Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21#ifndef _LINUX_NETDEVICE_H
22#define _LINUX_NETDEVICE_H
23
24#include <linux/timer.h>
25#include <linux/bug.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/prefetch.h>
29#include <asm/cache.h>
30#include <asm/byteorder.h>
31
32#include <linux/percpu.h>
33#include <linux/rculist.h>
34#include <linux/workqueue.h>
35#include <linux/dynamic_queue_limits.h>
36
37#include <linux/ethtool.h>
38#include <net/net_namespace.h>
39#ifdef CONFIG_DCB
40#include <net/dcbnl.h>
41#endif
42#include <net/netprio_cgroup.h>
43#include <net/xdp.h>
44
45#include <linux/netdev_features.h>
46#include <linux/neighbour.h>
47#include <uapi/linux/netdevice.h>
48#include <uapi/linux/if_bonding.h>
49#include <uapi/linux/pkt_cls.h>
50#include <linux/hashtable.h>
51
52struct netpoll_info;
53struct device;
54struct phy_device;
55struct dsa_port;
56struct ip_tunnel_parm;
57struct macsec_context;
58struct macsec_ops;
59
60struct sfp_bus;
61/* 802.11 specific */
62struct wireless_dev;
63/* 802.15.4 specific */
64struct wpan_dev;
65struct mpls_dev;
66/* UDP Tunnel offloads */
67struct udp_tunnel_info;
68struct udp_tunnel_nic_info;
69struct udp_tunnel_nic;
70struct bpf_prog;
71struct xdp_buff;
72
73void netdev_set_default_ethtool_ops(struct net_device *dev,
74 const struct ethtool_ops *ops);
75
76/* Backlog congestion levels */
77#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
78#define NET_RX_DROP 1 /* packet dropped */
79
80#define MAX_NEST_DEV 8
81
82/*
83 * Transmit return codes: transmit return codes originate from three different
84 * namespaces:
85 *
86 * - qdisc return codes
87 * - driver transmit return codes
88 * - errno values
89 *
90 * Drivers are allowed to return any one of those in their hard_start_xmit()
91 * function. Real network devices commonly used with qdiscs should only return
92 * the driver transmit return codes though - when qdiscs are used, the actual
93 * transmission happens asynchronously, so the value is not propagated to
94 * higher layers. Virtual network devices transmit synchronously; in this case
95 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
96 * others are propagated to higher layers.
97 */
98
99/* qdisc ->enqueue() return codes. */
100#define NET_XMIT_SUCCESS 0x00
101#define NET_XMIT_DROP 0x01 /* skb dropped */
102#define NET_XMIT_CN 0x02 /* congestion notification */
103#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
104
105/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
106 * indicates that the device will soon be dropping packets, or already drops
107 * some packets of the same priority; prompting us to send less aggressively. */
108#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
109#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
110
111/* Driver transmit return codes */
112#define NETDEV_TX_MASK 0xf0
113
114enum netdev_tx {
115 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
116 NETDEV_TX_OK = 0x00, /* driver took care of packet */
117 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
118};
119typedef enum netdev_tx netdev_tx_t;
120
121/*
122 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
123 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
124 */
125static inline bool dev_xmit_complete(int rc)
126{
127 /*
128 * Positive cases with an skb consumed by a driver:
129 * - successful transmission (rc == NETDEV_TX_OK)
130 * - error while transmitting (rc < 0)
131 * - error while queueing to a different device (rc & NET_XMIT_MASK)
132 */
133 if (likely(rc < NET_XMIT_MASK))
134 return true;
135
136 return false;
137}
138
139/*
140 * Compute the worst-case header length according to the protocols
141 * used.
142 */
143
144#if defined(CONFIG_HYPERV_NET)
145# define LL_MAX_HEADER 128
146#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
147# if defined(CONFIG_MAC80211_MESH)
148# define LL_MAX_HEADER 128
149# else
150# define LL_MAX_HEADER 96
151# endif
152#else
153# define LL_MAX_HEADER 32
154#endif
155
156#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
157 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
158#define MAX_HEADER LL_MAX_HEADER
159#else
160#define MAX_HEADER (LL_MAX_HEADER + 48)
161#endif
162
163/*
164 * Old network device statistics. Fields are native words
165 * (unsigned long) so they can be read and written atomically.
166 */
167
168struct net_device_stats {
169 unsigned long rx_packets;
170 unsigned long tx_packets;
171 unsigned long rx_bytes;
172 unsigned long tx_bytes;
173 unsigned long rx_errors;
174 unsigned long tx_errors;
175 unsigned long rx_dropped;
176 unsigned long tx_dropped;
177 unsigned long multicast;
178 unsigned long collisions;
179 unsigned long rx_length_errors;
180 unsigned long rx_over_errors;
181 unsigned long rx_crc_errors;
182 unsigned long rx_frame_errors;
183 unsigned long rx_fifo_errors;
184 unsigned long rx_missed_errors;
185 unsigned long tx_aborted_errors;
186 unsigned long tx_carrier_errors;
187 unsigned long tx_fifo_errors;
188 unsigned long tx_heartbeat_errors;
189 unsigned long tx_window_errors;
190 unsigned long rx_compressed;
191 unsigned long tx_compressed;
192};
193
194
195#include <linux/cache.h>
196#include <linux/skbuff.h>
197
198#ifdef CONFIG_RPS
199#include <linux/static_key.h>
200extern struct static_key_false rps_needed;
201extern struct static_key_false rfs_needed;
202#endif
203
204struct neighbour;
205struct neigh_parms;
206struct sk_buff;
207
208struct netdev_hw_addr {
209 struct list_head list;
210 unsigned char addr[MAX_ADDR_LEN];
211 unsigned char type;
212#define NETDEV_HW_ADDR_T_LAN 1
213#define NETDEV_HW_ADDR_T_SAN 2
214#define NETDEV_HW_ADDR_T_SLAVE 3
215#define NETDEV_HW_ADDR_T_UNICAST 4
216#define NETDEV_HW_ADDR_T_MULTICAST 5
217 bool global_use;
218 int sync_cnt;
219 int refcount;
220 int synced;
221 struct rcu_head rcu_head;
222};
223
224struct netdev_hw_addr_list {
225 struct list_head list;
226 int count;
227};
228
229#define netdev_hw_addr_list_count(l) ((l)->count)
230#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231#define netdev_hw_addr_list_for_each(ha, l) \
232 list_for_each_entry(ha, &(l)->list, list)
233
234#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236#define netdev_for_each_uc_addr(ha, dev) \
237 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238
239#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241#define netdev_for_each_mc_addr(ha, dev) \
242 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243
244struct hh_cache {
245 unsigned int hh_len;
246 seqlock_t hh_lock;
247
248 /* cached hardware header; allow for machine alignment needs. */
249#define HH_DATA_MOD 16
250#define HH_DATA_OFF(__len) \
251 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252#define HH_DATA_ALIGN(__len) \
253 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255};
256
257/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258 * Alternative is:
259 * dev->hard_header_len ? (dev->hard_header_len +
260 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261 *
262 * We could use other alignment values, but we must maintain the
263 * relationship HH alignment <= LL alignment.
264 */
265#define LL_RESERVED_SPACE(dev) \
266 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269
270struct header_ops {
271 int (*create) (struct sk_buff *skb, struct net_device *dev,
272 unsigned short type, const void *daddr,
273 const void *saddr, unsigned int len);
274 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 void (*cache_update)(struct hh_cache *hh,
277 const struct net_device *dev,
278 const unsigned char *haddr);
279 bool (*validate)(const char *ll_header, unsigned int len);
280 __be16 (*parse_protocol)(const struct sk_buff *skb);
281};
282
283/* These flag bits are private to the generic network queueing
284 * layer; they may not be explicitly referenced by any other
285 * code.
286 */
287
288enum netdev_state_t {
289 __LINK_STATE_START,
290 __LINK_STATE_PRESENT,
291 __LINK_STATE_NOCARRIER,
292 __LINK_STATE_LINKWATCH_PENDING,
293 __LINK_STATE_DORMANT,
294 __LINK_STATE_TESTING,
295};
296
297
298/*
299 * This structure holds boot-time configured netdevice settings. They
300 * are then used in the device probing.
301 */
302struct netdev_boot_setup {
303 char name[IFNAMSIZ];
304 struct ifmap map;
305};
306#define NETDEV_BOOT_SETUP_MAX 8
307
308int __init netdev_boot_setup(char *str);
309
310struct gro_list {
311 struct list_head list;
312 int count;
313};
314
315/*
316 * size of gro hash buckets, must less than bit number of
317 * napi_struct::gro_bitmask
318 */
319#define GRO_HASH_BUCKETS 8
320
321/*
322 * Structure for NAPI scheduling similar to tasklet but with weighting
323 */
324struct napi_struct {
325 /* The poll_list must only be managed by the entity which
326 * changes the state of the NAPI_STATE_SCHED bit. This means
327 * whoever atomically sets that bit can add this napi_struct
328 * to the per-CPU poll_list, and whoever clears that bit
329 * can remove from the list right before clearing the bit.
330 */
331 struct list_head poll_list;
332
333 unsigned long state;
334 int weight;
335 int defer_hard_irqs_count;
336 unsigned long gro_bitmask;
337 int (*poll)(struct napi_struct *, int);
338#ifdef CONFIG_NETPOLL
339 int poll_owner;
340#endif
341 struct net_device *dev;
342 struct gro_list gro_hash[GRO_HASH_BUCKETS];
343 struct sk_buff *skb;
344 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
345 int rx_count; /* length of rx_list */
346 struct hrtimer timer;
347 struct list_head dev_list;
348 struct hlist_node napi_hash_node;
349 unsigned int napi_id;
350};
351
352enum {
353 NAPI_STATE_SCHED, /* Poll is scheduled */
354 NAPI_STATE_MISSED, /* reschedule a napi */
355 NAPI_STATE_DISABLE, /* Disable pending */
356 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
357 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
358 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
359 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
360};
361
362enum {
363 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
364 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
365 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
366 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
367 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED),
368 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
369 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
370};
371
372enum gro_result {
373 GRO_MERGED,
374 GRO_MERGED_FREE,
375 GRO_HELD,
376 GRO_NORMAL,
377 GRO_DROP,
378 GRO_CONSUMED,
379};
380typedef enum gro_result gro_result_t;
381
382/*
383 * enum rx_handler_result - Possible return values for rx_handlers.
384 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
385 * further.
386 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
387 * case skb->dev was changed by rx_handler.
388 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
389 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
390 *
391 * rx_handlers are functions called from inside __netif_receive_skb(), to do
392 * special processing of the skb, prior to delivery to protocol handlers.
393 *
394 * Currently, a net_device can only have a single rx_handler registered. Trying
395 * to register a second rx_handler will return -EBUSY.
396 *
397 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
398 * To unregister a rx_handler on a net_device, use
399 * netdev_rx_handler_unregister().
400 *
401 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
402 * do with the skb.
403 *
404 * If the rx_handler consumed the skb in some way, it should return
405 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
406 * the skb to be delivered in some other way.
407 *
408 * If the rx_handler changed skb->dev, to divert the skb to another
409 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
410 * new device will be called if it exists.
411 *
412 * If the rx_handler decides the skb should be ignored, it should return
413 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
414 * are registered on exact device (ptype->dev == skb->dev).
415 *
416 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
417 * delivered, it should return RX_HANDLER_PASS.
418 *
419 * A device without a registered rx_handler will behave as if rx_handler
420 * returned RX_HANDLER_PASS.
421 */
422
423enum rx_handler_result {
424 RX_HANDLER_CONSUMED,
425 RX_HANDLER_ANOTHER,
426 RX_HANDLER_EXACT,
427 RX_HANDLER_PASS,
428};
429typedef enum rx_handler_result rx_handler_result_t;
430typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
431
432void __napi_schedule(struct napi_struct *n);
433void __napi_schedule_irqoff(struct napi_struct *n);
434
435static inline bool napi_disable_pending(struct napi_struct *n)
436{
437 return test_bit(NAPI_STATE_DISABLE, &n->state);
438}
439
440bool napi_schedule_prep(struct napi_struct *n);
441
442/**
443 * napi_schedule - schedule NAPI poll
444 * @n: NAPI context
445 *
446 * Schedule NAPI poll routine to be called if it is not already
447 * running.
448 */
449static inline void napi_schedule(struct napi_struct *n)
450{
451 if (napi_schedule_prep(n))
452 __napi_schedule(n);
453}
454
455/**
456 * napi_schedule_irqoff - schedule NAPI poll
457 * @n: NAPI context
458 *
459 * Variant of napi_schedule(), assuming hard irqs are masked.
460 */
461static inline void napi_schedule_irqoff(struct napi_struct *n)
462{
463 if (napi_schedule_prep(n))
464 __napi_schedule_irqoff(n);
465}
466
467/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
468static inline bool napi_reschedule(struct napi_struct *napi)
469{
470 if (napi_schedule_prep(napi)) {
471 __napi_schedule(napi);
472 return true;
473 }
474 return false;
475}
476
477bool napi_complete_done(struct napi_struct *n, int work_done);
478/**
479 * napi_complete - NAPI processing complete
480 * @n: NAPI context
481 *
482 * Mark NAPI processing as complete.
483 * Consider using napi_complete_done() instead.
484 * Return false if device should avoid rearming interrupts.
485 */
486static inline bool napi_complete(struct napi_struct *n)
487{
488 return napi_complete_done(n, 0);
489}
490
491/**
492 * napi_hash_del - remove a NAPI from global table
493 * @napi: NAPI context
494 *
495 * Warning: caller must observe RCU grace period
496 * before freeing memory containing @napi, if
497 * this function returns true.
498 * Note: core networking stack automatically calls it
499 * from netif_napi_del().
500 * Drivers might want to call this helper to combine all
501 * the needed RCU grace periods into a single one.
502 */
503bool napi_hash_del(struct napi_struct *napi);
504
505/**
506 * napi_disable - prevent NAPI from scheduling
507 * @n: NAPI context
508 *
509 * Stop NAPI from being scheduled on this context.
510 * Waits till any outstanding processing completes.
511 */
512void napi_disable(struct napi_struct *n);
513
514/**
515 * napi_enable - enable NAPI scheduling
516 * @n: NAPI context
517 *
518 * Resume NAPI from being scheduled on this context.
519 * Must be paired with napi_disable.
520 */
521static inline void napi_enable(struct napi_struct *n)
522{
523 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
524 smp_mb__before_atomic();
525 clear_bit(NAPI_STATE_SCHED, &n->state);
526 clear_bit(NAPI_STATE_NPSVC, &n->state);
527}
528
529/**
530 * napi_synchronize - wait until NAPI is not running
531 * @n: NAPI context
532 *
533 * Wait until NAPI is done being scheduled on this context.
534 * Waits till any outstanding processing completes but
535 * does not disable future activations.
536 */
537static inline void napi_synchronize(const struct napi_struct *n)
538{
539 if (IS_ENABLED(CONFIG_SMP))
540 while (test_bit(NAPI_STATE_SCHED, &n->state))
541 msleep(1);
542 else
543 barrier();
544}
545
546/**
547 * napi_if_scheduled_mark_missed - if napi is running, set the
548 * NAPIF_STATE_MISSED
549 * @n: NAPI context
550 *
551 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
552 * NAPI is scheduled.
553 **/
554static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
555{
556 unsigned long val, new;
557
558 do {
559 val = READ_ONCE(n->state);
560 if (val & NAPIF_STATE_DISABLE)
561 return true;
562
563 if (!(val & NAPIF_STATE_SCHED))
564 return false;
565
566 new = val | NAPIF_STATE_MISSED;
567 } while (cmpxchg(&n->state, val, new) != val);
568
569 return true;
570}
571
572enum netdev_queue_state_t {
573 __QUEUE_STATE_DRV_XOFF,
574 __QUEUE_STATE_STACK_XOFF,
575 __QUEUE_STATE_FROZEN,
576};
577
578#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
579#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
580#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
581
582#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
583#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
584 QUEUE_STATE_FROZEN)
585#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
586 QUEUE_STATE_FROZEN)
587
588/*
589 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
590 * netif_tx_* functions below are used to manipulate this flag. The
591 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
592 * queue independently. The netif_xmit_*stopped functions below are called
593 * to check if the queue has been stopped by the driver or stack (either
594 * of the XOFF bits are set in the state). Drivers should not need to call
595 * netif_xmit*stopped functions, they should only be using netif_tx_*.
596 */
597
598struct netdev_queue {
599/*
600 * read-mostly part
601 */
602 struct net_device *dev;
603 struct Qdisc __rcu *qdisc;
604 struct Qdisc *qdisc_sleeping;
605#ifdef CONFIG_SYSFS
606 struct kobject kobj;
607#endif
608#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
609 int numa_node;
610#endif
611 unsigned long tx_maxrate;
612 /*
613 * Number of TX timeouts for this queue
614 * (/sys/class/net/DEV/Q/trans_timeout)
615 */
616 unsigned long trans_timeout;
617
618 /* Subordinate device that the queue has been assigned to */
619 struct net_device *sb_dev;
620#ifdef CONFIG_XDP_SOCKETS
621 struct xdp_umem *umem;
622#endif
623/*
624 * write-mostly part
625 */
626 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
627 int xmit_lock_owner;
628 /*
629 * Time (in jiffies) of last Tx
630 */
631 unsigned long trans_start;
632
633 unsigned long state;
634
635#ifdef CONFIG_BQL
636 struct dql dql;
637#endif
638} ____cacheline_aligned_in_smp;
639
640extern int sysctl_fb_tunnels_only_for_init_net;
641extern int sysctl_devconf_inherit_init_net;
642
643static inline bool net_has_fallback_tunnels(const struct net *net)
644{
645 return net == &init_net ||
646 !IS_ENABLED(CONFIG_SYSCTL) ||
647 !sysctl_fb_tunnels_only_for_init_net;
648}
649
650static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
651{
652#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653 return q->numa_node;
654#else
655 return NUMA_NO_NODE;
656#endif
657}
658
659static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
660{
661#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
662 q->numa_node = node;
663#endif
664}
665
666#ifdef CONFIG_RPS
667/*
668 * This structure holds an RPS map which can be of variable length. The
669 * map is an array of CPUs.
670 */
671struct rps_map {
672 unsigned int len;
673 struct rcu_head rcu;
674 u16 cpus[];
675};
676#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
677
678/*
679 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
680 * tail pointer for that CPU's input queue at the time of last enqueue, and
681 * a hardware filter index.
682 */
683struct rps_dev_flow {
684 u16 cpu;
685 u16 filter;
686 unsigned int last_qtail;
687};
688#define RPS_NO_FILTER 0xffff
689
690/*
691 * The rps_dev_flow_table structure contains a table of flow mappings.
692 */
693struct rps_dev_flow_table {
694 unsigned int mask;
695 struct rcu_head rcu;
696 struct rps_dev_flow flows[];
697};
698#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
699 ((_num) * sizeof(struct rps_dev_flow)))
700
701/*
702 * The rps_sock_flow_table contains mappings of flows to the last CPU
703 * on which they were processed by the application (set in recvmsg).
704 * Each entry is a 32bit value. Upper part is the high-order bits
705 * of flow hash, lower part is CPU number.
706 * rps_cpu_mask is used to partition the space, depending on number of
707 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
708 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
709 * meaning we use 32-6=26 bits for the hash.
