Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Based on arch/arm/include/asm/memory.h
4 *
5 * Copyright (C) 2000-2002 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * Note: this file should not be included by non-asm/.h files
9 */
10#ifndef __ASM_MEMORY_H
11#define __ASM_MEMORY_H
12
13#include <linux/const.h>
14#include <linux/sizes.h>
15#include <asm/page-def.h>
16
17/*
18 * Size of the PCI I/O space. This must remain a power of two so that
19 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses.
20 */
21#define PCI_IO_SIZE SZ_16M
22
23/*
24 * VMEMMAP_SIZE - allows the whole linear region to be covered by
25 * a struct page array
26 *
27 * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE
28 * needs to cover the memory region from the beginning of the 52-bit
29 * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to
30 * keep a constant PAGE_OFFSET and "fallback" to using the higher end
31 * of the VMEMMAP where 52-bit support is not available in hardware.
32 */
33#define VMEMMAP_SIZE ((_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) \
34 >> (PAGE_SHIFT - STRUCT_PAGE_MAX_SHIFT))
35
36/*
37 * PAGE_OFFSET - the virtual address of the start of the linear map, at the
38 * start of the TTBR1 address space.
39 * PAGE_END - the end of the linear map, where all other kernel mappings begin.
40 * KIMAGE_VADDR - the virtual address of the start of the kernel image.
41 * VA_BITS - the maximum number of bits for virtual addresses.
42 */
43#define VA_BITS (CONFIG_ARM64_VA_BITS)
44#define _PAGE_OFFSET(va) (-(UL(1) << (va)))
45#define PAGE_OFFSET (_PAGE_OFFSET(VA_BITS))
46#define KIMAGE_VADDR (MODULES_END)
47#define BPF_JIT_REGION_START (KASAN_SHADOW_END)
48#define BPF_JIT_REGION_SIZE (SZ_128M)
49#define BPF_JIT_REGION_END (BPF_JIT_REGION_START + BPF_JIT_REGION_SIZE)
50#define MODULES_END (MODULES_VADDR + MODULES_VSIZE)
51#define MODULES_VADDR (BPF_JIT_REGION_END)
52#define MODULES_VSIZE (SZ_128M)
53#define VMEMMAP_START (-VMEMMAP_SIZE - SZ_2M)
54#define VMEMMAP_END (VMEMMAP_START + VMEMMAP_SIZE)
55#define PCI_IO_END (VMEMMAP_START - SZ_2M)
56#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
57#define FIXADDR_TOP (PCI_IO_START - SZ_2M)
58
59#if VA_BITS > 48
60#define VA_BITS_MIN (48)
61#else
62#define VA_BITS_MIN (VA_BITS)
63#endif
64
65#define _PAGE_END(va) (-(UL(1) << ((va) - 1)))
66
67#define KERNEL_START _text
68#define KERNEL_END _end
69
70/*
71 * Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual
72 * address space for the shadow region respectively. They can bloat the stack
73 * significantly, so double the (minimum) stack size when they are in use.
74 */
75#ifdef CONFIG_KASAN
76#define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL)
77#define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) \
78 + KASAN_SHADOW_OFFSET)
79#define KASAN_THREAD_SHIFT 1
80#else
81#define KASAN_THREAD_SHIFT 0
82#define KASAN_SHADOW_END (_PAGE_END(VA_BITS_MIN))
83#endif /* CONFIG_KASAN */
84
85#define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT)
86
87/*
88 * VMAP'd stacks are allocated at page granularity, so we must ensure that such
89 * stacks are a multiple of page size.
90 */
91#if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT)
92#define THREAD_SHIFT PAGE_SHIFT
93#else
94#define THREAD_SHIFT MIN_THREAD_SHIFT
95#endif
96
97#if THREAD_SHIFT >= PAGE_SHIFT
98#define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT)
99#endif
100
101#define THREAD_SIZE (UL(1) << THREAD_SHIFT)
102
103/*
104 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by
105 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry
106 * assembly.
