Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright (c) 2004 Topspin Communications. All rights reserved.
3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35#include <linux/string.h>
36#include <linux/errno.h>
37#include <linux/kernel.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/netdevice.h>
41#include <net/net_namespace.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/hashtable.h>
45#include <rdma/rdma_netlink.h>
46#include <rdma/ib_addr.h>
47#include <rdma/ib_cache.h>
48#include <rdma/rdma_counter.h>
49
50#include "core_priv.h"
51#include "restrack.h"
52
53MODULE_AUTHOR("Roland Dreier");
54MODULE_DESCRIPTION("core kernel InfiniBand API");
55MODULE_LICENSE("Dual BSD/GPL");
56
57struct workqueue_struct *ib_comp_wq;
58struct workqueue_struct *ib_comp_unbound_wq;
59struct workqueue_struct *ib_wq;
60EXPORT_SYMBOL_GPL(ib_wq);
61
62/*
63 * Each of the three rwsem locks (devices, clients, client_data) protects the
64 * xarray of the same name. Specifically it allows the caller to assert that
65 * the MARK will/will not be changing under the lock, and for devices and
66 * clients, that the value in the xarray is still a valid pointer. Change of
67 * the MARK is linked to the object state, so holding the lock and testing the
68 * MARK also asserts that the contained object is in a certain state.
69 *
70 * This is used to build a two stage register/unregister flow where objects
71 * can continue to be in the xarray even though they are still in progress to
72 * register/unregister.
73 *
74 * The xarray itself provides additional locking, and restartable iteration,
75 * which is also relied on.
76 *
77 * Locks should not be nested, with the exception of client_data, which is
78 * allowed to nest under the read side of the other two locks.
79 *
80 * The devices_rwsem also protects the device name list, any change or
81 * assignment of device name must also hold the write side to guarantee unique
82 * names.
83 */
84
85/*
86 * devices contains devices that have had their names assigned. The
87 * devices may not be registered. Users that care about the registration
88 * status need to call ib_device_try_get() on the device to ensure it is
89 * registered, and keep it registered, for the required duration.
90 *
91 */
92static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
93static DECLARE_RWSEM(devices_rwsem);
94#define DEVICE_REGISTERED XA_MARK_1
95
96static u32 highest_client_id;
97#define CLIENT_REGISTERED XA_MARK_1
98static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
99static DECLARE_RWSEM(clients_rwsem);
100
101static void ib_client_put(struct ib_client *client)
102{
103 if (refcount_dec_and_test(&client->uses))
104 complete(&client->uses_zero);
105}
106
107/*
108 * If client_data is registered then the corresponding client must also still
109 * be registered.
110 */
111#define CLIENT_DATA_REGISTERED XA_MARK_1
112
113unsigned int rdma_dev_net_id;
114
115/*
116 * A list of net namespaces is maintained in an xarray. This is necessary
117 * because we can't get the locking right using the existing net ns list. We
118 * would require a init_net callback after the list is updated.
119 */
120static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
121/*
122 * rwsem to protect accessing the rdma_nets xarray entries.
123 */
124static DECLARE_RWSEM(rdma_nets_rwsem);
125
126bool ib_devices_shared_netns = true;
127module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
128MODULE_PARM_DESC(netns_mode,
129 "Share device among net namespaces; default=1 (shared)");
130/**
131 * rdma_dev_access_netns() - Return whether an rdma device can be accessed
132 * from a specified net namespace or not.
133 * @dev: Pointer to rdma device which needs to be checked
134 * @net: Pointer to net namesapce for which access to be checked
135 *
136 * When the rdma device is in shared mode, it ignores the net namespace.
137 * When the rdma device is exclusive to a net namespace, rdma device net
138 * namespace is checked against the specified one.
139 */
140bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
141{
142 return (ib_devices_shared_netns ||
143 net_eq(read_pnet(&dev->coredev.rdma_net), net));
144}
145EXPORT_SYMBOL(rdma_dev_access_netns);
146
147/*
148 * xarray has this behavior where it won't iterate over NULL values stored in
149 * allocated arrays. So we need our own iterator to see all values stored in
150 * the array. This does the same thing as xa_for_each except that it also
151 * returns NULL valued entries if the array is allocating. Simplified to only
152 * work on simple xarrays.
153 */
154static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
155 xa_mark_t filter)
156{
157 XA_STATE(xas, xa, *indexp);
158 void *entry;
159
160 rcu_read_lock();
161 do {
162 entry = xas_find_marked(&xas, ULONG_MAX, filter);
163 if (xa_is_zero(entry))
164 break;
165 } while (xas_retry(&xas, entry));
166 rcu_read_unlock();
167
168 if (entry) {
169 *indexp = xas.xa_index;
170 if (xa_is_zero(entry))
171 return NULL;
172 return entry;
173 }
174 return XA_ERROR(-ENOENT);
175}
176#define xan_for_each_marked(xa, index, entry, filter) \
177 for (index = 0, entry = xan_find_marked(xa, &(index), filter); \
178 !xa_is_err(entry); \
179 (index)++, entry = xan_find_marked(xa, &(index), filter))
180
181/* RCU hash table mapping netdevice pointers to struct ib_port_data */
182static DEFINE_SPINLOCK(ndev_hash_lock);
183static DECLARE_HASHTABLE(ndev_hash, 5);
184
185static void free_netdevs(struct ib_device *ib_dev);
186static void ib_unregister_work(struct work_struct *work);
187static void __ib_unregister_device(struct ib_device *device);
188static int ib_security_change(struct notifier_block *nb, unsigned long event,
189 void *lsm_data);
190static void ib_policy_change_task(struct work_struct *work);
191static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
192
193static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
194 struct va_format *vaf)
195{
196 if (ibdev && ibdev->dev.parent)
197 dev_printk_emit(level[1] - '0',
198 ibdev->dev.parent,
199 "%s %s %s: %pV",
200 dev_driver_string(ibdev->dev.parent),
201 dev_name(ibdev->dev.parent),
202 dev_name(&ibdev->dev),
203 vaf);
204 else if (ibdev)
205 printk("%s%s: %pV",
206 level, dev_name(&ibdev->dev), vaf);
207 else
208 printk("%s(NULL ib_device): %pV", level, vaf);
209}
210
211void ibdev_printk(const char *level, const struct ib_device *ibdev,
212 const char *format, ...)
213{
214 struct va_format vaf;
215 va_list args;
216
217 va_start(args, format);
218
219 vaf.fmt = format;
220 vaf.va = &args;
221
222 __ibdev_printk(level, ibdev, &vaf);
223
224 va_end(args);
225}
226EXPORT_SYMBOL(ibdev_printk);
227
228#define define_ibdev_printk_level(func, level) \
229void func(const struct ib_device *ibdev, const char *fmt, ...) \
230{ \
231 struct va_format vaf; \
232 va_list args; \
233 \
234 va_start(args, fmt); \
235 \
236 vaf.fmt = fmt; \
237 vaf.va = &args; \
238 \
239 __ibdev_printk(level, ibdev, &vaf); \
240 \
241 va_end(args); \
242} \
243EXPORT_SYMBOL(func);
244
245define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
246define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
247define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
248define_ibdev_printk_level(ibdev_err, KERN_ERR);
249define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
250define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
251define_ibdev_printk_level(ibdev_info, KERN_INFO);
252
253static struct notifier_block ibdev_lsm_nb = {
254 .notifier_call = ib_security_change,
255};
256
257static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
258 struct net *net);
259
260/* Pointer to the RCU head at the start of the ib_port_data array */
261struct ib_port_data_rcu {
262 struct rcu_head rcu_head;
263 struct ib_port_data pdata[];
264};
265
266static void ib_device_check_mandatory(struct ib_device *device)
267{
268#define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
269 static const struct {
270 size_t offset;
271 char *name;
272 } mandatory_table[] = {
273 IB_MANDATORY_FUNC(query_device),
274 IB_MANDATORY_FUNC(query_port),
275 IB_MANDATORY_FUNC(alloc_pd),
276 IB_MANDATORY_FUNC(dealloc_pd),
277 IB_MANDATORY_FUNC(create_qp),
278 IB_MANDATORY_FUNC(modify_qp),
279 IB_MANDATORY_FUNC(destroy_qp),
280 IB_MANDATORY_FUNC(post_send),
281 IB_MANDATORY_FUNC(post_recv),
282 IB_MANDATORY_FUNC(create_cq),
283 IB_MANDATORY_FUNC(destroy_cq),
284 IB_MANDATORY_FUNC(poll_cq),
285 IB_MANDATORY_FUNC(req_notify_cq),
286 IB_MANDATORY_FUNC(get_dma_mr),
287 IB_MANDATORY_FUNC(dereg_mr),
288 IB_MANDATORY_FUNC(get_port_immutable)
289 };
290 int i;
291
292 device->kverbs_provider = true;
293 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
294 if (!*(void **) ((void *) &device->ops +
295 mandatory_table[i].offset)) {
296 device->kverbs_provider = false;
297 break;
298 }
299 }
300}
301
302/*
303 * Caller must perform ib_device_put() to return the device reference count
304 * when ib_device_get_by_index() returns valid device pointer.
305 */
306struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
307{
308 struct ib_device *device;
309
310 down_read(&devices_rwsem);
311 device = xa_load(&devices, index);
312 if (device) {
313 if (!rdma_dev_access_netns(device, net)) {
314 device = NULL;
315 goto out;
316 }
317
318 if (!ib_device_try_get(device))
319 device = NULL;
320 }
321out:
322 up_read(&devices_rwsem);
323 return device;
324}
325
326/**
327 * ib_device_put - Release IB device reference
328 * @device: device whose reference to be released
329 *
330 * ib_device_put() releases reference to the IB device to allow it to be
331 * unregistered and eventually free.
332 */
333void ib_device_put(struct ib_device *device)
334{
335 if (refcount_dec_and_test(&device->refcount))
336 complete(&device->unreg_completion);
337}
338EXPORT_SYMBOL(ib_device_put);
339
340static struct ib_device *__ib_device_get_by_name(const char *name)
341{
342 struct ib_device *device;
343 unsigned long index;
344
345 xa_for_each (&devices, index, device)
346 if (!strcmp(name, dev_name(&device->dev)))
347 return device;
348
349 return NULL;
350}
351
352/**
353 * ib_device_get_by_name - Find an IB device by name
354 * @name: The name to look for
355 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
356 *
357 * Find and hold an ib_device by its name. The caller must call
358 * ib_device_put() on the returned pointer.
