Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/bpf.h>
95#include <linux/bpf_trace.h>
96#include <net/net_namespace.h>
97#include <net/sock.h>
98#include <net/busy_poll.h>
99#include <linux/rtnetlink.h>
100#include <linux/stat.h>
101#include <net/dst.h>
102#include <net/dst_metadata.h>
103#include <net/pkt_sched.h>
104#include <net/pkt_cls.h>
105#include <net/checksum.h>
106#include <net/xfrm.h>
107#include <linux/highmem.h>
108#include <linux/init.h>
109#include <linux/module.h>
110#include <linux/netpoll.h>
111#include <linux/rcupdate.h>
112#include <linux/delay.h>
113#include <net/iw_handler.h>
114#include <asm/current.h>
115#include <linux/audit.h>
116#include <linux/dmaengine.h>
117#include <linux/err.h>
118#include <linux/ctype.h>
119#include <linux/if_arp.h>
120#include <linux/if_vlan.h>
121#include <linux/ip.h>
122#include <net/ip.h>
123#include <net/mpls.h>
124#include <linux/ipv6.h>
125#include <linux/in.h>
126#include <linux/jhash.h>
127#include <linux/random.h>
128#include <trace/events/napi.h>
129#include <trace/events/net.h>
130#include <trace/events/skb.h>
131#include <linux/inetdevice.h>
132#include <linux/cpu_rmap.h>
133#include <linux/static_key.h>
134#include <linux/hashtable.h>
135#include <linux/vmalloc.h>
136#include <linux/if_macvlan.h>
137#include <linux/errqueue.h>
138#include <linux/hrtimer.h>
139#include <linux/netfilter_ingress.h>
140#include <linux/crash_dump.h>
141#include <linux/sctp.h>
142#include <net/udp_tunnel.h>
143#include <linux/net_namespace.h>
144#include <linux/indirect_call_wrapper.h>
145#include <net/devlink.h>
146#include <linux/pm_runtime.h>
147
148#include "net-sysfs.h"
149
150#define MAX_GRO_SKBS 8
151
152/* This should be increased if a protocol with a bigger head is added. */
153#define GRO_MAX_HEAD (MAX_HEADER + 128)
154
155static DEFINE_SPINLOCK(ptype_lock);
156static DEFINE_SPINLOCK(offload_lock);
157struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
158struct list_head ptype_all __read_mostly; /* Taps */
159static struct list_head offload_base __read_mostly;
160
161static int netif_rx_internal(struct sk_buff *skb);
162static int call_netdevice_notifiers_info(unsigned long val,
163 struct netdev_notifier_info *info);
164static int call_netdevice_notifiers_extack(unsigned long val,
165 struct net_device *dev,
166 struct netlink_ext_ack *extack);
167static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169/*
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * semaphore.
172 *
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
188DEFINE_RWLOCK(dev_base_lock);
189EXPORT_SYMBOL(dev_base_lock);
190
191static DEFINE_MUTEX(ifalias_mutex);
192
193/* protects napi_hash addition/deletion and napi_gen_id */
194static DEFINE_SPINLOCK(napi_hash_lock);
195
196static unsigned int napi_gen_id = NR_CPUS;
197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199static DECLARE_RWSEM(devnet_rename_sem);
200
201static inline void dev_base_seq_inc(struct net *net)
202{
203 while (++net->dev_base_seq == 0)
204 ;
205}
206
207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208{
209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212}
213
214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215{
216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217}
218
219static inline void rps_lock(struct softnet_data *sd)
220{
221#ifdef CONFIG_RPS
222 spin_lock(&sd->input_pkt_queue.lock);
223#endif
224}
225
226static inline void rps_unlock(struct softnet_data *sd)
227{
228#ifdef CONFIG_RPS
229 spin_unlock(&sd->input_pkt_queue.lock);
230#endif
231}
232
233static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
234 const char *name)
235{
236 struct netdev_name_node *name_node;
237
238 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
239 if (!name_node)
240 return NULL;
241 INIT_HLIST_NODE(&name_node->hlist);
242 name_node->dev = dev;
243 name_node->name = name;
244 return name_node;
245}
246
247static struct netdev_name_node *
248netdev_name_node_head_alloc(struct net_device *dev)
249{
250 struct netdev_name_node *name_node;
251
252 name_node = netdev_name_node_alloc(dev, dev->name);
253 if (!name_node)
254 return NULL;
255 INIT_LIST_HEAD(&name_node->list);
256 return name_node;
257}
258
259static void netdev_name_node_free(struct netdev_name_node *name_node)
260{
261 kfree(name_node);
262}
263
264static void netdev_name_node_add(struct net *net,
265 struct netdev_name_node *name_node)
266{
267 hlist_add_head_rcu(&name_node->hlist,
268 dev_name_hash(net, name_node->name));
269}
270
271static void netdev_name_node_del(struct netdev_name_node *name_node)
272{
273 hlist_del_rcu(&name_node->hlist);
274}
275
276static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
277 const char *name)
278{
279 struct hlist_head *head = dev_name_hash(net, name);
280 struct netdev_name_node *name_node;
281
282 hlist_for_each_entry(name_node, head, hlist)
283 if (!strcmp(name_node->name, name))
284 return name_node;
285 return NULL;
286}
287
288static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
289 const char *name)
290{
291 struct hlist_head *head = dev_name_hash(net, name);
292 struct netdev_name_node *name_node;
293
294 hlist_for_each_entry_rcu(name_node, head, hlist)
295 if (!strcmp(name_node->name, name))
296 return name_node;
297 return NULL;
298}
299
300int netdev_name_node_alt_create(struct net_device *dev, const char *name)
301{
302 struct netdev_name_node *name_node;
303 struct net *net = dev_net(dev);
304
305 name_node = netdev_name_node_lookup(net, name);
306 if (name_node)
307 return -EEXIST;
308 name_node = netdev_name_node_alloc(dev, name);
309 if (!name_node)
310 return -ENOMEM;
311 netdev_name_node_add(net, name_node);
312 /* The node that holds dev->name acts as a head of per-device list. */
313 list_add_tail(&name_node->list, &dev->name_node->list);
314
315 return 0;
316}
317EXPORT_SYMBOL(netdev_name_node_alt_create);
318
319static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
320{
321 list_del(&name_node->list);
322 netdev_name_node_del(name_node);
323 kfree(name_node->name);
324 netdev_name_node_free(name_node);
325}
326
327int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
328{
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (!name_node)
334 return -ENOENT;
335 /* lookup might have found our primary name or a name belonging
336 * to another device.
337 */
338 if (name_node == dev->name_node || name_node->dev != dev)
339 return -EINVAL;
340
341 __netdev_name_node_alt_destroy(name_node);
342
343 return 0;
344}
345EXPORT_SYMBOL(netdev_name_node_alt_destroy);
346
347static void netdev_name_node_alt_flush(struct net_device *dev)
348{
349 struct netdev_name_node *name_node, *tmp;
350
351 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
352 __netdev_name_node_alt_destroy(name_node);
353}
354
355/* Device list insertion */
356static void list_netdevice(struct net_device *dev)
357{
358 struct net *net = dev_net(dev);
359
360 ASSERT_RTNL();
361
362 write_lock_bh(&dev_base_lock);
363 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
364 netdev_name_node_add(net, dev->name_node);
365 hlist_add_head_rcu(&dev->index_hlist,
366 dev_index_hash(net, dev->ifindex));
367 write_unlock_bh(&dev_base_lock);
368
369 dev_base_seq_inc(net);
370}
371
372/* Device list removal
373 * caller must respect a RCU grace period before freeing/reusing dev
374 */
375static void unlist_netdevice(struct net_device *dev)
376{
377 ASSERT_RTNL();
378
379 /* Unlink dev from the device chain */
380 write_lock_bh(&dev_base_lock);
381 list_del_rcu(&dev->dev_list);
382 netdev_name_node_del(dev->name_node);
383 hlist_del_rcu(&dev->index_hlist);
384 write_unlock_bh(&dev_base_lock);
385
386 dev_base_seq_inc(dev_net(dev));
387}
388
389/*
390 * Our notifier list
391 */
392
393static RAW_NOTIFIER_HEAD(netdev_chain);
394
395/*
396 * Device drivers call our routines to queue packets here. We empty the
397 * queue in the local softnet handler.
398 */
399
400DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
401EXPORT_PER_CPU_SYMBOL(softnet_data);
402
403#ifdef CONFIG_LOCKDEP
404/*
405 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
406 * according to dev->type
407 */
408static const unsigned short netdev_lock_type[] = {
409 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
410 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
411 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
412 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
413 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
414 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
415 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
416 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
417 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
418 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
419 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
420 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
421 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
422 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
423 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
424
425static const char *const netdev_lock_name[] = {
426 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
427 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
428 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
429 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
430 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
431 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
432 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
433 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
434 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
435 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
436 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
437 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
438 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
439 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
440 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
441
442static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
443static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
444
445static inline unsigned short netdev_lock_pos(unsigned short dev_type)
446{
447 int i;
448
449 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
450 if (netdev_lock_type[i] == dev_type)
451 return i;
452 /* the last key is used by default */
453 return ARRAY_SIZE(netdev_lock_type) - 1;
454}
455
456static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
457 unsigned short dev_type)
458{
459 int i;
460
461 i = netdev_lock_pos(dev_type);
462 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
463 netdev_lock_name[i]);
464}
465
466static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
467{
468 int i;
469
470 i = netdev_lock_pos(dev->type);
471 lockdep_set_class_and_name(&dev->addr_list_lock,
472 &netdev_addr_lock_key[i],
473 netdev_lock_name[i]);
474}
475#else
476static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
477 unsigned short dev_type)
478{
479}
480
481static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
482{
483}
484#endif
485
486/*******************************************************************************
487 *
488 * Protocol management and registration routines
489 *
490 *******************************************************************************/
491
492
493/*
494 * Add a protocol ID to the list. Now that the input handler is
495 * smarter we can dispense with all the messy stuff that used to be
496 * here.
497 *
498 * BEWARE!!! Protocol handlers, mangling input packets,
499 * MUST BE last in hash buckets and checking protocol handlers
500 * MUST start from promiscuous ptype_all chain in net_bh.
501 * It is true now, do not change it.
502 * Explanation follows: if protocol handler, mangling packet, will
503 * be the first on list, it is not able to sense, that packet
504 * is cloned and should be copied-on-write, so that it will
505 * change it and subsequent readers will get broken packet.
506 * --ANK (980803)
507 */
508
509static inline struct list_head *ptype_head(const struct packet_type *pt)
510{
511 if (pt->type == htons(ETH_P_ALL))
512 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
513 else
514 return pt->dev ? &pt->dev->ptype_specific :
515 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
516}
517
518/**
519 * dev_add_pack - add packet handler
520 * @pt: packet type declaration
521 *
522 * Add a protocol handler to the networking stack. The passed &packet_type
523 * is linked into kernel lists and may not be freed until it has been
524 * removed from the kernel lists.
525 *
526 * This call does not sleep therefore it can not
527 * guarantee all CPU's that are in middle of receiving packets
528 * will see the new packet type (until the next received packet).
529 */
530
531void dev_add_pack(struct packet_type *pt)
532{
533 struct list_head *head = ptype_head(pt);
534
535 spin_lock(&ptype_lock);
536 list_add_rcu(&pt->list, head);
537 spin_unlock(&ptype_lock);
538}
539EXPORT_SYMBOL(dev_add_pack);
540
541/**
542 * __dev_remove_pack - remove packet handler
543 * @pt: packet type declaration
544 *
545 * Remove a protocol handler that was previously added to the kernel
546 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
547 * from the kernel lists and can be freed or reused once this function
548 * returns.
549 *
550 * The packet type might still be in use by receivers
551 * and must not be freed until after all the CPU's have gone
552 * through a quiescent state.
553 */
554void __dev_remove_pack(struct packet_type *pt)
555{
556 struct list_head *head = ptype_head(pt);
557 struct packet_type *pt1;
558
559 spin_lock(&ptype_lock);
560
561 list_for_each_entry(pt1, head, list) {
562 if (pt == pt1) {
563 list_del_rcu(&pt->list);
564 goto out;
565 }
566 }
567
568 pr_warn("dev_remove_pack: %p not found\n", pt);
569out:
570 spin_unlock(&ptype_lock);
571}
572EXPORT_SYMBOL(__dev_remove_pack);
573
574/**
575 * dev_remove_pack - remove packet handler
576 * @pt: packet type declaration
577 *
578 * Remove a protocol handler that was previously added to the kernel
579 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
580 * from the kernel lists and can be freed or reused once this function
581 * returns.
582 *
583 * This call sleeps to guarantee that no CPU is looking at the packet
584 * type after return.
585 */
586void dev_remove_pack(struct packet_type *pt)
587{
588 __dev_remove_pack(pt);
589
590 synchronize_net();
591}
592EXPORT_SYMBOL(dev_remove_pack);
593
594
595/**
596 * dev_add_offload - register offload handlers
597 * @po: protocol offload declaration
598 *
599 * Add protocol offload handlers to the networking stack. The passed
600 * &proto_offload is linked into kernel lists and may not be freed until
601 * it has been removed from the kernel lists.
602 *
603 * This call does not sleep therefore it can not
604 * guarantee all CPU's that are in middle of receiving packets
605 * will see the new offload handlers (until the next received packet).
606 */
607void dev_add_offload(struct packet_offload *po)
608{
609 struct packet_offload *elem;
610
611 spin_lock(&offload_lock);
612 list_for_each_entry(elem, &offload_base, list) {
613 if (po->priority < elem->priority)
614 break;
615 }
616 list_add_rcu(&po->list, elem->list.prev);
617 spin_unlock(&offload_lock);
618}
619EXPORT_SYMBOL(dev_add_offload);
620
621/**
622 * __dev_remove_offload - remove offload handler
623 * @po: packet offload declaration
624 *
625 * Remove a protocol offload handler that was previously added to the
626 * kernel offload handlers by dev_add_offload(). The passed &offload_type
627 * is removed from the kernel lists and can be freed or reused once this
628 * function returns.
629 *
630 * The packet type might still be in use by receivers
631 * and must not be freed until after all the CPU's have gone
632 * through a quiescent state.
633 */
634static void __dev_remove_offload(struct packet_offload *po)
635{
636 struct list_head *head = &offload_base;
637 struct packet_offload *po1;
638
639 spin_lock(&offload_lock);
640
641 list_for_each_entry(po1, head, list) {
642 if (po == po1) {
643 list_del_rcu(&po->list);
644 goto out;
645 }
646 }
647
648 pr_warn("dev_remove_offload: %p not found\n", po);
649out:
650 spin_unlock(&offload_lock);
651}
652
653/**
654 * dev_remove_offload - remove packet offload handler
655 * @po: packet offload declaration
656 *
657 * Remove a packet offload handler that was previously added to the kernel
658 * offload handlers by dev_add_offload(). The passed &offload_type is
659 * removed from the kernel lists and can be freed or reused once this
660 * function returns.
661 *
662 * This call sleeps to guarantee that no CPU is looking at the packet
663 * type after return.
664 */
665void dev_remove_offload(struct packet_offload *po)
666{
667 __dev_remove_offload(po);
668
669 synchronize_net();
670}
671EXPORT_SYMBOL(dev_remove_offload);
672
673/******************************************************************************
674 *
675 * Device Boot-time Settings Routines
676 *
677 ******************************************************************************/
678
679/* Boot time configuration table */
680static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
681
682/**
683 * netdev_boot_setup_add - add new setup entry
684 * @name: name of the device
685 * @map: configured settings for the device
686 *
687 * Adds new setup entry to the dev_boot_setup list. The function
688 * returns 0 on error and 1 on success. This is a generic routine to
689 * all netdevices.
690 */
691static int netdev_boot_setup_add(char *name, struct ifmap *map)
692{
693 struct netdev_boot_setup *s;
694 int i;
695
696 s = dev_boot_setup;
697 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
698 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
699 memset(s[i].name, 0, sizeof(s[i].name));
700 strlcpy(s[i].name, name, IFNAMSIZ);
701 memcpy(&s[i].map, map, sizeof(s[i].map));
702 break;
703 }
704 }
705
706 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
707}
708
709/**
710 * netdev_boot_setup_check - check boot time settings
711 * @dev: the netdevice
712 *
713 * Check boot time settings for the device.
714 * The found settings are set for the device to be used
715 * later in the device probing.
716 * Returns 0 if no settings found, 1 if they are.
717 */
718int netdev_boot_setup_check(struct net_device *dev)
719{
720 struct netdev_boot_setup *s = dev_boot_setup;
721 int i;
722
723 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
724 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
725 !strcmp(dev->name, s[i].name)) {
726 dev->irq = s[i].map.irq;
727 dev->base_addr = s[i].map.base_addr;
728 dev->mem_start = s[i].map.mem_start;
729 dev->mem_end = s[i].map.mem_end;
730 return 1;
731 }
732 }
733 return 0;
734}
735EXPORT_SYMBOL(netdev_boot_setup_check);
736
737
738/**
739 * netdev_boot_base - get address from boot time settings
740 * @prefix: prefix for network device
741 * @unit: id for network device
742 *
743 * Check boot time settings for the base address of device.
744 * The found settings are set for the device to be used
745 * later in the device probing.
746 * Returns 0 if no settings found.
747 */
748unsigned long netdev_boot_base(const char *prefix, int unit)
749{
750 const struct netdev_boot_setup *s = dev_boot_setup;
751 char name[IFNAMSIZ];
752 int i;
753
754 sprintf(name, "%s%d", prefix, unit);
755
756 /*
757 * If device already registered then return base of 1
758 * to indicate not to probe for this interface
759 */
760 if (__dev_get_by_name(&init_net, name))
761 return 1;
762
763 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
764 if (!strcmp(name, s[i].name))
765 return s[i].map.base_addr;
766 return 0;
767}
768
769/*
770 * Saves at boot time configured settings for any netdevice.
771 */
772int __init netdev_boot_setup(char *str)
773{
774 int ints[5];
775 struct ifmap map;
776
777 str = get_options(str, ARRAY_SIZE(ints), ints);
778 if (!str || !*str)
779 return 0;
780
781 /* Save settings */
782 memset(&map, 0, sizeof(map));
783 if (ints[0] > 0)
784 map.irq = ints[1];
785 if (ints[0] > 1)
786 map.base_addr = ints[2];
787 if (ints[0] > 2)
788 map.mem_start = ints[3];
789 if (ints[0] > 3)
790 map.mem_end = ints[4];
791
792 /* Add new entry to the list */
793 return netdev_boot_setup_add(str, &map);
794}
795
796__setup("netdev=", netdev_boot_setup);
797
798/*******************************************************************************
799 *
800 * Device Interface Subroutines
801 *
802 *******************************************************************************/
803
804/**
805 * dev_get_iflink - get 'iflink' value of a interface
806 * @dev: targeted interface
807 *
808 * Indicates the ifindex the interface is linked to.
809 * Physical interfaces have the same 'ifindex' and 'iflink' values.
810 */
811
812int dev_get_iflink(const struct net_device *dev)
813{
814 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
815 return dev->netdev_ops->ndo_get_iflink(dev);
816
817 return dev->ifindex;
818}
819EXPORT_SYMBOL(dev_get_iflink);
820
821/**
822 * dev_fill_metadata_dst - Retrieve tunnel egress information.
823 * @dev: targeted interface
824 * @skb: The packet.
825 *
826 * For better visibility of tunnel traffic OVS needs to retrieve
827 * egress tunnel information for a packet. Following API allows
828 * user to get this info.
829 */
830int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
831{
832 struct ip_tunnel_info *info;
833
834 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
835 return -EINVAL;
836
837 info = skb_tunnel_info_unclone(skb);
838 if (!info)
839 return -ENOMEM;
840 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
841 return -EINVAL;
842
843 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
844}
845EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
846
847/**
848 * __dev_get_by_name - find a device by its name
849 * @net: the applicable net namespace
850 * @name: name to find
851 *
852 * Find an interface by name. Must be called under RTNL semaphore
853 * or @dev_base_lock. If the name is found a pointer to the device
854 * is returned. If the name is not found then %NULL is returned. The
855 * reference counters are not incremented so the caller must be
856 * careful with locks.
857 */
858
859struct net_device *__dev_get_by_name(struct net *net, const char *name)
860{
861 struct netdev_name_node *node_name;
862
863 node_name = netdev_name_node_lookup(net, name);
864 return node_name ? node_name->dev : NULL;
865}
866EXPORT_SYMBOL(__dev_get_by_name);
867
868/**
869 * dev_get_by_name_rcu - find a device by its name
870 * @net: the applicable net namespace
871 * @name: name to find
872 *
873 * Find an interface by name.
874 * If the name is found a pointer to the device is returned.
875 * If the name is not found then %NULL is returned.
876 * The reference counters are not incremented so the caller must be
877 * careful with locks. The caller must hold RCU lock.
878 */
879
880struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
881{
882 struct netdev_name_node *node_name;
883
884 node_name = netdev_name_node_lookup_rcu(net, name);
885 return node_name ? node_name->dev : NULL;
886}
887EXPORT_SYMBOL(dev_get_by_name_rcu);
888
889/**
890 * dev_get_by_name - find a device by its name
891 * @net: the applicable net namespace
892 * @name: name to find
893 *
894 * Find an interface by name. This can be called from any
895 * context and does its own locking. The returned handle has
896 * the usage count incremented and the caller must use dev_put() to
897 * release it when it is no longer needed. %NULL is returned if no
898 * matching device is found.
899 */
900
901struct net_device *dev_get_by_name(struct net *net, const char *name)
902{
903 struct net_device *dev;
904
905 rcu_read_lock();
906 dev = dev_get_by_name_rcu(net, name);
907 if (dev)
908 dev_hold(dev);
909 rcu_read_unlock();
910 return dev;
911}
912EXPORT_SYMBOL(dev_get_by_name);
913
914/**
915 * __dev_get_by_index - find a device by its ifindex
916 * @net: the applicable net namespace
917 * @ifindex: index of device
918 *
919 * Search for an interface by index. Returns %NULL if the device
920 * is not found or a pointer to the device. The device has not
921 * had its reference counter increased so the caller must be careful
922 * about locking. The caller must hold either the RTNL semaphore
923 * or @dev_base_lock.
924 */
925
926struct net_device *__dev_get_by_index(struct net *net, int ifindex)
927{
928 struct net_device *dev;
929 struct hlist_head *head = dev_index_hash(net, ifindex);
930
931 hlist_for_each_entry(dev, head, index_hlist)
932 if (dev->ifindex == ifindex)
933 return dev;
934
935 return NULL;
936}
937EXPORT_SYMBOL(__dev_get_by_index);
938
939/**
940 * dev_get_by_index_rcu - find a device by its ifindex
941 * @net: the applicable net namespace
942 * @ifindex: index of device
943 *
944 * Search for an interface by index. Returns %NULL if the device
945 * is not found or a pointer to the device. The device has not
946 * had its reference counter increased so the caller must be careful
947 * about locking. The caller must hold RCU lock.
948 */
949
950struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
951{
952 struct net_device *dev;
953 struct hlist_head *head = dev_index_hash(net, ifindex);
954
955 hlist_for_each_entry_rcu(dev, head, index_hlist)
956 if (dev->ifindex == ifindex)
957 return dev;
958
959 return NULL;
960}
961EXPORT_SYMBOL(dev_get_by_index_rcu);
962
963
964/**
965 * dev_get_by_index - find a device by its ifindex
966 * @net: the applicable net namespace
967 * @ifindex: index of device
968 *
969 * Search for an interface by index. Returns NULL if the device
970 * is not found or a pointer to the device. The device returned has
971 * had a reference added and the pointer is safe until the user calls
972 * dev_put to indicate they have finished with it.
973 */
974
975struct net_device *dev_get_by_index(struct net *net, int ifindex)
976{
977 struct net_device *dev;
978
979 rcu_read_lock();
980 dev = dev_get_by_index_rcu(net, ifindex);
981 if (dev)
982 dev_hold(dev);
983 rcu_read_unlock();
984 return dev;
985}
986EXPORT_SYMBOL(dev_get_by_index);
987
988/**
989 * dev_get_by_napi_id - find a device by napi_id
990 * @napi_id: ID of the NAPI struct
991 *
992 * Search for an interface by NAPI ID. Returns %NULL if the device
993 * is not found or a pointer to the device. The device has not had
994 * its reference counter increased so the caller must be careful
995 * about locking. The caller must hold RCU lock.
996 */
997
998struct net_device *dev_get_by_napi_id(unsigned int napi_id)
999{
1000 struct napi_struct *napi;
1001
1002 WARN_ON_ONCE(!rcu_read_lock_held());
1003
1004 if (napi_id < MIN_NAPI_ID)
1005 return NULL;
1006
1007 napi = napi_by_id(napi_id);
1008
1009 return napi ? napi->dev : NULL;
1010}
1011EXPORT_SYMBOL(dev_get_by_napi_id);
1012
1013/**
1014 * netdev_get_name - get a netdevice name, knowing its ifindex.
1015 * @net: network namespace
1016 * @name: a pointer to the buffer where the name will be stored.
1017 * @ifindex: the ifindex of the interface to get the name from.
1018 */
1019int netdev_get_name(struct net *net, char *name, int ifindex)
1020{
1021 struct net_device *dev;
1022 int ret;
1023
1024 down_read(&devnet_rename_sem);
1025 rcu_read_lock();
1026
1027 dev = dev_get_by_index_rcu(net, ifindex);
1028 if (!dev) {
1029 ret = -ENODEV;
1030 goto out;
1031 }
1032
1033 strcpy(name, dev->name);
1034
1035 ret = 0;
1036out:
1037 rcu_read_unlock();
1038 up_read(&devnet_rename_sem);
1039 return ret;
1040}
1041
1042/**
1043 * dev_getbyhwaddr_rcu - find a device by its hardware address
1044 * @net: the applicable net namespace
1045 * @type: media type of device
1046 * @ha: hardware address
1047 *
1048 * Search for an interface by MAC address. Returns NULL if the device
1049 * is not found or a pointer to the device.
1050 * The caller must hold RCU or RTNL.
1051 * The returned device has not had its ref count increased
1052 * and the caller must therefore be careful about locking
1053 *
1054 */
1055
1056struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1057 const char *ha)
1058{
1059 struct net_device *dev;
1060
1061 for_each_netdev_rcu(net, dev)
1062 if (dev->type == type &&
1063 !memcmp(dev->dev_addr, ha, dev->addr_len))
1064 return dev;
1065
1066 return NULL;
1067}
1068EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1069
1070struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1071{
1072 struct net_device *dev;
1073
1074 ASSERT_RTNL();
1075 for_each_netdev(net, dev)
1076 if (dev->type == type)
1077 return dev;
1078
1079 return NULL;
1080}
1081EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1082
1083struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1084{
1085 struct net_device *dev, *ret = NULL;
1086
1087 rcu_read_lock();
1088 for_each_netdev_rcu(net, dev)
1089 if (dev->type == type) {
1090 dev_hold(dev);
1091 ret = dev;
1092 break;
1093 }
1094 rcu_read_unlock();
1095 return ret;
1096}
1097EXPORT_SYMBOL(dev_getfirstbyhwtype);
1098
1099/**
1100 * __dev_get_by_flags - find any device with given flags
1101 * @net: the applicable net namespace
1102 * @if_flags: IFF_* values
1103 * @mask: bitmask of bits in if_flags to check
1104 *
1105 * Search for any interface with the given flags. Returns NULL if a device
1106 * is not found or a pointer to the device. Must be called inside
1107 * rtnl_lock(), and result refcount is unchanged.
1108 */
1109
1110struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1111 unsigned short mask)
1112{
1113 struct net_device *dev, *ret;
1114
1115 ASSERT_RTNL();
1116
1117 ret = NULL;
1118 for_each_netdev(net, dev) {
1119 if (((dev->flags ^ if_flags) & mask) == 0) {
1120 ret = dev;
1121 break;
1122 }
1123 }
1124 return ret;
1125}
1126EXPORT_SYMBOL(__dev_get_by_flags);
1127
1128/**
1129 * dev_valid_name - check if name is okay for network device
1130 * @name: name string
1131 *
1132 * Network device names need to be valid file names to
1133 * to allow sysfs to work. We also disallow any kind of
1134 * whitespace.
1135 */
1136bool dev_valid_name(const char *name)
1137{
1138 if (*name == '\0')
1139 return false;
1140 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1141 return false;
1142 if (!strcmp(name, ".") || !strcmp(name, ".."))
1143 return false;
1144
1145 while (*name) {
1146 if (*name == '/' || *name == ':' || isspace(*name))
1147 return false;
1148 name++;
1149 }
1150 return true;
1151}
1152EXPORT_SYMBOL(dev_valid_name);
1153
1154/**
1155 * __dev_alloc_name - allocate a name for a device
1156 * @net: network namespace to allocate the device name in
1157 * @name: name format string
1158 * @buf: scratch buffer and result name string
1159 *
1160 * Passed a format string - eg "lt%d" it will try and find a suitable
1161 * id. It scans list of devices to build up a free map, then chooses
1162 * the first empty slot. The caller must hold the dev_base or rtnl lock
1163 * while allocating the name and adding the device in order to avoid
1164 * duplicates.
1165 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1166 * Returns the number of the unit assigned or a negative errno code.
1167 */
1168
1169static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1170{
1171 int i = 0;
1172 const char *p;
1173 const int max_netdevices = 8*PAGE_SIZE;
1174 unsigned long *inuse;
1175 struct net_device *d;
1176
1177 if (!dev_valid_name(name))
1178 return -EINVAL;
1179
1180 p = strchr(name, '%');
1181 if (p) {
1182 /*
1183 * Verify the string as this thing may have come from
1184 * the user. There must be either one "%d" and no other "%"
1185 * characters.
1186 */
1187 if (p[1] != 'd' || strchr(p + 2, '%'))
1188 return -EINVAL;
1189
1190 /* Use one page as a bit array of possible slots */
1191 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1192 if (!inuse)
1193 return -ENOMEM;
1194
1195 for_each_netdev(net, d) {
1196 if (!sscanf(d->name, name, &i))
1197 continue;
1198 if (i < 0 || i >= max_netdevices)
1199 continue;
1200
1201 /* avoid cases where sscanf is not exact inverse of printf */
1202 snprintf(buf, IFNAMSIZ, name, i);
1203 if (!strncmp(buf, d->name, IFNAMSIZ))
1204 set_bit(i, inuse);
1205 }
1206
1207 i = find_first_zero_bit(inuse, max_netdevices);
1208 free_page((unsigned long) inuse);
1209 }
1210
1211 snprintf(buf, IFNAMSIZ, name, i);
1212 if (!__dev_get_by_name(net, buf))
1213 return i;
1214
1215 /* It is possible to run out of possible slots
1216 * when the name is long and there isn't enough space left
1217 * for the digits, or if all bits are used.
1218 */
1219 return -ENFILE;
1220}
1221
1222static int dev_alloc_name_ns(struct net *net,
1223 struct net_device *dev,
1224 const char *name)
1225{
1226 char buf[IFNAMSIZ];
1227 int ret;
1228
1229 BUG_ON(!net);
1230 ret = __dev_alloc_name(net, name, buf);
1231 if (ret >= 0)
1232 strlcpy(dev->name, buf, IFNAMSIZ);
1233 return ret;
1234}
1235
1236/**
1237 * dev_alloc_name - allocate a name for a device
1238 * @dev: device
1239 * @name: name format string
1240 *
1241 * Passed a format string - eg "lt%d" it will try and find a suitable
1242 * id. It scans list of devices to build up a free map, then chooses
1243 * the first empty slot. The caller must hold the dev_base or rtnl lock
1244 * while allocating the name and adding the device in order to avoid
1245 * duplicates.
1246 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1247 * Returns the number of the unit assigned or a negative errno code.
1248 */
1249
1250int dev_alloc_name(struct net_device *dev, const char *name)
1251{
1252 return dev_alloc_name_ns(dev_net(dev), dev, name);
1253}
1254EXPORT_SYMBOL(dev_alloc_name);
1255
1256static int dev_get_valid_name(struct net *net, struct net_device *dev,
1257 const char *name)
1258{
1259 BUG_ON(!net);
1260
1261 if (!dev_valid_name(name))
1262 return -EINVAL;
1263
1264 if (strchr(name, '%'))
1265 return dev_alloc_name_ns(net, dev, name);
1266 else if (__dev_get_by_name(net, name))
1267 return -EEXIST;
1268 else if (dev->name != name)
1269 strlcpy(dev->name, name, IFNAMSIZ);
1270
1271 return 0;
1272}
1273
1274/**
1275 * dev_change_name - change name of a device
1276 * @dev: device
1277 * @newname: name (or format string) must be at least IFNAMSIZ
1278 *
1279 * Change name of a device, can pass format strings "eth%d".
1280 * for wildcarding.
1281 */
1282int dev_change_name(struct net_device *dev, const char *newname)
1283{
1284 unsigned char old_assign_type;
1285 char oldname[IFNAMSIZ];
1286 int err = 0;
1287 int ret;
1288 struct net *net;
1289
1290 ASSERT_RTNL();
1291 BUG_ON(!dev_net(dev));
1292
1293 net = dev_net(dev);
1294
1295 /* Some auto-enslaved devices e.g. failover slaves are
1296 * special, as userspace might rename the device after
1297 * the interface had been brought up and running since
1298 * the point kernel initiated auto-enslavement. Allow
1299 * live name change even when these slave devices are
1300 * up and running.
1301 *
1302 * Typically, users of these auto-enslaving devices
1303 * don't actually care about slave name change, as
1304 * they are supposed to operate on master interface
1305 * directly.
1306 */
1307 if (dev->flags & IFF_UP &&
1308 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1309 return -EBUSY;
1310
1311 down_write(&devnet_rename_sem);
1312
1313 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1314 up_write(&devnet_rename_sem);
1315 return 0;
1316 }
1317
1318 memcpy(oldname, dev->name, IFNAMSIZ);
1319
1320 err = dev_get_valid_name(net, dev, newname);
1321 if (err < 0) {
1322 up_write(&devnet_rename_sem);
1323 return err;
1324 }
1325
1326 if (oldname[0] && !strchr(oldname, '%'))
1327 netdev_info(dev, "renamed from %s\n", oldname);
1328
1329 old_assign_type = dev->name_assign_type;
1330 dev->name_assign_type = NET_NAME_RENAMED;
1331
1332rollback:
1333 ret = device_rename(&dev->dev, dev->name);
1334 if (ret) {
1335 memcpy(dev->name, oldname, IFNAMSIZ);
1336 dev->name_assign_type = old_assign_type;
1337 up_write(&devnet_rename_sem);
1338 return ret;
1339 }
1340
1341 up_write(&devnet_rename_sem);
1342
1343 netdev_adjacent_rename_links(dev, oldname);
1344
1345 write_lock_bh(&dev_base_lock);
1346 netdev_name_node_del(dev->name_node);
1347 write_unlock_bh(&dev_base_lock);
1348
1349 synchronize_rcu();
1350
1351 write_lock_bh(&dev_base_lock);
1352 netdev_name_node_add(net, dev->name_node);
1353 write_unlock_bh(&dev_base_lock);
1354
1355 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1356 ret = notifier_to_errno(ret);
1357
1358 if (ret) {
1359 /* err >= 0 after dev_alloc_name() or stores the first errno */
1360 if (err >= 0) {
1361 err = ret;
1362 down_write(&devnet_rename_sem);
1363 memcpy(dev->name, oldname, IFNAMSIZ);
1364 memcpy(oldname, newname, IFNAMSIZ);
1365 dev->name_assign_type = old_assign_type;
1366 old_assign_type = NET_NAME_RENAMED;
1367 goto rollback;
1368 } else {
1369 pr_err("%s: name change rollback failed: %d\n",
1370 dev->name, ret);
1371 }
1372 }
1373
1374 return err;
1375}
1376
1377/**
1378 * dev_set_alias - change ifalias of a device
1379 * @dev: device
1380 * @alias: name up to IFALIASZ
1381 * @len: limit of bytes to copy from info
1382 *
1383 * Set ifalias for a device,
1384 */
1385int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1386{
1387 struct dev_ifalias *new_alias = NULL;
1388
1389 if (len >= IFALIASZ)
1390 return -EINVAL;
1391
1392 if (len) {
1393 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1394 if (!new_alias)
1395 return -ENOMEM;
1396
1397 memcpy(new_alias->ifalias, alias, len);
1398 new_alias->ifalias[len] = 0;
1399 }
1400
1401 mutex_lock(&ifalias_mutex);
1402 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1403 mutex_is_locked(&ifalias_mutex));
1404 mutex_unlock(&ifalias_mutex);
1405
1406 if (new_alias)
1407 kfree_rcu(new_alias, rcuhead);
1408
1409 return len;
1410}
1411EXPORT_SYMBOL(dev_set_alias);
1412
1413/**
1414 * dev_get_alias - get ifalias of a device
1415 * @dev: device
1416 * @name: buffer to store name of ifalias
1417 * @len: size of buffer
1418 *
1419 * get ifalias for a device. Caller must make sure dev cannot go
1420 * away, e.g. rcu read lock or own a reference count to device.
1421 */
1422int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1423{
1424 const struct dev_ifalias *alias;
1425 int ret = 0;
1426
1427 rcu_read_lock();
1428 alias = rcu_dereference(dev->ifalias);
1429 if (alias)
1430 ret = snprintf(name, len, "%s", alias->ifalias);
1431 rcu_read_unlock();
1432
1433 return ret;
1434}
1435
1436/**
1437 * netdev_features_change - device changes features
1438 * @dev: device to cause notification
1439 *
1440 * Called to indicate a device has changed features.
1441 */
1442void netdev_features_change(struct net_device *dev)
1443{
1444 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1445}
1446EXPORT_SYMBOL(netdev_features_change);
1447
1448/**
1449 * netdev_state_change - device changes state
1450 * @dev: device to cause notification
1451 *
1452 * Called to indicate a device has changed state. This function calls
1453 * the notifier chains for netdev_chain and sends a NEWLINK message
1454 * to the routing socket.
1455 */
1456void netdev_state_change(struct net_device *dev)
1457{
1458 if (dev->flags & IFF_UP) {
1459 struct netdev_notifier_change_info change_info = {
1460 .info.dev = dev,
1461 };
1462
1463 call_netdevice_notifiers_info(NETDEV_CHANGE,
1464 &change_info.info);
1465 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1466 }
1467}
1468EXPORT_SYMBOL(netdev_state_change);
1469
1470/**
1471 * netdev_notify_peers - notify network peers about existence of @dev
1472 * @dev: network device
1473 *
1474 * Generate traffic such that interested network peers are aware of
1475 * @dev, such as by generating a gratuitous ARP. This may be used when
1476 * a device wants to inform the rest of the network about some sort of
1477 * reconfiguration such as a failover event or virtual machine
1478 * migration.
