 * @udata: Valid user data or NULL for kernel object
327 *
328 * It is an error to call this function while any resources in the pd still
329 * exist. The caller is responsible to synchronously destroy them and
330 * guarantee no new allocations will happen.
331 */
332void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
333{
334 int ret;
335
336 if (pd->__internal_mr) {
337 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
338 WARN_ON(ret);
339 pd->__internal_mr = NULL;
340 }
341
342 /* uverbs manipulates usecnt with proper locking, while the kabi
343 requires the caller to guarantee we can't race here. */
344 WARN_ON(atomic_read(&pd->usecnt));
345
346 rdma_restrack_del(&pd->res);
347 pd->device->ops.dealloc_pd(pd, udata);
348 kfree(pd);
349}
350EXPORT_SYMBOL(ib_dealloc_pd_user);
351
352/* Address handles */
353
354/**
355 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
356 * @dest: Pointer to destination ah_attr. Contents of the destination
357 * pointer is assumed to be invalid and attribute are overwritten.
358 * @src: Pointer to source ah_attr.
359 */
360void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
361 const struct rdma_ah_attr *src)
362{
363 *dest = *src;
364 if (dest->grh.sgid_attr)
365 rdma_hold_gid_attr(dest->grh.sgid_attr);
366}
367EXPORT_SYMBOL(rdma_copy_ah_attr);
368
369/**
370 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
371 * @old: Pointer to existing ah_attr which needs to be replaced.
372 * old is assumed to be valid or zero'd
373 * @new: Pointer to the new ah_attr.
374 *
375 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
376 * old the ah_attr is valid; after that it copies the new attribute and holds
377 * the reference to the replaced ah_attr.
378 */
379void rdma_replace_ah_attr(struct rdma_ah_attr *old,
380 const struct rdma_ah_attr *new)
381{
382 rdma_destroy_ah_attr(old);
383 *old = *new;
384 if (old->grh.sgid_attr)
385 rdma_hold_gid_attr(old->grh.sgid_attr);
386}
387EXPORT_SYMBOL(rdma_replace_ah_attr);
388
389/**
390 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
391 * @dest: Pointer to destination ah_attr to copy to.
392 * dest is assumed to be valid or zero'd
393 * @src: Pointer to the new ah_attr.
394 *
395 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
396 * if it is valid. This also transfers ownership of internal references from
397 * src to dest, making src invalid in the process. No new reference of the src
398 * ah_attr is taken.
399 */
400void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
401{
402 rdma_destroy_ah_attr(dest);
403 *dest = *src;
404 src->grh.sgid_attr = NULL;
405}
406EXPORT_SYMBOL(rdma_move_ah_attr);
407
408/*
409 * Validate that the rdma_ah_attr is valid for the device before passing it
410 * off to the driver.
411 */
412static int rdma_check_ah_attr(struct ib_device *device,
413 struct rdma_ah_attr *ah_attr)
414{
415 if (!rdma_is_port_valid(device, ah_attr->port_num))
416 return -EINVAL;
417
418 if ((rdma_is_grh_required(device, ah_attr->port_num) ||
419 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
420 !(ah_attr->ah_flags & IB_AH_GRH))
421 return -EINVAL;
422
423 if (ah_attr->grh.sgid_attr) {
424 /*
425 * Make sure the passed sgid_attr is consistent with the
426 * parameters
427 */
428 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
429 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
430 return -EINVAL;
431 }
432 return 0;
433}
434
435/*
436 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
437 * On success the caller is responsible to call rdma_unfill_sgid_attr().
438 */
439static int rdma_fill_sgid_attr(struct ib_device *device,
440 struct rdma_ah_attr *ah_attr,
441 const struct ib_gid_attr **old_sgid_attr)
442{
443 const struct ib_gid_attr *sgid_attr;
444 struct ib_global_route *grh;
445 int ret;
446
447 *old_sgid_attr = ah_attr->grh.sgid_attr;
448
449 ret = rdma_check_ah_attr(device, ah_attr);
450 if (ret)
451 return ret;
452
453 if (!(ah_attr->ah_flags & IB_AH_GRH))
454 return 0;
455
456 grh = rdma_ah_retrieve_grh(ah_attr);
457 if (grh->sgid_attr)
458 return 0;
459
460 sgid_attr =
461 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
462 if (IS_ERR(sgid_attr))
463 return PTR_ERR(sgid_attr);
464
465 /* Move ownerhip of the kref into the ah_attr */
466 grh->sgid_attr = sgid_attr;
467 return 0;
468}
469
470static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
471 const struct ib_gid_attr *old_sgid_attr)
472{
473 /*
474 * Fill didn't change anything, the caller retains ownership of
475 * whatever it passed
476 */
477 if (ah_attr->grh.sgid_attr == old_sgid_attr)
478 return;
479
480 /*
481 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
482 * doesn't see any change in the rdma_ah_attr. If we get here
483 * old_sgid_attr is NULL.
484 */
485 rdma_destroy_ah_attr(ah_attr);
486}
487
488static const struct ib_gid_attr *
489rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
490 const struct ib_gid_attr *old_attr)
491{
492 if (old_attr)
493 rdma_put_gid_attr(old_attr);
494 if (ah_attr->ah_flags & IB_AH_GRH) {
495 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
496 return ah_attr->grh.sgid_attr;
497 }
498 return NULL;
499}
500
501static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
502 struct rdma_ah_attr *ah_attr,
503 u32 flags,
504 struct ib_udata *udata,
505 struct net_device *xmit_slave)
506{
507 struct rdma_ah_init_attr init_attr = {};
508 struct ib_device *device = pd->device;
509 struct ib_ah *ah;
510 int ret;
511
512 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
513
514 if (!device->ops.create_ah)
515 return ERR_PTR(-EOPNOTSUPP);
516
517 ah = rdma_zalloc_drv_obj_gfp(
518 device, ib_ah,
519 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
520 if (!ah)
521 return ERR_PTR(-ENOMEM);
522
523 ah->device = device;
524 ah->pd = pd;
525 ah->type = ah_attr->type;
526 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
527 init_attr.ah_attr = ah_attr;
528 init_attr.flags = flags;
529 init_attr.xmit_slave = xmit_slave;
530
531 ret = device->ops.create_ah(ah, &init_attr, udata);
532 if (ret) {
533 kfree(ah);
534 return ERR_PTR(ret);
535 }
536
537 atomic_inc(&pd->usecnt);
538 return ah;
539}
540
541/**
542 * rdma_create_ah - Creates an address handle for the
543 * given address vector.
544 * @pd: The protection domain associated with the address handle.
545 * @ah_attr: The attributes of the address vector.
546 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
547 *
548 * It returns 0 on success and returns appropriate error code on error.
549 * The address handle is used to reference a local or global destination
550 * in all UD QP post sends.
551 */
552struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
553 u32 flags)
554{
555 const struct ib_gid_attr *old_sgid_attr;
556 struct net_device *slave;
557 struct ib_ah *ah;
558 int ret;
559
560 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
561 if (ret)
562 return ERR_PTR(ret);
563 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
564 (flags & RDMA_CREATE_AH_SLEEPABLE) ?
565 GFP_KERNEL : GFP_ATOMIC);
566 if (IS_ERR(slave)) {
567 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
568 return (void *)slave;
569 }
570 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
571 rdma_lag_put_ah_roce_slave(slave);
572 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
573 return ah;
574}
575EXPORT_SYMBOL(rdma_create_ah);
576
577/**
578 * rdma_create_user_ah - Creates an address handle for the
579 * given address vector.
580 * It resolves destination mac address for ah attribute of RoCE type.
581 * @pd: The protection domain associated with the address handle.
582 * @ah_attr: The attributes of the address vector.
583 * @udata: pointer to user's input output buffer information need by
584 * provider driver.
585 *
586 * It returns 0 on success and returns appropriate error code on error.
587 * The address handle is used to reference a local or global destination
588 * in all UD QP post sends.
589 */
590struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
591 struct rdma_ah_attr *ah_attr,
592 struct ib_udata *udata)
593{
594 const struct ib_gid_attr *old_sgid_attr;
595 struct ib_ah *ah;
596 int err;
597
598 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
599 if (err)
600 return ERR_PTR(err);
601
602 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
603 err = ib_resolve_eth_dmac(pd->device, ah_attr);
604 if (err) {
605 ah = ERR_PTR(err);
606 goto out;
607 }
608 }
609
610 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
611 udata, NULL);
612
613out:
614 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
615 return ah;
616}
617EXPORT_SYMBOL(rdma_create_user_ah);
618
619int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
620{
621 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
622 struct iphdr ip4h_checked;
623 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
624
625 /* If it's IPv6, the version must be 6, otherwise, the first
626 * 20 bytes (before the IPv4 header) are garbled.
627 */
628 if (ip6h->version != 6)
629 return (ip4h->version == 4) ? 4 : 0;
630 /* version may be 6 or 4 because the first 20 bytes could be garbled */
631
632 /* RoCE v2 requires no options, thus header length
633 * must be 5 words
634 */
635 if (ip4h->ihl != 5)
636 return 6;
637
638 /* Verify checksum.
639 * We can't write on scattered buffers so we need to copy to
640 * temp buffer.