359 */
360struct ib_device *ib_device_get_by_name(const char *name,
361 enum rdma_driver_id driver_id)
362{
363 struct ib_device *device;
364
365 down_read(&devices_rwsem);
366 device = __ib_device_get_by_name(name);
367 if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
368 device->ops.driver_id != driver_id)
369 device = NULL;
370
371 if (device) {
372 if (!ib_device_try_get(device))
373 device = NULL;
374 }
375 up_read(&devices_rwsem);
376 return device;
377}
378EXPORT_SYMBOL(ib_device_get_by_name);
379
380static int rename_compat_devs(struct ib_device *device)
381{
382 struct ib_core_device *cdev;
383 unsigned long index;
384 int ret = 0;
385
386 mutex_lock(&device->compat_devs_mutex);
387 xa_for_each (&device->compat_devs, index, cdev) {
388 ret = device_rename(&cdev->dev, dev_name(&device->dev));
389 if (ret) {
390 dev_warn(&cdev->dev,
391 "Fail to rename compatdev to new name %s\n",
392 dev_name(&device->dev));
393 break;
394 }
395 }
396 mutex_unlock(&device->compat_devs_mutex);
397 return ret;
398}
399
400int ib_device_rename(struct ib_device *ibdev, const char *name)
401{
402 unsigned long index;
403 void *client_data;
404 int ret;
405
406 down_write(&devices_rwsem);
407 if (!strcmp(name, dev_name(&ibdev->dev))) {
408 up_write(&devices_rwsem);
409 return 0;
410 }
411
412 if (__ib_device_get_by_name(name)) {
413 up_write(&devices_rwsem);
414 return -EEXIST;
415 }
416
417 ret = device_rename(&ibdev->dev, name);
418 if (ret) {
419 up_write(&devices_rwsem);
420 return ret;
421 }
422
423 strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
424 ret = rename_compat_devs(ibdev);
425
426 downgrade_write(&devices_rwsem);
427 down_read(&ibdev->client_data_rwsem);
428 xan_for_each_marked(&ibdev->client_data, index, client_data,
429 CLIENT_DATA_REGISTERED) {
430 struct ib_client *client = xa_load(&clients, index);
431
432 if (!client || !client->rename)
433 continue;
434
435 client->rename(ibdev, client_data);
436 }
437 up_read(&ibdev->client_data_rwsem);
438 up_read(&devices_rwsem);
439 return 0;
440}
441
442int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
443{
444 if (use_dim > 1)
445 return -EINVAL;
446 ibdev->use_cq_dim = use_dim;
447
448 return 0;
449}
450
451static int alloc_name(struct ib_device *ibdev, const char *name)
452{
453 struct ib_device *device;
454 unsigned long index;
455 struct ida inuse;
456 int rc;
457 int i;
458
459 lockdep_assert_held_write(&devices_rwsem);
460 ida_init(&inuse);
461 xa_for_each (&devices, index, device) {
462 char buf[IB_DEVICE_NAME_MAX];
463
464 if (sscanf(dev_name(&device->dev), name, &i) != 1)
465 continue;
466 if (i < 0 || i >= INT_MAX)
467 continue;
468 snprintf(buf, sizeof buf, name, i);
469 if (strcmp(buf, dev_name(&device->dev)) != 0)
470 continue;
471
472 rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
473 if (rc < 0)
474 goto out;
475 }
476
477 rc = ida_alloc(&inuse, GFP_KERNEL);
478 if (rc < 0)
479 goto out;
480
481 rc = dev_set_name(&ibdev->dev, name, rc);
482out:
483 ida_destroy(&inuse);
484 return rc;
485}
486
487static void ib_device_release(struct device *device)
488{
489 struct ib_device *dev = container_of(device, struct ib_device, dev);
490
491 free_netdevs(dev);
492 WARN_ON(refcount_read(&dev->refcount));
493 if (dev->port_data) {
494 ib_cache_release_one(dev);
495 ib_security_release_port_pkey_list(dev);
496 rdma_counter_release(dev);
497 kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
498 pdata[0]),
499 rcu_head);
500 }
501
502 mutex_destroy(&dev->unregistration_lock);
503 mutex_destroy(&dev->compat_devs_mutex);
504
505 xa_destroy(&dev->compat_devs);
506 xa_destroy(&dev->client_data);
507 kfree_rcu(dev, rcu_head);
508}
509
510static int ib_device_uevent(struct device *device,
511 struct kobj_uevent_env *env)
512{
513 if (add_uevent_var(env, "NAME=%s", dev_name(device)))
514 return -ENOMEM;
515
516 /*
517 * It would be nice to pass the node GUID with the event...
518 */
519
520 return 0;
521}
522
523static const void *net_namespace(struct device *d)
524{
525 struct ib_core_device *coredev =
526 container_of(d, struct ib_core_device, dev);
527
528 return read_pnet(&coredev->rdma_net);
529}
530
531static struct class ib_class = {
532 .name = "infiniband",
533 .dev_release = ib_device_release,
534 .dev_uevent = ib_device_uevent,
535 .ns_type = &net_ns_type_operations,
536 .namespace = net_namespace,
537};
538
539static void rdma_init_coredev(struct ib_core_device *coredev,
540 struct ib_device *dev, struct net *net)
541{
542 /* This BUILD_BUG_ON is intended to catch layout change
543 * of union of ib_core_device and device.
544 * dev must be the first element as ib_core and providers
545 * driver uses it. Adding anything in ib_core_device before
546 * device will break this assumption.
547 */
548 BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
549 offsetof(struct ib_device, dev));
550
551 coredev->dev.class = &ib_class;
552 coredev->dev.groups = dev->groups;
553 device_initialize(&coredev->dev);
554 coredev->owner = dev;
555 INIT_LIST_HEAD(&coredev->port_list);
556 write_pnet(&coredev->rdma_net, net);
557}
558
559/**
560 * _ib_alloc_device - allocate an IB device struct
561 * @size:size of structure to allocate
562 *
563 * Low-level drivers should use ib_alloc_device() to allocate &struct
564 * ib_device. @size is the size of the structure to be allocated,
565 * including any private data used by the low-level driver.
566 * ib_dealloc_device() must be used to free structures allocated with
567 * ib_alloc_device().
568 */
569struct ib_device *_ib_alloc_device(size_t size)
570{
571 struct ib_device *device;
572
573 if (WARN_ON(size < sizeof(struct ib_device)))
574 return NULL;
575
576 device = kzalloc(size, GFP_KERNEL);
577 if (!device)
578 return NULL;
579
580 if (rdma_restrack_init(device)) {
581 kfree(device);
582 return NULL;
583 }
584
585 device->groups[0] = &ib_dev_attr_group;
586 rdma_init_coredev(&device->coredev, device, &init_net);
587
588 INIT_LIST_HEAD(&device->event_handler_list);
589 spin_lock_init(&device->qp_open_list_lock);
590 init_rwsem(&device->event_handler_rwsem);
591 mutex_init(&device->unregistration_lock);
592 /*
593 * client_data needs to be alloc because we don't want our mark to be
594 * destroyed if the user stores NULL in the client data.
595 */
596 xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
597 init_rwsem(&device->client_data_rwsem);
598 xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
599 mutex_init(&device->compat_devs_mutex);
600 init_completion(&device->unreg_completion);
601 INIT_WORK(&device->unregistration_work, ib_unregister_work);
602
603 return device;
604}
605EXPORT_SYMBOL(_ib_alloc_device);
606
607/**
608 * ib_dealloc_device - free an IB device struct
609 * @device:structure to free
610 *
611 * Free a structure allocated with ib_alloc_device().
612 */
613void ib_dealloc_device(struct ib_device *device)
614{
615 if (device->ops.dealloc_driver)
616 device->ops.dealloc_driver(device);
617
618 /*
619 * ib_unregister_driver() requires all devices to remain in the xarray
620 * while their ops are callable. The last op we call is dealloc_driver
621 * above. This is needed to create a fence on op callbacks prior to
622 * allowing the driver module to unload.
623 */
624 down_write(&devices_rwsem);
625 if (xa_load(&devices, device->index) == device)
626 xa_erase(&devices, device->index);
627 up_write(&devices_rwsem);
628
629 /* Expedite releasing netdev references */
630 free_netdevs(device);
631
632 WARN_ON(!xa_empty(&device->compat_devs));
633 WARN_ON(!xa_empty(&device->client_data));
634 WARN_ON(refcount_read(&device->refcount));
635 rdma_restrack_clean(device);
636 /* Balances with device_initialize */
637 put_device(&device->dev);
638}
639EXPORT_SYMBOL(ib_dealloc_device);
640
641/*
642 * add_client_context() and remove_client_context() must be safe against
643 * parallel calls on the same device - registration/unregistration of both the
644 * device and client can be occurring in parallel.
645 *
646 * The routines need to be a fence, any caller must not return until the add
647 * or remove is fully completed.
648 */
649static int add_client_context(struct ib_device *device,
650 struct ib_client *client)
651{
652 int ret = 0;
653
654 if (!device->kverbs_provider && !client->no_kverbs_req)
655 return 0;
656
657 down_write(&device->client_data_rwsem);
658 /*
659 * So long as the client is registered hold both the client and device
660 * unregistration locks.
661 */
662 if (!refcount_inc_not_zero(&client->uses))
663 goto out_unlock;
664 refcount_inc(&device->refcount);
665
666 /*
667 * Another caller to add_client_context got here first and has already
668 * completely initialized context.
669 */
670 if (xa_get_mark(&device->client_data, client->client_id,
671 CLIENT_DATA_REGISTERED))
672 goto out;
673
674 ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
675 GFP_KERNEL));
676 if (ret)
677 goto out;
678 downgrade_write(&device->client_data_rwsem);
679 if (client->add) {
680 if (client->add(device)) {
681 /*
682 * If a client fails to add then the error code is
683 * ignored, but we won't call any more ops on this
684 * client.
685 */
686 xa_erase(&device->client_data, client->client_id);
687 up_read(&device->client_data_rwsem);
688 ib_device_put(device);
689 ib_client_put(client);
690 return 0;
691 }
692 }
693
694 /* Readers shall not see a client until add has been completed */
695 xa_set_mark(&device->client_data, client->client_id,
696 CLIENT_DATA_REGISTERED);
697 up_read(&device->client_data_rwsem);
698 return 0;
699
700out:
701 ib_device_put(device);
702 ib_client_put(client);
703out_unlock:
704 up_write(&device->client_data_rwsem);
705 return ret;
706}
707
708static void remove_client_context(struct ib_device *device,
709 unsigned int client_id)
710{
711 struct ib_client *client;
712 void *client_data;
713
714 down_write(&device->client_data_rwsem);
715 if (!xa_get_mark(&device->client_data, client_id,
716 CLIENT_DATA_REGISTERED)) {
717 up_write(&device->client_data_rwsem);
718 return;
719 }
720 client_data = xa_load(&device->client_data, client_id);
721 xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
722 client = xa_load(&clients, client_id);
723 up_write(&device->client_data_rwsem);
724
725 /*
726 * Notice we cannot be holding any exclusive locks when calling the
727 * remove callback as the remove callback can recurse back into any
728 * public functions in this module and thus try for any locks those
729 * functions take.
730 *
731 * For this reason clients and drivers should not call the
732 * unregistration functions will holdling any locks.
733 */
734 if (client->remove)
735 client->remove(device, client_data);
736
737 xa_erase(&device->client_data, client_id);
738 ib_device_put(device);
739 ib_client_put(client);
740}
741
742static int alloc_port_data(struct ib_device *device)
743{
744 struct ib_port_data_rcu *pdata_rcu;
745 unsigned int port;
746
747 if (device->port_data)
748 return 0;
749
750 /* This can only be called once the physical port range is defined */
751 if (WARN_ON(!device->phys_port_cnt))
752 return -EINVAL;
753
754 /*
755 * device->port_data is indexed directly by the port number to make
756 * access to this data as efficient as possible.
757 *
758 * Therefore port_data is declared as a 1 based array with potential
759 * empty slots at the beginning.
