at v5.9 926 lines 24 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_X86_PROCESSOR_H 3#define _ASM_X86_PROCESSOR_H 4 5#include <asm/processor-flags.h> 6 7/* Forward declaration, a strange C thing */ 8struct task_struct; 9struct mm_struct; 10struct io_bitmap; 11struct vm86; 12 13#include <asm/math_emu.h> 14#include <asm/segment.h> 15#include <asm/types.h> 16#include <uapi/asm/sigcontext.h> 17#include <asm/current.h> 18#include <asm/cpufeatures.h> 19#include <asm/page.h> 20#include <asm/pgtable_types.h> 21#include <asm/percpu.h> 22#include <asm/msr.h> 23#include <asm/desc_defs.h> 24#include <asm/nops.h> 25#include <asm/special_insns.h> 26#include <asm/fpu/types.h> 27#include <asm/unwind_hints.h> 28#include <asm/vmxfeatures.h> 29#include <asm/vdso/processor.h> 30 31#include <linux/personality.h> 32#include <linux/cache.h> 33#include <linux/threads.h> 34#include <linux/math64.h> 35#include <linux/err.h> 36#include <linux/irqflags.h> 37#include <linux/mem_encrypt.h> 38 39/* 40 * We handle most unaligned accesses in hardware. On the other hand 41 * unaligned DMA can be quite expensive on some Nehalem processors. 42 * 43 * Based on this we disable the IP header alignment in network drivers. 44 */ 45#define NET_IP_ALIGN 0 46 47#define HBP_NUM 4 48 49/* 50 * These alignment constraints are for performance in the vSMP case, 51 * but in the task_struct case we must also meet hardware imposed 52 * alignment requirements of the FPU state: 53 */ 54#ifdef CONFIG_X86_VSMP 55# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) 56# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) 57#else 58# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) 59# define ARCH_MIN_MMSTRUCT_ALIGN 0 60#endif 61 62enum tlb_infos { 63 ENTRIES, 64 NR_INFO 65}; 66 67extern u16 __read_mostly tlb_lli_4k[NR_INFO]; 68extern u16 __read_mostly tlb_lli_2m[NR_INFO]; 69extern u16 __read_mostly tlb_lli_4m[NR_INFO]; 70extern u16 __read_mostly tlb_lld_4k[NR_INFO]; 71extern u16 __read_mostly tlb_lld_2m[NR_INFO]; 72extern u16 __read_mostly tlb_lld_4m[NR_INFO]; 73extern u16 __read_mostly tlb_lld_1g[NR_INFO]; 74 75/* 76 * CPU type and hardware bug flags. Kept separately for each CPU. 77 * Members of this structure are referenced in head_32.S, so think twice 78 * before touching them. [mj] 79 */ 80 81struct cpuinfo_x86 { 82 __u8 x86; /* CPU family */ 83 __u8 x86_vendor; /* CPU vendor */ 84 __u8 x86_model; 85 __u8 x86_stepping; 86#ifdef CONFIG_X86_64 87 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ 88 int x86_tlbsize; 89#endif 90#ifdef CONFIG_X86_VMX_FEATURE_NAMES 91 __u32 vmx_capability[NVMXINTS]; 92#endif 93 __u8 x86_virt_bits; 94 __u8 x86_phys_bits; 95 /* CPUID returned core id bits: */ 96 __u8 x86_coreid_bits; 97 __u8 cu_id; 98 /* Max extended CPUID function supported: */ 99 __u32 extended_cpuid_level; 100 /* Maximum supported CPUID level, -1=no CPUID: */ 101 int cpuid_level; 102 /* 103 * Align to size of unsigned long because the x86_capability array 104 * is passed to bitops which require the alignment. Use unnamed 105 * union to enforce the array is aligned to size of unsigned long. 106 */ 107 union { 108 __u32 x86_capability[NCAPINTS + NBUGINTS]; 109 unsigned long x86_capability_alignment; 110 }; 111 char x86_vendor_id[16]; 112 char x86_model_id[64]; 113 /* in KB - valid for CPUS which support this call: */ 114 unsigned int x86_cache_size; 115 int x86_cache_alignment; /* In bytes */ 116 /* Cache QoS architectural values, valid only on the BSP: */ 117 int x86_cache_max_rmid; /* max index */ 118 int x86_cache_occ_scale; /* scale to bytes */ 119 int x86_cache_mbm_width_offset; 120 int x86_power; 121 unsigned long loops_per_jiffy; 122 /* cpuid returned max cores