641 */
642 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
643 ip4h_checked.check = 0;
644 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
645 /* if IPv4 header checksum is OK, believe it */
646 if (ip4h->check == ip4h_checked.check)
647 return 4;
648 return 6;
649}
650EXPORT_SYMBOL(ib_get_rdma_header_version);
651
652static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
653 u8 port_num,
654 const struct ib_grh *grh)
655{
656 int grh_version;
657
658 if (rdma_protocol_ib(device, port_num))
659 return RDMA_NETWORK_IB;
660
661 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
662
663 if (grh_version == 4)
664 return RDMA_NETWORK_IPV4;
665
666 if (grh->next_hdr == IPPROTO_UDP)
667 return RDMA_NETWORK_IPV6;
668
669 return RDMA_NETWORK_ROCE_V1;
670}
671
672struct find_gid_index_context {
673 u16 vlan_id;
674 enum ib_gid_type gid_type;
675};
676
677static bool find_gid_index(const union ib_gid *gid,
678 const struct ib_gid_attr *gid_attr,
679 void *context)
680{
681 struct find_gid_index_context *ctx = context;
682 u16 vlan_id = 0xffff;
683 int ret;
684
685 if (ctx->gid_type != gid_attr->gid_type)
686 return false;
687
688 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
689 if (ret)
690 return false;
691
692 return ctx->vlan_id == vlan_id;
693}
694
695static const struct ib_gid_attr *
696get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
697 u16 vlan_id, const union ib_gid *sgid,
698 enum ib_gid_type gid_type)
699{
700 struct find_gid_index_context context = {.vlan_id = vlan_id,
701 .gid_type = gid_type};
702
703 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
704 &context);
705}
706
707int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
708 enum rdma_network_type net_type,
709 union ib_gid *sgid, union ib_gid *dgid)
710{
711 struct sockaddr_in src_in;
712 struct sockaddr_in dst_in;
713 __be32 src_saddr, dst_saddr;
714
715 if (!sgid || !dgid)
716 return -EINVAL;
717
718 if (net_type == RDMA_NETWORK_IPV4) {
719 memcpy(&src_in.sin_addr.s_addr,
720 &hdr->roce4grh.saddr, 4);
721 memcpy(&dst_in.sin_addr.s_addr,
722 &hdr->roce4grh.daddr, 4);
723 src_saddr = src_in.sin_addr.s_addr;
724 dst_saddr = dst_in.sin_addr.s_addr;
725 ipv6_addr_set_v4mapped(src_saddr,
726 (struct in6_addr *)sgid);
727 ipv6_addr_set_v4mapped(dst_saddr,
728 (struct in6_addr *)dgid);
729 return 0;
730 } else if (net_type == RDMA_NETWORK_IPV6 ||
731 net_type == RDMA_NETWORK_IB) {
732 *dgid = hdr->ibgrh.dgid;
733 *sgid = hdr->ibgrh.sgid;
734 return 0;
735 } else {
736 return -EINVAL;
737 }
738}
739EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
740
741/* Resolve destination mac address and hop limit for unicast destination
742 * GID entry, considering the source GID entry as well.
743 * ah_attribute must have have valid port_num, sgid_index.
744 */
745static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
746 struct rdma_ah_attr *ah_attr)
747{
748 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
749 const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
750 int hop_limit = 0xff;
751 int ret = 0;
752
753 /* If destination is link local and source GID is RoCEv1,
754 * IP stack is not used.
755 */
756 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
757 sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
758 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
759 ah_attr->roce.dmac);
760 return ret;
761 }
762
763 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
764 ah_attr->roce.dmac,
765 sgid_attr, &hop_limit);
766
767 grh->hop_limit = hop_limit;
768 return ret;
769}
770
771/*
772 * This function initializes address handle attributes from the incoming packet.
773 * Incoming packet has dgid of the receiver node on which this code is
774 * getting executed and, sgid contains the GID of the sender.
775 *
776 * When resolving mac address of destination, the arrived dgid is used
777 * as sgid and, sgid is used as dgid because sgid contains destinations
778 * GID whom to respond to.
779 *
780 * On success the caller is responsible to call rdma_destroy_ah_attr on the
781 * attr.
782 */
783int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
784 const struct ib_wc *wc, const struct ib_grh *grh,
785 struct rdma_ah_attr *ah_attr)
786{
787 u32 flow_class;
788 int ret;
789 enum rdma_network_type net_type = RDMA_NETWORK_IB;
790 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
791 const struct ib_gid_attr *sgid_attr;
792 int hoplimit = 0xff;
793 union ib_gid dgid;
794 union ib_gid sgid;
795
796 might_sleep();
797
798 memset(ah_attr, 0, sizeof *ah_attr);
799 ah_attr->type = rdma_ah_find_type(device, port_num);
800 if (rdma_cap_eth_ah(device, port_num)) {
801 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
802 net_type = wc->network_hdr_type;
803 else
804 net_type = ib_get_net_type_by_grh(device, port_num, grh);
805 gid_type = ib_network_to_gid_type(net_type);
806 }
807 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
808 &sgid, &dgid);
809 if (ret)
810 return ret;
811
812 rdma_ah_set_sl(ah_attr, wc->sl);
813 rdma_ah_set_port_num(ah_attr, port_num);
814
815 if (rdma_protocol_roce(device, port_num)) {
816 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
817 wc->vlan_id : 0xffff;
818
819 if (!(wc->wc_flags & IB_WC_GRH))
820 return -EPROTOTYPE;
821
822 sgid_attr = get_sgid_attr_from_eth(device, port_num,
823 vlan_id, &dgid,
824 gid_type);
825 if (IS_ERR(sgid_attr))
826 return PTR_ERR(sgid_attr);
827
828 flow_class = be32_to_cpu(grh->version_tclass_flow);
829 rdma_move_grh_sgid_attr(ah_attr,
830 &sgid,
831 flow_class & 0xFFFFF,
832 hoplimit,
833 (flow_class >> 20) & 0xFF,
834 sgid_attr);
835
836 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
837 if (ret)
838 rdma_destroy_ah_attr(ah_attr);
839
840 return ret;
841 } else {
842 rdma_ah_set_dlid(ah_attr, wc->slid);
843 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
844
845 if ((wc->wc_flags & IB_WC_GRH) == 0)
846 return 0;
847
848 if (dgid.global.interface_id !=
849 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
850 sgid_attr = rdma_find_gid_by_port(
851 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
852 } else
853 sgid_attr = rdma_get_gid_attr(device, port_num, 0);
854
855 if (IS_ERR(sgid_attr))
856 return PTR_ERR(sgid_attr);
857 flow_class = be32_to_cpu(grh->version_tclass_flow);
858 rdma_move_grh_sgid_attr(ah_attr,
859 &sgid,
860 flow_class & 0xFFFFF,
861 hoplimit,
862 (flow_class >> 20) & 0xFF,
863 sgid_attr);
864
865 return 0;
866 }
867}
868EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
869
870/**
871 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
872 * of the reference
873 *
874 * @attr: Pointer to AH attribute structure
875 * @dgid: Destination GID
876 * @flow_label: Flow label
877 * @hop_limit: Hop limit
878 * @traffic_class: traffic class
879 * @sgid_attr: Pointer to SGID attribute
880 *
881 * This takes ownership of the sgid_attr reference. The caller must ensure
882 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
883 * calling this function.
884 */
885void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
886 u32 flow_label, u8 hop_limit, u8 traffic_class,
887 const struct ib_gid_attr *sgid_attr)
888{
889 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
890 traffic_class);
891 attr->grh.sgid_attr = sgid_attr;
892}
893EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
894
895/**
896 * rdma_destroy_ah_attr - Release reference to SGID attribute of
897 * ah attribute.
898 * @ah_attr: Pointer to ah attribute
899 *
900 * Release reference to the SGID attribute of the ah attribute if it is
901 * non NULL. It is safe to call this multiple times, and safe to call it on
902 * a zero initialized ah_attr.
903 */
904void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
905{
906 if (ah_attr->grh.sgid_attr) {
907 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
908 ah_attr->grh.sgid_attr = NULL;
909 }
910}
911EXPORT_SYMBOL(rdma_destroy_ah_attr);
912
913struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
914 const struct ib_grh *grh, u8 port_num)
915{
916 struct rdma_ah_attr ah_attr;
917 struct ib_ah *ah;
918 int ret;
919
920 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
921 if (ret)
922 return ERR_PTR(ret);
923
924 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
925
926 rdma_destroy_ah_attr(&ah_attr);
927 return ah;
928}
929EXPORT_SYMBOL(ib_create_ah_from_wc);
930
931int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
932{
933 const struct ib_gid_attr *old_sgid_attr;
934 int ret;
935
936 if (ah->type != ah_attr->type)
937 return -EINVAL;
938
939 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
940 if (ret)
941 return ret;
942
943 ret = ah->device->ops.modify_ah ?
944 ah->device->ops.modify_ah(ah, ah_attr) :
945 -EOPNOTSUPP;
946
947 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
948 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
949 return ret;
950}
951EXPORT_SYMBOL(rdma_modify_ah);
952
953int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
954{
955 ah_attr->grh.sgid_attr = NULL;
956
957 return ah->device->ops.query_ah ?
958 ah->device->ops.query_ah(ah, ah_attr) :
959 -EOPNOTSUPP;
960}
961EXPORT_SYMBOL(rdma_query_ah);
962
963int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
964{
965 const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
966 struct ib_pd *pd;
967
968 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
969
970 pd = ah->pd;
971
972 ah->device->ops.destroy_ah(ah, flags);
973 atomic_dec(&pd->usecnt);
974 if (sgid_attr)
975 rdma_put_gid_attr(sgid_attr);
976
977 kfree(ah);
978 return 0;
979}
980EXPORT_SYMBOL(rdma_destroy_ah_user);
981
982/* Shared receive queues */
983
984/**
985 * ib_create_srq_user - Creates a SRQ associated with the specified protection
986 * domain.
987 * @pd: The protection domain associated with the SRQ.
988 * @srq_init_attr: A list of initial attributes required to create the
989 * SRQ. If SRQ creation succeeds, then the attributes are updated to
990 * the actual capabilities of the created SRQ.
991 * @uobject: uobject pointer if this is not a kernel SRQ
992 * @udata: udata pointer if this is not a kernel SRQ
993 *
994 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
995 * requested size of the SRQ, and set to the actual values allocated
996 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
997 * will always be at least as large as the requested values.