107 */
108#ifdef CONFIG_VMAP_STACK
109#define THREAD_ALIGN (2 * THREAD_SIZE)
110#else
111#define THREAD_ALIGN THREAD_SIZE
112#endif
113
114#define IRQ_STACK_SIZE THREAD_SIZE
115
116#define OVERFLOW_STACK_SIZE SZ_4K
117
118/*
119 * Alignment of kernel segments (e.g. .text, .data).
120 *
121 * 4 KB granule: 16 level 3 entries, with contiguous bit
122 * 16 KB granule: 4 level 3 entries, without contiguous bit
123 * 64 KB granule: 1 level 3 entry
124 */
125#define SEGMENT_ALIGN SZ_64K
126
127/*
128 * Memory types available.
129 */
130#define MT_DEVICE_nGnRnE 0
131#define MT_DEVICE_nGnRE 1
132#define MT_DEVICE_GRE 2
133#define MT_NORMAL_NC 3
134#define MT_NORMAL 4
135#define MT_NORMAL_WT 5
136
137/*
138 * Memory types for Stage-2 translation
139 */
140#define MT_S2_NORMAL 0xf
141#define MT_S2_DEVICE_nGnRE 0x1
142
143/*
144 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001
145 * Stage-2 enforces Normal-WB and Device-nGnRE
146 */
147#define MT_S2_FWB_NORMAL 6
148#define MT_S2_FWB_DEVICE_nGnRE 1
149
150#ifdef CONFIG_ARM64_4K_PAGES
151#define IOREMAP_MAX_ORDER (PUD_SHIFT)
152#else
153#define IOREMAP_MAX_ORDER (PMD_SHIFT)
154#endif
155
156#ifndef __ASSEMBLY__
157
158#include <linux/bitops.h>
159#include <linux/compiler.h>
160#include <linux/mmdebug.h>
161#include <linux/types.h>
162#include <asm/bug.h>
163
164extern u64 vabits_actual;
165#define PAGE_END (_PAGE_END(vabits_actual))
166
167extern s64 physvirt_offset;
168extern s64 memstart_addr;
169/* PHYS_OFFSET - the physical address of the start of memory. */
170#define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; })
171
172/* the virtual base of the kernel image (minus TEXT_OFFSET) */
173extern u64 kimage_vaddr;
174
175/* the offset between the kernel virtual and physical mappings */
176extern u64 kimage_voffset;
177
178static inline unsigned long kaslr_offset(void)
179{
180 return kimage_vaddr - KIMAGE_VADDR;
181}
182
183/*
184 * Allow all memory at the discovery stage. We will clip it later.
185 */
186#define MIN_MEMBLOCK_ADDR 0
187#define MAX_MEMBLOCK_ADDR U64_MAX
188
189/*
190 * PFNs are used to describe any physical page; this means
191 * PFN 0 == physical address 0.
192 *
193 * This is the PFN of the first RAM page in the kernel
194 * direct-mapped view. We assume this is the first page
195 * of RAM in the mem_map as well.
196 */
197#define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT)
198
199/*
200 * When dealing with data aborts, watchpoints, or instruction traps we may end
201 * up with a tagged userland pointer. Clear the tag to get a sane pointer to
202 * pass on to access_ok(), for instance.
203 */
204#define __untagged_addr(addr) \
205 ((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55))
206
207#define untagged_addr(addr) ({ \
208 u64 __addr = (__force u64)(addr); \
209 __addr &= __untagged_addr(__addr); \
210 (__force __typeof__(addr))__addr; \
211})
212
213#ifdef CONFIG_KASAN_SW_TAGS
214#define __tag_shifted(tag) ((u64)(tag) << 56)
215#define __tag_reset(addr) __untagged_addr(addr)
216#define __tag_get(addr) (__u8)((u64)(addr) >> 56)
217#else
218#define __tag_shifted(tag) 0UL
219#define __tag_reset(addr) (addr)
220#define __tag_get(addr) 0
221#endif /* CONFIG_KASAN_SW_TAGS */
222
223static inline const void *__tag_set(const void *addr, u8 tag)
224{
225 u64 __addr = (u64)addr & ~__tag_shifted(0xff);
226 return (const void *)(__addr | __tag_shifted(tag));
227}
228
229/*
230 * Physical vs virtual RAM address space conversion. These are
231 * private definitions which should NOT be used outside memory.h
232 * files. Use virt_to_phys/phys_to_virt/__pa/__va instead.