value: */ 123 u16 x86_max_cores; 124 u16 apicid; 125 u16 initial_apicid; 126 u16 x86_clflush_size; 127 /* number of cores as seen by the OS: */ 128 u16 booted_cores; 129 /* Physical processor id: */ 130 u16 phys_proc_id; 131 /* Logical processor id: */ 132 u16 logical_proc_id; 133 /* Core id: */ 134 u16 cpu_core_id; 135 u16 cpu_die_id; 136 u16 logical_die_id; 137 /* Index into per_cpu list: */ 138 u16 cpu_index; 139 u32 microcode; 140 /* Address space bits used by the cache internally */ 141 u8 x86_cache_bits; 142 unsigned initialized : 1; 143} __randomize_layout; 144 145struct cpuid_regs { 146 u32 eax, ebx, ecx, edx; 147}; 148 149enum cpuid_regs_idx { 150 CPUID_EAX = 0, 151 CPUID_EBX, 152 CPUID_ECX, 153 CPUID_EDX, 154}; 155 156#define X86_VENDOR_INTEL 0 157#define X86_VENDOR_CYRIX 1 158#define X86_VENDOR_AMD 2 159#define X86_VENDOR_UMC 3 160#define X86_VENDOR_CENTAUR 5 161#define X86_VENDOR_TRANSMETA 7 162#define X86_VENDOR_NSC 8 163#define X86_VENDOR_HYGON 9 164#define X86_VENDOR_ZHAOXIN 10 165#define X86_VENDOR_NUM 11 166 167#define X86_VENDOR_UNKNOWN 0xff 168 169/* 170 * capabilities of CPUs 171 */ 172extern struct cpuinfo_x86 boot_cpu_data; 173extern struct cpuinfo_x86 new_cpu_data; 174 175extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; 176extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; 177 178#ifdef CONFIG_SMP 179DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 180#define cpu_data(cpu) per_cpu(cpu_info, cpu) 181#else 182#define cpu_info boot_cpu_data 183#define cpu_data(cpu) boot_cpu_data 184#endif 185 186extern const struct seq_operations cpuinfo_op; 187 188#define cache_line_size() (boot_cpu_data.x86_cache_alignment) 189 190extern void cpu_detect(struct cpuinfo_x86 *c); 191 192static inline unsigned long long l1tf_pfn_limit(void) 193{ 194 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT); 195} 196 197extern void early_cpu_init(void); 198extern void identify_boot_cpu(void); 199extern void identify_secondary_cpu(struct cpuinfo_x86 *); 200extern void print_cpu_info(struct cpuinfo_x86 *); 201void print_cpu_msr(struct cpuinfo_x86 *); 202 203#ifdef CONFIG_X86_32 204extern int have_cpuid_p(void); 205#else 206static inline int have_cpuid_p(void) 207{ 208 return 1; 209} 210#endif 211static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, 212 unsigned int *ecx, unsigned int *edx) 213{ 214 /* ecx is often an input as well as an output. */ 215 asm volatile("cpuid" 216 : "=a" (*eax), 217 "=b" (*ebx), 218 "=c" (*ecx), 219 "=d" (*edx) 220 : "0" (*eax), "2" (*ecx) 221 : "memory"); 222} 223 224#define native_cpuid_reg(reg) \ 225static inline unsigned int native_cpuid_##reg(unsigned int op) \ 226{ \ 227 unsigned int eax = op, ebx, ecx = 0, edx; \ 228 \ 229 native_cpuid(&eax, &ebx, &ecx, &edx); \ 230 \ 231 return reg; \ 232} 233 234/* 235 * Native CPUID functions returning a single datum. 236 */ 237native_cpuid_reg(eax) 238native_cpuid_reg(ebx) 239native_cpuid_reg(ecx) 240native_cpuid_reg(edx) 241 242/* 243 * Friendlier CR3 helpers. 244 */ 245static inline unsigned long read_cr3_pa(void) 246{ 247 return __read_cr3() & CR3_ADDR_MASK; 248} 249 250static inline unsigned long native_read_cr3_pa(void) 251{ 252 return __native_read_cr3() & CR3_ADDR_MASK; 253} 254 255static inline void load_cr3(pgd_t *pgdir) 256{ 257 write_cr3(__sme_pa(pgdir)); 258} 259 260/* 261 * Note that while the legacy 'TSS' name comes from 'Task State Segment', 262 * on modern x86 CPUs the TSS also holds information important to 64-bit mode, 263 * unrelated to the task-switch mechanism: 264 */ 265#ifdef CONFIG_X86_32 266/* This is the TSS defined by the hardware. */ 267struct x86_hw_tss { 268 unsigned short back_link, __blh; 269 unsigned long sp0; 270 unsigned short ss0, __ss0h; 271 unsigned long sp1; 272 273 /* 274 * We don't use ring 1, so ss1 is a convenient scratch space in 275 * the same cacheline as sp0. We use ss1 to cache the value in 276 * MSR_IA32_SYSENTER_CS. When we context switch 277 * MSR_IA32_SYSENTER_CS, we first check if the new value being 278 * written matches ss1, and, if it's not, then we wrmsr the new 279 * value and update ss1. 