998 */
999struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1000 struct ib_srq_init_attr *srq_init_attr,
1001 struct ib_usrq_object *uobject,
1002 struct ib_udata *udata)
1003{
1004 struct ib_srq *srq;
1005 int ret;
1006
1007 srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1008 if (!srq)
1009 return ERR_PTR(-ENOMEM);
1010
1011 srq->device = pd->device;
1012 srq->pd = pd;
1013 srq->event_handler = srq_init_attr->event_handler;
1014 srq->srq_context = srq_init_attr->srq_context;
1015 srq->srq_type = srq_init_attr->srq_type;
1016 srq->uobject = uobject;
1017
1018 if (ib_srq_has_cq(srq->srq_type)) {
1019 srq->ext.cq = srq_init_attr->ext.cq;
1020 atomic_inc(&srq->ext.cq->usecnt);
1021 }
1022 if (srq->srq_type == IB_SRQT_XRC) {
1023 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1024 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1025 }
1026 atomic_inc(&pd->usecnt);
1027
1028 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1029 if (ret) {
1030 atomic_dec(&srq->pd->usecnt);
1031 if (srq->srq_type == IB_SRQT_XRC)
1032 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1033 if (ib_srq_has_cq(srq->srq_type))
1034 atomic_dec(&srq->ext.cq->usecnt);
1035 kfree(srq);
1036 return ERR_PTR(ret);
1037 }
1038
1039 return srq;
1040}
1041EXPORT_SYMBOL(ib_create_srq_user);
1042
1043int ib_modify_srq(struct ib_srq *srq,
1044 struct ib_srq_attr *srq_attr,
1045 enum ib_srq_attr_mask srq_attr_mask)
1046{
1047 return srq->device->ops.modify_srq ?
1048 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1049 NULL) : -EOPNOTSUPP;
1050}
1051EXPORT_SYMBOL(ib_modify_srq);
1052
1053int ib_query_srq(struct ib_srq *srq,
1054 struct ib_srq_attr *srq_attr)
1055{
1056 return srq->device->ops.query_srq ?
1057 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1058}
1059EXPORT_SYMBOL(ib_query_srq);
1060
1061int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1062{
1063 if (atomic_read(&srq->usecnt))
1064 return -EBUSY;
1065
1066 srq->device->ops.destroy_srq(srq, udata);
1067
1068 atomic_dec(&srq->pd->usecnt);
1069 if (srq->srq_type == IB_SRQT_XRC)
1070 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1071 if (ib_srq_has_cq(srq->srq_type))
1072 atomic_dec(&srq->ext.cq->usecnt);
1073 kfree(srq);
1074
1075 return 0;
1076}
1077EXPORT_SYMBOL(ib_destroy_srq_user);
1078
1079/* Queue pairs */
1080
1081static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1082{
1083 struct ib_qp *qp = context;
1084 unsigned long flags;
1085
1086 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1087 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1088 if (event->element.qp->event_handler)
1089 event->element.qp->event_handler(event, event->element.qp->qp_context);
1090 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1091}
1092
1093static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1094 void (*event_handler)(struct ib_event *, void *),
1095 void *qp_context)
1096{
1097 struct ib_qp *qp;
1098 unsigned long flags;
1099 int err;
1100
1101 qp = kzalloc(sizeof *qp, GFP_KERNEL);
1102 if (!qp)
1103 return ERR_PTR(-ENOMEM);
1104
1105 qp->real_qp = real_qp;
1106 err = ib_open_shared_qp_security(qp, real_qp->device);
1107 if (err) {
1108 kfree(qp);
1109 return ERR_PTR(err);
1110 }
1111
1112 qp->real_qp = real_qp;
1113 atomic_inc(&real_qp->usecnt);
1114 qp->device = real_qp->device;
1115 qp->event_handler = event_handler;
1116 qp->qp_context = qp_context;
1117 qp->qp_num = real_qp->qp_num;
1118 qp->qp_type = real_qp->qp_type;
1119
1120 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1121 list_add(&qp->open_list, &real_qp->open_list);
1122 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1123
1124 return qp;
1125}
1126
1127struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1128 struct ib_qp_open_attr *qp_open_attr)
1129{
1130 struct ib_qp *qp, *real_qp;
1131
1132 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1133 return ERR_PTR(-EINVAL);
1134
1135 down_read(&xrcd->tgt_qps_rwsem);
1136 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1137 if (!real_qp) {
1138 up_read(&xrcd->tgt_qps_rwsem);
1139 return ERR_PTR(-EINVAL);
1140 }
1141 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1142 qp_open_attr->qp_context);
1143 up_read(&xrcd->tgt_qps_rwsem);
1144 return qp;
1145}
1146EXPORT_SYMBOL(ib_open_qp);
1147
1148static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1149 struct ib_qp_init_attr *qp_init_attr)
1150{
1151 struct ib_qp *real_qp = qp;
1152 int err;
1153
1154 qp->event_handler = __ib_shared_qp_event_handler;
1155 qp->qp_context = qp;
1156 qp->pd = NULL;
1157 qp->send_cq = qp->recv_cq = NULL;
1158 qp->srq = NULL;
1159 qp->xrcd = qp_init_attr->xrcd;
1160 atomic_inc(&qp_init_attr->xrcd->usecnt);
1161 INIT_LIST_HEAD(&qp->open_list);
1162
1163 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1164 qp_init_attr->qp_context);
1165 if (IS_ERR(qp))
1166 return qp;
1167
1168 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1169 real_qp, GFP_KERNEL));
1170 if (err) {
1171 ib_close_qp(qp);
1172 return ERR_PTR(err);
1173 }
1174 return qp;
1175}
1176
1177/**
1178 * ib_create_qp - Creates a kernel QP associated with the specified protection
1179 * domain.
1180 * @pd: The protection domain associated with the QP.
1181 * @qp_init_attr: A list of initial attributes required to create the
1182 * QP. If QP creation succeeds, then the attributes are updated to
1183 * the actual capabilities of the created QP.
1184 *
1185 * NOTE: for user qp use ib_create_qp_user with valid udata!
1186 */
1187struct ib_qp *ib_create_qp(struct ib_pd *pd,
1188 struct ib_qp_init_attr *qp_init_attr)
1189{
1190 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1191 struct ib_qp *qp;
1192 int ret;
1193
1194 if (qp_init_attr->rwq_ind_tbl &&
1195 (qp_init_attr->recv_cq ||
1196 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1197 qp_init_attr->cap.max_recv_sge))
1198 return ERR_PTR(-EINVAL);
1199
1200 if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) &&
1201 !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER))
1202 return ERR_PTR(-EINVAL);
1203
1204 /*
1205 * If the callers is using the RDMA API calculate the resources
1206 * needed for the RDMA READ/WRITE operations.
1207 *
1208 * Note that these callers need to pass in a port number.
1209 */
1210 if (qp_init_attr->cap.max_rdma_ctxs)
1211 rdma_rw_init_qp(device, qp_init_attr);
1212
1213 qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1214 if (IS_ERR(qp))
1215 return qp;
1216
1217 ret = ib_create_qp_security(qp, device);
1218 if (ret)
1219 goto err;
1220
1221 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1222 struct ib_qp *xrc_qp =
1223 create_xrc_qp_user(qp, qp_init_attr);
1224
1225 if (IS_ERR(xrc_qp)) {
1226 ret = PTR_ERR(xrc_qp);
1227 goto err;
1228 }
1229 return xrc_qp;
1230 }
1231
1232 qp->event_handler = qp_init_attr->event_handler;
1233 qp->qp_context = qp_init_attr->qp_context;
1234 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1235 qp->recv_cq = NULL;
1236 qp->srq = NULL;
1237 } else {
1238 qp->recv_cq = qp_init_attr->recv_cq;
1239 if (qp_init_attr->recv_cq)
1240 atomic_inc(&qp_init_attr->recv_cq->usecnt);
1241 qp->srq = qp_init_attr->srq;
1242 if (qp->srq)
1243 atomic_inc(&qp_init_attr->srq->usecnt);
1244 }
1245
1246 qp->send_cq = qp_init_attr->send_cq;
1247 qp->xrcd = NULL;
1248
1249 atomic_inc(&pd->usecnt);
1250 if (qp_init_attr->send_cq)
1251 atomic_inc(&qp_init_attr->send_cq->usecnt);
1252 if (qp_init_attr->rwq_ind_tbl)
1253 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1254
1255 if (qp_init_attr->cap.max_rdma_ctxs) {
1256 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1257 if (ret)
1258 goto err;
1259 }
1260
1261 /*
1262 * Note: all hw drivers guarantee that max_send_sge is lower than
1263 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1264 * max_send_sge <= max_sge_rd.