233 */
234
235
236/*
237 * The linear kernel range starts at the bottom of the virtual address
238 * space. Testing the top bit for the start of the region is a
239 * sufficient check and avoids having to worry about the tag.
240 */
241#define __is_lm_address(addr) (!(((u64)addr) & BIT(vabits_actual - 1)))
242
243#define __lm_to_phys(addr) (((addr) + physvirt_offset))
244#define __kimg_to_phys(addr) ((addr) - kimage_voffset)
245
246#define __virt_to_phys_nodebug(x) ({ \
247 phys_addr_t __x = (phys_addr_t)(__tag_reset(x)); \
248 __is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \
249})
250
251#define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x))
252
253#ifdef CONFIG_DEBUG_VIRTUAL
254extern phys_addr_t __virt_to_phys(unsigned long x);
255extern phys_addr_t __phys_addr_symbol(unsigned long x);
256#else
257#define __virt_to_phys(x) __virt_to_phys_nodebug(x)
258#define __phys_addr_symbol(x) __pa_symbol_nodebug(x)
259#endif /* CONFIG_DEBUG_VIRTUAL */
260
261#define __phys_to_virt(x) ((unsigned long)((x) - physvirt_offset))
262#define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset))
263
264/*
265 * Convert a page to/from a physical address
266 */
267#define page_to_phys(page) (__pfn_to_phys(page_to_pfn(page)))
268#define phys_to_page(phys) (pfn_to_page(__phys_to_pfn(phys)))
269
270/*
271 * Note: Drivers should NOT use these. They are the wrong
272 * translation for translating DMA addresses. Use the driver
273 * DMA support - see dma-mapping.h.
274 */
275#define virt_to_phys virt_to_phys
276static inline phys_addr_t virt_to_phys(const volatile void *x)
277{
278 return __virt_to_phys((unsigned long)(x));
279}
280
281#define phys_to_virt phys_to_virt
282static inline void *phys_to_virt(phys_addr_t x)
283{
284 return (void *)(__phys_to_virt(x));
285}
286
287/*
288 * Drivers should NOT use these either.
289 */
290#define __pa(x) __virt_to_phys((unsigned long)(x))
291#define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0))
292#define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x))
293#define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x)))
294#define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT)
295#define virt_to_pfn(x) __phys_to_pfn(__virt_to_phys((unsigned long)(x)))
296#define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x))
297
298/*
299 * virt_to_page(x) convert a _valid_ virtual address to struct page *
300 * virt_addr_valid(x) indicates whether a virtual address is valid
301 */
302#define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET)
303
304#if !defined(CONFIG_SPARSEMEM_VMEMMAP) || defined(CONFIG_DEBUG_VIRTUAL)
305#define virt_to_page(x) pfn_to_page(virt_to_pfn(x))
306#else
307#define page_to_virt(x) ({ \
308 __typeof__(x) __page = x; \
309 u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\
310 u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE); \
311 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\
312})
313
314#define virt_to_page(x) ({ \
315 u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE; \
316 u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page)); \
317 (struct page *)__addr; \
318})
319#endif /* !CONFIG_SPARSEMEM_VMEMMAP || CONFIG_DEBUG_VIRTUAL */
320
321#define virt_addr_valid(addr) ({ \
322 __typeof__(addr) __addr = addr; \
323 __is_lm_address(__addr) && pfn_valid(virt_to_pfn(__addr)); \
324})
325
326void dump_mem_limit(void);
327#endif /* !ASSEMBLY */
328
329/*
330 * Given that the GIC architecture permits ITS implementations that can only be
331 * configured with a LPI table address once, GICv3 systems with many CPUs may
332 * end up reserving a lot of different regions after a kexec for their LPI
333 * tables (one per CPU), as we are forced to reuse the same memory after kexec
334 * (and thus reserve it persistently with EFI beforehand)
335 */
336#if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS)
337# define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1)
338#endif
339
340#include <asm-generic/memory_model.h>
341
342#endif /* __ASM_MEMORY_H */