Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_PROCESSOR_H
3#define _ASM_X86_PROCESSOR_H
4
5#include <asm/processor-flags.h>
6
7/* Forward declaration, a strange C thing */
8struct task_struct;
9struct mm_struct;
10struct io_bitmap;
11struct vm86;
12
13#include <asm/math_emu.h>
14#include <asm/segment.h>
15#include <asm/types.h>
16#include <uapi/asm/sigcontext.h>
17#include <asm/current.h>
18#include <asm/cpufeatures.h>
19#include <asm/page.h>
20#include <asm/pgtable_types.h>
21#include <asm/percpu.h>
22#include <asm/msr.h>
23#include <asm/desc_defs.h>
24#include <asm/nops.h>
25#include <asm/special_insns.h>
26#include <asm/fpu/types.h>
27#include <asm/unwind_hints.h>
28#include <asm/vmxfeatures.h>
29#include <asm/vdso/processor.h>
30
31#include <linux/personality.h>
32#include <linux/cache.h>
33#include <linux/threads.h>
34#include <linux/math64.h>
35#include <linux/err.h>
36#include <linux/irqflags.h>
37#include <linux/mem_encrypt.h>
38
39/*
40 * We handle most unaligned accesses in hardware. On the other hand
41 * unaligned DMA can be quite expensive on some Nehalem processors.
42 *
43 * Based on this we disable the IP header alignment in network drivers.
44 */
45#define NET_IP_ALIGN 0
46
47#define HBP_NUM 4
48
49/*
50 * These alignment constraints are for performance in the vSMP case,
51 * but in the task_struct case we must also meet hardware imposed
52 * alignment requirements of the FPU state:
53 */
54#ifdef CONFIG_X86_VSMP
55# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
56# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
57#else
58# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
59# define ARCH_MIN_MMSTRUCT_ALIGN 0
60#endif
61
62enum tlb_infos {
63 ENTRIES,
64 NR_INFO
65};
66
67extern u16 __read_mostly tlb_lli_4k[NR_INFO];
68extern u16 __read_mostly tlb_lli_2m[NR_INFO];
69extern u16 __read_mostly tlb_lli_4m[NR_INFO];
70extern u16 __read_mostly tlb_lld_4k[NR_INFO];
71extern u16 __read_mostly tlb_lld_2m[NR_INFO];
72extern u16 __read_mostly tlb_lld_4m[NR_INFO];
73extern u16 __read_mostly tlb_lld_1g[NR_INFO];
74
75/*
76 * CPU type and hardware bug flags. Kept separately for each CPU.
77 * Members of this structure are referenced in head_32.S, so think twice
78 * before touching them. [mj]
79 */
80
81struct cpuinfo_x86 {
82 __u8 x86; /* CPU family */
83 __u8 x86_vendor; /* CPU vendor */
84 __u8 x86_model;
85 __u8 x86_stepping;
86#ifdef CONFIG_X86_64
87 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
88 int x86_tlbsize;
89#endif
90#ifdef CONFIG_X86_VMX_FEATURE_NAMES
91 __u32 vmx_capability[NVMXINTS];
92#endif
93 __u8 x86_virt_bits;
94 __u8 x86_phys_bits;
95 /* CPUID returned core id bits: */
96 __u8 x86_coreid_bits;
97 __u8 cu_id;
98 /* Max extended CPUID function supported: */
99 __u32 extended_cpuid_level;
100 /* Maximum supported CPUID level, -1=no CPUID: */
101 int cpuid_level;
102 /*
103 * Align to size of unsigned long because the x86_capability array
104 * is passed to bitops which require the alignment. Use unnamed
105 * union to enforce the array is aligned to size of unsigned long.