1265 */
1266 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1267 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1268 device->attrs.max_sge_rd);
1269 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1270 qp->integrity_en = true;
1271
1272 return qp;
1273
1274err:
1275 ib_destroy_qp(qp);
1276 return ERR_PTR(ret);
1277
1278}
1279EXPORT_SYMBOL(ib_create_qp);
1280
1281static const struct {
1282 int valid;
1283 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
1284 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
1285} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1286 [IB_QPS_RESET] = {
1287 [IB_QPS_RESET] = { .valid = 1 },
1288 [IB_QPS_INIT] = {
1289 .valid = 1,
1290 .req_param = {
1291 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1292 IB_QP_PORT |
1293 IB_QP_QKEY),
1294 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1295 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1296 IB_QP_PORT |
1297 IB_QP_ACCESS_FLAGS),
1298 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1299 IB_QP_PORT |
1300 IB_QP_ACCESS_FLAGS),
1301 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1302 IB_QP_PORT |
1303 IB_QP_ACCESS_FLAGS),
1304 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1305 IB_QP_PORT |
1306 IB_QP_ACCESS_FLAGS),
1307 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1308 IB_QP_QKEY),
1309 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1310 IB_QP_QKEY),
1311 }
1312 },
1313 },
1314 [IB_QPS_INIT] = {
1315 [IB_QPS_RESET] = { .valid = 1 },
1316 [IB_QPS_ERR] = { .valid = 1 },
1317 [IB_QPS_INIT] = {
1318 .valid = 1,
1319 .opt_param = {
1320 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1321 IB_QP_PORT |
1322 IB_QP_QKEY),
1323 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1324 IB_QP_PORT |
1325 IB_QP_ACCESS_FLAGS),
1326 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1327 IB_QP_PORT |
1328 IB_QP_ACCESS_FLAGS),
1329 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1330 IB_QP_PORT |
1331 IB_QP_ACCESS_FLAGS),
1332 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1333 IB_QP_PORT |
1334 IB_QP_ACCESS_FLAGS),
1335 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1336 IB_QP_QKEY),
1337 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1338 IB_QP_QKEY),
1339 }
1340 },
1341 [IB_QPS_RTR] = {
1342 .valid = 1,
1343 .req_param = {
1344 [IB_QPT_UC] = (IB_QP_AV |
1345 IB_QP_PATH_MTU |
1346 IB_QP_DEST_QPN |
1347 IB_QP_RQ_PSN),
1348 [IB_QPT_RC] = (IB_QP_AV |
1349 IB_QP_PATH_MTU |
1350 IB_QP_DEST_QPN |
1351 IB_QP_RQ_PSN |
1352 IB_QP_MAX_DEST_RD_ATOMIC |
1353 IB_QP_MIN_RNR_TIMER),
1354 [IB_QPT_XRC_INI] = (IB_QP_AV |
1355 IB_QP_PATH_MTU |
1356 IB_QP_DEST_QPN |
1357 IB_QP_RQ_PSN),
1358 [IB_QPT_XRC_TGT] = (IB_QP_AV |
1359 IB_QP_PATH_MTU |
1360 IB_QP_DEST_QPN |
1361 IB_QP_RQ_PSN |
1362 IB_QP_MAX_DEST_RD_ATOMIC |
1363 IB_QP_MIN_RNR_TIMER),
1364 },
1365 .opt_param = {
1366 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1367 IB_QP_QKEY),
1368 [IB_QPT_UC] = (IB_QP_ALT_PATH |
1369 IB_QP_ACCESS_FLAGS |
1370 IB_QP_PKEY_INDEX),
1371 [IB_QPT_RC] = (IB_QP_ALT_PATH |
1372 IB_QP_ACCESS_FLAGS |
1373 IB_QP_PKEY_INDEX),
1374 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
1375 IB_QP_ACCESS_FLAGS |
1376 IB_QP_PKEY_INDEX),
1377 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
1378 IB_QP_ACCESS_FLAGS |
1379 IB_QP_PKEY_INDEX),
1380 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1381 IB_QP_QKEY),
1382 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1383 IB_QP_QKEY),
1384 },
1385 },
1386 },
1387 [IB_QPS_RTR] = {
1388 [IB_QPS_RESET] = { .valid = 1 },
1389 [IB_QPS_ERR] = { .valid = 1 },
1390 [IB_QPS_RTS] = {
1391 .valid = 1,
1392 .req_param = {
1393 [IB_QPT_UD] = IB_QP_SQ_PSN,
1394 [IB_QPT_UC] = IB_QP_SQ_PSN,
1395 [IB_QPT_RC] = (IB_QP_TIMEOUT |
1396 IB_QP_RETRY_CNT |
1397 IB_QP_RNR_RETRY |
1398 IB_QP_SQ_PSN |
1399 IB_QP_MAX_QP_RD_ATOMIC),
1400 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
1401 IB_QP_RETRY_CNT |
1402 IB_QP_RNR_RETRY |
1403 IB_QP_SQ_PSN |
1404 IB_QP_MAX_QP_RD_ATOMIC),
1405 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
1406 IB_QP_SQ_PSN),
1407 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1408 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1409 },
1410 .opt_param = {
1411 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1412 IB_QP_QKEY),
1413 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1414 IB_QP_ALT_PATH |
1415 IB_QP_ACCESS_FLAGS |
1416 IB_QP_PATH_MIG_STATE),
1417 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1418 IB_QP_ALT_PATH |
1419 IB_QP_ACCESS_FLAGS |
1420 IB_QP_MIN_RNR_TIMER |
1421 IB_QP_PATH_MIG_STATE),
1422 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1423 IB_QP_ALT_PATH |
1424 IB_QP_ACCESS_FLAGS |
1425 IB_QP_PATH_MIG_STATE),
1426 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1427 IB_QP_ALT_PATH |
1428 IB_QP_ACCESS_FLAGS |
1429 IB_QP_MIN_RNR_TIMER |
1430 IB_QP_PATH_MIG_STATE),
1431 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1432 IB_QP_QKEY),
1433 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1434 IB_QP_QKEY),
1435 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1436 }
1437 }
1438 },
1439 [IB_QPS_RTS] = {
1440 [IB_QPS_RESET] = { .valid = 1 },
1441 [IB_QPS_ERR] = { .valid = 1 },
1442 [IB_QPS_RTS] = {
1443 .valid = 1,
1444 .opt_param = {
1445 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1446 IB_QP_QKEY),
1447 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1448 IB_QP_ACCESS_FLAGS |
1449 IB_QP_ALT_PATH |
1450 IB_QP_PATH_MIG_STATE),
1451 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1452 IB_QP_ACCESS_FLAGS |
1453 IB_QP_ALT_PATH |
1454 IB_QP_PATH_MIG_STATE |
1455 IB_QP_MIN_RNR_TIMER),
1456 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1457 IB_QP_ACCESS_FLAGS |
1458 IB_QP_ALT_PATH |
1459 IB_QP_PATH_MIG_STATE),
1460 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1461 IB_QP_ACCESS_FLAGS |
1462 IB_QP_ALT_PATH |
1463 IB_QP_PATH_MIG_STATE |
1464 IB_QP_MIN_RNR_TIMER),
1465 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1466 IB_QP_QKEY),
1467 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1468 IB_QP_QKEY),
1469 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1470 }
1471 },
1472 [IB_QPS_SQD] = {
1473 .valid = 1,
1474 .opt_param = {
1475 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1476 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1477 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1478 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1479 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1480 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1481 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1482 }
1483 },
1484 },
1485 [IB_QPS_SQD] = {
1486 [IB_QPS_RESET] = { .valid = 1 },
1487 [IB_QPS_ERR] = { .valid = 1 },
1488 [IB_QPS_RTS] = {
1489 .valid = 1,
1490 .opt_param = {
1491 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1492 IB_QP_QKEY),
1493 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1494 IB_QP_ALT_PATH |
1495 IB_QP_ACCESS_FLAGS |
1496 IB_QP_PATH_MIG_STATE),
1497 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1498 IB_QP_ALT_PATH |
1499 IB_QP_ACCESS_FLAGS |
1500 IB_QP_MIN_RNR_TIMER |
1501 IB_QP_PATH_MIG_STATE),
1502 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1503 IB_QP_ALT_PATH |
1504 IB_QP_ACCESS_FLAGS |
1505 IB_QP_PATH_MIG_STATE),
1506 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1507 IB_QP_ALT_PATH |
1508 IB_QP_ACCESS_FLAGS |
1509 IB_QP_MIN_RNR_TIMER |
1510 IB_QP_PATH_MIG_STATE),
1511 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1512 IB_QP_QKEY),
1513 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1514 IB_QP_QKEY),
1515 }
1516 },
1517 [IB_QPS_SQD] = {
1518 .valid = 1,
1519 .opt_param = {
1520 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1521 IB_QP_QKEY),
1522 [IB_QPT_UC] = (IB_QP_AV |
1523 IB_QP_ALT_PATH |
1524 IB_QP_ACCESS_FLAGS |
1525 IB_QP_PKEY_INDEX |
1526 IB_QP_PATH_MIG_STATE),
1527 [IB_QPT_RC] = (IB_QP_PORT |
1528 IB_QP_AV |
1529 IB_QP_TIMEOUT |
1530 IB_QP_RETRY_CNT |
1531 IB_QP_RNR_RETRY |
1532 IB_QP_MAX_QP_RD_ATOMIC |
1533 IB_QP_MAX_DEST_RD_ATOMIC |
1534 IB_QP_ALT_PATH |
1535 IB_QP_ACCESS_FLAGS |
1536 IB_QP_PKEY_INDEX |
1537 IB_QP_MIN_RNR_TIMER |
1538 IB_QP_PATH_MIG_STATE),
1539 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1540 IB_QP_AV |
1541 IB_QP_TIMEOUT |
1542 IB_QP_RETRY_CNT |
1543 IB_QP_RNR_RETRY |
1544 IB_QP_MAX_QP_RD_ATOMIC |
1545 IB_QP_ALT_PATH |
1546 IB_QP_ACCESS_FLAGS |
1547 IB_QP_PKEY_INDEX |
1548 IB_QP_PATH_MIG_STATE),
1549 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1550 IB_QP_AV |
1551 IB_QP_TIMEOUT |
1552 IB_QP_MAX_DEST_RD_ATOMIC |
1553 IB_QP_ALT_PATH |
1554 IB_QP_ACCESS_FLAGS |
1555 IB_QP_PKEY_INDEX |
1556 IB_QP_MIN_RNR_TIMER |
1557 IB_QP_PATH_MIG_STATE),
1558 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1559 IB_QP_QKEY),
1560 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1561 IB_QP_QKEY),
1562 }
1563 }
1564 },
1565 [IB_QPS_SQE] = {
1566 [IB_QPS_RESET] = { .valid = 1 },
1567 [IB_QPS_ERR] = { .valid = 1 },
1568 [IB_QPS_RTS] = {
1569 .valid = 1,
1570 .opt_param = {
1571 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1572 IB_QP_QKEY),
1573 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1574 IB_QP_ACCESS_FLAGS),
1575 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1576 IB_QP_QKEY),
1577 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1578 IB_QP_QKEY),
1579 }
1580 }
1581 },
1582 [IB_QPS_ERR] = {
1583 [IB_QPS_RESET] = { .valid = 1 },
1584 [IB_QPS_ERR] = { .valid = 1 }
1585 }
1586};
1587
1588bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1589 enum ib_qp_type type, enum ib_qp_attr_mask mask)
1590{
1591 enum ib_qp_attr_mask req_param, opt_param;
1592
1593 if (mask & IB_QP_CUR_STATE &&
1594 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1595 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1596 return false;
1597
1598 if (!qp_state_table[cur_state][next_state].valid)
1599 return false;
1600
1601 req_param = qp_state_table[cur_state][next_state].req_param[type];
1602 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1603
1604 if ((mask & req_param) != req_param)
1605 return false;
1606
1607 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1608 return false;
1609
1610 return true;
1611}
1612EXPORT_SYMBOL(ib_modify_qp_is_ok);
1613
1614/**
1615 * ib_resolve_eth_dmac - Resolve destination mac address
1616 * @device: Device to consider
1617 * @ah_attr: address handle attribute which describes the
1618 * source and destination parameters
1619 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1620 * returns 0 on success or appropriate error code. It initializes the
1621 * necessary ah_attr fields when call is successful.