710 */
711struct rps_sock_flow_table {
712 u32 mask;
713
714 u32 ents[] ____cacheline_aligned_in_smp;
715};
716#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
717
718#define RPS_NO_CPU 0xffff
719
720extern u32 rps_cpu_mask;
721extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
722
723static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
724 u32 hash)
725{
726 if (table && hash) {
727 unsigned int index = hash & table->mask;
728 u32 val = hash & ~rps_cpu_mask;
729
730 /* We only give a hint, preemption can change CPU under us */
731 val |= raw_smp_processor_id();
732
733 if (table->ents[index] != val)
734 table->ents[index] = val;
735 }
736}
737
738#ifdef CONFIG_RFS_ACCEL
739bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
740 u16 filter_id);
741#endif
742#endif /* CONFIG_RPS */
743
744/* This structure contains an instance of an RX queue. */
745struct netdev_rx_queue {
746#ifdef CONFIG_RPS
747 struct rps_map __rcu *rps_map;
748 struct rps_dev_flow_table __rcu *rps_flow_table;
749#endif
750 struct kobject kobj;
751 struct net_device *dev;
752 struct xdp_rxq_info xdp_rxq;
753#ifdef CONFIG_XDP_SOCKETS
754 struct xdp_umem *umem;
755#endif
756} ____cacheline_aligned_in_smp;
757
758/*
759 * RX queue sysfs structures and functions.
760 */
761struct rx_queue_attribute {
762 struct attribute attr;
763 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
764 ssize_t (*store)(struct netdev_rx_queue *queue,
765 const char *buf, size_t len);
766};
767
768#ifdef CONFIG_XPS
769/*
770 * This structure holds an XPS map which can be of variable length. The
771 * map is an array of queues.
772 */
773struct xps_map {
774 unsigned int len;
775 unsigned int alloc_len;
776 struct rcu_head rcu;
777 u16 queues[];
778};
779#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
780#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
781 - sizeof(struct xps_map)) / sizeof(u16))
782
783/*
784 * This structure holds all XPS maps for device. Maps are indexed by CPU.
785 */
786struct xps_dev_maps {
787 struct rcu_head rcu;
788 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
789};
790
791#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
792 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
793
794#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
795 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
796
797#endif /* CONFIG_XPS */
798
799#define TC_MAX_QUEUE 16
800#define TC_BITMASK 15
801/* HW offloaded queuing disciplines txq count and offset maps */
802struct netdev_tc_txq {
803 u16 count;
804 u16 offset;
805};
806
807#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
808/*
809 * This structure is to hold information about the device
810 * configured to run FCoE protocol stack.
811 */
812struct netdev_fcoe_hbainfo {
813 char manufacturer[64];
814 char serial_number[64];
815 char hardware_version[64];
816 char driver_version[64];
817 char optionrom_version[64];
818 char firmware_version[64];
819 char model[256];
820 char model_description[256];
821};
822#endif
823
824#define MAX_PHYS_ITEM_ID_LEN 32
825
826/* This structure holds a unique identifier to identify some
827 * physical item (port for example) used by a netdevice.
828 */
829struct netdev_phys_item_id {
830 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
831 unsigned char id_len;
832};
833
834static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
835 struct netdev_phys_item_id *b)
836{
837 return a->id_len == b->id_len &&
838 memcmp(a->id, b->id, a->id_len) == 0;
839}
840
841typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
842 struct sk_buff *skb,
843 struct net_device *sb_dev);
844
845enum tc_setup_type {
846 TC_SETUP_QDISC_MQPRIO,
847 TC_SETUP_CLSU32,
848 TC_SETUP_CLSFLOWER,
849 TC_SETUP_CLSMATCHALL,
850 TC_SETUP_CLSBPF,
851 TC_SETUP_BLOCK,
852 TC_SETUP_QDISC_CBS,
853 TC_SETUP_QDISC_RED,
854 TC_SETUP_QDISC_PRIO,
855 TC_SETUP_QDISC_MQ,
856 TC_SETUP_QDISC_ETF,
857 TC_SETUP_ROOT_QDISC,
858 TC_SETUP_QDISC_GRED,
859 TC_SETUP_QDISC_TAPRIO,
860 TC_SETUP_FT,
861 TC_SETUP_QDISC_ETS,
862 TC_SETUP_QDISC_TBF,
863 TC_SETUP_QDISC_FIFO,
864};
865
866/* These structures hold the attributes of bpf state that are being passed
867 * to the netdevice through the bpf op.
868 */
869enum bpf_netdev_command {
870 /* Set or clear a bpf program used in the earliest stages of packet
871 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
872 * is responsible for calling bpf_prog_put on any old progs that are
873 * stored. In case of error, the callee need not release the new prog
874 * reference, but on success it takes ownership and must bpf_prog_put
875 * when it is no longer used.
876 */
877 XDP_SETUP_PROG,
878 XDP_SETUP_PROG_HW,
879 /* BPF program for offload callbacks, invoked at program load time. */
880 BPF_OFFLOAD_MAP_ALLOC,
881 BPF_OFFLOAD_MAP_FREE,
882 XDP_SETUP_XSK_UMEM,
883};
884
885struct bpf_prog_offload_ops;
886struct netlink_ext_ack;
887struct xdp_umem;
888struct xdp_dev_bulk_queue;
889struct bpf_xdp_link;
890
891enum bpf_xdp_mode {
892 XDP_MODE_SKB = 0,
893 XDP_MODE_DRV = 1,
894 XDP_MODE_HW = 2,
895 __MAX_XDP_MODE
896};
897
898struct bpf_xdp_entity {
899 struct bpf_prog *prog;
900 struct bpf_xdp_link *link;
901};
902
903struct netdev_bpf {
904 enum bpf_netdev_command command;
905 union {
906 /* XDP_SETUP_PROG */
907 struct {
908 u32 flags;
909 struct bpf_prog *prog;
910 struct netlink_ext_ack *extack;
911 };
912 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
913 struct {
914 struct bpf_offloaded_map *offmap;
915 };
916 /* XDP_SETUP_XSK_UMEM */
917 struct {
918 struct xdp_umem *umem;
919 u16 queue_id;
920 } xsk;
921 };
922};
923
924/* Flags for ndo_xsk_wakeup. */
925#define XDP_WAKEUP_RX (1 << 0)
926#define XDP_WAKEUP_TX (1 << 1)
927
928#ifdef CONFIG_XFRM_OFFLOAD
929struct xfrmdev_ops {
930 int (*xdo_dev_state_add) (struct xfrm_state *x);
931 void (*xdo_dev_state_delete) (struct xfrm_state *x);
932 void (*xdo_dev_state_free) (struct xfrm_state *x);
933 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
934 struct xfrm_state *x);
935 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
936};
937#endif
938
939struct dev_ifalias {
940 struct rcu_head rcuhead;
941 char ifalias[];
942};
943
944struct devlink;
945struct tlsdev_ops;
946
947struct netdev_name_node {
948 struct hlist_node hlist;
949 struct list_head list;
950 struct net_device *dev;
951 const char *name;
952};
953
954int netdev_name_node_alt_create(struct net_device *dev, const char *name);
955int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
956
957struct netdev_net_notifier {
958 struct list_head list;
959 struct notifier_block *nb;
960};
961
962/*
963 * This structure defines the management hooks for network devices.
964 * The following hooks can be defined; unless noted otherwise, they are
965 * optional and can be filled with a null pointer.
966 *
967 * int (*ndo_init)(struct net_device *dev);
968 * This function is called once when a network device is registered.
969 * The network device can use this for any late stage initialization
970 * or semantic validation. It can fail with an error code which will
971 * be propagated back to register_netdev.
972 *
973 * void (*ndo_uninit)(struct net_device *dev);
974 * This function is called when device is unregistered or when registration
975 * fails. It is not called if init fails.
976 *
977 * int (*ndo_open)(struct net_device *dev);
978 * This function is called when a network device transitions to the up
979 * state.
980 *
981 * int (*ndo_stop)(struct net_device *dev);
982 * This function is called when a network device transitions to the down
983 * state.
984 *
985 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
986 * struct net_device *dev);
987 * Called when a packet needs to be transmitted.
988 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
989 * the queue before that can happen; it's for obsolete devices and weird
990 * corner cases, but the stack really does a non-trivial amount
991 * of useless work if you return NETDEV_TX_BUSY.
992 * Required; cannot be NULL.
993 *
994 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
995 * struct net_device *dev
996 * netdev_features_t features);
997 * Called by core transmit path to determine if device is capable of
998 * performing offload operations on a given packet. This is to give
999 * the device an opportunity to implement any restrictions that cannot
1000 * be otherwise expressed by feature flags. The check is called with
1001 * the set of features that the stack has calculated and it returns
1002 * those the driver believes to be appropriate.
1003 *
1004 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1005 * struct net_device *sb_dev);
1006 * Called to decide which queue to use when device supports multiple
1007 * transmit queues.
1008 *
1009 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1010 * This function is called to allow device receiver to make
1011 * changes to configuration when multicast or promiscuous is enabled.
1012 *
1013 * void (*ndo_set_rx_mode)(struct net_device *dev);
1014 * This function is called device changes address list filtering.
1015 * If driver handles unicast address filtering, it should set
1016 * IFF_UNICAST_FLT in its priv_flags.
1017 *
1018 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1019 * This function is called when the Media Access Control address
1020 * needs to be changed. If this interface is not defined, the
1021 * MAC address can not be changed.
1022 *
1023 * int (*ndo_validate_addr)(struct net_device *dev);
1024 * Test if Media Access Control address is valid for the device.
1025 *
1026 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1027 * Called when a user requests an ioctl which can't be handled by
1028 * the generic interface code. If not defined ioctls return
1029 * not supported error code.
1030 *
1031 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1032 * Used to set network devices bus interface parameters. This interface
1033 * is retained for legacy reasons; new devices should use the bus
1034 * interface (PCI) for low level management.
1035 *
1036 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1037 * Called when a user wants to change the Maximum Transfer Unit
1038 * of a device.
1039 *
1040 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1041 * Callback used when the transmitter has not made any progress
1042 * for dev->watchdog ticks.
1043 *
1044 * void (*ndo_get_stats64)(struct net_device *dev,
1045 * struct rtnl_link_stats64 *storage);
1046 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1047 * Called when a user wants to get the network device usage
1048 * statistics. Drivers must do one of the following:
1049 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1050 * rtnl_link_stats64 structure passed by the caller.
1051 * 2. Define @ndo_get_stats to update a net_device_stats structure
1052 * (which should normally be dev->stats) and return a pointer to
1053 * it. The structure may be changed asynchronously only if each
1054 * field is written atomically.
1055 * 3. Update dev->stats asynchronously and atomically, and define
1056 * neither operation.
1057 *
1058 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1059 * Return true if this device supports offload stats of this attr_id.
1060 *
1061 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1062 * void *attr_data)
1063 * Get statistics for offload operations by attr_id. Write it into the
1064 * attr_data pointer.
1065 *
1066 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1067 * If device supports VLAN filtering this function is called when a
1068 * VLAN id is registered.
1069 *
1070 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1071 * If device supports VLAN filtering this function is called when a
1072 * VLAN id is unregistered.
1073 *
1074 * void (*ndo_poll_controller)(struct net_device *dev);
1075 *
1076 * SR-IOV management functions.
1077 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1078 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1079 * u8 qos, __be16 proto);
1080 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1081 * int max_tx_rate);
1082 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1083 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1084 * int (*ndo_get_vf_config)(struct net_device *dev,
1085 * int vf, struct ifla_vf_info *ivf);
1086 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1087 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1088 * struct nlattr *port[]);
1089 *
1090 * Enable or disable the VF ability to query its RSS Redirection Table and
1091 * Hash Key. This is needed since on some devices VF share this information
1092 * with PF and querying it may introduce a theoretical security risk.
1093 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1094 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1095 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1096 * void *type_data);
1097 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1098 * This is always called from the stack with the rtnl lock held and netif
1099 * tx queues stopped. This allows the netdevice to perform queue
1100 * management safely.
1101 *
1102 * Fiber Channel over Ethernet (FCoE) offload functions.
1103 * int (*ndo_fcoe_enable)(struct net_device *dev);
1104 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1105 * so the underlying device can perform whatever needed configuration or
1106 * initialization to support acceleration of FCoE traffic.
1107 *
1108 * int (*ndo_fcoe_disable)(struct net_device *dev);
1109 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1110 * so the underlying device can perform whatever needed clean-ups to
1111 * stop supporting acceleration of FCoE traffic.
1112 *
1113 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1114 * struct scatterlist *sgl, unsigned int sgc);
1115 * Called when the FCoE Initiator wants to initialize an I/O that
1116 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1117 * perform necessary setup and returns 1 to indicate the device is set up
1118 * successfully to perform DDP on this I/O, otherwise this returns 0.
1119 *
1120 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1121 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1122 * indicated by the FC exchange id 'xid', so the underlying device can
1123 * clean up and reuse resources for later DDP requests.
1124 *
1125 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1126 * struct scatterlist *sgl, unsigned int sgc);
1127 * Called when the FCoE Target wants to initialize an I/O that
1128 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1129 * perform necessary setup and returns 1 to indicate the device is set up
1130 * successfully to perform DDP on this I/O, otherwise this returns 0.
1131 *
1132 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1133 * struct netdev_fcoe_hbainfo *hbainfo);
1134 * Called when the FCoE Protocol stack wants information on the underlying
1135 * device. This information is utilized by the FCoE protocol stack to
1136 * register attributes with Fiber Channel management service as per the
1137 * FC-GS Fabric Device Management Information(FDMI) specification.
1138 *
1139 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1140 * Called when the underlying device wants to override default World Wide
1141 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1142 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1143 * protocol stack to use.
1144 *
1145 * RFS acceleration.
1146 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1147 * u16 rxq_index, u32 flow_id);
1148 * Set hardware filter for RFS. rxq_index is the target queue index;
1149 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1150 * Return the filter ID on success, or a negative error code.
1151 *
1152 * Slave management functions (for bridge, bonding, etc).
1153 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1154 * Called to make another netdev an underling.
1155 *
1156 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1157 * Called to release previously enslaved netdev.
1158 *
1159 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1160 * struct sk_buff *skb,
1161 * bool all_slaves);
1162 * Get the xmit slave of master device. If all_slaves is true, function
1163 * assume all the slaves can transmit.
1164 *
1165 * Feature/offload setting functions.
1166 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1167 * netdev_features_t features);
1168 * Adjusts the requested feature flags according to device-specific
1169 * constraints, and returns the resulting flags. Must not modify
1170 * the device state.
1171 *
1172 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1173 * Called to update device configuration to new features. Passed
1174 * feature set might be less than what was returned by ndo_fix_features()).
1175 * Must return >0 or -errno if it changed dev->features itself.
1176 *
1177 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1178 * struct net_device *dev,
1179 * const unsigned char *addr, u16 vid, u16 flags,
1180 * struct netlink_ext_ack *extack);
1181 * Adds an FDB entry to dev for addr.
1182 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1183 * struct net_device *dev,
1184 * const unsigned char *addr, u16 vid)
1185 * Deletes the FDB entry from dev coresponding to addr.
1186 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1187 * struct net_device *dev, struct net_device *filter_dev,
1188 * int *idx)
1189 * Used to add FDB entries to dump requests. Implementers should add
1190 * entries to skb and update idx with the number of entries.
1191 *
1192 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1193 * u16 flags, struct netlink_ext_ack *extack)
1194 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1195 * struct net_device *dev, u32 filter_mask,
1196 * int nlflags)
1197 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1198 * u16 flags);
1199 *
1200 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1201 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1202 * which do not represent real hardware may define this to allow their
1203 * userspace components to manage their virtual carrier state. Devices
1204 * that determine carrier state from physical hardware properties (eg
1205 * network cables) or protocol-dependent mechanisms (eg
1206 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1207 *
1208 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1209 * struct netdev_phys_item_id *ppid);
1210 * Called to get ID of physical port of this device. If driver does
1211 * not implement this, it is assumed that the hw is not able to have
1212 * multiple net devices on single physical port.
1213 *
1214 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1215 * struct netdev_phys_item_id *ppid)
1216 * Called to get the parent ID of the physical port of this device.
1217 *
1218 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1219 * struct udp_tunnel_info *ti);
1220 * Called by UDP tunnel to notify a driver about the UDP port and socket
1221 * address family that a UDP tunnel is listnening to. It is called only
1222 * when a new port starts listening. The operation is protected by the
1223 * RTNL.
1224 *
1225 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1226 * struct udp_tunnel_info *ti);
1227 * Called by UDP tunnel to notify the driver about a UDP port and socket
1228 * address family that the UDP tunnel is not listening to anymore. The
1229 * operation is protected by the RTNL.
1230 *
1231 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1232 * struct net_device *dev)
1233 * Called by upper layer devices to accelerate switching or other
1234 * station functionality into hardware. 'pdev is the lowerdev
1235 * to use for the offload and 'dev' is the net device that will
1236 * back the offload. Returns a pointer to the private structure
1237 * the upper layer will maintain.
1238 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1239 * Called by upper layer device to delete the station created
1240 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1241 * the station and priv is the structure returned by the add
1242 * operation.
1243 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1244 * int queue_index, u32 maxrate);
1245 * Called when a user wants to set a max-rate limitation of specific
1246 * TX queue.
1247 * int (*ndo_get_iflink)(const struct net_device *dev);
1248 * Called to get the iflink value of this device.
1249 * void (*ndo_change_proto_down)(struct net_device *dev,
1250 * bool proto_down);
1251 * This function is used to pass protocol port error state information
1252 * to the switch driver. The switch driver can react to the proto_down
1253 * by doing a phys down on the associated switch port.
1254 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1255 * This function is used to get egress tunnel information for given skb.
1256 * This is useful for retrieving outer tunnel header parameters while
1257 * sampling packet.
1258 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1259 * This function is used to specify the headroom that the skb must
1260 * consider when allocation skb during packet reception. Setting
1261 * appropriate rx headroom value allows avoiding skb head copy on
1262 * forward. Setting a negative value resets the rx headroom to the
1263 * default value.
1264 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1265 * This function is used to set or query state related to XDP on the
1266 * netdevice and manage BPF offload. See definition of
1267 * enum bpf_netdev_command for details.
1268 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1269 * u32 flags);
1270 * This function is used to submit @n XDP packets for transmit on a
1271 * netdevice. Returns number of frames successfully transmitted, frames
1272 * that got dropped are freed/returned via xdp_return_frame().
1273 * Returns negative number, means general error invoking ndo, meaning
1274 * no frames were xmit'ed and core-caller will free all frames.
1275 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1276 * This function is used to wake up the softirq, ksoftirqd or kthread
1277 * responsible for sending and/or receiving packets on a specific
1278 * queue id bound to an AF_XDP socket. The flags field specifies if
1279 * only RX, only Tx, or both should be woken up using the flags
1280 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1281 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1282 * Get devlink port instance associated with a given netdev.
1283 * Called with a reference on the netdevice and devlink locks only,
1284 * rtnl_lock is not held.
1285 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1286 * int cmd);
1287 * Add, change, delete or get information on an IPv4 tunnel.