1479 */
1480void netdev_notify_peers(struct net_device *dev)
1481{
1482 rtnl_lock();
1483 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1484 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1485 rtnl_unlock();
1486}
1487EXPORT_SYMBOL(netdev_notify_peers);
1488
1489static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1490{
1491 const struct net_device_ops *ops = dev->netdev_ops;
1492 int ret;
1493
1494 ASSERT_RTNL();
1495
1496 if (!netif_device_present(dev)) {
1497 /* may be detached because parent is runtime-suspended */
1498 if (dev->dev.parent)
1499 pm_runtime_resume(dev->dev.parent);
1500 if (!netif_device_present(dev))
1501 return -ENODEV;
1502 }
1503
1504 /* Block netpoll from trying to do any rx path servicing.
1505 * If we don't do this there is a chance ndo_poll_controller
1506 * or ndo_poll may be running while we open the device
1507 */
1508 netpoll_poll_disable(dev);
1509
1510 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1511 ret = notifier_to_errno(ret);
1512 if (ret)
1513 return ret;
1514
1515 set_bit(__LINK_STATE_START, &dev->state);
1516
1517 if (ops->ndo_validate_addr)
1518 ret = ops->ndo_validate_addr(dev);
1519
1520 if (!ret && ops->ndo_open)
1521 ret = ops->ndo_open(dev);
1522
1523 netpoll_poll_enable(dev);
1524
1525 if (ret)
1526 clear_bit(__LINK_STATE_START, &dev->state);
1527 else {
1528 dev->flags |= IFF_UP;
1529 dev_set_rx_mode(dev);
1530 dev_activate(dev);
1531 add_device_randomness(dev->dev_addr, dev->addr_len);
1532 }
1533
1534 return ret;
1535}
1536
1537/**
1538 * dev_open - prepare an interface for use.
1539 * @dev: device to open
1540 * @extack: netlink extended ack
1541 *
1542 * Takes a device from down to up state. The device's private open
1543 * function is invoked and then the multicast lists are loaded. Finally
1544 * the device is moved into the up state and a %NETDEV_UP message is
1545 * sent to the netdev notifier chain.
1546 *
1547 * Calling this function on an active interface is a nop. On a failure
1548 * a negative errno code is returned.
1549 */
1550int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1551{
1552 int ret;
1553
1554 if (dev->flags & IFF_UP)
1555 return 0;
1556
1557 ret = __dev_open(dev, extack);
1558 if (ret < 0)
1559 return ret;
1560
1561 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1562 call_netdevice_notifiers(NETDEV_UP, dev);
1563
1564 return ret;
1565}
1566EXPORT_SYMBOL(dev_open);
1567
1568static void __dev_close_many(struct list_head *head)
1569{
1570 struct net_device *dev;
1571
1572 ASSERT_RTNL();
1573 might_sleep();
1574
1575 list_for_each_entry(dev, head, close_list) {
1576 /* Temporarily disable netpoll until the interface is down */
1577 netpoll_poll_disable(dev);
1578
1579 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1580
1581 clear_bit(__LINK_STATE_START, &dev->state);
1582
1583 /* Synchronize to scheduled poll. We cannot touch poll list, it
1584 * can be even on different cpu. So just clear netif_running().
1585 *
1586 * dev->stop() will invoke napi_disable() on all of it's
1587 * napi_struct instances on this device.
1588 */
1589 smp_mb__after_atomic(); /* Commit netif_running(). */
1590 }
1591
1592 dev_deactivate_many(head);
1593
1594 list_for_each_entry(dev, head, close_list) {
1595 const struct net_device_ops *ops = dev->netdev_ops;
1596
1597 /*
1598 * Call the device specific close. This cannot fail.
1599 * Only if device is UP
1600 *
1601 * We allow it to be called even after a DETACH hot-plug
1602 * event.
1603 */
1604 if (ops->ndo_stop)
1605 ops->ndo_stop(dev);
1606
1607 dev->flags &= ~IFF_UP;
1608 netpoll_poll_enable(dev);
1609 }
1610}
1611
1612static void __dev_close(struct net_device *dev)
1613{
1614 LIST_HEAD(single);
1615
1616 list_add(&dev->close_list, &single);
1617 __dev_close_many(&single);
1618 list_del(&single);
1619}
1620
1621void dev_close_many(struct list_head *head, bool unlink)
1622{
1623 struct net_device *dev, *tmp;
1624
1625 /* Remove the devices that don't need to be closed */
1626 list_for_each_entry_safe(dev, tmp, head, close_list)
1627 if (!(dev->flags & IFF_UP))
1628 list_del_init(&dev->close_list);
1629
1630 __dev_close_many(head);
1631
1632 list_for_each_entry_safe(dev, tmp, head, close_list) {
1633 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1634 call_netdevice_notifiers(NETDEV_DOWN, dev);
1635 if (unlink)
1636 list_del_init(&dev->close_list);
1637 }
1638}
1639EXPORT_SYMBOL(dev_close_many);
1640
1641/**
1642 * dev_close - shutdown an interface.
1643 * @dev: device to shutdown
1644 *
1645 * This function moves an active device into down state. A
1646 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1647 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1648 * chain.
1649 */
1650void dev_close(struct net_device *dev)
1651{
1652 if (dev->flags & IFF_UP) {
1653 LIST_HEAD(single);
1654
1655 list_add(&dev->close_list, &single);
1656 dev_close_many(&single, true);
1657 list_del(&single);
1658 }
1659}
1660EXPORT_SYMBOL(dev_close);
1661
1662
1663/**
1664 * dev_disable_lro - disable Large Receive Offload on a device
1665 * @dev: device
1666 *
1667 * Disable Large Receive Offload (LRO) on a net device. Must be
1668 * called under RTNL. This is needed if received packets may be
1669 * forwarded to another interface.
1670 */
1671void dev_disable_lro(struct net_device *dev)
1672{
1673 struct net_device *lower_dev;
1674 struct list_head *iter;
1675
1676 dev->wanted_features &= ~NETIF_F_LRO;
1677 netdev_update_features(dev);
1678
1679 if (unlikely(dev->features & NETIF_F_LRO))
1680 netdev_WARN(dev, "failed to disable LRO!\n");
1681
1682 netdev_for_each_lower_dev(dev, lower_dev, iter)
1683 dev_disable_lro(lower_dev);
1684}
1685EXPORT_SYMBOL(dev_disable_lro);
1686
1687/**
1688 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1689 * @dev: device
1690 *
1691 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1692 * called under RTNL. This is needed if Generic XDP is installed on
1693 * the device.
1694 */
1695static void dev_disable_gro_hw(struct net_device *dev)
1696{
1697 dev->wanted_features &= ~NETIF_F_GRO_HW;
1698 netdev_update_features(dev);
1699
1700 if (unlikely(dev->features & NETIF_F_GRO_HW))
1701 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1702}
1703
1704const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1705{
1706#define N(val) \
1707 case NETDEV_##val: \
1708 return "NETDEV_" __stringify(val);
1709 switch (cmd) {
1710 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1711 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1712 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1713 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1714 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1715 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1716 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1717 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1718 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1719 N(PRE_CHANGEADDR)
1720 }
1721#undef N
1722 return "UNKNOWN_NETDEV_EVENT";
1723}
1724EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1725
1726static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1727 struct net_device *dev)
1728{
1729 struct netdev_notifier_info info = {
1730 .dev = dev,
1731 };
1732
1733 return nb->notifier_call(nb, val, &info);
1734}
1735
1736static int call_netdevice_register_notifiers(struct notifier_block *nb,
1737 struct net_device *dev)
1738{
1739 int err;
1740
1741 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1742 err = notifier_to_errno(err);
1743 if (err)
1744 return err;
1745
1746 if (!(dev->flags & IFF_UP))
1747 return 0;
1748
1749 call_netdevice_notifier(nb, NETDEV_UP, dev);
1750 return 0;
1751}
1752
1753static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1754 struct net_device *dev)
1755{
1756 if (dev->flags & IFF_UP) {
1757 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1758 dev);
1759 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1760 }
1761 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1762}
1763
1764static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1765 struct net *net)
1766{
1767 struct net_device *dev;
1768 int err;
1769
1770 for_each_netdev(net, dev) {
1771 err = call_netdevice_register_notifiers(nb, dev);
1772 if (err)
1773 goto rollback;
1774 }
1775 return 0;
1776
1777rollback:
1778 for_each_netdev_continue_reverse(net, dev)
1779 call_netdevice_unregister_notifiers(nb, dev);
1780 return err;
1781}
1782
1783static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1784 struct net *net)
1785{
1786 struct net_device *dev;
1787
1788 for_each_netdev(net, dev)
1789 call_netdevice_unregister_notifiers(nb, dev);
1790}
1791
1792static int dev_boot_phase = 1;
1793
1794/**
1795 * register_netdevice_notifier - register a network notifier block
1796 * @nb: notifier
1797 *
1798 * Register a notifier to be called when network device events occur.
1799 * The notifier passed is linked into the kernel structures and must
1800 * not be reused until it has been unregistered. A negative errno code
1801 * is returned on a failure.
1802 *
1803 * When registered all registration and up events are replayed
1804 * to the new notifier to allow device to have a race free
1805 * view of the network device list.
1806 */
1807
1808int register_netdevice_notifier(struct notifier_block *nb)
1809{
1810 struct net *net;
1811 int err;
1812
1813 /* Close race with setup_net() and cleanup_net() */
1814 down_write(&pernet_ops_rwsem);
1815 rtnl_lock();
1816 err = raw_notifier_chain_register(&netdev_chain, nb);
1817 if (err)
1818 goto unlock;
1819 if (dev_boot_phase)
1820 goto unlock;
1821 for_each_net(net) {
1822 err = call_netdevice_register_net_notifiers(nb, net);
1823 if (err)
1824 goto rollback;
1825 }
1826
1827unlock:
1828 rtnl_unlock();
1829 up_write(&pernet_ops_rwsem);
1830 return err;
1831
1832rollback:
1833 for_each_net_continue_reverse(net)
1834 call_netdevice_unregister_net_notifiers(nb, net);
1835
1836 raw_notifier_chain_unregister(&netdev_chain, nb);
1837 goto unlock;
1838}
1839EXPORT_SYMBOL(register_netdevice_notifier);
1840
1841/**
1842 * unregister_netdevice_notifier - unregister a network notifier block
1843 * @nb: notifier
1844 *
1845 * Unregister a notifier previously registered by
1846 * register_netdevice_notifier(). The notifier is unlinked into the
1847 * kernel structures and may then be reused. A negative errno code
1848 * is returned on a failure.
1849 *
1850 * After unregistering unregister and down device events are synthesized
1851 * for all devices on the device list to the removed notifier to remove
1852 * the need for special case cleanup code.
1853 */
1854
1855int unregister_netdevice_notifier(struct notifier_block *nb)
1856{
1857 struct net *net;
1858 int err;
1859
1860 /* Close race with setup_net() and cleanup_net() */
1861 down_write(&pernet_ops_rwsem);
1862 rtnl_lock();
1863 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1864 if (err)
1865 goto unlock;
1866
1867 for_each_net(net)
1868 call_netdevice_unregister_net_notifiers(nb, net);
1869
1870unlock:
1871 rtnl_unlock();
1872 up_write(&pernet_ops_rwsem);
1873 return err;
1874}
1875EXPORT_SYMBOL(unregister_netdevice_notifier);
1876
1877static int __register_netdevice_notifier_net(struct net *net,
1878 struct notifier_block *nb,
1879 bool ignore_call_fail)
1880{
1881 int err;
1882
1883 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1884 if (err)
1885 return err;
1886 if (dev_boot_phase)
1887 return 0;
1888
1889 err = call_netdevice_register_net_notifiers(nb, net);
1890 if (err && !ignore_call_fail)
1891 goto chain_unregister;
1892
1893 return 0;
1894
1895chain_unregister:
1896 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1897 return err;
1898}
1899
1900static int __unregister_netdevice_notifier_net(struct net *net,
1901 struct notifier_block *nb)
1902{
1903 int err;
1904
1905 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1906 if (err)
1907 return err;
1908
1909 call_netdevice_unregister_net_notifiers(nb, net);
1910 return 0;
1911}
1912
1913/**
1914 * register_netdevice_notifier_net - register a per-netns network notifier block
1915 * @net: network namespace
1916 * @nb: notifier
1917 *
1918 * Register a notifier to be called when network device events occur.
1919 * The notifier passed is linked into the kernel structures and must
1920 * not be reused until it has been unregistered. A negative errno code
1921 * is returned on a failure.
1922 *
1923 * When registered all registration and up events are replayed
1924 * to the new notifier to allow device to have a race free
1925 * view of the network device list.
1926 */
1927
1928int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1929{
1930 int err;
1931
1932 rtnl_lock();
1933 err = __register_netdevice_notifier_net(net, nb, false);
1934 rtnl_unlock();
1935 return err;
1936}
1937EXPORT_SYMBOL(register_netdevice_notifier_net);
1938
1939/**
1940 * unregister_netdevice_notifier_net - unregister a per-netns
1941 * network notifier block
1942 * @net: network namespace
1943 * @nb: notifier
1944 *
1945 * Unregister a notifier previously registered by
1946 * register_netdevice_notifier(). The notifier is unlinked into the
1947 * kernel structures and may then be reused. A negative errno code
1948 * is returned on a failure.
1949 *
1950 * After unregistering unregister and down device events are synthesized
1951 * for all devices on the device list to the removed notifier to remove
1952 * the need for special case cleanup code.
1953 */
1954
1955int unregister_netdevice_notifier_net(struct net *net,
1956 struct notifier_block *nb)
1957{
1958 int err;
1959
1960 rtnl_lock();
1961 err = __unregister_netdevice_notifier_net(net, nb);
1962 rtnl_unlock();
1963 return err;
1964}
1965EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1966
1967int register_netdevice_notifier_dev_net(struct net_device *dev,
1968 struct notifier_block *nb,
1969 struct netdev_net_notifier *nn)
1970{
1971 int err;
1972
1973 rtnl_lock();
1974 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1975 if (!err) {
1976 nn->nb = nb;
1977 list_add(&nn->list, &dev->net_notifier_list);
1978 }
1979 rtnl_unlock();
1980 return err;
1981}
1982EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1983
1984int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1985 struct notifier_block *nb,
1986 struct netdev_net_notifier *nn)
1987{
1988 int err;
1989
1990 rtnl_lock();
1991 list_del(&nn->list);
1992 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1993 rtnl_unlock();
1994 return err;
1995}
1996EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1997
1998static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1999 struct net *net)
2000{
2001 struct netdev_net_notifier *nn;
2002
2003 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2004 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2005 __register_netdevice_notifier_net(net, nn->nb, true);
2006 }
2007}
2008
2009/**
2010 * call_netdevice_notifiers_info - call all network notifier blocks
2011 * @val: value passed unmodified to notifier function
2012 * @info: notifier information data
2013 *
2014 * Call all network notifier blocks. Parameters and return value
2015 * are as for raw_notifier_call_chain().
2016 */
2017
2018static int call_netdevice_notifiers_info(unsigned long val,
2019 struct netdev_notifier_info *info)
2020{
2021 struct net *net = dev_net(info->dev);
2022 int ret;
2023
2024 ASSERT_RTNL();
2025
2026 /* Run per-netns notifier block chain first, then run the global one.
2027 * Hopefully, one day, the global one is going to be removed after
2028 * all notifier block registrators get converted to be per-netns.
2029 */
2030 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2031 if (ret & NOTIFY_STOP_MASK)
2032 return ret;
2033 return raw_notifier_call_chain(&netdev_chain, val, info);
2034}
2035
2036static int call_netdevice_notifiers_extack(unsigned long val,
2037 struct net_device *dev,
2038 struct netlink_ext_ack *extack)
2039{
2040 struct netdev_notifier_info info = {
2041 .dev = dev,
2042 .extack = extack,
2043 };
2044
2045 return call_netdevice_notifiers_info(val, &info);
2046}
2047
2048/**
2049 * call_netdevice_notifiers - call all network notifier blocks
2050 * @val: value passed unmodified to notifier function
2051 * @dev: net_device pointer passed unmodified to notifier function
2052 *
2053 * Call all network notifier blocks. Parameters and return value
2054 * are as for raw_notifier_call_chain().
2055 */
2056
2057int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2058{
2059 return call_netdevice_notifiers_extack(val, dev, NULL);
2060}
2061EXPORT_SYMBOL(call_netdevice_notifiers);
2062
2063/**
2064 * call_netdevice_notifiers_mtu - call all network notifier blocks
2065 * @val: value passed unmodified to notifier function
2066 * @dev: net_device pointer passed unmodified to notifier function
2067 * @arg: additional u32 argument passed to the notifier function
2068 *
2069 * Call all network notifier blocks. Parameters and return value
2070 * are as for raw_notifier_call_chain().
2071 */
2072static int call_netdevice_notifiers_mtu(unsigned long val,
2073 struct net_device *dev, u32 arg)
2074{
2075 struct netdev_notifier_info_ext info = {
2076 .info.dev = dev,
2077 .ext.mtu = arg,
2078 };
2079
2080 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2081
2082 return call_netdevice_notifiers_info(val, &info.info);
2083}
2084
2085#ifdef CONFIG_NET_INGRESS
2086static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2087
2088void net_inc_ingress_queue(void)
2089{
2090 static_branch_inc(&ingress_needed_key);
2091}
2092EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2093
2094void net_dec_ingress_queue(void)
2095{
2096 static_branch_dec(&ingress_needed_key);
2097}
2098EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2099#endif
2100
2101#ifdef CONFIG_NET_EGRESS
2102static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2103
2104void net_inc_egress_queue(void)
2105{
2106 static_branch_inc(&egress_needed_key);
2107}
2108EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2109
2110void net_dec_egress_queue(void)
2111{
2112 static_branch_dec(&egress_needed_key);
2113}
2114EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2115#endif
2116
2117static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2118#ifdef CONFIG_JUMP_LABEL
2119static atomic_t netstamp_needed_deferred;
2120static atomic_t netstamp_wanted;
2121static void netstamp_clear(struct work_struct *work)
2122{
2123 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2124 int wanted;
2125
2126 wanted = atomic_add_return(deferred, &netstamp_wanted);
2127 if (wanted > 0)
2128 static_branch_enable(&netstamp_needed_key);
2129 else
2130 static_branch_disable(&netstamp_needed_key);
2131}
2132static DECLARE_WORK(netstamp_work, netstamp_clear);
2133#endif
2134
2135void net_enable_timestamp(void)
2136{
2137#ifdef CONFIG_JUMP_LABEL
2138 int wanted;
2139
2140 while (1) {
2141 wanted = atomic_read(&netstamp_wanted);
2142 if (wanted <= 0)
2143 break;
2144 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2145 return;
2146 }
2147 atomic_inc(&netstamp_needed_deferred);
2148 schedule_work(&netstamp_work);
2149#else
2150 static_branch_inc(&netstamp_needed_key);
2151#endif
2152}
2153EXPORT_SYMBOL(net_enable_timestamp);
2154
2155void net_disable_timestamp(void)
2156{
2157#ifdef CONFIG_JUMP_LABEL
2158 int wanted;
2159
2160 while (1) {
2161 wanted = atomic_read(&netstamp_wanted);
2162 if (wanted <= 1)
2163 break;
2164 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2165 return;
2166 }
2167 atomic_dec(&netstamp_needed_deferred);
2168 schedule_work(&netstamp_work);
2169#else
2170 static_branch_dec(&netstamp_needed_key);
2171#endif
2172}
2173EXPORT_SYMBOL(net_disable_timestamp);
2174
2175static inline void net_timestamp_set(struct sk_buff *skb)
2176{
2177 skb->tstamp = 0;
2178 if (static_branch_unlikely(&netstamp_needed_key))
2179 __net_timestamp(skb);
2180}
2181
2182#define net_timestamp_check(COND, SKB) \
2183 if (static_branch_unlikely(&netstamp_needed_key)) { \
2184 if ((COND) && !(SKB)->tstamp) \
2185 __net_timestamp(SKB); \
2186 } \
2187
2188bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2189{
2190 unsigned int len;
2191
2192 if (!(dev->flags & IFF_UP))
2193 return false;
2194
2195 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2196 if (skb->len <= len)
2197 return true;
2198
2199 /* if TSO is enabled, we don't care about the length as the packet
2200 * could be forwarded without being segmented before
2201 */
2202 if (skb_is_gso(skb))
2203 return true;
2204
2205 return false;
2206}
2207EXPORT_SYMBOL_GPL(is_skb_forwardable);
2208
2209int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2210{
2211 int ret = ____dev_forward_skb(dev, skb);
2212
2213 if (likely(!ret)) {
2214 skb->protocol = eth_type_trans(skb, dev);
2215 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2216 }
2217
2218 return ret;
2219}
2220EXPORT_SYMBOL_GPL(__dev_forward_skb);
2221
2222/**
2223 * dev_forward_skb - loopback an skb to another netif
2224 *
2225 * @dev: destination network device
2226 * @skb: buffer to forward
2227 *
2228 * return values:
2229 * NET_RX_SUCCESS (no congestion)
2230 * NET_RX_DROP (packet was dropped, but freed)
2231 *
2232 * dev_forward_skb can be used for injecting an skb from the
2233 * start_xmit function of one device into the receive queue
2234 * of another device.
2235 *
2236 * The receiving device may be in another namespace, so
2237 * we have to clear all information in the skb that could
2238 * impact namespace isolation.
2239 */
2240int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2241{
2242 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2243}
2244EXPORT_SYMBOL_GPL(dev_forward_skb);
2245
2246static inline int deliver_skb(struct sk_buff *skb,
2247 struct packet_type *pt_prev,
2248 struct net_device *orig_dev)
2249{
2250 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2251 return -ENOMEM;
2252 refcount_inc(&skb->users);
2253 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2254}
2255
2256static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2257 struct packet_type **pt,
2258 struct net_device *orig_dev,
2259 __be16 type,
2260 struct list_head *ptype_list)
2261{
2262 struct packet_type *ptype, *pt_prev = *pt;
2263
2264 list_for_each_entry_rcu(ptype, ptype_list, list) {
2265 if (ptype->type != type)
2266 continue;
2267 if (pt_prev)
2268 deliver_skb(skb, pt_prev, orig_dev);
2269 pt_prev = ptype;
2270 }
2271 *pt = pt_prev;
2272}
2273
2274static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2275{
2276 if (!ptype->af_packet_priv || !skb->sk)
2277 return false;
2278
2279 if (ptype->id_match)
2280 return ptype->id_match(ptype, skb->sk);
2281 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2282 return true;
2283
2284 return false;
2285}
2286
2287/**
2288 * dev_nit_active - return true if any network interface taps are in use
2289 *
2290 * @dev: network device to check for the presence of taps
2291 */
2292bool dev_nit_active(struct net_device *dev)
2293{
2294 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2295}
2296EXPORT_SYMBOL_GPL(dev_nit_active);
2297
2298/*
2299 * Support routine. Sends outgoing frames to any network
2300 * taps currently in use.
2301 */
2302
2303void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2304{
2305 struct packet_type *ptype;
2306 struct sk_buff *skb2 = NULL;
2307 struct packet_type *pt_prev = NULL;
2308 struct list_head *ptype_list = &ptype_all;
2309
2310 rcu_read_lock();
2311again:
2312 list_for_each_entry_rcu(ptype, ptype_list, list) {
2313 if (ptype->ignore_outgoing)
2314 continue;
2315
2316 /* Never send packets back to the socket
2317 * they originated from - MvS (miquels@drinkel.ow.org)
2318 */
2319 if (skb_loop_sk(ptype, skb))
2320 continue;
2321
2322 if (pt_prev) {
2323 deliver_skb(skb2, pt_prev, skb->dev);
2324 pt_prev = ptype;
2325 continue;
2326 }
2327
2328 /* need to clone skb, done only once */
2329 skb2 = skb_clone(skb, GFP_ATOMIC);
2330 if (!skb2)
2331 goto out_unlock;
2332
2333 net_timestamp_set(skb2);
2334
2335 /* skb->nh should be correctly
2336 * set by sender, so that the second statement is
2337 * just protection against buggy protocols.
2338 */
2339 skb_reset_mac_header(skb2);
2340
2341 if (skb_network_header(skb2) < skb2->data ||
2342 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2343 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2344 ntohs(skb2->protocol),
2345 dev->name);
2346 skb_reset_network_header(skb2);
2347 }
2348
2349 skb2->transport_header = skb2->network_header;
2350 skb2->pkt_type = PACKET_OUTGOING;
2351 pt_prev = ptype;
2352 }
2353
2354 if (ptype_list == &ptype_all) {
2355 ptype_list = &dev->ptype_all;
2356 goto again;
2357 }
2358out_unlock:
2359 if (pt_prev) {
2360 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2361 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2362 else
2363 kfree_skb(skb2);
2364 }
2365 rcu_read_unlock();
2366}
2367EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2368
2369/**
2370 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2371 * @dev: Network device
2372 * @txq: number of queues available
2373 *
2374 * If real_num_tx_queues is changed the tc mappings may no longer be
2375 * valid. To resolve this verify the tc mapping remains valid and if
2376 * not NULL the mapping. With no priorities mapping to this
2377 * offset/count pair it will no longer be used. In the worst case TC0
2378 * is invalid nothing can be done so disable priority mappings. If is
2379 * expected that drivers will fix this mapping if they can before
2380 * calling netif_set_real_num_tx_queues.
2381 */
2382static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2383{
2384 int i;
2385 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2386
2387 /* If TC0 is invalidated disable TC mapping */
2388 if (tc->offset + tc->count > txq) {
2389 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2390 dev->num_tc = 0;
2391 return;
2392 }
2393
2394 /* Invalidated prio to tc mappings set to TC0 */
2395 for (i = 1; i < TC_BITMASK + 1; i++) {
2396 int q = netdev_get_prio_tc_map(dev, i);
2397
2398 tc = &dev->tc_to_txq[q];
2399 if (tc->offset + tc->count > txq) {
2400 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2401 i, q);
2402 netdev_set_prio_tc_map(dev, i, 0);
2403 }
2404 }
2405}
2406
2407int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2408{
2409 if (dev->num_tc) {
2410 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2411 int i;
2412
2413 /* walk through the TCs and see if it falls into any of them */
2414 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2415 if ((txq - tc->offset) < tc->count)
2416 return i;
2417 }
2418
2419 /* didn't find it, just return -1 to indicate no match */
2420 return -1;
2421 }
2422
2423 return 0;
2424}
2425EXPORT_SYMBOL(netdev_txq_to_tc);
2426
2427#ifdef CONFIG_XPS
2428struct static_key xps_needed __read_mostly;
2429EXPORT_SYMBOL(xps_needed);
2430struct static_key xps_rxqs_needed __read_mostly;
2431EXPORT_SYMBOL(xps_rxqs_needed);
2432static DEFINE_MUTEX(xps_map_mutex);
2433#define xmap_dereference(P) \
2434 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2435
2436static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2437 int tci, u16 index)
2438{
2439 struct xps_map *map = NULL;
2440 int pos;
2441
2442 if (dev_maps)
2443 map = xmap_dereference(dev_maps->attr_map[tci]);
2444 if (!map)
2445 return false;
2446
2447 for (pos = map->len; pos--;) {
2448 if (map->queues[pos] != index)
2449 continue;
2450
2451 if (map->len > 1) {
2452 map->queues[pos] = map->queues[--map->len];
2453 break;
2454 }
2455
2456 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2457 kfree_rcu(map, rcu);
2458 return false;
2459 }
2460
2461 return true;
2462}
2463
2464static bool remove_xps_queue_cpu(struct net_device *dev,
2465 struct xps_dev_maps *dev_maps,
2466 int cpu, u16 offset, u16 count)
2467{
2468 int num_tc = dev->num_tc ? : 1;
2469 bool active = false;
2470 int tci;
2471
2472 for (tci = cpu * num_tc; num_tc--; tci++) {
2473 int i, j;
2474
2475 for (i = count, j = offset; i--; j++) {
2476 if (!remove_xps_queue(dev_maps, tci, j))
2477 break;
2478 }
2479
2480 active |= i < 0;
2481 }
2482
2483 return active;
2484}
2485
2486static void reset_xps_maps(struct net_device *dev,
2487 struct xps_dev_maps *dev_maps,
2488 bool is_rxqs_map)
2489{
2490 if (is_rxqs_map) {
2491 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2492 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2493 } else {
2494 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2495 }
2496 static_key_slow_dec_cpuslocked(&xps_needed);
2497 kfree_rcu(dev_maps, rcu);
2498}
2499
2500static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2501 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2502 u16 offset, u16 count, bool is_rxqs_map)
2503{
2504 bool active = false;
2505 int i, j;
2506
2507 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2508 j < nr_ids;)
2509 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2510 count);
2511 if (!active)
2512 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2513
2514 if (!is_rxqs_map) {
2515 for (i = offset + (count - 1); count--; i--) {
2516 netdev_queue_numa_node_write(
2517 netdev_get_tx_queue(dev, i),
2518 NUMA_NO_NODE);
2519 }
2520 }
2521}
2522
2523static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2524 u16 count)
2525{
2526 const unsigned long *possible_mask = NULL;
2527 struct xps_dev_maps *dev_maps;
2528 unsigned int nr_ids;
2529
2530 if (!static_key_false(&xps_needed))
2531 return;
2532
2533 cpus_read_lock();
2534 mutex_lock(&xps_map_mutex);
2535
2536 if (static_key_false(&xps_rxqs_needed)) {
2537 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2538 if (dev_maps) {
2539 nr_ids = dev->num_rx_queues;
2540 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2541 offset, count, true);
2542 }
2543 }
2544
2545 dev_maps = xmap_dereference(dev->xps_cpus_map);
2546 if (!dev_maps)
2547 goto out_no_maps;
2548
2549 if (num_possible_cpus() > 1)
2550 possible_mask = cpumask_bits(cpu_possible_mask);
2551 nr_ids = nr_cpu_ids;
2552 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2553 false);
2554
2555out_no_maps:
2556 mutex_unlock(&xps_map_mutex);
2557 cpus_read_unlock();
2558}
2559
2560static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2561{
2562 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2563}
2564
2565static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2566 u16 index, bool is_rxqs_map)
2567{
2568 struct xps_map *new_map;
2569 int alloc_len = XPS_MIN_MAP_ALLOC;
2570 int i, pos;
2571
2572 for (pos = 0; map && pos < map->len; pos++) {
2573 if (map->queues[pos] != index)
2574 continue;
2575 return map;
2576 }
2577
2578 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2579 if (map) {
2580 if (pos < map->alloc_len)
2581 return map;
2582
2583 alloc_len = map->alloc_len * 2;
2584 }
2585
2586 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2587 * map
2588 */
2589 if (is_rxqs_map)
2590 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2591 else
2592 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2593 cpu_to_node(attr_index));
2594 if (!new_map)
2595 return NULL;
2596
2597 for (i = 0; i < pos; i++)
2598 new_map->queues[i] = map->queues[i];
2599 new_map->alloc_len = alloc_len;
2600 new_map->len = pos;
2601
2602 return new_map;
2603}
2604
2605/* Must be called under cpus_read_lock */
2606int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2607 u16 index, bool is_rxqs_map)
2608{
2609 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2610 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2611 int i, j, tci, numa_node_id = -2;
2612 int maps_sz, num_tc = 1, tc = 0;
2613 struct xps_map *map, *new_map;
2614 bool active = false;
2615 unsigned int nr_ids;
2616
2617 if (dev->num_tc) {
2618 /* Do not allow XPS on subordinate device directly */
2619 num_tc = dev->num_tc;
2620 if (num_tc < 0)
2621 return -EINVAL;
2622
2623 /* If queue belongs to subordinate dev use its map */
2624 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2625
2626 tc = netdev_txq_to_tc(dev, index);
2627 if (tc < 0)
2628 return -EINVAL;
2629 }
2630
2631 mutex_lock(&xps_map_mutex);
2632 if (is_rxqs_map) {
2633 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2634 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2635 nr_ids = dev->num_rx_queues;
2636 } else {
2637 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2638 if (num_possible_cpus() > 1) {
2639 online_mask = cpumask_bits(cpu_online_mask);
2640 possible_mask = cpumask_bits(cpu_possible_mask);
2641 }
2642 dev_maps = xmap_dereference(dev->xps_cpus_map);
2643 nr_ids = nr_cpu_ids;
2644 }
2645
2646 if (maps_sz < L1_CACHE_BYTES)
2647 maps_sz = L1_CACHE_BYTES;
2648
2649 /* allocate memory for queue storage */
2650 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2651 j < nr_ids;) {
2652 if (!new_dev_maps)
2653 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2654 if (!new_dev_maps) {
2655 mutex_unlock(&xps_map_mutex);
2656 return -ENOMEM;
2657 }
2658
2659 tci = j * num_tc + tc;
2660 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2661 NULL;
2662
2663 map = expand_xps_map(map, j, index, is_rxqs_map);
2664 if (!map)
2665 goto error;
2666
2667 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2668 }
2669
2670 if (!new_dev_maps)
2671 goto out_no_new_maps;
2672
2673 if (!dev_maps) {
2674 /* Increment static keys at most once per type */
2675 static_key_slow_inc_cpuslocked(&xps_needed);
2676 if (is_rxqs_map)
2677 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2678 }
2679
2680 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2681 j < nr_ids;) {
2682 /* copy maps belonging to foreign traffic classes */
2683 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2684 /* fill in the new device map from the old device map */
2685 map = xmap_dereference(dev_maps->attr_map[tci]);
2686 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2687 }
2688
2689 /* We need to explicitly update tci as prevous loop
2690 * could break out early if dev_maps is NULL.
2691 */
2692 tci = j * num_tc + tc;
2693
2694 if (netif_attr_test_mask(j, mask, nr_ids) &&
2695 netif_attr_test_online(j, online_mask, nr_ids)) {
2696 /* add tx-queue to CPU/rx-queue maps */
2697 int pos = 0;
2698
2699 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2700 while ((pos < map->len) && (map->queues[pos] != index))
2701 pos++;
2702
2703 if (pos == map->len)
2704 map->queues[map->len++] = index;
2705#ifdef CONFIG_NUMA
2706 if (!is_rxqs_map) {
2707 if (numa_node_id == -2)
2708 numa_node_id = cpu_to_node(j);
2709 else if (numa_node_id != cpu_to_node(j))
2710 numa_node_id = -1;
2711 }
2712#endif
2713 } else if (dev_maps) {
2714 /* fill in the new device map from the old device map */
2715 map = xmap_dereference(dev_maps->attr_map[tci]);
2716 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2717 }
2718
2719 /* copy maps belonging to foreign traffic classes */
2720 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2721 /* fill in the new device map from the old device map */
2722 map = xmap_dereference(dev_maps->attr_map[tci]);
2723 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2724 }
2725 }
2726
2727 if (is_rxqs_map)
2728 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2729 else
2730 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2731
2732 /* Cleanup old maps */
2733 if (!dev_maps)
2734 goto out_no_old_maps;
2735
2736 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2737 j < nr_ids;) {
2738 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2739 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2740 map = xmap_dereference(dev_maps->attr_map[tci]);
2741 if (map && map != new_map)
2742 kfree_rcu(map, rcu);
2743 }
2744 }
2745
2746 kfree_rcu(dev_maps, rcu);
2747
2748out_no_old_maps:
2749 dev_maps = new_dev_maps;
2750 active = true;
2751
2752out_no_new_maps:
2753 if (!is_rxqs_map) {
2754 /* update Tx queue numa node */
2755 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2756 (numa_node_id >= 0) ?
2757 numa_node_id : NUMA_NO_NODE);
2758 }
2759
2760 if (!dev_maps)
2761 goto out_no_maps;
2762
2763 /* removes tx-queue from unused CPUs/rx-queues */
2764 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2765 j < nr_ids;) {
2766 for (i = tc, tci = j * num_tc; i--; tci++)
2767 active |= remove_xps_queue(dev_maps, tci, index);
2768 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2769 !netif_attr_test_online(j, online_mask, nr_ids))
2770 active |= remove_xps_queue(dev_maps, tci, index);
2771 for (i = num_tc - tc, tci++; --i; tci++)
2772 active |= remove_xps_queue(dev_maps, tci, index);
2773 }
2774
2775 /* free map if not active */
2776 if (!active)
2777 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2778
2779out_no_maps:
2780 mutex_unlock(&xps_map_mutex);
2781
2782 return 0;
2783error:
2784 /* remove any maps that we added */
2785 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2786 j < nr_ids;) {
2787 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2788 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2789 map = dev_maps ?
2790 xmap_dereference(dev_maps->attr_map[tci]) :
2791 NULL;
2792 if (new_map && new_map != map)
2793 kfree(new_map);
2794 }
2795 }
2796
2797 mutex_unlock(&xps_map_mutex);
2798
2799 kfree(new_dev_maps);
2800 return -ENOMEM;
2801}
2802EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2803
2804int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2805 u16 index)
2806{
2807 int ret;
2808
2809 cpus_read_lock();
2810 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2811 cpus_read_unlock();
2812
2813 return ret;
2814}
2815EXPORT_SYMBOL(netif_set_xps_queue);
2816
2817#endif
2818static void netdev_unbind_all_sb_channels(struct net_device *dev)
2819{
2820 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2821
2822 /* Unbind any subordinate channels */
2823 while (txq-- != &dev->_tx[0]) {
2824 if (txq->sb_dev)
2825 netdev_unbind_sb_channel(dev, txq->sb_dev);
2826 }
2827}
2828
2829void netdev_reset_tc(struct net_device *dev)
2830{
2831#ifdef CONFIG_XPS
2832 netif_reset_xps_queues_gt(dev, 0);
2833#endif
2834 netdev_unbind_all_sb_channels(dev);
2835
2836 /* Reset TC configuration of device */
2837 dev->num_tc = 0;
2838 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2839 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2840}
2841EXPORT_SYMBOL(netdev_reset_tc);
2842
2843int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2844{
2845 if (tc >= dev->num_tc)
2846 return -EINVAL;
2847
2848#ifdef CONFIG_XPS
2849 netif_reset_xps_queues(dev, offset, count);
2850#endif
2851 dev->tc_to_txq[tc].count = count;
2852 dev->tc_to_txq[tc].offset = offset;
2853 return 0;
2854}
2855EXPORT_SYMBOL(netdev_set_tc_queue);
2856
2857int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2858{
2859 if (num_tc > TC_MAX_QUEUE)
2860 return -EINVAL;
2861
2862#ifdef CONFIG_XPS
2863 netif_reset_xps_queues_gt(dev, 0);
2864#endif
2865 netdev_unbind_all_sb_channels(dev);
2866
2867 dev->num_tc = num_tc;
2868 return 0;
2869}
2870EXPORT_SYMBOL(netdev_set_num_tc);
2871
2872void netdev_unbind_sb_channel(struct net_device *dev,
2873 struct net_device *sb_dev)
2874{
2875 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2876
2877#ifdef CONFIG_XPS
2878 netif_reset_xps_queues_gt(sb_dev, 0);
2879#endif
2880 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2881 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2882
2883 while (txq-- != &dev->_tx[0]) {
2884 if (txq->sb_dev == sb_dev)
2885 txq->sb_dev = NULL;
2886 }
2887}
2888EXPORT_SYMBOL(netdev_unbind_sb_channel);
2889
2890int netdev_bind_sb_channel_queue(struct net_device *dev,
2891 struct net_device *sb_dev,
2892 u8 tc, u16 count, u16 offset)
2893{
2894 /* Make certain the sb_dev and dev are already configured */
2895 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2896 return -EINVAL;
2897
2898 /* We cannot hand out queues we don't have */
2899 if ((offset + count) > dev->real_num_tx_queues)
2900 return -EINVAL;
2901
2902 /* Record the mapping */
2903 sb_dev->tc_to_txq[tc].count = count;
2904 sb_dev->tc_to_txq[tc].offset = offset;
2905
2906 /* Provide a way for Tx queue to find the tc_to_txq map or
2907 * XPS map for itself.