760 */
761 pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
762 rdma_end_port(device) + 1),
763 GFP_KERNEL);
764 if (!pdata_rcu)
765 return -ENOMEM;
766 /*
767 * The rcu_head is put in front of the port data array and the stored
768 * pointer is adjusted since we never need to see that member until
769 * kfree_rcu.
770 */
771 device->port_data = pdata_rcu->pdata;
772
773 rdma_for_each_port (device, port) {
774 struct ib_port_data *pdata = &device->port_data[port];
775
776 pdata->ib_dev = device;
777 spin_lock_init(&pdata->pkey_list_lock);
778 INIT_LIST_HEAD(&pdata->pkey_list);
779 spin_lock_init(&pdata->netdev_lock);
780 INIT_HLIST_NODE(&pdata->ndev_hash_link);
781 }
782 return 0;
783}
784
785static int verify_immutable(const struct ib_device *dev, u8 port)
786{
787 return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
788 rdma_max_mad_size(dev, port) != 0);
789}
790
791static int setup_port_data(struct ib_device *device)
792{
793 unsigned int port;
794 int ret;
795
796 ret = alloc_port_data(device);
797 if (ret)
798 return ret;
799
800 rdma_for_each_port (device, port) {
801 struct ib_port_data *pdata = &device->port_data[port];
802
803 ret = device->ops.get_port_immutable(device, port,
804 &pdata->immutable);
805 if (ret)
806 return ret;
807
808 if (verify_immutable(device, port))
809 return -EINVAL;
810 }
811 return 0;
812}
813
814void ib_get_device_fw_str(struct ib_device *dev, char *str)
815{
816 if (dev->ops.get_dev_fw_str)
817 dev->ops.get_dev_fw_str(dev, str);
818 else
819 str[0] = '\0';
820}
821EXPORT_SYMBOL(ib_get_device_fw_str);
822
823static void ib_policy_change_task(struct work_struct *work)
824{
825 struct ib_device *dev;
826 unsigned long index;
827
828 down_read(&devices_rwsem);
829 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
830 unsigned int i;
831
832 rdma_for_each_port (dev, i) {
833 u64 sp;
834 int ret = ib_get_cached_subnet_prefix(dev,
835 i,
836 &sp);
837
838 WARN_ONCE(ret,
839 "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
840 ret);
841 if (!ret)
842 ib_security_cache_change(dev, i, sp);
843 }
844 }
845 up_read(&devices_rwsem);
846}
847
848static int ib_security_change(struct notifier_block *nb, unsigned long event,
849 void *lsm_data)
850{
851 if (event != LSM_POLICY_CHANGE)
852 return NOTIFY_DONE;
853
854 schedule_work(&ib_policy_change_work);
855 ib_mad_agent_security_change();
856
857 return NOTIFY_OK;
858}
859
860static void compatdev_release(struct device *dev)
861{
862 struct ib_core_device *cdev =
863 container_of(dev, struct ib_core_device, dev);
864
865 kfree(cdev);
866}
867
868static int add_one_compat_dev(struct ib_device *device,
869 struct rdma_dev_net *rnet)
870{
871 struct ib_core_device *cdev;
872 int ret;
873
874 lockdep_assert_held(&rdma_nets_rwsem);
875 if (!ib_devices_shared_netns)
876 return 0;
877
878 /*
879 * Create and add compat device in all namespaces other than where it
880 * is currently bound to.
881 */
882 if (net_eq(read_pnet(&rnet->net),
883 read_pnet(&device->coredev.rdma_net)))
884 return 0;
885
886 /*
887 * The first of init_net() or ib_register_device() to take the
888 * compat_devs_mutex wins and gets to add the device. Others will wait
889 * for completion here.
890 */
891 mutex_lock(&device->compat_devs_mutex);
892 cdev = xa_load(&device->compat_devs, rnet->id);
893 if (cdev) {
894 ret = 0;
895 goto done;
896 }
897 ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
898 if (ret)
899 goto done;
900
901 cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
902 if (!cdev) {
903 ret = -ENOMEM;
904 goto cdev_err;
905 }
906
907 cdev->dev.parent = device->dev.parent;
908 rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
909 cdev->dev.release = compatdev_release;
910 ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
911 if (ret)
912 goto add_err;
913
914 ret = device_add(&cdev->dev);
915 if (ret)
916 goto add_err;
917 ret = ib_setup_port_attrs(cdev);
918 if (ret)
919 goto port_err;
920
921 ret = xa_err(xa_store(&device->compat_devs, rnet->id,
922 cdev, GFP_KERNEL));
923 if (ret)
924 goto insert_err;
925
926 mutex_unlock(&device->compat_devs_mutex);
927 return 0;
928
929insert_err:
930 ib_free_port_attrs(cdev);
931port_err:
932 device_del(&cdev->dev);
933add_err:
934 put_device(&cdev->dev);
935cdev_err:
936 xa_release(&device->compat_devs, rnet->id);
937done:
938 mutex_unlock(&device->compat_devs_mutex);
939 return ret;
940}
941
942static void remove_one_compat_dev(struct ib_device *device, u32 id)
943{
944 struct ib_core_device *cdev;
945
946 mutex_lock(&device->compat_devs_mutex);
947 cdev = xa_erase(&device->compat_devs, id);
948 mutex_unlock(&device->compat_devs_mutex);
949 if (cdev) {
950 ib_free_port_attrs(cdev);
951 device_del(&cdev->dev);
952 put_device(&cdev->dev);
953 }
954}
955
956static void remove_compat_devs(struct ib_device *device)
957{
958 struct ib_core_device *cdev;
959 unsigned long index;
960
961 xa_for_each (&device->compat_devs, index, cdev)
962 remove_one_compat_dev(device, index);
963}
964
965static int add_compat_devs(struct ib_device *device)
966{
967 struct rdma_dev_net *rnet;
968 unsigned long index;
969 int ret = 0;
970
971 lockdep_assert_held(&devices_rwsem);
972
973 down_read(&rdma_nets_rwsem);
974 xa_for_each (&rdma_nets, index, rnet) {
975 ret = add_one_compat_dev(device, rnet);
976 if (ret)
977 break;
978 }
979 up_read(&rdma_nets_rwsem);
980 return ret;
981}
982
983static void remove_all_compat_devs(void)
984{
985 struct ib_compat_device *cdev;
986 struct ib_device *dev;
987 unsigned long index;
988
989 down_read(&devices_rwsem);
990 xa_for_each (&devices, index, dev) {
991 unsigned long c_index = 0;
992
993 /* Hold nets_rwsem so that any other thread modifying this
994 * system param can sync with this thread.
995 */
996 down_read(&rdma_nets_rwsem);
997 xa_for_each (&dev->compat_devs, c_index, cdev)
998 remove_one_compat_dev(dev, c_index);
999 up_read(&rdma_nets_rwsem);
1000 }
1001 up_read(&devices_rwsem);
1002}
1003
1004static int add_all_compat_devs(void)
1005{
1006 struct rdma_dev_net *rnet;
1007 struct ib_device *dev;
1008 unsigned long index;
1009 int ret = 0;
1010
1011 down_read(&devices_rwsem);
1012 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1013 unsigned long net_index = 0;
1014
1015 /* Hold nets_rwsem so that any other thread modifying this
1016 * system param can sync with this thread.
1017 */
1018 down_read(&rdma_nets_rwsem);
1019 xa_for_each (&rdma_nets, net_index, rnet) {
1020 ret = add_one_compat_dev(dev, rnet);
1021 if (ret)
1022 break;
1023 }
1024 up_read(&rdma_nets_rwsem);
1025 }
1026 up_read(&devices_rwsem);
1027 if (ret)
1028 remove_all_compat_devs();
1029 return ret;
1030}
1031
1032int rdma_compatdev_set(u8 enable)
1033{
1034 struct rdma_dev_net *rnet;
1035 unsigned long index;
1036 int ret = 0;
1037
1038 down_write(&rdma_nets_rwsem);
1039 if (ib_devices_shared_netns == enable) {
1040 up_write(&rdma_nets_rwsem);
1041 return 0;
1042 }
1043
1044 /* enable/disable of compat devices is not supported
1045 * when more than default init_net exists.
1046 */
1047 xa_for_each (&rdma_nets, index, rnet) {
1048 ret++;
1049 break;
1050 }
1051 if (!ret)
1052 ib_devices_shared_netns = enable;
1053 up_write(&rdma_nets_rwsem);
1054 if (ret)
1055 return -EBUSY;
1056
1057 if (enable)
1058 ret = add_all_compat_devs();
1059 else
1060 remove_all_compat_devs();
1061 return ret;
1062}
1063
1064static void rdma_dev_exit_net(struct net *net)
1065{
1066 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1067 struct ib_device *dev;
1068 unsigned long index;
1069 int ret;
1070
1071 down_write(&rdma_nets_rwsem);
1072 /*
1073 * Prevent the ID from being re-used and hide the id from xa_for_each.
1074 */
1075 ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1076 WARN_ON(ret);
1077 up_write(&rdma_nets_rwsem);
1078
1079 down_read(&devices_rwsem);
1080 xa_for_each (&devices, index, dev) {
1081 get_device(&dev->dev);
1082 /*
1083 * Release the devices_rwsem so that pontentially blocking
1084 * device_del, doesn't hold the devices_rwsem for too long.
1085 */
1086 up_read(&devices_rwsem);
1087
1088 remove_one_compat_dev(dev, rnet->id);
1089
1090 /*
1091 * If the real device is in the NS then move it back to init.
1092 */
1093 rdma_dev_change_netns(dev, net, &init_net);
1094
1095 put_device(&dev->dev);
1096 down_read(&devices_rwsem);
1097 }
1098 up_read(&devices_rwsem);
1099
1100 rdma_nl_net_exit(rnet);
1101 xa_erase(&rdma_nets, rnet->id);
1102}
1103
1104static __net_init int rdma_dev_init_net(struct net *net)
1105{
1106 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1107 unsigned long index;
1108 struct ib_device *dev;
1109 int ret;
1110
1111 write_pnet(&rnet->net, net);
1112
1113 ret = rdma_nl_net_init(rnet);
1114 if (ret)
1115 return ret;
1116
1117 /* No need to create any compat devices in default init_net. */
1118 if (net_eq(net, &init_net))
1119 return 0;
1120
1121 ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1122 if (ret) {
1123 rdma_nl_net_exit(rnet);
1124 return ret;
1125 }
1126
1127 down_read(&devices_rwsem);
1128 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1129 /* Hold nets_rwsem so that netlink command cannot change
1130 * system configuration for device sharing mode.
1131 */
1132 down_read(&rdma_nets_rwsem);
1133 ret = add_one_compat_dev(dev, rnet);
1134 up_read(&rdma_nets_rwsem);
1135 if (ret)
1136 break;
1137 }
1138 up_read(&devices_rwsem);
1139
1140 if (ret)
1141 rdma_dev_exit_net(net);
1142
1143 return ret;
1144}
1145
1146/*
1147 * Assign the unique string device name and the unique device index. This is
1148 * undone by ib_dealloc_device.