280 * 281 * The only reason we context switch MSR_IA32_SYSENTER_CS is 282 * that we set it to zero in vm86 tasks to avoid corrupting the 283 * stack if we were to go through the sysenter path from vm86 284 * mode. 285 */ 286 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ 287 288 unsigned short __ss1h; 289 unsigned long sp2; 290 unsigned short ss2, __ss2h; 291 unsigned long __cr3; 292 unsigned long ip; 293 unsigned long flags; 294 unsigned long ax; 295 unsigned long cx; 296 unsigned long dx; 297 unsigned long bx; 298 unsigned long sp; 299 unsigned long bp; 300 unsigned long si; 301 unsigned long di; 302 unsigned short es, __esh; 303 unsigned short cs, __csh; 304 unsigned short ss, __ssh; 305 unsigned short ds, __dsh; 306 unsigned short fs, __fsh; 307 unsigned short gs, __gsh; 308 unsigned short ldt, __ldth; 309 unsigned short trace; 310 unsigned short io_bitmap_base; 311 312} __attribute__((packed)); 313#else 314struct x86_hw_tss { 315 u32 reserved1; 316 u64 sp0; 317 318 /* 319 * We store cpu_current_top_of_stack in sp1 so it's always accessible. 320 * Linux does not use ring 1, so sp1 is not otherwise needed. 321 */ 322 u64 sp1; 323 324 /* 325 * Since Linux does not use ring 2, the 'sp2' slot is unused by 326 * hardware. entry_SYSCALL_64 uses it as scratch space to stash 327 * the user RSP value. 328 */ 329 u64 sp2; 330 331 u64 reserved2; 332 u64 ist[7]; 333 u32 reserved3; 334 u32 reserved4; 335 u16 reserved5; 336 u16 io_bitmap_base; 337 338} __attribute__((packed)); 339#endif 340 341/* 342 * IO-bitmap sizes: 343 */ 344#define IO_BITMAP_BITS 65536 345#define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE) 346#define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long)) 347 348#define IO_BITMAP_OFFSET_VALID_MAP \ 349 (offsetof(struct tss_struct, io_bitmap.bitmap) - \ 350 offsetof(struct tss_struct, x86_tss)) 351 352#define IO_BITMAP_OFFSET_VALID_ALL \ 353 (offsetof(struct tss_struct, io_bitmap.mapall) - \ 354 offsetof(struct tss_struct, x86_tss)) 355 356#ifdef CONFIG_X86_IOPL_IOPERM 357/* 358 * sizeof(unsigned long) coming from an extra "long" at the end of the 359 * iobitmap. The limit is inclusive, i.e. the last valid byte. 360 */ 361# define __KERNEL_TSS_LIMIT \ 362 (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \ 363 sizeof(unsigned long) - 1) 364#else 365# define __KERNEL_TSS_LIMIT \ 366 (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1) 367#endif 368 369/* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */ 370#define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1) 371 372struct entry_stack { 373 char stack[PAGE_SIZE]; 374}; 375 376struct entry_stack_page { 377 struct entry_stack stack; 378} __aligned(PAGE_SIZE); 379 380/* 381 * All IO bitmap related data stored in the TSS: 382 */ 383struct x86_io_bitmap { 384 /* The sequence number of the last active bitmap. */ 385 u64 prev_sequence; 386 387 /* 388 * Store the dirty size of the last io bitmap offender. The next 389 * one will have to do the cleanup as the switch out to a non io 390 * bitmap user will just set x86_tss.io_bitmap_base to a value 391 * outside of the TSS limit. So for sane tasks there is no need to 392 * actually touch the io_bitmap at all. 393 */ 394 unsigned int prev_max; 395 396 /* 397 * The extra 1 is there because the CPU will access an 398 * additional byte beyond the end of the IO permission 399 * bitmap. The extra byte must be all 1 bits, and must 400 * be within the limit. 