2908 */
2909 while (count--)
2910 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2911
2912 return 0;
2913}
2914EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2915
2916int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2917{
2918 /* Do not use a multiqueue device to represent a subordinate channel */
2919 if (netif_is_multiqueue(dev))
2920 return -ENODEV;
2921
2922 /* We allow channels 1 - 32767 to be used for subordinate channels.
2923 * Channel 0 is meant to be "native" mode and used only to represent
2924 * the main root device. We allow writing 0 to reset the device back
2925 * to normal mode after being used as a subordinate channel.
2926 */
2927 if (channel > S16_MAX)
2928 return -EINVAL;
2929
2930 dev->num_tc = -channel;
2931
2932 return 0;
2933}
2934EXPORT_SYMBOL(netdev_set_sb_channel);
2935
2936/*
2937 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2938 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2939 */
2940int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2941{
2942 bool disabling;
2943 int rc;
2944
2945 disabling = txq < dev->real_num_tx_queues;
2946
2947 if (txq < 1 || txq > dev->num_tx_queues)
2948 return -EINVAL;
2949
2950 if (dev->reg_state == NETREG_REGISTERED ||
2951 dev->reg_state == NETREG_UNREGISTERING) {
2952 ASSERT_RTNL();
2953
2954 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2955 txq);
2956 if (rc)
2957 return rc;
2958
2959 if (dev->num_tc)
2960 netif_setup_tc(dev, txq);
2961
2962 dev->real_num_tx_queues = txq;
2963
2964 if (disabling) {
2965 synchronize_net();
2966 qdisc_reset_all_tx_gt(dev, txq);
2967#ifdef CONFIG_XPS
2968 netif_reset_xps_queues_gt(dev, txq);
2969#endif
2970 }
2971 } else {
2972 dev->real_num_tx_queues = txq;
2973 }
2974
2975 return 0;
2976}
2977EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2978
2979#ifdef CONFIG_SYSFS
2980/**
2981 * netif_set_real_num_rx_queues - set actual number of RX queues used
2982 * @dev: Network device
2983 * @rxq: Actual number of RX queues
2984 *
2985 * This must be called either with the rtnl_lock held or before
2986 * registration of the net device. Returns 0 on success, or a
2987 * negative error code. If called before registration, it always
2988 * succeeds.
2989 */
2990int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2991{
2992 int rc;
2993
2994 if (rxq < 1 || rxq > dev->num_rx_queues)
2995 return -EINVAL;
2996
2997 if (dev->reg_state == NETREG_REGISTERED) {
2998 ASSERT_RTNL();
2999
3000 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3001 rxq);
3002 if (rc)
3003 return rc;
3004 }
3005
3006 dev->real_num_rx_queues = rxq;
3007 return 0;
3008}
3009EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3010#endif
3011
3012/**
3013 * netif_get_num_default_rss_queues - default number of RSS queues
3014 *
3015 * This routine should set an upper limit on the number of RSS queues
3016 * used by default by multiqueue devices.
3017 */
3018int netif_get_num_default_rss_queues(void)
3019{
3020 return is_kdump_kernel() ?
3021 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3022}
3023EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3024
3025static void __netif_reschedule(struct Qdisc *q)
3026{
3027 struct softnet_data *sd;
3028 unsigned long flags;
3029
3030 local_irq_save(flags);
3031 sd = this_cpu_ptr(&softnet_data);
3032 q->next_sched = NULL;
3033 *sd->output_queue_tailp = q;
3034 sd->output_queue_tailp = &q->next_sched;
3035 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3036 local_irq_restore(flags);
3037}
3038
3039void __netif_schedule(struct Qdisc *q)
3040{
3041 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3042 __netif_reschedule(q);
3043}
3044EXPORT_SYMBOL(__netif_schedule);
3045
3046struct dev_kfree_skb_cb {
3047 enum skb_free_reason reason;
3048};
3049
3050static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3051{
3052 return (struct dev_kfree_skb_cb *)skb->cb;
3053}
3054
3055void netif_schedule_queue(struct netdev_queue *txq)
3056{
3057 rcu_read_lock();
3058 if (!netif_xmit_stopped(txq)) {
3059 struct Qdisc *q = rcu_dereference(txq->qdisc);
3060
3061 __netif_schedule(q);
3062 }
3063 rcu_read_unlock();
3064}
3065EXPORT_SYMBOL(netif_schedule_queue);
3066
3067void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3068{
3069 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3070 struct Qdisc *q;
3071
3072 rcu_read_lock();
3073 q = rcu_dereference(dev_queue->qdisc);
3074 __netif_schedule(q);
3075 rcu_read_unlock();
3076 }
3077}
3078EXPORT_SYMBOL(netif_tx_wake_queue);
3079
3080void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3081{
3082 unsigned long flags;
3083
3084 if (unlikely(!skb))
3085 return;
3086
3087 if (likely(refcount_read(&skb->users) == 1)) {
3088 smp_rmb();
3089 refcount_set(&skb->users, 0);
3090 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3091 return;
3092 }
3093 get_kfree_skb_cb(skb)->reason = reason;
3094 local_irq_save(flags);
3095 skb->next = __this_cpu_read(softnet_data.completion_queue);
3096 __this_cpu_write(softnet_data.completion_queue, skb);
3097 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3098 local_irq_restore(flags);
3099}
3100EXPORT_SYMBOL(__dev_kfree_skb_irq);
3101
3102void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3103{
3104 if (in_irq() || irqs_disabled())
3105 __dev_kfree_skb_irq(skb, reason);
3106 else
3107 dev_kfree_skb(skb);
3108}
3109EXPORT_SYMBOL(__dev_kfree_skb_any);
3110
3111
3112/**
3113 * netif_device_detach - mark device as removed
3114 * @dev: network device
3115 *
3116 * Mark device as removed from system and therefore no longer available.
3117 */
3118void netif_device_detach(struct net_device *dev)
3119{
3120 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3121 netif_running(dev)) {
3122 netif_tx_stop_all_queues(dev);
3123 }
3124}
3125EXPORT_SYMBOL(netif_device_detach);
3126
3127/**
3128 * netif_device_attach - mark device as attached
3129 * @dev: network device
3130 *
3131 * Mark device as attached from system and restart if needed.
3132 */
3133void netif_device_attach(struct net_device *dev)
3134{
3135 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3136 netif_running(dev)) {
3137 netif_tx_wake_all_queues(dev);
3138 __netdev_watchdog_up(dev);
3139 }
3140}
3141EXPORT_SYMBOL(netif_device_attach);
3142
3143/*
3144 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3145 * to be used as a distribution range.
3146 */
3147static u16 skb_tx_hash(const struct net_device *dev,
3148 const struct net_device *sb_dev,
3149 struct sk_buff *skb)
3150{
3151 u32 hash;
3152 u16 qoffset = 0;
3153 u16 qcount = dev->real_num_tx_queues;
3154
3155 if (dev->num_tc) {
3156 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3157
3158 qoffset = sb_dev->tc_to_txq[tc].offset;
3159 qcount = sb_dev->tc_to_txq[tc].count;
3160 }
3161
3162 if (skb_rx_queue_recorded(skb)) {
3163 hash = skb_get_rx_queue(skb);
3164 if (hash >= qoffset)
3165 hash -= qoffset;
3166 while (unlikely(hash >= qcount))
3167 hash -= qcount;
3168 return hash + qoffset;
3169 }
3170
3171 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3172}
3173
3174static void skb_warn_bad_offload(const struct sk_buff *skb)
3175{
3176 static const netdev_features_t null_features;
3177 struct net_device *dev = skb->dev;
3178 const char *name = "";
3179
3180 if (!net_ratelimit())
3181 return;
3182
3183 if (dev) {
3184 if (dev->dev.parent)
3185 name = dev_driver_string(dev->dev.parent);
3186 else
3187 name = netdev_name(dev);
3188 }
3189 skb_dump(KERN_WARNING, skb, false);
3190 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3191 name, dev ? &dev->features : &null_features,
3192 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3193}
3194
3195/*
3196 * Invalidate hardware checksum when packet is to be mangled, and
3197 * complete checksum manually on outgoing path.
3198 */
3199int skb_checksum_help(struct sk_buff *skb)
3200{
3201 __wsum csum;
3202 int ret = 0, offset;
3203
3204 if (skb->ip_summed == CHECKSUM_COMPLETE)
3205 goto out_set_summed;
3206
3207 if (unlikely(skb_shinfo(skb)->gso_size)) {
3208 skb_warn_bad_offload(skb);
3209 return -EINVAL;
3210 }
3211
3212 /* Before computing a checksum, we should make sure no frag could
3213 * be modified by an external entity : checksum could be wrong.
3214 */
3215 if (skb_has_shared_frag(skb)) {
3216 ret = __skb_linearize(skb);
3217 if (ret)
3218 goto out;
3219 }
3220
3221 offset = skb_checksum_start_offset(skb);
3222 BUG_ON(offset >= skb_headlen(skb));
3223 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3224
3225 offset += skb->csum_offset;
3226 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3227
3228 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3229 if (ret)
3230 goto out;
3231
3232 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3233out_set_summed:
3234 skb->ip_summed = CHECKSUM_NONE;
3235out:
3236 return ret;
3237}
3238EXPORT_SYMBOL(skb_checksum_help);
3239
3240int skb_crc32c_csum_help(struct sk_buff *skb)
3241{
3242 __le32 crc32c_csum;
3243 int ret = 0, offset, start;
3244
3245 if (skb->ip_summed != CHECKSUM_PARTIAL)
3246 goto out;
3247
3248 if (unlikely(skb_is_gso(skb)))
3249 goto out;
3250
3251 /* Before computing a checksum, we should make sure no frag could
3252 * be modified by an external entity : checksum could be wrong.
3253 */
3254 if (unlikely(skb_has_shared_frag(skb))) {
3255 ret = __skb_linearize(skb);
3256 if (ret)
3257 goto out;
3258 }
3259 start = skb_checksum_start_offset(skb);
3260 offset = start + offsetof(struct sctphdr, checksum);
3261 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3262 ret = -EINVAL;
3263 goto out;
3264 }
3265
3266 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3267 if (ret)
3268 goto out;
3269
3270 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3271 skb->len - start, ~(__u32)0,
3272 crc32c_csum_stub));
3273 *(__le32 *)(skb->data + offset) = crc32c_csum;
3274 skb->ip_summed = CHECKSUM_NONE;
3275 skb->csum_not_inet = 0;
3276out:
3277 return ret;
3278}
3279
3280__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3281{
3282 __be16 type = skb->protocol;
3283
3284 /* Tunnel gso handlers can set protocol to ethernet. */
3285 if (type == htons(ETH_P_TEB)) {
3286 struct ethhdr *eth;
3287
3288 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3289 return 0;
3290
3291 eth = (struct ethhdr *)skb->data;
3292 type = eth->h_proto;
3293 }
3294
3295 return __vlan_get_protocol(skb, type, depth);
3296}
3297
3298/**
3299 * skb_mac_gso_segment - mac layer segmentation handler.
3300 * @skb: buffer to segment
3301 * @features: features for the output path (see dev->features)
3302 */
3303struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3304 netdev_features_t features)
3305{
3306 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3307 struct packet_offload *ptype;
3308 int vlan_depth = skb->mac_len;
3309 __be16 type = skb_network_protocol(skb, &vlan_depth);
3310
3311 if (unlikely(!type))
3312 return ERR_PTR(-EINVAL);
3313
3314 __skb_pull(skb, vlan_depth);
3315
3316 rcu_read_lock();
3317 list_for_each_entry_rcu(ptype, &offload_base, list) {
3318 if (ptype->type == type && ptype->callbacks.gso_segment) {
3319 segs = ptype->callbacks.gso_segment(skb, features);
3320 break;
3321 }
3322 }
3323 rcu_read_unlock();
3324
3325 __skb_push(skb, skb->data - skb_mac_header(skb));
3326
3327 return segs;
3328}
3329EXPORT_SYMBOL(skb_mac_gso_segment);
3330
3331
3332/* openvswitch calls this on rx path, so we need a different check.
3333 */
3334static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3335{
3336 if (tx_path)
3337 return skb->ip_summed != CHECKSUM_PARTIAL &&
3338 skb->ip_summed != CHECKSUM_UNNECESSARY;
3339
3340 return skb->ip_summed == CHECKSUM_NONE;
3341}
3342
3343/**
3344 * __skb_gso_segment - Perform segmentation on skb.
3345 * @skb: buffer to segment
3346 * @features: features for the output path (see dev->features)
3347 * @tx_path: whether it is called in TX path
3348 *
3349 * This function segments the given skb and returns a list of segments.
3350 *
3351 * It may return NULL if the skb requires no segmentation. This is
3352 * only possible when GSO is used for verifying header integrity.
3353 *
3354 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3355 */
3356struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3357 netdev_features_t features, bool tx_path)
3358{
3359 struct sk_buff *segs;
3360
3361 if (unlikely(skb_needs_check(skb, tx_path))) {
3362 int err;
3363
3364 /* We're going to init ->check field in TCP or UDP header */
3365 err = skb_cow_head(skb, 0);
3366 if (err < 0)
3367 return ERR_PTR(err);
3368 }
3369
3370 /* Only report GSO partial support if it will enable us to
3371 * support segmentation on this frame without needing additional
3372 * work.
3373 */
3374 if (features & NETIF_F_GSO_PARTIAL) {
3375 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3376 struct net_device *dev = skb->dev;
3377
3378 partial_features |= dev->features & dev->gso_partial_features;
3379 if (!skb_gso_ok(skb, features | partial_features))
3380 features &= ~NETIF_F_GSO_PARTIAL;
3381 }
3382
3383 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3384 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3385
3386 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3387 SKB_GSO_CB(skb)->encap_level = 0;
3388
3389 skb_reset_mac_header(skb);
3390 skb_reset_mac_len(skb);
3391
3392 segs = skb_mac_gso_segment(skb, features);
3393
3394 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3395 skb_warn_bad_offload(skb);
3396
3397 return segs;
3398}
3399EXPORT_SYMBOL(__skb_gso_segment);
3400
3401/* Take action when hardware reception checksum errors are detected. */
3402#ifdef CONFIG_BUG
3403void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3404{
3405 if (net_ratelimit()) {
3406 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3407 skb_dump(KERN_ERR, skb, true);
3408 dump_stack();
3409 }
3410}
3411EXPORT_SYMBOL(netdev_rx_csum_fault);
3412#endif
3413
3414/* XXX: check that highmem exists at all on the given machine. */
3415static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3416{
3417#ifdef CONFIG_HIGHMEM
3418 int i;
3419
3420 if (!(dev->features & NETIF_F_HIGHDMA)) {
3421 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3422 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3423
3424 if (PageHighMem(skb_frag_page(frag)))
3425 return 1;
3426 }
3427 }
3428#endif
3429 return 0;
3430}
3431
3432/* If MPLS offload request, verify we are testing hardware MPLS features
3433 * instead of standard features for the netdev.
3434 */
3435#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3436static netdev_features_t net_mpls_features(struct sk_buff *skb,
3437 netdev_features_t features,
3438 __be16 type)
3439{
3440 if (eth_p_mpls(type))
3441 features &= skb->dev->mpls_features;
3442
3443 return features;
3444}
3445#else
3446static netdev_features_t net_mpls_features(struct sk_buff *skb,
3447 netdev_features_t features,
3448 __be16 type)
3449{
3450 return features;
3451}
3452#endif
3453
3454static netdev_features_t harmonize_features(struct sk_buff *skb,
3455 netdev_features_t features)
3456{
3457 __be16 type;
3458
3459 type = skb_network_protocol(skb, NULL);
3460 features = net_mpls_features(skb, features, type);
3461
3462 if (skb->ip_summed != CHECKSUM_NONE &&
3463 !can_checksum_protocol(features, type)) {
3464 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3465 }
3466 if (illegal_highdma(skb->dev, skb))
3467 features &= ~NETIF_F_SG;
3468
3469 return features;
3470}
3471
3472netdev_features_t passthru_features_check(struct sk_buff *skb,
3473 struct net_device *dev,
3474 netdev_features_t features)
3475{
3476 return features;
3477}
3478EXPORT_SYMBOL(passthru_features_check);
3479
3480static netdev_features_t dflt_features_check(struct sk_buff *skb,
3481 struct net_device *dev,
3482 netdev_features_t features)
3483{
3484 return vlan_features_check(skb, features);
3485}
3486
3487static netdev_features_t gso_features_check(const struct sk_buff *skb,
3488 struct net_device *dev,
3489 netdev_features_t features)
3490{
3491 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3492
3493 if (gso_segs > dev->gso_max_segs)
3494 return features & ~NETIF_F_GSO_MASK;
3495
3496 /* Support for GSO partial features requires software
3497 * intervention before we can actually process the packets
3498 * so we need to strip support for any partial features now
3499 * and we can pull them back in after we have partially
3500 * segmented the frame.
3501 */
3502 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3503 features &= ~dev->gso_partial_features;
3504
3505 /* Make sure to clear the IPv4 ID mangling feature if the
3506 * IPv4 header has the potential to be fragmented.
3507 */
3508 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3509 struct iphdr *iph = skb->encapsulation ?
3510 inner_ip_hdr(skb) : ip_hdr(skb);
3511
3512 if (!(iph->frag_off & htons(IP_DF)))
3513 features &= ~NETIF_F_TSO_MANGLEID;
3514 }
3515
3516 return features;
3517}
3518
3519netdev_features_t netif_skb_features(struct sk_buff *skb)
3520{
3521 struct net_device *dev = skb->dev;
3522 netdev_features_t features = dev->features;
3523
3524 if (skb_is_gso(skb))
3525 features = gso_features_check(skb, dev, features);
3526
3527 /* If encapsulation offload request, verify we are testing
3528 * hardware encapsulation features instead of standard
3529 * features for the netdev
3530 */
3531 if (skb->encapsulation)
3532 features &= dev->hw_enc_features;
3533
3534 if (skb_vlan_tagged(skb))
3535 features = netdev_intersect_features(features,
3536 dev->vlan_features |
3537 NETIF_F_HW_VLAN_CTAG_TX |
3538 NETIF_F_HW_VLAN_STAG_TX);
3539
3540 if (dev->netdev_ops->ndo_features_check)
3541 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3542 features);
3543 else
3544 features &= dflt_features_check(skb, dev, features);
3545
3546 return harmonize_features(skb, features);
3547}
3548EXPORT_SYMBOL(netif_skb_features);
3549
3550static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3551 struct netdev_queue *txq, bool more)
3552{
3553 unsigned int len;
3554 int rc;
3555
3556 if (dev_nit_active(dev))
3557 dev_queue_xmit_nit(skb, dev);
3558
3559 len = skb->len;
3560 trace_net_dev_start_xmit(skb, dev);
3561 rc = netdev_start_xmit(skb, dev, txq, more);
3562 trace_net_dev_xmit(skb, rc, dev, len);
3563
3564 return rc;
3565}
3566
3567struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3568 struct netdev_queue *txq, int *ret)
3569{
3570 struct sk_buff *skb = first;
3571 int rc = NETDEV_TX_OK;
3572
3573 while (skb) {
3574 struct sk_buff *next = skb->next;
3575
3576 skb_mark_not_on_list(skb);
3577 rc = xmit_one(skb, dev, txq, next != NULL);
3578 if (unlikely(!dev_xmit_complete(rc))) {
3579 skb->next = next;
3580 goto out;
3581 }
3582
3583 skb = next;
3584 if (netif_tx_queue_stopped(txq) && skb) {
3585 rc = NETDEV_TX_BUSY;
3586 break;
3587 }
3588 }
3589
3590out:
3591 *ret = rc;
3592 return skb;
3593}
3594
3595static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3596 netdev_features_t features)
3597{
3598 if (skb_vlan_tag_present(skb) &&
3599 !vlan_hw_offload_capable(features, skb->vlan_proto))
3600 skb = __vlan_hwaccel_push_inside(skb);
3601 return skb;
3602}
3603
3604int skb_csum_hwoffload_help(struct sk_buff *skb,
3605 const netdev_features_t features)
3606{
3607 if (unlikely(skb->csum_not_inet))
3608 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3609 skb_crc32c_csum_help(skb);
3610
3611 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3612}
3613EXPORT_SYMBOL(skb_csum_hwoffload_help);
3614
3615static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3616{
3617 netdev_features_t features;
3618
3619 features = netif_skb_features(skb);
3620 skb = validate_xmit_vlan(skb, features);
3621 if (unlikely(!skb))
3622 goto out_null;
3623
3624 skb = sk_validate_xmit_skb(skb, dev);
3625 if (unlikely(!skb))
3626 goto out_null;
3627
3628 if (netif_needs_gso(skb, features)) {
3629 struct sk_buff *segs;
3630
3631 segs = skb_gso_segment(skb, features);
3632 if (IS_ERR(segs)) {
3633 goto out_kfree_skb;
3634 } else if (segs) {
3635 consume_skb(skb);
3636 skb = segs;
3637 }
3638 } else {
3639 if (skb_needs_linearize(skb, features) &&
3640 __skb_linearize(skb))
3641 goto out_kfree_skb;
3642
3643 /* If packet is not checksummed and device does not
3644 * support checksumming for this protocol, complete
3645 * checksumming here.
3646 */
3647 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3648 if (skb->encapsulation)
3649 skb_set_inner_transport_header(skb,
3650 skb_checksum_start_offset(skb));
3651 else
3652 skb_set_transport_header(skb,
3653 skb_checksum_start_offset(skb));
3654 if (skb_csum_hwoffload_help(skb, features))
3655 goto out_kfree_skb;
3656 }
3657 }
3658
3659 skb = validate_xmit_xfrm(skb, features, again);
3660
3661 return skb;
3662
3663out_kfree_skb:
3664 kfree_skb(skb);
3665out_null:
3666 atomic_long_inc(&dev->tx_dropped);
3667 return NULL;
3668}
3669
3670struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3671{
3672 struct sk_buff *next, *head = NULL, *tail;
3673
3674 for (; skb != NULL; skb = next) {
3675 next = skb->next;
3676 skb_mark_not_on_list(skb);
3677
3678 /* in case skb wont be segmented, point to itself */
3679 skb->prev = skb;
3680
3681 skb = validate_xmit_skb(skb, dev, again);
3682 if (!skb)
3683 continue;
3684
3685 if (!head)
3686 head = skb;
3687 else
3688 tail->next = skb;
3689 /* If skb was segmented, skb->prev points to
3690 * the last segment. If not, it still contains skb.
3691 */
3692 tail = skb->prev;
3693 }
3694 return head;
3695}
3696EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3697
3698static void qdisc_pkt_len_init(struct sk_buff *skb)
3699{
3700 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3701
3702 qdisc_skb_cb(skb)->pkt_len = skb->len;
3703
3704 /* To get more precise estimation of bytes sent on wire,
3705 * we add to pkt_len the headers size of all segments
3706 */
3707 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3708 unsigned int hdr_len;
3709 u16 gso_segs = shinfo->gso_segs;
3710
3711 /* mac layer + network layer */
3712 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3713
3714 /* + transport layer */
3715 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3716 const struct tcphdr *th;
3717 struct tcphdr _tcphdr;
3718
3719 th = skb_header_pointer(skb, skb_transport_offset(skb),
3720 sizeof(_tcphdr), &_tcphdr);
3721 if (likely(th))
3722 hdr_len += __tcp_hdrlen(th);
3723 } else {
3724 struct udphdr _udphdr;
3725
3726 if (skb_header_pointer(skb, skb_transport_offset(skb),
3727 sizeof(_udphdr), &_udphdr))
3728 hdr_len += sizeof(struct udphdr);
3729 }
3730
3731 if (shinfo->gso_type & SKB_GSO_DODGY)
3732 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3733 shinfo->gso_size);
3734
3735 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3736 }
3737}
3738
3739static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3740 struct net_device *dev,
3741 struct netdev_queue *txq)
3742{
3743 spinlock_t *root_lock = qdisc_lock(q);
3744 struct sk_buff *to_free = NULL;
3745 bool contended;
3746 int rc;
3747
3748 qdisc_calculate_pkt_len(skb, q);
3749
3750 if (q->flags & TCQ_F_NOLOCK) {
3751 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3752 qdisc_run(q);
3753
3754 if (unlikely(to_free))
3755 kfree_skb_list(to_free);
3756 return rc;
3757 }
3758
3759 /*
3760 * Heuristic to force contended enqueues to serialize on a
3761 * separate lock before trying to get qdisc main lock.
3762 * This permits qdisc->running owner to get the lock more
3763 * often and dequeue packets faster.
3764 */
3765 contended = qdisc_is_running(q);
3766 if (unlikely(contended))
3767 spin_lock(&q->busylock);
3768
3769 spin_lock(root_lock);
3770 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3771 __qdisc_drop(skb, &to_free);
3772 rc = NET_XMIT_DROP;
3773 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3774 qdisc_run_begin(q)) {
3775 /*
3776 * This is a work-conserving queue; there are no old skbs
3777 * waiting to be sent out; and the qdisc is not running -
3778 * xmit the skb directly.
3779 */
3780
3781 qdisc_bstats_update(q, skb);
3782
3783 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3784 if (unlikely(contended)) {
3785 spin_unlock(&q->busylock);
3786 contended = false;
3787 }
3788 __qdisc_run(q);
3789 }
3790
3791 qdisc_run_end(q);
3792 rc = NET_XMIT_SUCCESS;
3793 } else {
3794 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3795 if (qdisc_run_begin(q)) {
3796 if (unlikely(contended)) {
3797 spin_unlock(&q->busylock);
3798 contended = false;
3799 }
3800 __qdisc_run(q);
3801 qdisc_run_end(q);
3802 }
3803 }
3804 spin_unlock(root_lock);
3805 if (unlikely(to_free))
3806 kfree_skb_list(to_free);
3807 if (unlikely(contended))
3808 spin_unlock(&q->busylock);
3809 return rc;
3810}
3811
3812#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3813static void skb_update_prio(struct sk_buff *skb)
3814{
3815 const struct netprio_map *map;
3816 const struct sock *sk;
3817 unsigned int prioidx;
3818
3819 if (skb->priority)
3820 return;
3821 map = rcu_dereference_bh(skb->dev->priomap);
3822 if (!map)
3823 return;
3824 sk = skb_to_full_sk(skb);
3825 if (!sk)
3826 return;
3827
3828 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3829
3830 if (prioidx < map->priomap_len)
3831 skb->priority = map->priomap[prioidx];
3832}
3833#else
3834#define skb_update_prio(skb)
3835#endif
3836
3837/**
3838 * dev_loopback_xmit - loop back @skb
3839 * @net: network namespace this loopback is happening in
3840 * @sk: sk needed to be a netfilter okfn
3841 * @skb: buffer to transmit
3842 */
3843int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3844{
3845 skb_reset_mac_header(skb);
3846 __skb_pull(skb, skb_network_offset(skb));
3847 skb->pkt_type = PACKET_LOOPBACK;
3848 skb->ip_summed = CHECKSUM_UNNECESSARY;
3849 WARN_ON(!skb_dst(skb));
3850 skb_dst_force(skb);
3851 netif_rx_ni(skb);
3852 return 0;
3853}
3854EXPORT_SYMBOL(dev_loopback_xmit);
3855
3856#ifdef CONFIG_NET_EGRESS
3857static struct sk_buff *
3858sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3859{
3860 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3861 struct tcf_result cl_res;
3862
3863 if (!miniq)
3864 return skb;
3865
3866 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3867 mini_qdisc_bstats_cpu_update(miniq, skb);
3868
3869 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3870 case TC_ACT_OK:
3871 case TC_ACT_RECLASSIFY:
3872 skb->tc_index = TC_H_MIN(cl_res.classid);
3873 break;
3874 case TC_ACT_SHOT:
3875 mini_qdisc_qstats_cpu_drop(miniq);
3876 *ret = NET_XMIT_DROP;
3877 kfree_skb(skb);
3878 return NULL;
3879 case TC_ACT_STOLEN:
3880 case TC_ACT_QUEUED:
3881 case TC_ACT_TRAP:
3882 *ret = NET_XMIT_SUCCESS;
3883 consume_skb(skb);
3884 return NULL;
3885 case TC_ACT_REDIRECT:
3886 /* No need to push/pop skb's mac_header here on egress! */
3887 skb_do_redirect(skb);
3888 *ret = NET_XMIT_SUCCESS;
3889 return NULL;
3890 default:
3891 break;
3892 }
3893
3894 return skb;
3895}
3896#endif /* CONFIG_NET_EGRESS */
3897
3898#ifdef CONFIG_XPS
3899static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3900 struct xps_dev_maps *dev_maps, unsigned int tci)
3901{
3902 struct xps_map *map;
3903 int queue_index = -1;
3904
3905 if (dev->num_tc) {
3906 tci *= dev->num_tc;
3907 tci += netdev_get_prio_tc_map(dev, skb->priority);
3908 }
3909
3910 map = rcu_dereference(dev_maps->attr_map[tci]);
3911 if (map) {
3912 if (map->len == 1)
3913 queue_index = map->queues[0];
3914 else
3915 queue_index = map->queues[reciprocal_scale(
3916 skb_get_hash(skb), map->len)];
3917 if (unlikely(queue_index >= dev->real_num_tx_queues))
3918 queue_index = -1;
3919 }
3920 return queue_index;
3921}
3922#endif
3923
3924static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3925 struct sk_buff *skb)
3926{
3927#ifdef CONFIG_XPS
3928 struct xps_dev_maps *dev_maps;
3929 struct sock *sk = skb->sk;
3930 int queue_index = -1;
3931
3932 if (!static_key_false(&xps_needed))
3933 return -1;
3934
3935 rcu_read_lock();
3936 if (!static_key_false(&xps_rxqs_needed))
3937 goto get_cpus_map;
3938
3939 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3940 if (dev_maps) {
3941 int tci = sk_rx_queue_get(sk);
3942
3943 if (tci >= 0 && tci < dev->num_rx_queues)
3944 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3945 tci);
3946 }
3947
3948get_cpus_map:
3949 if (queue_index < 0) {
3950 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3951 if (dev_maps) {
3952 unsigned int tci = skb->sender_cpu - 1;
3953
3954 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3955 tci);
3956 }
3957 }
3958 rcu_read_unlock();
3959
3960 return queue_index;
3961#else
3962 return -1;
3963#endif
3964}
3965
3966u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3967 struct net_device *sb_dev)
3968{
3969 return 0;
3970}
3971EXPORT_SYMBOL(dev_pick_tx_zero);
3972
3973u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3974 struct net_device *sb_dev)
3975{
3976 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3977}
3978EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3979
3980u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3981 struct net_device *sb_dev)
3982{
3983 struct sock *sk = skb->sk;
3984 int queue_index = sk_tx_queue_get(sk);
3985
3986 sb_dev = sb_dev ? : dev;
3987
3988 if (queue_index < 0 || skb->ooo_okay ||
3989 queue_index >= dev->real_num_tx_queues) {
3990 int new_index = get_xps_queue(dev, sb_dev, skb);
3991
3992 if (new_index < 0)
3993 new_index = skb_tx_hash(dev, sb_dev, skb);
3994
3995 if (queue_index != new_index && sk &&
3996 sk_fullsock(sk) &&
3997 rcu_access_pointer(sk->sk_dst_cache))
3998 sk_tx_queue_set(sk, new_index);
3999
4000 queue_index = new_index;
4001 }
4002
4003 return queue_index;
4004}
4005EXPORT_SYMBOL(netdev_pick_tx);
4006
4007struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4008 struct sk_buff *skb,
4009 struct net_device *sb_dev)
4010{
4011 int queue_index = 0;
4012
4013#ifdef CONFIG_XPS
4014 u32 sender_cpu = skb->sender_cpu - 1;
4015
4016 if (sender_cpu >= (u32)NR_CPUS)
4017 skb->sender_cpu = raw_smp_processor_id() + 1;
4018#endif
4019
4020 if (dev->real_num_tx_queues != 1) {
4021 const struct net_device_ops *ops = dev->netdev_ops;
4022
4023 if (ops->ndo_select_queue)
4024 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4025 else
4026 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4027
4028 queue_index = netdev_cap_txqueue(dev, queue_index);
4029 }
4030
4031 skb_set_queue_mapping(skb, queue_index);
4032 return netdev_get_tx_queue(dev, queue_index);
4033}
4034
4035/**
4036 * __dev_queue_xmit - transmit a buffer
4037 * @skb: buffer to transmit
4038 * @sb_dev: suboordinate device used for L2 forwarding offload
4039 *
4040 * Queue a buffer for transmission to a network device. The caller must
4041 * have set the device and priority and built the buffer before calling
4042 * this function. The function can be called from an interrupt.
4043 *
4044 * A negative errno code is returned on a failure. A success does not
4045 * guarantee the frame will be transmitted as it may be dropped due
4046 * to congestion or traffic shaping.
4047 *
4048 * -----------------------------------------------------------------------------------
4049 * I notice this method can also return errors from the queue disciplines,
4050 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4051 * be positive.
4052 *
4053 * Regardless of the return value, the skb is consumed, so it is currently
4054 * difficult to retry a send to this method. (You can bump the ref count
4055 * before sending to hold a reference for retry if you are careful.)
4056 *
4057 * When calling this method, interrupts MUST be enabled. This is because
4058 * the BH enable code must have IRQs enabled so that it will not deadlock.
4059 * --BLG
4060 */
4061static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4062{
4063 struct net_device *dev = skb->dev;
4064 struct netdev_queue *txq;
4065 struct Qdisc *q;
4066 int rc = -ENOMEM;
4067 bool again = false;
4068
4069 skb_reset_mac_header(skb);
4070
4071 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4072 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4073
4074 /* Disable soft irqs for various locks below. Also
4075 * stops preemption for RCU.
4076 */
4077 rcu_read_lock_bh();
4078
4079 skb_update_prio(skb);
4080
4081 qdisc_pkt_len_init(skb);
4082#ifdef CONFIG_NET_CLS_ACT
4083 skb->tc_at_ingress = 0;
4084# ifdef CONFIG_NET_EGRESS
4085 if (static_branch_unlikely(&egress_needed_key)) {
4086 skb = sch_handle_egress(skb, &rc, dev);
4087 if (!skb)
4088 goto out;
4089 }
4090# endif
4091#endif
4092 /* If device/qdisc don't need skb->dst, release it right now while
4093 * its hot in this cpu cache.
4094 */
4095 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4096 skb_dst_drop(skb);
4097 else
4098 skb_dst_force(skb);
4099
4100 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4101 q = rcu_dereference_bh(txq->qdisc);
4102
4103 trace_net_dev_queue(skb);
4104 if (q->enqueue) {
4105 rc = __dev_xmit_skb(skb, q, dev, txq);
4106 goto out;
4107 }
4108
4109 /* The device has no queue. Common case for software devices:
4110 * loopback, all the sorts of tunnels...
4111
4112 * Really, it is unlikely that netif_tx_lock protection is necessary
4113 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4114 * counters.)
4115 * However, it is possible, that they rely on protection
4116 * made by us here.
4117
4118 * Check this and shot the lock. It is not prone from deadlocks.
4119 *Either shot noqueue qdisc, it is even simpler 8)
4120 */
4121 if (dev->flags & IFF_UP) {
4122 int cpu = smp_processor_id(); /* ok because BHs are off */
4123
4124 if (txq->xmit_lock_owner != cpu) {
4125 if (dev_xmit_recursion())
4126 goto recursion_alert;
4127
4128 skb = validate_xmit_skb(skb, dev, &again);
4129 if (!skb)
4130 goto out;
4131
4132 HARD_TX_LOCK(dev, txq, cpu);
4133
4134 if (!netif_xmit_stopped(txq)) {
4135 dev_xmit_recursion_inc();
4136 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4137 dev_xmit_recursion_dec();
4138 if (dev_xmit_complete(rc)) {
4139 HARD_TX_UNLOCK(dev, txq);
4140 goto out;
4141 }
4142 }
4143 HARD_TX_UNLOCK(dev, txq);
4144 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4145 dev->name);
4146 } else {
4147 /* Recursion is detected! It is possible,
4148 * unfortunately
4149 */
4150recursion_alert:
4151 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4152 dev->name);
4153 }
4154 }
4155
4156 rc = -ENETDOWN;
4157 rcu_read_unlock_bh();
4158
4159 atomic_long_inc(&dev->tx_dropped);
4160 kfree_skb_list(skb);
4161 return rc;
4162out:
4163 rcu_read_unlock_bh();
4164 return rc;
4165}
4166
4167int dev_queue_xmit(struct sk_buff *skb)
4168{
4169 return __dev_queue_xmit(skb, NULL);
4170}
4171EXPORT_SYMBOL(dev_queue_xmit);
4172
4173int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4174{
4175 return __dev_queue_xmit(skb, sb_dev);
4176}
4177EXPORT_SYMBOL(dev_queue_xmit_accel);
4178
4179int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4180{
4181 struct net_device *dev = skb->dev;
4182 struct sk_buff *orig_skb = skb;
4183 struct netdev_queue *txq;
4184 int ret = NETDEV_TX_BUSY;
4185 bool again = false;
4186
4187 if (unlikely(!netif_running(dev) ||
4188 !netif_carrier_ok(dev)))
4189 goto drop;
4190
4191 skb = validate_xmit_skb_list(skb, dev, &again);
4192 if (skb != orig_skb)
4193 goto drop;
4194
4195 skb_set_queue_mapping(skb, queue_id);
4196 txq = skb_get_tx_queue(dev, skb);
4197
4198 local_bh_disable();
4199
4200 dev_xmit_recursion_inc();
4201 HARD_TX_LOCK(dev, txq, smp_processor_id());
4202 if (!netif_xmit_frozen_or_drv_stopped(txq))
4203 ret = netdev_start_xmit(skb, dev, txq, false);
4204 HARD_TX_UNLOCK(dev, txq);
4205 dev_xmit_recursion_dec();
4206
4207 local_bh_enable();
4208
4209 if (!dev_xmit_complete(ret))
4210 kfree_skb(skb);
4211
4212 return ret;
4213drop:
4214 atomic_long_inc(&dev->tx_dropped);
4215 kfree_skb_list(skb);
4216 return NET_XMIT_DROP;
4217}
4218EXPORT_SYMBOL(dev_direct_xmit);
4219
4220/*************************************************************************
4221 * Receiver routines
4222 *************************************************************************/
4223
4224int netdev_max_backlog __read_mostly = 1000;
4225EXPORT_SYMBOL(netdev_max_backlog);
4226
4227int netdev_tstamp_prequeue __read_mostly = 1;
4228int netdev_budget __read_mostly = 300;
4229/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4230unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4231int weight_p __read_mostly = 64; /* old backlog weight */
4232int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4233int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4234int dev_rx_weight __read_mostly = 64;
4235int dev_tx_weight __read_mostly = 64;
4236/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4237int gro_normal_batch __read_mostly = 8;
4238
4239/* Called with irq disabled */
4240static inline void ____napi_schedule(struct softnet_data *sd,
4241 struct napi_struct *napi)
4242{
4243 list_add_tail(&napi->poll_list, &sd->poll_list);
4244 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4245}
4246
4247#ifdef CONFIG_RPS
4248
4249/* One global table that all flow-based protocols share. */
4250struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4251EXPORT_SYMBOL(rps_sock_flow_table);
4252u32 rps_cpu_mask __read_mostly;
4253EXPORT_SYMBOL(rps_cpu_mask);
4254
4255struct static_key_false rps_needed __read_mostly;
4256EXPORT_SYMBOL(rps_needed);
4257struct static_key_false rfs_needed __read_mostly;
4258EXPORT_SYMBOL(rfs_needed);
4259
4260static struct rps_dev_flow *
4261set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4262 struct rps_dev_flow *rflow, u16 next_cpu)
4263{
4264 if (next_cpu < nr_cpu_ids) {
4265#ifdef CONFIG_RFS_ACCEL
4266 struct netdev_rx_queue *rxqueue;
4267 struct rps_dev_flow_table *flow_table;
4268 struct rps_dev_flow *old_rflow;
4269 u32 flow_id;
4270 u16 rxq_index;
4271 int rc;
4272
4273 /* Should we steer this flow to a different hardware queue? */
4274 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4275 !(dev->features & NETIF_F_NTUPLE))
4276 goto out;
4277 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4278 if (rxq_index == skb_get_rx_queue(skb))
4279 goto out;
4280
4281 rxqueue = dev->_rx + rxq_index;
4282 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4283 if (!flow_table)
4284 goto out;
4285 flow_id = skb_get_hash(skb) & flow_table->mask;
4286 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4287 rxq_index, flow_id);
4288 if (rc < 0)
4289 goto out;
4290 old_rflow = rflow;
4291 rflow = &flow_table->flows[flow_id];
4292 rflow->filter = rc;
4293 if (old_rflow->filter == rflow->filter)
4294 old_rflow->filter = RPS_NO_FILTER;
4295 out:
4296#endif
4297 rflow->last_qtail =
4298 per_cpu(softnet_data, next_cpu).input_queue_head;
4299 }
4300
4301 rflow->cpu = next_cpu;
4302 return rflow;
4303}
4304
4305/*
4306 * get_rps_cpu is called from netif_receive_skb and returns the target
4307 * CPU from the RPS map of the receiving queue for a given skb.