1622 */
1623static int ib_resolve_eth_dmac(struct ib_device *device,
1624 struct rdma_ah_attr *ah_attr)
1625{
1626 int ret = 0;
1627
1628 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1629 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1630 __be32 addr = 0;
1631
1632 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1633 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1634 } else {
1635 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1636 (char *)ah_attr->roce.dmac);
1637 }
1638 } else {
1639 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1640 }
1641 return ret;
1642}
1643
1644static bool is_qp_type_connected(const struct ib_qp *qp)
1645{
1646 return (qp->qp_type == IB_QPT_UC ||
1647 qp->qp_type == IB_QPT_RC ||
1648 qp->qp_type == IB_QPT_XRC_INI ||
1649 qp->qp_type == IB_QPT_XRC_TGT);
1650}
1651
1652/**
1653 * IB core internal function to perform QP attributes modification.
1654 */
1655static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1656 int attr_mask, struct ib_udata *udata)
1657{
1658 u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1659 const struct ib_gid_attr *old_sgid_attr_av;
1660 const struct ib_gid_attr *old_sgid_attr_alt_av;
1661 int ret;
1662
1663 attr->xmit_slave = NULL;
1664 if (attr_mask & IB_QP_AV) {
1665 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1666 &old_sgid_attr_av);
1667 if (ret)
1668 return ret;
1669
1670 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1671 is_qp_type_connected(qp)) {
1672 struct net_device *slave;
1673
1674 /*
1675 * If the user provided the qp_attr then we have to
1676 * resolve it. Kerne users have to provide already
1677 * resolved rdma_ah_attr's.
1678 */
1679 if (udata) {
1680 ret = ib_resolve_eth_dmac(qp->device,
1681 &attr->ah_attr);
1682 if (ret)
1683 goto out_av;
1684 }
1685 slave = rdma_lag_get_ah_roce_slave(qp->device,
1686 &attr->ah_attr,
1687 GFP_KERNEL);
1688 if (IS_ERR(slave))
1689 goto out_av;
1690 attr->xmit_slave = slave;
1691 }
1692 }
1693 if (attr_mask & IB_QP_ALT_PATH) {
1694 /*
1695 * FIXME: This does not track the migration state, so if the
1696 * user loads a new alternate path after the HW has migrated
1697 * from primary->alternate we will keep the wrong
1698 * references. This is OK for IB because the reference
1699 * counting does not serve any functional purpose.
1700 */
1701 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1702 &old_sgid_attr_alt_av);
1703 if (ret)
1704 goto out_av;
1705
1706 /*
1707 * Today the core code can only handle alternate paths and APM
1708 * for IB. Ban them in roce mode.
1709 */
1710 if (!(rdma_protocol_ib(qp->device,
1711 attr->alt_ah_attr.port_num) &&
1712 rdma_protocol_ib(qp->device, port))) {
1713 ret = -EINVAL;
1714 goto out;
1715 }
1716 }
1717
1718 if (rdma_ib_or_roce(qp->device, port)) {
1719 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1720 dev_warn(&qp->device->dev,
1721 "%s rq_psn overflow, masking to 24 bits\n",
1722 __func__);
1723 attr->rq_psn &= 0xffffff;
1724 }
1725
1726 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1727 dev_warn(&qp->device->dev,
1728 " %s sq_psn overflow, masking to 24 bits\n",
1729 __func__);
1730 attr->sq_psn &= 0xffffff;
1731 }
1732 }
1733
1734 /*
1735 * Bind this qp to a counter automatically based on the rdma counter
1736 * rules. This only set in RST2INIT with port specified
1737 */
1738 if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1739 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1740 rdma_counter_bind_qp_auto(qp, attr->port_num);
1741
1742 ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1743 if (ret)
1744 goto out;
1745
1746 if (attr_mask & IB_QP_PORT)
1747 qp->port = attr->port_num;
1748 if (attr_mask & IB_QP_AV)
1749 qp->av_sgid_attr =
1750 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1751 if (attr_mask & IB_QP_ALT_PATH)
1752 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1753 &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1754
1755out:
1756 if (attr_mask & IB_QP_ALT_PATH)
1757 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1758out_av:
1759 if (attr_mask & IB_QP_AV) {
1760 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1761 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1762 }
1763 return ret;
1764}
1765
1766/**
1767 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1768 * @ib_qp: The QP to modify.
1769 * @attr: On input, specifies the QP attributes to modify. On output,
1770 * the current values of selected QP attributes are returned.
1771 * @attr_mask: A bit-mask used to specify which attributes of the QP
1772 * are being modified.
1773 * @udata: pointer to user's input output buffer information
1774 * are being modified.
1775 * It returns 0 on success and returns appropriate error code on error.
1776 */
1777int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1778 int attr_mask, struct ib_udata *udata)
1779{
1780 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1781}
1782EXPORT_SYMBOL(ib_modify_qp_with_udata);
1783
1784int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1785{
1786 int rc;
1787 u32 netdev_speed;
1788 struct net_device *netdev;
1789 struct ethtool_link_ksettings lksettings;
1790
1791 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1792 return -EINVAL;
1793
1794 netdev = ib_device_get_netdev(dev, port_num);
1795 if (!netdev)
1796 return -ENODEV;
1797
1798 rtnl_lock();
1799 rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1800 rtnl_unlock();
1801
1802 dev_put(netdev);
1803
1804 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1805 netdev_speed = lksettings.base.speed;
1806 } else {
1807 netdev_speed = SPEED_1000;
1808 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1809 netdev_speed);
1810 }
1811
1812 if (netdev_speed <= SPEED_1000) {
1813 *width = IB_WIDTH_1X;
1814 *speed = IB_SPEED_SDR;
1815 } else if (netdev_speed <= SPEED_10000) {
1816 *width = IB_WIDTH_1X;
1817 *speed = IB_SPEED_FDR10;
1818 } else if (netdev_speed <= SPEED_20000) {
1819 *width = IB_WIDTH_4X;
1820 *speed = IB_SPEED_DDR;
1821 } else if (netdev_speed <= SPEED_25000) {
1822 *width = IB_WIDTH_1X;
1823 *speed = IB_SPEED_EDR;
1824 } else if (netdev_speed <= SPEED_40000) {
1825 *width = IB_WIDTH_4X;
1826 *speed = IB_SPEED_FDR10;
1827 } else {
1828 *width = IB_WIDTH_4X;
1829 *speed = IB_SPEED_EDR;
1830 }
1831
1832 return 0;
1833}
1834EXPORT_SYMBOL(ib_get_eth_speed);
1835
1836int ib_modify_qp(struct ib_qp *qp,
1837 struct ib_qp_attr *qp_attr,
1838 int qp_attr_mask)
1839{
1840 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1841}
1842EXPORT_SYMBOL(ib_modify_qp);
1843
1844int ib_query_qp(struct ib_qp *qp,
1845 struct ib_qp_attr *qp_attr,
1846 int qp_attr_mask,
1847 struct ib_qp_init_attr *qp_init_attr)
1848{
1849 qp_attr->ah_attr.grh.sgid_attr = NULL;
1850 qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1851
1852 return qp->device->ops.query_qp ?
1853 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1854 qp_init_attr) : -EOPNOTSUPP;
1855}
1856EXPORT_SYMBOL(ib_query_qp);
1857
1858int ib_close_qp(struct ib_qp *qp)
1859{
1860 struct ib_qp *real_qp;
1861 unsigned long flags;
1862
1863 real_qp = qp->real_qp;
1864 if (real_qp == qp)
1865 return -EINVAL;
1866
1867 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1868 list_del(&qp->open_list);
1869 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1870
1871 atomic_dec(&real_qp->usecnt);
1872 if (qp->qp_sec)
1873 ib_close_shared_qp_security(qp->qp_sec);
1874 kfree(qp);
1875
1876 return 0;
1877}
1878EXPORT_SYMBOL(ib_close_qp);
1879
1880static int __ib_destroy_shared_qp(struct ib_qp *qp)
1881{
1882 struct ib_xrcd *xrcd;
1883 struct ib_qp *real_qp;
1884 int ret;
1885
1886 real_qp = qp->real_qp;
1887 xrcd = real_qp->xrcd;
1888 down_write(&xrcd->tgt_qps_rwsem);
1889 ib_close_qp(qp);
1890 if (atomic_read(&real_qp->usecnt) == 0)
1891 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
1892 else
1893 real_qp = NULL;
1894 up_write(&xrcd->tgt_qps_rwsem);
1895
1896 if (real_qp) {
1897 ret = ib_destroy_qp(real_qp);
1898 if (!ret)
1899 atomic_dec(&xrcd->usecnt);
1900 }
1901
1902 return 0;
1903}
1904
1905int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1906{
1907 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1908 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1909 struct ib_pd *pd;
1910 struct ib_cq *scq, *rcq;
1911 struct ib_srq *srq;
1912 struct ib_rwq_ind_table *ind_tbl;
1913 struct ib_qp_security *sec;
1914 int ret;
1915
1916 WARN_ON_ONCE(qp->mrs_used > 0);
1917
1918 if (atomic_read(&qp->usecnt))
1919 return -EBUSY;
1920
1921 if (qp->real_qp != qp)
1922 return __ib_destroy_shared_qp(qp);
1923
1924 pd = qp->pd;
1925 scq = qp->send_cq;
1926 rcq = qp->recv_cq;
1927 srq = qp->srq;
1928 ind_tbl = qp->rwq_ind_tbl;
1929 sec = qp->qp_sec;
1930 if (sec)
1931 ib_destroy_qp_security_begin(sec);
1932
1933 if (!qp->uobject)
1934 rdma_rw_cleanup_mrs(qp);
1935
1936 rdma_counter_unbind_qp(qp, true);
1937 rdma_restrack_del(&qp->res);
1938 ret = qp->device->ops.destroy_qp(qp, udata);
1939 if (!ret) {
1940 if (alt_path_sgid_attr)
1941 rdma_put_gid_attr(alt_path_sgid_attr);
1942 if (av_sgid_attr)
1943 rdma_put_gid_attr(av_sgid_attr);
1944 if (pd)
1945 atomic_dec(&pd->usecnt);
1946 if (scq)
1947 atomic_dec(&scq->usecnt);
1948 if (rcq)
1949 atomic_dec(&rcq->usecnt);
1950 if (srq)
1951 atomic_dec(&srq->usecnt);
1952 if (ind_tbl)
1953 atomic_dec(&ind_tbl->usecnt);
1954 if (sec)
1955 ib_destroy_qp_security_end(sec);
1956 } else {
1957 if (sec)
1958 ib_destroy_qp_security_abort(sec);
1959 }
1960
1961 return ret;
1962}
1963EXPORT_SYMBOL(ib_destroy_qp_user);
1964
1965/* Completion queues */
1966
1967struct ib_cq *__ib_create_cq(struct ib_device *device,
1968 ib_comp_handler comp_handler,
1969 void (*event_handler)(struct ib_event *, void *),
1970 void *cq_context,
1971 const struct ib_cq_init_attr *cq_attr,
1972 const char *caller)
1973{
1974 struct ib_cq *cq;
1975 int ret;
1976
1977 cq = rdma_zalloc_drv_obj(device, ib_cq);
1978 if (!cq)
1979 return ERR_PTR(-ENOMEM);
1980
1981 cq->device = device;
1982 cq->uobject = NULL;
1983 cq->comp_handler = comp_handler;
1984 cq->event_handler = event_handler;
1985 cq->cq_context = cq_context;
1986 atomic_set(&cq->usecnt, 0);
1987 cq->res.type = RDMA_RESTRACK_CQ;
1988 rdma_restrack_set_task(&cq->res, caller);
1989
1990 ret = device->ops.create_cq(cq, cq_attr, NULL);
1991 if (ret) {
1992 kfree(cq);
1993 return ERR_PTR(ret);
1994 }
1995
1996 rdma_restrack_kadd(&cq->res);
1997 return cq;
1998}
1999EXPORT_SYMBOL(__ib_create_cq);
2000
2001int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2002{
2003 if (cq->shared)
2004 return -EOPNOTSUPP;
2005
2006 return cq->device->ops.modify_cq ?
