at v5.9 280 lines 7.3 kB view raw
1/* 2 * Copyright (C) 2011 Tobias Klauser <tklauser@distanz.ch> 3 * Copyright (C) 2009 Wind River Systems Inc 4 * 5 * Based on asm/pgtable-32.h from mips which is: 6 * 7 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 2003 Ralf Baechle 8 * Copyright (C) 1999, 2000, 2001 Silicon Graphics, Inc. 9 * 10 * This file is subject to the terms and conditions of the GNU General Public 11 * License. See the file "COPYING" in the main directory of this archive 12 * for more details. 13 */ 14 15#ifndef _ASM_NIOS2_PGTABLE_H 16#define _ASM_NIOS2_PGTABLE_H 17 18#include <linux/io.h> 19#include <linux/bug.h> 20#include <asm/page.h> 21#include <asm/cacheflush.h> 22#include <asm/tlbflush.h> 23 24#include <asm/pgtable-bits.h> 25#include <asm-generic/pgtable-nopmd.h> 26 27#define FIRST_USER_ADDRESS 0UL 28 29#define VMALLOC_START CONFIG_NIOS2_KERNEL_MMU_REGION_BASE 30#define VMALLOC_END (CONFIG_NIOS2_KERNEL_REGION_BASE - 1) 31 32struct mm_struct; 33 34/* Helper macro */ 35#define MKP(x, w, r) __pgprot(_PAGE_PRESENT | _PAGE_CACHED | \ 36 ((x) ? _PAGE_EXEC : 0) | \ 37 ((r) ? _PAGE_READ : 0) | \ 38 ((w) ? _PAGE_WRITE : 0)) 39/* 40 * These are the macros that generic kernel code needs 41 * (to populate protection_map[]) 42 */ 43 44/* Remove W bit on private pages for COW support */ 45#define __P000 MKP(0, 0, 0) 46#define __P001 MKP(0, 0, 1) 47#define __P010 MKP(0, 0, 0) /* COW */ 48#define __P011 MKP(0, 0, 1) /* COW */ 49#define __P100 MKP(1, 0, 0) 50#define __P101 MKP(1, 0, 1) 51#define __P110 MKP(1, 0, 0) /* COW */ 52#define __P111 MKP(1, 0, 1) /* COW */ 53 54/* Shared pages can have exact HW mapping */ 55#define __S000 MKP(0, 0, 0) 56#define __S001 MKP(0, 0, 1) 57#define __S010 MKP(0, 1, 0) 58#define __S011 MKP(0, 1, 1) 59#define __S100 MKP(1, 0, 0) 60#define __S101 MKP(1, 0, 1) 61#define __S110 MKP(1, 1, 0) 62#define __S111 MKP(1, 1, 1) 63 64/* Used all over the kernel */ 65#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_CACHED | _PAGE_READ | \ 66 _PAGE_WRITE | _PAGE_EXEC | _PAGE_GLOBAL) 67 68#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_CACHED | _PAGE_READ | \ 69 _PAGE_WRITE | _PAGE_ACCESSED) 70 71#define PAGE_COPY MKP(0, 0, 1) 72 73#define PGD_ORDER 0 74#define PTE_ORDER 0 75 76#define PTRS_PER_PGD ((PAGE_SIZE << PGD_ORDER) / sizeof(pgd_t)) 77#define PTRS_PER_PTE ((PAGE_SIZE << PTE_ORDER) / sizeof(pte_t)) 78 79#define USER_PTRS_PER_PGD \ 80 (CONFIG_NIOS2_KERNEL_MMU_REGION_BASE / PGDIR_SIZE) 81 82#define PGDIR_SHIFT 22 83#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 84#define PGDIR_MASK (~(PGDIR_SIZE-1)) 85 86/* 87 * ZERO_PAGE is a global shared page that is always zero: used 88 * for zero-mapped memory areas etc.. 89 */ 90extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 91#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 92 93extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 94extern pte_t invalid_pte_table[PAGE_SIZE/sizeof(pte_t)]; 95 96/* 97 * (pmds are folded into puds so this doesn't get actually called, 98 * but the define is needed for a generic inline function.) 99 */ 100static inline void set_pmd(pmd_t *pmdptr, pmd_t pmdval) 101{ 102 *pmdptr = pmdval; 103} 104 105static inline int pte_write(pte_t pte) \ 106 { return pte_val(pte) & _PAGE_WRITE; } 107static inline int pte_dirty(pte_t pte) \ 108 { return pte_val(pte) & _PAGE_DIRTY; } 109static inline int pte_young(pte_t pte) \ 110 { return pte_val(pte) & _PAGE_ACCESSED; } 111 112#define pgprot_noncached pgprot_noncached 113 114static inline pgprot_t pgprot_noncached(pgprot_t _prot) 115{ 116 unsigned long prot = pgprot_val(_prot); 117 118 prot &= ~_PAGE_CACHED; 119 120 return __pgprot(prot); 121} 122 123static inline int pte_none(pte_t pte) 124{ 125 return !