4308 * rcu_read_lock must be held on entry.
4309 */
4310static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4311 struct rps_dev_flow **rflowp)
4312{
4313 const struct rps_sock_flow_table *sock_flow_table;
4314 struct netdev_rx_queue *rxqueue = dev->_rx;
4315 struct rps_dev_flow_table *flow_table;
4316 struct rps_map *map;
4317 int cpu = -1;
4318 u32 tcpu;
4319 u32 hash;
4320
4321 if (skb_rx_queue_recorded(skb)) {
4322 u16 index = skb_get_rx_queue(skb);
4323
4324 if (unlikely(index >= dev->real_num_rx_queues)) {
4325 WARN_ONCE(dev->real_num_rx_queues > 1,
4326 "%s received packet on queue %u, but number "
4327 "of RX queues is %u\n",
4328 dev->name, index, dev->real_num_rx_queues);
4329 goto done;
4330 }
4331 rxqueue += index;
4332 }
4333
4334 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4335
4336 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4337 map = rcu_dereference(rxqueue->rps_map);
4338 if (!flow_table && !map)
4339 goto done;
4340
4341 skb_reset_network_header(skb);
4342 hash = skb_get_hash(skb);
4343 if (!hash)
4344 goto done;
4345
4346 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4347 if (flow_table && sock_flow_table) {
4348 struct rps_dev_flow *rflow;
4349 u32 next_cpu;
4350 u32 ident;
4351
4352 /* First check into global flow table if there is a match */
4353 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4354 if ((ident ^ hash) & ~rps_cpu_mask)
4355 goto try_rps;
4356
4357 next_cpu = ident & rps_cpu_mask;
4358
4359 /* OK, now we know there is a match,
4360 * we can look at the local (per receive queue) flow table
4361 */
4362 rflow = &flow_table->flows[hash & flow_table->mask];
4363 tcpu = rflow->cpu;
4364
4365 /*
4366 * If the desired CPU (where last recvmsg was done) is
4367 * different from current CPU (one in the rx-queue flow
4368 * table entry), switch if one of the following holds:
4369 * - Current CPU is unset (>= nr_cpu_ids).
4370 * - Current CPU is offline.
4371 * - The current CPU's queue tail has advanced beyond the
4372 * last packet that was enqueued using this table entry.
4373 * This guarantees that all previous packets for the flow
4374 * have been dequeued, thus preserving in order delivery.
4375 */
4376 if (unlikely(tcpu != next_cpu) &&
4377 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4378 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4379 rflow->last_qtail)) >= 0)) {
4380 tcpu = next_cpu;
4381 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4382 }
4383
4384 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4385 *rflowp = rflow;
4386 cpu = tcpu;
4387 goto done;
4388 }
4389 }
4390
4391try_rps:
4392
4393 if (map) {
4394 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4395 if (cpu_online(tcpu)) {
4396 cpu = tcpu;
4397 goto done;
4398 }
4399 }
4400
4401done:
4402 return cpu;
4403}
4404
4405#ifdef CONFIG_RFS_ACCEL
4406
4407/**
4408 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4409 * @dev: Device on which the filter was set
4410 * @rxq_index: RX queue index
4411 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4412 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4413 *
4414 * Drivers that implement ndo_rx_flow_steer() should periodically call
4415 * this function for each installed filter and remove the filters for
4416 * which it returns %true.
4417 */
4418bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4419 u32 flow_id, u16 filter_id)
4420{
4421 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4422 struct rps_dev_flow_table *flow_table;
4423 struct rps_dev_flow *rflow;
4424 bool expire = true;
4425 unsigned int cpu;
4426
4427 rcu_read_lock();
4428 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4429 if (flow_table && flow_id <= flow_table->mask) {
4430 rflow = &flow_table->flows[flow_id];
4431 cpu = READ_ONCE(rflow->cpu);
4432 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4433 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4434 rflow->last_qtail) <
4435 (int)(10 * flow_table->mask)))
4436 expire = false;
4437 }
4438 rcu_read_unlock();
4439 return expire;
4440}
4441EXPORT_SYMBOL(rps_may_expire_flow);
4442
4443#endif /* CONFIG_RFS_ACCEL */
4444
4445/* Called from hardirq (IPI) context */
4446static void rps_trigger_softirq(void *data)
4447{
4448 struct softnet_data *sd = data;
4449
4450 ____napi_schedule(sd, &sd->backlog);
4451 sd->received_rps++;
4452}
4453
4454#endif /* CONFIG_RPS */
4455
4456/*
4457 * Check if this softnet_data structure is another cpu one
4458 * If yes, queue it to our IPI list and return 1
4459 * If no, return 0
4460 */
4461static int rps_ipi_queued(struct softnet_data *sd)
4462{
4463#ifdef CONFIG_RPS
4464 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4465
4466 if (sd != mysd) {
4467 sd->rps_ipi_next = mysd->rps_ipi_list;
4468 mysd->rps_ipi_list = sd;
4469
4470 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4471 return 1;
4472 }
4473#endif /* CONFIG_RPS */
4474 return 0;
4475}
4476
4477#ifdef CONFIG_NET_FLOW_LIMIT
4478int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4479#endif
4480
4481static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4482{
4483#ifdef CONFIG_NET_FLOW_LIMIT
4484 struct sd_flow_limit *fl;
4485 struct softnet_data *sd;
4486 unsigned int old_flow, new_flow;
4487
4488 if (qlen < (netdev_max_backlog >> 1))
4489 return false;
4490
4491 sd = this_cpu_ptr(&softnet_data);
4492
4493 rcu_read_lock();
4494 fl = rcu_dereference(sd->flow_limit);
4495 if (fl) {
4496 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4497 old_flow = fl->history[fl->history_head];
4498 fl->history[fl->history_head] = new_flow;
4499
4500 fl->history_head++;
4501 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4502
4503 if (likely(fl->buckets[old_flow]))
4504 fl->buckets[old_flow]--;
4505
4506 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4507 fl->count++;
4508 rcu_read_unlock();
4509 return true;
4510 }
4511 }
4512 rcu_read_unlock();
4513#endif
4514 return false;
4515}
4516
4517/*
4518 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4519 * queue (may be a remote CPU queue).
4520 */
4521static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4522 unsigned int *qtail)
4523{
4524 struct softnet_data *sd;
4525 unsigned long flags;
4526 unsigned int qlen;
4527
4528 sd = &per_cpu(softnet_data, cpu);
4529
4530 local_irq_save(flags);
4531
4532 rps_lock(sd);
4533 if (!netif_running(skb->dev))
4534 goto drop;
4535 qlen = skb_queue_len(&sd->input_pkt_queue);
4536 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4537 if (qlen) {
4538enqueue:
4539 __skb_queue_tail(&sd->input_pkt_queue, skb);
4540 input_queue_tail_incr_save(sd, qtail);
4541 rps_unlock(sd);
4542 local_irq_restore(flags);
4543 return NET_RX_SUCCESS;
4544 }
4545
4546 /* Schedule NAPI for backlog device
4547 * We can use non atomic operation since we own the queue lock
4548 */
4549 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4550 if (!rps_ipi_queued(sd))
4551 ____napi_schedule(sd, &sd->backlog);
4552 }
4553 goto enqueue;
4554 }
4555
4556drop:
4557 sd->dropped++;
4558 rps_unlock(sd);
4559
4560 local_irq_restore(flags);
4561
4562 atomic_long_inc(&skb->dev->rx_dropped);
4563 kfree_skb(skb);
4564 return NET_RX_DROP;
4565}
4566
4567static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4568{
4569 struct net_device *dev = skb->dev;
4570 struct netdev_rx_queue *rxqueue;
4571
4572 rxqueue = dev->_rx;
4573
4574 if (skb_rx_queue_recorded(skb)) {
4575 u16 index = skb_get_rx_queue(skb);
4576
4577 if (unlikely(index >= dev->real_num_rx_queues)) {
4578 WARN_ONCE(dev->real_num_rx_queues > 1,
4579 "%s received packet on queue %u, but number "
4580 "of RX queues is %u\n",
4581 dev->name, index, dev->real_num_rx_queues);
4582
4583 return rxqueue; /* Return first rxqueue */
4584 }
4585 rxqueue += index;
4586 }
4587 return rxqueue;
4588}
4589
4590static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4591 struct xdp_buff *xdp,
4592 struct bpf_prog *xdp_prog)
4593{
4594 struct netdev_rx_queue *rxqueue;
4595 void *orig_data, *orig_data_end;
4596 u32 metalen, act = XDP_DROP;
4597 __be16 orig_eth_type;
4598 struct ethhdr *eth;
4599 bool orig_bcast;
4600 int hlen, off;
4601 u32 mac_len;
4602
4603 /* Reinjected packets coming from act_mirred or similar should
4604 * not get XDP generic processing.
4605 */
4606 if (skb_is_redirected(skb))
4607 return XDP_PASS;
4608
4609 /* XDP packets must be linear and must have sufficient headroom
4610 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4611 * native XDP provides, thus we need to do it here as well.
4612 */
4613 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4614 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4615 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4616 int troom = skb->tail + skb->data_len - skb->end;
4617
4618 /* In case we have to go down the path and also linearize,
4619 * then lets do the pskb_expand_head() work just once here.
4620 */
4621 if (pskb_expand_head(skb,
4622 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4623 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4624 goto do_drop;
4625 if (skb_linearize(skb))
4626 goto do_drop;
4627 }
4628
4629 /* The XDP program wants to see the packet starting at the MAC
4630 * header.
4631 */
4632 mac_len = skb->data - skb_mac_header(skb);
4633 hlen = skb_headlen(skb) + mac_len;
4634 xdp->data = skb->data - mac_len;
4635 xdp->data_meta = xdp->data;
4636 xdp->data_end = xdp->data + hlen;
4637 xdp->data_hard_start = skb->data - skb_headroom(skb);
4638
4639 /* SKB "head" area always have tailroom for skb_shared_info */
4640 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4641 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4642
4643 orig_data_end = xdp->data_end;
4644 orig_data = xdp->data;
4645 eth = (struct ethhdr *)xdp->data;
4646 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4647 orig_eth_type = eth->h_proto;
4648
4649 rxqueue = netif_get_rxqueue(skb);
4650 xdp->rxq = &rxqueue->xdp_rxq;
4651
4652 act = bpf_prog_run_xdp(xdp_prog, xdp);
4653
4654 /* check if bpf_xdp_adjust_head was used */
4655 off = xdp->data - orig_data;
4656 if (off) {
4657 if (off > 0)
4658 __skb_pull(skb, off);
4659 else if (off < 0)
4660 __skb_push(skb, -off);
4661
4662 skb->mac_header += off;
4663 skb_reset_network_header(skb);
4664 }
4665
4666 /* check if bpf_xdp_adjust_tail was used */
4667 off = xdp->data_end - orig_data_end;
4668 if (off != 0) {
4669 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4670 skb->len += off; /* positive on grow, negative on shrink */
4671 }
4672
4673 /* check if XDP changed eth hdr such SKB needs update */
4674 eth = (struct ethhdr *)xdp->data;
4675 if ((orig_eth_type != eth->h_proto) ||
4676 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4677 __skb_push(skb, ETH_HLEN);
4678 skb->protocol = eth_type_trans(skb, skb->dev);
4679 }
4680
4681 switch (act) {
4682 case XDP_REDIRECT:
4683 case XDP_TX:
4684 __skb_push(skb, mac_len);
4685 break;
4686 case XDP_PASS:
4687 metalen = xdp->data - xdp->data_meta;
4688 if (metalen)
4689 skb_metadata_set(skb, metalen);
4690 break;
4691 default:
4692 bpf_warn_invalid_xdp_action(act);
4693 fallthrough;
4694 case XDP_ABORTED:
4695 trace_xdp_exception(skb->dev, xdp_prog, act);
4696 fallthrough;
4697 case XDP_DROP:
4698 do_drop:
4699 kfree_skb(skb);
4700 break;
4701 }
4702
4703 return act;
4704}
4705
4706/* When doing generic XDP we have to bypass the qdisc layer and the
4707 * network taps in order to match in-driver-XDP behavior.
4708 */
4709void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4710{
4711 struct net_device *dev = skb->dev;
4712 struct netdev_queue *txq;
4713 bool free_skb = true;
4714 int cpu, rc;
4715
4716 txq = netdev_core_pick_tx(dev, skb, NULL);
4717 cpu = smp_processor_id();
4718 HARD_TX_LOCK(dev, txq, cpu);
4719 if (!netif_xmit_stopped(txq)) {
4720 rc = netdev_start_xmit(skb, dev, txq, 0);
4721 if (dev_xmit_complete(rc))
4722 free_skb = false;
4723 }
4724 HARD_TX_UNLOCK(dev, txq);
4725 if (free_skb) {
4726 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4727 kfree_skb(skb);
4728 }
4729}
4730
4731static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4732
4733int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4734{
4735 if (xdp_prog) {
4736 struct xdp_buff xdp;
4737 u32 act;
4738 int err;
4739
4740 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4741 if (act != XDP_PASS) {
4742 switch (act) {
4743 case XDP_REDIRECT:
4744 err = xdp_do_generic_redirect(skb->dev, skb,
4745 &xdp, xdp_prog);
4746 if (err)
4747 goto out_redir;
4748 break;
4749 case XDP_TX:
4750 generic_xdp_tx(skb, xdp_prog);
4751 break;
4752 }
4753 return XDP_DROP;
4754 }
4755 }
4756 return XDP_PASS;
4757out_redir:
4758 kfree_skb(skb);
4759 return XDP_DROP;
4760}
4761EXPORT_SYMBOL_GPL(do_xdp_generic);
4762
4763static int netif_rx_internal(struct sk_buff *skb)
4764{
4765 int ret;
4766
4767 net_timestamp_check(netdev_tstamp_prequeue, skb);
4768
4769 trace_netif_rx(skb);
4770
4771#ifdef CONFIG_RPS
4772 if (static_branch_unlikely(&rps_needed)) {
4773 struct rps_dev_flow voidflow, *rflow = &voidflow;
4774 int cpu;
4775
4776 preempt_disable();
4777 rcu_read_lock();
4778
4779 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4780 if (cpu < 0)
4781 cpu = smp_processor_id();
4782
4783 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4784
4785 rcu_read_unlock();
4786 preempt_enable();
4787 } else
4788#endif
4789 {
4790 unsigned int qtail;
4791
4792 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4793 put_cpu();
4794 }
4795 return ret;
4796}
4797
4798/**
4799 * netif_rx - post buffer to the network code
4800 * @skb: buffer to post
4801 *
4802 * This function receives a packet from a device driver and queues it for
4803 * the upper (protocol) levels to process. It always succeeds. The buffer
4804 * may be dropped during processing for congestion control or by the
4805 * protocol layers.
4806 *
4807 * return values:
4808 * NET_RX_SUCCESS (no congestion)
4809 * NET_RX_DROP (packet was dropped)
4810 *
4811 */
4812
4813int netif_rx(struct sk_buff *skb)
4814{
4815 int ret;
4816
4817 trace_netif_rx_entry(skb);
4818
4819 ret = netif_rx_internal(skb);
4820 trace_netif_rx_exit(ret);
4821
4822 return ret;
4823}
4824EXPORT_SYMBOL(netif_rx);
4825
4826int netif_rx_ni(struct sk_buff *skb)
4827{
4828 int err;
4829
4830 trace_netif_rx_ni_entry(skb);
4831
4832 preempt_disable();
4833 err = netif_rx_internal(skb);
4834 if (local_softirq_pending())
4835 do_softirq();
4836 preempt_enable();
4837 trace_netif_rx_ni_exit(err);
4838
4839 return err;
4840}
4841EXPORT_SYMBOL(netif_rx_ni);
4842
4843static __latent_entropy void net_tx_action(struct softirq_action *h)
4844{
4845 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4846
4847 if (sd->completion_queue) {
4848 struct sk_buff *clist;
4849
4850 local_irq_disable();
4851 clist = sd->completion_queue;
4852 sd->completion_queue = NULL;
4853 local_irq_enable();
4854
4855 while (clist) {
4856 struct sk_buff *skb = clist;
4857
4858 clist = clist->next;
4859
4860 WARN_ON(refcount_read(&skb->users));
4861 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4862 trace_consume_skb(skb);
4863 else
4864 trace_kfree_skb(skb, net_tx_action);
4865
4866 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4867 __kfree_skb(skb);
4868 else
4869 __kfree_skb_defer(skb);
4870 }
4871
4872 __kfree_skb_flush();
4873 }
4874
4875 if (sd->output_queue) {
4876 struct Qdisc *head;
4877
4878 local_irq_disable();
4879 head = sd->output_queue;
4880 sd->output_queue = NULL;
4881 sd->output_queue_tailp = &sd->output_queue;
4882 local_irq_enable();
4883
4884 while (head) {
4885 struct Qdisc *q = head;
4886 spinlock_t *root_lock = NULL;
4887
4888 head = head->next_sched;
4889
4890 if (!(q->flags & TCQ_F_NOLOCK)) {
4891 root_lock = qdisc_lock(q);
4892 spin_lock(root_lock);
4893 }
4894 /* We need to make sure head->next_sched is read
4895 * before clearing __QDISC_STATE_SCHED
4896 */
4897 smp_mb__before_atomic();
4898 clear_bit(__QDISC_STATE_SCHED, &q->state);
4899 qdisc_run(q);
4900 if (root_lock)
4901 spin_unlock(root_lock);
4902 }
4903 }
4904
4905 xfrm_dev_backlog(sd);
4906}
4907
4908#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4909/* This hook is defined here for ATM LANE */
4910int (*br_fdb_test_addr_hook)(struct net_device *dev,
4911 unsigned char *addr) __read_mostly;
4912EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4913#endif
4914
4915static inline struct sk_buff *
4916sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4917 struct net_device *orig_dev)
4918{
4919#ifdef CONFIG_NET_CLS_ACT
4920 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4921 struct tcf_result cl_res;
4922
4923 /* If there's at least one ingress present somewhere (so
4924 * we get here via enabled static key), remaining devices
4925 * that are not configured with an ingress qdisc will bail
4926 * out here.
4927 */
4928 if (!miniq)
4929 return skb;
4930
4931 if (*pt_prev) {
4932 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4933 *pt_prev = NULL;
4934 }
4935
4936 qdisc_skb_cb(skb)->pkt_len = skb->len;
4937 skb->tc_at_ingress = 1;
4938 mini_qdisc_bstats_cpu_update(miniq, skb);
4939
4940 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4941 &cl_res, false)) {
4942 case TC_ACT_OK:
4943 case TC_ACT_RECLASSIFY:
4944 skb->tc_index = TC_H_MIN(cl_res.classid);
4945 break;
4946 case TC_ACT_SHOT:
4947 mini_qdisc_qstats_cpu_drop(miniq);
4948 kfree_skb(skb);
4949 return NULL;
4950 case TC_ACT_STOLEN:
4951 case TC_ACT_QUEUED:
4952 case TC_ACT_TRAP:
4953 consume_skb(skb);
4954 return NULL;
4955 case TC_ACT_REDIRECT:
4956 /* skb_mac_header check was done by cls/act_bpf, so
4957 * we can safely push the L2 header back before
4958 * redirecting to another netdev
4959 */
4960 __skb_push(skb, skb->mac_len);
4961 skb_do_redirect(skb);
4962 return NULL;
4963 case TC_ACT_CONSUMED:
4964 return NULL;
4965 default:
4966 break;
4967 }
4968#endif /* CONFIG_NET_CLS_ACT */
4969 return skb;
4970}
4971
4972/**
4973 * netdev_is_rx_handler_busy - check if receive handler is registered
4974 * @dev: device to check
4975 *
4976 * Check if a receive handler is already registered for a given device.
4977 * Return true if there one.
4978 *
4979 * The caller must hold the rtnl_mutex.
4980 */
4981bool netdev_is_rx_handler_busy(struct net_device *dev)
4982{
4983 ASSERT_RTNL();
4984 return dev && rtnl_dereference(dev->rx_handler);
4985}
4986EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4987
4988/**
4989 * netdev_rx_handler_register - register receive handler
4990 * @dev: device to register a handler for
4991 * @rx_handler: receive handler to register
4992 * @rx_handler_data: data pointer that is used by rx handler
4993 *
4994 * Register a receive handler for a device. This handler will then be
4995 * called from __netif_receive_skb. A negative errno code is returned
4996 * on a failure.
4997 *
4998 * The caller must hold the rtnl_mutex.
4999 *
5000 * For a general description of rx_handler, see enum rx_handler_result.
5001 */
5002int netdev_rx_handler_register(struct net_device *dev,
5003 rx_handler_func_t *rx_handler,
5004 void *rx_handler_data)
5005{
5006 if (netdev_is_rx_handler_busy(dev))
5007 return -EBUSY;
5008
5009 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5010 return -EINVAL;
5011
5012 /* Note: rx_handler_data must be set before rx_handler */
5013 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5014 rcu_assign_pointer(dev->rx_handler, rx_handler);
5015
5016 return 0;
5017}
5018EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5019
5020/**
5021 * netdev_rx_handler_unregister - unregister receive handler
5022 * @dev: device to unregister a handler from
5023 *
5024 * Unregister a receive handler from a device.
5025 *
5026 * The caller must hold the rtnl_mutex.
5027 */
5028void netdev_rx_handler_unregister(struct net_device *dev)
5029{
5030
5031 ASSERT_RTNL();
5032 RCU_INIT_POINTER(dev->rx_handler, NULL);
5033 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5034 * section has a guarantee to see a non NULL rx_handler_data
5035 * as well.
5036 */
5037 synchronize_net();
5038 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5039}
5040EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5041
5042/*
5043 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5044 * the special handling of PFMEMALLOC skbs.
5045 */
5046static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5047{
5048 switch (skb->protocol) {
5049 case htons(ETH_P_ARP):
5050 case htons(ETH_P_IP):
5051 case htons(ETH_P_IPV6):
5052 case htons(ETH_P_8021Q):
5053 case htons(ETH_P_8021AD):
5054 return true;
5055 default:
5056 return false;
5057 }
5058}
5059
5060static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5061 int *ret, struct net_device *orig_dev)
5062{
5063 if (nf_hook_ingress_active(skb)) {
5064 int ingress_retval;
5065
5066 if (*pt_prev) {
5067 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5068 *pt_prev = NULL;
5069 }
5070
5071 rcu_read_lock();
5072 ingress_retval = nf_hook_ingress(skb);
5073 rcu_read_unlock();
5074 return ingress_retval;
5075 }
5076 return 0;
5077}
5078
5079static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5080 struct packet_type **ppt_prev)
5081{
5082 struct packet_type *ptype, *pt_prev;
5083 rx_handler_func_t *rx_handler;
5084 struct sk_buff *skb = *pskb;
5085 struct net_device *orig_dev;
5086 bool deliver_exact = false;
5087 int ret = NET_RX_DROP;
5088 __be16 type;
5089
5090 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5091
5092 trace_netif_receive_skb(skb);
5093
5094 orig_dev = skb->dev;
5095
5096 skb_reset_network_header(skb);
5097 if (!skb_transport_header_was_set(skb))
5098 skb_reset_transport_header(skb);
5099 skb_reset_mac_len(skb);
5100
5101 pt_prev = NULL;
5102
5103another_round:
5104 skb->skb_iif = skb->dev->ifindex;
5105
5106 __this_cpu_inc(softnet_data.processed);
5107
5108 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5109 int ret2;
5110
5111 preempt_disable();
5112 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5113 preempt_enable();
5114
5115 if (ret2 != XDP_PASS) {
5116 ret = NET_RX_DROP;
5117 goto out;
5118 }
5119 skb_reset_mac_len(skb);
5120 }
5121
5122 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5123 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5124 skb = skb_vlan_untag(skb);
5125 if (unlikely(!skb))
5126 goto out;
5127 }
5128
5129 if (skb_skip_tc_classify(skb))
5130 goto skip_classify;
5131
5132 if (pfmemalloc)
5133 goto skip_taps;
5134
5135 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5136 if (pt_prev)
5137 ret = deliver_skb(skb, pt_prev, orig_dev);
5138 pt_prev = ptype;
5139 }
5140
5141 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5142 if (pt_prev)
5143 ret = deliver_skb(skb, pt_prev, orig_dev);
5144 pt_prev = ptype;
5145 }
5146
5147skip_taps:
5148#ifdef CONFIG_NET_INGRESS
5149 if (static_branch_unlikely(&ingress_needed_key)) {
5150 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5151 if (!skb)
5152 goto out;
5153
5154 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5155 goto out;
5156 }
5157#endif
5158 skb_reset_redirect(skb);
5159skip_classify:
5160 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5161 goto drop;
5162
5163 if (skb_vlan_tag_present(skb)) {
5164 if (pt_prev) {
5165 ret = deliver_skb(skb, pt_prev, orig_dev);
5166 pt_prev = NULL;
5167 }
5168 if (vlan_do_receive(&skb))
5169 goto another_round;
5170 else if (unlikely(!skb))
5171 goto out;
5172 }
5173
5174 rx_handler = rcu_dereference(skb->dev->rx_handler);
5175 if (rx_handler) {
5176 if (pt_prev) {
5177 ret = deliver_skb(skb, pt_prev, orig_dev);
5178 pt_prev = NULL;
5179 }
5180 switch (rx_handler(&skb)) {
5181 case RX_HANDLER_CONSUMED:
5182 ret = NET_RX_SUCCESS;
5183 goto out;
5184 case RX_HANDLER_ANOTHER:
5185 goto another_round;
5186 case RX_HANDLER_EXACT:
5187 deliver_exact = true;
5188 case RX_HANDLER_PASS:
5189 break;
5190 default:
5191 BUG();
5192 }
5193 }
5194
5195 if (unlikely(skb_vlan_tag_present(skb))) {
5196check_vlan_id:
5197 if (skb_vlan_tag_get_id(skb)) {
5198 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5199 * find vlan device.
5200 */
5201 skb->pkt_type = PACKET_OTHERHOST;
5202 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5203 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5204 /* Outer header is 802.1P with vlan 0, inner header is
5205 * 802.1Q or 802.1AD and vlan_do_receive() above could
5206 * not find vlan dev for vlan id 0.
5207 */
5208 __vlan_hwaccel_clear_tag(skb);
5209 skb = skb_vlan_untag(skb);
5210 if (unlikely(!skb))
5211 goto out;
5212 if (vlan_do_receive(&skb))
5213 /* After stripping off 802.1P header with vlan 0
5214 * vlan dev is found for inner header.
5215 */
5216 goto another_round;
5217 else if (unlikely(!skb))
5218 goto out;
5219 else
5220 /* We have stripped outer 802.1P vlan 0 header.
5221 * But could not find vlan dev.
5222 * check again for vlan id to set OTHERHOST.
5223 */
5224 goto check_vlan_id;
5225 }
5226 /* Note: we might in the future use prio bits
5227 * and set skb->priority like in vlan_do_receive()
5228 * For the time being, just ignore Priority Code Point
5229 */
5230 __vlan_hwaccel_clear_tag(skb);
5231 }
5232
5233 type = skb->protocol;
5234
5235 /* deliver only exact match when indicated */
5236 if (likely(!deliver_exact)) {
5237 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5238 &ptype_base[ntohs(type) &
5239 PTYPE_HASH_MASK]);
5240 }
5241
5242 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5243 &orig_dev->ptype_specific);
5244
5245 if (unlikely(skb->dev != orig_dev)) {
5246 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5247 &skb->dev->ptype_specific);
5248 }
5249
5250 if (pt_prev) {
5251 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5252 goto drop;
5253 *ppt_prev = pt_prev;
5254 } else {
5255drop:
5256 if (!deliver_exact)
5257 atomic_long_inc(&skb->dev->rx_dropped);
5258 else
5259 atomic_long_inc(&skb->dev->rx_nohandler);
5260 kfree_skb(skb);
5261 /* Jamal, now you will not able to escape explaining
5262 * me how you were going to use this. :-)
5263 */
5264 ret = NET_RX_DROP;
5265 }
5266
5267out:
5268 /* The invariant here is that if *ppt_prev is not NULL
5269 * then skb should also be non-NULL.
5270 *
5271 * Apparently *ppt_prev assignment above holds this invariant due to
5272 * skb dereferencing near it.
5273 */
5274 *pskb = skb;
5275 return ret;
5276}
5277
5278static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5279{
5280 struct net_device *orig_dev = skb->dev;
5281 struct packet_type *pt_prev = NULL;
5282 int ret;
5283
5284 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5285 if (pt_prev)
5286 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5287 skb->dev, pt_prev, orig_dev);
5288 return ret;
5289}
5290
5291/**
5292 * netif_receive_skb_core - special purpose version of netif_receive_skb
5293 * @skb: buffer to process
5294 *
5295 * More direct receive version of netif_receive_skb(). It should
5296 * only be used by callers that have a need to skip RPS and Generic XDP.
5297 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5298 *
5299 * This function may only be called from softirq context and interrupts
5300 * should be enabled.
5301 *
5302 * Return values (usually ignored):
5303 * NET_RX_SUCCESS: no congestion
5304 * NET_RX_DROP: packet was dropped
5305 */
5306int netif_receive_skb_core(struct sk_buff *skb)
5307{
5308 int ret;
5309
5310 rcu_read_lock();
5311 ret = __netif_receive_skb_one_core(skb, false);
5312 rcu_read_unlock();
5313
5314 return ret;
5315}
5316EXPORT_SYMBOL(netif_receive_skb_core);
5317
5318static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5319 struct packet_type *pt_prev,
5320 struct net_device *orig_dev)
5321{
5322 struct sk_buff *skb, *next;
5323
5324 if (!pt_prev)
5325 return;
5326 if (list_empty(head))
5327 return;
5328 if (pt_prev->list_func != NULL)
5329 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5330 ip_list_rcv, head, pt_prev, orig_dev);
5331 else
5332 list_for_each_entry_safe(skb, next, head, list) {
5333 skb_list_del_init(skb);
5334 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5335 }
5336}
5337
5338static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5339{
5340 /* Fast-path assumptions:
5341 * - There is no RX handler.
5342 * - Only one packet_type matches.
5343 * If either of these fails, we will end up doing some per-packet
5344 * processing in-line, then handling the 'last ptype' for the whole
5345 * sublist. This can't cause out-of-order delivery to any single ptype,
5346 * because the 'last ptype' must be constant across the sublist, and all
5347 * other ptypes are handled per-packet.
5348 */
5349 /* Current (common) ptype of sublist */
5350 struct packet_type *pt_curr = NULL;
5351 /* Current (common) orig_dev of sublist */
5352 struct net_device *od_curr = NULL;
5353 struct list_head sublist;
5354 struct sk_buff *skb, *next;
5355
5356 INIT_LIST_HEAD(&sublist);
5357 list_for_each_entry_safe(skb, next, head, list) {
5358 struct net_device *orig_dev = skb->dev;
5359 struct packet_type *pt_prev = NULL;
5360
5361 skb_list_del_init(skb);
5362 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5363 if (!pt_prev)
5364 continue;
5365 if (pt_curr != pt_prev || od_curr != orig_dev) {
5366 /* dispatch old sublist */
5367 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5368 /* start new sublist */
5369 INIT_LIST_HEAD(&sublist);
5370 pt_curr = pt_prev;
5371 od_curr = orig_dev;
5372 }
5373 list_add_tail(&skb->list, &sublist);
5374 }
5375
5376 /* dispatch final sublist */
5377 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5378}
5379
5380static int __netif_receive_skb(struct sk_buff *skb)
5381{
5382 int ret;
5383
5384 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5385 unsigned int noreclaim_flag;
5386
5387 /*
5388 * PFMEMALLOC skbs are special, they should
5389 * - be delivered to SOCK_MEMALLOC sockets only
5390 * - stay away from userspace
5391 * - have bounded memory usage
5392 *
5393 * Use PF_MEMALLOC as this saves us from propagating the allocation
5394 * context down to all allocation sites.
5395 */
5396 noreclaim_flag = memalloc_noreclaim_save();
5397 ret = __netif_receive_skb_one_core(skb, true);
5398 memalloc_noreclaim_restore(noreclaim_flag);
5399 } else
5400 ret = __netif_receive_skb_one_core(skb, false);
5401
5402 return ret;
5403}
5404
5405static void __netif_receive_skb_list(struct list_head *head)
5406{
5407 unsigned long noreclaim_flag = 0;
5408 struct sk_buff *skb, *next;
5409 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5410
5411 list_for_each_entry_safe(skb, next, head, list) {
5412 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5413 struct list_head sublist;
5414
5415 /* Handle the previous sublist */
5416 list_cut_before(&sublist, head, &skb->list);
5417 if (!list_empty(&sublist))
5418 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5419 pfmemalloc = !pfmemalloc;
5420 /* See comments in __netif_receive_skb */
5421 if (pfmemalloc)
5422 noreclaim_flag = memalloc_noreclaim_save();
5423 else
5424 memalloc_noreclaim_restore(noreclaim_flag);
5425 }
5426 }
5427 /* Handle the remaining sublist */
5428 if (!list_empty(head))
5429 __netif_receive_skb_list_core(head, pfmemalloc);
5430 /* Restore pflags */
5431 if (pfmemalloc)
5432 memalloc_noreclaim_restore(noreclaim_flag);
5433}
5434
5435static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5436{
5437 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5438 struct bpf_prog *new = xdp->prog;
5439 int ret = 0;
5440
5441 if (new) {
5442 u32 i;
5443
5444 /* generic XDP does not work with DEVMAPs that can
5445 * have a bpf_prog installed on an entry
5446 */
5447 for (i = 0; i < new->aux->used_map_cnt; i++) {
5448 if (dev_map_can_have_prog(new->aux->used_maps[i]))
5449 return -EINVAL;
5450 if (cpu_map_prog_allowed(new->aux->used_maps[i]))
5451 return -EINVAL;
5452 }
5453 }
5454
5455 switch (xdp->command) {
5456 case XDP_SETUP_PROG:
5457 rcu_assign_pointer(dev->xdp_prog, new);
5458 if (old)
5459 bpf_prog_put(old);
5460
5461 if (old && !new) {
5462 static_branch_dec(&generic_xdp_needed_key);
5463 } else if (new && !old) {
5464 static_branch_inc(&generic_xdp_needed_key);
5465 dev_disable_lro(dev);
5466 dev_disable_gro_hw(dev);
5467 }
5468 break;
5469
5470 default:
5471 ret = -EINVAL;
5472 break;
5473 }
5474
5475 return ret;
5476}
5477
5478static int netif_receive_skb_internal(struct sk_buff *skb)
5479{
5480 int ret;
5481
5482 net_timestamp_check(netdev_tstamp_prequeue, skb);
5483
5484 if (skb_defer_rx_timestamp(skb))
5485 return NET_RX_SUCCESS;
5486
5487 rcu_read_lock();
5488#ifdef CONFIG_RPS
5489 if (static_branch_unlikely(&rps_needed)) {
5490 struct rps_dev_flow voidflow, *rflow = &voidflow;
5491 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5492
5493 if (cpu >= 0) {
5494 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5495 rcu_read_unlock();
5496 return ret;
5497 }
5498 }
5499#endif
5500 ret = __netif_receive_skb(skb);
5501 rcu_read_unlock();
5502 return ret;
5503}
5504
5505static void netif_receive_skb_list_internal(struct list_head *head)
5506{
5507 struct sk_buff *skb, *next;
5508 struct list_head sublist;
5509
5510 INIT_LIST_HEAD(&sublist);
5511 list_for_each_entry_safe(skb, next, head, list) {
5512 net_timestamp_check(netdev_tstamp_prequeue, skb);
5513 skb_list_del_init(skb);
5514 if (!skb_defer_rx_timestamp(skb))
5515 list_add_tail(&skb->list, &sublist);
5516 }
5517 list_splice_init(&sublist, head);
5518
5519 rcu_read_lock();
5520#ifdef CONFIG_RPS
5521 if (static_branch_unlikely(&rps_needed)) {
5522 list_for_each_entry_safe(skb, next, head, list) {
5523 struct rps_dev_flow voidflow, *rflow = &voidflow;
5524 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5525
5526 if (cpu >= 0) {
5527 /* Will be handled, remove from list */
5528 skb_list_del_init(skb);
5529 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5530 }
5531 }
5532 }
5533#endif
5534 __netif_receive_skb_list(head);
5535 rcu_read_unlock();
5536}
5537
5538/**
5539 * netif_receive_skb - process receive buffer from network
5540 * @skb: buffer to process
5541 *
5542 * netif_receive_skb() is the main receive data processing function.
5543 * It always succeeds. The buffer may be dropped during processing
5544 * for congestion control or by the protocol layers.
5545 *
5546 * This function may only be called from softirq context and interrupts
5547 * should be enabled.