106 */
107 union {
108 __u32 x86_capability[NCAPINTS + NBUGINTS];
109 unsigned long x86_capability_alignment;
110 };
111 char x86_vendor_id[16];
112 char x86_model_id[64];
113 /* in KB - valid for CPUS which support this call: */
114 unsigned int x86_cache_size;
115 int x86_cache_alignment; /* In bytes */
116 /* Cache QoS architectural values, valid only on the BSP: */
117 int x86_cache_max_rmid; /* max index */
118 int x86_cache_occ_scale; /* scale to bytes */
119 int x86_cache_mbm_width_offset;
120 int x86_power;
121 unsigned long loops_per_jiffy;
122 /* cpuid returned max cores value: */
123 u16 x86_max_cores;
124 u16 apicid;
125 u16 initial_apicid;
126 u16 x86_clflush_size;
127 /* number of cores as seen by the OS: */
128 u16 booted_cores;
129 /* Physical processor id: */
130 u16 phys_proc_id;
131 /* Logical processor id: */
132 u16 logical_proc_id;
133 /* Core id: */
134 u16 cpu_core_id;
135 u16 cpu_die_id;
136 u16 logical_die_id;
137 /* Index into per_cpu list: */
138 u16 cpu_index;
139 u32 microcode;
140 /* Address space bits used by the cache internally */
141 u8 x86_cache_bits;
142 unsigned initialized : 1;
143} __randomize_layout;
144
145struct cpuid_regs {
146 u32 eax, ebx, ecx, edx;
147};
148
149enum cpuid_regs_idx {
150 CPUID_EAX = 0,
151 CPUID_EBX,
152 CPUID_ECX,
153 CPUID_EDX,
154};
155
156#define X86_VENDOR_INTEL 0
157#define X86_VENDOR_CYRIX 1
158#define X86_VENDOR_AMD 2
159#define X86_VENDOR_UMC 3
160#define X86_VENDOR_CENTAUR 5
161#define X86_VENDOR_TRANSMETA 7
162#define X86_VENDOR_NSC 8
163#define X86_VENDOR_HYGON 9
164#define X86_VENDOR_ZHAOXIN 10
165#define X86_VENDOR_NUM 11
166
167#define X86_VENDOR_UNKNOWN 0xff
168
169/*
170 * capabilities of CPUs
171 */
172extern struct cpuinfo_x86 boot_cpu_data;
173extern struct cpuinfo_x86 new_cpu_data;
174
175extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
176extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
177
178#ifdef CONFIG_SMP
179DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
180#define cpu_data(cpu) per_cpu(cpu_info, cpu)
181#else
182#define cpu_info boot_cpu_data
183#define cpu_data(cpu) boot_cpu_data
184#endif
185
186extern const struct seq_operations cpuinfo_op;
187
188#define cache_line_size() (boot_cpu_data.x86_cache_alignment)
189
190extern void cpu_detect(struct cpuinfo_x86 *c);
191
192static inline unsigned long long l1tf_pfn_limit(void)
193{
194 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
195}
196
197extern void early_cpu_init(void);
198extern void identify_boot_cpu(void);
199extern void identify_secondary_cpu(struct cpuinfo_x86 *);
200extern void print_cpu_info(struct cpuinfo_x86 *);
201void print_cpu_msr(struct cpuinfo_x86 *);
202
203#ifdef CONFIG_X86_32
204extern int have_cpuid_p(void);
205#else
206static inline int have_cpuid_p(void)
207{
208 return 1;
209}
210#endif
211static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
212 unsigned int *ecx, unsigned int *edx)
213{
214 /* ecx is often an input as well as an output. */
215 asm volatile("cpuid"
216 : "=a" (*eax),
217 "=b" (*ebx),
218 "=c" (*ecx),
219 "=d" (*edx)
220 : "0" (*eax), "2" (*ecx)
221 : "memory");
222}
223
224#define native_cpuid_reg(reg) \
225static inline unsigned int native_cpuid_##reg(unsigned int op) \
226{ \
227 unsigned int eax = op, ebx, ecx = 0, edx; \
228 \
229 native_cpuid(&eax, &ebx, &ecx, &edx); \
230 \
231 return reg; \
232}
233
234/*
235 * Native CPUID functions returning a single datum.
236 */
237native_cpuid_reg(eax)
238native_cpuid_reg(ebx)
239native_cpuid_reg(ecx)
240native_cpuid_reg(edx)
241
242/*
243 * Friendlier CR3 helpers.
