at v5.9-rc7 36 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_KERNEL_H 3#define _LINUX_KERNEL_H 4 5 6#include <stdarg.h> 7#include <linux/limits.h> 8#include <linux/linkage.h> 9#include <linux/stddef.h> 10#include <linux/types.h> 11#include <linux/compiler.h> 12#include <linux/bitops.h> 13#include <linux/log2.h> 14#include <linux/typecheck.h> 15#include <linux/printk.h> 16#include <linux/build_bug.h> 17#include <asm/byteorder.h> 18#include <asm/div64.h> 19#include <uapi/linux/kernel.h> 20 21#define STACK_MAGIC 0xdeadbeef 22 23/** 24 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value 25 * @x: value to repeat 26 * 27 * NOTE: @x is not checked for > 0xff; larger values produce odd results. 28 */ 29#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) 30 31/* @a is a power of 2 value */ 32#define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) 33#define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a)) 34#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) 35#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) 36#define PTR_ALIGN_DOWN(p, a) ((typeof(p))ALIGN_DOWN((unsigned long)(p), (a))) 37#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) 38 39/* generic data direction definitions */ 40#define READ 0 41#define WRITE 1 42 43/** 44 * ARRAY_SIZE - get the number of elements in array @arr 45 * @arr: array to be sized 46 */ 47#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) 48 49#define u64_to_user_ptr(x) ( \ 50{ \ 51 typecheck(u64, (x)); \ 52 (void __user *)(uintptr_t)(x); \ 53} \ 54) 55 56/* 57 * This looks more complex than it should be. But we need to 58 * get the type for the ~ right in round_down (it needs to be 59 * as wide as the result!), and we want to evaluate the macro 60 * arguments just once each. 61 */ 62#define __round_mask(x, y) ((__typeof__(x))((y)-1)) 63/** 64 * round_up - round up to next specified power of 2 65 * @x: the value to round 66 * @y: multiple to round up to (must be a power of 2) 67 * 68 * Rounds @x up to next multiple of @y (which must be a power of 2). 69 * To perform arbitrary rounding up, use roundup() below. 70 */ 71#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 72/** 73 * round_down - round down to next specified power of 2 74 * @x: the value to round 75 * @y: multiple to round down to (must be a power of 2) 76 * 77 * Rounds @x down to next multiple of @y (which must be a power of 2). 78 * To perform arbitrary rounding down, use rounddown() below. 79 */ 80#define round_down(x, y) ((x) & ~__round_mask(x, y)) 81 82#define typeof_member(T, m) typeof(((T*)0)->m) 83 84#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP 85 86#define DIV_ROUND_DOWN_ULL(ll, d) \ 87 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) 88 89#define DIV_ROUND_UP_ULL(ll, d) \ 90 DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d)) 91 92#if BITS_PER_LONG == 32 93# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 94#else 95# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 96#endif 97 98/** 99 * roundup - round up to the next specified multiple 100 * @x: the value to up 101 * @y: multiple to round up to 102 * 103 * Rounds @x up to next multiple of @y. If @y will always be a power 104 * of 2, consider using the faster round_up(). 105 */ 106#define roundup(x, y) ( \ 107{ \ 108 typeof(y) __y = y; \ 109 (((x) + (__y - 1)) / __y) * __y; \ 110} \ 111) 112/** 113 * rounddown - round down to next specified multiple 114 * @x: the value to round 115 * @y: multiple to round down to 116 * 117 * Rounds @x down to next multiple of @y. If @y will always be a power 118 * of 2, consider using the faster round_down(). 119 */ 120#define rounddown(x, y) ( \ 121{ \ 122 typeof(x) __x = (x); \ 123 __x - (__x % (y)); \ 124} \ 125) 126 127/* 128 * Divide positive or negative dividend by positive or negative divisor 129 * and round to closest integer. Result is undefined for negative 130 * divisors if the dividend variable type is unsigned and for negative 131 * dividends if the divisor variable type is unsigned. 132 */ 133#define DIV_ROUND_CLOSEST(x, divisor)( \ 134{ \ 135 typeof(x) __x = x; \ 136 typeof(divisor) __d = divisor; \ 137 (((typeof(x))-1) > 0 || \ 138 ((typeof(divisor))-1) > 0 || \ 139 (((__x) > 0) == ((__d) > 0))) ? \ 140 (((__x) + ((__d) / 2)) / (__d)) : \ 141 (((__x) - ((__d) / 2)) / (__d)); \ 142} \ 143) 144/* 145 * Same as above but for u64 dividends. divisor must be a 32-bit 146 * number. 147 */ 148#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ 149{ \ 150 typeof(divisor) __d = divisor; \ 151 unsigned long long _tmp = (x) + (__d) / 2; \ 152 do_div(_tmp, __d); \ 153 _tmp; \ 154} \ 155) 156 157/* 158 * Multiplies an integer by a fraction, while avoiding unnecessary 159 * overflow or loss of precision. 