1288 */
1289struct net_device_ops {
1290 int (*ndo_init)(struct net_device *dev);
1291 void (*ndo_uninit)(struct net_device *dev);
1292 int (*ndo_open)(struct net_device *dev);
1293 int (*ndo_stop)(struct net_device *dev);
1294 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1295 struct net_device *dev);
1296 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1297 struct net_device *dev,
1298 netdev_features_t features);
1299 u16 (*ndo_select_queue)(struct net_device *dev,
1300 struct sk_buff *skb,
1301 struct net_device *sb_dev);
1302 void (*ndo_change_rx_flags)(struct net_device *dev,
1303 int flags);
1304 void (*ndo_set_rx_mode)(struct net_device *dev);
1305 int (*ndo_set_mac_address)(struct net_device *dev,
1306 void *addr);
1307 int (*ndo_validate_addr)(struct net_device *dev);
1308 int (*ndo_do_ioctl)(struct net_device *dev,
1309 struct ifreq *ifr, int cmd);
1310 int (*ndo_set_config)(struct net_device *dev,
1311 struct ifmap *map);
1312 int (*ndo_change_mtu)(struct net_device *dev,
1313 int new_mtu);
1314 int (*ndo_neigh_setup)(struct net_device *dev,
1315 struct neigh_parms *);
1316 void (*ndo_tx_timeout) (struct net_device *dev,
1317 unsigned int txqueue);
1318
1319 void (*ndo_get_stats64)(struct net_device *dev,
1320 struct rtnl_link_stats64 *storage);
1321 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1322 int (*ndo_get_offload_stats)(int attr_id,
1323 const struct net_device *dev,
1324 void *attr_data);
1325 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1326
1327 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1328 __be16 proto, u16 vid);
1329 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1330 __be16 proto, u16 vid);
1331#ifdef CONFIG_NET_POLL_CONTROLLER
1332 void (*ndo_poll_controller)(struct net_device *dev);
1333 int (*ndo_netpoll_setup)(struct net_device *dev,
1334 struct netpoll_info *info);
1335 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1336#endif
1337 int (*ndo_set_vf_mac)(struct net_device *dev,
1338 int queue, u8 *mac);
1339 int (*ndo_set_vf_vlan)(struct net_device *dev,
1340 int queue, u16 vlan,
1341 u8 qos, __be16 proto);
1342 int (*ndo_set_vf_rate)(struct net_device *dev,
1343 int vf, int min_tx_rate,
1344 int max_tx_rate);
1345 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1346 int vf, bool setting);
1347 int (*ndo_set_vf_trust)(struct net_device *dev,
1348 int vf, bool setting);
1349 int (*ndo_get_vf_config)(struct net_device *dev,
1350 int vf,
1351 struct ifla_vf_info *ivf);
1352 int (*ndo_set_vf_link_state)(struct net_device *dev,
1353 int vf, int link_state);
1354 int (*ndo_get_vf_stats)(struct net_device *dev,
1355 int vf,
1356 struct ifla_vf_stats
1357 *vf_stats);
1358 int (*ndo_set_vf_port)(struct net_device *dev,
1359 int vf,
1360 struct nlattr *port[]);
1361 int (*ndo_get_vf_port)(struct net_device *dev,
1362 int vf, struct sk_buff *skb);
1363 int (*ndo_get_vf_guid)(struct net_device *dev,
1364 int vf,
1365 struct ifla_vf_guid *node_guid,
1366 struct ifla_vf_guid *port_guid);
1367 int (*ndo_set_vf_guid)(struct net_device *dev,
1368 int vf, u64 guid,
1369 int guid_type);
1370 int (*ndo_set_vf_rss_query_en)(
1371 struct net_device *dev,
1372 int vf, bool setting);
1373 int (*ndo_setup_tc)(struct net_device *dev,
1374 enum tc_setup_type type,
1375 void *type_data);
1376#if IS_ENABLED(CONFIG_FCOE)
1377 int (*ndo_fcoe_enable)(struct net_device *dev);
1378 int (*ndo_fcoe_disable)(struct net_device *dev);
1379 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1380 u16 xid,
1381 struct scatterlist *sgl,
1382 unsigned int sgc);
1383 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1384 u16 xid);
1385 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1386 u16 xid,
1387 struct scatterlist *sgl,
1388 unsigned int sgc);
1389 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1390 struct netdev_fcoe_hbainfo *hbainfo);
1391#endif
1392
1393#if IS_ENABLED(CONFIG_LIBFCOE)
1394#define NETDEV_FCOE_WWNN 0
1395#define NETDEV_FCOE_WWPN 1
1396 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1397 u64 *wwn, int type);
1398#endif
1399
1400#ifdef CONFIG_RFS_ACCEL
1401 int (*ndo_rx_flow_steer)(struct net_device *dev,
1402 const struct sk_buff *skb,
1403 u16 rxq_index,
1404 u32 flow_id);
1405#endif
1406 int (*ndo_add_slave)(struct net_device *dev,
1407 struct net_device *slave_dev,
1408 struct netlink_ext_ack *extack);
1409 int (*ndo_del_slave)(struct net_device *dev,
1410 struct net_device *slave_dev);
1411 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev,
1412 struct sk_buff *skb,
1413 bool all_slaves);
1414 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1415 netdev_features_t features);
1416 int (*ndo_set_features)(struct net_device *dev,
1417 netdev_features_t features);
1418 int (*ndo_neigh_construct)(struct net_device *dev,
1419 struct neighbour *n);
1420 void (*ndo_neigh_destroy)(struct net_device *dev,
1421 struct neighbour *n);
1422
1423 int (*ndo_fdb_add)(struct ndmsg *ndm,
1424 struct nlattr *tb[],
1425 struct net_device *dev,
1426 const unsigned char *addr,
1427 u16 vid,
1428 u16 flags,
1429 struct netlink_ext_ack *extack);
1430 int (*ndo_fdb_del)(struct ndmsg *ndm,
1431 struct nlattr *tb[],
1432 struct net_device *dev,
1433 const unsigned char *addr,
1434 u16 vid);
1435 int (*ndo_fdb_dump)(struct sk_buff *skb,
1436 struct netlink_callback *cb,
1437 struct net_device *dev,
1438 struct net_device *filter_dev,
1439 int *idx);
1440 int (*ndo_fdb_get)(struct sk_buff *skb,
1441 struct nlattr *tb[],
1442 struct net_device *dev,
1443 const unsigned char *addr,
1444 u16 vid, u32 portid, u32 seq,
1445 struct netlink_ext_ack *extack);
1446 int (*ndo_bridge_setlink)(struct net_device *dev,
1447 struct nlmsghdr *nlh,
1448 u16 flags,
1449 struct netlink_ext_ack *extack);
1450 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1451 u32 pid, u32 seq,
1452 struct net_device *dev,
1453 u32 filter_mask,
1454 int nlflags);
1455 int (*ndo_bridge_dellink)(struct net_device *dev,
1456 struct nlmsghdr *nlh,
1457 u16 flags);
1458 int (*ndo_change_carrier)(struct net_device *dev,
1459 bool new_carrier);
1460 int (*ndo_get_phys_port_id)(struct net_device *dev,
1461 struct netdev_phys_item_id *ppid);
1462 int (*ndo_get_port_parent_id)(struct net_device *dev,
1463 struct netdev_phys_item_id *ppid);
1464 int (*ndo_get_phys_port_name)(struct net_device *dev,
1465 char *name, size_t len);
1466 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1467 struct udp_tunnel_info *ti);
1468 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1469 struct udp_tunnel_info *ti);
1470 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1471 struct net_device *dev);
1472 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1473 void *priv);
1474
1475 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1476 int queue_index,
1477 u32 maxrate);
1478 int (*ndo_get_iflink)(const struct net_device *dev);
1479 int (*ndo_change_proto_down)(struct net_device *dev,
1480 bool proto_down);
1481 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1482 struct sk_buff *skb);
1483 void (*ndo_set_rx_headroom)(struct net_device *dev,
1484 int needed_headroom);
1485 int (*ndo_bpf)(struct net_device *dev,
1486 struct netdev_bpf *bpf);
1487 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1488 struct xdp_frame **xdp,
1489 u32 flags);
1490 int (*ndo_xsk_wakeup)(struct net_device *dev,
1491 u32 queue_id, u32 flags);
1492 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev);
1493 int (*ndo_tunnel_ctl)(struct net_device *dev,
1494 struct ip_tunnel_parm *p, int cmd);
1495};
1496
1497/**
1498 * enum net_device_priv_flags - &struct net_device priv_flags
1499 *
1500 * These are the &struct net_device, they are only set internally
1501 * by drivers and used in the kernel. These flags are invisible to
1502 * userspace; this means that the order of these flags can change
1503 * during any kernel release.
1504 *
1505 * You should have a pretty good reason to be extending these flags.
1506 *
1507 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1508 * @IFF_EBRIDGE: Ethernet bridging device
1509 * @IFF_BONDING: bonding master or slave
1510 * @IFF_ISATAP: ISATAP interface (RFC4214)
1511 * @IFF_WAN_HDLC: WAN HDLC device
1512 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1513 * release skb->dst
1514 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1515 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1516 * @IFF_MACVLAN_PORT: device used as macvlan port
1517 * @IFF_BRIDGE_PORT: device used as bridge port
1518 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1519 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1520 * @IFF_UNICAST_FLT: Supports unicast filtering
1521 * @IFF_TEAM_PORT: device used as team port
1522 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1523 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1524 * change when it's running
1525 * @IFF_MACVLAN: Macvlan device
1526 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1527 * underlying stacked devices
1528 * @IFF_L3MDEV_MASTER: device is an L3 master device
1529 * @IFF_NO_QUEUE: device can run without qdisc attached
1530 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1531 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1532 * @IFF_TEAM: device is a team device
1533 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1534 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1535 * entity (i.e. the master device for bridged veth)
1536 * @IFF_MACSEC: device is a MACsec device
1537 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1538 * @IFF_FAILOVER: device is a failover master device
1539 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1540 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1541 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1542 */
1543enum netdev_priv_flags {
1544 IFF_802_1Q_VLAN = 1<<0,
1545 IFF_EBRIDGE = 1<<1,
1546 IFF_BONDING = 1<<2,
1547 IFF_ISATAP = 1<<3,
1548 IFF_WAN_HDLC = 1<<4,
1549 IFF_XMIT_DST_RELEASE = 1<<5,
1550 IFF_DONT_BRIDGE = 1<<6,
1551 IFF_DISABLE_NETPOLL = 1<<7,
1552 IFF_MACVLAN_PORT = 1<<8,
1553 IFF_BRIDGE_PORT = 1<<9,
1554 IFF_OVS_DATAPATH = 1<<10,
1555 IFF_TX_SKB_SHARING = 1<<11,
1556 IFF_UNICAST_FLT = 1<<12,
1557 IFF_TEAM_PORT = 1<<13,
1558 IFF_SUPP_NOFCS = 1<<14,
1559 IFF_LIVE_ADDR_CHANGE = 1<<15,
1560 IFF_MACVLAN = 1<<16,
1561 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1562 IFF_L3MDEV_MASTER = 1<<18,
1563 IFF_NO_QUEUE = 1<<19,
1564 IFF_OPENVSWITCH = 1<<20,
1565 IFF_L3MDEV_SLAVE = 1<<21,
1566 IFF_TEAM = 1<<22,
1567 IFF_RXFH_CONFIGURED = 1<<23,
1568 IFF_PHONY_HEADROOM = 1<<24,
1569 IFF_MACSEC = 1<<25,
1570 IFF_NO_RX_HANDLER = 1<<26,
1571 IFF_FAILOVER = 1<<27,
1572 IFF_FAILOVER_SLAVE = 1<<28,
1573 IFF_L3MDEV_RX_HANDLER = 1<<29,
1574 IFF_LIVE_RENAME_OK = 1<<30,
1575};
1576
1577#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1578#define IFF_EBRIDGE IFF_EBRIDGE
1579#define IFF_BONDING IFF_BONDING
1580#define IFF_ISATAP IFF_ISATAP
1581#define IFF_WAN_HDLC IFF_WAN_HDLC
1582#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1583#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1584#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1585#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1586#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1587#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1588#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1589#define IFF_UNICAST_FLT IFF_UNICAST_FLT
1590#define IFF_TEAM_PORT IFF_TEAM_PORT
1591#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1592#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1593#define IFF_MACVLAN IFF_MACVLAN
1594#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1595#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1596#define IFF_NO_QUEUE IFF_NO_QUEUE
1597#define IFF_OPENVSWITCH IFF_OPENVSWITCH
1598#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1599#define IFF_TEAM IFF_TEAM
1600#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1601#define IFF_MACSEC IFF_MACSEC
1602#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1603#define IFF_FAILOVER IFF_FAILOVER
1604#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1605#define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1606#define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK
1607
1608/**
1609 * struct net_device - The DEVICE structure.
1610 *
1611 * Actually, this whole structure is a big mistake. It mixes I/O
1612 * data with strictly "high-level" data, and it has to know about
1613 * almost every data structure used in the INET module.
1614 *
1615 * @name: This is the first field of the "visible" part of this structure
1616 * (i.e. as seen by users in the "Space.c" file). It is the name
1617 * of the interface.
1618 *
1619 * @name_node: Name hashlist node
1620 * @ifalias: SNMP alias
1621 * @mem_end: Shared memory end
1622 * @mem_start: Shared memory start
1623 * @base_addr: Device I/O address
1624 * @irq: Device IRQ number
1625 *
1626 * @state: Generic network queuing layer state, see netdev_state_t
1627 * @dev_list: The global list of network devices
1628 * @napi_list: List entry used for polling NAPI devices
1629 * @unreg_list: List entry when we are unregistering the
1630 * device; see the function unregister_netdev
1631 * @close_list: List entry used when we are closing the device
1632 * @ptype_all: Device-specific packet handlers for all protocols
1633 * @ptype_specific: Device-specific, protocol-specific packet handlers
1634 *
1635 * @adj_list: Directly linked devices, like slaves for bonding
1636 * @features: Currently active device features
1637 * @hw_features: User-changeable features
1638 *
1639 * @wanted_features: User-requested features
1640 * @vlan_features: Mask of features inheritable by VLAN devices
1641 *
1642 * @hw_enc_features: Mask of features inherited by encapsulating devices
1643 * This field indicates what encapsulation
1644 * offloads the hardware is capable of doing,
1645 * and drivers will need to set them appropriately.
1646 *
1647 * @mpls_features: Mask of features inheritable by MPLS
1648 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1649 *
1650 * @ifindex: interface index
1651 * @group: The group the device belongs to
1652 *
1653 * @stats: Statistics struct, which was left as a legacy, use
1654 * rtnl_link_stats64 instead
1655 *
1656 * @rx_dropped: Dropped packets by core network,
1657 * do not use this in drivers
1658 * @tx_dropped: Dropped packets by core network,
1659 * do not use this in drivers
1660 * @rx_nohandler: nohandler dropped packets by core network on
1661 * inactive devices, do not use this in drivers
1662 * @carrier_up_count: Number of times the carrier has been up
1663 * @carrier_down_count: Number of times the carrier has been down
1664 *
1665 * @wireless_handlers: List of functions to handle Wireless Extensions,
1666 * instead of ioctl,
1667 * see <net/iw_handler.h> for details.
1668 * @wireless_data: Instance data managed by the core of wireless extensions
1669 *
1670 * @netdev_ops: Includes several pointers to callbacks,
1671 * if one wants to override the ndo_*() functions
1672 * @ethtool_ops: Management operations
1673 * @l3mdev_ops: Layer 3 master device operations
1674 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1675 * discovery handling. Necessary for e.g. 6LoWPAN.
1676 * @xfrmdev_ops: Transformation offload operations
1677 * @tlsdev_ops: Transport Layer Security offload operations
1678 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1679 * of Layer 2 headers.
1680 *
1681 * @flags: Interface flags (a la BSD)
1682 * @priv_flags: Like 'flags' but invisible to userspace,
1683 * see if.h for the definitions
1684 * @gflags: Global flags ( kept as legacy )
1685 * @padded: How much padding added by alloc_netdev()
1686 * @operstate: RFC2863 operstate
1687 * @link_mode: Mapping policy to operstate
1688 * @if_port: Selectable AUI, TP, ...
1689 * @dma: DMA channel
1690 * @mtu: Interface MTU value
1691 * @min_mtu: Interface Minimum MTU value
1692 * @max_mtu: Interface Maximum MTU value
1693 * @type: Interface hardware type
1694 * @hard_header_len: Maximum hardware header length.
1695 * @min_header_len: Minimum hardware header length
1696 *
1697 * @needed_headroom: Extra headroom the hardware may need, but not in all
1698 * cases can this be guaranteed
1699 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1700 * cases can this be guaranteed. Some cases also use
1701 * LL_MAX_HEADER instead to allocate the skb
1702 *
1703 * interface address info:
1704 *
1705 * @perm_addr: Permanent hw address
1706 * @addr_assign_type: Hw address assignment type
1707 * @addr_len: Hardware address length
1708 * @upper_level: Maximum depth level of upper devices.
1709 * @lower_level: Maximum depth level of lower devices.
1710 * @neigh_priv_len: Used in neigh_alloc()
1711 * @dev_id: Used to differentiate devices that share
1712 * the same link layer address
1713 * @dev_port: Used to differentiate devices that share
1714 * the same function
1715 * @addr_list_lock: XXX: need comments on this one
1716 * @name_assign_type: network interface name assignment type
1717 * @uc_promisc: Counter that indicates promiscuous mode
1718 * has been enabled due to the need to listen to
1719 * additional unicast addresses in a device that
1720 * does not implement ndo_set_rx_mode()
1721 * @uc: unicast mac addresses
1722 * @mc: multicast mac addresses
1723 * @dev_addrs: list of device hw addresses
1724 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1725 * @promiscuity: Number of times the NIC is told to work in
1726 * promiscuous mode; if it becomes 0 the NIC will
1727 * exit promiscuous mode
1728 * @allmulti: Counter, enables or disables allmulticast mode
1729 *
1730 * @vlan_info: VLAN info
1731 * @dsa_ptr: dsa specific data
1732 * @tipc_ptr: TIPC specific data
1733 * @atalk_ptr: AppleTalk link
1734 * @ip_ptr: IPv4 specific data
1735 * @dn_ptr: DECnet specific data
1736 * @ip6_ptr: IPv6 specific data
1737 * @ax25_ptr: AX.25 specific data
1738 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1739 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1740 * device struct
1741 * @mpls_ptr: mpls_dev struct pointer
1742 *
1743 * @dev_addr: Hw address (before bcast,
1744 * because most packets are unicast)
1745 *
1746 * @_rx: Array of RX queues
1747 * @num_rx_queues: Number of RX queues
1748 * allocated at register_netdev() time
1749 * @real_num_rx_queues: Number of RX queues currently active in device
1750 * @xdp_prog: XDP sockets filter program pointer
1751 * @gro_flush_timeout: timeout for GRO layer in NAPI
1752 * @napi_defer_hard_irqs: If not zero, provides a counter that would
1753 * allow to avoid NIC hard IRQ, on busy queues.
1754 *
1755 * @rx_handler: handler for received packets
1756 * @rx_handler_data: XXX: need comments on this one
1757 * @miniq_ingress: ingress/clsact qdisc specific data for
1758 * ingress processing
1759 * @ingress_queue: XXX: need comments on this one
1760 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1761 * @broadcast: hw bcast address
1762 *
1763 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1764 * indexed by RX queue number. Assigned by driver.
1765 * This must only be set if the ndo_rx_flow_steer
1766 * operation is defined
1767 * @index_hlist: Device index hash chain
1768 *
1769 * @_tx: Array of TX queues
1770 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1771 * @real_num_tx_queues: Number of TX queues currently active in device
1772 * @qdisc: Root qdisc from userspace point of view
1773 * @tx_queue_len: Max frames per queue allowed
1774 * @tx_global_lock: XXX: need comments on this one
1775 * @xdp_bulkq: XDP device bulk queue
1776 * @xps_cpus_map: all CPUs map for XPS device
1777 * @xps_rxqs_map: all RXQs map for XPS device
1778 *
1779 * @xps_maps: XXX: need comments on this one
1780 * @miniq_egress: clsact qdisc specific data for
1781 * egress processing
1782 * @qdisc_hash: qdisc hash table
1783 * @watchdog_timeo: Represents the timeout that is used by
1784 * the watchdog (see dev_watchdog())
1785 * @watchdog_timer: List of timers
1786 *
1787 * @proto_down_reason: reason a netdev interface is held down
1788 * @pcpu_refcnt: Number of references to this device
1789 * @todo_list: Delayed register/unregister
1790 * @link_watch_list: XXX: need comments on this one
1791 *
1792 * @reg_state: Register/unregister state machine
1793 * @dismantle: Device is going to be freed
1794 * @rtnl_link_state: This enum represents the phases of creating
1795 * a new link
1796 *
1797 * @needs_free_netdev: Should unregister perform free_netdev?