244 */
245static inline unsigned long read_cr3_pa(void)
246{
247 return __read_cr3() & CR3_ADDR_MASK;
248}
249
250static inline unsigned long native_read_cr3_pa(void)
251{
252 return __native_read_cr3() & CR3_ADDR_MASK;
253}
254
255static inline void load_cr3(pgd_t *pgdir)
256{
257 write_cr3(__sme_pa(pgdir));
258}
259
260/*
261 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
262 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
263 * unrelated to the task-switch mechanism:
264 */
265#ifdef CONFIG_X86_32
266/* This is the TSS defined by the hardware. */
267struct x86_hw_tss {
268 unsigned short back_link, __blh;
269 unsigned long sp0;
270 unsigned short ss0, __ss0h;
271 unsigned long sp1;
272
273 /*
274 * We don't use ring 1, so ss1 is a convenient scratch space in
275 * the same cacheline as sp0. We use ss1 to cache the value in
276 * MSR_IA32_SYSENTER_CS. When we context switch
277 * MSR_IA32_SYSENTER_CS, we first check if the new value being
278 * written matches ss1, and, if it's not, then we wrmsr the new
279 * value and update ss1.
280 *
281 * The only reason we context switch MSR_IA32_SYSENTER_CS is
282 * that we set it to zero in vm86 tasks to avoid corrupting the
283 * stack if we were to go through the sysenter path from vm86
284 * mode.
285 */
286 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
287
288 unsigned short __ss1h;
289 unsigned long sp2;
290 unsigned short ss2, __ss2h;
291 unsigned long __cr3;
292 unsigned long ip;
293 unsigned long flags;
294 unsigned long ax;
295 unsigned long cx;
296 unsigned long dx;
297 unsigned long bx;
298 unsigned long sp;
299 unsigned long bp;
300 unsigned long si;
301 unsigned long di;
302 unsigned short es, __esh;
303 unsigned short cs, __csh;
304 unsigned short ss, __ssh;
305 unsigned short ds, __dsh;
306 unsigned short fs, __fsh;
307 unsigned short gs, __gsh;
308 unsigned short ldt, __ldth;
309 unsigned short trace;
310 unsigned short io_bitmap_base;
311
312} __attribute__((packed));
313#else
314struct x86_hw_tss {
315 u32 reserved1;
316 u64 sp0;
317
318 /*
319 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
320 * Linux does not use ring 1, so sp1 is not otherwise needed.
321 */
322 u64 sp1;
323
324 /*
325 * Since Linux does not use ring 2, the 'sp2' slot is unused by
326 * hardware. entry_SYSCALL_64 uses it as scratch space to stash
327 * the user RSP value.
328 */
329 u64 sp2;
330
331 u64 reserved2;
332 u64 ist[7];
333 u32 reserved3;
334 u32 reserved4;
335 u16 reserved5;
336 u16 io_bitmap_base;
337
338} __attribute__((packed));
339#endif
340
341/*
342 * IO-bitmap sizes:
343 */
344#define IO_BITMAP_BITS 65536
345#define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE)
346#define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long))
347
348#define IO_BITMAP_OFFSET_VALID_MAP \
349 (offsetof(struct tss_struct, io_bitmap.bitmap) - \
350 offsetof(struct tss_struct, x86_tss))
351
352#define IO_BITMAP_OFFSET_VALID_ALL \
353 (offsetof(struct tss_struct, io_bitmap.mapall) - \
354 offsetof(struct tss_struct, x86_tss))
355
356#ifdef CONFIG_X86_IOPL_IOPERM
357/*
358 * sizeof(unsigned long) coming from an extra "long" at the end of the
359 * iobitmap. The limit is inclusive, i.e. the last valid byte.