1149 */
1150static int assign_name(struct ib_device *device, const char *name)
1151{
1152 static u32 last_id;
1153 int ret;
1154
1155 down_write(&devices_rwsem);
1156 /* Assign a unique name to the device */
1157 if (strchr(name, '%'))
1158 ret = alloc_name(device, name);
1159 else
1160 ret = dev_set_name(&device->dev, name);
1161 if (ret)
1162 goto out;
1163
1164 if (__ib_device_get_by_name(dev_name(&device->dev))) {
1165 ret = -ENFILE;
1166 goto out;
1167 }
1168 strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1169
1170 ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1171 &last_id, GFP_KERNEL);
1172 if (ret > 0)
1173 ret = 0;
1174
1175out:
1176 up_write(&devices_rwsem);
1177 return ret;
1178}
1179
1180static void setup_dma_device(struct ib_device *device)
1181{
1182 struct device *parent = device->dev.parent;
1183
1184 WARN_ON_ONCE(device->dma_device);
1185
1186#ifdef CONFIG_DMA_OPS
1187 if (device->dev.dma_ops) {
1188 /*
1189 * The caller provided custom DMA operations. Copy the
1190 * DMA-related fields that are used by e.g. dma_alloc_coherent()
1191 * into device->dev.
1192 */
1193 device->dma_device = &device->dev;
1194 if (!device->dev.dma_mask) {
1195 if (parent)
1196 device->dev.dma_mask = parent->dma_mask;
1197 else
1198 WARN_ON_ONCE(true);
1199 }
1200 if (!device->dev.coherent_dma_mask) {
1201 if (parent)
1202 device->dev.coherent_dma_mask =
1203 parent->coherent_dma_mask;
1204 else
1205 WARN_ON_ONCE(true);
1206 }
1207 } else
1208#endif /* CONFIG_DMA_OPS */
1209 {
1210 /*
1211 * The caller did not provide custom DMA operations. Use the
1212 * DMA mapping operations of the parent device.
1213 */
1214 WARN_ON_ONCE(!parent);
1215 device->dma_device = parent;
1216 }
1217
1218 if (!device->dev.dma_parms) {
1219 if (parent) {
1220 /*
1221 * The caller did not provide DMA parameters, so
1222 * 'parent' probably represents a PCI device. The PCI
1223 * core sets the maximum segment size to 64
1224 * KB. Increase this parameter to 2 GB.
1225 */
1226 device->dev.dma_parms = parent->dma_parms;
1227 dma_set_max_seg_size(device->dma_device, SZ_2G);
1228 } else {
1229 WARN_ON_ONCE(true);
1230 }
1231 }
1232}
1233
1234/*
1235 * setup_device() allocates memory and sets up data that requires calling the
1236 * device ops, this is the only reason these actions are not done during
1237 * ib_alloc_device. It is undone by ib_dealloc_device().
1238 */
1239static int setup_device(struct ib_device *device)
1240{
1241 struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1242 int ret;
1243
1244 setup_dma_device(device);
1245 ib_device_check_mandatory(device);
1246
1247 ret = setup_port_data(device);
1248 if (ret) {
1249 dev_warn(&device->dev, "Couldn't create per-port data\n");
1250 return ret;
1251 }
1252
1253 memset(&device->attrs, 0, sizeof(device->attrs));
1254 ret = device->ops.query_device(device, &device->attrs, &uhw);
1255 if (ret) {
1256 dev_warn(&device->dev,
1257 "Couldn't query the device attributes\n");
1258 return ret;
1259 }
1260
1261 return 0;
1262}
1263
1264static void disable_device(struct ib_device *device)
1265{
1266 u32 cid;
1267
1268 WARN_ON(!refcount_read(&device->refcount));
1269
1270 down_write(&devices_rwsem);
1271 xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1272 up_write(&devices_rwsem);
1273
1274 /*
1275 * Remove clients in LIFO order, see assign_client_id. This could be
1276 * more efficient if xarray learns to reverse iterate. Since no new
1277 * clients can be added to this ib_device past this point we only need
1278 * the maximum possible client_id value here.
1279 */
1280 down_read(&clients_rwsem);
1281 cid = highest_client_id;
1282 up_read(&clients_rwsem);
1283 while (cid) {
1284 cid--;
1285 remove_client_context(device, cid);
1286 }
1287
1288 ib_cq_pool_destroy(device);
1289
1290 /* Pairs with refcount_set in enable_device */
1291 ib_device_put(device);
1292 wait_for_completion(&device->unreg_completion);
1293
1294 /*
1295 * compat devices must be removed after device refcount drops to zero.
1296 * Otherwise init_net() may add more compatdevs after removing compat
1297 * devices and before device is disabled.
1298 */
1299 remove_compat_devs(device);
1300}
1301
1302/*
1303 * An enabled device is visible to all clients and to all the public facing
1304 * APIs that return a device pointer. This always returns with a new get, even
1305 * if it fails.
1306 */
1307static int enable_device_and_get(struct ib_device *device)
1308{
1309 struct ib_client *client;
1310 unsigned long index;
1311 int ret = 0;
1312
1313 /*
1314 * One ref belongs to the xa and the other belongs to this
1315 * thread. This is needed to guard against parallel unregistration.
1316 */
1317 refcount_set(&device->refcount, 2);
1318 down_write(&devices_rwsem);
1319 xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1320
1321 /*
1322 * By using downgrade_write() we ensure that no other thread can clear
1323 * DEVICE_REGISTERED while we are completing the client setup.
1324 */
1325 downgrade_write(&devices_rwsem);
1326
1327 if (device->ops.enable_driver) {
1328 ret = device->ops.enable_driver(device);
1329 if (ret)
1330 goto out;
1331 }
1332
1333 ib_cq_pool_init(device);
1334
1335 down_read(&clients_rwsem);
1336 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1337 ret = add_client_context(device, client);
1338 if (ret)
1339 break;
1340 }
1341 up_read(&clients_rwsem);
1342 if (!ret)
1343 ret = add_compat_devs(device);
1344out:
1345 up_read(&devices_rwsem);
1346 return ret;
1347}
1348
1349static void prevent_dealloc_device(struct ib_device *ib_dev)
1350{
1351}
1352
1353/**
1354 * ib_register_device - Register an IB device with IB core
1355 * @device: Device to register
1356 * @name: unique string device name. This may include a '%' which will
1357 * cause a unique index to be added to the passed device name.
1358 *
1359 * Low-level drivers use ib_register_device() to register their
1360 * devices with the IB core. All registered clients will receive a
1361 * callback for each device that is added. @device must be allocated
1362 * with ib_alloc_device().
1363 *
1364 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1365 * asynchronously then the device pointer may become freed as soon as this
1366 * function returns.
1367 */
1368int ib_register_device(struct ib_device *device, const char *name)
1369{
1370 int ret;
1371
1372 ret = assign_name(device, name);
1373 if (ret)
1374 return ret;
1375
1376 ret = setup_device(device);
1377 if (ret)
1378 return ret;
1379
1380 ret = ib_cache_setup_one(device);
1381 if (ret) {
1382 dev_warn(&device->dev,
1383 "Couldn't set up InfiniBand P_Key/GID cache\n");
1384 return ret;
1385 }
1386
1387 ib_device_register_rdmacg(device);
1388
1389 rdma_counter_init(device);
1390
1391 /*
1392 * Ensure that ADD uevent is not fired because it
1393 * is too early amd device is not initialized yet.
1394 */
1395 dev_set_uevent_suppress(&device->dev, true);
1396 ret = device_add(&device->dev);
1397 if (ret)
1398 goto cg_cleanup;
1399
1400 ret = ib_device_register_sysfs(device);
1401 if (ret) {
1402 dev_warn(&device->dev,
1403 "Couldn't register device with driver model\n");
1404 goto dev_cleanup;
1405 }
1406
1407 ret = enable_device_and_get(device);
1408 dev_set_uevent_suppress(&device->dev, false);
1409 /* Mark for userspace that device is ready */
1410 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1411 if (ret) {
1412 void (*dealloc_fn)(struct ib_device *);
1413
1414 /*
1415 * If we hit this error flow then we don't want to
1416 * automatically dealloc the device since the caller is
1417 * expected to call ib_dealloc_device() after
1418 * ib_register_device() fails. This is tricky due to the
1419 * possibility for a parallel unregistration along with this
1420 * error flow. Since we have a refcount here we know any
1421 * parallel flow is stopped in disable_device and will see the
1422 * special dealloc_driver pointer, causing the responsibility to
1423 * ib_dealloc_device() to revert back to this thread.
1424 */
1425 dealloc_fn = device->ops.dealloc_driver;
1426 device->ops.dealloc_driver = prevent_dealloc_device;
1427 ib_device_put(device);
1428 __ib_unregister_device(device);
1429 device->ops.dealloc_driver = dealloc_fn;
1430 return ret;
1431 }
1432 ib_device_put(device);
1433
1434 return 0;
1435
1436dev_cleanup:
1437 device_del(&device->dev);
1438cg_cleanup:
1439 dev_set_uevent_suppress(&device->dev, false);
1440 ib_device_unregister_rdmacg(device);
1441 ib_cache_cleanup_one(device);
1442 return ret;
1443}
1444EXPORT_SYMBOL(ib_register_device);
1445
1446/* Callers must hold a get on the device. */
1447static void __ib_unregister_device(struct ib_device *ib_dev)
1448{
1449 /*
1450 * We have a registration lock so that all the calls to unregister are
1451 * fully fenced, once any unregister returns the device is truely
1452 * unregistered even if multiple callers are unregistering it at the
1453 * same time. This also interacts with the registration flow and
1454 * provides sane semantics if register and unregister are racing.
1455 */
1456 mutex_lock(&ib_dev->unregistration_lock);
1457 if (!refcount_read(&ib_dev->refcount))
1458 goto out;
1459
1460 disable_device(ib_dev);
1461
1462 /* Expedite removing unregistered pointers from the hash table */
1463 free_netdevs(ib_dev);
1464
1465 ib_device_unregister_sysfs(ib_dev);
1466 device_del(&ib_dev->dev);
1467 ib_device_unregister_rdmacg(ib_dev);
1468 ib_cache_cleanup_one(ib_dev);
1469
1470 /*
1471 * Drivers using the new flow may not call ib_dealloc_device except
1472 * in error unwind prior to registration success.
1473 */
1474 if (ib_dev->ops.dealloc_driver &&
1475 ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1476 WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1477 ib_dealloc_device(ib_dev);
1478 }
1479out:
1480 mutex_unlock(&ib_dev->unregistration_lock);
1481}
1482
1483/**
1484 * ib_unregister_device - Unregister an IB device
1485 * @ib_dev: The device to unregister
1486 *
1487 * Unregister an IB device. All clients will receive a remove callback.
1488 *
1489 * Callers should call this routine only once, and protect against races with
1490 * registration. Typically it should only be called as part of a remove
1491 * callback in an implementation of driver core's struct device_driver and
1492 * related.
1493 *
1494 * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1495 * this function.
1496 */
1497void ib_unregister_device(struct ib_device *ib_dev)
1498{
1499 get_device(&ib_dev->dev);
1500 __ib_unregister_device(ib_dev);
1501 put_device(&ib_dev->dev);
1502}
1503EXPORT_SYMBOL(ib_unregister_device);
1504
1505/**
1506 * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1507 * @ib_dev: The device to unregister
1508 *
1509 * This is the same as ib_unregister_device(), except it includes an internal
1510 * ib_device_put() that should match a 'get' obtained by the caller.