1798 * @priv_destructor: Called from unregister
1799 * @npinfo: XXX: need comments on this one
1800 * @nd_net: Network namespace this network device is inside
1801 *
1802 * @ml_priv: Mid-layer private
1803 * @lstats: Loopback statistics
1804 * @tstats: Tunnel statistics
1805 * @dstats: Dummy statistics
1806 * @vstats: Virtual ethernet statistics
1807 *
1808 * @garp_port: GARP
1809 * @mrp_port: MRP
1810 *
1811 * @dev: Class/net/name entry
1812 * @sysfs_groups: Space for optional device, statistics and wireless
1813 * sysfs groups
1814 *
1815 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1816 * @rtnl_link_ops: Rtnl_link_ops
1817 *
1818 * @gso_max_size: Maximum size of generic segmentation offload
1819 * @gso_max_segs: Maximum number of segments that can be passed to the
1820 * NIC for GSO
1821 *
1822 * @dcbnl_ops: Data Center Bridging netlink ops
1823 * @num_tc: Number of traffic classes in the net device
1824 * @tc_to_txq: XXX: need comments on this one
1825 * @prio_tc_map: XXX: need comments on this one
1826 *
1827 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1828 *
1829 * @priomap: XXX: need comments on this one
1830 * @phydev: Physical device may attach itself
1831 * for hardware timestamping
1832 * @sfp_bus: attached &struct sfp_bus structure.
1833 *
1834 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1835 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1836 *
1837 * @proto_down: protocol port state information can be sent to the
1838 * switch driver and used to set the phys state of the
1839 * switch port.
1840 *
1841 * @wol_enabled: Wake-on-LAN is enabled
1842 *
1843 * @net_notifier_list: List of per-net netdev notifier block
1844 * that follow this device when it is moved
1845 * to another network namespace.
1846 *
1847 * @macsec_ops: MACsec offloading ops
1848 *
1849 * @udp_tunnel_nic_info: static structure describing the UDP tunnel
1850 * offload capabilities of the device
1851 * @udp_tunnel_nic: UDP tunnel offload state
1852 * @xdp_state: stores info on attached XDP BPF programs
1853 *
1854 * FIXME: cleanup struct net_device such that network protocol info
1855 * moves out.
1856 */
1857
1858struct net_device {
1859 char name[IFNAMSIZ];
1860 struct netdev_name_node *name_node;
1861 struct dev_ifalias __rcu *ifalias;
1862 /*
1863 * I/O specific fields
1864 * FIXME: Merge these and struct ifmap into one
1865 */
1866 unsigned long mem_end;
1867 unsigned long mem_start;
1868 unsigned long base_addr;
1869 int irq;
1870
1871 /*
1872 * Some hardware also needs these fields (state,dev_list,
1873 * napi_list,unreg_list,close_list) but they are not
1874 * part of the usual set specified in Space.c.
1875 */
1876
1877 unsigned long state;
1878
1879 struct list_head dev_list;
1880 struct list_head napi_list;
1881 struct list_head unreg_list;
1882 struct list_head close_list;
1883 struct list_head ptype_all;
1884 struct list_head ptype_specific;
1885
1886 struct {
1887 struct list_head upper;
1888 struct list_head lower;
1889 } adj_list;
1890
1891 netdev_features_t features;
1892 netdev_features_t hw_features;
1893 netdev_features_t wanted_features;
1894 netdev_features_t vlan_features;
1895 netdev_features_t hw_enc_features;
1896 netdev_features_t mpls_features;
1897 netdev_features_t gso_partial_features;
1898
1899 int ifindex;
1900 int group;
1901
1902 struct net_device_stats stats;
1903
1904 atomic_long_t rx_dropped;
1905 atomic_long_t tx_dropped;
1906 atomic_long_t rx_nohandler;
1907
1908 /* Stats to monitor link on/off, flapping */
1909 atomic_t carrier_up_count;
1910 atomic_t carrier_down_count;
1911
1912#ifdef CONFIG_WIRELESS_EXT
1913 const struct iw_handler_def *wireless_handlers;
1914 struct iw_public_data *wireless_data;
1915#endif
1916 const struct net_device_ops *netdev_ops;
1917 const struct ethtool_ops *ethtool_ops;
1918#ifdef CONFIG_NET_L3_MASTER_DEV
1919 const struct l3mdev_ops *l3mdev_ops;
1920#endif
1921#if IS_ENABLED(CONFIG_IPV6)
1922 const struct ndisc_ops *ndisc_ops;
1923#endif
1924
1925#ifdef CONFIG_XFRM_OFFLOAD
1926 const struct xfrmdev_ops *xfrmdev_ops;
1927#endif
1928
1929#if IS_ENABLED(CONFIG_TLS_DEVICE)
1930 const struct tlsdev_ops *tlsdev_ops;
1931#endif
1932
1933 const struct header_ops *header_ops;
1934
1935 unsigned int flags;
1936 unsigned int priv_flags;
1937
1938 unsigned short gflags;
1939 unsigned short padded;
1940
1941 unsigned char operstate;
1942 unsigned char link_mode;
1943
1944 unsigned char if_port;
1945 unsigned char dma;
1946
1947 /* Note : dev->mtu is often read without holding a lock.
1948 * Writers usually hold RTNL.
1949 * It is recommended to use READ_ONCE() to annotate the reads,
1950 * and to use WRITE_ONCE() to annotate the writes.
1951 */
1952 unsigned int mtu;
1953 unsigned int min_mtu;
1954 unsigned int max_mtu;
1955 unsigned short type;
1956 unsigned short hard_header_len;
1957 unsigned char min_header_len;
1958
1959 unsigned short needed_headroom;
1960 unsigned short needed_tailroom;
1961
1962 /* Interface address info. */
1963 unsigned char perm_addr[MAX_ADDR_LEN];
1964 unsigned char addr_assign_type;
1965 unsigned char addr_len;
1966 unsigned char upper_level;
1967 unsigned char lower_level;
1968 unsigned short neigh_priv_len;
1969 unsigned short dev_id;
1970 unsigned short dev_port;
1971 spinlock_t addr_list_lock;
1972 unsigned char name_assign_type;
1973 bool uc_promisc;
1974 struct netdev_hw_addr_list uc;
1975 struct netdev_hw_addr_list mc;
1976 struct netdev_hw_addr_list dev_addrs;
1977
1978#ifdef CONFIG_SYSFS
1979 struct kset *queues_kset;
1980#endif
1981 unsigned int promiscuity;
1982 unsigned int allmulti;
1983
1984
1985 /* Protocol-specific pointers */
1986
1987#if IS_ENABLED(CONFIG_VLAN_8021Q)
1988 struct vlan_info __rcu *vlan_info;
1989#endif
1990#if IS_ENABLED(CONFIG_NET_DSA)
1991 struct dsa_port *dsa_ptr;
1992#endif
1993#if IS_ENABLED(CONFIG_TIPC)
1994 struct tipc_bearer __rcu *tipc_ptr;
1995#endif
1996#if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1997 void *atalk_ptr;
1998#endif
1999 struct in_device __rcu *ip_ptr;
2000#if IS_ENABLED(CONFIG_DECNET)
2001 struct dn_dev __rcu *dn_ptr;
2002#endif
2003 struct inet6_dev __rcu *ip6_ptr;
2004#if IS_ENABLED(CONFIG_AX25)
2005 void *ax25_ptr;
2006#endif
2007 struct wireless_dev *ieee80211_ptr;
2008 struct wpan_dev *ieee802154_ptr;
2009#if IS_ENABLED(CONFIG_MPLS_ROUTING)
2010 struct mpls_dev __rcu *mpls_ptr;
2011#endif
2012
2013/*
2014 * Cache lines mostly used on receive path (including eth_type_trans())
2015 */
2016 /* Interface address info used in eth_type_trans() */
2017 unsigned char *dev_addr;
2018
2019 struct netdev_rx_queue *_rx;
2020 unsigned int num_rx_queues;
2021 unsigned int real_num_rx_queues;
2022
2023 struct bpf_prog __rcu *xdp_prog;
2024 unsigned long gro_flush_timeout;
2025 int napi_defer_hard_irqs;
2026 rx_handler_func_t __rcu *rx_handler;
2027 void __rcu *rx_handler_data;
2028
2029#ifdef CONFIG_NET_CLS_ACT
2030 struct mini_Qdisc __rcu *miniq_ingress;
2031#endif
2032 struct netdev_queue __rcu *ingress_queue;
2033#ifdef CONFIG_NETFILTER_INGRESS
2034 struct nf_hook_entries __rcu *nf_hooks_ingress;
2035#endif
2036
2037 unsigned char broadcast[MAX_ADDR_LEN];
2038#ifdef CONFIG_RFS_ACCEL
2039 struct cpu_rmap *rx_cpu_rmap;
2040#endif
2041 struct hlist_node index_hlist;
2042
2043/*
2044 * Cache lines mostly used on transmit path
2045 */
2046 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
2047 unsigned int num_tx_queues;
2048 unsigned int real_num_tx_queues;
2049 struct Qdisc *qdisc;
2050 unsigned int tx_queue_len;
2051 spinlock_t tx_global_lock;
2052
2053 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2054
2055#ifdef CONFIG_XPS
2056 struct xps_dev_maps __rcu *xps_cpus_map;
2057 struct xps_dev_maps __rcu *xps_rxqs_map;
2058#endif
2059#ifdef CONFIG_NET_CLS_ACT
2060 struct mini_Qdisc __rcu *miniq_egress;
2061#endif
2062
2063#ifdef CONFIG_NET_SCHED
2064 DECLARE_HASHTABLE (qdisc_hash, 4);
2065#endif
2066 /* These may be needed for future network-power-down code. */
2067 struct timer_list watchdog_timer;
2068 int watchdog_timeo;
2069
2070 u32 proto_down_reason;
2071
2072 struct list_head todo_list;
2073 int __percpu *pcpu_refcnt;
2074
2075 struct list_head link_watch_list;
2076
2077 enum { NETREG_UNINITIALIZED=0,
2078 NETREG_REGISTERED, /* completed register_netdevice */
2079 NETREG_UNREGISTERING, /* called unregister_netdevice */
2080 NETREG_UNREGISTERED, /* completed unregister todo */
2081 NETREG_RELEASED, /* called free_netdev */
2082 NETREG_DUMMY, /* dummy device for NAPI poll */
2083 } reg_state:8;
2084
2085 bool dismantle;
2086
2087 enum {
2088 RTNL_LINK_INITIALIZED,
2089 RTNL_LINK_INITIALIZING,
2090 } rtnl_link_state:16;
2091
2092 bool needs_free_netdev;
2093 void (*priv_destructor)(struct net_device *dev);
2094
2095#ifdef CONFIG_NETPOLL
2096 struct netpoll_info __rcu *npinfo;
2097#endif
2098
2099 possible_net_t nd_net;
2100
2101 /* mid-layer private */
2102 union {
2103 void *ml_priv;
2104 struct pcpu_lstats __percpu *lstats;
2105 struct pcpu_sw_netstats __percpu *tstats;
2106 struct pcpu_dstats __percpu *dstats;
2107 };
2108
2109#if IS_ENABLED(CONFIG_GARP)
2110 struct garp_port __rcu *garp_port;
2111#endif
2112#if IS_ENABLED(CONFIG_MRP)
2113 struct mrp_port __rcu *mrp_port;
2114#endif
2115
2116 struct device dev;
2117 const struct attribute_group *sysfs_groups[4];
2118 const struct attribute_group *sysfs_rx_queue_group;
2119
2120 const struct rtnl_link_ops *rtnl_link_ops;
2121
2122 /* for setting kernel sock attribute on TCP connection setup */
2123#define GSO_MAX_SIZE 65536
2124 unsigned int gso_max_size;
2125#define GSO_MAX_SEGS 65535
2126 u16 gso_max_segs;
2127
2128#ifdef CONFIG_DCB
2129 const struct dcbnl_rtnl_ops *dcbnl_ops;
2130#endif
2131 s16 num_tc;
2132 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2133 u8 prio_tc_map[TC_BITMASK + 1];
2134
2135#if IS_ENABLED(CONFIG_FCOE)
2136 unsigned int fcoe_ddp_xid;
2137#endif
2138#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2139 struct netprio_map __rcu *priomap;
2140#endif
2141 struct phy_device *phydev;
2142 struct sfp_bus *sfp_bus;
2143 struct lock_class_key *qdisc_tx_busylock;
2144 struct lock_class_key *qdisc_running_key;
2145 bool proto_down;
2146 unsigned wol_enabled:1;
2147
2148 struct list_head net_notifier_list;
2149
2150#if IS_ENABLED(CONFIG_MACSEC)
2151 /* MACsec management functions */
2152 const struct macsec_ops *macsec_ops;
2153#endif
2154 const struct udp_tunnel_nic_info *udp_tunnel_nic_info;
2155 struct udp_tunnel_nic *udp_tunnel_nic;
2156
2157 /* protected by rtnl_lock */
2158 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE];
2159};
2160#define to_net_dev(d) container_of(d, struct net_device, dev)
2161
2162static inline bool netif_elide_gro(const struct net_device *dev)
2163{
2164 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2165 return true;
2166 return false;
2167}
2168
2169#define NETDEV_ALIGN 32
2170
2171static inline
2172int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2173{
2174 return dev->prio_tc_map[prio & TC_BITMASK];
2175}
2176
2177static inline
2178int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2179{
2180 if (tc >= dev->num_tc)
2181 return -EINVAL;
2182
2183 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2184 return 0;
2185}
2186
2187int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2188void netdev_reset_tc(struct net_device *dev);
2189int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2190int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2191
2192static inline
2193int netdev_get_num_tc(struct net_device *dev)
2194{
2195 return dev->num_tc;
2196}
2197
2198void netdev_unbind_sb_channel(struct net_device *dev,
2199 struct net_device *sb_dev);
2200int netdev_bind_sb_channel_queue(struct net_device *dev,
2201 struct net_device *sb_dev,
2202 u8 tc, u16 count, u16 offset);
2203int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2204static inline int netdev_get_sb_channel(struct net_device *dev)
2205{
2206 return max_t(int, -dev->num_tc, 0);
2207}
2208
2209static inline
2210struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2211 unsigned int index)
2212{
2213 return &dev->_tx[index];
2214}
2215
2216static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2217 const struct sk_buff *skb)
2218{
2219 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2220}
2221
2222static inline void netdev_for_each_tx_queue(struct net_device *dev,
2223 void (*f)(struct net_device *,
2224 struct netdev_queue *,
2225 void *),
2226 void *arg)
2227{
2228 unsigned int i;
2229
2230 for (i = 0; i < dev->num_tx_queues; i++)
2231 f(dev, &dev->_tx[i], arg);
2232}
2233
2234#define netdev_lockdep_set_classes(dev) \
2235{ \
2236 static struct lock_class_key qdisc_tx_busylock_key; \
2237 static struct lock_class_key qdisc_running_key; \
2238 static struct lock_class_key qdisc_xmit_lock_key; \
2239 static struct lock_class_key dev_addr_list_lock_key; \
2240 unsigned int i; \
2241 \
2242 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
2243 (dev)->qdisc_running_key = &qdisc_running_key; \
2244 lockdep_set_class(&(dev)->addr_list_lock, \
2245 &dev_addr_list_lock_key); \
2246 for (i = 0; i < (dev)->num_tx_queues; i++) \
2247 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
2248 &qdisc_xmit_lock_key); \
2249}
2250
2251u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2252 struct net_device *sb_dev);
2253struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2254 struct sk_buff *skb,
2255 struct net_device *sb_dev);
2256
2257/* returns the headroom that the master device needs to take in account
2258 * when forwarding to this dev
2259 */
2260static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2261{
2262 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2263}
2264
2265static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2266{
2267 if (dev->netdev_ops->ndo_set_rx_headroom)
2268 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2269}
2270
2271/* set the device rx headroom to the dev's default */
2272static inline void netdev_reset_rx_headroom(struct net_device *dev)
2273{
2274 netdev_set_rx_headroom(dev, -1);
2275}
2276
2277/*
2278 * Net namespace inlines
2279 */
2280static inline
2281struct net *dev_net(const struct net_device *dev)
2282{
2283 return read_pnet(&dev->nd_net);
2284}
2285
2286static inline
2287void dev_net_set(struct net_device *dev, struct net *net)
2288{
2289 write_pnet(&dev->nd_net, net);
2290}
2291
2292/**
2293 * netdev_priv - access network device private data
2294 * @dev: network device
2295 *
2296 * Get network device private data
2297 */
2298static inline void *netdev_priv(const struct net_device *dev)
2299{
2300 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2301}
2302
2303/* Set the sysfs physical device reference for the network logical device
2304 * if set prior to registration will cause a symlink during initialization.
2305 */
2306#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2307
2308/* Set the sysfs device type for the network logical device to allow
2309 * fine-grained identification of different network device types. For
2310 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2311 */
2312#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2313
2314/* Default NAPI poll() weight
2315 * Device drivers are strongly advised to not use bigger value
2316 */
2317#define NAPI_POLL_WEIGHT 64
2318
2319/**
2320 * netif_napi_add - initialize a NAPI context
2321 * @dev: network device
2322 * @napi: NAPI context
2323 * @poll: polling function
2324 * @weight: default weight
2325 *
2326 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2327 * *any* of the other NAPI-related functions.
2328 */
2329void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2330 int (*poll)(struct napi_struct *, int), int weight);
2331
2332/**
2333 * netif_tx_napi_add - initialize a NAPI context
2334 * @dev: network device
2335 * @napi: NAPI context
2336 * @poll: polling function
2337 * @weight: default weight
2338 *
2339 * This variant of netif_napi_add() should be used from drivers using NAPI
2340 * to exclusively poll a TX queue.