401 */ 402 unsigned long bitmap[IO_BITMAP_LONGS + 1]; 403 404 /* 405 * Special I/O bitmap to emulate IOPL(3). All bytes zero, 406 * except the additional byte at the end. 407 */ 408 unsigned long mapall[IO_BITMAP_LONGS + 1]; 409}; 410 411struct tss_struct { 412 /* 413 * The fixed hardware portion. This must not cross a page boundary 414 * at risk of violating the SDM's advice and potentially triggering 415 * errata. 416 */ 417 struct x86_hw_tss x86_tss; 418 419 struct x86_io_bitmap io_bitmap; 420} __aligned(PAGE_SIZE); 421 422DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw); 423 424/* Per CPU interrupt stacks */ 425struct irq_stack { 426 char stack[IRQ_STACK_SIZE]; 427} __aligned(IRQ_STACK_SIZE); 428 429DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr); 430 431#ifdef CONFIG_X86_32 432DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); 433#else 434/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */ 435#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1 436#endif 437 438#ifdef CONFIG_X86_64 439struct fixed_percpu_data { 440 /* 441 * GCC hardcodes the stack canary as %gs:40. Since the 442 * irq_stack is the object at %gs:0, we reserve the bottom 443 * 48 bytes of the irq stack for the canary. 444 */ 445 char gs_base[40]; 446 unsigned long stack_canary; 447}; 448 449DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible; 450DECLARE_INIT_PER_CPU(fixed_percpu_data); 451 452static inline unsigned long cpu_kernelmode_gs_base(int cpu) 453{ 454 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu); 455} 456 457DECLARE_PER_CPU(unsigned int, irq_count); 458extern asmlinkage void ignore_sysret(void); 459 460/* Save actual FS/GS selectors and bases to current->thread */ 461void current_save_fsgs(void); 462#else /* X86_64 */ 463#ifdef CONFIG_STACKPROTECTOR 464/* 465 * Make sure stack canary segment base is cached-aligned: 466 * "For Intel Atom processors, avoid non zero segment base address 467 * that is not aligned to cache line boundary at all cost." 468 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) 469 */ 470struct stack_canary { 471 char __pad[20]; /* canary at %gs:20 */ 472 unsigned long canary; 473}; 474DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 475#endif 476/* Per CPU softirq stack pointer */ 477DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr); 478#endif /* X86_64 */ 479 480extern unsigned int fpu_kernel_xstate_size; 481extern unsigned int fpu_user_xstate_size; 482 483struct perf_event; 484 485typedef struct { 486 unsigned long seg; 487} mm_segment_t; 488 489struct thread_struct { 490 /* Cached TLS descriptors: */ 491 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; 492#ifdef CONFIG_X86_32 493 unsigned long sp0; 494#endif 495 unsigned long sp; 496#ifdef CONFIG_X86_32 497 unsigned long sysenter_cs; 498#else 499 unsigned short es; 500 unsigned short ds; 501 unsigned short fsindex; 502 unsigned short gsindex; 503#endif 504 505#ifdef CONFIG_X86_64 506 unsigned long fsbase; 507 unsigned long gsbase; 508#else 509 /* 510 * XXX: this could presumably be unsigned short. Alternatively, 511 * 32-bit kernels could be taught to use fsindex instead. 512 */ 513 unsigned long fs; 514 unsigned long gs; 515#endif 516 517 /* Save middle states of ptrace breakpoints */ 518 struct perf_event *ptrace_bps[HBP_NUM]; 519 /* Debug status used for traps, single steps, etc... */ 520 unsigned long debugreg6; 521 /* Keep track of the exact dr7 value set by the user */ 522 unsigned long ptrace_dr7; 523 /* Fault info: */ 524 unsigned long cr2; 525 unsigned long trap_nr; 526 unsigned long error_code; 527#ifdef CONFIG_VM86 528 /* Virtual 86 mode info */ 529 struct vm86 *vm86; 530#endif 531 /* IO permissions: */ 532 struct io_bitmap *io_bitmap; 533 534 /* 535 * IOPL. Priviledge level dependent I/O permission which is 536 * emulated via the I/O bitmap to prevent user space from disabling 537 * interrupts. 