360 */
361# define __KERNEL_TSS_LIMIT \
362 (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
363 sizeof(unsigned long) - 1)
364#else
365# define __KERNEL_TSS_LIMIT \
366 (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
367#endif
368
369/* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
370#define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1)
371
372struct entry_stack {
373 char stack[PAGE_SIZE];
374};
375
376struct entry_stack_page {
377 struct entry_stack stack;
378} __aligned(PAGE_SIZE);
379
380/*
381 * All IO bitmap related data stored in the TSS:
382 */
383struct x86_io_bitmap {
384 /* The sequence number of the last active bitmap. */
385 u64 prev_sequence;
386
387 /*
388 * Store the dirty size of the last io bitmap offender. The next
389 * one will have to do the cleanup as the switch out to a non io
390 * bitmap user will just set x86_tss.io_bitmap_base to a value
391 * outside of the TSS limit. So for sane tasks there is no need to
392 * actually touch the io_bitmap at all.
393 */
394 unsigned int prev_max;
395
396 /*
397 * The extra 1 is there because the CPU will access an
398 * additional byte beyond the end of the IO permission
399 * bitmap. The extra byte must be all 1 bits, and must
400 * be within the limit.
401 */
402 unsigned long bitmap[IO_BITMAP_LONGS + 1];
403
404 /*
405 * Special I/O bitmap to emulate IOPL(3). All bytes zero,
406 * except the additional byte at the end.
407 */
408 unsigned long mapall[IO_BITMAP_LONGS + 1];
409};
410
411struct tss_struct {
412 /*
413 * The fixed hardware portion. This must not cross a page boundary
414 * at risk of violating the SDM's advice and potentially triggering
415 * errata.
416 */
417 struct x86_hw_tss x86_tss;
418
419 struct x86_io_bitmap io_bitmap;
420} __aligned(PAGE_SIZE);
421
422DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
423
424/* Per CPU interrupt stacks */
425struct irq_stack {
426 char stack[IRQ_STACK_SIZE];
427} __aligned(IRQ_STACK_SIZE);
428
429DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
430
431#ifdef CONFIG_X86_32
432DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
433#else
434/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
435#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
436#endif
437
438#ifdef CONFIG_X86_64
439struct fixed_percpu_data {
440 /*
441 * GCC hardcodes the stack canary as %gs:40. Since the
442 * irq_stack is the object at %gs:0, we reserve the bottom
443 * 48 bytes of the irq stack for the canary.
444 */
445 char gs_base[40];
446 unsigned long stack_canary;
447};
448
449DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
450DECLARE_INIT_PER_CPU(fixed_percpu_data);
451
452static inline unsigned long cpu_kernelmode_gs_base(int cpu)
453{
454 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
455}
456
457DECLARE_PER_CPU(unsigned int, irq_count);
458extern asmlinkage void ignore_sysret(void);
459
460/* Save actual FS/GS selectors and bases to current->thread */
461void current_save_fsgs(void);
462#else /* X86_64 */
463#ifdef CONFIG_STACKPROTECTOR
464/*
465 * Make sure stack canary segment base is cached-aligned:
466 * "For Intel Atom processors, avoid non zero segment base address
467 * that is not aligned to cache line boundary at all cost."
468 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
469 */
470struct stack_canary {
471 char __pad[20]; /* canary at %gs:20 */
472 unsigned long canary;
473};
474DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
475#endif
476/* Per CPU softirq stack pointer */
477DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr);
478#endif /* X86_64 */
479
480extern unsigned int fpu_kernel_xstate_size;
481extern unsigned int fpu_user_xstate_size;
482
483struct perf_event;
484
485typedef struct {
486 unsigned long seg;
487} mm_segment_t;
488
489struct thread_struct {
490 /* Cached TLS descriptors: */
491 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
492#ifdef CONFIG_X86_32
493 unsigned long sp0;
494#endif
495 unsigned long sp;
496#ifdef CONFIG_X86_32
497 unsigned long sysenter_cs;
498#else
499 unsigned short es;
500 unsigned short ds;
501 unsigned short fsindex;
502 unsigned short gsindex;
503#endif
504
505#ifdef CONFIG_X86_64
506 unsigned long fsbase;
507 unsigned long gsbase;
508#else
509 /*
510 * XXX: this could presumably be unsigned short. Alternatively,
511 * 32-bit kernels could be taught to use fsindex instead.