5548 *
5549 * Return values (usually ignored):
5550 * NET_RX_SUCCESS: no congestion
5551 * NET_RX_DROP: packet was dropped
5552 */
5553int netif_receive_skb(struct sk_buff *skb)
5554{
5555 int ret;
5556
5557 trace_netif_receive_skb_entry(skb);
5558
5559 ret = netif_receive_skb_internal(skb);
5560 trace_netif_receive_skb_exit(ret);
5561
5562 return ret;
5563}
5564EXPORT_SYMBOL(netif_receive_skb);
5565
5566/**
5567 * netif_receive_skb_list - process many receive buffers from network
5568 * @head: list of skbs to process.
5569 *
5570 * Since return value of netif_receive_skb() is normally ignored, and
5571 * wouldn't be meaningful for a list, this function returns void.
5572 *
5573 * This function may only be called from softirq context and interrupts
5574 * should be enabled.
5575 */
5576void netif_receive_skb_list(struct list_head *head)
5577{
5578 struct sk_buff *skb;
5579
5580 if (list_empty(head))
5581 return;
5582 if (trace_netif_receive_skb_list_entry_enabled()) {
5583 list_for_each_entry(skb, head, list)
5584 trace_netif_receive_skb_list_entry(skb);
5585 }
5586 netif_receive_skb_list_internal(head);
5587 trace_netif_receive_skb_list_exit(0);
5588}
5589EXPORT_SYMBOL(netif_receive_skb_list);
5590
5591static DEFINE_PER_CPU(struct work_struct, flush_works);
5592
5593/* Network device is going away, flush any packets still pending */
5594static void flush_backlog(struct work_struct *work)
5595{
5596 struct sk_buff *skb, *tmp;
5597 struct softnet_data *sd;
5598
5599 local_bh_disable();
5600 sd = this_cpu_ptr(&softnet_data);
5601
5602 local_irq_disable();
5603 rps_lock(sd);
5604 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5605 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5606 __skb_unlink(skb, &sd->input_pkt_queue);
5607 dev_kfree_skb_irq(skb);
5608 input_queue_head_incr(sd);
5609 }
5610 }
5611 rps_unlock(sd);
5612 local_irq_enable();
5613
5614 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5615 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5616 __skb_unlink(skb, &sd->process_queue);
5617 kfree_skb(skb);
5618 input_queue_head_incr(sd);
5619 }
5620 }
5621 local_bh_enable();
5622}
5623
5624static void flush_all_backlogs(void)
5625{
5626 unsigned int cpu;
5627
5628 get_online_cpus();
5629
5630 for_each_online_cpu(cpu)
5631 queue_work_on(cpu, system_highpri_wq,
5632 per_cpu_ptr(&flush_works, cpu));
5633
5634 for_each_online_cpu(cpu)
5635 flush_work(per_cpu_ptr(&flush_works, cpu));
5636
5637 put_online_cpus();
5638}
5639
5640/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5641static void gro_normal_list(struct napi_struct *napi)
5642{
5643 if (!napi->rx_count)
5644 return;
5645 netif_receive_skb_list_internal(&napi->rx_list);
5646 INIT_LIST_HEAD(&napi->rx_list);
5647 napi->rx_count = 0;
5648}
5649
5650/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5651 * pass the whole batch up to the stack.
5652 */
5653static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5654{
5655 list_add_tail(&skb->list, &napi->rx_list);
5656 if (++napi->rx_count >= gro_normal_batch)
5657 gro_normal_list(napi);
5658}
5659
5660INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5661INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5662static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5663{
5664 struct packet_offload *ptype;
5665 __be16 type = skb->protocol;
5666 struct list_head *head = &offload_base;
5667 int err = -ENOENT;
5668
5669 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5670
5671 if (NAPI_GRO_CB(skb)->count == 1) {
5672 skb_shinfo(skb)->gso_size = 0;
5673 goto out;
5674 }
5675
5676 rcu_read_lock();
5677 list_for_each_entry_rcu(ptype, head, list) {
5678 if (ptype->type != type || !ptype->callbacks.gro_complete)
5679 continue;
5680
5681 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5682 ipv6_gro_complete, inet_gro_complete,
5683 skb, 0);
5684 break;
5685 }
5686 rcu_read_unlock();
5687
5688 if (err) {
5689 WARN_ON(&ptype->list == head);
5690 kfree_skb(skb);
5691 return NET_RX_SUCCESS;
5692 }
5693
5694out:
5695 gro_normal_one(napi, skb);
5696 return NET_RX_SUCCESS;
5697}
5698
5699static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5700 bool flush_old)
5701{
5702 struct list_head *head = &napi->gro_hash[index].list;
5703 struct sk_buff *skb, *p;
5704
5705 list_for_each_entry_safe_reverse(skb, p, head, list) {
5706 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5707 return;
5708 skb_list_del_init(skb);
5709 napi_gro_complete(napi, skb);
5710 napi->gro_hash[index].count--;
5711 }
5712
5713 if (!napi->gro_hash[index].count)
5714 __clear_bit(index, &napi->gro_bitmask);
5715}
5716
5717/* napi->gro_hash[].list contains packets ordered by age.
5718 * youngest packets at the head of it.
5719 * Complete skbs in reverse order to reduce latencies.
5720 */
5721void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5722{
5723 unsigned long bitmask = napi->gro_bitmask;
5724 unsigned int i, base = ~0U;
5725
5726 while ((i = ffs(bitmask)) != 0) {
5727 bitmask >>= i;
5728 base += i;
5729 __napi_gro_flush_chain(napi, base, flush_old);
5730 }
5731}
5732EXPORT_SYMBOL(napi_gro_flush);
5733
5734static struct list_head *gro_list_prepare(struct napi_struct *napi,
5735 struct sk_buff *skb)
5736{
5737 unsigned int maclen = skb->dev->hard_header_len;
5738 u32 hash = skb_get_hash_raw(skb);
5739 struct list_head *head;
5740 struct sk_buff *p;
5741
5742 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5743 list_for_each_entry(p, head, list) {
5744 unsigned long diffs;
5745
5746 NAPI_GRO_CB(p)->flush = 0;
5747
5748 if (hash != skb_get_hash_raw(p)) {
5749 NAPI_GRO_CB(p)->same_flow = 0;
5750 continue;
5751 }
5752
5753 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5754 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5755 if (skb_vlan_tag_present(p))
5756 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5757 diffs |= skb_metadata_dst_cmp(p, skb);
5758 diffs |= skb_metadata_differs(p, skb);
5759 if (maclen == ETH_HLEN)
5760 diffs |= compare_ether_header(skb_mac_header(p),
5761 skb_mac_header(skb));
5762 else if (!diffs)
5763 diffs = memcmp(skb_mac_header(p),
5764 skb_mac_header(skb),
5765 maclen);
5766 NAPI_GRO_CB(p)->same_flow = !diffs;
5767 }
5768
5769 return head;
5770}
5771
5772static void skb_gro_reset_offset(struct sk_buff *skb)
5773{
5774 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5775 const skb_frag_t *frag0 = &pinfo->frags[0];
5776
5777 NAPI_GRO_CB(skb)->data_offset = 0;
5778 NAPI_GRO_CB(skb)->frag0 = NULL;
5779 NAPI_GRO_CB(skb)->frag0_len = 0;
5780
5781 if (!skb_headlen(skb) && pinfo->nr_frags &&
5782 !PageHighMem(skb_frag_page(frag0))) {
5783 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5784 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5785 skb_frag_size(frag0),
5786 skb->end - skb->tail);
5787 }
5788}
5789
5790static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5791{
5792 struct skb_shared_info *pinfo = skb_shinfo(skb);
5793
5794 BUG_ON(skb->end - skb->tail < grow);
5795
5796 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5797
5798 skb->data_len -= grow;
5799 skb->tail += grow;
5800
5801 skb_frag_off_add(&pinfo->frags[0], grow);
5802 skb_frag_size_sub(&pinfo->frags[0], grow);
5803
5804 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5805 skb_frag_unref(skb, 0);
5806 memmove(pinfo->frags, pinfo->frags + 1,
5807 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5808 }
5809}
5810
5811static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5812{
5813 struct sk_buff *oldest;
5814
5815 oldest = list_last_entry(head, struct sk_buff, list);
5816
5817 /* We are called with head length >= MAX_GRO_SKBS, so this is
5818 * impossible.
5819 */
5820 if (WARN_ON_ONCE(!oldest))
5821 return;
5822
5823 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5824 * SKB to the chain.
5825 */
5826 skb_list_del_init(oldest);
5827 napi_gro_complete(napi, oldest);
5828}
5829
5830INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5831 struct sk_buff *));
5832INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5833 struct sk_buff *));
5834static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5835{
5836 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5837 struct list_head *head = &offload_base;
5838 struct packet_offload *ptype;
5839 __be16 type = skb->protocol;
5840 struct list_head *gro_head;
5841 struct sk_buff *pp = NULL;
5842 enum gro_result ret;
5843 int same_flow;
5844 int grow;
5845
5846 if (netif_elide_gro(skb->dev))
5847 goto normal;
5848
5849 gro_head = gro_list_prepare(napi, skb);
5850
5851 rcu_read_lock();
5852 list_for_each_entry_rcu(ptype, head, list) {
5853 if (ptype->type != type || !ptype->callbacks.gro_receive)
5854 continue;
5855
5856 skb_set_network_header(skb, skb_gro_offset(skb));
5857 skb_reset_mac_len(skb);
5858 NAPI_GRO_CB(skb)->same_flow = 0;
5859 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5860 NAPI_GRO_CB(skb)->free = 0;
5861 NAPI_GRO_CB(skb)->encap_mark = 0;
5862 NAPI_GRO_CB(skb)->recursion_counter = 0;
5863 NAPI_GRO_CB(skb)->is_fou = 0;
5864 NAPI_GRO_CB(skb)->is_atomic = 1;
5865 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5866
5867 /* Setup for GRO checksum validation */
5868 switch (skb->ip_summed) {
5869 case CHECKSUM_COMPLETE:
5870 NAPI_GRO_CB(skb)->csum = skb->csum;
5871 NAPI_GRO_CB(skb)->csum_valid = 1;
5872 NAPI_GRO_CB(skb)->csum_cnt = 0;
5873 break;
5874 case CHECKSUM_UNNECESSARY:
5875 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5876 NAPI_GRO_CB(skb)->csum_valid = 0;
5877 break;
5878 default:
5879 NAPI_GRO_CB(skb)->csum_cnt = 0;
5880 NAPI_GRO_CB(skb)->csum_valid = 0;
5881 }
5882
5883 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5884 ipv6_gro_receive, inet_gro_receive,
5885 gro_head, skb);
5886 break;
5887 }
5888 rcu_read_unlock();
5889
5890 if (&ptype->list == head)
5891 goto normal;
5892
5893 if (PTR_ERR(pp) == -EINPROGRESS) {
5894 ret = GRO_CONSUMED;
5895 goto ok;
5896 }
5897
5898 same_flow = NAPI_GRO_CB(skb)->same_flow;
5899 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5900
5901 if (pp) {
5902 skb_list_del_init(pp);
5903 napi_gro_complete(napi, pp);
5904 napi->gro_hash[hash].count--;
5905 }
5906
5907 if (same_flow)
5908 goto ok;
5909
5910 if (NAPI_GRO_CB(skb)->flush)
5911 goto normal;
5912
5913 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5914 gro_flush_oldest(napi, gro_head);
5915 } else {
5916 napi->gro_hash[hash].count++;
5917 }
5918 NAPI_GRO_CB(skb)->count = 1;
5919 NAPI_GRO_CB(skb)->age = jiffies;
5920 NAPI_GRO_CB(skb)->last = skb;
5921 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5922 list_add(&skb->list, gro_head);
5923 ret = GRO_HELD;
5924
5925pull:
5926 grow = skb_gro_offset(skb) - skb_headlen(skb);
5927 if (grow > 0)
5928 gro_pull_from_frag0(skb, grow);
5929ok:
5930 if (napi->gro_hash[hash].count) {
5931 if (!test_bit(hash, &napi->gro_bitmask))
5932 __set_bit(hash, &napi->gro_bitmask);
5933 } else if (test_bit(hash, &napi->gro_bitmask)) {
5934 __clear_bit(hash, &napi->gro_bitmask);
5935 }
5936
5937 return ret;
5938
5939normal:
5940 ret = GRO_NORMAL;
5941 goto pull;
5942}
5943
5944struct packet_offload *gro_find_receive_by_type(__be16 type)
5945{
5946 struct list_head *offload_head = &offload_base;
5947 struct packet_offload *ptype;
5948
5949 list_for_each_entry_rcu(ptype, offload_head, list) {
5950 if (ptype->type != type || !ptype->callbacks.gro_receive)
5951 continue;
5952 return ptype;
5953 }
5954 return NULL;
5955}
5956EXPORT_SYMBOL(gro_find_receive_by_type);
5957
5958struct packet_offload *gro_find_complete_by_type(__be16 type)
5959{
5960 struct list_head *offload_head = &offload_base;
5961 struct packet_offload *ptype;
5962
5963 list_for_each_entry_rcu(ptype, offload_head, list) {
5964 if (ptype->type != type || !ptype->callbacks.gro_complete)
5965 continue;
5966 return ptype;
5967 }
5968 return NULL;
5969}
5970EXPORT_SYMBOL(gro_find_complete_by_type);
5971
5972static void napi_skb_free_stolen_head(struct sk_buff *skb)
5973{
5974 skb_dst_drop(skb);
5975 skb_ext_put(skb);
5976 kmem_cache_free(skbuff_head_cache, skb);
5977}
5978
5979static gro_result_t napi_skb_finish(struct napi_struct *napi,
5980 struct sk_buff *skb,
5981 gro_result_t ret)
5982{
5983 switch (ret) {
5984 case GRO_NORMAL:
5985 gro_normal_one(napi, skb);
5986 break;
5987
5988 case GRO_DROP:
5989 kfree_skb(skb);
5990 break;
5991
5992 case GRO_MERGED_FREE:
5993 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5994 napi_skb_free_stolen_head(skb);
5995 else
5996 __kfree_skb(skb);
5997 break;
5998
5999 case GRO_HELD:
6000 case GRO_MERGED:
6001 case GRO_CONSUMED:
6002 break;
6003 }
6004
6005 return ret;
6006}
6007
6008gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6009{
6010 gro_result_t ret;
6011
6012 skb_mark_napi_id(skb, napi);
6013 trace_napi_gro_receive_entry(skb);
6014
6015 skb_gro_reset_offset(skb);
6016
6017 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6018 trace_napi_gro_receive_exit(ret);
6019
6020 return ret;
6021}
6022EXPORT_SYMBOL(napi_gro_receive);
6023
6024static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6025{
6026 if (unlikely(skb->pfmemalloc)) {
6027 consume_skb(skb);
6028 return;
6029 }
6030 __skb_pull(skb, skb_headlen(skb));
6031 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6032 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6033 __vlan_hwaccel_clear_tag(skb);
6034 skb->dev = napi->dev;
6035 skb->skb_iif = 0;
6036
6037 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6038 skb->pkt_type = PACKET_HOST;
6039
6040 skb->encapsulation = 0;
6041 skb_shinfo(skb)->gso_type = 0;
6042 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6043 skb_ext_reset(skb);
6044
6045 napi->skb = skb;
6046}
6047
6048struct sk_buff *napi_get_frags(struct napi_struct *napi)
6049{
6050 struct sk_buff *skb = napi->skb;
6051
6052 if (!skb) {
6053 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6054 if (skb) {
6055 napi->skb = skb;
6056 skb_mark_napi_id(skb, napi);
6057 }
6058 }
6059 return skb;
6060}
6061EXPORT_SYMBOL(napi_get_frags);
6062
6063static gro_result_t napi_frags_finish(struct napi_struct *napi,
6064 struct sk_buff *skb,
6065 gro_result_t ret)
6066{
6067 switch (ret) {
6068 case GRO_NORMAL:
6069 case GRO_HELD:
6070 __skb_push(skb, ETH_HLEN);
6071 skb->protocol = eth_type_trans(skb, skb->dev);
6072 if (ret == GRO_NORMAL)
6073 gro_normal_one(napi, skb);
6074 break;
6075
6076 case GRO_DROP:
6077 napi_reuse_skb(napi, skb);
6078 break;
6079
6080 case GRO_MERGED_FREE:
6081 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6082 napi_skb_free_stolen_head(skb);
6083 else
6084 napi_reuse_skb(napi, skb);
6085 break;
6086
6087 case GRO_MERGED:
6088 case GRO_CONSUMED:
6089 break;
6090 }
6091
6092 return ret;
6093}
6094
6095/* Upper GRO stack assumes network header starts at gro_offset=0
6096 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6097 * We copy ethernet header into skb->data to have a common layout.
6098 */
6099static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6100{
6101 struct sk_buff *skb = napi->skb;
6102 const struct ethhdr *eth;
6103 unsigned int hlen = sizeof(*eth);
6104
6105 napi->skb = NULL;
6106
6107 skb_reset_mac_header(skb);
6108 skb_gro_reset_offset(skb);
6109
6110 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6111 eth = skb_gro_header_slow(skb, hlen, 0);
6112 if (unlikely(!eth)) {
6113 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6114 __func__, napi->dev->name);
6115 napi_reuse_skb(napi, skb);
6116 return NULL;
6117 }
6118 } else {
6119 eth = (const struct ethhdr *)skb->data;
6120 gro_pull_from_frag0(skb, hlen);
6121 NAPI_GRO_CB(skb)->frag0 += hlen;
6122 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6123 }
6124 __skb_pull(skb, hlen);
6125
6126 /*
6127 * This works because the only protocols we care about don't require
6128 * special handling.
6129 * We'll fix it up properly in napi_frags_finish()
6130 */
6131 skb->protocol = eth->h_proto;
6132
6133 return skb;
6134}
6135
6136gro_result_t napi_gro_frags(struct napi_struct *napi)
6137{
6138 gro_result_t ret;
6139 struct sk_buff *skb = napi_frags_skb(napi);
6140
6141 if (!skb)
6142 return GRO_DROP;
6143
6144 trace_napi_gro_frags_entry(skb);
6145
6146 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6147 trace_napi_gro_frags_exit(ret);
6148
6149 return ret;
6150}
6151EXPORT_SYMBOL(napi_gro_frags);
6152
6153/* Compute the checksum from gro_offset and return the folded value
6154 * after adding in any pseudo checksum.
6155 */
6156__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6157{
6158 __wsum wsum;
6159 __sum16 sum;
6160
6161 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6162
6163 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6164 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6165 /* See comments in __skb_checksum_complete(). */
6166 if (likely(!sum)) {
6167 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6168 !skb->csum_complete_sw)
6169 netdev_rx_csum_fault(skb->dev, skb);
6170 }
6171
6172 NAPI_GRO_CB(skb)->csum = wsum;
6173 NAPI_GRO_CB(skb)->csum_valid = 1;
6174
6175 return sum;
6176}
6177EXPORT_SYMBOL(__skb_gro_checksum_complete);
6178
6179static void net_rps_send_ipi(struct softnet_data *remsd)
6180{
6181#ifdef CONFIG_RPS
6182 while (remsd) {
6183 struct softnet_data *next = remsd->rps_ipi_next;
6184
6185 if (cpu_online(remsd->cpu))
6186 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6187 remsd = next;
6188 }
6189#endif
6190}
6191
6192/*
6193 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6194 * Note: called with local irq disabled, but exits with local irq enabled.
6195 */
6196static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6197{
6198#ifdef CONFIG_RPS
6199 struct softnet_data *remsd = sd->rps_ipi_list;
6200
6201 if (remsd) {
6202 sd->rps_ipi_list = NULL;
6203
6204 local_irq_enable();
6205
6206 /* Send pending IPI's to kick RPS processing on remote cpus. */
6207 net_rps_send_ipi(remsd);
6208 } else
6209#endif
6210 local_irq_enable();
6211}
6212
6213static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6214{
6215#ifdef CONFIG_RPS
6216 return sd->rps_ipi_list != NULL;
6217#else
6218 return false;
6219#endif
6220}
6221
6222static int process_backlog(struct napi_struct *napi, int quota)
6223{
6224 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6225 bool again = true;
6226 int work = 0;
6227
6228 /* Check if we have pending ipi, its better to send them now,
6229 * not waiting net_rx_action() end.
6230 */
6231 if (sd_has_rps_ipi_waiting(sd)) {
6232 local_irq_disable();
6233 net_rps_action_and_irq_enable(sd);
6234 }
6235
6236 napi->weight = dev_rx_weight;
6237 while (again) {
6238 struct sk_buff *skb;
6239
6240 while ((skb = __skb_dequeue(&sd->process_queue))) {
6241 rcu_read_lock();
6242 __netif_receive_skb(skb);
6243 rcu_read_unlock();
6244 input_queue_head_incr(sd);
6245 if (++work >= quota)
6246 return work;
6247
6248 }
6249
6250 local_irq_disable();
6251 rps_lock(sd);
6252 if (skb_queue_empty(&sd->input_pkt_queue)) {
6253 /*
6254 * Inline a custom version of __napi_complete().
6255 * only current cpu owns and manipulates this napi,
6256 * and NAPI_STATE_SCHED is the only possible flag set
6257 * on backlog.
6258 * We can use a plain write instead of clear_bit(),
6259 * and we dont need an smp_mb() memory barrier.
6260 */
6261 napi->state = 0;
6262 again = false;
6263 } else {
6264 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6265 &sd->process_queue);
6266 }
6267 rps_unlock(sd);
6268 local_irq_enable();
6269 }
6270
6271 return work;
6272}
6273
6274/**
6275 * __napi_schedule - schedule for receive
6276 * @n: entry to schedule
6277 *
6278 * The entry's receive function will be scheduled to run.
6279 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6280 */
6281void __napi_schedule(struct napi_struct *n)
6282{
6283 unsigned long flags;
6284
6285 local_irq_save(flags);
6286 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6287 local_irq_restore(flags);
6288}
6289EXPORT_SYMBOL(__napi_schedule);
6290
6291/**
6292 * napi_schedule_prep - check if napi can be scheduled
6293 * @n: napi context
6294 *
6295 * Test if NAPI routine is already running, and if not mark
6296 * it as running. This is used as a condition variable
6297 * insure only one NAPI poll instance runs. We also make
6298 * sure there is no pending NAPI disable.
6299 */
6300bool napi_schedule_prep(struct napi_struct *n)
6301{
6302 unsigned long val, new;
6303
6304 do {
6305 val = READ_ONCE(n->state);
6306 if (unlikely(val & NAPIF_STATE_DISABLE))
6307 return false;
6308 new = val | NAPIF_STATE_SCHED;
6309
6310 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6311 * This was suggested by Alexander Duyck, as compiler
6312 * emits better code than :
6313 * if (val & NAPIF_STATE_SCHED)
6314 * new |= NAPIF_STATE_MISSED;
6315 */
6316 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6317 NAPIF_STATE_MISSED;
6318 } while (cmpxchg(&n->state, val, new) != val);
6319
6320 return !(val & NAPIF_STATE_SCHED);
6321}
6322EXPORT_SYMBOL(napi_schedule_prep);
6323
6324/**
6325 * __napi_schedule_irqoff - schedule for receive
6326 * @n: entry to schedule
6327 *
6328 * Variant of __napi_schedule() assuming hard irqs are masked
6329 */
6330void __napi_schedule_irqoff(struct napi_struct *n)
6331{
6332 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6333}
6334EXPORT_SYMBOL(__napi_schedule_irqoff);
6335
6336bool napi_complete_done(struct napi_struct *n, int work_done)
6337{
6338 unsigned long flags, val, new, timeout = 0;
6339 bool ret = true;
6340
6341 /*
6342 * 1) Don't let napi dequeue from the cpu poll list
6343 * just in case its running on a different cpu.
6344 * 2) If we are busy polling, do nothing here, we have
6345 * the guarantee we will be called later.
6346 */
6347 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6348 NAPIF_STATE_IN_BUSY_POLL)))
6349 return false;
6350
6351 if (work_done) {
6352 if (n->gro_bitmask)
6353 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6354 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6355 }
6356 if (n->defer_hard_irqs_count > 0) {
6357 n->defer_hard_irqs_count--;
6358 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6359 if (timeout)
6360 ret = false;
6361 }
6362 if (n->gro_bitmask) {
6363 /* When the NAPI instance uses a timeout and keeps postponing
6364 * it, we need to bound somehow the time packets are kept in
6365 * the GRO layer
6366 */
6367 napi_gro_flush(n, !!timeout);
6368 }
6369
6370 gro_normal_list(n);
6371
6372 if (unlikely(!list_empty(&n->poll_list))) {
6373 /* If n->poll_list is not empty, we need to mask irqs */
6374 local_irq_save(flags);
6375 list_del_init(&n->poll_list);
6376 local_irq_restore(flags);
6377 }
6378
6379 do {
6380 val = READ_ONCE(n->state);
6381
6382 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6383
6384 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6385
6386 /* If STATE_MISSED was set, leave STATE_SCHED set,
6387 * because we will call napi->poll() one more time.
6388 * This C code was suggested by Alexander Duyck to help gcc.
6389 */
6390 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6391 NAPIF_STATE_SCHED;
6392 } while (cmpxchg(&n->state, val, new) != val);
6393
6394 if (unlikely(val & NAPIF_STATE_MISSED)) {
6395 __napi_schedule(n);
6396 return false;
6397 }
6398
6399 if (timeout)
6400 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6401 HRTIMER_MODE_REL_PINNED);
6402 return ret;
6403}
6404EXPORT_SYMBOL(napi_complete_done);
6405
6406/* must be called under rcu_read_lock(), as we dont take a reference */
6407static struct napi_struct *napi_by_id(unsigned int napi_id)
6408{
6409 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6410 struct napi_struct *napi;
6411
6412 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6413 if (napi->napi_id == napi_id)
6414 return napi;
6415
6416 return NULL;
6417}
6418
6419#if defined(CONFIG_NET_RX_BUSY_POLL)
6420
6421#define BUSY_POLL_BUDGET 8
6422
6423static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6424{
6425 int rc;
6426
6427 /* Busy polling means there is a high chance device driver hard irq
6428 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6429 * set in napi_schedule_prep().
6430 * Since we are about to call napi->poll() once more, we can safely
6431 * clear NAPI_STATE_MISSED.
6432 *
6433 * Note: x86 could use a single "lock and ..." instruction
6434 * to perform these two clear_bit()
6435 */
6436 clear_bit(NAPI_STATE_MISSED, &napi->state);
6437 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6438
6439 local_bh_disable();
6440
6441 /* All we really want here is to re-enable device interrupts.
6442 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6443 */
6444 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6445 /* We can't gro_normal_list() here, because napi->poll() might have
6446 * rearmed the napi (napi_complete_done()) in which case it could
6447 * already be running on another CPU.
6448 */
6449 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6450 netpoll_poll_unlock(have_poll_lock);
6451 if (rc == BUSY_POLL_BUDGET) {
6452 /* As the whole budget was spent, we still own the napi so can
6453 * safely handle the rx_list.
6454 */
6455 gro_normal_list(napi);
6456 __napi_schedule(napi);
6457 }
6458 local_bh_enable();
6459}
6460
6461void napi_busy_loop(unsigned int napi_id,
6462 bool (*loop_end)(void *, unsigned long),
6463 void *loop_end_arg)
6464{
6465 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6466 int (*napi_poll)(struct napi_struct *napi, int budget);
6467 void *have_poll_lock = NULL;
6468 struct napi_struct *napi;
6469
6470restart:
6471 napi_poll = NULL;
6472
6473 rcu_read_lock();
6474
6475 napi = napi_by_id(napi_id);
6476 if (!napi)
6477 goto out;
6478
6479 preempt_disable();
6480 for (;;) {
6481 int work = 0;
6482
6483 local_bh_disable();
6484 if (!napi_poll) {
6485 unsigned long val = READ_ONCE(napi->state);
6486
6487 /* If multiple threads are competing for this napi,
6488 * we avoid dirtying napi->state as much as we can.
6489 */
6490 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6491 NAPIF_STATE_IN_BUSY_POLL))
6492 goto count;
6493 if (cmpxchg(&napi->state, val,
6494 val | NAPIF_STATE_IN_BUSY_POLL |
6495 NAPIF_STATE_SCHED) != val)
6496 goto count;
6497 have_poll_lock = netpoll_poll_lock(napi);
6498 napi_poll = napi->poll;
6499 }
6500 work = napi_poll(napi, BUSY_POLL_BUDGET);
6501 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6502 gro_normal_list(napi);
6503count:
6504 if (work > 0)
6505 __NET_ADD_STATS(dev_net(napi->dev),
6506 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6507 local_bh_enable();
6508
6509 if (!loop_end || loop_end(loop_end_arg, start_time))
6510 break;
6511
6512 if (unlikely(need_resched())) {
6513 if (napi_poll)
6514 busy_poll_stop(napi, have_poll_lock);
6515 preempt_enable();
6516 rcu_read_unlock();
6517 cond_resched();
6518 if (loop_end(loop_end_arg, start_time))
6519 return;
6520 goto restart;
6521 }
6522 cpu_relax();
6523 }
6524 if (napi_poll)
6525 busy_poll_stop(napi, have_poll_lock);
6526 preempt_enable();
6527out:
6528 rcu_read_unlock();
6529}
6530EXPORT_SYMBOL(napi_busy_loop);
6531
6532#endif /* CONFIG_NET_RX_BUSY_POLL */
6533
6534static void napi_hash_add(struct napi_struct *napi)
6535{
6536 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6537 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6538 return;
6539
6540 spin_lock(&napi_hash_lock);
6541
6542 /* 0..NR_CPUS range is reserved for sender_cpu use */
6543 do {
6544 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6545 napi_gen_id = MIN_NAPI_ID;
6546 } while (napi_by_id(napi_gen_id));
6547 napi->napi_id = napi_gen_id;
6548
6549 hlist_add_head_rcu(&napi->napi_hash_node,
6550 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6551
6552 spin_unlock(&napi_hash_lock);
6553}
6554
6555/* Warning : caller is responsible to make sure rcu grace period
6556 * is respected before freeing memory containing @napi
6557 */
6558bool napi_hash_del(struct napi_struct *napi)
6559{
6560 bool rcu_sync_needed = false;
6561
6562 spin_lock(&napi_hash_lock);
6563
6564 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6565 rcu_sync_needed = true;
6566 hlist_del_rcu(&napi->napi_hash_node);
6567 }
6568 spin_unlock(&napi_hash_lock);
6569 return rcu_sync_needed;
6570}
6571EXPORT_SYMBOL_GPL(napi_hash_del);
6572
6573static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6574{
6575 struct napi_struct *napi;
6576
6577 napi = container_of(timer, struct napi_struct, timer);
6578
6579 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6580 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6581 */
6582 if (!napi_disable_pending(napi) &&
6583 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6584 __napi_schedule_irqoff(napi);
6585
6586 return HRTIMER_NORESTART;
6587}
6588
6589static void init_gro_hash(struct napi_struct *napi)
6590{
6591 int i;
6592
6593 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6594 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6595 napi->gro_hash[i].count = 0;
6596 }
6597 napi->gro_bitmask = 0;
6598}
6599
6600void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6601 int (*poll)(struct napi_struct *, int), int weight)
6602{
6603 INIT_LIST_HEAD(&napi->poll_list);
6604 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6605 napi->timer.function = napi_watchdog;
6606 init_gro_hash(napi);
6607 napi->skb = NULL;
6608 INIT_LIST_HEAD(&napi->rx_list);
6609 napi->rx_count = 0;
6610 napi->poll = poll;
6611 if (weight > NAPI_POLL_WEIGHT)
6612 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6613 weight);
6614 napi->weight = weight;
6615 napi->dev = dev;
6616#ifdef CONFIG_NETPOLL
6617 napi->poll_owner = -1;
6618#endif
6619 set_bit(NAPI_STATE_SCHED, &napi->state);
6620 set_bit(NAPI_STATE_NPSVC, &napi->state);
6621 list_add_rcu(&napi->dev_list, &dev->napi_list);
6622 napi_hash_add(napi);
6623}
6624EXPORT_SYMBOL(netif_napi_add);
6625
6626void napi_disable(struct napi_struct *n)
6627{
6628 might_sleep();
6629 set_bit(NAPI_STATE_DISABLE, &n->state);
6630
6631 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6632 msleep(1);
6633 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6634 msleep(1);
6635
6636 hrtimer_cancel(&n->timer);
6637
6638 clear_bit(NAPI_STATE_DISABLE, &n->state);
6639}
6640EXPORT_SYMBOL(napi_disable);
6641
6642static void flush_gro_hash(struct napi_struct *napi)
6643{
6644 int i;
6645
6646 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6647 struct sk_buff *skb, *n;
6648
6649 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6650 kfree_skb(skb);
6651 napi->gro_hash[i].count = 0;
6652 }
6653}
6654
6655/* Must be called in process context */
6656void netif_napi_del(struct napi_struct *napi)
6657{
6658 might_sleep();
6659 if (napi_hash_del(napi))
6660 synchronize_net();
6661 list_del_init(&napi->dev_list);
6662 napi_free_frags(napi);
6663
6664 flush_gro_hash(napi);
6665 napi->gro_bitmask = 0;
6666}
6667EXPORT_SYMBOL(netif_napi_del);
6668
6669static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6670{
6671 void *have;
6672 int work, weight;
6673
6674 list_del_init(&n->poll_list);
6675
6676 have = netpoll_poll_lock(n);
6677
6678 weight = n->weight;
6679
6680 /* This NAPI_STATE_SCHED test is for avoiding a race
6681 * with netpoll's poll_napi(). Only the entity which
6682 * obtains the lock and sees NAPI_STATE_SCHED set will
6683 * actually make the ->poll() call. Therefore we avoid
6684 * accidentally calling ->poll() when NAPI is not scheduled.
6685 */
6686 work = 0;
6687 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6688 work = n->poll(n, weight);
6689 trace_napi_poll(n, work, weight);
6690 }
6691
6692 if (unlikely(work > weight))
6693 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6694 n->poll, work, weight);
6695
6696 if (likely(work < weight))
6697 goto out_unlock;
6698
6699 /* Drivers must not modify the NAPI state if they
6700 * consume the entire weight. In such cases this code
6701 * still "owns" the NAPI instance and therefore can
6702 * move the instance around on the list at-will.
6703 */
6704 if (unlikely(napi_disable_pending(n))) {
6705 napi_complete(n);
6706 goto out_unlock;
6707 }
6708
6709 if (n->gro_bitmask) {
6710 /* flush too old packets
6711 * If HZ < 1000, flush all packets.
6712 */
6713 napi_gro_flush(n, HZ >= 1000);
6714 }
6715
6716 gro_normal_list(n);
6717
6718 /* Some drivers may have called napi_schedule
6719 * prior to exhausting their budget.
6720 */
6721 if (unlikely(!list_empty(&n->poll_list))) {
6722 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6723 n->dev ? n->dev->name : "backlog");
6724 goto out_unlock;
6725 }
6726
6727 list_add_tail(&n->poll_list, repoll);
6728
6729out_unlock:
6730 netpoll_poll_unlock(have);
6731
6732 return work;
6733}
6734
6735static __latent_entropy void net_rx_action(struct softirq_action *h)
6736{
6737 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6738 unsigned long time_limit = jiffies +
6739 usecs_to_jiffies(netdev_budget_usecs);
6740 int budget = netdev_budget;
6741 LIST_HEAD(list);
6742 LIST_HEAD(repoll);
6743
6744 local_irq_disable();
6745 list_splice_init(&sd->poll_list, &list);
6746 local_irq_enable();
6747
6748 for (;;) {
6749 struct napi_struct *n;
6750
6751 if (list_empty(&list)) {
6752 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6753 goto out;
6754 break;
6755 }
6756
6757 n = list_first_entry(&list, struct napi_struct, poll_list);
6758 budget -= napi_poll(n, &repoll);
6759
6760 /* If softirq window is exhausted then punt.
6761 * Allow this to run for 2 jiffies since which will allow
6762 * an average latency of 1.5/HZ.
6763 */
6764 if (unlikely(budget <= 0 ||
6765 time_after_eq(jiffies, time_limit))) {
6766 sd->time_squeeze++;
6767 break;
6768 }
6769 }
6770
6771 local_irq_disable();
6772
6773 list_splice_tail_init(&sd->poll_list, &list);
6774 list_splice_tail(&repoll, &list);
6775 list_splice(&list, &sd->poll_list);
6776 if (!list_empty(&sd->poll_list))
6777 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6778
6779 net_rps_action_and_irq_enable(sd);
6780out:
6781 __kfree_skb_flush();
6782}
6783
6784struct netdev_adjacent {
6785 struct net_device *dev;
6786
6787 /* upper master flag, there can only be one master device per list */
6788 bool master;
6789
6790 /* lookup ignore flag */
6791 bool ignore;
6792
6793 /* counter for the number of times this device was added to us */
6794 u16 ref_nr;
6795
6796 /* private field for the users */
6797 void *private;
6798
6799 struct list_head list;
6800 struct rcu_head rcu;
6801};
6802
6803static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6804 struct list_head *adj_list)
6805{
6806 struct netdev_adjacent *adj;
6807
6808 list_for_each_entry(adj, adj_list, list) {
6809 if (adj->dev == adj_dev)
6810 return adj;
6811 }
6812 return NULL;
6813}
6814
6815static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6816{
6817 struct net_device *dev = data;
6818
6819 return upper_dev == dev;
6820}
6821
6822/**
6823 * netdev_has_upper_dev - Check if device is linked to an upper device
6824 * @dev: device
6825 * @upper_dev: upper device to check
6826 *
6827 * Find out if a device is linked to specified upper device and return true
6828 * in case it is. Note that this checks only immediate upper device,
6829 * not through a complete stack of devices. The caller must hold the RTNL lock.
6830 */
6831bool netdev_has_upper_dev(struct net_device *dev,
6832 struct net_device *upper_dev)
6833{
6834 ASSERT_RTNL();
6835
6836 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6837 upper_dev);
6838}
6839EXPORT_SYMBOL(netdev_has_upper_dev);
6840
6841/**
6842 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6843 * @dev: device
6844 * @upper_dev: upper device to check
6845 *
6846 * Find out if a device is linked to specified upper device and return true
6847 * in case it is. Note that this checks the entire upper device chain.
6848 * The caller must hold rcu lock.
6849 */
6850
6851bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6852 struct net_device *upper_dev)
6853{
6854 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6855 upper_dev);
6856}
6857EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6858
6859/**
6860 * netdev_has_any_upper_dev - Check if device is linked to some device
6861 * @dev: device
6862 *
6863 * Find out if a device is linked to an upper device and return true in case
6864 * it is. The caller must hold the RTNL lock.
6865 */
6866bool netdev_has_any_upper_dev(struct net_device *dev)
6867{
6868 ASSERT_RTNL();
6869
6870 return !list_empty(&dev->adj_list.upper);
6871}
6872EXPORT_SYMBOL(netdev_has_any_upper_dev);
6873
6874/**
6875 * netdev_master_upper_dev_get - Get master upper device
6876 * @dev: device
6877 *
6878 * Find a master upper device and return pointer to it or NULL in case
6879 * it's not there. The caller must hold the RTNL lock.