538 */ 539 unsigned long iopl_emul; 540 541 mm_segment_t addr_limit; 542 543 unsigned int sig_on_uaccess_err:1; 544 545 /* Floating point and extended processor state */ 546 struct fpu fpu; 547 /* 548 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at 549 * the end. 550 */ 551}; 552 553/* Whitelist the FPU state from the task_struct for hardened usercopy. */ 554static inline void arch_thread_struct_whitelist(unsigned long *offset, 555 unsigned long *size) 556{ 557 *offset = offsetof(struct thread_struct, fpu.state); 558 *size = fpu_kernel_xstate_size; 559} 560 561/* 562 * Thread-synchronous status. 563 * 564 * This is different from the flags in that nobody else 565 * ever touches our thread-synchronous status, so we don't 566 * have to worry about atomic accesses. 567 */ 568#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ 569 570static inline void 571native_load_sp0(unsigned long sp0) 572{ 573 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); 574} 575 576static __always_inline void native_swapgs(void) 577{ 578#ifdef CONFIG_X86_64 579 asm volatile("swapgs" ::: "memory"); 580#endif 581} 582 583static inline unsigned long current_top_of_stack(void) 584{ 585 /* 586 * We can't read directly from tss.sp0: sp0 on x86_32 is special in 587 * and around vm86 mode and sp0 on x86_64 is special because of the 588 * entry trampoline. 589 */ 590 return this_cpu_read_stable(cpu_current_top_of_stack); 591} 592 593static inline bool on_thread_stack(void) 594{ 595 return (unsigned long)(current_top_of_stack() - 596 current_stack_pointer) < THREAD_SIZE; 597} 598 599#ifdef CONFIG_PARAVIRT_XXL 600#include <asm/paravirt.h> 601#else 602#define __cpuid native_cpuid 603 604static inline void load_sp0(unsigned long sp0) 605{ 606 native_load_sp0(sp0); 607} 608 609#endif /* CONFIG_PARAVIRT_XXL */ 610 611/* Free all resources held by a thread. */ 612extern void release_thread(struct task_struct *); 613 614unsigned long get_wchan(struct task_struct *p); 615 616/* 617 * Generic CPUID function 618 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx 619 * resulting in stale register contents being returned. 620 */ 621static inline void cpuid(unsigned int op, 622 unsigned int *eax, unsigned int *ebx, 623 unsigned int *ecx, unsigned int *edx) 624{ 625 *eax = op; 626 *ecx = 0; 627 __cpuid(eax, ebx, ecx, edx); 628} 629 630/* Some CPUID calls want 'count' to be placed in ecx */ 631static inline void cpuid_count(unsigned int op, int count, 632 unsigned int *eax, unsigned int *ebx, 633 unsigned int *ecx, unsigned int *edx) 634{ 635 *eax = op; 636 *ecx = count; 637 __cpuid(eax, ebx, ecx, edx); 638} 639 640/* 641 * CPUID functions returning a single datum 642 */ 643static inline unsigned int cpuid_eax(unsigned int op) 644{ 645 unsigned int eax, ebx, ecx, edx; 646 647 cpuid(op, &eax, &ebx, &ecx, &edx); 648 649 return eax; 650} 651 652static inline unsigned int cpuid_ebx(unsigned int op) 653{ 654 unsigned int eax, ebx, ecx, edx; 655 656 cpuid(op, &eax, &ebx, &ecx, &edx); 657 658 return ebx; 659} 660 661static inline unsigned int cpuid_ecx(unsigned int op) 662{ 663 unsigned int eax, ebx, ecx, edx; 664 665 cpuid(op, &eax, &ebx, &ecx, &edx); 666 667 return ecx; 668} 669 670static inline unsigned int cpuid_edx(unsigned int op) 671{ 672 unsigned int eax, ebx, ecx, edx; 673 674 