2007 cq->device->ops.modify_cq(cq, cq_count,
2008 cq_period) : -EOPNOTSUPP;
2009}
2010EXPORT_SYMBOL(rdma_set_cq_moderation);
2011
2012int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2013{
2014 if (WARN_ON_ONCE(cq->shared))
2015 return -EOPNOTSUPP;
2016
2017 if (atomic_read(&cq->usecnt))
2018 return -EBUSY;
2019
2020 rdma_restrack_del(&cq->res);
2021 cq->device->ops.destroy_cq(cq, udata);
2022 kfree(cq);
2023 return 0;
2024}
2025EXPORT_SYMBOL(ib_destroy_cq_user);
2026
2027int ib_resize_cq(struct ib_cq *cq, int cqe)
2028{
2029 if (cq->shared)
2030 return -EOPNOTSUPP;
2031
2032 return cq->device->ops.resize_cq ?
2033 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2034}
2035EXPORT_SYMBOL(ib_resize_cq);
2036
2037/* Memory regions */
2038
2039struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2040 u64 virt_addr, int access_flags)
2041{
2042 struct ib_mr *mr;
2043
2044 if (access_flags & IB_ACCESS_ON_DEMAND) {
2045 if (!(pd->device->attrs.device_cap_flags &
2046 IB_DEVICE_ON_DEMAND_PAGING)) {
2047 pr_debug("ODP support not available\n");
2048 return ERR_PTR(-EINVAL);
2049 }
2050 }
2051
2052 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2053 access_flags, NULL);
2054
2055 if (IS_ERR(mr))
2056 return mr;
2057
2058 mr->device = pd->device;
2059 mr->pd = pd;
2060 mr->dm = NULL;
2061 atomic_inc(&pd->usecnt);
2062 mr->res.type = RDMA_RESTRACK_MR;
2063 rdma_restrack_kadd(&mr->res);
2064
2065 return mr;
2066}
2067EXPORT_SYMBOL(ib_reg_user_mr);
2068
2069int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2070 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2071{
2072 if (!pd->device->ops.advise_mr)
2073 return -EOPNOTSUPP;
2074
2075 if (!num_sge)
2076 return 0;
2077
2078 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2079 NULL);
2080}
2081EXPORT_SYMBOL(ib_advise_mr);
2082
2083int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2084{
2085 struct ib_pd *pd = mr->pd;
2086 struct ib_dm *dm = mr->dm;
2087 struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2088 int ret;
2089
2090 trace_mr_dereg(mr);
2091 rdma_restrack_del(&mr->res);
2092 ret = mr->device->ops.dereg_mr(mr, udata);
2093 if (!ret) {
2094 atomic_dec(&pd->usecnt);
2095 if (dm)
2096 atomic_dec(&dm->usecnt);
2097 kfree(sig_attrs);
2098 }
2099
2100 return ret;
2101}
2102EXPORT_SYMBOL(ib_dereg_mr_user);
2103
2104/**
2105 * ib_alloc_mr() - Allocates a memory region
2106 * @pd: protection domain associated with the region
2107 * @mr_type: memory region type
2108 * @max_num_sg: maximum sg entries available for registration.
2109 *
2110 * Notes:
2111 * Memory registeration page/sg lists must not exceed max_num_sg.
2112 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2113 * max_num_sg * used_page_size.
2114 *
2115 */
2116struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2117 u32 max_num_sg)
2118{
2119 struct ib_mr *mr;
2120
2121 if (!pd->device->ops.alloc_mr) {
2122 mr = ERR_PTR(-EOPNOTSUPP);
2123 goto out;
2124 }
2125
2126 if (mr_type == IB_MR_TYPE_INTEGRITY) {
2127 WARN_ON_ONCE(1);
2128 mr = ERR_PTR(-EINVAL);
2129 goto out;
2130 }
2131
2132 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2133 if (IS_ERR(mr))
2134 goto out;
2135
2136 mr->device = pd->device;
2137 mr->pd = pd;
2138 mr->dm = NULL;
2139 mr->uobject = NULL;
2140 atomic_inc(&pd->usecnt);
2141 mr->need_inval = false;
2142 mr->res.type = RDMA_RESTRACK_MR;
2143 rdma_restrack_kadd(&mr->res);
2144 mr->type = mr_type;
2145 mr->sig_attrs = NULL;
2146
2147out:
2148 trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2149 return mr;
2150}
2151EXPORT_SYMBOL(ib_alloc_mr);
2152
2153/**
2154 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2155 * @pd: protection domain associated with the region
2156 * @max_num_data_sg: maximum data sg entries available for registration
2157 * @max_num_meta_sg: maximum metadata sg entries available for
2158 * registration
2159 *
2160 * Notes:
2161 * Memory registration page/sg lists must not exceed max_num_sg,
2162 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2163 *
2164 */
2165struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2166 u32 max_num_data_sg,
2167 u32 max_num_meta_sg)
2168{
2169 struct ib_mr *mr;
2170 struct ib_sig_attrs *sig_attrs;
2171
2172 if (!pd->device->ops.alloc_mr_integrity ||
2173 !pd->device->ops.map_mr_sg_pi) {
2174 mr = ERR_PTR(-EOPNOTSUPP);
2175 goto out;
2176 }
2177
2178 if (!max_num_meta_sg) {
2179 mr = ERR_PTR(-EINVAL);
2180 goto out;
2181 }
2182
2183 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2184 if (!sig_attrs) {
2185 mr = ERR_PTR(-ENOMEM);
2186 goto out;
2187 }
2188
2189 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2190 max_num_meta_sg);
2191 if (IS_ERR(mr)) {
2192 kfree(sig_attrs);
2193 goto out;
2194 }
2195
2196 mr->device = pd->device;
2197 mr->pd = pd;
2198 mr->dm = NULL;
2199 mr->uobject = NULL;
2200 atomic_inc(&pd->usecnt);
2201 mr->need_inval = false;
2202 mr->res.type = RDMA_RESTRACK_MR;
2203 rdma_restrack_kadd(&mr->res);
2204 mr->type = IB_MR_TYPE_INTEGRITY;
2205 mr->sig_attrs = sig_attrs;
2206
2207out:
2208 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2209 return mr;
2210}
2211EXPORT_SYMBOL(ib_alloc_mr_integrity);
2212
2213/* Multicast groups */
2214
2215static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2216{
2217 struct ib_qp_init_attr init_attr = {};
2218 struct ib_qp_attr attr = {};
2219 int num_eth_ports = 0;
2220 int port;
2221
2222 /* If QP state >= init, it is assigned to a port and we can check this
2223 * port only.
2224 */
2225 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2226 if (attr.qp_state >= IB_QPS_INIT) {
2227 if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2228 IB_LINK_LAYER_INFINIBAND)
2229 return true;
2230 goto lid_check;
2231 }
2232 }
2233
2234 /* Can't get a quick answer, iterate over all ports */
2235 for (port = 0; port < qp->device->phys_port_cnt; port++)
2236 if (rdma_port_get_link_layer(qp->device, port) !=
2237 IB_LINK_LAYER_INFINIBAND)
2238 num_eth_ports++;
2239
2240 /* If we have at lease one Ethernet port, RoCE annex declares that
2241 * multicast LID should be ignored. We can't tell at this step if the
2242 * QP belongs to an IB or Ethernet port.