1511 *
1512 * It is safe to call this routine concurrently from multiple threads while
1513 * holding the 'get'. When the function returns the device is fully
1514 * unregistered.
1515 *
1516 * Drivers using this flow MUST use the driver_unregister callback to clean up
1517 * their resources associated with the device and dealloc it.
1518 */
1519void ib_unregister_device_and_put(struct ib_device *ib_dev)
1520{
1521 WARN_ON(!ib_dev->ops.dealloc_driver);
1522 get_device(&ib_dev->dev);
1523 ib_device_put(ib_dev);
1524 __ib_unregister_device(ib_dev);
1525 put_device(&ib_dev->dev);
1526}
1527EXPORT_SYMBOL(ib_unregister_device_and_put);
1528
1529/**
1530 * ib_unregister_driver - Unregister all IB devices for a driver
1531 * @driver_id: The driver to unregister
1532 *
1533 * This implements a fence for device unregistration. It only returns once all
1534 * devices associated with the driver_id have fully completed their
1535 * unregistration and returned from ib_unregister_device*().
1536 *
1537 * If device's are not yet unregistered it goes ahead and starts unregistering
1538 * them.
1539 *
1540 * This does not block creation of new devices with the given driver_id, that
1541 * is the responsibility of the caller.
1542 */
1543void ib_unregister_driver(enum rdma_driver_id driver_id)
1544{
1545 struct ib_device *ib_dev;
1546 unsigned long index;
1547
1548 down_read(&devices_rwsem);
1549 xa_for_each (&devices, index, ib_dev) {
1550 if (ib_dev->ops.driver_id != driver_id)
1551 continue;
1552
1553 get_device(&ib_dev->dev);
1554 up_read(&devices_rwsem);
1555
1556 WARN_ON(!ib_dev->ops.dealloc_driver);
1557 __ib_unregister_device(ib_dev);
1558
1559 put_device(&ib_dev->dev);
1560 down_read(&devices_rwsem);
1561 }
1562 up_read(&devices_rwsem);
1563}
1564EXPORT_SYMBOL(ib_unregister_driver);
1565
1566static void ib_unregister_work(struct work_struct *work)
1567{
1568 struct ib_device *ib_dev =
1569 container_of(work, struct ib_device, unregistration_work);
1570
1571 __ib_unregister_device(ib_dev);
1572 put_device(&ib_dev->dev);
1573}
1574
1575/**
1576 * ib_unregister_device_queued - Unregister a device using a work queue
1577 * @ib_dev: The device to unregister
1578 *
1579 * This schedules an asynchronous unregistration using a WQ for the device. A
1580 * driver should use this to avoid holding locks while doing unregistration,
1581 * such as holding the RTNL lock.
1582 *
1583 * Drivers using this API must use ib_unregister_driver before module unload
1584 * to ensure that all scheduled unregistrations have completed.
1585 */
1586void ib_unregister_device_queued(struct ib_device *ib_dev)
1587{
1588 WARN_ON(!refcount_read(&ib_dev->refcount));
1589 WARN_ON(!ib_dev->ops.dealloc_driver);
1590 get_device(&ib_dev->dev);
1591 if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1592 put_device(&ib_dev->dev);
1593}
1594EXPORT_SYMBOL(ib_unregister_device_queued);
1595
1596/*
1597 * The caller must pass in a device that has the kref held and the refcount
1598 * released. If the device is in cur_net and still registered then it is moved
1599 * into net.
1600 */
1601static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1602 struct net *net)
1603{
1604 int ret2 = -EINVAL;
1605 int ret;
1606
1607 mutex_lock(&device->unregistration_lock);
1608
1609 /*
1610 * If a device not under ib_device_get() or if the unregistration_lock
1611 * is not held, the namespace can be changed, or it can be unregistered.
1612 * Check again under the lock.
1613 */
1614 if (refcount_read(&device->refcount) == 0 ||
1615 !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1616 ret = -ENODEV;
1617 goto out;
1618 }
1619
1620 kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1621 disable_device(device);
1622
1623 /*
1624 * At this point no one can be using the device, so it is safe to
1625 * change the namespace.
1626 */
1627 write_pnet(&device->coredev.rdma_net, net);
1628
1629 down_read(&devices_rwsem);
1630 /*
1631 * Currently rdma devices are system wide unique. So the device name
1632 * is guaranteed free in the new namespace. Publish the new namespace
1633 * at the sysfs level.
1634 */
1635 ret = device_rename(&device->dev, dev_name(&device->dev));
1636 up_read(&devices_rwsem);
1637 if (ret) {
1638 dev_warn(&device->dev,
1639 "%s: Couldn't rename device after namespace change\n",
1640 __func__);
1641 /* Try and put things back and re-enable the device */
1642 write_pnet(&device->coredev.rdma_net, cur_net);
1643 }
1644
1645 ret2 = enable_device_and_get(device);
1646 if (ret2) {
1647 /*
1648 * This shouldn't really happen, but if it does, let the user
1649 * retry at later point. So don't disable the device.
1650 */
1651 dev_warn(&device->dev,
1652 "%s: Couldn't re-enable device after namespace change\n",
1653 __func__);
1654 }
1655 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1656
1657 ib_device_put(device);
1658out:
1659 mutex_unlock(&device->unregistration_lock);
1660 if (ret)
1661 return ret;
1662 return ret2;
1663}
1664
1665int ib_device_set_netns_put(struct sk_buff *skb,
1666 struct ib_device *dev, u32 ns_fd)
1667{
1668 struct net *net;
1669 int ret;
1670
1671 net = get_net_ns_by_fd(ns_fd);
1672 if (IS_ERR(net)) {
1673 ret = PTR_ERR(net);
1674 goto net_err;
1675 }
1676
1677 if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1678 ret = -EPERM;
1679 goto ns_err;
1680 }
1681
1682 /*
1683 * Currently supported only for those providers which support
1684 * disassociation and don't do port specific sysfs init. Once a
1685 * port_cleanup infrastructure is implemented, this limitation will be
1686 * removed.
1687 */
1688 if (!dev->ops.disassociate_ucontext || dev->ops.init_port ||
1689 ib_devices_shared_netns) {
1690 ret = -EOPNOTSUPP;
1691 goto ns_err;
1692 }
1693
1694 get_device(&dev->dev);
1695 ib_device_put(dev);
1696 ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1697 put_device(&dev->dev);
1698
1699 put_net(net);
1700 return ret;
1701
1702ns_err:
1703 put_net(net);
1704net_err:
1705 ib_device_put(dev);
1706 return ret;
1707}
1708
1709static struct pernet_operations rdma_dev_net_ops = {
1710 .init = rdma_dev_init_net,
1711 .exit = rdma_dev_exit_net,
1712 .id = &rdma_dev_net_id,
1713 .size = sizeof(struct rdma_dev_net),
1714};
1715
1716static int assign_client_id(struct ib_client *client)
1717{
1718 int ret;
1719
1720 down_write(&clients_rwsem);
1721 /*
1722 * The add/remove callbacks must be called in FIFO/LIFO order. To
1723 * achieve this we assign client_ids so they are sorted in
1724 * registration order.
1725 */
1726 client->client_id = highest_client_id;
1727 ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1728 if (ret)
1729 goto out;
1730
1731 highest_client_id++;
1732 xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1733
1734out:
1735 up_write(&clients_rwsem);
1736 return ret;
1737}
1738
1739static void remove_client_id(struct ib_client *client)
1740{
1741 down_write(&clients_rwsem);
1742 xa_erase(&clients, client->client_id);
1743 for (; highest_client_id; highest_client_id--)
1744 if (xa_load(&clients, highest_client_id - 1))
1745 break;
1746 up_write(&clients_rwsem);
1747}
1748
1749/**
1750 * ib_register_client - Register an IB client
1751 * @client:Client to register
1752 *
1753 * Upper level users of the IB drivers can use ib_register_client() to
1754 * register callbacks for IB device addition and removal. When an IB
1755 * device is added, each registered client's add method will be called
1756 * (in the order the clients were registered), and when a device is
1757 * removed, each client's remove method will be called (in the reverse
1758 * order that clients were registered). In addition, when
1759 * ib_register_client() is called, the client will receive an add
1760 * callback for all devices already registered.
1761 */
1762int ib_register_client(struct ib_client *client)
1763{
1764 struct ib_device *device;
1765 unsigned long index;
1766 int ret;
1767
1768 refcount_set(&client->uses, 1);
1769 init_completion(&client->uses_zero);
1770 ret = assign_client_id(client);
1771 if (ret)
1772 return ret;
1773
1774 down_read(&devices_rwsem);
1775 xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1776 ret = add_client_context(device, client);
1777 if (ret) {
1778 up_read(&devices_rwsem);
1779 ib_unregister_client(client);
1780 return ret;
1781 }
1782 }
1783 up_read(&devices_rwsem);
1784 return 0;
1785}
1786EXPORT_SYMBOL(ib_register_client);
1787
1788/**
1789 * ib_unregister_client - Unregister an IB client
1790 * @client:Client to unregister
1791 *
1792 * Upper level users use ib_unregister_client() to remove their client
1793 * registration. When ib_unregister_client() is called, the client
1794 * will receive a remove callback for each IB device still registered.
1795 *
1796 * This is a full fence, once it returns no client callbacks will be called,
1797 * or are running in another thread.
1798 */
1799void ib_unregister_client(struct ib_client *client)
1800{
1801 struct ib_device *device;
1802 unsigned long index;
1803
1804 down_write(&clients_rwsem);
1805 ib_client_put(client);
1806 xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1807 up_write(&clients_rwsem);
1808
1809 /* We do not want to have locks while calling client->remove() */
1810 rcu_read_lock();
1811 xa_for_each (&devices, index, device) {
1812 if (!ib_device_try_get(device))
1813 continue;
1814 rcu_read_unlock();
1815
1816 remove_client_context(device, client->client_id);
1817
1818 ib_device_put(device);
1819 rcu_read_lock();
1820 }
1821 rcu_read_unlock();
1822
1823 /*
1824 * remove_client_context() is not a fence, it can return even though a
1825 * removal is ongoing. Wait until all removals are completed.
1826 */
1827 wait_for_completion(&client->uses_zero);
1828 remove_client_id(client);
1829}
1830EXPORT_SYMBOL(ib_unregister_client);
1831
1832static int __ib_get_global_client_nl_info(const char *client_name,
1833 struct ib_client_nl_info *res)
1834{
1835 struct ib_client *client;
1836 unsigned long index;
1837 int ret = -ENOENT;
1838
1839 down_read(&clients_rwsem);
1840 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1841 if (strcmp(client->name, client_name) != 0)
1842 continue;
1843 if (!client->get_global_nl_info) {
1844 ret = -EOPNOTSUPP;
1845 break;
1846 }
1847 ret = client->get_global_nl_info(res);
1848 if (WARN_ON(ret == -ENOENT))
1849 ret = -EINVAL;
1850 if (!ret && res->cdev)
1851 get_device(res->cdev);
1852 break;
1853 }
1854 up_read(&clients_rwsem);
1855 return ret;
1856}
1857
1858static int __ib_get_client_nl_info(struct ib_device *ibdev,
1859 const char *client_name,
1860 struct ib_client_nl_info *res)
1861{
1862 unsigned long index;
1863 void *client_data;
1864 int ret = -ENOENT;
1865
1866 down_read(&ibdev->client_data_rwsem);
1867 xan_for_each_marked (&ibdev->client_data, index, client_data,
1868 CLIENT_DATA_REGISTERED) {
1869 struct ib_client *client = xa_load(&clients, index);
1870
1871 if (!client || strcmp(client->name, client_name) != 0)
1872 continue;
1873 if (!client->get_nl_info) {
1874 ret = -EOPNOTSUPP;
1875 break;
1876 }
1877 ret = client->get_nl_info(ibdev, client_data, res);
1878 if (WARN_ON(ret == -ENOENT))
1879 ret = -EINVAL;
1880
1881 /*
1882 * The cdev is guaranteed valid as long as we are inside the
1883 * client_data_rwsem as remove_one can't be called. Keep it
1884 * valid for the caller.