cpuid(op, &eax, &ebx, &ecx, &edx); 675 676 return edx; 677} 678 679extern void select_idle_routine(const struct cpuinfo_x86 *c); 680extern void amd_e400_c1e_apic_setup(void); 681 682extern unsigned long boot_option_idle_override; 683 684enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, 685 IDLE_POLL}; 686 687extern void enable_sep_cpu(void); 688extern int sysenter_setup(void); 689 690 691/* Defined in head.S */ 692extern struct desc_ptr early_gdt_descr; 693 694extern void switch_to_new_gdt(int); 695extern void load_direct_gdt(int); 696extern void load_fixmap_gdt(int); 697extern void load_percpu_segment(int); 698extern void cpu_init(void); 699extern void cr4_init(void); 700 701static inline unsigned long get_debugctlmsr(void) 702{ 703 unsigned long debugctlmsr = 0; 704 705#ifndef CONFIG_X86_DEBUGCTLMSR 706 if (boot_cpu_data.x86 < 6) 707 return 0; 708#endif 709 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 710 711 return debugctlmsr; 712} 713 714static inline void update_debugctlmsr(unsigned long debugctlmsr) 715{ 716#ifndef CONFIG_X86_DEBUGCTLMSR 717 if (boot_cpu_data.x86 < 6) 718 return; 719#endif 720 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 721} 722 723extern void set_task_blockstep(struct task_struct *task, bool on); 724 725/* Boot loader type from the setup header: */ 726extern int bootloader_type; 727extern int bootloader_version; 728 729extern char ignore_fpu_irq; 730 731#define HAVE_ARCH_PICK_MMAP_LAYOUT 1 732#define ARCH_HAS_PREFETCHW 733#define ARCH_HAS_SPINLOCK_PREFETCH 734 735#ifdef CONFIG_X86_32 736# define BASE_PREFETCH "" 737# define ARCH_HAS_PREFETCH 738#else 739# define BASE_PREFETCH "prefetcht0 %P1" 740#endif 741 742/* 743 * Prefetch instructions for Pentium III (+) and AMD Athlon (+) 744 * 745 * It's not worth to care about 3dnow prefetches for the K6 746 * because they are microcoded there and very slow. 747 */ 748static inline void prefetch(const void *x) 749{ 750 alternative_input(BASE_PREFETCH, "prefetchnta %P1", 751 X86_FEATURE_XMM, 752 "m" (*(const char *)x)); 753} 754 755/* 756 * 3dnow prefetch to get an exclusive cache line. 757 * Useful for spinlocks to avoid one state transition in the 758 * cache coherency protocol: 759 */ 760static __always_inline void prefetchw(const void *x) 761{ 762 alternative_input(BASE_PREFETCH, "prefetchw %P1", 763 X86_FEATURE_3DNOWPREFETCH, 764 "m" (*(const char *)x)); 765} 766 767static inline void spin_lock_prefetch(const void *x) 768{ 769 prefetchw(x); 770} 771 772#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ 773 TOP_OF_KERNEL_STACK_PADDING) 774 775#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1)) 776 777#define task_pt_regs(task) \ 778({ \ 779 unsigned long __ptr = (unsigned long)task_stack_page(task); \ 780 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ 781 ((struct pt_regs *)__ptr) - 1; \ 782}) 783 784#ifdef CONFIG_X86_32 785/* 786 * User space process size: 3GB (default). 787 */ 788#define IA32_PAGE_OFFSET PAGE_OFFSET 789#define TASK_SIZE PAGE_OFFSET 790#define TASK_SIZE_LOW TASK_SIZE 791#define TASK_SIZE_MAX TASK_SIZE 792#define DEFAULT_MAP_WINDOW TASK_SIZE 793#define STACK_TOP TASK_SIZE 794#define STACK_TOP_MAX STACK_TOP 795 796#define INIT_THREAD { \ 797 .sp0 = TOP_OF_INIT_STACK, \ 798 .sysenter_cs = __KERNEL_CS, \ 799 .addr_limit = KERNEL_DS, \ 800} 801 802#define KSTK_ESP(task) (task_pt_regs(task)->sp) 803 804#else 805/* 806 * User space process size. This is the first address outside the user range. 807 * There are a few constraints that determine this: 808 * 809 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical 810 * address, then that syscall will enter the kernel with a 811 * non-canonical return address, and SYSRET will explode dangerously. 