2243 */
2244 if (num_eth_ports)
2245 return true;
2246
2247 /* If all the ports are IB, we can check according to IB spec. */
2248lid_check:
2249 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2250 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2251}
2252
2253int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2254{
2255 int ret;
2256
2257 if (!qp->device->ops.attach_mcast)
2258 return -EOPNOTSUPP;
2259
2260 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2261 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2262 return -EINVAL;
2263
2264 ret = qp->device->ops.attach_mcast(qp, gid, lid);
2265 if (!ret)
2266 atomic_inc(&qp->usecnt);
2267 return ret;
2268}
2269EXPORT_SYMBOL(ib_attach_mcast);
2270
2271int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2272{
2273 int ret;
2274
2275 if (!qp->device->ops.detach_mcast)
2276 return -EOPNOTSUPP;
2277
2278 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2279 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2280 return -EINVAL;
2281
2282 ret = qp->device->ops.detach_mcast(qp, gid, lid);
2283 if (!ret)
2284 atomic_dec(&qp->usecnt);
2285 return ret;
2286}
2287EXPORT_SYMBOL(ib_detach_mcast);
2288
2289/**
2290 * ib_alloc_xrcd_user - Allocates an XRC domain.
2291 * @device: The device on which to allocate the XRC domain.
2292 * @inode: inode to connect XRCD
2293 * @udata: Valid user data or NULL for kernel object
2294 */
2295struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2296 struct inode *inode, struct ib_udata *udata)
2297{
2298 struct ib_xrcd *xrcd;
2299 int ret;
2300
2301 if (!device->ops.alloc_xrcd)
2302 return ERR_PTR(-EOPNOTSUPP);
2303
2304 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2305 if (!xrcd)
2306 return ERR_PTR(-ENOMEM);
2307
2308 xrcd->device = device;
2309 xrcd->inode = inode;
2310 atomic_set(&xrcd->usecnt, 0);
2311 init_rwsem(&xrcd->tgt_qps_rwsem);
2312 xa_init(&xrcd->tgt_qps);
2313
2314 ret = device->ops.alloc_xrcd(xrcd, udata);
2315 if (ret)
2316 goto err;
2317 return xrcd;
2318err:
2319 kfree(xrcd);
2320 return ERR_PTR(ret);
2321}
2322EXPORT_SYMBOL(ib_alloc_xrcd_user);
2323
2324/**
2325 * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2326 * @xrcd: The XRC domain to deallocate.
2327 * @udata: Valid user data or NULL for kernel object
2328 */
2329int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2330{
2331 if (atomic_read(&xrcd->usecnt))
2332 return -EBUSY;
2333
2334 WARN_ON(!xa_empty(&xrcd->tgt_qps));
2335 xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2336 kfree(xrcd);
2337 return 0;
2338}
2339EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2340
2341/**
2342 * ib_create_wq - Creates a WQ associated with the specified protection
2343 * domain.
2344 * @pd: The protection domain associated with the WQ.
2345 * @wq_attr: A list of initial attributes required to create the
2346 * WQ. If WQ creation succeeds, then the attributes are updated to
2347 * the actual capabilities of the created WQ.
2348 *
2349 * wq_attr->max_wr and wq_attr->max_sge determine
2350 * the requested size of the WQ, and set to the actual values allocated
2351 * on return.
2352 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2353 * at least as large as the requested values.
2354 */
2355struct ib_wq *ib_create_wq(struct ib_pd *pd,
2356 struct ib_wq_init_attr *wq_attr)
2357{
2358 struct ib_wq *wq;
2359
2360 if (!pd->device->ops.create_wq)
2361 return ERR_PTR(-EOPNOTSUPP);
2362
2363 wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2364 if (!IS_ERR(wq)) {
2365 wq->event_handler = wq_attr->event_handler;
2366 wq->wq_context = wq_attr->wq_context;
2367 wq->wq_type = wq_attr->wq_type;
2368 wq->cq = wq_attr->cq;
2369 wq->device = pd->device;
2370 wq->pd = pd;
2371 wq->uobject = NULL;
2372 atomic_inc(&pd->usecnt);
2373 atomic_inc(&wq_attr->cq->usecnt);
2374 atomic_set(&wq->usecnt, 0);
2375 }
2376 return wq;
2377}
2378EXPORT_SYMBOL(ib_create_wq);
2379
2380/**
2381 * ib_destroy_wq - Destroys the specified user WQ.
2382 * @wq: The WQ to destroy.
2383 * @udata: Valid user data
2384 */
2385int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata)
2386{
2387 struct ib_cq *cq = wq->cq;
2388 struct ib_pd *pd = wq->pd;
2389
2390 if (atomic_read(&wq->usecnt))
2391 return -EBUSY;
2392
2393 wq->device->ops.destroy_wq(wq, udata);
2394 atomic_dec(&pd->usecnt);
2395 atomic_dec(&cq->usecnt);
2396
2397 return 0;
2398}
2399EXPORT_SYMBOL(ib_destroy_wq);
2400
2401/**
2402 * ib_modify_wq - Modifies the specified WQ.
2403 * @wq: The WQ to modify.
2404 * @wq_attr: On input, specifies the WQ attributes to modify.
2405 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2406 * are being modified.
2407 * On output, the current values of selected WQ attributes are returned.
2408 */
2409int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2410 u32 wq_attr_mask)
2411{
2412 int err;
2413
2414 if (!wq->device->ops.modify_wq)
2415 return -EOPNOTSUPP;
2416
2417 err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2418 return err;
2419}
2420EXPORT_SYMBOL(ib_modify_wq);
2421
2422/*
2423 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2424 * @wq_ind_table: The Indirection Table to destroy.
2425*/
2426int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
2427{
2428 int err, i;
2429 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
2430 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
2431
2432 if (atomic_read(&rwq_ind_table->usecnt))
2433 return -EBUSY;
2434
2435 err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table);
2436 if (!err) {
2437 for (i = 0; i < table_size; i++)
2438 atomic_dec(&ind_tbl[i]->usecnt);
2439 }
2440
2441 return err;
2442}
2443EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
2444
2445int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2446 struct ib_mr_status *mr_status)
2447{
2448 if (!mr->device->ops.check_mr_status)
2449 return -EOPNOTSUPP;
2450
2451 return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2452}
2453EXPORT_SYMBOL(ib_check_mr_status);
2454
2455int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2456 int state)
2457{
2458 if (!device->ops.set_vf_link_state)
2459 return -EOPNOTSUPP;
2460
2461 return device->ops.set_vf_link_state(device, vf, port, state);
2462}
2463EXPORT_SYMBOL(ib_set_vf_link_state);
2464
2465int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2466 struct ifla_vf_info *info)
2467{
2468 if (!device->ops.get_vf_config)
2469 return -EOPNOTSUPP;
2470
2471 return device->ops.get_vf_config(device, vf, port, info);
2472}
2473EXPORT_SYMBOL(ib_get_vf_config);
2474
2475int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2476 struct ifla_vf_stats *stats)
2477{
2478 if (!device->ops.get_vf_stats)
2479 return -EOPNOTSUPP;
2480
2481 return device->ops.get_vf_stats(device, vf, port, stats);
2482}
2483EXPORT_SYMBOL(ib_get_vf_stats);
2484
2485int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2486 int type)
2487{
2488 if (!device->ops.set_vf_guid)
2489 return -EOPNOTSUPP;
2490
2491 return device->ops.set_vf_guid(device, vf, port, guid, type);
2492}
2493EXPORT_SYMBOL(ib_set_vf_guid);
2494
2495int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
2496 struct ifla_vf_guid *node_guid,
2497 struct ifla_vf_guid *port_guid)
2498{
2499 if (!device->ops.get_vf_guid)
2500 return -EOPNOTSUPP;
2501
2502 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2503}
2504EXPORT_SYMBOL(ib_get_vf_guid);
2505/**
2506 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2507 * information) and set an appropriate memory region for registration.
2508 * @mr: memory region
2509 * @data_sg: dma mapped scatterlist for data
2510 * @data_sg_nents: number of entries in data_sg
2511 * @data_sg_offset: offset in bytes into data_sg
2512 * @meta_sg: dma mapped scatterlist for metadata
2513 * @meta_sg_nents: number of entries in meta_sg
2514 * @meta_sg_offset: offset in bytes into meta_sg
2515 * @page_size: page vector desired page size
2516 *
2517 * Constraints:
2518 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2519 *
2520 * Return: 0 on success.
2521 *
2522 * After this completes successfully, the memory region
2523 * is ready for registration.
2524 */
2525int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2526 int data_sg_nents, unsigned int *data_sg_offset,
2527 struct scatterlist *meta_sg, int meta_sg_nents,
2528 unsigned int *meta_sg_offset, unsigned int page_size)
2529{
2530 if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2531 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2532 return -EOPNOTSUPP;
2533
2534 mr->page_size = page_size;
2535
2536 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2537 data_sg_offset, meta_sg,
2538 meta_sg_nents, meta_sg_offset);
2539}
2540EXPORT_SYMBOL(ib_map_mr_sg_pi);
2541
2542/**
2543 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2544 * and set it the memory region.
2545 * @mr: memory region
2546 * @sg: dma mapped scatterlist
2547 * @sg_nents: number of entries in sg
2548 * @sg_offset: offset in bytes into sg
2549 * @page_size: page vector desired page size
2550 *
2551 * Constraints:
2552 *
2553 * - The first sg element is allowed to have an offset.
2554 * - Each sg element must either be aligned to page_size or virtually
2555 * contiguous to the previous element. In case an sg element has a
2556 * non-contiguous offset, the mapping prefix will not include it.
2557 * - The last sg element is allowed to have length less than page_size.
2558 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2559 * then only max_num_sg entries will be mapped.
2560 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2561 * constraints holds and the page_size argument is ignored.
2562 *
2563 * Returns the number of sg elements that were mapped to the memory region.
2564 *
2565 * After this completes successfully, the memory region
2566 * is ready for registration.
2567 */
2568int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2569 unsigned int *sg_offset, unsigned int page_size)
2570{
2571 if (unlikely(!mr->device->ops.map_mr_sg))
2572 return -EOPNOTSUPP;
2573
2574 mr->page_size = page_size;
2575
2576 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2577}
2578EXPORT_SYMBOL(ib_map_mr_sg);
2579
2580/**
2581 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2582 * to a page vector
2583 * @mr: memory region
2584 * @sgl: dma mapped scatterlist
2585 * @sg_nents: number of entries in sg
2586 * @sg_offset_p: ==== =======================================================
2587 * IN start offset in bytes into sg
2588 * OUT offset in bytes for element n of the sg of the first
2589 * byte that has not been processed where n is the return
2590 * value of this function.