6880 */
6881struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6882{
6883 struct netdev_adjacent *upper;
6884
6885 ASSERT_RTNL();
6886
6887 if (list_empty(&dev->adj_list.upper))
6888 return NULL;
6889
6890 upper = list_first_entry(&dev->adj_list.upper,
6891 struct netdev_adjacent, list);
6892 if (likely(upper->master))
6893 return upper->dev;
6894 return NULL;
6895}
6896EXPORT_SYMBOL(netdev_master_upper_dev_get);
6897
6898static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6899{
6900 struct netdev_adjacent *upper;
6901
6902 ASSERT_RTNL();
6903
6904 if (list_empty(&dev->adj_list.upper))
6905 return NULL;
6906
6907 upper = list_first_entry(&dev->adj_list.upper,
6908 struct netdev_adjacent, list);
6909 if (likely(upper->master) && !upper->ignore)
6910 return upper->dev;
6911 return NULL;
6912}
6913
6914/**
6915 * netdev_has_any_lower_dev - Check if device is linked to some device
6916 * @dev: device
6917 *
6918 * Find out if a device is linked to a lower device and return true in case
6919 * it is. The caller must hold the RTNL lock.
6920 */
6921static bool netdev_has_any_lower_dev(struct net_device *dev)
6922{
6923 ASSERT_RTNL();
6924
6925 return !list_empty(&dev->adj_list.lower);
6926}
6927
6928void *netdev_adjacent_get_private(struct list_head *adj_list)
6929{
6930 struct netdev_adjacent *adj;
6931
6932 adj = list_entry(adj_list, struct netdev_adjacent, list);
6933
6934 return adj->private;
6935}
6936EXPORT_SYMBOL(netdev_adjacent_get_private);
6937
6938/**
6939 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6940 * @dev: device
6941 * @iter: list_head ** of the current position
6942 *
6943 * Gets the next device from the dev's upper list, starting from iter
6944 * position. The caller must hold RCU read lock.
6945 */
6946struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6947 struct list_head **iter)
6948{
6949 struct netdev_adjacent *upper;
6950
6951 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6952
6953 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6954
6955 if (&upper->list == &dev->adj_list.upper)
6956 return NULL;
6957
6958 *iter = &upper->list;
6959
6960 return upper->dev;
6961}
6962EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6963
6964static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6965 struct list_head **iter,
6966 bool *ignore)
6967{
6968 struct netdev_adjacent *upper;
6969
6970 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6971
6972 if (&upper->list == &dev->adj_list.upper)
6973 return NULL;
6974
6975 *iter = &upper->list;
6976 *ignore = upper->ignore;
6977
6978 return upper->dev;
6979}
6980
6981static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6982 struct list_head **iter)
6983{
6984 struct netdev_adjacent *upper;
6985
6986 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6987
6988 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6989
6990 if (&upper->list == &dev->adj_list.upper)
6991 return NULL;
6992
6993 *iter = &upper->list;
6994
6995 return upper->dev;
6996}
6997
6998static int __netdev_walk_all_upper_dev(struct net_device *dev,
6999 int (*fn)(struct net_device *dev,
7000 void *data),
7001 void *data)
7002{
7003 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7004 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7005 int ret, cur = 0;
7006 bool ignore;
7007
7008 now = dev;
7009 iter = &dev->adj_list.upper;
7010
7011 while (1) {
7012 if (now != dev) {
7013 ret = fn(now, data);
7014 if (ret)
7015 return ret;
7016 }
7017
7018 next = NULL;
7019 while (1) {
7020 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7021 if (!udev)
7022 break;
7023 if (ignore)
7024 continue;
7025
7026 next = udev;
7027 niter = &udev->adj_list.upper;
7028 dev_stack[cur] = now;
7029 iter_stack[cur++] = iter;
7030 break;
7031 }
7032
7033 if (!next) {
7034 if (!cur)
7035 return 0;
7036 next = dev_stack[--cur];
7037 niter = iter_stack[cur];
7038 }
7039
7040 now = next;
7041 iter = niter;
7042 }
7043
7044 return 0;
7045}
7046
7047int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7048 int (*fn)(struct net_device *dev,
7049 void *data),
7050 void *data)
7051{
7052 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7053 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7054 int ret, cur = 0;
7055
7056 now = dev;
7057 iter = &dev->adj_list.upper;
7058
7059 while (1) {
7060 if (now != dev) {
7061 ret = fn(now, data);
7062 if (ret)
7063 return ret;
7064 }
7065
7066 next = NULL;
7067 while (1) {
7068 udev = netdev_next_upper_dev_rcu(now, &iter);
7069 if (!udev)
7070 break;
7071
7072 next = udev;
7073 niter = &udev->adj_list.upper;
7074 dev_stack[cur] = now;
7075 iter_stack[cur++] = iter;
7076 break;
7077 }
7078
7079 if (!next) {
7080 if (!cur)
7081 return 0;
7082 next = dev_stack[--cur];
7083 niter = iter_stack[cur];
7084 }
7085
7086 now = next;
7087 iter = niter;
7088 }
7089
7090 return 0;
7091}
7092EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7093
7094static bool __netdev_has_upper_dev(struct net_device *dev,
7095 struct net_device *upper_dev)
7096{
7097 ASSERT_RTNL();
7098
7099 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7100 upper_dev);
7101}
7102
7103/**
7104 * netdev_lower_get_next_private - Get the next ->private from the
7105 * lower neighbour list
7106 * @dev: device
7107 * @iter: list_head ** of the current position
7108 *
7109 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7110 * list, starting from iter position. The caller must hold either hold the
7111 * RTNL lock or its own locking that guarantees that the neighbour lower
7112 * list will remain unchanged.
7113 */
7114void *netdev_lower_get_next_private(struct net_device *dev,
7115 struct list_head **iter)
7116{
7117 struct netdev_adjacent *lower;
7118
7119 lower = list_entry(*iter, struct netdev_adjacent, list);
7120
7121 if (&lower->list == &dev->adj_list.lower)
7122 return NULL;
7123
7124 *iter = lower->list.next;
7125
7126 return lower->private;
7127}
7128EXPORT_SYMBOL(netdev_lower_get_next_private);
7129
7130/**
7131 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7132 * lower neighbour list, RCU
7133 * variant
7134 * @dev: device
7135 * @iter: list_head ** of the current position
7136 *
7137 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7138 * list, starting from iter position. The caller must hold RCU read lock.
7139 */
7140void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7141 struct list_head **iter)
7142{
7143 struct netdev_adjacent *lower;
7144
7145 WARN_ON_ONCE(!rcu_read_lock_held());
7146
7147 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7148
7149 if (&lower->list == &dev->adj_list.lower)
7150 return NULL;
7151
7152 *iter = &lower->list;
7153
7154 return lower->private;
7155}
7156EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7157
7158/**
7159 * netdev_lower_get_next - Get the next device from the lower neighbour
7160 * list
7161 * @dev: device
7162 * @iter: list_head ** of the current position
7163 *
7164 * Gets the next netdev_adjacent from the dev's lower neighbour
7165 * list, starting from iter position. The caller must hold RTNL lock or
7166 * its own locking that guarantees that the neighbour lower
7167 * list will remain unchanged.
7168 */
7169void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7170{
7171 struct netdev_adjacent *lower;
7172
7173 lower = list_entry(*iter, struct netdev_adjacent, list);
7174
7175 if (&lower->list == &dev->adj_list.lower)
7176 return NULL;
7177
7178 *iter = lower->list.next;
7179
7180 return lower->dev;
7181}
7182EXPORT_SYMBOL(netdev_lower_get_next);
7183
7184static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7185 struct list_head **iter)
7186{
7187 struct netdev_adjacent *lower;
7188
7189 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7190
7191 if (&lower->list == &dev->adj_list.lower)
7192 return NULL;
7193
7194 *iter = &lower->list;
7195
7196 return lower->dev;
7197}
7198
7199static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7200 struct list_head **iter,
7201 bool *ignore)
7202{
7203 struct netdev_adjacent *lower;
7204
7205 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7206
7207 if (&lower->list == &dev->adj_list.lower)
7208 return NULL;
7209
7210 *iter = &lower->list;
7211 *ignore = lower->ignore;
7212
7213 return lower->dev;
7214}
7215
7216int netdev_walk_all_lower_dev(struct net_device *dev,
7217 int (*fn)(struct net_device *dev,
7218 void *data),
7219 void *data)
7220{
7221 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7222 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7223 int ret, cur = 0;
7224
7225 now = dev;
7226 iter = &dev->adj_list.lower;
7227
7228 while (1) {
7229 if (now != dev) {
7230 ret = fn(now, data);
7231 if (ret)
7232 return ret;
7233 }
7234
7235 next = NULL;
7236 while (1) {
7237 ldev = netdev_next_lower_dev(now, &iter);
7238 if (!ldev)
7239 break;
7240
7241 next = ldev;
7242 niter = &ldev->adj_list.lower;
7243 dev_stack[cur] = now;
7244 iter_stack[cur++] = iter;
7245 break;
7246 }
7247
7248 if (!next) {
7249 if (!cur)
7250 return 0;
7251 next = dev_stack[--cur];
7252 niter = iter_stack[cur];
7253 }
7254
7255 now = next;
7256 iter = niter;
7257 }
7258
7259 return 0;
7260}
7261EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7262
7263static int __netdev_walk_all_lower_dev(struct net_device *dev,
7264 int (*fn)(struct net_device *dev,
7265 void *data),
7266 void *data)
7267{
7268 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7269 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7270 int ret, cur = 0;
7271 bool ignore;
7272
7273 now = dev;
7274 iter = &dev->adj_list.lower;
7275
7276 while (1) {
7277 if (now != dev) {
7278 ret = fn(now, data);
7279 if (ret)
7280 return ret;
7281 }
7282
7283 next = NULL;
7284 while (1) {
7285 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7286 if (!ldev)
7287 break;
7288 if (ignore)
7289 continue;
7290
7291 next = ldev;
7292 niter = &ldev->adj_list.lower;
7293 dev_stack[cur] = now;
7294 iter_stack[cur++] = iter;
7295 break;
7296 }
7297
7298 if (!next) {
7299 if (!cur)
7300 return 0;
7301 next = dev_stack[--cur];
7302 niter = iter_stack[cur];
7303 }
7304
7305 now = next;
7306 iter = niter;
7307 }
7308
7309 return 0;
7310}
7311
7312struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7313 struct list_head **iter)
7314{
7315 struct netdev_adjacent *lower;
7316
7317 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7318 if (&lower->list == &dev->adj_list.lower)
7319 return NULL;
7320
7321 *iter = &lower->list;
7322
7323 return lower->dev;
7324}
7325EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7326
7327static u8 __netdev_upper_depth(struct net_device *dev)
7328{
7329 struct net_device *udev;
7330 struct list_head *iter;
7331 u8 max_depth = 0;
7332 bool ignore;
7333
7334 for (iter = &dev->adj_list.upper,
7335 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7336 udev;
7337 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7338 if (ignore)
7339 continue;
7340 if (max_depth < udev->upper_level)
7341 max_depth = udev->upper_level;
7342 }
7343
7344 return max_depth;
7345}
7346
7347static u8 __netdev_lower_depth(struct net_device *dev)
7348{
7349 struct net_device *ldev;
7350 struct list_head *iter;
7351 u8 max_depth = 0;
7352 bool ignore;
7353
7354 for (iter = &dev->adj_list.lower,
7355 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7356 ldev;
7357 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7358 if (ignore)
7359 continue;
7360 if (max_depth < ldev->lower_level)
7361 max_depth = ldev->lower_level;
7362 }
7363
7364 return max_depth;
7365}
7366
7367static int __netdev_update_upper_level(struct net_device *dev, void *data)
7368{
7369 dev->upper_level = __netdev_upper_depth(dev) + 1;
7370 return 0;
7371}
7372
7373static int __netdev_update_lower_level(struct net_device *dev, void *data)
7374{
7375 dev->lower_level = __netdev_lower_depth(dev) + 1;
7376 return 0;
7377}
7378
7379int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7380 int (*fn)(struct net_device *dev,
7381 void *data),
7382 void *data)
7383{
7384 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7385 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7386 int ret, cur = 0;
7387
7388 now = dev;
7389 iter = &dev->adj_list.lower;
7390
7391 while (1) {
7392 if (now != dev) {
7393 ret = fn(now, data);
7394 if (ret)
7395 return ret;
7396 }
7397
7398 next = NULL;
7399 while (1) {
7400 ldev = netdev_next_lower_dev_rcu(now, &iter);
7401 if (!ldev)
7402 break;
7403
7404 next = ldev;
7405 niter = &ldev->adj_list.lower;
7406 dev_stack[cur] = now;
7407 iter_stack[cur++] = iter;
7408 break;
7409 }
7410
7411 if (!next) {
7412 if (!cur)
7413 return 0;
7414 next = dev_stack[--cur];
7415 niter = iter_stack[cur];
7416 }
7417
7418 now = next;
7419 iter = niter;
7420 }
7421
7422 return 0;
7423}
7424EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7425
7426/**
7427 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7428 * lower neighbour list, RCU
7429 * variant
7430 * @dev: device
7431 *
7432 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7433 * list. The caller must hold RCU read lock.
7434 */
7435void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7436{
7437 struct netdev_adjacent *lower;
7438
7439 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7440 struct netdev_adjacent, list);
7441 if (lower)
7442 return lower->private;
7443 return NULL;
7444}
7445EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7446
7447/**
7448 * netdev_master_upper_dev_get_rcu - Get master upper device
7449 * @dev: device
7450 *
7451 * Find a master upper device and return pointer to it or NULL in case
7452 * it's not there. The caller must hold the RCU read lock.
7453 */
7454struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7455{
7456 struct netdev_adjacent *upper;
7457
7458 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7459 struct netdev_adjacent, list);
7460 if (upper && likely(upper->master))
7461 return upper->dev;
7462 return NULL;
7463}
7464EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7465
7466static int netdev_adjacent_sysfs_add(struct net_device *dev,
7467 struct net_device *adj_dev,
7468 struct list_head *dev_list)
7469{
7470 char linkname[IFNAMSIZ+7];
7471
7472 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7473 "upper_%s" : "lower_%s", adj_dev->name);
7474 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7475 linkname);
7476}
7477static void netdev_adjacent_sysfs_del(struct net_device *dev,
7478 char *name,
7479 struct list_head *dev_list)
7480{
7481 char linkname[IFNAMSIZ+7];
7482
7483 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7484 "upper_%s" : "lower_%s", name);
7485 sysfs_remove_link(&(dev->dev.kobj), linkname);
7486}
7487
7488static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7489 struct net_device *adj_dev,
7490 struct list_head *dev_list)
7491{
7492 return (dev_list == &dev->adj_list.upper ||
7493 dev_list == &dev->adj_list.lower) &&
7494 net_eq(dev_net(dev), dev_net(adj_dev));
7495}
7496
7497static int __netdev_adjacent_dev_insert(struct net_device *dev,
7498 struct net_device *adj_dev,
7499 struct list_head *dev_list,
7500 void *private, bool master)
7501{
7502 struct netdev_adjacent *adj;
7503 int ret;
7504
7505 adj = __netdev_find_adj(adj_dev, dev_list);
7506
7507 if (adj) {
7508 adj->ref_nr += 1;
7509 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7510 dev->name, adj_dev->name, adj->ref_nr);
7511
7512 return 0;
7513 }
7514
7515 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7516 if (!adj)
7517 return -ENOMEM;
7518
7519 adj->dev = adj_dev;
7520 adj->master = master;
7521 adj->ref_nr = 1;
7522 adj->private = private;
7523 adj->ignore = false;
7524 dev_hold(adj_dev);
7525
7526 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7527 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7528
7529 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7530 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7531 if (ret)
7532 goto free_adj;
7533 }
7534
7535 /* Ensure that master link is always the first item in list. */
7536 if (master) {
7537 ret = sysfs_create_link(&(dev->dev.kobj),
7538 &(adj_dev->dev.kobj), "master");
7539 if (ret)
7540 goto remove_symlinks;
7541
7542 list_add_rcu(&adj->list, dev_list);
7543 } else {
7544 list_add_tail_rcu(&adj->list, dev_list);
7545 }
7546
7547 return 0;
7548
7549remove_symlinks:
7550 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7551 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7552free_adj:
7553 kfree(adj);
7554 dev_put(adj_dev);
7555
7556 return ret;
7557}
7558
7559static void __netdev_adjacent_dev_remove(struct net_device *dev,
7560 struct net_device *adj_dev,
7561 u16 ref_nr,
7562 struct list_head *dev_list)
7563{
7564 struct netdev_adjacent *adj;
7565
7566 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7567 dev->name, adj_dev->name, ref_nr);
7568
7569 adj = __netdev_find_adj(adj_dev, dev_list);
7570
7571 if (!adj) {
7572 pr_err("Adjacency does not exist for device %s from %s\n",
7573 dev->name, adj_dev->name);
7574 WARN_ON(1);
7575 return;
7576 }
7577
7578 if (adj->ref_nr > ref_nr) {
7579 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7580 dev->name, adj_dev->name, ref_nr,
7581 adj->ref_nr - ref_nr);
7582 adj->ref_nr -= ref_nr;
7583 return;
7584 }
7585
7586 if (adj->master)
7587 sysfs_remove_link(&(dev->dev.kobj), "master");
7588
7589 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7590 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7591
7592 list_del_rcu(&adj->list);
7593 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7594 adj_dev->name, dev->name, adj_dev->name);
7595 dev_put(adj_dev);
7596 kfree_rcu(adj, rcu);
7597}
7598
7599static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7600 struct net_device *upper_dev,
7601 struct list_head *up_list,
7602 struct list_head *down_list,
7603 void *private, bool master)
7604{
7605 int ret;
7606
7607 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7608 private, master);
7609 if (ret)
7610 return ret;
7611
7612 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7613 private, false);
7614 if (ret) {
7615 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7616 return ret;
7617 }
7618
7619 return 0;
7620}
7621
7622static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7623 struct net_device *upper_dev,
7624 u16 ref_nr,
7625 struct list_head *up_list,
7626 struct list_head *down_list)
7627{
7628 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7629 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7630}
7631
7632static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7633 struct net_device *upper_dev,
7634 void *private, bool master)
7635{
7636 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7637 &dev->adj_list.upper,
7638 &upper_dev->adj_list.lower,
7639 private, master);
7640}
7641
7642static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7643 struct net_device *upper_dev)
7644{
7645 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7646 &dev->adj_list.upper,
7647 &upper_dev->adj_list.lower);
7648}
7649
7650static int __netdev_upper_dev_link(struct net_device *dev,
7651 struct net_device *upper_dev, bool master,
7652 void *upper_priv, void *upper_info,
7653 struct netlink_ext_ack *extack)
7654{
7655 struct netdev_notifier_changeupper_info changeupper_info = {
7656 .info = {
7657 .dev = dev,
7658 .extack = extack,
7659 },
7660 .upper_dev = upper_dev,
7661 .master = master,
7662 .linking = true,
7663 .upper_info = upper_info,
7664 };
7665 struct net_device *master_dev;
7666 int ret = 0;
7667
7668 ASSERT_RTNL();
7669
7670 if (dev == upper_dev)
7671 return -EBUSY;
7672
7673 /* To prevent loops, check if dev is not upper device to upper_dev. */
7674 if (__netdev_has_upper_dev(upper_dev, dev))
7675 return -EBUSY;
7676
7677 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7678 return -EMLINK;
7679
7680 if (!master) {
7681 if (__netdev_has_upper_dev(dev, upper_dev))
7682 return -EEXIST;
7683 } else {
7684 master_dev = __netdev_master_upper_dev_get(dev);
7685 if (master_dev)
7686 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7687 }
7688
7689 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7690 &changeupper_info.info);
7691 ret = notifier_to_errno(ret);
7692 if (ret)
7693 return ret;
7694
7695 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7696 master);
7697 if (ret)
7698 return ret;
7699
7700 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7701 &changeupper_info.info);
7702 ret = notifier_to_errno(ret);
7703 if (ret)
7704 goto rollback;
7705
7706 __netdev_update_upper_level(dev, NULL);
7707 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7708
7709 __netdev_update_lower_level(upper_dev, NULL);
7710 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7711 NULL);
7712
7713 return 0;
7714
7715rollback:
7716 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7717
7718 return ret;
7719}
7720
7721/**
7722 * netdev_upper_dev_link - Add a link to the upper device
7723 * @dev: device
7724 * @upper_dev: new upper device
7725 * @extack: netlink extended ack
7726 *
7727 * Adds a link to device which is upper to this one. The caller must hold
7728 * the RTNL lock. On a failure a negative errno code is returned.
7729 * On success the reference counts are adjusted and the function
7730 * returns zero.
7731 */
7732int netdev_upper_dev_link(struct net_device *dev,
7733 struct net_device *upper_dev,
7734 struct netlink_ext_ack *extack)
7735{
7736 return __netdev_upper_dev_link(dev, upper_dev, false,
7737 NULL, NULL, extack);
7738}
7739EXPORT_SYMBOL(netdev_upper_dev_link);
7740
7741/**
7742 * netdev_master_upper_dev_link - Add a master link to the upper device
7743 * @dev: device
7744 * @upper_dev: new upper device
7745 * @upper_priv: upper device private
7746 * @upper_info: upper info to be passed down via notifier
7747 * @extack: netlink extended ack
7748 *
7749 * Adds a link to device which is upper to this one. In this case, only
7750 * one master upper device can be linked, although other non-master devices
7751 * might be linked as well. The caller must hold the RTNL lock.
7752 * On a failure a negative errno code is returned. On success the reference
7753 * counts are adjusted and the function returns zero.
7754 */
7755int netdev_master_upper_dev_link(struct net_device *dev,
7756 struct net_device *upper_dev,
7757 void *upper_priv, void *upper_info,
7758 struct netlink_ext_ack *extack)
7759{
7760 return __netdev_upper_dev_link(dev, upper_dev, true,
7761 upper_priv, upper_info, extack);
7762}
7763EXPORT_SYMBOL(netdev_master_upper_dev_link);
7764
7765/**
7766 * netdev_upper_dev_unlink - Removes a link to upper device
7767 * @dev: device
7768 * @upper_dev: new upper device
7769 *
7770 * Removes a link to device which is upper to this one. The caller must hold
7771 * the RTNL lock.
7772 */
7773void netdev_upper_dev_unlink(struct net_device *dev,
7774 struct net_device *upper_dev)
7775{
7776 struct netdev_notifier_changeupper_info changeupper_info = {
7777 .info = {
7778 .dev = dev,
7779 },
7780 .upper_dev = upper_dev,
7781 .linking = false,
7782 };
7783
7784 ASSERT_RTNL();
7785
7786 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7787
7788 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7789 &changeupper_info.info);
7790
7791 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7792
7793 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7794 &changeupper_info.info);
7795
7796 __netdev_update_upper_level(dev, NULL);
7797 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7798
7799 __netdev_update_lower_level(upper_dev, NULL);
7800 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7801 NULL);
7802}
7803EXPORT_SYMBOL(netdev_upper_dev_unlink);
7804
7805static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7806 struct net_device *lower_dev,
7807 bool val)
7808{
7809 struct netdev_adjacent *adj;
7810
7811 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7812 if (adj)
7813 adj->ignore = val;
7814
7815 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7816 if (adj)
7817 adj->ignore = val;
7818}
7819
7820static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7821 struct net_device *lower_dev)
7822{
7823 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7824}
7825
7826static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7827 struct net_device *lower_dev)
7828{
7829 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7830}
7831
7832int netdev_adjacent_change_prepare(struct net_device *old_dev,
7833 struct net_device *new_dev,
7834 struct net_device *dev,
7835 struct netlink_ext_ack *extack)
7836{
7837 int err;
7838
7839 if (!new_dev)
7840 return 0;
7841
7842 if (old_dev && new_dev != old_dev)
7843 netdev_adjacent_dev_disable(dev, old_dev);
7844
7845 err = netdev_upper_dev_link(new_dev, dev, extack);
7846 if (err) {
7847 if (old_dev && new_dev != old_dev)
7848 netdev_adjacent_dev_enable(dev, old_dev);
7849 return err;
7850 }
7851
7852 return 0;
7853}
7854EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7855
7856void netdev_adjacent_change_commit(struct net_device *old_dev,
7857 struct net_device *new_dev,
7858 struct net_device *dev)
7859{
7860 if (!new_dev || !old_dev)
7861 return;
7862
7863 if (new_dev == old_dev)
7864 return;
7865
7866 netdev_adjacent_dev_enable(dev, old_dev);
7867 netdev_upper_dev_unlink(old_dev, dev);
7868}
7869EXPORT_SYMBOL(netdev_adjacent_change_commit);
7870
7871void netdev_adjacent_change_abort(struct net_device *old_dev,
7872 struct net_device *new_dev,
7873 struct net_device *dev)
7874{
7875 if (!new_dev)
7876 return;
7877
7878 if (old_dev && new_dev != old_dev)
7879 netdev_adjacent_dev_enable(dev, old_dev);
7880
7881 netdev_upper_dev_unlink(new_dev, dev);
7882}
7883EXPORT_SYMBOL(netdev_adjacent_change_abort);
7884
7885/**
7886 * netdev_bonding_info_change - Dispatch event about slave change
7887 * @dev: device
7888 * @bonding_info: info to dispatch
7889 *
7890 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7891 * The caller must hold the RTNL lock.
7892 */
7893void netdev_bonding_info_change(struct net_device *dev,
7894 struct netdev_bonding_info *bonding_info)
7895{
7896 struct netdev_notifier_bonding_info info = {
7897 .info.dev = dev,
7898 };
7899
7900 memcpy(&info.bonding_info, bonding_info,
7901 sizeof(struct netdev_bonding_info));
7902 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7903 &info.info);
7904}
7905EXPORT_SYMBOL(netdev_bonding_info_change);
7906
7907/**
7908 * netdev_get_xmit_slave - Get the xmit slave of master device
7909 * @dev: device
7910 * @skb: The packet
7911 * @all_slaves: assume all the slaves are active
7912 *
7913 * The reference counters are not incremented so the caller must be
7914 * careful with locks. The caller must hold RCU lock.
7915 * %NULL is returned if no slave is found.
7916 */
7917
7918struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7919 struct sk_buff *skb,
7920 bool all_slaves)
7921{
7922 const struct net_device_ops *ops = dev->netdev_ops;
7923
7924 if (!ops->ndo_get_xmit_slave)
7925 return NULL;
7926 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7927}
7928EXPORT_SYMBOL(netdev_get_xmit_slave);
7929
7930static void netdev_adjacent_add_links(struct net_device *dev)
7931{
7932 struct netdev_adjacent *iter;
7933
7934 struct net *net = dev_net(dev);
7935
7936 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7937 if (!net_eq(net, dev_net(iter->dev)))
7938 continue;
7939 netdev_adjacent_sysfs_add(iter->dev, dev,
7940 &iter->dev->adj_list.lower);
7941 netdev_adjacent_sysfs_add(dev, iter->dev,
7942 &dev->adj_list.upper);
7943 }
7944
7945 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7946 if (!net_eq(net, dev_net(iter->dev)))
7947 continue;
7948 netdev_adjacent_sysfs_add(iter->dev, dev,
7949 &iter->dev->adj_list.upper);
7950 netdev_adjacent_sysfs_add(dev, iter->dev,
7951 &dev->adj_list.lower);
7952 }
7953}
7954
7955static void netdev_adjacent_del_links(struct net_device *dev)
7956{
7957 struct netdev_adjacent *iter;
7958
7959 struct net *net = dev_net(dev);
7960
7961 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7962 if (!net_eq(net, dev_net(iter->dev)))
7963 continue;
7964 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7965 &iter->dev->adj_list.lower);
7966 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7967 &dev->adj_list.upper);
7968 }
7969
7970 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7971 if (!net_eq(net, dev_net(iter->dev)))
7972 continue;
7973 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7974 &iter->dev->adj_list.upper);
7975 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7976 &dev->adj_list.lower);
7977 }
7978}
7979
7980void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7981{
7982 struct netdev_adjacent *iter;
7983
7984 struct net *net = dev_net(dev);
7985
7986 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7987 if (!net_eq(net, dev_net(iter->dev)))
7988 continue;
7989 netdev_adjacent_sysfs_del(iter->dev, oldname,
7990 &iter->dev->adj_list.lower);
7991 netdev_adjacent_sysfs_add(iter->dev, dev,
7992 &iter->dev->adj_list.lower);
7993 }
7994
7995 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7996 if (!net_eq(net, dev_net(iter->dev)))
7997 continue;
7998 netdev_adjacent_sysfs_del(iter->dev, oldname,
7999 &iter->dev->adj_list.upper);
8000 netdev_adjacent_sysfs_add(iter->dev, dev,
8001 &iter->dev->adj_list.upper);
8002 }
8003}
8004
8005void *netdev_lower_dev_get_private(struct net_device *dev,
8006 struct net_device *lower_dev)
8007{
8008 struct netdev_adjacent *lower;
8009
8010 if (!lower_dev)
8011 return NULL;
8012 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8013 if (!lower)
8014 return NULL;
8015
8016 return lower->private;
8017}
8018EXPORT_SYMBOL(netdev_lower_dev_get_private);
8019
8020
8021/**
8022 * netdev_lower_change - Dispatch event about lower device state change
8023 * @lower_dev: device
8024 * @lower_state_info: state to dispatch
8025 *
8026 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8027 * The caller must hold the RTNL lock.
8028 */
8029void netdev_lower_state_changed(struct net_device *lower_dev,
8030 void *lower_state_info)
8031{
8032 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8033 .info.dev = lower_dev,
8034 };
8035
8036 ASSERT_RTNL();
8037 changelowerstate_info.lower_state_info = lower_state_info;
8038 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8039 &changelowerstate_info.info);
8040}
8041EXPORT_SYMBOL(netdev_lower_state_changed);
8042
8043static void dev_change_rx_flags(struct net_device *dev, int flags)
8044{
8045 const struct net_device_ops *ops = dev->netdev_ops;
8046
8047 if (ops->ndo_change_rx_flags)
8048 ops->ndo_change_rx_flags(dev, flags);
8049}
8050
8051static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8052{
8053 unsigned int old_flags = dev->flags;
8054 kuid_t uid;
8055 kgid_t gid;
8056
8057 ASSERT_RTNL();
8058
8059 dev->flags |= IFF_PROMISC;
8060 dev->promiscuity += inc;
8061 if (dev->promiscuity == 0) {
8062 /*
8063 * Avoid overflow.
8064 * If inc causes overflow, untouch promisc and return error.
8065 */
8066 if (inc < 0)
8067 dev->flags &= ~IFF_PROMISC;
8068 else {
8069 dev->promiscuity -= inc;
8070 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8071 dev->name);
8072 return -EOVERFLOW;
8073 }
8074 }
8075 if (dev->flags != old_flags) {
8076 pr_info("device %s %s promiscuous mode\n",
8077 dev->name,
8078 dev->flags & IFF_PROMISC ? "entered" : "left");
8079 if (audit_enabled) {
8080 current_uid_gid(&uid, &gid);
8081 audit_log(audit_context(), GFP_ATOMIC,
8082 AUDIT_ANOM_PROMISCUOUS,
8083 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8084 dev->name, (dev->flags & IFF_PROMISC),
8085 (old_flags & IFF_PROMISC),
8086 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8087 from_kuid(&init_user_ns, uid),
8088 from_kgid(&init_user_ns, gid),
8089 audit_get_sessionid(current));
8090 }
8091
8092 dev_change_rx_flags(dev, IFF_PROMISC);
8093 }
8094 if (notify)
8095 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8096 return 0;
8097}
8098
8099/**
8100 * dev_set_promiscuity - update promiscuity count on a device
8101 * @dev: device
8102 * @inc: modifier
8103 *
8104 * Add or remove promiscuity from a device. While the count in the device
8105 * remains above zero the interface remains promiscuous. Once it hits zero
8106 * the device reverts back to normal filtering operation. A negative inc
8107 * value is used to drop promiscuity on the device.
8108 * Return 0 if successful or a negative errno code on error.
8109 */
8110int dev_set_promiscuity(struct net_device *dev, int inc)
8111{
8112 unsigned int old_flags = dev->flags;
8113 int err;
8114
8115 err = __dev_set_promiscuity(dev, inc, true);
8116 if (err < 0)
8117 return err;
8118 if (dev->flags != old_flags)
8119 dev_set_rx_mode(dev);
8120 return err;
8121}
8122EXPORT_SYMBOL(dev_set_promiscuity);
8123
8124static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8125{
8126 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8127
8128 ASSERT_RTNL();
8129
8130 dev->flags |= IFF_ALLMULTI;
8131 dev->allmulti += inc;
8132 if (dev->allmulti == 0) {
8133 /*
8134 * Avoid overflow.
8135 * If inc causes overflow, untouch allmulti and return error.
8136 */
8137 if (inc < 0)
8138 dev->flags &= ~IFF_ALLMULTI;
8139 else {
8140 dev->allmulti -= inc;
8141 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8142 dev->name);
8143 return -EOVERFLOW;
8144 }
8145 }
8146 if (dev->flags ^ old_flags) {
8147 dev_change_rx_flags(dev, IFF_ALLMULTI);
8148 dev_set_rx_mode(dev);
8149 if (notify)
8150 __dev_notify_flags(dev, old_flags,
8151 dev->gflags ^ old_gflags);
8152 }
8153 return 0;
8154}
8155
8156/**
8157 * dev_set_allmulti - update allmulti count on a device
8158 * @dev: device
8159 * @inc: modifier
8160 *
8161 * Add or remove reception of all multicast frames to a device. While the
8162 * count in the device remains above zero the interface remains listening
8163 * to all interfaces. Once it hits zero the device reverts back to normal
8164 * filtering operation. A negative @inc value is used to drop the counter
8165 * when releasing a resource needing all multicasts.
8166 * Return 0 if successful or a negative errno code on error.
8167 */
8168
8169int dev_set_allmulti(struct net_device *dev, int inc)
8170{
8171 return __dev_set_allmulti(dev, inc, true);
8172}
8173EXPORT_SYMBOL(dev_set_allmulti);
8174
8175/*
8176 * Upload unicast and multicast address lists to device and
8177 * configure RX filtering. When the device doesn't support unicast
8178 * filtering it is put in promiscuous mode while unicast addresses
8179 * are present.
8180 */
8181void __dev_set_rx_mode(struct net_device *dev)
8182{
8183 const struct net_device_ops *ops = dev->netdev_ops;
8184
8185 /* dev_open will call this function so the list will stay sane. */
8186 if (!(dev->flags&IFF_UP))
8187 return;
8188
8189 if (!netif_device_present(dev))
8190 return;
8191
8192 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8193 /* Unicast addresses changes may only happen under the rtnl,
8194 * therefore calling __dev_set_promiscuity here is safe.
8195 */
8196 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8197 __dev_set_promiscuity(dev, 1, false);
8198 dev->uc_promisc = true;
8199 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8200 __dev_set_promiscuity(dev, -1, false);
8201 dev->uc_promisc = false;
8202 }
8203 }
8204
8205 if (ops->ndo_set_rx_mode)
8206 ops->ndo_set_rx_mode(dev);
8207}
8208
8209void dev_set_rx_mode(struct net_device *dev)
8210{
8211 netif_addr_lock_bh(dev);
8212 __dev_set_rx_mode(dev);
8213 netif_addr_unlock_bh(dev);
8214}
8215
8216/**
8217 * dev_get_flags - get flags reported to userspace
8218 * @dev: device
8219 *
8220 * Get the combination of flag bits exported through APIs to userspace.
8221 */
8222unsigned int dev_get_flags(const struct net_device *dev)
8223{
8224 unsigned int flags;
8225
8226 flags = (dev->flags & ~(IFF_PROMISC |
8227 IFF_ALLMULTI |
8228 IFF_RUNNING |
8229 IFF_LOWER_UP |
8230 IFF_DORMANT)) |
8231 (dev->gflags & (IFF_PROMISC |
8232 IFF_ALLMULTI));
8233
8234 if (netif_running(dev)) {
8235 if (netif_oper_up(dev))
8236 flags |= IFF_RUNNING;
8237 if (netif_carrier_ok(dev))
8238 flags |= IFF_LOWER_UP;
8239 if (netif_dormant(dev))
8240 flags |= IFF_DORMANT;
8241 }
8242
8243 return flags;
8244}
8245EXPORT_SYMBOL(dev_get_flags);
8246
8247int __dev_change_flags(struct net_device *dev, unsigned int flags,
8248 struct netlink_ext_ack *extack)
8249{
8250 unsigned int old_flags = dev->flags;
8251 int ret;
8252
8253 ASSERT_RTNL();
8254
8255 /*
8256 * Set the flags on our device.
8257 */
8258
8259 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8260 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8261 IFF_AUTOMEDIA)) |
8262 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8263 IFF_ALLMULTI));
8264
8265 /*
8266 * Load in the correct multicast list now the flags have changed.
8267 */
8268
8269 if ((old_flags ^ flags) & IFF_MULTICAST)
8270 dev_change_rx_flags(dev, IFF_MULTICAST);
8271
8272 dev_set_rx_mode(dev);
8273
8274 /*
8275 * Have we downed the interface. We handle IFF_UP ourselves
8276 * according to user attempts to set it, rather than blindly
8277 * setting it.
8278 */
8279
8280 ret = 0;
8281 if ((old_flags ^ flags) & IFF_UP) {
8282 if (old_flags & IFF_UP)
8283 __dev_close(dev);
8284 else
8285 ret = __dev_open(dev, extack);
8286 }
8287
8288 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8289 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8290 unsigned int old_flags = dev->flags;
8291
8292 dev->gflags ^= IFF_PROMISC;
8293
8294 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8295 if (dev->flags != old_flags)
8296 dev_set_rx_mode(dev);
8297 }
8298
8299 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8300 * is important. Some (broken) drivers set IFF_PROMISC, when
8301 * IFF_ALLMULTI is requested not asking us and not reporting.
8302 */
8303 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8304 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8305
8306 dev->gflags ^= IFF_ALLMULTI;
8307 __dev_set_allmulti(dev, inc, false);
8308 }
8309
8310 return ret;
8311}
8312
8313void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8314 unsigned int gchanges)
8315{
8316 unsigned int changes = dev->flags ^ old_flags;
8317
8318 if (gchanges)
8319 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8320
8321 if (changes & IFF_UP) {
8322 if (dev->flags & IFF_UP)
8323 call_netdevice_notifiers(NETDEV_UP, dev);
8324 else
8325 call_netdevice_notifiers(NETDEV_DOWN, dev);
8326 }
8327
8328 if (dev->flags & IFF_UP &&
8329 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8330 struct netdev_notifier_change_info change_info = {
8331 .info = {
8332 .dev = dev,
8333 },
8334 .flags_changed = changes,
8335 };
8336
8337 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8338 }
8339}
8340
8341/**
8342 * dev_change_flags - change device settings
8343 * @dev: device
8344 * @flags: device state flags
8345 * @extack: netlink extended ack
8346 *
8347 * Change settings on device based state flags. The flags are
8348 * in the userspace exported format.