(pte_val(pte) & ~(_PAGE_GLOBAL|0xf)); 126} 127 128static inline int pte_present(pte_t pte) \ 129 { return pte_val(pte) & _PAGE_PRESENT; } 130 131/* 132 * The following only work if pte_present() is true. 133 * Undefined behaviour if not.. 134 */ 135static inline pte_t pte_wrprotect(pte_t pte) 136{ 137 pte_val(pte) &= ~_PAGE_WRITE; 138 return pte; 139} 140 141static inline pte_t pte_mkclean(pte_t pte) 142{ 143 pte_val(pte) &= ~_PAGE_DIRTY; 144 return pte; 145} 146 147static inline pte_t pte_mkold(pte_t pte) 148{ 149 pte_val(pte) &= ~_PAGE_ACCESSED; 150 return pte; 151} 152 153static inline pte_t pte_mkwrite(pte_t pte) 154{ 155 pte_val(pte) |= _PAGE_WRITE; 156 return pte; 157} 158 159static inline pte_t pte_mkdirty(pte_t pte) 160{ 161 pte_val(pte) |= _PAGE_DIRTY; 162 return pte; 163} 164 165static inline pte_t pte_mkyoung(pte_t pte) 166{ 167 pte_val(pte) |= _PAGE_ACCESSED; 168 return pte; 169} 170 171static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 172{ 173 const unsigned long mask = _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC; 174 175 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); 176 return pte; 177} 178 179static inline int pmd_present(pmd_t pmd) 180{ 181 return (pmd_val(pmd) != (unsigned long) invalid_pte_table) 182 && (pmd_val(pmd) != 0UL); 183} 184 185static inline void pmd_clear(pmd_t *pmdp) 186{ 187 pmd_val(*pmdp) = (unsigned long) invalid_pte_table; 188} 189 190#define pte_pfn(pte) (pte_val(pte) & 0xfffff) 191#define pfn_pte(pfn, prot) (__pte(pfn | pgprot_val(prot))) 192#define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 193 194/* 195 * Store a linux PTE into the linux page table. 196 */ 197static inline void set_pte(pte_t *ptep, pte_t pteval) 198{ 199 *ptep = pteval; 200} 201 202static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 203 pte_t *ptep, pte_t pteval) 204{ 205 unsigned long paddr = (unsigned long)page_to_virt(pte_page(pteval)); 206 207 flush_dcache_range(paddr, paddr + PAGE_SIZE); 208 set_pte(ptep, pteval); 209} 210 211static inline int pmd_none(pmd_t pmd) 212{ 213 return (pmd_val(pmd) == 214 (unsigned long) invalid_pte_table) || (pmd_val(pmd) == 0UL); 215} 216 217#define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK) 218 219static inline void pte_clear(struct mm_struct *mm, 220 unsigned long addr, pte_t *ptep) 221{ 222 pte_t null; 223 224 pte_val(null) = (addr >> PAGE_SHIFT) & 0xf; 225 226 set_pte_at(mm, addr, ptep, null); 227} 228 229/* 230 * Conversion functions: convert a page and protection to a page entry, 231 * and a page entry and page directory to the page they refer to. 232 */ 233#define mk_pte(page, prot) (pfn_pte(page_to_pfn(page), prot)) 234 235/* 236 * Conversion functions: convert a page and protection to a page entry, 237 * and a page entry and page directory to the page they refer to. 238 */ 239#define pmd_phys(pmd) virt_to_phys((void *)pmd_val(pmd)) 240#define pmd_page(pmd) (pfn_to_page(pmd_phys(pmd) >> PAGE_SHIFT)) 241 242static inline unsigned long pmd_page_vaddr(pmd_t pmd) 243{ 244 return pmd_val(pmd); 245} 246 247#define pte_ERROR(e) \ 248 pr_err("%s:%d: bad pte %08lx.\n", \ 249 __FILE__, __LINE__, pte_val(e)) 250#define pgd_ERROR(e) \ 251 pr_err("%s:%d: bad pgd %08lx.\n", \ 252 __FILE__, __LINE__, pgd_val(e)) 253 254/* 255 * Encode and decode a swap entry (must be !pte_none(pte) && !pte_present(pte): 256 * 257 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 ... 1 0 258 * 0 0 0 0 type. 0 0 0 0 0 0 offset......... 259 * 260 * This gives us up to 2**2 = 4 swap files and 2**20 * 4K = 4G per swap file. 261 * 262 * Note that the offset field is always non-zero, thus !pte_none(pte) is always 263 * true. 264 */ 265#define __swp_type(swp) (((swp).val >> 26) & 0x3) 266#define __swp_offset(swp) ((swp).val & 0xfffff) 267#define __swp_entry(type, off) ((swp_entry_t) { (((type) & 0x3) << 26) \ 268 | ((off) & 0xfffff) }) 269#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) 270#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 271 272#define kern_addr_valid(addr) (1) 273 274extern void __init paging_init(void); 275extern void __init mmu_init(void); 276 277extern void update_mmu_cache(struct vm_area_struct *vma, 278 unsigned long address, pte_t *pte); 279 280#endif /* _ASM_NIOS2_PGTABLE_H */