1885 */
1886 if (!ret && res->cdev)
1887 get_device(res->cdev);
1888 break;
1889 }
1890 up_read(&ibdev->client_data_rwsem);
1891
1892 return ret;
1893}
1894
1895/**
1896 * ib_get_client_nl_info - Fetch the nl_info from a client
1897 * @device - IB device
1898 * @client_name - Name of the client
1899 * @res - Result of the query
1900 */
1901int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1902 struct ib_client_nl_info *res)
1903{
1904 int ret;
1905
1906 if (ibdev)
1907 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1908 else
1909 ret = __ib_get_global_client_nl_info(client_name, res);
1910#ifdef CONFIG_MODULES
1911 if (ret == -ENOENT) {
1912 request_module("rdma-client-%s", client_name);
1913 if (ibdev)
1914 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1915 else
1916 ret = __ib_get_global_client_nl_info(client_name, res);
1917 }
1918#endif
1919 if (ret) {
1920 if (ret == -ENOENT)
1921 return -EOPNOTSUPP;
1922 return ret;
1923 }
1924
1925 if (WARN_ON(!res->cdev))
1926 return -EINVAL;
1927 return 0;
1928}
1929
1930/**
1931 * ib_set_client_data - Set IB client context
1932 * @device:Device to set context for
1933 * @client:Client to set context for
1934 * @data:Context to set
1935 *
1936 * ib_set_client_data() sets client context data that can be retrieved with
1937 * ib_get_client_data(). This can only be called while the client is
1938 * registered to the device, once the ib_client remove() callback returns this
1939 * cannot be called.
1940 */
1941void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1942 void *data)
1943{
1944 void *rc;
1945
1946 if (WARN_ON(IS_ERR(data)))
1947 data = NULL;
1948
1949 rc = xa_store(&device->client_data, client->client_id, data,
1950 GFP_KERNEL);
1951 WARN_ON(xa_is_err(rc));
1952}
1953EXPORT_SYMBOL(ib_set_client_data);
1954
1955/**
1956 * ib_register_event_handler - Register an IB event handler
1957 * @event_handler:Handler to register
1958 *
1959 * ib_register_event_handler() registers an event handler that will be
1960 * called back when asynchronous IB events occur (as defined in
1961 * chapter 11 of the InfiniBand Architecture Specification). This
1962 * callback occurs in workqueue context.
1963 */
1964void ib_register_event_handler(struct ib_event_handler *event_handler)
1965{
1966 down_write(&event_handler->device->event_handler_rwsem);
1967 list_add_tail(&event_handler->list,
1968 &event_handler->device->event_handler_list);
1969 up_write(&event_handler->device->event_handler_rwsem);
1970}
1971EXPORT_SYMBOL(ib_register_event_handler);
1972
1973/**
1974 * ib_unregister_event_handler - Unregister an event handler
1975 * @event_handler:Handler to unregister
1976 *
1977 * Unregister an event handler registered with
1978 * ib_register_event_handler().
1979 */
1980void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1981{
1982 down_write(&event_handler->device->event_handler_rwsem);
1983 list_del(&event_handler->list);
1984 up_write(&event_handler->device->event_handler_rwsem);
1985}
1986EXPORT_SYMBOL(ib_unregister_event_handler);
1987
1988void ib_dispatch_event_clients(struct ib_event *event)
1989{
1990 struct ib_event_handler *handler;
1991
1992 down_read(&event->device->event_handler_rwsem);
1993
1994 list_for_each_entry(handler, &event->device->event_handler_list, list)
1995 handler->handler(handler, event);
1996
1997 up_read(&event->device->event_handler_rwsem);
1998}
1999
2000static int iw_query_port(struct ib_device *device,
2001 u8 port_num,
2002 struct ib_port_attr *port_attr)
2003{
2004 struct in_device *inetdev;
2005 struct net_device *netdev;
2006
2007 memset(port_attr, 0, sizeof(*port_attr));
2008
2009 netdev = ib_device_get_netdev(device, port_num);
2010 if (!netdev)
2011 return -ENODEV;
2012
2013 port_attr->max_mtu = IB_MTU_4096;
2014 port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2015
2016 if (!netif_carrier_ok(netdev)) {
2017 port_attr->state = IB_PORT_DOWN;
2018 port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2019 } else {
2020 rcu_read_lock();
2021 inetdev = __in_dev_get_rcu(netdev);
2022
2023 if (inetdev && inetdev->ifa_list) {
2024 port_attr->state = IB_PORT_ACTIVE;
2025 port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2026 } else {
2027 port_attr->state = IB_PORT_INIT;
2028 port_attr->phys_state =
2029 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2030 }
2031
2032 rcu_read_unlock();
2033 }
2034
2035 dev_put(netdev);
2036 return device->ops.query_port(device, port_num, port_attr);
2037}
2038
2039static int __ib_query_port(struct ib_device *device,
2040 u8 port_num,
2041 struct ib_port_attr *port_attr)
2042{
2043 union ib_gid gid = {};
2044 int err;
2045
2046 memset(port_attr, 0, sizeof(*port_attr));
2047
2048 err = device->ops.query_port(device, port_num, port_attr);
2049 if (err || port_attr->subnet_prefix)
2050 return err;
2051
2052 if (rdma_port_get_link_layer(device, port_num) !=
2053 IB_LINK_LAYER_INFINIBAND)
2054 return 0;
2055
2056 err = device->ops.query_gid(device, port_num, 0, &gid);
2057 if (err)
2058 return err;
2059
2060 port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
2061 return 0;
2062}
2063
2064/**
2065 * ib_query_port - Query IB port attributes
2066 * @device:Device to query
2067 * @port_num:Port number to query
2068 * @port_attr:Port attributes
2069 *
2070 * ib_query_port() returns the attributes of a port through the
2071 * @port_attr pointer.
2072 */
2073int ib_query_port(struct ib_device *device,
2074 u8 port_num,
2075 struct ib_port_attr *port_attr)
2076{
2077 if (!rdma_is_port_valid(device, port_num))
2078 return -EINVAL;
2079
2080 if (rdma_protocol_iwarp(device, port_num))
2081 return iw_query_port(device, port_num, port_attr);
2082 else
2083 return __ib_query_port(device, port_num, port_attr);
2084}
2085EXPORT_SYMBOL(ib_query_port);
2086
2087static void add_ndev_hash(struct ib_port_data *pdata)
2088{
2089 unsigned long flags;
2090
2091 might_sleep();
2092
2093 spin_lock_irqsave(&ndev_hash_lock, flags);
2094 if (hash_hashed(&pdata->ndev_hash_link)) {
2095 hash_del_rcu(&pdata->ndev_hash_link);
2096 spin_unlock_irqrestore(&ndev_hash_lock, flags);
2097 /*
2098 * We cannot do hash_add_rcu after a hash_del_rcu until the
2099 * grace period
2100 */
2101 synchronize_rcu();
2102 spin_lock_irqsave(&ndev_hash_lock, flags);
2103 }
2104 if (pdata->netdev)
2105 hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2106 (uintptr_t)pdata->netdev);
2107 spin_unlock_irqrestore(&ndev_hash_lock, flags);
2108}
2109
2110/**
2111 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2112 * @ib_dev: Device to modify
2113 * @ndev: net_device to affiliate, may be NULL
2114 * @port: IB port the net_device is connected to
2115 *
2116 * Drivers should use this to link the ib_device to a netdev so the netdev
2117 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2118 * affiliated with any port.
2119 *
2120 * The caller must ensure that the given ndev is not unregistered or
2121 * unregistering, and that either the ib_device is unregistered or
2122 * ib_device_set_netdev() is called with NULL when the ndev sends a
2123 * NETDEV_UNREGISTER event.
2124 */
2125int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2126 unsigned int port)
2127{
2128 struct net_device *old_ndev;
2129 struct ib_port_data *pdata;
2130 unsigned long flags;
2131 int ret;
2132
2133 /*
2134 * Drivers wish to call this before ib_register_driver, so we have to
2135 * setup the port data early.
2136 */
2137 ret = alloc_port_data(ib_dev);
2138 if (ret)
2139 return ret;
2140
2141 if (!rdma_is_port_valid(ib_dev, port))
2142 return -EINVAL;
2143
2144 pdata = &ib_dev->port_data[port];
2145 spin_lock_irqsave(&pdata->netdev_lock, flags);
2146 old_ndev = rcu_dereference_protected(
2147 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2148 if (old_ndev == ndev) {
2149 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2150 return 0;
2151 }
2152
2153 if (ndev)
2154 dev_hold(ndev);
2155 rcu_assign_pointer(pdata->netdev, ndev);
2156 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2157
2158 add_ndev_hash(pdata);
2159 if (old_ndev)
2160 dev_put(old_ndev);
2161
2162 return 0;
2163}
2164EXPORT_SYMBOL(ib_device_set_netdev);
2165
2166static void free_netdevs(struct ib_device *ib_dev)
2167{
2168 unsigned long flags;
2169 unsigned int port;
2170
2171 if (!ib_dev->port_data)
2172 return;
2173
2174 rdma_for_each_port (ib_dev, port) {
2175 struct ib_port_data *pdata = &ib_dev->port_data[port];
2176 struct net_device *ndev;
2177
2178 spin_lock_irqsave(&pdata->netdev_lock, flags);
2179 ndev = rcu_dereference_protected(
2180 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2181 if (ndev) {
2182 spin_lock(&ndev_hash_lock);
2183 hash_del_rcu(&pdata->ndev_hash_link);
2184 spin_unlock(&ndev_hash_lock);
2185
2186 /*
2187 * If this is the last dev_put there is still a
2188 * synchronize_rcu before the netdev is kfreed, so we
2189 * can continue to rely on unlocked pointer
2190 * comparisons after the put
2191 */
2192 rcu_assign_pointer(pdata->netdev, NULL);
2193 dev_put(ndev);
2194 }
2195 spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2196 }
2197}
2198
2199struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2200 unsigned int port)
2201{
2202 struct ib_port_data *pdata;
2203 struct net_device *res;
2204
2205 if (!rdma_is_port_valid(ib_dev, port))
2206 return NULL;
2207
2208 pdata = &ib_dev->port_data[port];
2209
2210 /*
2211 * New drivers should use ib_device_set_netdev() not the legacy
2212 * get_netdev().