8349 */
8350int dev_change_flags(struct net_device *dev, unsigned int flags,
8351 struct netlink_ext_ack *extack)
8352{
8353 int ret;
8354 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8355
8356 ret = __dev_change_flags(dev, flags, extack);
8357 if (ret < 0)
8358 return ret;
8359
8360 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8361 __dev_notify_flags(dev, old_flags, changes);
8362 return ret;
8363}
8364EXPORT_SYMBOL(dev_change_flags);
8365
8366int __dev_set_mtu(struct net_device *dev, int new_mtu)
8367{
8368 const struct net_device_ops *ops = dev->netdev_ops;
8369
8370 if (ops->ndo_change_mtu)
8371 return ops->ndo_change_mtu(dev, new_mtu);
8372
8373 /* Pairs with all the lockless reads of dev->mtu in the stack */
8374 WRITE_ONCE(dev->mtu, new_mtu);
8375 return 0;
8376}
8377EXPORT_SYMBOL(__dev_set_mtu);
8378
8379int dev_validate_mtu(struct net_device *dev, int new_mtu,
8380 struct netlink_ext_ack *extack)
8381{
8382 /* MTU must be positive, and in range */
8383 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8384 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8385 return -EINVAL;
8386 }
8387
8388 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8389 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8390 return -EINVAL;
8391 }
8392 return 0;
8393}
8394
8395/**
8396 * dev_set_mtu_ext - Change maximum transfer unit
8397 * @dev: device
8398 * @new_mtu: new transfer unit
8399 * @extack: netlink extended ack
8400 *
8401 * Change the maximum transfer size of the network device.
8402 */
8403int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8404 struct netlink_ext_ack *extack)
8405{
8406 int err, orig_mtu;
8407
8408 if (new_mtu == dev->mtu)
8409 return 0;
8410
8411 err = dev_validate_mtu(dev, new_mtu, extack);
8412 if (err)
8413 return err;
8414
8415 if (!netif_device_present(dev))
8416 return -ENODEV;
8417
8418 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8419 err = notifier_to_errno(err);
8420 if (err)
8421 return err;
8422
8423 orig_mtu = dev->mtu;
8424 err = __dev_set_mtu(dev, new_mtu);
8425
8426 if (!err) {
8427 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8428 orig_mtu);
8429 err = notifier_to_errno(err);
8430 if (err) {
8431 /* setting mtu back and notifying everyone again,
8432 * so that they have a chance to revert changes.
8433 */
8434 __dev_set_mtu(dev, orig_mtu);
8435 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8436 new_mtu);
8437 }
8438 }
8439 return err;
8440}
8441
8442int dev_set_mtu(struct net_device *dev, int new_mtu)
8443{
8444 struct netlink_ext_ack extack;
8445 int err;
8446
8447 memset(&extack, 0, sizeof(extack));
8448 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8449 if (err && extack._msg)
8450 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8451 return err;
8452}
8453EXPORT_SYMBOL(dev_set_mtu);
8454
8455/**
8456 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8457 * @dev: device
8458 * @new_len: new tx queue length
8459 */
8460int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8461{
8462 unsigned int orig_len = dev->tx_queue_len;
8463 int res;
8464
8465 if (new_len != (unsigned int)new_len)
8466 return -ERANGE;
8467
8468 if (new_len != orig_len) {
8469 dev->tx_queue_len = new_len;
8470 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8471 res = notifier_to_errno(res);
8472 if (res)
8473 goto err_rollback;
8474 res = dev_qdisc_change_tx_queue_len(dev);
8475 if (res)
8476 goto err_rollback;
8477 }
8478
8479 return 0;
8480
8481err_rollback:
8482 netdev_err(dev, "refused to change device tx_queue_len\n");
8483 dev->tx_queue_len = orig_len;
8484 return res;
8485}
8486
8487/**
8488 * dev_set_group - Change group this device belongs to
8489 * @dev: device
8490 * @new_group: group this device should belong to
8491 */
8492void dev_set_group(struct net_device *dev, int new_group)
8493{
8494 dev->group = new_group;
8495}
8496EXPORT_SYMBOL(dev_set_group);
8497
8498/**
8499 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8500 * @dev: device
8501 * @addr: new address
8502 * @extack: netlink extended ack
8503 */
8504int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8505 struct netlink_ext_ack *extack)
8506{
8507 struct netdev_notifier_pre_changeaddr_info info = {
8508 .info.dev = dev,
8509 .info.extack = extack,
8510 .dev_addr = addr,
8511 };
8512 int rc;
8513
8514 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8515 return notifier_to_errno(rc);
8516}
8517EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8518
8519/**
8520 * dev_set_mac_address - Change Media Access Control Address
8521 * @dev: device
8522 * @sa: new address
8523 * @extack: netlink extended ack
8524 *
8525 * Change the hardware (MAC) address of the device
8526 */
8527int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8528 struct netlink_ext_ack *extack)
8529{
8530 const struct net_device_ops *ops = dev->netdev_ops;
8531 int err;
8532
8533 if (!ops->ndo_set_mac_address)
8534 return -EOPNOTSUPP;
8535 if (sa->sa_family != dev->type)
8536 return -EINVAL;
8537 if (!netif_device_present(dev))
8538 return -ENODEV;
8539 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8540 if (err)
8541 return err;
8542 err = ops->ndo_set_mac_address(dev, sa);
8543 if (err)
8544 return err;
8545 dev->addr_assign_type = NET_ADDR_SET;
8546 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8547 add_device_randomness(dev->dev_addr, dev->addr_len);
8548 return 0;
8549}
8550EXPORT_SYMBOL(dev_set_mac_address);
8551
8552/**
8553 * dev_change_carrier - Change device carrier
8554 * @dev: device
8555 * @new_carrier: new value
8556 *
8557 * Change device carrier
8558 */
8559int dev_change_carrier(struct net_device *dev, bool new_carrier)
8560{
8561 const struct net_device_ops *ops = dev->netdev_ops;
8562
8563 if (!ops->ndo_change_carrier)
8564 return -EOPNOTSUPP;
8565 if (!netif_device_present(dev))
8566 return -ENODEV;
8567 return ops->ndo_change_carrier(dev, new_carrier);
8568}
8569EXPORT_SYMBOL(dev_change_carrier);
8570
8571/**
8572 * dev_get_phys_port_id - Get device physical port ID
8573 * @dev: device
8574 * @ppid: port ID
8575 *
8576 * Get device physical port ID
8577 */
8578int dev_get_phys_port_id(struct net_device *dev,
8579 struct netdev_phys_item_id *ppid)
8580{
8581 const struct net_device_ops *ops = dev->netdev_ops;
8582
8583 if (!ops->ndo_get_phys_port_id)
8584 return -EOPNOTSUPP;
8585 return ops->ndo_get_phys_port_id(dev, ppid);
8586}
8587EXPORT_SYMBOL(dev_get_phys_port_id);
8588
8589/**
8590 * dev_get_phys_port_name - Get device physical port name
8591 * @dev: device
8592 * @name: port name
8593 * @len: limit of bytes to copy to name
8594 *
8595 * Get device physical port name
8596 */
8597int dev_get_phys_port_name(struct net_device *dev,
8598 char *name, size_t len)
8599{
8600 const struct net_device_ops *ops = dev->netdev_ops;
8601 int err;
8602
8603 if (ops->ndo_get_phys_port_name) {
8604 err = ops->ndo_get_phys_port_name(dev, name, len);
8605 if (err != -EOPNOTSUPP)
8606 return err;
8607 }
8608 return devlink_compat_phys_port_name_get(dev, name, len);
8609}
8610EXPORT_SYMBOL(dev_get_phys_port_name);
8611
8612/**
8613 * dev_get_port_parent_id - Get the device's port parent identifier
8614 * @dev: network device
8615 * @ppid: pointer to a storage for the port's parent identifier
8616 * @recurse: allow/disallow recursion to lower devices
8617 *
8618 * Get the devices's port parent identifier
8619 */
8620int dev_get_port_parent_id(struct net_device *dev,
8621 struct netdev_phys_item_id *ppid,
8622 bool recurse)
8623{
8624 const struct net_device_ops *ops = dev->netdev_ops;
8625 struct netdev_phys_item_id first = { };
8626 struct net_device *lower_dev;
8627 struct list_head *iter;
8628 int err;
8629
8630 if (ops->ndo_get_port_parent_id) {
8631 err = ops->ndo_get_port_parent_id(dev, ppid);
8632 if (err != -EOPNOTSUPP)
8633 return err;
8634 }
8635
8636 err = devlink_compat_switch_id_get(dev, ppid);
8637 if (!err || err != -EOPNOTSUPP)
8638 return err;
8639
8640 if (!recurse)
8641 return -EOPNOTSUPP;
8642
8643 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8644 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8645 if (err)
8646 break;
8647 if (!first.id_len)
8648 first = *ppid;
8649 else if (memcmp(&first, ppid, sizeof(*ppid)))
8650 return -EOPNOTSUPP;
8651 }
8652
8653 return err;
8654}
8655EXPORT_SYMBOL(dev_get_port_parent_id);
8656
8657/**
8658 * netdev_port_same_parent_id - Indicate if two network devices have
8659 * the same port parent identifier
8660 * @a: first network device
8661 * @b: second network device
8662 */
8663bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8664{
8665 struct netdev_phys_item_id a_id = { };
8666 struct netdev_phys_item_id b_id = { };
8667
8668 if (dev_get_port_parent_id(a, &a_id, true) ||
8669 dev_get_port_parent_id(b, &b_id, true))
8670 return false;
8671
8672 return netdev_phys_item_id_same(&a_id, &b_id);
8673}
8674EXPORT_SYMBOL(netdev_port_same_parent_id);
8675
8676/**
8677 * dev_change_proto_down - update protocol port state information
8678 * @dev: device
8679 * @proto_down: new value
8680 *
8681 * This info can be used by switch drivers to set the phys state of the
8682 * port.
8683 */
8684int dev_change_proto_down(struct net_device *dev, bool proto_down)
8685{
8686 const struct net_device_ops *ops = dev->netdev_ops;
8687
8688 if (!ops->ndo_change_proto_down)
8689 return -EOPNOTSUPP;
8690 if (!netif_device_present(dev))
8691 return -ENODEV;
8692 return ops->ndo_change_proto_down(dev, proto_down);
8693}
8694EXPORT_SYMBOL(dev_change_proto_down);
8695
8696/**
8697 * dev_change_proto_down_generic - generic implementation for
8698 * ndo_change_proto_down that sets carrier according to
8699 * proto_down.
8700 *
8701 * @dev: device
8702 * @proto_down: new value
8703 */
8704int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8705{
8706 if (proto_down)
8707 netif_carrier_off(dev);
8708 else
8709 netif_carrier_on(dev);
8710 dev->proto_down = proto_down;
8711 return 0;
8712}
8713EXPORT_SYMBOL(dev_change_proto_down_generic);
8714
8715/**
8716 * dev_change_proto_down_reason - proto down reason
8717 *
8718 * @dev: device
8719 * @mask: proto down mask
8720 * @value: proto down value
8721 */
8722void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8723 u32 value)
8724{
8725 int b;
8726
8727 if (!mask) {
8728 dev->proto_down_reason = value;
8729 } else {
8730 for_each_set_bit(b, &mask, 32) {
8731 if (value & (1 << b))
8732 dev->proto_down_reason |= BIT(b);
8733 else
8734 dev->proto_down_reason &= ~BIT(b);
8735 }
8736 }
8737}
8738EXPORT_SYMBOL(dev_change_proto_down_reason);
8739
8740struct bpf_xdp_link {
8741 struct bpf_link link;
8742 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8743 int flags;
8744};
8745
8746static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8747{
8748 if (flags & XDP_FLAGS_HW_MODE)
8749 return XDP_MODE_HW;
8750 if (flags & XDP_FLAGS_DRV_MODE)
8751 return XDP_MODE_DRV;
8752 if (flags & XDP_FLAGS_SKB_MODE)
8753 return XDP_MODE_SKB;
8754 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8755}
8756
8757static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8758{
8759 switch (mode) {
8760 case XDP_MODE_SKB:
8761 return generic_xdp_install;
8762 case XDP_MODE_DRV:
8763 case XDP_MODE_HW:
8764 return dev->netdev_ops->ndo_bpf;
8765 default:
8766 return NULL;
8767 };
8768}
8769
8770static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8771 enum bpf_xdp_mode mode)
8772{
8773 return dev->xdp_state[mode].link;
8774}
8775
8776static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8777 enum bpf_xdp_mode mode)
8778{
8779 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8780
8781 if (link)
8782 return link->link.prog;
8783 return dev->xdp_state[mode].prog;
8784}
8785
8786u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8787{
8788 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8789
8790 return prog ? prog->aux->id : 0;
8791}
8792
8793static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8794 struct bpf_xdp_link *link)
8795{
8796 dev->xdp_state[mode].link = link;
8797 dev->xdp_state[mode].prog = NULL;
8798}
8799
8800static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8801 struct bpf_prog *prog)
8802{
8803 dev->xdp_state[mode].link = NULL;
8804 dev->xdp_state[mode].prog = prog;
8805}
8806
8807static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8808 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8809 u32 flags, struct bpf_prog *prog)
8810{
8811 struct netdev_bpf xdp;
8812 int err;
8813
8814 memset(&xdp, 0, sizeof(xdp));
8815 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8816 xdp.extack = extack;
8817 xdp.flags = flags;
8818 xdp.prog = prog;
8819
8820 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
8821 * "moved" into driver), so they don't increment it on their own, but
8822 * they do decrement refcnt when program is detached or replaced.
8823 * Given net_device also owns link/prog, we need to bump refcnt here
8824 * to prevent drivers from underflowing it.
8825 */
8826 if (prog)
8827 bpf_prog_inc(prog);
8828 err = bpf_op(dev, &xdp);
8829 if (err) {
8830 if (prog)
8831 bpf_prog_put(prog);
8832 return err;
8833 }
8834
8835 if (mode != XDP_MODE_HW)
8836 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8837
8838 return 0;
8839}
8840
8841static void dev_xdp_uninstall(struct net_device *dev)
8842{
8843 struct bpf_xdp_link *link;
8844 struct bpf_prog *prog;
8845 enum bpf_xdp_mode mode;
8846 bpf_op_t bpf_op;
8847
8848 ASSERT_RTNL();
8849
8850 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8851 prog = dev_xdp_prog(dev, mode);
8852 if (!prog)
8853 continue;
8854
8855 bpf_op = dev_xdp_bpf_op(dev, mode);
8856 if (!bpf_op)
8857 continue;
8858
8859 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8860
8861 /* auto-detach link from net device */
8862 link = dev_xdp_link(dev, mode);
8863 if (link)
8864 link->dev = NULL;
8865 else
8866 bpf_prog_put(prog);
8867
8868 dev_xdp_set_link(dev, mode, NULL);
8869 }
8870}
8871
8872static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
8873 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
8874 struct bpf_prog *old_prog, u32 flags)
8875{
8876 struct bpf_prog *cur_prog;
8877 enum bpf_xdp_mode mode;
8878 bpf_op_t bpf_op;
8879 int err;
8880
8881 ASSERT_RTNL();
8882
8883 /* either link or prog attachment, never both */
8884 if (link && (new_prog || old_prog))
8885 return -EINVAL;
8886 /* link supports only XDP mode flags */
8887 if (link && (flags & ~XDP_FLAGS_MODES)) {
8888 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
8889 return -EINVAL;
8890 }
8891 /* just one XDP mode bit should be set, zero defaults to SKB mode */
8892 if (hweight32(flags & XDP_FLAGS_MODES) > 1) {
8893 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
8894 return -EINVAL;
8895 }
8896 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
8897 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
8898 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
8899 return -EINVAL;
8900 }
8901
8902 mode = dev_xdp_mode(dev, flags);
8903 /* can't replace attached link */
8904 if (dev_xdp_link(dev, mode)) {
8905 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
8906 return -EBUSY;
8907 }
8908
8909 cur_prog = dev_xdp_prog(dev, mode);
8910 /* can't replace attached prog with link */
8911 if (link && cur_prog) {
8912 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
8913 return -EBUSY;
8914 }
8915 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
8916 NL_SET_ERR_MSG(extack, "Active program does not match expected");
8917 return -EEXIST;
8918 }
8919
8920 /* put effective new program into new_prog */
8921 if (link)
8922 new_prog = link->link.prog;
8923
8924 if (new_prog) {
8925 bool offload = mode == XDP_MODE_HW;
8926 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
8927 ? XDP_MODE_DRV : XDP_MODE_SKB;
8928
8929 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
8930 NL_SET_ERR_MSG(extack, "XDP program already attached");
8931 return -EBUSY;
8932 }
8933 if (!offload && dev_xdp_prog(dev, other_mode)) {
8934 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
8935 return -EEXIST;
8936 }
8937 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
8938 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
8939 return -EINVAL;
8940 }
8941 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
8942 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
8943 return -EINVAL;
8944 }
8945 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
8946 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
8947 return -EINVAL;
8948 }
8949 }
8950
8951 /* don't call drivers if the effective program didn't change */
8952 if (new_prog != cur_prog) {
8953 bpf_op = dev_xdp_bpf_op(dev, mode);
8954 if (!bpf_op) {
8955 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
8956 return -EOPNOTSUPP;
8957 }
8958
8959 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
8960 if (err)
8961 return err;
8962 }
8963
8964 if (link)
8965 dev_xdp_set_link(dev, mode, link);
8966 else
8967 dev_xdp_set_prog(dev, mode, new_prog);
8968 if (cur_prog)
8969 bpf_prog_put(cur_prog);
8970
8971 return 0;
8972}
8973
8974static int dev_xdp_attach_link(struct net_device *dev,
8975 struct netlink_ext_ack *extack,
8976 struct bpf_xdp_link *link)
8977{
8978 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
8979}
8980
8981static int dev_xdp_detach_link(struct net_device *dev,
8982 struct netlink_ext_ack *extack,
8983 struct bpf_xdp_link *link)
8984{
8985 enum bpf_xdp_mode mode;
8986 bpf_op_t bpf_op;
8987
8988 ASSERT_RTNL();
8989
8990 mode = dev_xdp_mode(dev, link->flags);
8991 if (dev_xdp_link(dev, mode) != link)
8992 return -EINVAL;
8993
8994 bpf_op = dev_xdp_bpf_op(dev, mode);
8995 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8996 dev_xdp_set_link(dev, mode, NULL);
8997 return 0;
8998}
8999
9000static void bpf_xdp_link_release(struct bpf_link *link)
9001{
9002 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9003
9004 rtnl_lock();
9005
9006 /* if racing with net_device's tear down, xdp_link->dev might be
9007 * already NULL, in which case link was already auto-detached
9008 */
9009 if (xdp_link->dev) {
9010 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9011 xdp_link->dev = NULL;
9012 }
9013
9014 rtnl_unlock();
9015}
9016
9017static int bpf_xdp_link_detach(struct bpf_link *link)
9018{
9019 bpf_xdp_link_release(link);
9020 return 0;
9021}
9022
9023static void bpf_xdp_link_dealloc(struct bpf_link *link)
9024{
9025 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9026
9027 kfree(xdp_link);
9028}
9029
9030static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9031 struct seq_file *seq)
9032{
9033 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9034 u32 ifindex = 0;
9035
9036 rtnl_lock();
9037 if (xdp_link->dev)
9038 ifindex = xdp_link->dev->ifindex;
9039 rtnl_unlock();
9040
9041 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9042}
9043
9044static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9045 struct bpf_link_info *info)
9046{
9047 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9048 u32 ifindex = 0;
9049
9050 rtnl_lock();
9051 if (xdp_link->dev)
9052 ifindex = xdp_link->dev->ifindex;
9053 rtnl_unlock();
9054
9055 info->xdp.ifindex = ifindex;
9056 return 0;
9057}
9058
9059static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9060 struct bpf_prog *old_prog)
9061{
9062 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9063 enum bpf_xdp_mode mode;
9064 bpf_op_t bpf_op;
9065 int err = 0;
9066
9067 rtnl_lock();
9068
9069 /* link might have been auto-released already, so fail */
9070 if (!xdp_link->dev) {
9071 err = -ENOLINK;
9072 goto out_unlock;
9073 }
9074
9075 if (old_prog && link->prog != old_prog) {
9076 err = -EPERM;
9077 goto out_unlock;
9078 }
9079 old_prog = link->prog;
9080 if (old_prog == new_prog) {
9081 /* no-op, don't disturb drivers */
9082 bpf_prog_put(new_prog);
9083 goto out_unlock;
9084 }
9085
9086 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9087 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9088 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9089 xdp_link->flags, new_prog);
9090 if (err)
9091 goto out_unlock;
9092
9093 old_prog = xchg(&link->prog, new_prog);
9094 bpf_prog_put(old_prog);
9095
9096out_unlock:
9097 rtnl_unlock();
9098 return err;
9099}
9100
9101static const struct bpf_link_ops bpf_xdp_link_lops = {
9102 .release = bpf_xdp_link_release,
9103 .dealloc = bpf_xdp_link_dealloc,
9104 .detach = bpf_xdp_link_detach,
9105 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9106 .fill_link_info = bpf_xdp_link_fill_link_info,
9107 .update_prog = bpf_xdp_link_update,
9108};
9109
9110int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9111{
9112 struct net *net = current->nsproxy->net_ns;
9113 struct bpf_link_primer link_primer;
9114 struct bpf_xdp_link *link;
9115 struct net_device *dev;
9116 int err, fd;
9117
9118 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9119 if (!dev)
9120 return -EINVAL;
9121
9122 link = kzalloc(sizeof(*link), GFP_USER);
9123 if (!link) {
9124 err = -ENOMEM;
9125 goto out_put_dev;
9126 }
9127
9128 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9129 link->dev = dev;
9130 link->flags = attr->link_create.flags;
9131
9132 err = bpf_link_prime(&link->link, &link_primer);
9133 if (err) {
9134 kfree(link);
9135 goto out_put_dev;
9136 }
9137
9138 rtnl_lock();
9139 err = dev_xdp_attach_link(dev, NULL, link);
9140 rtnl_unlock();
9141
9142 if (err) {
9143 bpf_link_cleanup(&link_primer);
9144 goto out_put_dev;
9145 }
9146
9147 fd = bpf_link_settle(&link_primer);
9148 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9149 dev_put(dev);
9150 return fd;
9151
9152out_put_dev:
9153 dev_put(dev);
9154 return err;
9155}
9156
9157/**
9158 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9159 * @dev: device
9160 * @extack: netlink extended ack
9161 * @fd: new program fd or negative value to clear
9162 * @expected_fd: old program fd that userspace expects to replace or clear
9163 * @flags: xdp-related flags
9164 *
9165 * Set or clear a bpf program for a device
9166 */
9167int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9168 int fd, int expected_fd, u32 flags)
9169{
9170 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9171 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9172 int err;
9173
9174 ASSERT_RTNL();
9175
9176 if (fd >= 0) {
9177 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9178 mode != XDP_MODE_SKB);
9179 if (IS_ERR(new_prog))
9180 return PTR_ERR(new_prog);
9181 }
9182
9183 if (expected_fd >= 0) {
9184 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9185 mode != XDP_MODE_SKB);
9186 if (IS_ERR(old_prog)) {
9187 err = PTR_ERR(old_prog);
9188 old_prog = NULL;
9189 goto err_out;
9190 }
9191 }
9192
9193 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9194
9195err_out:
9196 if (err && new_prog)
9197 bpf_prog_put(new_prog);
9198 if (old_prog)
9199 bpf_prog_put(old_prog);
9200 return err;
9201}
9202
9203/**
9204 * dev_new_index - allocate an ifindex
9205 * @net: the applicable net namespace
9206 *
9207 * Returns a suitable unique value for a new device interface
9208 * number. The caller must hold the rtnl semaphore or the
9209 * dev_base_lock to be sure it remains unique.
9210 */
9211static int dev_new_index(struct net *net)
9212{
9213 int ifindex = net->ifindex;
9214
9215 for (;;) {
9216 if (++ifindex <= 0)
9217 ifindex = 1;
9218 if (!__dev_get_by_index(net, ifindex))
9219 return net->ifindex = ifindex;
9220 }
9221}
9222
9223/* Delayed registration/unregisteration */
9224static LIST_HEAD(net_todo_list);
9225DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9226
9227static void net_set_todo(struct net_device *dev)
9228{
9229 list_add_tail(&dev->todo_list, &net_todo_list);
9230 dev_net(dev)->dev_unreg_count++;
9231}
9232
9233static void rollback_registered_many(struct list_head *head)
9234{
9235 struct net_device *dev, *tmp;
9236 LIST_HEAD(close_head);
9237
9238 BUG_ON(dev_boot_phase);
9239 ASSERT_RTNL();
9240
9241 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9242 /* Some devices call without registering
9243 * for initialization unwind. Remove those
9244 * devices and proceed with the remaining.
9245 */
9246 if (dev->reg_state == NETREG_UNINITIALIZED) {
9247 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9248 dev->name, dev);
9249
9250 WARN_ON(1);
9251 list_del(&dev->unreg_list);
9252 continue;
9253 }
9254 dev->dismantle = true;
9255 BUG_ON(dev->reg_state != NETREG_REGISTERED);
9256 }
9257
9258 /* If device is running, close it first. */
9259 list_for_each_entry(dev, head, unreg_list)
9260 list_add_tail(&dev->close_list, &close_head);
9261 dev_close_many(&close_head, true);
9262
9263 list_for_each_entry(dev, head, unreg_list) {
9264 /* And unlink it from device chain. */
9265 unlist_netdevice(dev);
9266
9267 dev->reg_state = NETREG_UNREGISTERING;
9268 }
9269 flush_all_backlogs();
9270
9271 synchronize_net();
9272
9273 list_for_each_entry(dev, head, unreg_list) {
9274 struct sk_buff *skb = NULL;
9275
9276 /* Shutdown queueing discipline. */
9277 dev_shutdown(dev);
9278
9279 dev_xdp_uninstall(dev);
9280
9281 /* Notify protocols, that we are about to destroy
9282 * this device. They should clean all the things.
9283 */
9284 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9285
9286 if (!dev->rtnl_link_ops ||
9287 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9288 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9289 GFP_KERNEL, NULL, 0);
9290
9291 /*
9292 * Flush the unicast and multicast chains
9293 */
9294 dev_uc_flush(dev);
9295 dev_mc_flush(dev);
9296
9297 netdev_name_node_alt_flush(dev);
9298 netdev_name_node_free(dev->name_node);
9299
9300 if (dev->netdev_ops->ndo_uninit)
9301 dev->netdev_ops->ndo_uninit(dev);
9302
9303 if (skb)
9304 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9305
9306 /* Notifier chain MUST detach us all upper devices. */
9307 WARN_ON(netdev_has_any_upper_dev(dev));
9308 WARN_ON(netdev_has_any_lower_dev(dev));
9309
9310 /* Remove entries from kobject tree */
9311 netdev_unregister_kobject(dev);
9312#ifdef CONFIG_XPS
9313 /* Remove XPS queueing entries */
9314 netif_reset_xps_queues_gt(dev, 0);
9315#endif
9316 }
9317
9318 synchronize_net();
9319
9320 list_for_each_entry(dev, head, unreg_list)
9321 dev_put(dev);
9322}
9323
9324static void rollback_registered(struct net_device *dev)
9325{
9326 LIST_HEAD(single);
9327
9328 list_add(&dev->unreg_list, &single);
9329 rollback_registered_many(&single);
9330 list_del(&single);
9331}
9332
9333static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9334 struct net_device *upper, netdev_features_t features)
9335{
9336 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9337 netdev_features_t feature;
9338 int feature_bit;
9339
9340 for_each_netdev_feature(upper_disables, feature_bit) {
9341 feature = __NETIF_F_BIT(feature_bit);
9342 if (!(upper->wanted_features & feature)
9343 && (features & feature)) {
9344 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9345 &feature, upper->name);
9346 features &= ~feature;
9347 }
9348 }
9349
9350 return features;
9351}
9352
9353static void netdev_sync_lower_features(struct net_device *upper,
9354 struct net_device *lower, netdev_features_t features)
9355{
9356 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9357 netdev_features_t feature;
9358 int feature_bit;
9359
9360 for_each_netdev_feature(upper_disables, feature_bit) {
9361 feature = __NETIF_F_BIT(feature_bit);
9362 if (!(features & feature) && (lower->features & feature)) {
9363 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9364 &feature, lower->name);
9365 lower->wanted_features &= ~feature;
9366 __netdev_update_features(lower);
9367
9368 if (unlikely(lower->features & feature))
9369 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9370 &feature, lower->name);
9371 else
9372 netdev_features_change(lower);
9373 }
9374 }
9375}
9376
9377static netdev_features_t netdev_fix_features(struct net_device *dev,
9378 netdev_features_t features)
9379{
9380 /* Fix illegal checksum combinations */
9381 if ((features & NETIF_F_HW_CSUM) &&
9382 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9383 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9384 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9385 }
9386
9387 /* TSO requires that SG is present as well. */
9388 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9389 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9390 features &= ~NETIF_F_ALL_TSO;
9391 }
9392
9393 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9394 !(features & NETIF_F_IP_CSUM)) {
9395 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9396 features &= ~NETIF_F_TSO;
9397 features &= ~NETIF_F_TSO_ECN;
9398 }
9399
9400 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9401 !(features & NETIF_F_IPV6_CSUM)) {
9402 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9403 features &= ~NETIF_F_TSO6;
9404 }
9405
9406 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9407 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9408 features &= ~NETIF_F_TSO_MANGLEID;
9409
9410 /* TSO ECN requires that TSO is present as well. */
9411 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9412 features &= ~NETIF_F_TSO_ECN;
9413
9414 /* Software GSO depends on SG. */
9415 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9416 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9417 features &= ~NETIF_F_GSO;
9418 }
9419
9420 /* GSO partial features require GSO partial be set */
9421 if ((features & dev->gso_partial_features) &&
9422 !(features & NETIF_F_GSO_PARTIAL)) {
9423 netdev_dbg(dev,
9424 "Dropping partially supported GSO features since no GSO partial.\n");
9425 features &= ~dev->gso_partial_features;
9426 }
9427
9428 if (!(features & NETIF_F_RXCSUM)) {
9429 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9430 * successfully merged by hardware must also have the
9431 * checksum verified by hardware. If the user does not
9432 * want to enable RXCSUM, logically, we should disable GRO_HW.
9433 */
9434 if (features & NETIF_F_GRO_HW) {
9435 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9436 features &= ~NETIF_F_GRO_HW;
9437 }
9438 }
9439
9440 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9441 if (features & NETIF_F_RXFCS) {
9442 if (features & NETIF_F_LRO) {
9443 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9444 features &= ~NETIF_F_LRO;
9445 }
9446
9447 if (features & NETIF_F_GRO_HW) {
9448 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9449 features &= ~NETIF_F_GRO_HW;
9450 }
9451 }
9452
9453 return features;
9454}
9455
9456int __netdev_update_features(struct net_device *dev)
9457{
9458 struct net_device *upper, *lower;
9459 netdev_features_t features;
9460 struct list_head *iter;
9461 int err = -1;
9462
9463 ASSERT_RTNL();
9464
9465 features = netdev_get_wanted_features(dev);
9466
9467 if (dev->netdev_ops->ndo_fix_features)
9468 features = dev->netdev_ops->ndo_fix_features(dev, features);
9469
9470 /* driver might be less strict about feature dependencies */
9471 features = netdev_fix_features(dev, features);
9472
9473 /* some features can't be enabled if they're off an an upper device */
9474 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9475 features = netdev_sync_upper_features(dev, upper, features);
9476
9477 if (dev->features == features)
9478 goto sync_lower;
9479
9480 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9481 &dev->features, &features);
9482
9483 if (dev->netdev_ops->ndo_set_features)
9484 err = dev->netdev_ops->ndo_set_features(dev, features);
9485 else
9486 err = 0;
9487
9488 if (unlikely(err < 0)) {
9489 netdev_err(dev,
9490 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9491 err, &features, &dev->features);
9492 /* return non-0 since some features might have changed and
9493 * it's better to fire a spurious notification than miss it
9494 */
9495 return -1;
9496 }
9497
9498sync_lower:
9499 /* some features must be disabled on lower devices when disabled
9500 * on an upper device (think: bonding master or bridge)
9501 */
9502 netdev_for_each_lower_dev(dev, lower, iter)
9503 netdev_sync_lower_features(dev, lower, features);
9504
9505 if (!err) {
9506 netdev_features_t diff = features ^ dev->features;
9507
9508 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9509 /* udp_tunnel_{get,drop}_rx_info both need
9510 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9511 * device, or they won't do anything.
9512 * Thus we need to update dev->features
9513 * *before* calling udp_tunnel_get_rx_info,
9514 * but *after* calling udp_tunnel_drop_rx_info.
9515 */
9516 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9517 dev->features = features;
9518 udp_tunnel_get_rx_info(dev);
9519 } else {
9520 udp_tunnel_drop_rx_info(dev);
9521 }
9522 }
9523
9524 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9525 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9526 dev->features = features;
9527 err |= vlan_get_rx_ctag_filter_info(dev);
9528 } else {
9529 vlan_drop_rx_ctag_filter_info(dev);
9530 }
9531 }
9532
9533 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9534 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9535 dev->features = features;
9536 err |= vlan_get_rx_stag_filter_info(dev);
9537 } else {
9538 vlan_drop_rx_stag_filter_info(dev);
9539 }
9540 }
9541
9542 dev->features = features;
9543 }
9544
9545 return err < 0 ? 0 : 1;
9546}
9547
9548/**
9549 * netdev_update_features - recalculate device features
9550 * @dev: the device to check
9551 *
9552 * Recalculate dev->features set and send notifications if it
9553 * has changed. Should be called after driver or hardware dependent
9554 * conditions might have changed that influence the features.
9555 */
9556void netdev_update_features(struct net_device *dev)
9557{
9558 if (__netdev_update_features(dev))
9559 netdev_features_change(dev);
9560}
9561EXPORT_SYMBOL(netdev_update_features);
9562
9563/**
9564 * netdev_change_features - recalculate device features
9565 * @dev: the device to check
9566 *
9567 * Recalculate dev->features set and send notifications even
9568 * if they have not changed. Should be called instead of
9569 * netdev_update_features() if also dev->vlan_features might
9570 * have changed to allow the changes to be propagated to stacked
9571 * VLAN devices.
9572 */
9573void netdev_change_features(struct net_device *dev)
9574{
9575 __netdev_update_features(dev);
9576 netdev_features_change(dev);
9577}
9578EXPORT_SYMBOL(netdev_change_features);
9579
9580/**
9581 * netif_stacked_transfer_operstate - transfer operstate
9582 * @rootdev: the root or lower level device to transfer state from
9583 * @dev: the device to transfer operstate to
9584 *
9585 * Transfer operational state from root to device. This is normally
9586 * called when a stacking relationship exists between the root
9587 * device and the device(a leaf device).
9588 */
9589void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9590 struct net_device *dev)
9591{
9592 if (rootdev->operstate == IF_OPER_DORMANT)
9593 netif_dormant_on(dev);
9594 else
9595 netif_dormant_off(dev);
9596
9597 if (rootdev->operstate == IF_OPER_TESTING)
9598 netif_testing_on(dev);
9599 else
9600 netif_testing_off(dev);
9601
9602 if (netif_carrier_ok(rootdev))
9603 netif_carrier_on(dev);
9604 else
9605 netif_carrier_off(dev);
9606}
9607EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9608
9609static int netif_alloc_rx_queues(struct net_device *dev)
9610{
9611 unsigned int i, count = dev->num_rx_queues;
9612 struct netdev_rx_queue *rx;
9613 size_t sz = count * sizeof(*rx);
9614 int err = 0;
9615
9616 BUG_ON(count < 1);
9617
9618 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9619 if (!rx)
9620 return -ENOMEM;
9621
9622 dev->_rx = rx;
9623
9624 for (i = 0; i < count; i++) {
9625 rx[i].dev = dev;
9626
9627 /* XDP RX-queue setup */
9628 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9629 if (err < 0)
9630 goto err_rxq_info;
9631 }
9632 return 0;
9633
9634err_rxq_info:
9635 /* Rollback successful reg's and free other resources */
9636 while (i--)
9637 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9638 kvfree(dev->_rx);
9639 dev->_rx = NULL;
9640 return err;
9641}
9642
9643static void netif_free_rx_queues(struct net_device *dev)
9644{
9645 unsigned int i, count = dev->num_rx_queues;
9646
9647 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9648 if (!dev->_rx)
9649 return;
9650
9651 for (i = 0; i < count; i++)
9652 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9653
9654 kvfree(dev->_rx);
9655}
9656
9657static void netdev_init_one_queue(struct net_device *dev,
9658 struct netdev_queue *queue, void *_unused)
9659{
9660 /* Initialize queue lock */
9661 spin_lock_init(&queue->_xmit_lock);
9662 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9663 queue->xmit_lock_owner = -1;
9664 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9665 queue->dev = dev;
9666#ifdef CONFIG_BQL
9667 dql_init(&queue->dql, HZ);
9668#endif
9669}
9670
9671static void netif_free_tx_queues(struct net_device *dev)
9672{
9673 kvfree(dev->_tx);
9674}
9675
9676static int netif_alloc_netdev_queues(struct net_device *dev)
9677{
9678 unsigned int count = dev->num_tx_queues;
9679 struct netdev_queue *tx;
9680 size_t sz = count * sizeof(*tx);
9681
9682 if (count < 1 || count > 0xffff)
9683 return -EINVAL;
9684
9685 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9686 if (!tx)
9687 return -ENOMEM;
9688
9689 dev->_tx = tx;
9690
9691 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9692 spin_lock_init(&dev->tx_global_lock);
9693
9694 return 0;
9695}
9696
9697void netif_tx_stop_all_queues(struct net_device *dev)
9698{
9699 unsigned int i;
9700
9701 for (i = 0; i < dev->num_tx_queues; i++) {
9702 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9703
9704 netif_tx_stop_queue(txq);
9705 }
9706}
9707EXPORT_SYMBOL(netif_tx_stop_all_queues);
9708
9709/**
9710 * register_netdevice - register a network device
9711 * @dev: device to register
9712 *
9713 * Take a completed network device structure and add it to the kernel
9714 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9715 * chain. 0 is returned on success. A negative errno code is returned
9716 * on a failure to set up the device, or if the name is a duplicate.
9717 *
9718 * Callers must hold the rtnl semaphore. You may want
9719 * register_netdev() instead of this.
9720 *
9721 * BUGS:
9722 * The locking appears insufficient to guarantee two parallel registers
9723 * will not get the same name.