2341 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2342 */
2343static inline void netif_tx_napi_add(struct net_device *dev,
2344 struct napi_struct *napi,
2345 int (*poll)(struct napi_struct *, int),
2346 int weight)
2347{
2348 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2349 netif_napi_add(dev, napi, poll, weight);
2350}
2351
2352/**
2353 * netif_napi_del - remove a NAPI context
2354 * @napi: NAPI context
2355 *
2356 * netif_napi_del() removes a NAPI context from the network device NAPI list
2357 */
2358void netif_napi_del(struct napi_struct *napi);
2359
2360struct napi_gro_cb {
2361 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2362 void *frag0;
2363
2364 /* Length of frag0. */
2365 unsigned int frag0_len;
2366
2367 /* This indicates where we are processing relative to skb->data. */
2368 int data_offset;
2369
2370 /* This is non-zero if the packet cannot be merged with the new skb. */
2371 u16 flush;
2372
2373 /* Save the IP ID here and check when we get to the transport layer */
2374 u16 flush_id;
2375
2376 /* Number of segments aggregated. */
2377 u16 count;
2378
2379 /* Start offset for remote checksum offload */
2380 u16 gro_remcsum_start;
2381
2382 /* jiffies when first packet was created/queued */
2383 unsigned long age;
2384
2385 /* Used in ipv6_gro_receive() and foo-over-udp */
2386 u16 proto;
2387
2388 /* This is non-zero if the packet may be of the same flow. */
2389 u8 same_flow:1;
2390
2391 /* Used in tunnel GRO receive */
2392 u8 encap_mark:1;
2393
2394 /* GRO checksum is valid */
2395 u8 csum_valid:1;
2396
2397 /* Number of checksums via CHECKSUM_UNNECESSARY */
2398 u8 csum_cnt:3;
2399
2400 /* Free the skb? */
2401 u8 free:2;
2402#define NAPI_GRO_FREE 1
2403#define NAPI_GRO_FREE_STOLEN_HEAD 2
2404
2405 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2406 u8 is_ipv6:1;
2407
2408 /* Used in GRE, set in fou/gue_gro_receive */
2409 u8 is_fou:1;
2410
2411 /* Used to determine if flush_id can be ignored */
2412 u8 is_atomic:1;
2413
2414 /* Number of gro_receive callbacks this packet already went through */
2415 u8 recursion_counter:4;
2416
2417 /* GRO is done by frag_list pointer chaining. */
2418 u8 is_flist:1;
2419
2420 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2421 __wsum csum;
2422
2423 /* used in skb_gro_receive() slow path */
2424 struct sk_buff *last;
2425};
2426
2427#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2428
2429#define GRO_RECURSION_LIMIT 15
2430static inline int gro_recursion_inc_test(struct sk_buff *skb)
2431{
2432 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2433}
2434
2435typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2436static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2437 struct list_head *head,
2438 struct sk_buff *skb)
2439{
2440 if (unlikely(gro_recursion_inc_test(skb))) {
2441 NAPI_GRO_CB(skb)->flush |= 1;
2442 return NULL;
2443 }
2444
2445 return cb(head, skb);
2446}
2447
2448typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2449 struct sk_buff *);
2450static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2451 struct sock *sk,
2452 struct list_head *head,
2453 struct sk_buff *skb)
2454{
2455 if (unlikely(gro_recursion_inc_test(skb))) {
2456 NAPI_GRO_CB(skb)->flush |= 1;
2457 return NULL;
2458 }
2459
2460 return cb(sk, head, skb);
2461}
2462
2463struct packet_type {
2464 __be16 type; /* This is really htons(ether_type). */
2465 bool ignore_outgoing;
2466 struct net_device *dev; /* NULL is wildcarded here */
2467 int (*func) (struct sk_buff *,
2468 struct net_device *,
2469 struct packet_type *,
2470 struct net_device *);
2471 void (*list_func) (struct list_head *,
2472 struct packet_type *,
2473 struct net_device *);
2474 bool (*id_match)(struct packet_type *ptype,
2475 struct sock *sk);
2476 void *af_packet_priv;
2477 struct list_head list;
2478};
2479
2480struct offload_callbacks {
2481 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2482 netdev_features_t features);
2483 struct sk_buff *(*gro_receive)(struct list_head *head,
2484 struct sk_buff *skb);
2485 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2486};
2487
2488struct packet_offload {
2489 __be16 type; /* This is really htons(ether_type). */
2490 u16 priority;
2491 struct offload_callbacks callbacks;
2492 struct list_head list;
2493};
2494
2495/* often modified stats are per-CPU, other are shared (netdev->stats) */
2496struct pcpu_sw_netstats {
2497 u64 rx_packets;
2498 u64 rx_bytes;
2499 u64 tx_packets;
2500 u64 tx_bytes;
2501 struct u64_stats_sync syncp;
2502} __aligned(4 * sizeof(u64));
2503
2504struct pcpu_lstats {
2505 u64_stats_t packets;
2506 u64_stats_t bytes;
2507 struct u64_stats_sync syncp;
2508} __aligned(2 * sizeof(u64));
2509
2510void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2511
2512static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2513{
2514 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2515
2516 u64_stats_update_begin(&lstats->syncp);
2517 u64_stats_add(&lstats->bytes, len);
2518 u64_stats_inc(&lstats->packets);
2519 u64_stats_update_end(&lstats->syncp);
2520}
2521
2522#define __netdev_alloc_pcpu_stats(type, gfp) \
2523({ \
2524 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2525 if (pcpu_stats) { \
2526 int __cpu; \
2527 for_each_possible_cpu(__cpu) { \
2528 typeof(type) *stat; \
2529 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2530 u64_stats_init(&stat->syncp); \
2531 } \
2532 } \
2533 pcpu_stats; \
2534})
2535
2536#define netdev_alloc_pcpu_stats(type) \
2537 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2538
2539enum netdev_lag_tx_type {
2540 NETDEV_LAG_TX_TYPE_UNKNOWN,
2541 NETDEV_LAG_TX_TYPE_RANDOM,
2542 NETDEV_LAG_TX_TYPE_BROADCAST,
2543 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2544 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2545 NETDEV_LAG_TX_TYPE_HASH,
2546};
2547
2548enum netdev_lag_hash {
2549 NETDEV_LAG_HASH_NONE,
2550 NETDEV_LAG_HASH_L2,
2551 NETDEV_LAG_HASH_L34,
2552 NETDEV_LAG_HASH_L23,
2553 NETDEV_LAG_HASH_E23,
2554 NETDEV_LAG_HASH_E34,
2555 NETDEV_LAG_HASH_UNKNOWN,
2556};
2557
2558struct netdev_lag_upper_info {
2559 enum netdev_lag_tx_type tx_type;
2560 enum netdev_lag_hash hash_type;
2561};
2562
2563struct netdev_lag_lower_state_info {
2564 u8 link_up : 1,
2565 tx_enabled : 1;
2566};
2567
2568#include <linux/notifier.h>
2569
2570/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2571 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2572 * adding new types.
2573 */
2574enum netdev_cmd {
2575 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2576 NETDEV_DOWN,
2577 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2578 detected a hardware crash and restarted
2579 - we can use this eg to kick tcp sessions
2580 once done */
2581 NETDEV_CHANGE, /* Notify device state change */
2582 NETDEV_REGISTER,
2583 NETDEV_UNREGISTER,
2584 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2585 NETDEV_CHANGEADDR, /* notify after the address change */
2586 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2587 NETDEV_GOING_DOWN,
2588 NETDEV_CHANGENAME,
2589 NETDEV_FEAT_CHANGE,
2590 NETDEV_BONDING_FAILOVER,
2591 NETDEV_PRE_UP,
2592 NETDEV_PRE_TYPE_CHANGE,
2593 NETDEV_POST_TYPE_CHANGE,
2594 NETDEV_POST_INIT,
2595 NETDEV_RELEASE,
2596 NETDEV_NOTIFY_PEERS,
2597 NETDEV_JOIN,
2598 NETDEV_CHANGEUPPER,
2599 NETDEV_RESEND_IGMP,
2600 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2601 NETDEV_CHANGEINFODATA,
2602 NETDEV_BONDING_INFO,
2603 NETDEV_PRECHANGEUPPER,
2604 NETDEV_CHANGELOWERSTATE,
2605 NETDEV_UDP_TUNNEL_PUSH_INFO,
2606 NETDEV_UDP_TUNNEL_DROP_INFO,
2607 NETDEV_CHANGE_TX_QUEUE_LEN,
2608 NETDEV_CVLAN_FILTER_PUSH_INFO,
2609 NETDEV_CVLAN_FILTER_DROP_INFO,
2610 NETDEV_SVLAN_FILTER_PUSH_INFO,
2611 NETDEV_SVLAN_FILTER_DROP_INFO,
2612};
2613const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2614
2615int register_netdevice_notifier(struct notifier_block *nb);
2616int unregister_netdevice_notifier(struct notifier_block *nb);
2617int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2618int unregister_netdevice_notifier_net(struct net *net,
2619 struct notifier_block *nb);
2620int register_netdevice_notifier_dev_net(struct net_device *dev,
2621 struct notifier_block *nb,
2622 struct netdev_net_notifier *nn);
2623int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2624 struct notifier_block *nb,
2625 struct netdev_net_notifier *nn);
2626
2627struct netdev_notifier_info {
2628 struct net_device *dev;
2629 struct netlink_ext_ack *extack;
2630};
2631
2632struct netdev_notifier_info_ext {
2633 struct netdev_notifier_info info; /* must be first */
2634 union {
2635 u32 mtu;
2636 } ext;
2637};
2638
2639struct netdev_notifier_change_info {
2640 struct netdev_notifier_info info; /* must be first */
2641 unsigned int flags_changed;
2642};
2643
2644struct netdev_notifier_changeupper_info {
2645 struct netdev_notifier_info info; /* must be first */
2646 struct net_device *upper_dev; /* new upper dev */
2647 bool master; /* is upper dev master */
2648 bool linking; /* is the notification for link or unlink */
2649 void *upper_info; /* upper dev info */
2650};
2651
2652struct netdev_notifier_changelowerstate_info {
2653 struct netdev_notifier_info info; /* must be first */
2654 void *lower_state_info; /* is lower dev state */
2655};
2656
2657struct netdev_notifier_pre_changeaddr_info {
2658 struct netdev_notifier_info info; /* must be first */
2659 const unsigned char *dev_addr;
2660};
2661
2662static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2663 struct net_device *dev)
2664{
2665 info->dev = dev;
2666 info->extack = NULL;
2667}
2668
2669static inline struct net_device *
2670netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2671{
2672 return info->dev;
2673}
2674
2675static inline struct netlink_ext_ack *
2676netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2677{
2678 return info->extack;
2679}
2680
2681int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2682
2683
2684extern rwlock_t dev_base_lock; /* Device list lock */
2685
2686#define for_each_netdev(net, d) \
2687 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2688#define for_each_netdev_reverse(net, d) \
2689 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2690#define for_each_netdev_rcu(net, d) \
2691 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2692#define for_each_netdev_safe(net, d, n) \
2693 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2694#define for_each_netdev_continue(net, d) \
2695 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2696#define for_each_netdev_continue_reverse(net, d) \
2697 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2698 dev_list)
2699#define for_each_netdev_continue_rcu(net, d) \
2700 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2701#define for_each_netdev_in_bond_rcu(bond, slave) \
2702 for_each_netdev_rcu(&init_net, slave) \
2703 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2704#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2705
2706static inline struct net_device *next_net_device(struct net_device *dev)
2707{
2708 struct list_head *lh;
2709 struct net *net;
2710
2711 net = dev_net(dev);
2712 lh = dev->dev_list.next;
2713 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2714}
2715
2716static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2717{
2718 struct list_head *lh;
2719 struct net *net;
2720
2721 net = dev_net(dev);
2722 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2723 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2724}
2725
2726static inline struct net_device *first_net_device(struct net *net)
2727{
2728 return list_empty(&net->dev_base_head) ? NULL :
2729 net_device_entry(net->dev_base_head.next);
2730}
2731
2732static inline struct net_device *first_net_device_rcu(struct net *net)
2733{
2734 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2735
2736 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2737}
2738
2739int netdev_boot_setup_check(struct net_device *dev);
2740unsigned long netdev_boot_base(const char *prefix, int unit);
2741struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2742 const char *hwaddr);
2743struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2744struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2745void dev_add_pack(struct packet_type *pt);
2746void dev_remove_pack(struct packet_type *pt);
2747void __dev_remove_pack(struct packet_type *pt);
2748void dev_add_offload(struct packet_offload *po);
2749void dev_remove_offload(struct packet_offload *po);
2750
2751int dev_get_iflink(const struct net_device *dev);
2752int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2753struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2754 unsigned short mask);
2755struct net_device *dev_get_by_name(struct net *net, const char *name);
2756struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2757struct net_device *__dev_get_by_name(struct net *net, const char *name);
2758int dev_alloc_name(struct net_device *dev, const char *name);
2759int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2760void dev_close(struct net_device *dev);
2761void dev_close_many(struct list_head *head, bool unlink);
2762void dev_disable_lro(struct net_device *dev);
2763int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2764u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2765 struct net_device *sb_dev);
2766u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2767 struct net_device *sb_dev);
2768int dev_queue_xmit(struct sk_buff *skb);
2769int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2770int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2771int register_netdevice(struct net_device *dev);
2772void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2773void unregister_netdevice_many(struct list_head *head);
2774static inline void unregister_netdevice(struct net_device *dev)
2775{
2776 unregister_netdevice_queue(dev, NULL);
2777}
2778
2779int netdev_refcnt_read(const struct net_device *dev);
2780void free_netdev(struct net_device *dev);
2781void netdev_freemem(struct net_device *dev);
2782void synchronize_net(void);
2783int init_dummy_netdev(struct net_device *dev);
2784
2785struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2786 struct sk_buff *skb,
2787 bool all_slaves);
2788struct net_device *dev_get_by_index(struct net *net, int ifindex);
2789struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2790struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2791struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2792int netdev_get_name(struct net *net, char *name, int ifindex);
2793int dev_restart(struct net_device *dev);
2794int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2795int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2796
2797static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2798{
2799 return NAPI_GRO_CB(skb)->data_offset;
2800}
2801
2802static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2803{
2804 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2805}
2806
2807static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2808{
2809 NAPI_GRO_CB(skb)->data_offset += len;
2810}
2811
2812static inline void *skb_gro_header_fast(struct sk_buff *skb,
2813 unsigned int offset)
2814{
2815 return NAPI_GRO_CB(skb)->frag0 + offset;
2816}
2817
2818static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2819{
2820 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2821}
2822
2823static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2824{
2825 NAPI_GRO_CB(skb)->frag0 = NULL;
2826 NAPI_GRO_CB(skb)->frag0_len = 0;
2827}
2828
2829static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2830 unsigned int offset)
2831{
2832 if (!pskb_may_pull(skb, hlen))
2833 return NULL;
2834
2835 skb_gro_frag0_invalidate(skb);
2836 return skb->data + offset;
2837}
2838
2839static inline void *skb_gro_network_header(struct sk_buff *skb)
2840{
2841 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2842 skb_network_offset(skb);
2843}
2844
2845static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2846 const void *start, unsigned int len)
2847{
2848 if (NAPI_GRO_CB(skb)->csum_valid)
2849 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2850 csum_partial(start, len, 0));
2851}
2852
2853/* GRO checksum functions. These are logical equivalents of the normal
2854 * checksum functions (in skbuff.h) except that they operate on the GRO
2855 * offsets and fields in sk_buff.
2856 */
2857
2858__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2859
2860static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2861{
2862 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2863}
2864
2865static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2866 bool zero_okay,
2867 __sum16 check)
2868{
2869 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2870 skb_checksum_start_offset(skb) <
2871 skb_gro_offset(skb)) &&
2872 !skb_at_gro_remcsum_start(skb) &&
2873 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2874 (!zero_okay || check));
2875}
2876
2877static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2878 __wsum psum)
2879{
2880 if (NAPI_GRO_CB(skb)->csum_valid &&
2881 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2882 return 0;
2883
2884 NAPI_GRO_CB(skb)->csum = psum;
2885
2886 return __skb_gro_checksum_complete(skb);
2887}
2888
2889static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2890{
2891 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2892 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2893 NAPI_GRO_CB(skb)->csum_cnt--;
2894 } else {
2895 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2896 * verified a new top level checksum or an encapsulated one
2897 * during GRO. This saves work if we fallback to normal path.
2898 */
2899 __skb_incr_checksum_unnecessary(skb);
2900 }
2901}
2902
2903#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2904 compute_pseudo) \
2905({ \
2906 __sum16 __ret = 0; \
2907 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2908 __ret = __skb_gro_checksum_validate_complete(skb, \
2909 compute_pseudo(skb, proto)); \
2910 if (!__ret) \
2911 skb_gro_incr_csum_unnecessary(skb); \
2912 __ret; \
2913})
2914
2915#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2916 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2917
2918#define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2919 compute_pseudo) \
2920 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2921
2922#define skb_gro_checksum_simple_validate(skb) \
2923 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2924
2925static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2926{
2927 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2928 !NAPI_GRO_CB(skb)->csum_valid);
2929}
2930
2931static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2932 __wsum pseudo)
2933{
2934 NAPI_GRO_CB(skb)->csum = ~pseudo;
2935 NAPI_GRO_CB(skb)->csum_valid = 1;
2936}
2937
2938#define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \
2939do { \
2940 if (__skb_gro_checksum_convert_check(skb)) \
2941 __skb_gro_checksum_convert(skb, \
2942 compute_pseudo(skb, proto)); \
2943} while (0)
2944
2945struct gro_remcsum {
2946 int offset;
2947 __wsum delta;
2948};
2949
2950static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2951{
2952 grc->offset = 0;
2953 grc->delta = 0;
2954}
2955
2956static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2957 unsigned int off, size_t hdrlen,
2958 int start, int offset,
2959 struct gro_remcsum *grc,
2960 bool nopartial)
2961{
2962 __wsum delta;
2963 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2964
2965 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2966
2967 if (!nopartial) {
2968 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2969 return ptr;
2970 }
2971
2972 ptr = skb_gro_header_fast(skb, off);
2973 if (skb_gro_header_hard(skb, off + plen)) {
2974 ptr = skb_gro_header_slow(skb, off + plen, off);
2975 if (!ptr)
2976 return NULL;
2977 }
2978
2979 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2980 start, offset);
2981
2982 /* Adjust skb->csum since we changed the packet */
2983 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2984
2985 grc->offset = off + hdrlen + offset;
2986 grc->delta = delta;
2987
2988 return ptr;
2989}
2990
2991static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2992 struct gro_remcsum *grc)
2993{
2994 void *ptr;
2995 size_t plen = grc->offset + sizeof(u16);
2996
2997 if (!grc->delta)
2998 return;
2999
3000 ptr = skb_gro_header_fast(skb, grc->offset);
3001 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3002 ptr = skb_gro_header_slow(skb, plen, grc->offset);
3003 if (!ptr)
3004 return;
3005 }
3006
3007 remcsum_unadjust((__sum16 *)ptr, grc->delta);
3008}
3009
3010#ifdef CONFIG_XFRM_OFFLOAD
3011static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3012{
3013 if (PTR_ERR(pp) != -EINPROGRESS)
3014 NAPI_GRO_CB(skb)->flush |= flush;
3015}
3016static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3017 struct sk_buff *pp,
3018 int flush,
3019 struct gro_remcsum *grc)
3020{
3021 if (PTR_ERR(pp) != -EINPROGRESS) {
3022 NAPI_GRO_CB(skb)->flush |= flush;
3023 skb_gro_remcsum_cleanup(skb, grc);
3024 skb->remcsum_offload = 0;
3025 }
3026}
3027#else
3028static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3029{
3030 NAPI_GRO_CB(skb)->flush |= flush;
3031}
3032static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3033 struct sk_buff *pp,
3034 int flush,
3035 struct gro_remcsum *grc)
3036{
3037 NAPI_GRO_CB(skb)->flush |= flush;
3038 skb_gro_remcsum_cleanup(skb, grc);
3039 skb->remcsum_offload = 0;
3040}
3041#endif
3042
3043static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3044 unsigned short type,
3045 const void *daddr, const void *saddr,
3046 unsigned int len)
3047{
3048 if (!dev->header_ops || !dev->header_ops->create)
3049 return 0;
3050
3051 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3052}
3053
3054static inline int dev_parse_header(const struct sk_buff *skb,
3055 unsigned char *haddr)
3056{
3057 const struct net_device *dev = skb->dev;
3058
3059 if (!dev->header_ops || !dev->header_ops->parse)
3060 return 0;
3061 return dev->header_ops->parse(skb, haddr);
3062}
3063
3064static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3065{
3066 const struct net_device *dev = skb->dev;
3067
3068 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3069 return 0;
3070 return dev->header_ops->parse_protocol(skb);
3071}
3072
3073/* ll_header must have at least hard_header_len allocated */
3074static inline bool dev_validate_header(const struct net_device *dev,
3075 char *ll_header, int len)
3076{
3077 if (likely(len >= dev->hard_header_len))
3078 return true;
3079 if (len < dev->min_header_len)
3080 return false;
3081
3082 if (capable(CAP_SYS_RAWIO)) {
3083 memset(ll_header + len, 0, dev->hard_header_len - len);
3084 return true;
3085 }
3086
3087 if (dev->header_ops && dev->header_ops->validate)
3088 return dev->header_ops->validate(ll_header, len);
3089
3090 return false;
3091}
3092
3093typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3094 int len, int size);
3095int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3096static inline int unregister_gifconf(unsigned int family)
3097{
3098 return register_gifconf(family, NULL);
3099}
3100
3101#ifdef CONFIG_NET_FLOW_LIMIT
3102#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
3103struct sd_flow_limit {
3104 u64 count;
3105 unsigned int num_buckets;
3106 unsigned int history_head;
3107 u16 history[FLOW_LIMIT_HISTORY];
3108 u8 buckets[];
3109};
3110
3111extern int netdev_flow_limit_table_len;
3112#endif /* CONFIG_NET_FLOW_LIMIT */
3113
3114/*
3115 * Incoming packets are placed on per-CPU queues
3116 */
3117struct softnet_data {
3118 struct list_head poll_list;
3119 struct sk_buff_head process_queue;
3120
3121 /* stats */
3122 unsigned int processed;
3123 unsigned int time_squeeze;
3124 unsigned int received_rps;
3125#ifdef CONFIG_RPS
3126 struct softnet_data *rps_ipi_list;
3127#endif
3128#ifdef CONFIG_NET_FLOW_LIMIT
3129 struct sd_flow_limit __rcu *flow_limit;
3130#endif
3131 struct Qdisc *output_queue;
3132 struct Qdisc **output_queue_tailp;
3133 struct sk_buff *completion_queue;
3134#ifdef CONFIG_XFRM_OFFLOAD
3135 struct sk_buff_head xfrm_backlog;
3136#endif
3137 /* written and read only by owning cpu: */
3138 struct {
3139 u16 recursion;
3140 u8 more;
3141 } xmit;
3142#ifdef CONFIG_RPS
3143 /* input_queue_head should be written by cpu owning this struct,
3144 * and only read by other cpus. Worth using a cache line.