512 */
513 unsigned long fs;
514 unsigned long gs;
515#endif
516
517 /* Save middle states of ptrace breakpoints */
518 struct perf_event *ptrace_bps[HBP_NUM];
519 /* Debug status used for traps, single steps, etc... */
520 unsigned long debugreg6;
521 /* Keep track of the exact dr7 value set by the user */
522 unsigned long ptrace_dr7;
523 /* Fault info: */
524 unsigned long cr2;
525 unsigned long trap_nr;
526 unsigned long error_code;
527#ifdef CONFIG_VM86
528 /* Virtual 86 mode info */
529 struct vm86 *vm86;
530#endif
531 /* IO permissions: */
532 struct io_bitmap *io_bitmap;
533
534 /*
535 * IOPL. Priviledge level dependent I/O permission which is
536 * emulated via the I/O bitmap to prevent user space from disabling
537 * interrupts.
538 */
539 unsigned long iopl_emul;
540
541 mm_segment_t addr_limit;
542
543 unsigned int sig_on_uaccess_err:1;
544
545 /* Floating point and extended processor state */
546 struct fpu fpu;
547 /*
548 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
549 * the end.
550 */
551};
552
553/* Whitelist the FPU state from the task_struct for hardened usercopy. */
554static inline void arch_thread_struct_whitelist(unsigned long *offset,
555 unsigned long *size)
556{
557 *offset = offsetof(struct thread_struct, fpu.state);
558 *size = fpu_kernel_xstate_size;
559}
560
561/*
562 * Thread-synchronous status.
563 *
564 * This is different from the flags in that nobody else
565 * ever touches our thread-synchronous status, so we don't
566 * have to worry about atomic accesses.
567 */
568#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
569
570static inline void
571native_load_sp0(unsigned long sp0)
572{
573 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
574}
575
576static __always_inline void native_swapgs(void)
577{
578#ifdef CONFIG_X86_64
579 asm volatile("swapgs" ::: "memory");
580#endif
581}
582
583static inline unsigned long current_top_of_stack(void)
584{
585 /*
586 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
587 * and around vm86 mode and sp0 on x86_64 is special because of the
588 * entry trampoline.
589 */
590 return this_cpu_read_stable(cpu_current_top_of_stack);
591}
592
593static inline bool on_thread_stack(void)
594{
595 return (unsigned long)(current_top_of_stack() -
596 current_stack_pointer) < THREAD_SIZE;
597}
598
599#ifdef CONFIG_PARAVIRT_XXL
600#include <asm/paravirt.h>
601#else
602#define __cpuid native_cpuid
603
604static inline void load_sp0(unsigned long sp0)
605{
606 native_load_sp0(sp0);
607}
608
609#endif /* CONFIG_PARAVIRT_XXL */
610
611/* Free all resources held by a thread. */
612extern void release_thread(struct task_struct *);
613
614unsigned long get_wchan(struct task_struct *p);
615
616/*
617 * Generic CPUID function
618 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
619 * resulting in stale register contents being returned.