2213 */
2214 if (ib_dev->ops.get_netdev)
2215 res = ib_dev->ops.get_netdev(ib_dev, port);
2216 else {
2217 spin_lock(&pdata->netdev_lock);
2218 res = rcu_dereference_protected(
2219 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2220 if (res)
2221 dev_hold(res);
2222 spin_unlock(&pdata->netdev_lock);
2223 }
2224
2225 /*
2226 * If we are starting to unregister expedite things by preventing
2227 * propagation of an unregistering netdev.
2228 */
2229 if (res && res->reg_state != NETREG_REGISTERED) {
2230 dev_put(res);
2231 return NULL;
2232 }
2233
2234 return res;
2235}
2236
2237/**
2238 * ib_device_get_by_netdev - Find an IB device associated with a netdev
2239 * @ndev: netdev to locate
2240 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2241 *
2242 * Find and hold an ib_device that is associated with a netdev via
2243 * ib_device_set_netdev(). The caller must call ib_device_put() on the
2244 * returned pointer.
2245 */
2246struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2247 enum rdma_driver_id driver_id)
2248{
2249 struct ib_device *res = NULL;
2250 struct ib_port_data *cur;
2251
2252 rcu_read_lock();
2253 hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2254 (uintptr_t)ndev) {
2255 if (rcu_access_pointer(cur->netdev) == ndev &&
2256 (driver_id == RDMA_DRIVER_UNKNOWN ||
2257 cur->ib_dev->ops.driver_id == driver_id) &&
2258 ib_device_try_get(cur->ib_dev)) {
2259 res = cur->ib_dev;
2260 break;
2261 }
2262 }
2263 rcu_read_unlock();
2264
2265 return res;
2266}
2267EXPORT_SYMBOL(ib_device_get_by_netdev);
2268
2269/**
2270 * ib_enum_roce_netdev - enumerate all RoCE ports
2271 * @ib_dev : IB device we want to query
2272 * @filter: Should we call the callback?
2273 * @filter_cookie: Cookie passed to filter
2274 * @cb: Callback to call for each found RoCE ports
2275 * @cookie: Cookie passed back to the callback
2276 *
2277 * Enumerates all of the physical RoCE ports of ib_dev
2278 * which are related to netdevice and calls callback() on each
2279 * device for which filter() function returns non zero.
2280 */
2281void ib_enum_roce_netdev(struct ib_device *ib_dev,
2282 roce_netdev_filter filter,
2283 void *filter_cookie,
2284 roce_netdev_callback cb,
2285 void *cookie)
2286{
2287 unsigned int port;
2288
2289 rdma_for_each_port (ib_dev, port)
2290 if (rdma_protocol_roce(ib_dev, port)) {
2291 struct net_device *idev =
2292 ib_device_get_netdev(ib_dev, port);
2293
2294 if (filter(ib_dev, port, idev, filter_cookie))
2295 cb(ib_dev, port, idev, cookie);
2296
2297 if (idev)
2298 dev_put(idev);
2299 }
2300}
2301
2302/**
2303 * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2304 * @filter: Should we call the callback?
2305 * @filter_cookie: Cookie passed to filter
2306 * @cb: Callback to call for each found RoCE ports
2307 * @cookie: Cookie passed back to the callback
2308 *
2309 * Enumerates all RoCE devices' physical ports which are related
2310 * to netdevices and calls callback() on each device for which
2311 * filter() function returns non zero.
2312 */
2313void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2314 void *filter_cookie,
2315 roce_netdev_callback cb,
2316 void *cookie)
2317{
2318 struct ib_device *dev;
2319 unsigned long index;
2320
2321 down_read(&devices_rwsem);
2322 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2323 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2324 up_read(&devices_rwsem);
2325}
2326
2327/**
2328 * ib_enum_all_devs - enumerate all ib_devices
2329 * @cb: Callback to call for each found ib_device
2330 *
2331 * Enumerates all ib_devices and calls callback() on each device.
2332 */
2333int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2334 struct netlink_callback *cb)
2335{
2336 unsigned long index;
2337 struct ib_device *dev;
2338 unsigned int idx = 0;
2339 int ret = 0;
2340
2341 down_read(&devices_rwsem);
2342 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2343 if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2344 continue;
2345
2346 ret = nldev_cb(dev, skb, cb, idx);
2347 if (ret)
2348 break;
2349 idx++;
2350 }
2351 up_read(&devices_rwsem);
2352 return ret;
2353}
2354
2355/**
2356 * ib_query_pkey - Get P_Key table entry
2357 * @device:Device to query
2358 * @port_num:Port number to query
2359 * @index:P_Key table index to query
2360 * @pkey:Returned P_Key
2361 *
2362 * ib_query_pkey() fetches the specified P_Key table entry.
2363 */
2364int ib_query_pkey(struct ib_device *device,
2365 u8 port_num, u16 index, u16 *pkey)
2366{
2367 if (!rdma_is_port_valid(device, port_num))
2368 return -EINVAL;
2369
2370 if (!device->ops.query_pkey)
2371 return -EOPNOTSUPP;
2372
2373 return device->ops.query_pkey(device, port_num, index, pkey);
2374}
2375EXPORT_SYMBOL(ib_query_pkey);
2376
2377/**
2378 * ib_modify_device - Change IB device attributes
2379 * @device:Device to modify
2380 * @device_modify_mask:Mask of attributes to change
2381 * @device_modify:New attribute values
2382 *
2383 * ib_modify_device() changes a device's attributes as specified by
2384 * the @device_modify_mask and @device_modify structure.
2385 */
2386int ib_modify_device(struct ib_device *device,
2387 int device_modify_mask,
2388 struct ib_device_modify *device_modify)
2389{
2390 if (!device->ops.modify_device)
2391 return -EOPNOTSUPP;
2392
2393 return device->ops.modify_device(device, device_modify_mask,
2394 device_modify);
2395}
2396EXPORT_SYMBOL(ib_modify_device);
2397
2398/**
2399 * ib_modify_port - Modifies the attributes for the specified port.
2400 * @device: The device to modify.
2401 * @port_num: The number of the port to modify.
2402 * @port_modify_mask: Mask used to specify which attributes of the port
2403 * to change.
2404 * @port_modify: New attribute values for the port.
2405 *
2406 * ib_modify_port() changes a port's attributes as specified by the
2407 * @port_modify_mask and @port_modify structure.
2408 */
2409int ib_modify_port(struct ib_device *device,
2410 u8 port_num, int port_modify_mask,
2411 struct ib_port_modify *port_modify)
2412{
2413 int rc;
2414
2415 if (!rdma_is_port_valid(device, port_num))
2416 return -EINVAL;
2417
2418 if (device->ops.modify_port)
2419 rc = device->ops.modify_port(device, port_num,
2420 port_modify_mask,
2421 port_modify);
2422 else if (rdma_protocol_roce(device, port_num) &&
2423 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2424 (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2425 rc = 0;
2426 else
2427 rc = -EOPNOTSUPP;
2428 return rc;
2429}
2430EXPORT_SYMBOL(ib_modify_port);
2431
2432/**
2433 * ib_find_gid - Returns the port number and GID table index where
2434 * a specified GID value occurs. Its searches only for IB link layer.
2435 * @device: The device to query.
2436 * @gid: The GID value to search for.
2437 * @port_num: The port number of the device where the GID value was found.
2438 * @index: The index into the GID table where the GID was found. This
2439 * parameter may be NULL.
2440 */
2441int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2442 u8 *port_num, u16 *index)
2443{
2444 union ib_gid tmp_gid;
2445 unsigned int port;
2446 int ret, i;
2447
2448 rdma_for_each_port (device, port) {
2449 if (!rdma_protocol_ib(device, port))
2450 continue;
2451
2452 for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2453 ++i) {
2454 ret = rdma_query_gid(device, port, i, &tmp_gid);
2455 if (ret)
2456 return ret;
2457 if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2458 *port_num = port;
2459 if (index)
2460 *index = i;
2461 return 0;
2462 }
2463 }
2464 }
2465
2466 return -ENOENT;
2467}
2468EXPORT_SYMBOL(ib_find_gid);
2469
2470/**
2471 * ib_find_pkey - Returns the PKey table index where a specified
2472 * PKey value occurs.
2473 * @device: The device to query.
2474 * @port_num: The port number of the device to search for the PKey.
2475 * @pkey: The PKey value to search for.
2476 * @index: The index into the PKey table where the PKey was found.
2477 */
2478int ib_find_pkey(struct ib_device *device,
2479 u8 port_num, u16 pkey, u16 *index)
2480{
2481 int ret, i;
2482 u16 tmp_pkey;
2483 int partial_ix = -1;
2484
2485 for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2486 ++i) {
2487 ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2488 if (ret)
2489 return ret;
2490 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2491 /* if there is full-member pkey take it.*/
2492 if (tmp_pkey & 0x8000) {
2493 *index = i;
2494 return 0;
2495 }
2496 if (partial_ix < 0)
2497 partial_ix = i;
2498 }
2499 }
2500
2501 /*no full-member, if exists take the limited*/
2502 if (partial_ix >= 0) {
2503 *index = partial_ix;
2504 return 0;
2505 }
2506 return -ENOENT;
2507}
2508EXPORT_SYMBOL(ib_find_pkey);
2509
2510/**
2511 * ib_get_net_dev_by_params() - Return the appropriate net_dev
2512 * for a received CM request
2513 * @dev: An RDMA device on which the request has been received.
2514 * @port: Port number on the RDMA device.
2515 * @pkey: The Pkey the request came on.
2516 * @gid: A GID that the net_dev uses to communicate.
2517 * @addr: Contains the IP address that the request specified as its
2518 * destination.