3145 */
3146 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3147
3148 /* Elements below can be accessed between CPUs for RPS/RFS */
3149 call_single_data_t csd ____cacheline_aligned_in_smp;
3150 struct softnet_data *rps_ipi_next;
3151 unsigned int cpu;
3152 unsigned int input_queue_tail;
3153#endif
3154 unsigned int dropped;
3155 struct sk_buff_head input_pkt_queue;
3156 struct napi_struct backlog;
3157
3158};
3159
3160static inline void input_queue_head_incr(struct softnet_data *sd)
3161{
3162#ifdef CONFIG_RPS
3163 sd->input_queue_head++;
3164#endif
3165}
3166
3167static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3168 unsigned int *qtail)
3169{
3170#ifdef CONFIG_RPS
3171 *qtail = ++sd->input_queue_tail;
3172#endif
3173}
3174
3175DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3176
3177static inline int dev_recursion_level(void)
3178{
3179 return this_cpu_read(softnet_data.xmit.recursion);
3180}
3181
3182#define XMIT_RECURSION_LIMIT 8
3183static inline bool dev_xmit_recursion(void)
3184{
3185 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3186 XMIT_RECURSION_LIMIT);
3187}
3188
3189static inline void dev_xmit_recursion_inc(void)
3190{
3191 __this_cpu_inc(softnet_data.xmit.recursion);
3192}
3193
3194static inline void dev_xmit_recursion_dec(void)
3195{
3196 __this_cpu_dec(softnet_data.xmit.recursion);
3197}
3198
3199void __netif_schedule(struct Qdisc *q);
3200void netif_schedule_queue(struct netdev_queue *txq);
3201
3202static inline void netif_tx_schedule_all(struct net_device *dev)
3203{
3204 unsigned int i;
3205
3206 for (i = 0; i < dev->num_tx_queues; i++)
3207 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3208}
3209
3210static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3211{
3212 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3213}
3214
3215/**
3216 * netif_start_queue - allow transmit
3217 * @dev: network device
3218 *
3219 * Allow upper layers to call the device hard_start_xmit routine.
3220 */
3221static inline void netif_start_queue(struct net_device *dev)
3222{
3223 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3224}
3225
3226static inline void netif_tx_start_all_queues(struct net_device *dev)
3227{
3228 unsigned int i;
3229
3230 for (i = 0; i < dev->num_tx_queues; i++) {
3231 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3232 netif_tx_start_queue(txq);
3233 }
3234}
3235
3236void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3237
3238/**
3239 * netif_wake_queue - restart transmit
3240 * @dev: network device
3241 *
3242 * Allow upper layers to call the device hard_start_xmit routine.
3243 * Used for flow control when transmit resources are available.
3244 */
3245static inline void netif_wake_queue(struct net_device *dev)
3246{
3247 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3248}
3249
3250static inline void netif_tx_wake_all_queues(struct net_device *dev)
3251{
3252 unsigned int i;
3253
3254 for (i = 0; i < dev->num_tx_queues; i++) {
3255 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3256 netif_tx_wake_queue(txq);
3257 }
3258}
3259
3260static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3261{
3262 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3263}
3264
3265/**
3266 * netif_stop_queue - stop transmitted packets
3267 * @dev: network device
3268 *
3269 * Stop upper layers calling the device hard_start_xmit routine.
3270 * Used for flow control when transmit resources are unavailable.
3271 */
3272static inline void netif_stop_queue(struct net_device *dev)
3273{
3274 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3275}
3276
3277void netif_tx_stop_all_queues(struct net_device *dev);
3278
3279static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3280{
3281 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3282}
3283
3284/**
3285 * netif_queue_stopped - test if transmit queue is flowblocked
3286 * @dev: network device
3287 *
3288 * Test if transmit queue on device is currently unable to send.
3289 */
3290static inline bool netif_queue_stopped(const struct net_device *dev)
3291{
3292 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3293}
3294
3295static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3296{
3297 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3298}
3299
3300static inline bool
3301netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3302{
3303 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3304}
3305
3306static inline bool
3307netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3308{
3309 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3310}
3311
3312/**
3313 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3314 * @dev_queue: pointer to transmit queue
3315 *
3316 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3317 * to give appropriate hint to the CPU.
3318 */
3319static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3320{
3321#ifdef CONFIG_BQL
3322 prefetchw(&dev_queue->dql.num_queued);
3323#endif
3324}
3325
3326/**
3327 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3328 * @dev_queue: pointer to transmit queue
3329 *
3330 * BQL enabled drivers might use this helper in their TX completion path,
3331 * to give appropriate hint to the CPU.
3332 */
3333static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3334{
3335#ifdef CONFIG_BQL
3336 prefetchw(&dev_queue->dql.limit);
3337#endif
3338}
3339
3340static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3341 unsigned int bytes)
3342{
3343#ifdef CONFIG_BQL
3344 dql_queued(&dev_queue->dql, bytes);
3345
3346 if (likely(dql_avail(&dev_queue->dql) >= 0))
3347 return;
3348
3349 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3350
3351 /*
3352 * The XOFF flag must be set before checking the dql_avail below,
3353 * because in netdev_tx_completed_queue we update the dql_completed
3354 * before checking the XOFF flag.
3355 */
3356 smp_mb();
3357
3358 /* check again in case another CPU has just made room avail */
3359 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3360 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3361#endif
3362}
3363
3364/* Variant of netdev_tx_sent_queue() for drivers that are aware
3365 * that they should not test BQL status themselves.
3366 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3367 * skb of a batch.
3368 * Returns true if the doorbell must be used to kick the NIC.
3369 */
3370static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3371 unsigned int bytes,
3372 bool xmit_more)
3373{
3374 if (xmit_more) {
3375#ifdef CONFIG_BQL
3376 dql_queued(&dev_queue->dql, bytes);
3377#endif
3378 return netif_tx_queue_stopped(dev_queue);
3379 }
3380 netdev_tx_sent_queue(dev_queue, bytes);
3381 return true;
3382}
3383
3384/**
3385 * netdev_sent_queue - report the number of bytes queued to hardware
3386 * @dev: network device
3387 * @bytes: number of bytes queued to the hardware device queue
3388 *
3389 * Report the number of bytes queued for sending/completion to the network
3390 * device hardware queue. @bytes should be a good approximation and should
3391 * exactly match netdev_completed_queue() @bytes
3392 */
3393static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3394{
3395 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3396}
3397
3398static inline bool __netdev_sent_queue(struct net_device *dev,
3399 unsigned int bytes,
3400 bool xmit_more)
3401{
3402 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3403 xmit_more);
3404}
3405
3406static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3407 unsigned int pkts, unsigned int bytes)
3408{
3409#ifdef CONFIG_BQL
3410 if (unlikely(!bytes))
3411 return;
3412
3413 dql_completed(&dev_queue->dql, bytes);
3414
3415 /*
3416 * Without the memory barrier there is a small possiblity that
3417 * netdev_tx_sent_queue will miss the update and cause the queue to
3418 * be stopped forever
3419 */
3420 smp_mb();
3421
3422 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3423 return;
3424
3425 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3426 netif_schedule_queue(dev_queue);
3427#endif
3428}
3429
3430/**
3431 * netdev_completed_queue - report bytes and packets completed by device
3432 * @dev: network device
3433 * @pkts: actual number of packets sent over the medium
3434 * @bytes: actual number of bytes sent over the medium
3435 *
3436 * Report the number of bytes and packets transmitted by the network device
3437 * hardware queue over the physical medium, @bytes must exactly match the
3438 * @bytes amount passed to netdev_sent_queue()
3439 */
3440static inline void netdev_completed_queue(struct net_device *dev,
3441 unsigned int pkts, unsigned int bytes)
3442{
3443 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3444}
3445
3446static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3447{
3448#ifdef CONFIG_BQL
3449 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3450 dql_reset(&q->dql);
3451#endif
3452}
3453
3454/**
3455 * netdev_reset_queue - reset the packets and bytes count of a network device
3456 * @dev_queue: network device
3457 *
3458 * Reset the bytes and packet count of a network device and clear the
3459 * software flow control OFF bit for this network device
3460 */
3461static inline void netdev_reset_queue(struct net_device *dev_queue)
3462{
3463 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3464}
3465
3466/**
3467 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3468 * @dev: network device
3469 * @queue_index: given tx queue index
3470 *
3471 * Returns 0 if given tx queue index >= number of device tx queues,
3472 * otherwise returns the originally passed tx queue index.
3473 */
3474static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3475{
3476 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3477 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3478 dev->name, queue_index,
3479 dev->real_num_tx_queues);
3480 return 0;
3481 }
3482
3483 return queue_index;
3484}
3485
3486/**
3487 * netif_running - test if up
3488 * @dev: network device
3489 *
3490 * Test if the device has been brought up.
3491 */
3492static inline bool netif_running(const struct net_device *dev)
3493{
3494 return test_bit(__LINK_STATE_START, &dev->state);
3495}
3496
3497/*
3498 * Routines to manage the subqueues on a device. We only need start,
3499 * stop, and a check if it's stopped. All other device management is
3500 * done at the overall netdevice level.
3501 * Also test the device if we're multiqueue.
3502 */
3503
3504/**
3505 * netif_start_subqueue - allow sending packets on subqueue
3506 * @dev: network device
3507 * @queue_index: sub queue index
3508 *
3509 * Start individual transmit queue of a device with multiple transmit queues.
3510 */
3511static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3512{
3513 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3514
3515 netif_tx_start_queue(txq);
3516}
3517
3518/**
3519 * netif_stop_subqueue - stop sending packets on subqueue
3520 * @dev: network device
3521 * @queue_index: sub queue index
3522 *
3523 * Stop individual transmit queue of a device with multiple transmit queues.
3524 */
3525static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3526{
3527 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3528 netif_tx_stop_queue(txq);
3529}
3530
3531/**
3532 * netif_subqueue_stopped - test status of subqueue
3533 * @dev: network device
3534 * @queue_index: sub queue index
3535 *
3536 * Check individual transmit queue of a device with multiple transmit queues.
3537 */
3538static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3539 u16 queue_index)
3540{
3541 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3542
3543 return netif_tx_queue_stopped(txq);
3544}
3545
3546static inline bool netif_subqueue_stopped(const struct net_device *dev,
3547 struct sk_buff *skb)
3548{
3549 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3550}
3551
3552/**
3553 * netif_wake_subqueue - allow sending packets on subqueue
3554 * @dev: network device
3555 * @queue_index: sub queue index
3556 *
3557 * Resume individual transmit queue of a device with multiple transmit queues.
3558 */
3559static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3560{
3561 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3562
3563 netif_tx_wake_queue(txq);
3564}
3565
3566#ifdef CONFIG_XPS
3567int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3568 u16 index);
3569int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3570 u16 index, bool is_rxqs_map);
3571
3572/**
3573 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3574 * @j: CPU/Rx queue index
3575 * @mask: bitmask of all cpus/rx queues
3576 * @nr_bits: number of bits in the bitmask
3577 *
3578 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3579 */
3580static inline bool netif_attr_test_mask(unsigned long j,
3581 const unsigned long *mask,
3582 unsigned int nr_bits)
3583{
3584 cpu_max_bits_warn(j, nr_bits);
3585 return test_bit(j, mask);
3586}
3587
3588/**
3589 * netif_attr_test_online - Test for online CPU/Rx queue
3590 * @j: CPU/Rx queue index
3591 * @online_mask: bitmask for CPUs/Rx queues that are online
3592 * @nr_bits: number of bits in the bitmask
3593 *
3594 * Returns true if a CPU/Rx queue is online.
3595 */
3596static inline bool netif_attr_test_online(unsigned long j,
3597 const unsigned long *online_mask,
3598 unsigned int nr_bits)
3599{
3600 cpu_max_bits_warn(j, nr_bits);
3601
3602 if (online_mask)
3603 return test_bit(j, online_mask);
3604
3605 return (j < nr_bits);
3606}
3607
3608/**
3609 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3610 * @n: CPU/Rx queue index
3611 * @srcp: the cpumask/Rx queue mask pointer
3612 * @nr_bits: number of bits in the bitmask
3613 *
3614 * Returns >= nr_bits if no further CPUs/Rx queues set.
3615 */
3616static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3617 unsigned int nr_bits)
3618{
3619 /* -1 is a legal arg here. */
3620 if (n != -1)
3621 cpu_max_bits_warn(n, nr_bits);
3622
3623 if (srcp)
3624 return find_next_bit(srcp, nr_bits, n + 1);
3625
3626 return n + 1;
3627}
3628
3629/**
3630 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3631 * @n: CPU/Rx queue index
3632 * @src1p: the first CPUs/Rx queues mask pointer
3633 * @src2p: the second CPUs/Rx queues mask pointer
3634 * @nr_bits: number of bits in the bitmask
3635 *
3636 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3637 */
3638static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3639 const unsigned long *src2p,
3640 unsigned int nr_bits)
3641{
3642 /* -1 is a legal arg here. */
3643 if (n != -1)
3644 cpu_max_bits_warn(n, nr_bits);
3645
3646 if (src1p && src2p)
3647 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3648 else if (src1p)
3649 return find_next_bit(src1p, nr_bits, n + 1);
3650 else if (src2p)
3651 return find_next_bit(src2p, nr_bits, n + 1);
3652
3653 return n + 1;
3654}
3655#else
3656static inline int netif_set_xps_queue(struct net_device *dev,
3657 const struct cpumask *mask,
3658 u16 index)
3659{
3660 return 0;
3661}
3662
3663static inline int __netif_set_xps_queue(struct net_device *dev,
3664 const unsigned long *mask,
3665 u16 index, bool is_rxqs_map)
3666{
3667 return 0;
3668}
3669#endif
3670
3671/**
3672 * netif_is_multiqueue - test if device has multiple transmit queues
3673 * @dev: network device
3674 *
3675 * Check if device has multiple transmit queues
3676 */
3677static inline bool netif_is_multiqueue(const struct net_device *dev)
3678{
3679 return dev->num_tx_queues > 1;
3680}
3681
3682int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3683
3684#ifdef CONFIG_SYSFS
3685int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3686#else
3687static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3688 unsigned int rxqs)
3689{
3690 dev->real_num_rx_queues = rxqs;
3691 return 0;
3692}
3693#endif
3694
3695static inline struct netdev_rx_queue *
3696__netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3697{
3698 return dev->_rx + rxq;
3699}
3700
3701#ifdef CONFIG_SYSFS
3702static inline unsigned int get_netdev_rx_queue_index(
3703 struct netdev_rx_queue *queue)
3704{
3705 struct net_device *dev = queue->dev;
3706 int index = queue - dev->_rx;
3707
3708 BUG_ON(index >= dev->num_rx_queues);
3709 return index;
3710}
3711#endif
3712
3713#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3714int netif_get_num_default_rss_queues(void);
3715
3716enum skb_free_reason {
3717 SKB_REASON_CONSUMED,
3718 SKB_REASON_DROPPED,
3719};
3720
3721void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3722void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3723
3724/*
3725 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3726 * interrupt context or with hardware interrupts being disabled.
3727 * (in_irq() || irqs_disabled())
3728 *
3729 * We provide four helpers that can be used in following contexts :
3730 *
3731 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3732 * replacing kfree_skb(skb)
3733 *
3734 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3735 * Typically used in place of consume_skb(skb) in TX completion path
3736 *
3737 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3738 * replacing kfree_skb(skb)
3739 *
3740 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3741 * and consumed a packet. Used in place of consume_skb(skb)
3742 */
3743static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3744{
3745 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3746}
3747
3748static inline void dev_consume_skb_irq(struct sk_buff *skb)
3749{
3750 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3751}
3752
3753static inline void dev_kfree_skb_any(struct sk_buff *skb)
3754{
3755 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3756}
3757
3758static inline void dev_consume_skb_any(struct sk_buff *skb)
3759{
3760 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3761}
3762
3763void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3764int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3765int netif_rx(struct sk_buff *skb);
3766int netif_rx_ni(struct sk_buff *skb);
3767int netif_receive_skb(struct sk_buff *skb);
3768int netif_receive_skb_core(struct sk_buff *skb);
3769void netif_receive_skb_list(struct list_head *head);
3770gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3771void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3772struct sk_buff *napi_get_frags(struct napi_struct *napi);
3773gro_result_t napi_gro_frags(struct napi_struct *napi);
3774struct packet_offload *gro_find_receive_by_type(__be16 type);
3775struct packet_offload *gro_find_complete_by_type(__be16 type);
3776
3777static inline void napi_free_frags(struct napi_struct *napi)
3778{
3779 kfree_skb(napi->skb);
3780 napi->skb = NULL;
3781}
3782
3783bool netdev_is_rx_handler_busy(struct net_device *dev);
3784int netdev_rx_handler_register(struct net_device *dev,
3785 rx_handler_func_t *rx_handler,
3786 void *rx_handler_data);
3787void netdev_rx_handler_unregister(struct net_device *dev);
3788
3789bool dev_valid_name(const char *name);
3790int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3791 bool *need_copyout);
3792int dev_ifconf(struct net *net, struct ifconf *, int);
3793int dev_ethtool(struct net *net, struct ifreq *);
3794unsigned int dev_get_flags(const struct net_device *);
3795int __dev_change_flags(struct net_device *dev, unsigned int flags,
3796 struct netlink_ext_ack *extack);
3797int dev_change_flags(struct net_device *dev, unsigned int flags,
3798 struct netlink_ext_ack *extack);
3799void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3800 unsigned int gchanges);
3801int dev_change_name(struct net_device *, const char *);
3802int dev_set_alias(struct net_device *, const char *, size_t);
3803int dev_get_alias(const struct net_device *, char *, size_t);
3804int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3805int __dev_set_mtu(struct net_device *, int);
3806int dev_validate_mtu(struct net_device *dev, int mtu,
3807 struct netlink_ext_ack *extack);
3808int dev_set_mtu_ext(struct net_device *dev, int mtu,
3809 struct netlink_ext_ack *extack);
3810int dev_set_mtu(struct net_device *, int);
3811int dev_change_tx_queue_len(struct net_device *, unsigned long);
3812void dev_set_group(struct net_device *, int);
3813int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3814 struct netlink_ext_ack *extack);
3815int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3816 struct netlink_ext_ack *extack);
3817int dev_change_carrier(struct net_device *, bool new_carrier);
3818int dev_get_phys_port_id(struct net_device *dev,
3819 struct netdev_phys_item_id *ppid);
3820int dev_get_phys_port_name(struct net_device *dev,
3821 char *name, size_t len);
3822int dev_get_port_parent_id(struct net_device *dev,
3823 struct netdev_phys_item_id *ppid, bool recurse);
3824bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3825int dev_change_proto_down(struct net_device *dev, bool proto_down);
3826int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3827void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3828 u32 value);
3829struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3830struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3831 struct netdev_queue *txq, int *ret);
3832
3833typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3834int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3835 int fd, int expected_fd, u32 flags);
3836int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3837u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3838
3839int xdp_umem_query(struct net_device *dev, u16 queue_id);
3840
3841int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3842int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3843bool is_skb_forwardable(const struct net_device *dev,
3844 const struct sk_buff *skb);
3845
3846static __always_inline int ____dev_forward_skb(struct net_device *dev,
3847 struct sk_buff *skb)
3848{
3849 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3850 unlikely(!is_skb_forwardable(dev, skb))) {
3851 atomic_long_inc(&dev->rx_dropped);
3852 kfree_skb(skb);
3853 return NET_RX_DROP;
3854 }
3855
3856 skb_scrub_packet(skb, true);
3857 skb->priority = 0;
3858 return 0;
3859}
3860
3861bool dev_nit_active(struct net_device *dev);
3862void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3863
3864extern int netdev_budget;
3865extern unsigned int netdev_budget_usecs;
3866
3867/* Called by rtnetlink.c:rtnl_unlock() */
3868void netdev_run_todo(void);
3869
3870/**
3871 * dev_put - release reference to device
3872 * @dev: network device
3873 *
3874 * Release reference to device to allow it to be freed.