620 */
621static inline void cpuid(unsigned int op,
622 unsigned int *eax, unsigned int *ebx,
623 unsigned int *ecx, unsigned int *edx)
624{
625 *eax = op;
626 *ecx = 0;
627 __cpuid(eax, ebx, ecx, edx);
628}
629
630/* Some CPUID calls want 'count' to be placed in ecx */
631static inline void cpuid_count(unsigned int op, int count,
632 unsigned int *eax, unsigned int *ebx,
633 unsigned int *ecx, unsigned int *edx)
634{
635 *eax = op;
636 *ecx = count;
637 __cpuid(eax, ebx, ecx, edx);
638}
639
640/*
641 * CPUID functions returning a single datum
642 */
643static inline unsigned int cpuid_eax(unsigned int op)
644{
645 unsigned int eax, ebx, ecx, edx;
646
647 cpuid(op, &eax, &ebx, &ecx, &edx);
648
649 return eax;
650}
651
652static inline unsigned int cpuid_ebx(unsigned int op)
653{
654 unsigned int eax, ebx, ecx, edx;
655
656 cpuid(op, &eax, &ebx, &ecx, &edx);
657
658 return ebx;
659}
660
661static inline unsigned int cpuid_ecx(unsigned int op)
662{
663 unsigned int eax, ebx, ecx, edx;
664
665 cpuid(op, &eax, &ebx, &ecx, &edx);
666
667 return ecx;
668}
669
670static inline unsigned int cpuid_edx(unsigned int op)
671{
672 unsigned int eax, ebx, ecx, edx;
673
674 cpuid(op, &eax, &ebx, &ecx, &edx);
675
676 return edx;
677}
678
679extern void select_idle_routine(const struct cpuinfo_x86 *c);
680extern void amd_e400_c1e_apic_setup(void);
681
682extern unsigned long boot_option_idle_override;
683
684enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
685 IDLE_POLL};
686
687extern void enable_sep_cpu(void);
688extern int sysenter_setup(void);
689
690
691/* Defined in head.S */
692extern struct desc_ptr early_gdt_descr;
693
694extern void switch_to_new_gdt(int);
695extern void load_direct_gdt(int);
696extern void load_fixmap_gdt(int);
697extern void load_percpu_segment(int);
698extern void cpu_init(void);
699extern void cr4_init(void);
700
701static inline unsigned long get_debugctlmsr(void)
702{
703 unsigned long debugctlmsr = 0;
704
705#ifndef CONFIG_X86_DEBUGCTLMSR
706 if (boot_cpu_data.x86 < 6)
707 return 0;
708#endif
709 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
710
711 return debugctlmsr;
712}
713
714static inline void update_debugctlmsr(unsigned long debugctlmsr)
715{
716#ifndef CONFIG_X86_DEBUGCTLMSR
717 if (boot_cpu_data.x86 < 6)
718 return;
719#endif
720 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
721}
722
723extern void set_task_blockstep(struct task_struct *task, bool on);
724
725/* Boot loader type from the setup header: */
726extern int bootloader_type;
727extern int bootloader_version;
728
729extern char ignore_fpu_irq;
730
731#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
732#define ARCH_HAS_PREFETCHW
733#define ARCH_HAS_SPINLOCK_PREFETCH
734
735#ifdef CONFIG_X86_32
736# define BASE_PREFETCH ""
737# define ARCH_HAS_PREFETCH
738#else
739# define BASE_PREFETCH "prefetcht0 %P1"
740#endif
741
742/*
743 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
744 *
745 * It's not worth to care about 3dnow prefetches for the K6
746 * because they are microcoded there and very slow.
747 */
748static inline void prefetch(const void *x)
749{
750 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
751 X86_FEATURE_XMM,
752 "m" (*(const char *)x));
753}
754
755/*
756 * 3dnow prefetch to get an exclusive cache line.
757 * Useful for spinlocks to avoid one state transition in the
758 * cache coherency protocol:
759 */
760static __always_inline void prefetchw(const void *x)
761{
762 alternative_input(BASE_PREFETCH, "prefetchw %P1",
763 X86_FEATURE_3DNOWPREFETCH,
764 "m" (*(const char *)x));
765}
766
767static inline void spin_lock_prefetch(const void *x)
768{
769 prefetchw(x);
770}
771
772#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
773 TOP_OF_KERNEL_STACK_PADDING)
774
775#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
776
777#define task_pt_regs(task) \
778({ \
779 unsigned long __ptr = (unsigned long)task_stack_page(task); \
780 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
781 ((struct pt_regs *)__ptr) - 1; \
782})
783
784#ifdef CONFIG_X86_32
785/*
786 * User space process size: 3GB (default).
787 */
788#define IA32_PAGE_OFFSET PAGE_OFFSET
789#define TASK_SIZE PAGE_OFFSET
790#define TASK_SIZE_LOW TASK_SIZE
791#define TASK_SIZE_MAX TASK_SIZE
792#define DEFAULT_MAP_WINDOW TASK_SIZE
793#define STACK_TOP TASK_SIZE
794#define STACK_TOP_MAX STACK_TOP
795
796#define INIT_THREAD { \
797 .sp0 = TOP_OF_INIT_STACK, \
798 .sysenter_cs = __KERNEL_CS, \
799 .addr_limit = KERNEL_DS, \
800}
801
802#define KSTK_ESP(task) (task_pt_regs(task)->sp)
803
804#else
805/*
806 * User space process size. This is the first address outside the user range.