812 * We avoid this particular problem by preventing anything executable 813 * from being mapped at the maximum canonical address. 814 * 815 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the 816 * CPUs malfunction if they execute code from the highest canonical page. 817 * They'll speculate right off the end of the canonical space, and 818 * bad things happen. This is worked around in the same way as the 819 * Intel problem. 820 * 821 * With page table isolation enabled, we map the LDT in ... [stay tuned] 822 */ 823#define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE) 824 825#define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE) 826 827/* This decides where the kernel will search for a free chunk of vm 828 * space during mmap's. 829 */ 830#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \ 831 0xc0000000 : 0xFFFFe000) 832 833#define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \ 834 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW) 835#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \ 836 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 837#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \ 838 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 839 840#define STACK_TOP TASK_SIZE_LOW 841#define STACK_TOP_MAX TASK_SIZE_MAX 842 843#define INIT_THREAD { \ 844 .addr_limit = KERNEL_DS, \ 845} 846 847extern unsigned long KSTK_ESP(struct task_struct *task); 848 849#endif /* CONFIG_X86_64 */ 850 851extern void start_thread(struct pt_regs *regs, unsigned long new_ip, 852 unsigned long new_sp); 853 854/* 855 * This decides where the kernel will search for a free chunk of vm 856 * space during mmap's. 857 */ 858#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) 859#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) 860 861#define KSTK_EIP(task) (task_pt_regs(task)->ip) 862 863/* Get/set a process' ability to use the timestamp counter instruction */ 864#define GET_TSC_CTL(adr) get_tsc_mode((adr)) 865#define SET_TSC_CTL(val) set_tsc_mode((val)) 866 867extern int get_tsc_mode(unsigned long adr); 868extern int set_tsc_mode(unsigned int val); 869 870DECLARE_PER_CPU(u64, msr_misc_features_shadow); 871 872#ifdef CONFIG_CPU_SUP_AMD 873extern u16 amd_get_nb_id(int cpu); 874extern u32 amd_get_nodes_per_socket(void); 875#else 876static inline u16 amd_get_nb_id(int cpu) { return 0; } 877static inline u32 amd_get_nodes_per_socket(void) { return 0; } 878#endif 879 880static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) 881{ 882 uint32_t base, eax, signature[3]; 883 884 for (base = 0x40000000; base < 0x40010000; base += 0x100) { 885 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); 886 887 if (!memcmp(sig, signature, 12) && 888 (leaves == 0 || ((eax - base) >= leaves))) 889 return base; 890 } 891 892 return 0; 893} 894 895extern unsigned long arch_align_stack(unsigned long sp); 896void free_init_pages(const char *what, unsigned long begin, unsigned long end); 897extern void free_kernel_image_pages(const char *what, void *begin, void *end); 898 899void default_idle(void); 900#ifdef CONFIG_XEN 901bool xen_set_default_idle(void); 902#else 903#define xen_set_default_idle 0 904#endif 905 906void stop_this_cpu(void *dummy); 907void microcode_check(void); 908 909enum l1tf_mitigations { 910 L1TF_MITIGATION_OFF, 911 L1TF_MITIGATION_FLUSH_NOWARN, 912 L1TF_MITIGATION_FLUSH, 913 L1TF_MITIGATION_FLUSH_NOSMT, 914 L1TF_MITIGATION_FULL, 915 L1TF_MITIGATION_FULL_FORCE 916}; 917 918extern enum l1tf_mitigations l1tf_mitigation; 919 920enum mds_mitigations { 921 MDS_MITIGATION_OFF, 922 MDS_MITIGATION_FULL, 923 MDS_MITIGATION_VMWERV, 924}; 925 926#endif /* _ASM_X86_PROCESSOR_H */