9724 */
9725
9726int register_netdevice(struct net_device *dev)
9727{
9728 int ret;
9729 struct net *net = dev_net(dev);
9730
9731 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9732 NETDEV_FEATURE_COUNT);
9733 BUG_ON(dev_boot_phase);
9734 ASSERT_RTNL();
9735
9736 might_sleep();
9737
9738 /* When net_device's are persistent, this will be fatal. */
9739 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9740 BUG_ON(!net);
9741
9742 ret = ethtool_check_ops(dev->ethtool_ops);
9743 if (ret)
9744 return ret;
9745
9746 spin_lock_init(&dev->addr_list_lock);
9747 netdev_set_addr_lockdep_class(dev);
9748
9749 ret = dev_get_valid_name(net, dev, dev->name);
9750 if (ret < 0)
9751 goto out;
9752
9753 ret = -ENOMEM;
9754 dev->name_node = netdev_name_node_head_alloc(dev);
9755 if (!dev->name_node)
9756 goto out;
9757
9758 /* Init, if this function is available */
9759 if (dev->netdev_ops->ndo_init) {
9760 ret = dev->netdev_ops->ndo_init(dev);
9761 if (ret) {
9762 if (ret > 0)
9763 ret = -EIO;
9764 goto err_free_name;
9765 }
9766 }
9767
9768 if (((dev->hw_features | dev->features) &
9769 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9770 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9771 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9772 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9773 ret = -EINVAL;
9774 goto err_uninit;
9775 }
9776
9777 ret = -EBUSY;
9778 if (!dev->ifindex)
9779 dev->ifindex = dev_new_index(net);
9780 else if (__dev_get_by_index(net, dev->ifindex))
9781 goto err_uninit;
9782
9783 /* Transfer changeable features to wanted_features and enable
9784 * software offloads (GSO and GRO).
9785 */
9786 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9787 dev->features |= NETIF_F_SOFT_FEATURES;
9788
9789 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9790 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9791 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9792 }
9793
9794 dev->wanted_features = dev->features & dev->hw_features;
9795
9796 if (!(dev->flags & IFF_LOOPBACK))
9797 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9798
9799 /* If IPv4 TCP segmentation offload is supported we should also
9800 * allow the device to enable segmenting the frame with the option
9801 * of ignoring a static IP ID value. This doesn't enable the
9802 * feature itself but allows the user to enable it later.
9803 */
9804 if (dev->hw_features & NETIF_F_TSO)
9805 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9806 if (dev->vlan_features & NETIF_F_TSO)
9807 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9808 if (dev->mpls_features & NETIF_F_TSO)
9809 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9810 if (dev->hw_enc_features & NETIF_F_TSO)
9811 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9812
9813 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9814 */
9815 dev->vlan_features |= NETIF_F_HIGHDMA;
9816
9817 /* Make NETIF_F_SG inheritable to tunnel devices.
9818 */
9819 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9820
9821 /* Make NETIF_F_SG inheritable to MPLS.
9822 */
9823 dev->mpls_features |= NETIF_F_SG;
9824
9825 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9826 ret = notifier_to_errno(ret);
9827 if (ret)
9828 goto err_uninit;
9829
9830 ret = netdev_register_kobject(dev);
9831 if (ret) {
9832 dev->reg_state = NETREG_UNREGISTERED;
9833 goto err_uninit;
9834 }
9835 dev->reg_state = NETREG_REGISTERED;
9836
9837 __netdev_update_features(dev);
9838
9839 /*
9840 * Default initial state at registry is that the
9841 * device is present.
9842 */
9843
9844 set_bit(__LINK_STATE_PRESENT, &dev->state);
9845
9846 linkwatch_init_dev(dev);
9847
9848 dev_init_scheduler(dev);
9849 dev_hold(dev);
9850 list_netdevice(dev);
9851 add_device_randomness(dev->dev_addr, dev->addr_len);
9852
9853 /* If the device has permanent device address, driver should
9854 * set dev_addr and also addr_assign_type should be set to
9855 * NET_ADDR_PERM (default value).
9856 */
9857 if (dev->addr_assign_type == NET_ADDR_PERM)
9858 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9859
9860 /* Notify protocols, that a new device appeared. */
9861 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9862 ret = notifier_to_errno(ret);
9863 if (ret) {
9864 rollback_registered(dev);
9865 rcu_barrier();
9866
9867 dev->reg_state = NETREG_UNREGISTERED;
9868 /* We should put the kobject that hold in
9869 * netdev_unregister_kobject(), otherwise
9870 * the net device cannot be freed when
9871 * driver calls free_netdev(), because the
9872 * kobject is being hold.
9873 */
9874 kobject_put(&dev->dev.kobj);
9875 }
9876 /*
9877 * Prevent userspace races by waiting until the network
9878 * device is fully setup before sending notifications.
9879 */
9880 if (!dev->rtnl_link_ops ||
9881 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9882 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9883
9884out:
9885 return ret;
9886
9887err_uninit:
9888 if (dev->netdev_ops->ndo_uninit)
9889 dev->netdev_ops->ndo_uninit(dev);
9890 if (dev->priv_destructor)
9891 dev->priv_destructor(dev);
9892err_free_name:
9893 netdev_name_node_free(dev->name_node);
9894 goto out;
9895}
9896EXPORT_SYMBOL(register_netdevice);
9897
9898/**
9899 * init_dummy_netdev - init a dummy network device for NAPI
9900 * @dev: device to init
9901 *
9902 * This takes a network device structure and initialize the minimum
9903 * amount of fields so it can be used to schedule NAPI polls without
9904 * registering a full blown interface. This is to be used by drivers
9905 * that need to tie several hardware interfaces to a single NAPI
9906 * poll scheduler due to HW limitations.
9907 */
9908int init_dummy_netdev(struct net_device *dev)
9909{
9910 /* Clear everything. Note we don't initialize spinlocks
9911 * are they aren't supposed to be taken by any of the
9912 * NAPI code and this dummy netdev is supposed to be
9913 * only ever used for NAPI polls
9914 */
9915 memset(dev, 0, sizeof(struct net_device));
9916
9917 /* make sure we BUG if trying to hit standard
9918 * register/unregister code path
9919 */
9920 dev->reg_state = NETREG_DUMMY;
9921
9922 /* NAPI wants this */
9923 INIT_LIST_HEAD(&dev->napi_list);
9924
9925 /* a dummy interface is started by default */
9926 set_bit(__LINK_STATE_PRESENT, &dev->state);
9927 set_bit(__LINK_STATE_START, &dev->state);
9928
9929 /* napi_busy_loop stats accounting wants this */
9930 dev_net_set(dev, &init_net);
9931
9932 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9933 * because users of this 'device' dont need to change
9934 * its refcount.
9935 */
9936
9937 return 0;
9938}
9939EXPORT_SYMBOL_GPL(init_dummy_netdev);
9940
9941
9942/**
9943 * register_netdev - register a network device
9944 * @dev: device to register
9945 *
9946 * Take a completed network device structure and add it to the kernel
9947 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9948 * chain. 0 is returned on success. A negative errno code is returned
9949 * on a failure to set up the device, or if the name is a duplicate.
9950 *
9951 * This is a wrapper around register_netdevice that takes the rtnl semaphore
9952 * and expands the device name if you passed a format string to
9953 * alloc_netdev.
9954 */
9955int register_netdev(struct net_device *dev)
9956{
9957 int err;
9958
9959 if (rtnl_lock_killable())
9960 return -EINTR;
9961 err = register_netdevice(dev);
9962 rtnl_unlock();
9963 return err;
9964}
9965EXPORT_SYMBOL(register_netdev);
9966
9967int netdev_refcnt_read(const struct net_device *dev)
9968{
9969 int i, refcnt = 0;
9970
9971 for_each_possible_cpu(i)
9972 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9973 return refcnt;
9974}
9975EXPORT_SYMBOL(netdev_refcnt_read);
9976
9977/**
9978 * netdev_wait_allrefs - wait until all references are gone.
9979 * @dev: target net_device
9980 *
9981 * This is called when unregistering network devices.
9982 *
9983 * Any protocol or device that holds a reference should register
9984 * for netdevice notification, and cleanup and put back the
9985 * reference if they receive an UNREGISTER event.
9986 * We can get stuck here if buggy protocols don't correctly
9987 * call dev_put.
9988 */
9989static void netdev_wait_allrefs(struct net_device *dev)
9990{
9991 unsigned long rebroadcast_time, warning_time;
9992 int refcnt;
9993
9994 linkwatch_forget_dev(dev);
9995
9996 rebroadcast_time = warning_time = jiffies;
9997 refcnt = netdev_refcnt_read(dev);
9998
9999 while (refcnt != 0) {
10000 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10001 rtnl_lock();
10002
10003 /* Rebroadcast unregister notification */
10004 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10005
10006 __rtnl_unlock();
10007 rcu_barrier();
10008 rtnl_lock();
10009
10010 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10011 &dev->state)) {
10012 /* We must not have linkwatch events
10013 * pending on unregister. If this
10014 * happens, we simply run the queue
10015 * unscheduled, resulting in a noop
10016 * for this device.
10017 */
10018 linkwatch_run_queue();
10019 }
10020
10021 __rtnl_unlock();
10022
10023 rebroadcast_time = jiffies;
10024 }
10025
10026 msleep(250);
10027
10028 refcnt = netdev_refcnt_read(dev);
10029
10030 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10031 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10032 dev->name, refcnt);
10033 warning_time = jiffies;
10034 }
10035 }
10036}
10037
10038/* The sequence is:
10039 *
10040 * rtnl_lock();
10041 * ...
10042 * register_netdevice(x1);
10043 * register_netdevice(x2);
10044 * ...
10045 * unregister_netdevice(y1);
10046 * unregister_netdevice(y2);
10047 * ...
10048 * rtnl_unlock();
10049 * free_netdev(y1);
10050 * free_netdev(y2);
10051 *
10052 * We are invoked by rtnl_unlock().
10053 * This allows us to deal with problems:
10054 * 1) We can delete sysfs objects which invoke hotplug
10055 * without deadlocking with linkwatch via keventd.
10056 * 2) Since we run with the RTNL semaphore not held, we can sleep
10057 * safely in order to wait for the netdev refcnt to drop to zero.
10058 *
10059 * We must not return until all unregister events added during
10060 * the interval the lock was held have been completed.
10061 */
10062void netdev_run_todo(void)
10063{
10064 struct list_head list;
10065
10066 /* Snapshot list, allow later requests */
10067 list_replace_init(&net_todo_list, &list);
10068
10069 __rtnl_unlock();
10070
10071
10072 /* Wait for rcu callbacks to finish before next phase */
10073 if (!list_empty(&list))
10074 rcu_barrier();
10075
10076 while (!list_empty(&list)) {
10077 struct net_device *dev
10078 = list_first_entry(&list, struct net_device, todo_list);
10079 list_del(&dev->todo_list);
10080
10081 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10082 pr_err("network todo '%s' but state %d\n",
10083 dev->name, dev->reg_state);
10084 dump_stack();
10085 continue;
10086 }
10087
10088 dev->reg_state = NETREG_UNREGISTERED;
10089
10090 netdev_wait_allrefs(dev);
10091
10092 /* paranoia */
10093 BUG_ON(netdev_refcnt_read(dev));
10094 BUG_ON(!list_empty(&dev->ptype_all));
10095 BUG_ON(!list_empty(&dev->ptype_specific));
10096 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10097 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10098#if IS_ENABLED(CONFIG_DECNET)
10099 WARN_ON(dev->dn_ptr);
10100#endif
10101 if (dev->priv_destructor)
10102 dev->priv_destructor(dev);
10103 if (dev->needs_free_netdev)
10104 free_netdev(dev);
10105
10106 /* Report a network device has been unregistered */
10107 rtnl_lock();
10108 dev_net(dev)->dev_unreg_count--;
10109 __rtnl_unlock();
10110 wake_up(&netdev_unregistering_wq);
10111
10112 /* Free network device */
10113 kobject_put(&dev->dev.kobj);
10114 }
10115}
10116
10117/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10118 * all the same fields in the same order as net_device_stats, with only
10119 * the type differing, but rtnl_link_stats64 may have additional fields
10120 * at the end for newer counters.
10121 */
10122void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10123 const struct net_device_stats *netdev_stats)
10124{
10125#if BITS_PER_LONG == 64
10126 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10127 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10128 /* zero out counters that only exist in rtnl_link_stats64 */
10129 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10130 sizeof(*stats64) - sizeof(*netdev_stats));
10131#else
10132 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10133 const unsigned long *src = (const unsigned long *)netdev_stats;
10134 u64 *dst = (u64 *)stats64;
10135
10136 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10137 for (i = 0; i < n; i++)
10138 dst[i] = src[i];
10139 /* zero out counters that only exist in rtnl_link_stats64 */
10140 memset((char *)stats64 + n * sizeof(u64), 0,
10141 sizeof(*stats64) - n * sizeof(u64));
10142#endif
10143}
10144EXPORT_SYMBOL(netdev_stats_to_stats64);
10145
10146/**
10147 * dev_get_stats - get network device statistics
10148 * @dev: device to get statistics from
10149 * @storage: place to store stats
10150 *
10151 * Get network statistics from device. Return @storage.
10152 * The device driver may provide its own method by setting
10153 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10154 * otherwise the internal statistics structure is used.
10155 */
10156struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10157 struct rtnl_link_stats64 *storage)
10158{
10159 const struct net_device_ops *ops = dev->netdev_ops;
10160
10161 if (ops->ndo_get_stats64) {
10162 memset(storage, 0, sizeof(*storage));
10163 ops->ndo_get_stats64(dev, storage);
10164 } else if (ops->ndo_get_stats) {
10165 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10166 } else {
10167 netdev_stats_to_stats64(storage, &dev->stats);
10168 }
10169 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10170 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10171 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10172 return storage;
10173}
10174EXPORT_SYMBOL(dev_get_stats);
10175
10176struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10177{
10178 struct netdev_queue *queue = dev_ingress_queue(dev);
10179
10180#ifdef CONFIG_NET_CLS_ACT
10181 if (queue)
10182 return queue;
10183 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10184 if (!queue)
10185 return NULL;
10186 netdev_init_one_queue(dev, queue, NULL);
10187 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10188 queue->qdisc_sleeping = &noop_qdisc;
10189 rcu_assign_pointer(dev->ingress_queue, queue);
10190#endif
10191 return queue;
10192}
10193
10194static const struct ethtool_ops default_ethtool_ops;
10195
10196void netdev_set_default_ethtool_ops(struct net_device *dev,
10197 const struct ethtool_ops *ops)
10198{
10199 if (dev->ethtool_ops == &default_ethtool_ops)
10200 dev->ethtool_ops = ops;
10201}
10202EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10203
10204void netdev_freemem(struct net_device *dev)
10205{
10206 char *addr = (char *)dev - dev->padded;
10207
10208 kvfree(addr);
10209}
10210
10211/**
10212 * alloc_netdev_mqs - allocate network device
10213 * @sizeof_priv: size of private data to allocate space for
10214 * @name: device name format string
10215 * @name_assign_type: origin of device name
10216 * @setup: callback to initialize device
10217 * @txqs: the number of TX subqueues to allocate
10218 * @rxqs: the number of RX subqueues to allocate
10219 *
10220 * Allocates a struct net_device with private data area for driver use
10221 * and performs basic initialization. Also allocates subqueue structs
10222 * for each queue on the device.
10223 */
10224struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10225 unsigned char name_assign_type,
10226 void (*setup)(struct net_device *),
10227 unsigned int txqs, unsigned int rxqs)
10228{
10229 struct net_device *dev;
10230 unsigned int alloc_size;
10231 struct net_device *p;
10232
10233 BUG_ON(strlen(name) >= sizeof(dev->name));
10234
10235 if (txqs < 1) {
10236 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10237 return NULL;
10238 }
10239
10240 if (rxqs < 1) {
10241 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10242 return NULL;
10243 }
10244
10245 alloc_size = sizeof(struct net_device);
10246 if (sizeof_priv) {
10247 /* ensure 32-byte alignment of private area */
10248 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10249 alloc_size += sizeof_priv;
10250 }
10251 /* ensure 32-byte alignment of whole construct */
10252 alloc_size += NETDEV_ALIGN - 1;
10253
10254 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10255 if (!p)
10256 return NULL;
10257
10258 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10259 dev->padded = (char *)dev - (char *)p;
10260
10261 dev->pcpu_refcnt = alloc_percpu(int);
10262 if (!dev->pcpu_refcnt)
10263 goto free_dev;
10264
10265 if (dev_addr_init(dev))
10266 goto free_pcpu;
10267
10268 dev_mc_init(dev);
10269 dev_uc_init(dev);
10270
10271 dev_net_set(dev, &init_net);
10272
10273 dev->gso_max_size = GSO_MAX_SIZE;
10274 dev->gso_max_segs = GSO_MAX_SEGS;
10275 dev->upper_level = 1;
10276 dev->lower_level = 1;
10277
10278 INIT_LIST_HEAD(&dev->napi_list);
10279 INIT_LIST_HEAD(&dev->unreg_list);
10280 INIT_LIST_HEAD(&dev->close_list);
10281 INIT_LIST_HEAD(&dev->link_watch_list);
10282 INIT_LIST_HEAD(&dev->adj_list.upper);
10283 INIT_LIST_HEAD(&dev->adj_list.lower);
10284 INIT_LIST_HEAD(&dev->ptype_all);
10285 INIT_LIST_HEAD(&dev->ptype_specific);
10286 INIT_LIST_HEAD(&dev->net_notifier_list);
10287#ifdef CONFIG_NET_SCHED
10288 hash_init(dev->qdisc_hash);
10289#endif
10290 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10291 setup(dev);
10292
10293 if (!dev->tx_queue_len) {
10294 dev->priv_flags |= IFF_NO_QUEUE;
10295 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10296 }
10297
10298 dev->num_tx_queues = txqs;
10299 dev->real_num_tx_queues = txqs;
10300 if (netif_alloc_netdev_queues(dev))
10301 goto free_all;
10302
10303 dev->num_rx_queues = rxqs;
10304 dev->real_num_rx_queues = rxqs;
10305 if (netif_alloc_rx_queues(dev))
10306 goto free_all;
10307
10308 strcpy(dev->name, name);
10309 dev->name_assign_type = name_assign_type;
10310 dev->group = INIT_NETDEV_GROUP;
10311 if (!dev->ethtool_ops)
10312 dev->ethtool_ops = &default_ethtool_ops;
10313
10314 nf_hook_ingress_init(dev);
10315
10316 return dev;
10317
10318free_all:
10319 free_netdev(dev);
10320 return NULL;
10321
10322free_pcpu:
10323 free_percpu(dev->pcpu_refcnt);
10324free_dev:
10325 netdev_freemem(dev);
10326 return NULL;
10327}
10328EXPORT_SYMBOL(alloc_netdev_mqs);
10329
10330/**
10331 * free_netdev - free network device
10332 * @dev: device
10333 *
10334 * This function does the last stage of destroying an allocated device
10335 * interface. The reference to the device object is released. If this
10336 * is the last reference then it will be freed.Must be called in process
10337 * context.
10338 */
10339void free_netdev(struct net_device *dev)
10340{
10341 struct napi_struct *p, *n;
10342
10343 might_sleep();
10344 netif_free_tx_queues(dev);
10345 netif_free_rx_queues(dev);
10346
10347 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10348
10349 /* Flush device addresses */
10350 dev_addr_flush(dev);
10351
10352 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10353 netif_napi_del(p);
10354
10355 free_percpu(dev->pcpu_refcnt);
10356 dev->pcpu_refcnt = NULL;
10357 free_percpu(dev->xdp_bulkq);
10358 dev->xdp_bulkq = NULL;
10359
10360 /* Compatibility with error handling in drivers */
10361 if (dev->reg_state == NETREG_UNINITIALIZED) {
10362 netdev_freemem(dev);
10363 return;
10364 }
10365
10366 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10367 dev->reg_state = NETREG_RELEASED;
10368
10369 /* will free via device release */
10370 put_device(&dev->dev);
10371}
10372EXPORT_SYMBOL(free_netdev);
10373
10374/**
10375 * synchronize_net - Synchronize with packet receive processing
10376 *
10377 * Wait for packets currently being received to be done.
10378 * Does not block later packets from starting.
10379 */
10380void synchronize_net(void)
10381{
10382 might_sleep();
10383 if (rtnl_is_locked())
10384 synchronize_rcu_expedited();
10385 else
10386 synchronize_rcu();
10387}
10388EXPORT_SYMBOL(synchronize_net);
10389
10390/**
10391 * unregister_netdevice_queue - remove device from the kernel
10392 * @dev: device
10393 * @head: list
10394 *
10395 * This function shuts down a device interface and removes it
10396 * from the kernel tables.
10397 * If head not NULL, device is queued to be unregistered later.
10398 *
10399 * Callers must hold the rtnl semaphore. You may want
10400 * unregister_netdev() instead of this.
10401 */
10402
10403void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10404{
10405 ASSERT_RTNL();
10406
10407 if (head) {
10408 list_move_tail(&dev->unreg_list, head);
10409 } else {
10410 rollback_registered(dev);
10411 /* Finish processing unregister after unlock */
10412 net_set_todo(dev);
10413 }
10414}
10415EXPORT_SYMBOL(unregister_netdevice_queue);
10416
10417/**
10418 * unregister_netdevice_many - unregister many devices
10419 * @head: list of devices
10420 *
10421 * Note: As most callers use a stack allocated list_head,
10422 * we force a list_del() to make sure stack wont be corrupted later.
10423 */
10424void unregister_netdevice_many(struct list_head *head)
10425{
10426 struct net_device *dev;
10427
10428 if (!list_empty(head)) {
10429 rollback_registered_many(head);
10430 list_for_each_entry(dev, head, unreg_list)
10431 net_set_todo(dev);
10432 list_del(head);
10433 }
10434}
10435EXPORT_SYMBOL(unregister_netdevice_many);
10436
10437/**
10438 * unregister_netdev - remove device from the kernel
10439 * @dev: device
10440 *
10441 * This function shuts down a device interface and removes it
10442 * from the kernel tables.
10443 *
10444 * This is just a wrapper for unregister_netdevice that takes
10445 * the rtnl semaphore. In general you want to use this and not
10446 * unregister_netdevice.
10447 */
10448void unregister_netdev(struct net_device *dev)
10449{
10450 rtnl_lock();
10451 unregister_netdevice(dev);
10452 rtnl_unlock();
10453}
10454EXPORT_SYMBOL(unregister_netdev);
10455
10456/**
10457 * dev_change_net_namespace - move device to different nethost namespace
10458 * @dev: device
10459 * @net: network namespace
10460 * @pat: If not NULL name pattern to try if the current device name
10461 * is already taken in the destination network namespace.
10462 *
10463 * This function shuts down a device interface and moves it
10464 * to a new network namespace. On success 0 is returned, on
10465 * a failure a netagive errno code is returned.
10466 *
10467 * Callers must hold the rtnl semaphore.
10468 */
10469
10470int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10471{
10472 struct net *net_old = dev_net(dev);
10473 int err, new_nsid, new_ifindex;
10474
10475 ASSERT_RTNL();
10476
10477 /* Don't allow namespace local devices to be moved. */
10478 err = -EINVAL;
10479 if (dev->features & NETIF_F_NETNS_LOCAL)
10480 goto out;
10481
10482 /* Ensure the device has been registrered */
10483 if (dev->reg_state != NETREG_REGISTERED)
10484 goto out;
10485
10486 /* Get out if there is nothing todo */
10487 err = 0;
10488 if (net_eq(net_old, net))
10489 goto out;
10490
10491 /* Pick the destination device name, and ensure
10492 * we can use it in the destination network namespace.
10493 */
10494 err = -EEXIST;
10495 if (__dev_get_by_name(net, dev->name)) {
10496 /* We get here if we can't use the current device name */
10497 if (!pat)
10498 goto out;
10499 err = dev_get_valid_name(net, dev, pat);
10500 if (err < 0)
10501 goto out;
10502 }
10503
10504 /*
10505 * And now a mini version of register_netdevice unregister_netdevice.
10506 */
10507
10508 /* If device is running close it first. */
10509 dev_close(dev);
10510
10511 /* And unlink it from device chain */
10512 unlist_netdevice(dev);
10513
10514 synchronize_net();
10515
10516 /* Shutdown queueing discipline. */
10517 dev_shutdown(dev);
10518
10519 /* Notify protocols, that we are about to destroy
10520 * this device. They should clean all the things.
10521 *
10522 * Note that dev->reg_state stays at NETREG_REGISTERED.
10523 * This is wanted because this way 8021q and macvlan know
10524 * the device is just moving and can keep their slaves up.
10525 */
10526 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10527 rcu_barrier();
10528
10529 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10530 /* If there is an ifindex conflict assign a new one */
10531 if (__dev_get_by_index(net, dev->ifindex))
10532 new_ifindex = dev_new_index(net);
10533 else
10534 new_ifindex = dev->ifindex;
10535
10536 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10537 new_ifindex);
10538
10539 /*
10540 * Flush the unicast and multicast chains
10541 */
10542 dev_uc_flush(dev);
10543 dev_mc_flush(dev);
10544
10545 /* Send a netdev-removed uevent to the old namespace */
10546 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10547 netdev_adjacent_del_links(dev);
10548
10549 /* Move per-net netdevice notifiers that are following the netdevice */
10550 move_netdevice_notifiers_dev_net(dev, net);
10551
10552 /* Actually switch the network namespace */
10553 dev_net_set(dev, net);
10554 dev->ifindex = new_ifindex;
10555
10556 /* Send a netdev-add uevent to the new namespace */
10557 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10558 netdev_adjacent_add_links(dev);
10559
10560 /* Fixup kobjects */
10561 err = device_rename(&dev->dev, dev->name);
10562 WARN_ON(err);
10563
10564 /* Adapt owner in case owning user namespace of target network
10565 * namespace is different from the original one.
10566 */
10567 err = netdev_change_owner(dev, net_old, net);
10568 WARN_ON(err);
10569
10570 /* Add the device back in the hashes */
10571 list_netdevice(dev);
10572
10573 /* Notify protocols, that a new device appeared. */
10574 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10575
10576 /*
10577 * Prevent userspace races by waiting until the network
10578 * device is fully setup before sending notifications.
10579 */
10580 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10581
10582 synchronize_net();
10583 err = 0;
10584out:
10585 return err;
10586}
10587EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10588
10589static int dev_cpu_dead(unsigned int oldcpu)
10590{
10591 struct sk_buff **list_skb;
10592 struct sk_buff *skb;
10593 unsigned int cpu;
10594 struct softnet_data *sd, *oldsd, *remsd = NULL;
10595
10596 local_irq_disable();
10597 cpu = smp_processor_id();
10598 sd = &per_cpu(softnet_data, cpu);
10599 oldsd = &per_cpu(softnet_data, oldcpu);
10600
10601 /* Find end of our completion_queue. */
10602 list_skb = &sd->completion_queue;
10603 while (*list_skb)
10604 list_skb = &(*list_skb)->next;
10605 /* Append completion queue from offline CPU. */
10606 *list_skb = oldsd->completion_queue;
10607 oldsd->completion_queue = NULL;
10608
10609 /* Append output queue from offline CPU. */
10610 if (oldsd->output_queue) {
10611 *sd->output_queue_tailp = oldsd->output_queue;
10612 sd->output_queue_tailp = oldsd->output_queue_tailp;
10613 oldsd->output_queue = NULL;
10614 oldsd->output_queue_tailp = &oldsd->output_queue;
10615 }
10616 /* Append NAPI poll list from offline CPU, with one exception :
10617 * process_backlog() must be called by cpu owning percpu backlog.
10618 * We properly handle process_queue & input_pkt_queue later.
10619 */
10620 while (!list_empty(&oldsd->poll_list)) {
10621 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10622 struct napi_struct,
10623 poll_list);
10624
10625 list_del_init(&napi->poll_list);
10626 if (napi->poll == process_backlog)
10627 napi->state = 0;
10628 else
10629 ____napi_schedule(sd, napi);
10630 }
10631
10632 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10633 local_irq_enable();
10634
10635#ifdef CONFIG_RPS
10636 remsd = oldsd->rps_ipi_list;
10637 oldsd->rps_ipi_list = NULL;
10638#endif
10639 /* send out pending IPI's on offline CPU */
10640 net_rps_send_ipi(remsd);
10641
10642 /* Process offline CPU's input_pkt_queue */
10643 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10644 netif_rx_ni(skb);
10645 input_queue_head_incr(oldsd);
10646 }
10647 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10648 netif_rx_ni(skb);
10649 input_queue_head_incr(oldsd);
10650 }
10651
10652 return 0;
10653}
10654
10655/**
10656 * netdev_increment_features - increment feature set by one
10657 * @all: current feature set
10658 * @one: new feature set
10659 * @mask: mask feature set
10660 *
10661 * Computes a new feature set after adding a device with feature set
10662 * @one to the master device with current feature set @all. Will not
10663 * enable anything that is off in @mask. Returns the new feature set.
10664 */
10665netdev_features_t netdev_increment_features(netdev_features_t all,
10666 netdev_features_t one, netdev_features_t mask)
10667{
10668 if (mask & NETIF_F_HW_CSUM)
10669 mask |= NETIF_F_CSUM_MASK;
10670 mask |= NETIF_F_VLAN_CHALLENGED;
10671
10672 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10673 all &= one | ~NETIF_F_ALL_FOR_ALL;
10674
10675 /* If one device supports hw checksumming, set for all. */
10676 if (all & NETIF_F_HW_CSUM)
10677 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10678
10679 return all;
10680}
10681EXPORT_SYMBOL(netdev_increment_features);
10682
10683static struct hlist_head * __net_init netdev_create_hash(void)
10684{
10685 int i;
10686 struct hlist_head *hash;
10687
10688 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10689 if (hash != NULL)
10690 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10691 INIT_HLIST_HEAD(&hash[i]);
10692
10693 return hash;
10694}
10695
10696/* Initialize per network namespace state */
10697static int __net_init netdev_init(struct net *net)
10698{
10699 BUILD_BUG_ON(GRO_HASH_BUCKETS >
10700 8 * sizeof_field(struct napi_struct, gro_bitmask));
10701
10702 if (net != &init_net)
10703 INIT_LIST_HEAD(&net->dev_base_head);
10704
10705 net->dev_name_head = netdev_create_hash();
10706 if (net->dev_name_head == NULL)
10707 goto err_name;
10708
10709 net->dev_index_head = netdev_create_hash();
10710 if (net->dev_index_head == NULL)
10711 goto err_idx;
10712
10713 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10714
10715 return 0;
10716
10717err_idx:
10718 kfree(net->dev_name_head);
10719err_name:
10720 return -ENOMEM;
10721}
10722
10723/**
10724 * netdev_drivername - network driver for the device
10725 * @dev: network device
10726 *
10727 * Determine network driver for device.
10728 */
10729const char *netdev_drivername(const struct net_device *dev)
10730{
10731 const struct device_driver *driver;
10732 const struct device *parent;
10733 const char *empty = "";
10734
10735 parent = dev->dev.parent;
10736 if (!parent)
10737 return empty;
10738
10739 driver = parent->driver;
10740 if (driver && driver->name)
10741 return driver->name;
10742 return empty;
10743}
10744
10745static void __netdev_printk(const char *level, const struct net_device *dev,
10746 struct va_format *vaf)
10747{
10748 if (dev && dev->dev.parent) {
10749 dev_printk_emit(level[1] - '0',
10750 dev->dev.parent,
10751 "%s %s %s%s: %pV",
10752 dev_driver_string(dev->dev.parent),
10753 dev_name(dev->dev.parent),
10754 netdev_name(dev), netdev_reg_state(dev),
10755 vaf);
10756 } else if (dev) {
10757 printk("%s%s%s: %pV",
10758 level, netdev_name(dev), netdev_reg_state(dev), vaf);
10759 } else {
10760 printk("%s(NULL net_device): %pV", level, vaf);
10761 }
10762}
10763
10764void netdev_printk(const char *level, const struct net_device *dev,
10765 const char *format, ...)
10766{
10767 struct va_format vaf;
10768 va_list args;
10769
10770 va_start(args, format);
10771
10772 vaf.fmt = format;
10773 vaf.va = &args;
10774
10775 __netdev_printk(level, dev, &vaf);
10776
10777 va_end(args);
10778}
10779EXPORT_SYMBOL(netdev_printk);
10780
10781#define define_netdev_printk_level(func, level) \
10782void func(const struct net_device *dev, const char *fmt, ...) \
10783{ \
10784 struct va_format vaf; \
10785 va_list args; \
10786 \
10787 va_start(args, fmt); \
10788 \
10789 vaf.fmt = fmt; \
10790 vaf.va = &args; \
10791 \
10792 __netdev_printk(level, dev, &vaf); \
10793 \
10794 va_end(args); \
10795} \
10796EXPORT_SYMBOL(func);
10797
10798define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10799define_netdev_printk_level(netdev_alert, KERN_ALERT);
10800define_netdev_printk_level(netdev_crit, KERN_CRIT);
10801define_netdev_printk_level(netdev_err, KERN_ERR);
10802define_netdev_printk_level(netdev_warn, KERN_WARNING);
10803define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10804define_netdev_printk_level(netdev_info, KERN_INFO);
10805
10806static void __net_exit netdev_exit(struct net *net)
10807{
10808 kfree(net->dev_name_head);
10809 kfree(net->dev_index_head);
10810 if (net != &init_net)
10811 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10812}
10813
10814static struct pernet_operations __net_initdata netdev_net_ops = {
10815 .init = netdev_init,
10816 .exit = netdev_exit,
10817};
10818
10819static void __net_exit default_device_exit(struct net *net)
10820{
10821 struct net_device *dev, *aux;
10822 /*
10823 * Push all migratable network devices back to the
10824 * initial network namespace
10825 */
10826 rtnl_lock();
10827 for_each_netdev_safe(net, dev, aux) {
10828 int err;
10829 char fb_name[IFNAMSIZ];
10830
10831 /* Ignore unmoveable devices (i.e. loopback) */
10832 if (dev->features & NETIF_F_NETNS_LOCAL)
10833 continue;
10834
10835 /* Leave virtual devices for the generic cleanup */
10836 if (dev->rtnl_link_ops)
10837 continue;
10838
10839 /* Push remaining network devices to init_net */
10840 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10841 if (__dev_get_by_name(&init_net, fb_name))
10842 snprintf(fb_name, IFNAMSIZ, "dev%%d");
10843 err = dev_change_net_namespace(dev, &init_net, fb_name);
10844 if (err) {
10845 pr_emerg("%s: failed to move %s to init_net: %d\n",
10846 __func__, dev->name, err);
10847 BUG();
10848 }
10849 }
10850 rtnl_unlock();
10851}
10852
10853static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10854{
10855 /* Return with the rtnl_lock held when there are no network
10856 * devices unregistering in any network namespace in net_list.
10857 */
10858 struct net *net;
10859 bool unregistering;
10860 DEFINE_WAIT_FUNC(wait, woken_wake_function);
10861
10862 add_wait_queue(&netdev_unregistering_wq, &wait);
10863 for (;;) {
10864 unregistering = false;
10865 rtnl_lock();
10866 list_for_each_entry(net, net_list, exit_list) {
10867 if (net->dev_unreg_count > 0) {
10868 unregistering = true;
10869 break;
10870 }
10871 }
10872 if (!unregistering)
10873 break;
10874 __rtnl_unlock();
10875
10876 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10877 }
10878 remove_wait_queue(&netdev_unregistering_wq, &wait);
10879}
10880
10881static void __net_exit default_device_exit_batch(struct list_head *net_list)
10882{
10883 /* At exit all network devices most be removed from a network
10884 * namespace. Do this in the reverse order of registration.
10885 * Do this across as many network namespaces as possible to
10886 * improve batching efficiency.
10887 */
10888 struct net_device *dev;
10889 struct net *net;
10890 LIST_HEAD(dev_kill_list);
10891
10892 /* To prevent network device cleanup code from dereferencing
10893 * loopback devices or network devices that have been freed
10894 * wait here for all pending unregistrations to complete,
10895 * before unregistring the loopback device and allowing the
10896 * network namespace be freed.
10897 *
10898 * The netdev todo list containing all network devices
10899 * unregistrations that happen in default_device_exit_batch
10900 * will run in the rtnl_unlock() at the end of
10901 * default_device_exit_batch.
10902 */
10903 rtnl_lock_unregistering(net_list);
10904 list_for_each_entry(net, net_list, exit_list) {
10905 for_each_netdev_reverse(net, dev) {
10906 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10907 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10908 else
10909 unregister_netdevice_queue(dev, &dev_kill_list);
10910 }
10911 }
10912 unregister_netdevice_many(&dev_kill_list);
10913 rtnl_unlock();
10914}
10915
10916static struct pernet_operations __net_initdata default_device_ops = {
10917 .exit = default_device_exit,
10918 .exit_batch = default_device_exit_batch,
10919};
10920
10921/*
10922 * Initialize the DEV module. At boot time this walks the device list and
10923 * unhooks any devices that fail to initialise (normally hardware not
10924 * present) and leaves us with a valid list of present and active devices.
10925 *
10926 */
10927
10928/*
10929 * This is called single threaded during boot, so no need
10930 * to take the rtnl semaphore.
10931 */
10932static int __init net_dev_init(void)
10933{
10934 int i, rc = -ENOMEM;
10935
10936 BUG_ON(!dev_boot_phase);
10937
10938 if (dev_proc_init())
10939 goto out;
10940
10941 if (netdev_kobject_init())
10942 goto out;
10943
10944 INIT_LIST_HEAD(&ptype_all);
10945 for (i = 0; i < PTYPE_HASH_SIZE; i++)
10946 INIT_LIST_HEAD(&ptype_base[i]);
10947
10948 INIT_LIST_HEAD(&offload_base);
10949
10950 if (register_pernet_subsys(&netdev_net_ops))
10951 goto out;
10952
10953 /*
10954 * Initialise the packet receive queues.
10955 */
10956
10957 for_each_possible_cpu(i) {
10958 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10959 struct softnet_data *sd = &per_cpu(softnet_data, i);
10960
10961 INIT_WORK(flush, flush_backlog);
10962
10963 skb_queue_head_init(&sd->input_pkt_queue);
10964 skb_queue_head_init(&sd->process_queue);
10965#ifdef CONFIG_XFRM_OFFLOAD
10966 skb_queue_head_init(&sd->xfrm_backlog);
10967#endif
10968 INIT_LIST_HEAD(&sd->poll_list);
10969 sd->output_queue_tailp = &sd->output_queue;
10970#ifdef CONFIG_RPS
10971 sd->csd.func = rps_trigger_softirq;
10972 sd->csd.info = sd;
10973 sd->cpu = i;
10974#endif
10975
10976 init_gro_hash(&sd->backlog);
10977 sd->backlog.poll = process_backlog;
10978 sd->backlog.weight = weight_p;
10979 }
10980
10981 dev_boot_phase = 0;
10982
10983 /* The loopback device is special if any other network devices
10984 * is present in a network namespace the loopback device must
10985 * be present. Since we now dynamically allocate and free the
10986 * loopback device ensure this invariant is maintained by
10987 * keeping the loopback device as the first device on the
10988 * list of network devices. Ensuring the loopback devices
10989 * is the first device that appears and the last network device
10990 * that disappears.
10991 */
10992 if (register_pernet_device(&loopback_net_ops))
10993 goto out;
10994
10995 if (register_pernet_device(&default_device_ops))
10996 goto out;
10997
10998 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10999 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11000
11001 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11002 NULL, dev_cpu_dead);
11003 WARN_ON(rc < 0);
11004 rc = 0;
11005out:
11006 return rc;
11007}
11008
11009subsys_initcall(net_dev_init);