2591 * ==== =======================================================
2592 * @set_page: driver page assignment function pointer
2593 *
2594 * Core service helper for drivers to convert the largest
2595 * prefix of given sg list to a page vector. The sg list
2596 * prefix converted is the prefix that meet the requirements
2597 * of ib_map_mr_sg.
2598 *
2599 * Returns the number of sg elements that were assigned to
2600 * a page vector.
2601 */
2602int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2603 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2604{
2605 struct scatterlist *sg;
2606 u64 last_end_dma_addr = 0;
2607 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2608 unsigned int last_page_off = 0;
2609 u64 page_mask = ~((u64)mr->page_size - 1);
2610 int i, ret;
2611
2612 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2613 return -EINVAL;
2614
2615 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2616 mr->length = 0;
2617
2618 for_each_sg(sgl, sg, sg_nents, i) {
2619 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2620 u64 prev_addr = dma_addr;
2621 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2622 u64 end_dma_addr = dma_addr + dma_len;
2623 u64 page_addr = dma_addr & page_mask;
2624
2625 /*
2626 * For the second and later elements, check whether either the
2627 * end of element i-1 or the start of element i is not aligned
2628 * on a page boundary.
2629 */
2630 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2631 /* Stop mapping if there is a gap. */
2632 if (last_end_dma_addr != dma_addr)
2633 break;
2634
2635 /*
2636 * Coalesce this element with the last. If it is small
2637 * enough just update mr->length. Otherwise start
2638 * mapping from the next page.
2639 */
2640 goto next_page;
2641 }
2642
2643 do {
2644 ret = set_page(mr, page_addr);
2645 if (unlikely(ret < 0)) {
2646 sg_offset = prev_addr - sg_dma_address(sg);
2647 mr->length += prev_addr - dma_addr;
2648 if (sg_offset_p)
2649 *sg_offset_p = sg_offset;
2650 return i || sg_offset ? i : ret;
2651 }
2652 prev_addr = page_addr;
2653next_page:
2654 page_addr += mr->page_size;
2655 } while (page_addr < end_dma_addr);
2656
2657 mr->length += dma_len;
2658 last_end_dma_addr = end_dma_addr;
2659 last_page_off = end_dma_addr & ~page_mask;
2660
2661 sg_offset = 0;
2662 }
2663
2664 if (sg_offset_p)
2665 *sg_offset_p = 0;
2666 return i;
2667}
2668EXPORT_SYMBOL(ib_sg_to_pages);
2669
2670struct ib_drain_cqe {
2671 struct ib_cqe cqe;
2672 struct completion done;
2673};
2674
2675static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2676{
2677 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2678 cqe);
2679
2680 complete(&cqe->done);
2681}
2682
2683/*
2684 * Post a WR and block until its completion is reaped for the SQ.
2685 */
2686static void __ib_drain_sq(struct ib_qp *qp)
2687{
2688 struct ib_cq *cq = qp->send_cq;
2689 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2690 struct ib_drain_cqe sdrain;
2691 struct ib_rdma_wr swr = {
2692 .wr = {
2693 .next = NULL,
2694 { .wr_cqe = &sdrain.cqe, },
2695 .opcode = IB_WR_RDMA_WRITE,
2696 },
2697 };
2698 int ret;
2699
2700 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2701 if (ret) {
2702 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2703 return;
2704 }
2705
2706 sdrain.cqe.done = ib_drain_qp_done;
2707 init_completion(&sdrain.done);
2708
2709 ret = ib_post_send(qp, &swr.wr, NULL);
2710 if (ret) {
2711 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2712 return;
2713 }
2714
2715 if (cq->poll_ctx == IB_POLL_DIRECT)
2716 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2717 ib_process_cq_direct(cq, -1);
2718 else
2719 wait_for_completion(&sdrain.done);
2720}
2721
2722/*
2723 * Post a WR and block until its completion is reaped for the RQ.
2724 */
2725static void __ib_drain_rq(struct ib_qp *qp)
2726{
2727 struct ib_cq *cq = qp->recv_cq;
2728 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2729 struct ib_drain_cqe rdrain;
2730 struct ib_recv_wr rwr = {};
2731 int ret;
2732
2733 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2734 if (ret) {
2735 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2736 return;
2737 }
2738
2739 rwr.wr_cqe = &rdrain.cqe;
2740 rdrain.cqe.done = ib_drain_qp_done;
2741 init_completion(&rdrain.done);
2742
2743 ret = ib_post_recv(qp, &rwr, NULL);
2744 if (ret) {
2745 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2746 return;
2747 }
2748
2749 if (cq->poll_ctx == IB_POLL_DIRECT)
2750 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2751 ib_process_cq_direct(cq, -1);
2752 else
2753 wait_for_completion(&rdrain.done);
2754}
2755
2756/**
2757 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2758 * application.
2759 * @qp: queue pair to drain
2760 *
2761 * If the device has a provider-specific drain function, then
2762 * call that. Otherwise call the generic drain function
2763 * __ib_drain_sq().
2764 *
2765 * The caller must:
2766 *
2767 * ensure there is room in the CQ and SQ for the drain work request and
2768 * completion.
2769 *
2770 * allocate the CQ using ib_alloc_cq().
2771 *
2772 * ensure that there are no other contexts that are posting WRs concurrently.
2773 * Otherwise the drain is not guaranteed.
2774 */
2775void ib_drain_sq(struct ib_qp *qp)
2776{
2777 if (qp->device->ops.drain_sq)
2778 qp->device->ops.drain_sq(qp);
2779 else
2780 __ib_drain_sq(qp);
2781 trace_cq_drain_complete(qp->send_cq);
2782}
2783EXPORT_SYMBOL(ib_drain_sq);
2784
2785/**
2786 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2787 * application.
2788 * @qp: queue pair to drain
2789 *
2790 * If the device has a provider-specific drain function, then
2791 * call that. Otherwise call the generic drain function
2792 * __ib_drain_rq().
2793 *
2794 * The caller must:
2795 *
2796 * ensure there is room in the CQ and RQ for the drain work request and
2797 * completion.
2798 *
2799 * allocate the CQ using ib_alloc_cq().
2800 *
2801 * ensure that there are no other contexts that are posting WRs concurrently.
2802 * Otherwise the drain is not guaranteed.
2803 */
2804void ib_drain_rq(struct ib_qp *qp)
2805{
2806 if (qp->device->ops.drain_rq)
2807 qp->device->ops.drain_rq(qp);
2808 else
2809 __ib_drain_rq(qp);
2810 trace_cq_drain_complete(qp->recv_cq);
2811}
2812EXPORT_SYMBOL(ib_drain_rq);
2813
2814/**
2815 * ib_drain_qp() - Block until all CQEs have been consumed by the
2816 * application on both the RQ and SQ.
2817 * @qp: queue pair to drain
2818 *
2819 * The caller must:
2820 *
2821 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2822 * and completions.
2823 *
2824 * allocate the CQs using ib_alloc_cq().
2825 *
2826 * ensure that there are no other contexts that are posting WRs concurrently.
2827 * Otherwise the drain is not guaranteed.
2828 */
2829void ib_drain_qp(struct ib_qp *qp)
2830{
2831 ib_drain_sq(qp);
2832 if (!qp->srq)
2833 ib_drain_rq(qp);
2834}
2835EXPORT_SYMBOL(ib_drain_qp);
2836
2837struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
2838 enum rdma_netdev_t type, const char *name,
2839 unsigned char name_assign_type,
2840 void (*setup)(struct net_device *))
2841{
2842 struct rdma_netdev_alloc_params params;
2843 struct net_device *netdev;
2844 int rc;
2845
2846 if (!device->ops.rdma_netdev_get_params)
2847 return ERR_PTR(-EOPNOTSUPP);
2848
2849 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2850 ¶ms);
2851 if (rc)
2852 return ERR_PTR(rc);
2853
2854 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2855 setup, params.txqs, params.rxqs);
2856 if (!netdev)
2857 return ERR_PTR(-ENOMEM);
2858
2859 return netdev;
2860}
2861EXPORT_SYMBOL(rdma_alloc_netdev);
2862
2863int rdma_init_netdev(struct ib_device *device, u8 port_num,
2864 enum rdma_netdev_t type, const char *name,
2865 unsigned char name_assign_type,
2866 void (*setup)(struct net_device *),
2867 struct net_device *netdev)
2868{
2869 struct rdma_netdev_alloc_params params;
2870 int rc;
2871
2872 if (!device->ops.rdma_netdev_get_params)
2873 return -EOPNOTSUPP;
2874
2875 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2876 ¶ms);
2877 if (rc)
2878 return rc;
2879
2880 return params.initialize_rdma_netdev(device, port_num,
2881 netdev, params.param);
2882}
2883EXPORT_SYMBOL(rdma_init_netdev);
2884
2885void __rdma_block_iter_start(struct ib_block_iter *biter,
2886 struct scatterlist *sglist, unsigned int nents,
2887 unsigned long pgsz)
2888{
2889 memset(biter, 0, sizeof(struct ib_block_iter));
2890 biter->__sg = sglist;
2891 biter->__sg_nents = nents;
2892
2893 /* Driver provides best block size to use */
2894 biter->__pg_bit = __fls(pgsz);
2895}
2896EXPORT_SYMBOL(__rdma_block_iter_start);
2897
2898bool __rdma_block_iter_next(struct ib_block_iter *biter)
2899{
2900 unsigned int block_offset;
2901
2902 if (!biter->__sg_nents || !biter->__sg)
2903 return false;
2904
2905 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2906 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2907 biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2908
2909 if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2910 biter->__sg_advance = 0;
2911 biter->__sg = sg_next(biter->__sg);
2912 biter->__sg_nents--;
2913 }
2914
2915 return true;
2916}
2917EXPORT_SYMBOL(__rdma_block_iter_next);