3875 */
3876static inline void dev_put(struct net_device *dev)
3877{
3878 this_cpu_dec(*dev->pcpu_refcnt);
3879}
3880
3881/**
3882 * dev_hold - get reference to device
3883 * @dev: network device
3884 *
3885 * Hold reference to device to keep it from being freed.
3886 */
3887static inline void dev_hold(struct net_device *dev)
3888{
3889 this_cpu_inc(*dev->pcpu_refcnt);
3890}
3891
3892/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3893 * and _off may be called from IRQ context, but it is caller
3894 * who is responsible for serialization of these calls.
3895 *
3896 * The name carrier is inappropriate, these functions should really be
3897 * called netif_lowerlayer_*() because they represent the state of any
3898 * kind of lower layer not just hardware media.
3899 */
3900
3901void linkwatch_init_dev(struct net_device *dev);
3902void linkwatch_fire_event(struct net_device *dev);
3903void linkwatch_forget_dev(struct net_device *dev);
3904
3905/**
3906 * netif_carrier_ok - test if carrier present
3907 * @dev: network device
3908 *
3909 * Check if carrier is present on device
3910 */
3911static inline bool netif_carrier_ok(const struct net_device *dev)
3912{
3913 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3914}
3915
3916unsigned long dev_trans_start(struct net_device *dev);
3917
3918void __netdev_watchdog_up(struct net_device *dev);
3919
3920void netif_carrier_on(struct net_device *dev);
3921
3922void netif_carrier_off(struct net_device *dev);
3923
3924/**
3925 * netif_dormant_on - mark device as dormant.
3926 * @dev: network device
3927 *
3928 * Mark device as dormant (as per RFC2863).
3929 *
3930 * The dormant state indicates that the relevant interface is not
3931 * actually in a condition to pass packets (i.e., it is not 'up') but is
3932 * in a "pending" state, waiting for some external event. For "on-
3933 * demand" interfaces, this new state identifies the situation where the
3934 * interface is waiting for events to place it in the up state.
3935 */
3936static inline void netif_dormant_on(struct net_device *dev)
3937{
3938 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3939 linkwatch_fire_event(dev);
3940}
3941
3942/**
3943 * netif_dormant_off - set device as not dormant.
3944 * @dev: network device
3945 *
3946 * Device is not in dormant state.
3947 */
3948static inline void netif_dormant_off(struct net_device *dev)
3949{
3950 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3951 linkwatch_fire_event(dev);
3952}
3953
3954/**
3955 * netif_dormant - test if device is dormant
3956 * @dev: network device
3957 *
3958 * Check if device is dormant.
3959 */
3960static inline bool netif_dormant(const struct net_device *dev)
3961{
3962 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3963}
3964
3965
3966/**
3967 * netif_testing_on - mark device as under test.
3968 * @dev: network device
3969 *
3970 * Mark device as under test (as per RFC2863).
3971 *
3972 * The testing state indicates that some test(s) must be performed on
3973 * the interface. After completion, of the test, the interface state
3974 * will change to up, dormant, or down, as appropriate.
3975 */
3976static inline void netif_testing_on(struct net_device *dev)
3977{
3978 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
3979 linkwatch_fire_event(dev);
3980}
3981
3982/**
3983 * netif_testing_off - set device as not under test.
3984 * @dev: network device
3985 *
3986 * Device is not in testing state.
3987 */
3988static inline void netif_testing_off(struct net_device *dev)
3989{
3990 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
3991 linkwatch_fire_event(dev);
3992}
3993
3994/**
3995 * netif_testing - test if device is under test
3996 * @dev: network device
3997 *
3998 * Check if device is under test
3999 */
4000static inline bool netif_testing(const struct net_device *dev)
4001{
4002 return test_bit(__LINK_STATE_TESTING, &dev->state);
4003}
4004
4005
4006/**
4007 * netif_oper_up - test if device is operational
4008 * @dev: network device
4009 *
4010 * Check if carrier is operational
4011 */
4012static inline bool netif_oper_up(const struct net_device *dev)
4013{
4014 return (dev->operstate == IF_OPER_UP ||
4015 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4016}
4017
4018/**
4019 * netif_device_present - is device available or removed
4020 * @dev: network device
4021 *
4022 * Check if device has not been removed from system.
4023 */
4024static inline bool netif_device_present(struct net_device *dev)
4025{
4026 return test_bit(__LINK_STATE_PRESENT, &dev->state);
4027}
4028
4029void netif_device_detach(struct net_device *dev);
4030
4031void netif_device_attach(struct net_device *dev);
4032
4033/*
4034 * Network interface message level settings
4035 */
4036
4037enum {
4038 NETIF_MSG_DRV_BIT,
4039 NETIF_MSG_PROBE_BIT,
4040 NETIF_MSG_LINK_BIT,
4041 NETIF_MSG_TIMER_BIT,
4042 NETIF_MSG_IFDOWN_BIT,
4043 NETIF_MSG_IFUP_BIT,
4044 NETIF_MSG_RX_ERR_BIT,
4045 NETIF_MSG_TX_ERR_BIT,
4046 NETIF_MSG_TX_QUEUED_BIT,
4047 NETIF_MSG_INTR_BIT,
4048 NETIF_MSG_TX_DONE_BIT,
4049 NETIF_MSG_RX_STATUS_BIT,
4050 NETIF_MSG_PKTDATA_BIT,
4051 NETIF_MSG_HW_BIT,
4052 NETIF_MSG_WOL_BIT,
4053
4054 /* When you add a new bit above, update netif_msg_class_names array
4055 * in net/ethtool/common.c
4056 */
4057 NETIF_MSG_CLASS_COUNT,
4058};
4059/* Both ethtool_ops interface and internal driver implementation use u32 */
4060static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4061
4062#define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
4063#define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4064
4065#define NETIF_MSG_DRV __NETIF_MSG(DRV)
4066#define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
4067#define NETIF_MSG_LINK __NETIF_MSG(LINK)
4068#define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
4069#define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
4070#define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
4071#define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
4072#define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
4073#define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
4074#define NETIF_MSG_INTR __NETIF_MSG(INTR)
4075#define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
4076#define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
4077#define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
4078#define NETIF_MSG_HW __NETIF_MSG(HW)
4079#define NETIF_MSG_WOL __NETIF_MSG(WOL)
4080
4081#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
4082#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
4083#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
4084#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
4085#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
4086#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
4087#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
4088#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
4089#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4090#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
4091#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
4092#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
4093#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
4094#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
4095#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
4096
4097static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4098{
4099 /* use default */
4100 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4101 return default_msg_enable_bits;
4102 if (debug_value == 0) /* no output */
4103 return 0;
4104 /* set low N bits */
4105 return (1U << debug_value) - 1;
4106}
4107
4108static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4109{
4110 spin_lock(&txq->_xmit_lock);
4111 txq->xmit_lock_owner = cpu;
4112}
4113
4114static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4115{
4116 __acquire(&txq->_xmit_lock);
4117 return true;
4118}
4119
4120static inline void __netif_tx_release(struct netdev_queue *txq)
4121{
4122 __release(&txq->_xmit_lock);
4123}
4124
4125static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4126{
4127 spin_lock_bh(&txq->_xmit_lock);
4128 txq->xmit_lock_owner = smp_processor_id();
4129}
4130
4131static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4132{
4133 bool ok = spin_trylock(&txq->_xmit_lock);
4134 if (likely(ok))
4135 txq->xmit_lock_owner = smp_processor_id();
4136 return ok;
4137}
4138
4139static inline void __netif_tx_unlock(struct netdev_queue *txq)
4140{
4141 txq->xmit_lock_owner = -1;
4142 spin_unlock(&txq->_xmit_lock);
4143}
4144
4145static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4146{
4147 txq->xmit_lock_owner = -1;
4148 spin_unlock_bh(&txq->_xmit_lock);
4149}
4150
4151static inline void txq_trans_update(struct netdev_queue *txq)
4152{
4153 if (txq->xmit_lock_owner != -1)
4154 txq->trans_start = jiffies;
4155}
4156
4157/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4158static inline void netif_trans_update(struct net_device *dev)
4159{
4160 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4161
4162 if (txq->trans_start != jiffies)
4163 txq->trans_start = jiffies;
4164}
4165
4166/**
4167 * netif_tx_lock - grab network device transmit lock
4168 * @dev: network device
4169 *
4170 * Get network device transmit lock
4171 */
4172static inline void netif_tx_lock(struct net_device *dev)
4173{
4174 unsigned int i;
4175 int cpu;
4176
4177 spin_lock(&dev->tx_global_lock);
4178 cpu = smp_processor_id();
4179 for (i = 0; i < dev->num_tx_queues; i++) {
4180 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4181
4182 /* We are the only thread of execution doing a
4183 * freeze, but we have to grab the _xmit_lock in
4184 * order to synchronize with threads which are in
4185 * the ->hard_start_xmit() handler and already
4186 * checked the frozen bit.
4187 */
4188 __netif_tx_lock(txq, cpu);
4189 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4190 __netif_tx_unlock(txq);
4191 }
4192}
4193
4194static inline void netif_tx_lock_bh(struct net_device *dev)
4195{
4196 local_bh_disable();
4197 netif_tx_lock(dev);
4198}
4199
4200static inline void netif_tx_unlock(struct net_device *dev)
4201{
4202 unsigned int i;
4203
4204 for (i = 0; i < dev->num_tx_queues; i++) {
4205 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4206
4207 /* No need to grab the _xmit_lock here. If the
4208 * queue is not stopped for another reason, we
4209 * force a schedule.
4210 */
4211 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4212 netif_schedule_queue(txq);
4213 }
4214 spin_unlock(&dev->tx_global_lock);
4215}
4216
4217static inline void netif_tx_unlock_bh(struct net_device *dev)
4218{
4219 netif_tx_unlock(dev);
4220 local_bh_enable();
4221}
4222
4223#define HARD_TX_LOCK(dev, txq, cpu) { \
4224 if ((dev->features & NETIF_F_LLTX) == 0) { \
4225 __netif_tx_lock(txq, cpu); \
4226 } else { \
4227 __netif_tx_acquire(txq); \
4228 } \
4229}
4230
4231#define HARD_TX_TRYLOCK(dev, txq) \
4232 (((dev->features & NETIF_F_LLTX) == 0) ? \
4233 __netif_tx_trylock(txq) : \
4234 __netif_tx_acquire(txq))
4235
4236#define HARD_TX_UNLOCK(dev, txq) { \
4237 if ((dev->features & NETIF_F_LLTX) == 0) { \
4238 __netif_tx_unlock(txq); \
4239 } else { \
4240 __netif_tx_release(txq); \
4241 } \
4242}
4243
4244static inline void netif_tx_disable(struct net_device *dev)
4245{
4246 unsigned int i;
4247 int cpu;
4248
4249 local_bh_disable();
4250 cpu = smp_processor_id();
4251 for (i = 0; i < dev->num_tx_queues; i++) {
4252 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4253
4254 __netif_tx_lock(txq, cpu);
4255 netif_tx_stop_queue(txq);
4256 __netif_tx_unlock(txq);
4257 }
4258 local_bh_enable();
4259}
4260
4261static inline void netif_addr_lock(struct net_device *dev)
4262{
4263 spin_lock(&dev->addr_list_lock);
4264}
4265
4266static inline void netif_addr_lock_nested(struct net_device *dev)
4267{
4268 spin_lock_nested(&dev->addr_list_lock, dev->lower_level);
4269}
4270
4271static inline void netif_addr_lock_bh(struct net_device *dev)
4272{
4273 spin_lock_bh(&dev->addr_list_lock);
4274}
4275
4276static inline void netif_addr_unlock(struct net_device *dev)
4277{
4278 spin_unlock(&dev->addr_list_lock);
4279}
4280
4281static inline void netif_addr_unlock_bh(struct net_device *dev)
4282{
4283 spin_unlock_bh(&dev->addr_list_lock);
4284}
4285
4286/*
4287 * dev_addrs walker. Should be used only for read access. Call with
4288 * rcu_read_lock held.
4289 */
4290#define for_each_dev_addr(dev, ha) \
4291 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4292
4293/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4294
4295void ether_setup(struct net_device *dev);
4296
4297/* Support for loadable net-drivers */
4298struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4299 unsigned char name_assign_type,
4300 void (*setup)(struct net_device *),
4301 unsigned int txqs, unsigned int rxqs);
4302#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4303 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4304
4305#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4306 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4307 count)
4308
4309int register_netdev(struct net_device *dev);
4310void unregister_netdev(struct net_device *dev);
4311
4312int devm_register_netdev(struct device *dev, struct net_device *ndev);
4313
4314/* General hardware address lists handling functions */
4315int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4316 struct netdev_hw_addr_list *from_list, int addr_len);
4317void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4318 struct netdev_hw_addr_list *from_list, int addr_len);
4319int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4320 struct net_device *dev,
4321 int (*sync)(struct net_device *, const unsigned char *),
4322 int (*unsync)(struct net_device *,
4323 const unsigned char *));
4324int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4325 struct net_device *dev,
4326 int (*sync)(struct net_device *,
4327 const unsigned char *, int),
4328 int (*unsync)(struct net_device *,
4329 const unsigned char *, int));
4330void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4331 struct net_device *dev,
4332 int (*unsync)(struct net_device *,
4333 const unsigned char *, int));
4334void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4335 struct net_device *dev,
4336 int (*unsync)(struct net_device *,
4337 const unsigned char *));
4338void __hw_addr_init(struct netdev_hw_addr_list *list);
4339
4340/* Functions used for device addresses handling */
4341int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4342 unsigned char addr_type);
4343int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4344 unsigned char addr_type);
4345void dev_addr_flush(struct net_device *dev);
4346int dev_addr_init(struct net_device *dev);
4347
4348/* Functions used for unicast addresses handling */
4349int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4350int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4351int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4352int dev_uc_sync(struct net_device *to, struct net_device *from);
4353int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4354void dev_uc_unsync(struct net_device *to, struct net_device *from);
4355void dev_uc_flush(struct net_device *dev);
4356void dev_uc_init(struct net_device *dev);
4357
4358/**
4359 * __dev_uc_sync - Synchonize device's unicast list
4360 * @dev: device to sync
4361 * @sync: function to call if address should be added
4362 * @unsync: function to call if address should be removed
4363 *
4364 * Add newly added addresses to the interface, and release
4365 * addresses that have been deleted.
4366 */
4367static inline int __dev_uc_sync(struct net_device *dev,
4368 int (*sync)(struct net_device *,
4369 const unsigned char *),
4370 int (*unsync)(struct net_device *,
4371 const unsigned char *))
4372{
4373 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4374}
4375
4376/**
4377 * __dev_uc_unsync - Remove synchronized addresses from device
4378 * @dev: device to sync
4379 * @unsync: function to call if address should be removed
4380 *
4381 * Remove all addresses that were added to the device by dev_uc_sync().
4382 */
4383static inline void __dev_uc_unsync(struct net_device *dev,
4384 int (*unsync)(struct net_device *,
4385 const unsigned char *))
4386{
4387 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4388}
4389
4390/* Functions used for multicast addresses handling */
4391int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4392int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4393int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4394int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4395int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4396int dev_mc_sync(struct net_device *to, struct net_device *from);
4397int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4398void dev_mc_unsync(struct net_device *to, struct net_device *from);
4399void dev_mc_flush(struct net_device *dev);
4400void dev_mc_init(struct net_device *dev);
4401
4402/**
4403 * __dev_mc_sync - Synchonize device's multicast list
4404 * @dev: device to sync
4405 * @sync: function to call if address should be added
4406 * @unsync: function to call if address should be removed
4407 *
4408 * Add newly added addresses to the interface, and release
4409 * addresses that have been deleted.
4410 */
4411static inline int __dev_mc_sync(struct net_device *dev,
4412 int (*sync)(struct net_device *,
4413 const unsigned char *),
4414 int (*unsync)(struct net_device *,
4415 const unsigned char *))
4416{
4417 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4418}
4419
4420/**
4421 * __dev_mc_unsync - Remove synchronized addresses from device
4422 * @dev: device to sync
4423 * @unsync: function to call if address should be removed
4424 *
4425 * Remove all addresses that were added to the device by dev_mc_sync().