2519 *
2520 */
2521struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2522 u8 port,
2523 u16 pkey,
2524 const union ib_gid *gid,
2525 const struct sockaddr *addr)
2526{
2527 struct net_device *net_dev = NULL;
2528 unsigned long index;
2529 void *client_data;
2530
2531 if (!rdma_protocol_ib(dev, port))
2532 return NULL;
2533
2534 /*
2535 * Holding the read side guarantees that the client will not become
2536 * unregistered while we are calling get_net_dev_by_params()
2537 */
2538 down_read(&dev->client_data_rwsem);
2539 xan_for_each_marked (&dev->client_data, index, client_data,
2540 CLIENT_DATA_REGISTERED) {
2541 struct ib_client *client = xa_load(&clients, index);
2542
2543 if (!client || !client->get_net_dev_by_params)
2544 continue;
2545
2546 net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2547 addr, client_data);
2548 if (net_dev)
2549 break;
2550 }
2551 up_read(&dev->client_data_rwsem);
2552
2553 return net_dev;
2554}
2555EXPORT_SYMBOL(ib_get_net_dev_by_params);
2556
2557void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2558{
2559 struct ib_device_ops *dev_ops = &dev->ops;
2560#define SET_DEVICE_OP(ptr, name) \
2561 do { \
2562 if (ops->name) \
2563 if (!((ptr)->name)) \
2564 (ptr)->name = ops->name; \
2565 } while (0)
2566
2567#define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2568
2569 if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2570 WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2571 dev_ops->driver_id != ops->driver_id);
2572 dev_ops->driver_id = ops->driver_id;
2573 }
2574 if (ops->owner) {
2575 WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2576 dev_ops->owner = ops->owner;
2577 }
2578 if (ops->uverbs_abi_ver)
2579 dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2580
2581 dev_ops->uverbs_no_driver_id_binding |=
2582 ops->uverbs_no_driver_id_binding;
2583
2584 SET_DEVICE_OP(dev_ops, add_gid);
2585 SET_DEVICE_OP(dev_ops, advise_mr);
2586 SET_DEVICE_OP(dev_ops, alloc_dm);
2587 SET_DEVICE_OP(dev_ops, alloc_hw_stats);
2588 SET_DEVICE_OP(dev_ops, alloc_mr);
2589 SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2590 SET_DEVICE_OP(dev_ops, alloc_mw);
2591 SET_DEVICE_OP(dev_ops, alloc_pd);
2592 SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2593 SET_DEVICE_OP(dev_ops, alloc_ucontext);
2594 SET_DEVICE_OP(dev_ops, alloc_xrcd);
2595 SET_DEVICE_OP(dev_ops, attach_mcast);
2596 SET_DEVICE_OP(dev_ops, check_mr_status);
2597 SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2598 SET_DEVICE_OP(dev_ops, counter_bind_qp);
2599 SET_DEVICE_OP(dev_ops, counter_dealloc);
2600 SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2601 SET_DEVICE_OP(dev_ops, counter_update_stats);
2602 SET_DEVICE_OP(dev_ops, create_ah);
2603 SET_DEVICE_OP(dev_ops, create_counters);
2604 SET_DEVICE_OP(dev_ops, create_cq);
2605 SET_DEVICE_OP(dev_ops, create_flow);
2606 SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2607 SET_DEVICE_OP(dev_ops, create_qp);
2608 SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2609 SET_DEVICE_OP(dev_ops, create_srq);
2610 SET_DEVICE_OP(dev_ops, create_wq);
2611 SET_DEVICE_OP(dev_ops, dealloc_dm);
2612 SET_DEVICE_OP(dev_ops, dealloc_driver);
2613 SET_DEVICE_OP(dev_ops, dealloc_mw);
2614 SET_DEVICE_OP(dev_ops, dealloc_pd);
2615 SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2616 SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2617 SET_DEVICE_OP(dev_ops, del_gid);
2618 SET_DEVICE_OP(dev_ops, dereg_mr);
2619 SET_DEVICE_OP(dev_ops, destroy_ah);
2620 SET_DEVICE_OP(dev_ops, destroy_counters);
2621 SET_DEVICE_OP(dev_ops, destroy_cq);
2622 SET_DEVICE_OP(dev_ops, destroy_flow);
2623 SET_DEVICE_OP(dev_ops, destroy_flow_action);
2624 SET_DEVICE_OP(dev_ops, destroy_qp);
2625 SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2626 SET_DEVICE_OP(dev_ops, destroy_srq);
2627 SET_DEVICE_OP(dev_ops, destroy_wq);
2628 SET_DEVICE_OP(dev_ops, detach_mcast);
2629 SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2630 SET_DEVICE_OP(dev_ops, drain_rq);
2631 SET_DEVICE_OP(dev_ops, drain_sq);
2632 SET_DEVICE_OP(dev_ops, enable_driver);
2633 SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2634 SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2635 SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2636 SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2637 SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2638 SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2639 SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2640 SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2641 SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2642 SET_DEVICE_OP(dev_ops, get_dma_mr);
2643 SET_DEVICE_OP(dev_ops, get_hw_stats);
2644 SET_DEVICE_OP(dev_ops, get_link_layer);
2645 SET_DEVICE_OP(dev_ops, get_netdev);
2646 SET_DEVICE_OP(dev_ops, get_port_immutable);
2647 SET_DEVICE_OP(dev_ops, get_vector_affinity);
2648 SET_DEVICE_OP(dev_ops, get_vf_config);
2649 SET_DEVICE_OP(dev_ops, get_vf_guid);
2650 SET_DEVICE_OP(dev_ops, get_vf_stats);
2651 SET_DEVICE_OP(dev_ops, init_port);
2652 SET_DEVICE_OP(dev_ops, iw_accept);
2653 SET_DEVICE_OP(dev_ops, iw_add_ref);
2654 SET_DEVICE_OP(dev_ops, iw_connect);
2655 SET_DEVICE_OP(dev_ops, iw_create_listen);
2656 SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2657 SET_DEVICE_OP(dev_ops, iw_get_qp);
2658 SET_DEVICE_OP(dev_ops, iw_reject);
2659 SET_DEVICE_OP(dev_ops, iw_rem_ref);
2660 SET_DEVICE_OP(dev_ops, map_mr_sg);
2661 SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2662 SET_DEVICE_OP(dev_ops, mmap);
2663 SET_DEVICE_OP(dev_ops, mmap_free);
2664 SET_DEVICE_OP(dev_ops, modify_ah);
2665 SET_DEVICE_OP(dev_ops, modify_cq);
2666 SET_DEVICE_OP(dev_ops, modify_device);
2667 SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2668 SET_DEVICE_OP(dev_ops, modify_port);
2669 SET_DEVICE_OP(dev_ops, modify_qp);
2670 SET_DEVICE_OP(dev_ops, modify_srq);
2671 SET_DEVICE_OP(dev_ops, modify_wq);
2672 SET_DEVICE_OP(dev_ops, peek_cq);
2673 SET_DEVICE_OP(dev_ops, poll_cq);
2674 SET_DEVICE_OP(dev_ops, post_recv);
2675 SET_DEVICE_OP(dev_ops, post_send);
2676 SET_DEVICE_OP(dev_ops, post_srq_recv);
2677 SET_DEVICE_OP(dev_ops, process_mad);
2678 SET_DEVICE_OP(dev_ops, query_ah);
2679 SET_DEVICE_OP(dev_ops, query_device);
2680 SET_DEVICE_OP(dev_ops, query_gid);
2681 SET_DEVICE_OP(dev_ops, query_pkey);
2682 SET_DEVICE_OP(dev_ops, query_port);
2683 SET_DEVICE_OP(dev_ops, query_qp);
2684 SET_DEVICE_OP(dev_ops, query_srq);
2685 SET_DEVICE_OP(dev_ops, query_ucontext);
2686 SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2687 SET_DEVICE_OP(dev_ops, read_counters);
2688 SET_DEVICE_OP(dev_ops, reg_dm_mr);
2689 SET_DEVICE_OP(dev_ops, reg_user_mr);
2690 SET_DEVICE_OP(dev_ops, req_ncomp_notif);
2691 SET_DEVICE_OP(dev_ops, req_notify_cq);
2692 SET_DEVICE_OP(dev_ops, rereg_user_mr);
2693 SET_DEVICE_OP(dev_ops, resize_cq);
2694 SET_DEVICE_OP(dev_ops, set_vf_guid);
2695 SET_DEVICE_OP(dev_ops, set_vf_link_state);
2696
2697 SET_OBJ_SIZE(dev_ops, ib_ah);
2698 SET_OBJ_SIZE(dev_ops, ib_counters);
2699 SET_OBJ_SIZE(dev_ops, ib_cq);
2700 SET_OBJ_SIZE(dev_ops, ib_pd);
2701 SET_OBJ_SIZE(dev_ops, ib_srq);
2702 SET_OBJ_SIZE(dev_ops, ib_ucontext);
2703 SET_OBJ_SIZE(dev_ops, ib_xrcd);
2704}
2705EXPORT_SYMBOL(ib_set_device_ops);
2706
2707static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2708 [RDMA_NL_LS_OP_RESOLVE] = {
2709 .doit = ib_nl_handle_resolve_resp,
2710 .flags = RDMA_NL_ADMIN_PERM,
2711 },
2712 [RDMA_NL_LS_OP_SET_TIMEOUT] = {
2713 .doit = ib_nl_handle_set_timeout,
2714 .flags = RDMA_NL_ADMIN_PERM,
2715 },
2716 [RDMA_NL_LS_OP_IP_RESOLVE] = {
2717 .doit = ib_nl_handle_ip_res_resp,
2718 .flags = RDMA_NL_ADMIN_PERM,
2719 },
2720};
2721
2722static int __init ib_core_init(void)
2723{
2724 int ret;
2725
2726 ib_wq = alloc_workqueue("infiniband", 0, 0);
2727 if (!ib_wq)
2728 return -ENOMEM;
2729
2730 ib_comp_wq = alloc_workqueue("ib-comp-wq",
2731 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2732 if (!ib_comp_wq) {
2733 ret = -ENOMEM;
2734 goto err;
2735 }
2736
2737 ib_comp_unbound_wq =
2738 alloc_workqueue("ib-comp-unb-wq",
2739 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2740 WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2741 if (!ib_comp_unbound_wq) {
2742 ret = -ENOMEM;
2743 goto err_comp;
2744 }
2745
2746 ret = class_register(&ib_class);
2747 if (ret) {
2748 pr_warn("Couldn't create InfiniBand device class\n");
2749 goto err_comp_unbound;
2750 }
2751
2752 rdma_nl_init();
2753
2754 ret = addr_init();
2755 if (ret) {
2756 pr_warn("Couldn't init IB address resolution\n");
2757 goto err_ibnl;
2758 }
2759
2760 ret = ib_mad_init();
2761 if (ret) {
2762 pr_warn("Couldn't init IB MAD\n");
2763 goto err_addr;
2764 }
2765
2766 ret = ib_sa_init();
2767 if (ret) {
2768 pr_warn("Couldn't init SA\n");
2769 goto err_mad;
2770 }
2771
2772 ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2773 if (ret) {
2774 pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2775 goto err_sa;
2776 }
2777
2778 ret = register_pernet_device(&rdma_dev_net_ops);
2779 if (ret) {
2780 pr_warn("Couldn't init compat dev. ret %d\n", ret);
2781 goto err_compat;
2782 }
2783
2784 nldev_init();
2785 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2786 roce_gid_mgmt_init();
2787
2788 return 0;
2789
2790err_compat:
2791 unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2792err_sa:
2793 ib_sa_cleanup();
2794err_mad:
2795 ib_mad_cleanup();
2796err_addr:
2797 addr_cleanup();
2798err_ibnl:
2799 class_unregister(&ib_class);
2800err_comp_unbound:
2801 destroy_workqueue(ib_comp_unbound_wq);
2802err_comp:
2803 destroy_workqueue(ib_comp_wq);
2804err:
2805 destroy_workqueue(ib_wq);
2806 return ret;
2807}
2808
2809static void __exit ib_core_cleanup(void)
2810{
2811 roce_gid_mgmt_cleanup();
2812 nldev_exit();
2813 rdma_nl_unregister(RDMA_NL_LS);
2814 unregister_pernet_device(&rdma_dev_net_ops);
2815 unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2816 ib_sa_cleanup();
2817 ib_mad_cleanup();
2818 addr_cleanup();
2819 rdma_nl_exit();
2820 class_unregister(&ib_class);
2821 destroy_workqueue(ib_comp_unbound_wq);
2822 destroy_workqueue(ib_comp_wq);
2823 /* Make sure that any pending umem accounting work is done. */
2824 destroy_workqueue(ib_wq);
2825 flush_workqueue(system_unbound_wq);
2826 WARN_ON(!xa_empty(&clients));
2827 WARN_ON(!xa_empty(&devices));
2828}
2829
2830MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2831
2832/* ib core relies on netdev stack to first register net_ns_type_operations
2833 * ns kobject type before ib_core initialization.
2834 */
2835fs_initcall(ib_core_init);
2836module_exit(ib_core_cleanup);