807 * There are a few constraints that determine this:
808 *
809 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
810 * address, then that syscall will enter the kernel with a
811 * non-canonical return address, and SYSRET will explode dangerously.
812 * We avoid this particular problem by preventing anything executable
813 * from being mapped at the maximum canonical address.
814 *
815 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
816 * CPUs malfunction if they execute code from the highest canonical page.
817 * They'll speculate right off the end of the canonical space, and
818 * bad things happen. This is worked around in the same way as the
819 * Intel problem.
820 *
821 * With page table isolation enabled, we map the LDT in ... [stay tuned]
822 */
823#define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
824
825#define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE)
826
827/* This decides where the kernel will search for a free chunk of vm
828 * space during mmap's.
829 */
830#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
831 0xc0000000 : 0xFFFFe000)
832
833#define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \
834 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
835#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
836 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
837#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
838 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
839
840#define STACK_TOP TASK_SIZE_LOW
841#define STACK_TOP_MAX TASK_SIZE_MAX
842
843#define INIT_THREAD { \
844 .addr_limit = KERNEL_DS, \
845}
846
847extern unsigned long KSTK_ESP(struct task_struct *task);
848
849#endif /* CONFIG_X86_64 */
850
851extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
852 unsigned long new_sp);
853
854/*
855 * This decides where the kernel will search for a free chunk of vm
856 * space during mmap's.
857 */
858#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
859#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
860
861#define KSTK_EIP(task) (task_pt_regs(task)->ip)
862
863/* Get/set a process' ability to use the timestamp counter instruction */
864#define GET_TSC_CTL(adr) get_tsc_mode((adr))
865#define SET_TSC_CTL(val) set_tsc_mode((val))
866
867extern int get_tsc_mode(unsigned long adr);
868extern int set_tsc_mode(unsigned int val);
869
870DECLARE_PER_CPU(u64, msr_misc_features_shadow);
871
872#ifdef CONFIG_CPU_SUP_AMD
873extern u16 amd_get_nb_id(int cpu);
874extern u32 amd_get_nodes_per_socket(void);
875#else
876static inline u16 amd_get_nb_id(int cpu) { return 0; }
877static inline u32 amd_get_nodes_per_socket(void) { return 0; }
878#endif
879
880static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
881{
882 uint32_t base, eax, signature[3];
883
884 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
885 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
886
887 if (!memcmp(sig, signature, 12) &&
888 (leaves == 0 || ((eax - base) >= leaves)))
889 return base;
890 }
891
892 return 0;
893}
894
895extern unsigned long arch_align_stack(unsigned long sp);
896void free_init_pages(const char *what, unsigned long begin, unsigned long end);
897extern void free_kernel_image_pages(const char *what, void *begin, void *end);
898
899void default_idle(void);
900#ifdef CONFIG_XEN
901bool xen_set_default_idle(void);
902#else
903#define xen_set_default_idle 0
904#endif
905
906void stop_this_cpu(void *dummy);
907void microcode_check(void);
908
909enum l1tf_mitigations {
910 L1TF_MITIGATION_OFF,
911 L1TF_MITIGATION_FLUSH_NOWARN,
912 L1TF_MITIGATION_FLUSH,
913 L1TF_MITIGATION_FLUSH_NOSMT,
914 L1TF_MITIGATION_FULL,
915 L1TF_MITIGATION_FULL_FORCE
916};
917
918extern enum l1tf_mitigations l1tf_mitigation;
919
920enum mds_mitigations {
921 MDS_MITIGATION_OFF,
922 MDS_MITIGATION_FULL,
923 MDS_MITIGATION_VMWERV,
924};
925
926#endif /* _ASM_X86_PROCESSOR_H */