4426 */
4427static inline void __dev_mc_unsync(struct net_device *dev,
4428 int (*unsync)(struct net_device *,
4429 const unsigned char *))
4430{
4431 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4432}
4433
4434/* Functions used for secondary unicast and multicast support */
4435void dev_set_rx_mode(struct net_device *dev);
4436void __dev_set_rx_mode(struct net_device *dev);
4437int dev_set_promiscuity(struct net_device *dev, int inc);
4438int dev_set_allmulti(struct net_device *dev, int inc);
4439void netdev_state_change(struct net_device *dev);
4440void netdev_notify_peers(struct net_device *dev);
4441void netdev_features_change(struct net_device *dev);
4442/* Load a device via the kmod */
4443void dev_load(struct net *net, const char *name);
4444struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4445 struct rtnl_link_stats64 *storage);
4446void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4447 const struct net_device_stats *netdev_stats);
4448
4449extern int netdev_max_backlog;
4450extern int netdev_tstamp_prequeue;
4451extern int weight_p;
4452extern int dev_weight_rx_bias;
4453extern int dev_weight_tx_bias;
4454extern int dev_rx_weight;
4455extern int dev_tx_weight;
4456extern int gro_normal_batch;
4457
4458bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4459struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4460 struct list_head **iter);
4461struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4462 struct list_head **iter);
4463
4464/* iterate through upper list, must be called under RCU read lock */
4465#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4466 for (iter = &(dev)->adj_list.upper, \
4467 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4468 updev; \
4469 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4470
4471int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4472 int (*fn)(struct net_device *upper_dev,
4473 void *data),
4474 void *data);
4475
4476bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4477 struct net_device *upper_dev);
4478
4479bool netdev_has_any_upper_dev(struct net_device *dev);
4480
4481void *netdev_lower_get_next_private(struct net_device *dev,
4482 struct list_head **iter);
4483void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4484 struct list_head **iter);
4485
4486#define netdev_for_each_lower_private(dev, priv, iter) \
4487 for (iter = (dev)->adj_list.lower.next, \
4488 priv = netdev_lower_get_next_private(dev, &(iter)); \
4489 priv; \
4490 priv = netdev_lower_get_next_private(dev, &(iter)))
4491
4492#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4493 for (iter = &(dev)->adj_list.lower, \
4494 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4495 priv; \
4496 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4497
4498void *netdev_lower_get_next(struct net_device *dev,
4499 struct list_head **iter);
4500
4501#define netdev_for_each_lower_dev(dev, ldev, iter) \
4502 for (iter = (dev)->adj_list.lower.next, \
4503 ldev = netdev_lower_get_next(dev, &(iter)); \
4504 ldev; \
4505 ldev = netdev_lower_get_next(dev, &(iter)))
4506
4507struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4508 struct list_head **iter);
4509int netdev_walk_all_lower_dev(struct net_device *dev,
4510 int (*fn)(struct net_device *lower_dev,
4511 void *data),
4512 void *data);
4513int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4514 int (*fn)(struct net_device *lower_dev,
4515 void *data),
4516 void *data);
4517
4518void *netdev_adjacent_get_private(struct list_head *adj_list);
4519void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4520struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4521struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4522int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4523 struct netlink_ext_ack *extack);
4524int netdev_master_upper_dev_link(struct net_device *dev,
4525 struct net_device *upper_dev,
4526 void *upper_priv, void *upper_info,
4527 struct netlink_ext_ack *extack);
4528void netdev_upper_dev_unlink(struct net_device *dev,
4529 struct net_device *upper_dev);
4530int netdev_adjacent_change_prepare(struct net_device *old_dev,
4531 struct net_device *new_dev,
4532 struct net_device *dev,
4533 struct netlink_ext_ack *extack);
4534void netdev_adjacent_change_commit(struct net_device *old_dev,
4535 struct net_device *new_dev,
4536 struct net_device *dev);
4537void netdev_adjacent_change_abort(struct net_device *old_dev,
4538 struct net_device *new_dev,
4539 struct net_device *dev);
4540void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4541void *netdev_lower_dev_get_private(struct net_device *dev,
4542 struct net_device *lower_dev);
4543void netdev_lower_state_changed(struct net_device *lower_dev,
4544 void *lower_state_info);
4545
4546/* RSS keys are 40 or 52 bytes long */
4547#define NETDEV_RSS_KEY_LEN 52
4548extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4549void netdev_rss_key_fill(void *buffer, size_t len);
4550
4551int skb_checksum_help(struct sk_buff *skb);
4552int skb_crc32c_csum_help(struct sk_buff *skb);
4553int skb_csum_hwoffload_help(struct sk_buff *skb,
4554 const netdev_features_t features);
4555
4556struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4557 netdev_features_t features, bool tx_path);
4558struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4559 netdev_features_t features);
4560
4561struct netdev_bonding_info {
4562 ifslave slave;
4563 ifbond master;
4564};
4565
4566struct netdev_notifier_bonding_info {
4567 struct netdev_notifier_info info; /* must be first */
4568 struct netdev_bonding_info bonding_info;
4569};
4570
4571void netdev_bonding_info_change(struct net_device *dev,
4572 struct netdev_bonding_info *bonding_info);
4573
4574#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4575void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4576#else
4577static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4578 const void *data)
4579{
4580}
4581#endif
4582
4583static inline
4584struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4585{
4586 return __skb_gso_segment(skb, features, true);
4587}
4588__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4589
4590static inline bool can_checksum_protocol(netdev_features_t features,
4591 __be16 protocol)
4592{
4593 if (protocol == htons(ETH_P_FCOE))
4594 return !!(features & NETIF_F_FCOE_CRC);
4595
4596 /* Assume this is an IP checksum (not SCTP CRC) */
4597
4598 if (features & NETIF_F_HW_CSUM) {
4599 /* Can checksum everything */
4600 return true;
4601 }
4602
4603 switch (protocol) {
4604 case htons(ETH_P_IP):
4605 return !!(features & NETIF_F_IP_CSUM);
4606 case htons(ETH_P_IPV6):
4607 return !!(features & NETIF_F_IPV6_CSUM);
4608 default:
4609 return false;
4610 }
4611}
4612
4613#ifdef CONFIG_BUG
4614void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4615#else
4616static inline void netdev_rx_csum_fault(struct net_device *dev,
4617 struct sk_buff *skb)
4618{
4619}
4620#endif
4621/* rx skb timestamps */
4622void net_enable_timestamp(void);
4623void net_disable_timestamp(void);
4624
4625#ifdef CONFIG_PROC_FS
4626int __init dev_proc_init(void);
4627#else
4628#define dev_proc_init() 0
4629#endif
4630
4631static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4632 struct sk_buff *skb, struct net_device *dev,
4633 bool more)
4634{
4635 __this_cpu_write(softnet_data.xmit.more, more);
4636 return ops->ndo_start_xmit(skb, dev);
4637}
4638
4639static inline bool netdev_xmit_more(void)
4640{
4641 return __this_cpu_read(softnet_data.xmit.more);
4642}
4643
4644static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4645 struct netdev_queue *txq, bool more)
4646{
4647 const struct net_device_ops *ops = dev->netdev_ops;
4648 netdev_tx_t rc;
4649
4650 rc = __netdev_start_xmit(ops, skb, dev, more);
4651 if (rc == NETDEV_TX_OK)
4652 txq_trans_update(txq);
4653
4654 return rc;
4655}
4656
4657int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4658 const void *ns);
4659void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4660 const void *ns);
4661
4662static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4663{
4664 return netdev_class_create_file_ns(class_attr, NULL);
4665}
4666
4667static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4668{
4669 netdev_class_remove_file_ns(class_attr, NULL);
4670}
4671
4672extern const struct kobj_ns_type_operations net_ns_type_operations;
4673
4674const char *netdev_drivername(const struct net_device *dev);
4675
4676void linkwatch_run_queue(void);
4677
4678static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4679 netdev_features_t f2)
4680{
4681 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4682 if (f1 & NETIF_F_HW_CSUM)
4683 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4684 else
4685 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4686 }
4687
4688 return f1 & f2;
4689}
4690
4691static inline netdev_features_t netdev_get_wanted_features(
4692 struct net_device *dev)
4693{
4694 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4695}
4696netdev_features_t netdev_increment_features(netdev_features_t all,
4697 netdev_features_t one, netdev_features_t mask);
4698
4699/* Allow TSO being used on stacked device :
4700 * Performing the GSO segmentation before last device
4701 * is a performance improvement.
4702 */
4703static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4704 netdev_features_t mask)
4705{
4706 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4707}
4708
4709int __netdev_update_features(struct net_device *dev);
4710void netdev_update_features(struct net_device *dev);
4711void netdev_change_features(struct net_device *dev);
4712
4713void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4714 struct net_device *dev);
4715
4716netdev_features_t passthru_features_check(struct sk_buff *skb,
4717 struct net_device *dev,
4718 netdev_features_t features);
4719netdev_features_t netif_skb_features(struct sk_buff *skb);
4720
4721static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4722{
4723 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4724
4725 /* check flags correspondence */
4726 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4727 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4728 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4729 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4730 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4731 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4732 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4733 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4734 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4735 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4736 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4737 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4738 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4739 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4740 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4741 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4742 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4743 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4744 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4745
4746 return (features & feature) == feature;
4747}
4748
4749static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4750{
4751 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4752 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4753}
4754
4755static inline bool netif_needs_gso(struct sk_buff *skb,
4756 netdev_features_t features)
4757{
4758 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4759 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4760 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4761}
4762
4763static inline void netif_set_gso_max_size(struct net_device *dev,
4764 unsigned int size)
4765{
4766 dev->gso_max_size = size;
4767}
4768
4769static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4770 int pulled_hlen, u16 mac_offset,
4771 int mac_len)
4772{
4773 skb->protocol = protocol;
4774 skb->encapsulation = 1;
4775 skb_push(skb, pulled_hlen);
4776 skb_reset_transport_header(skb);
4777 skb->mac_header = mac_offset;
4778 skb->network_header = skb->mac_header + mac_len;
4779 skb->mac_len = mac_len;
4780}
4781
4782static inline bool netif_is_macsec(const struct net_device *dev)
4783{
4784 return dev->priv_flags & IFF_MACSEC;
4785}
4786
4787static inline bool netif_is_macvlan(const struct net_device *dev)
4788{
4789 return dev->priv_flags & IFF_MACVLAN;
4790}
4791
4792static inline bool netif_is_macvlan_port(const struct net_device *dev)
4793{
4794 return dev->priv_flags & IFF_MACVLAN_PORT;
4795}
4796
4797static inline bool netif_is_bond_master(const struct net_device *dev)
4798{
4799 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4800}
4801
4802static inline bool netif_is_bond_slave(const struct net_device *dev)
4803{
4804 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4805}
4806
4807static inline bool netif_supports_nofcs(struct net_device *dev)
4808{
4809 return dev->priv_flags & IFF_SUPP_NOFCS;
4810}
4811
4812static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4813{
4814 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4815}
4816
4817static inline bool netif_is_l3_master(const struct net_device *dev)
4818{
4819 return dev->priv_flags & IFF_L3MDEV_MASTER;
4820}
4821
4822static inline bool netif_is_l3_slave(const struct net_device *dev)
4823{
4824 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4825}
4826
4827static inline bool netif_is_bridge_master(const struct net_device *dev)
4828{
4829 return dev->priv_flags & IFF_EBRIDGE;
4830}
4831
4832static inline bool netif_is_bridge_port(const struct net_device *dev)
4833{
4834 return dev->priv_flags & IFF_BRIDGE_PORT;
4835}
4836
4837static inline bool netif_is_ovs_master(const struct net_device *dev)
4838{
4839 return dev->priv_flags & IFF_OPENVSWITCH;
4840}
4841
4842static inline bool netif_is_ovs_port(const struct net_device *dev)
4843{
4844 return dev->priv_flags & IFF_OVS_DATAPATH;
4845}
4846
4847static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4848{
4849 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4850}
4851
4852static inline bool netif_is_team_master(const struct net_device *dev)
4853{
4854 return dev->priv_flags & IFF_TEAM;
4855}
4856
4857static inline bool netif_is_team_port(const struct net_device *dev)
4858{
4859 return dev->priv_flags & IFF_TEAM_PORT;
4860}
4861
4862static inline bool netif_is_lag_master(const struct net_device *dev)
4863{
4864 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4865}
4866
4867static inline bool netif_is_lag_port(const struct net_device *dev)
4868{
4869 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4870}
4871
4872static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4873{
4874 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4875}
4876
4877static inline bool netif_is_failover(const struct net_device *dev)
4878{
4879 return dev->priv_flags & IFF_FAILOVER;
4880}
4881
4882static inline bool netif_is_failover_slave(const struct net_device *dev)
4883{
4884 return dev->priv_flags & IFF_FAILOVER_SLAVE;
4885}
4886
4887/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4888static inline void netif_keep_dst(struct net_device *dev)
4889{
4890 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4891}
4892
4893/* return true if dev can't cope with mtu frames that need vlan tag insertion */
4894static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4895{
4896 /* TODO: reserve and use an additional IFF bit, if we get more users */
4897 return dev->priv_flags & IFF_MACSEC;
4898}
4899
4900extern struct pernet_operations __net_initdata loopback_net_ops;
4901
4902/* Logging, debugging and troubleshooting/diagnostic helpers. */
4903
4904/* netdev_printk helpers, similar to dev_printk */
4905
4906static inline const char *netdev_name(const struct net_device *dev)
4907{
4908 if (!dev->name[0] || strchr(dev->name, '%'))
4909 return "(unnamed net_device)";
4910 return dev->name;
4911}
4912
4913static inline bool netdev_unregistering(const struct net_device *dev)
4914{
4915 return dev->reg_state == NETREG_UNREGISTERING;
4916}
4917
4918static inline const char *netdev_reg_state(const struct net_device *dev)
4919{
4920 switch (dev->reg_state) {
4921 case NETREG_UNINITIALIZED: return " (uninitialized)";
4922 case NETREG_REGISTERED: return "";
4923 case NETREG_UNREGISTERING: return " (unregistering)";
4924 case NETREG_UNREGISTERED: return " (unregistered)";
4925 case NETREG_RELEASED: return " (released)";
4926 case NETREG_DUMMY: return " (dummy)";
4927 }
4928
4929 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4930 return " (unknown)";
4931}
4932
4933__printf(3, 4) __cold
4934void netdev_printk(const char *level, const struct net_device *dev,
4935 const char *format, ...);
4936__printf(2, 3) __cold
4937void netdev_emerg(const struct net_device *dev, const char *format, ...);
4938__printf(2, 3) __cold
4939void netdev_alert(const struct net_device *dev, const char *format, ...);
4940__printf(2, 3) __cold
4941void netdev_crit(const struct net_device *dev, const char *format, ...);
4942__printf(2, 3) __cold
4943void netdev_err(const struct net_device *dev, const char *format, ...);
4944__printf(2, 3) __cold
4945void netdev_warn(const struct net_device *dev, const char *format, ...);
4946__printf(2, 3) __cold
4947void netdev_notice(const struct net_device *dev, const char *format, ...);
4948__printf(2, 3) __cold
4949void netdev_info(const struct net_device *dev, const char *format, ...);
4950
4951#define netdev_level_once(level, dev, fmt, ...) \
4952do { \
4953 static bool __print_once __read_mostly; \
4954 \
4955 if (!__print_once) { \
4956 __print_once = true; \
4957 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \
4958 } \
4959} while (0)
4960
4961#define netdev_emerg_once(dev, fmt, ...) \
4962 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4963#define netdev_alert_once(dev, fmt, ...) \
4964 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4965#define netdev_crit_once(dev, fmt, ...) \
4966 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4967#define netdev_err_once(dev, fmt, ...) \
4968 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4969#define netdev_warn_once(dev, fmt, ...) \
4970 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4971#define netdev_notice_once(dev, fmt, ...) \
4972 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4973#define netdev_info_once(dev, fmt, ...) \
4974 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4975
4976#define MODULE_ALIAS_NETDEV(device) \
4977 MODULE_ALIAS("netdev-" device)
4978
4979#if defined(CONFIG_DYNAMIC_DEBUG) || \
4980 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
4981#define netdev_dbg(__dev, format, args...) \
4982do { \
4983 dynamic_netdev_dbg(__dev, format, ##args); \
4984} while (0)
4985#elif defined(DEBUG)
4986#define netdev_dbg(__dev, format, args...) \
4987 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4988#else
4989#define netdev_dbg(__dev, format, args...) \
4990({ \
4991 if (0) \
4992 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4993})
4994#endif
4995
4996#if defined(VERBOSE_DEBUG)
4997#define netdev_vdbg netdev_dbg
4998#else
4999
5000#define netdev_vdbg(dev, format, args...) \
5001({ \
5002 if (0) \
5003 netdev_printk(KERN_DEBUG, dev, format, ##args); \
5004 0; \
5005})
5006#endif
5007
5008/*
5009 * netdev_WARN() acts like dev_printk(), but with the key difference
5010 * of using a WARN/WARN_ON to get the message out, including the
5011 * file/line information and a backtrace.
5012 */
5013#define netdev_WARN(dev, format, args...) \
5014 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
5015 netdev_reg_state(dev), ##args)
5016
5017#define netdev_WARN_ONCE(dev, format, args...) \
5018 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
5019 netdev_reg_state(dev), ##args)
5020
5021/* netif printk helpers, similar to netdev_printk */
5022
5023#define netif_printk(priv, type, level, dev, fmt, args...) \
5024do { \
5025 if (netif_msg_##type(priv)) \
5026 netdev_printk(level, (dev), fmt, ##args); \
5027} while (0)
5028
5029#define netif_level(level, priv, type, dev, fmt, args...) \
5030do { \
5031 if (netif_msg_##type(priv)) \
5032 netdev_##level(dev, fmt, ##args); \
5033} while (0)
5034
5035#define netif_emerg(priv, type, dev, fmt, args...) \
5036 netif_level(emerg, priv, type, dev, fmt, ##args)
5037#define netif_alert(priv, type, dev, fmt, args...) \
5038 netif_level(alert, priv, type, dev, fmt, ##args)
5039#define netif_crit(priv, type, dev, fmt, args...) \
5040 netif_level(crit, priv, type, dev, fmt, ##args)
5041#define netif_err(priv, type, dev, fmt, args...) \
5042 netif_level(err, priv, type, dev, fmt, ##args)
5043#define netif_warn(priv, type, dev, fmt, args...) \
5044 netif_level(warn, priv, type, dev, fmt, ##args)
5045#define netif_notice(priv, type, dev, fmt, args...) \
5046 netif_level(notice, priv, type, dev, fmt, ##args)
5047#define netif_info(priv, type, dev, fmt, args...) \
5048 netif_level(info, priv, type, dev, fmt, ##args)
5049
5050#if defined(CONFIG_DYNAMIC_DEBUG) || \
5051 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5052#define netif_dbg(priv, type, netdev, format, args...) \
5053do { \
5054 if (netif_msg_##type(priv)) \
5055 dynamic_netdev_dbg(netdev, format, ##args); \
5056} while (0)
5057#elif defined(DEBUG)
5058#define netif_dbg(priv, type, dev, format, args...) \
5059 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5060#else
5061#define netif_dbg(priv, type, dev, format, args...) \
5062({ \
5063 if (0) \
5064 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5065 0; \
5066})
5067#endif
5068
5069/* if @cond then downgrade to debug, else print at @level */
5070#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
5071 do { \
5072 if (cond) \
5073 netif_dbg(priv, type, netdev, fmt, ##args); \
5074 else \
5075 netif_ ## level(priv, type, netdev, fmt, ##args); \
5076 } while (0)
5077
5078#if defined(VERBOSE_DEBUG)
5079#define netif_vdbg netif_dbg
5080#else
5081#define netif_vdbg(priv, type, dev, format, args...) \
5082({ \
5083 if (0) \
5084 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5085 0; \
5086})
5087#endif
5088
5089/*
5090 * The list of packet types we will receive (as opposed to discard)
5091 * and the routines to invoke.
5092 *
5093 * Why 16. Because with 16 the only overlap we get on a hash of the
5094 * low nibble of the protocol value is RARP/SNAP/X.25.
5095 *
5096 * 0800 IP
5097 * 0001 802.3
5098 * 0002 AX.25
5099 * 0004 802.2
5100 * 8035 RARP
5101 * 0005 SNAP
5102 * 0805 X.25
5103 * 0806 ARP
5104 * 8137 IPX
5105 * 0009 Localtalk
5106 * 86DD IPv6
5107 */
5108#define PTYPE_HASH_SIZE (16)
5109#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5110
5111extern struct net_device *blackhole_netdev;
5112
5113#endif /* _LINUX_NETDEVICE_H */