160 */ 161#define mult_frac(x, numer, denom)( \ 162{ \ 163 typeof(x) quot = (x) / (denom); \ 164 typeof(x) rem = (x) % (denom); \ 165 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 166} \ 167) 168 169 170#define _RET_IP_ (unsigned long)__builtin_return_address(0) 171#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) 172 173#define sector_div(a, b) do_div(a, b) 174 175/** 176 * upper_32_bits - return bits 32-63 of a number 177 * @n: the number we're accessing 178 * 179 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 180 * the "right shift count >= width of type" warning when that quantity is 181 * 32-bits. 182 */ 183#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) 184 185/** 186 * lower_32_bits - return bits 0-31 of a number 187 * @n: the number we're accessing 188 */ 189#define lower_32_bits(n) ((u32)((n) & 0xffffffff)) 190 191struct completion; 192struct pt_regs; 193struct user; 194 195#ifdef CONFIG_PREEMPT_VOLUNTARY 196extern int _cond_resched(void); 197# define might_resched() _cond_resched() 198#else 199# define might_resched() do { } while (0) 200#endif 201 202#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 203extern void ___might_sleep(const char *file, int line, int preempt_offset); 204extern void __might_sleep(const char *file, int line, int preempt_offset); 205extern void __cant_sleep(const char *file, int line, int preempt_offset); 206 207/** 208 * might_sleep - annotation for functions that can sleep 209 * 210 * this macro will print a stack trace if it is executed in an atomic 211 * context (spinlock, irq-handler, ...). Additional sections where blocking is 212 * not allowed can be annotated with non_block_start() and non_block_end() 213 * pairs. 214 * 215 * This is a useful debugging help to be able to catch problems early and not 216 * be bitten later when the calling function happens to sleep when it is not 217 * supposed to. 218 */ 219# define might_sleep() \ 220 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) 221/** 222 * cant_sleep - annotation for functions that cannot sleep 223 * 224 * this macro will print a stack trace if it is executed with preemption enabled 225 */ 226# define cant_sleep() \ 227 do { __cant_sleep(__FILE__, __LINE__, 0); } while (0) 228# define sched_annotate_sleep() (current->task_state_change = 0) 229/** 230 * non_block_start - annotate the start of section where sleeping is prohibited 231 * 232 * This is on behalf of the oom reaper, specifically when it is calling the mmu 233 * notifiers. The problem is that if the notifier were to block on, for example, 234 * mutex_lock() and if the process which holds that mutex were to perform a 235 * sleeping memory allocation, the oom reaper is now blocked on completion of 236 * that memory allocation. Other blocking calls like wait_event() pose similar 237 * issues. 238 */ 239# define non_block_start() (current->non_block_count++) 240/** 241 * non_block_end - annotate the end of section where sleeping is prohibited 242 * 243 * Closes a section opened by non_block_start(). 244 */ 245# define non_block_end() WARN_ON(current->non_block_count-- == 0) 246#else 247 static inline void ___might_sleep(const char *file, int line, 248 int preempt_offset) { } 249 static inline void __might_sleep(const char *file, int line, 250 int preempt_offset) { } 251# define might_sleep() do { might_resched(); } while (0) 252# define cant_sleep() do { } while (0) 253# define sched_annotate_sleep() do { } while (0) 254# define non_block_start() do { } while (0) 255# define non_block_end() do { } while (0) 256#endif 257 258#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) 259 260#ifndef CONFIG_PREEMPT_RT 261# define cant_migrate() cant_sleep() 262#else 263 /* Placeholder for now */ 264# define cant_migrate() do { } while (0) 265#endif 266 267/** 268 * abs - return absolute value of an argument 269 * @x: the value. If it is unsigned type, it is converted to signed type first. 270 * char is treated as if it was signed (regardless of whether it really is) 271 * but the macro's return type is preserved as char. 272 * 273 * Return: an absolute value of x. 274 */ 275#define abs(x) __abs_choose_expr(x, long long, \ 276 __abs_choose_expr(x, long, \ 277 __abs_choose_expr(x, int, \ 278 __abs_choose_expr(x, short, \ 279 __abs_choose_expr(x, char, \ 280 __builtin_choose_expr( \ 281 __builtin_types_compatible_p(typeof(x), char), \ 282 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ 283 ((void)0))))))) 284 285#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ 286 __builtin_types_compatible_p(typeof(x), signed type) || \ 287 __builtin_types_compatible_p(typeof(x), unsigned type), \ 288 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) 289 290/** 291 * reciprocal_scale - "scale" a value into range [0, ep_ro) 292 * @val: value 293 * @ep_ro: right open interval endpoint 294 * 295 * Perform a "reciprocal multiplication" in order to "scale" a value into 296 * range [0, @ep_ro), where the upper interval endpoint is right-open. 297 * This is useful, e.g. for accessing a index of an array containing 298 * @ep_ro elements, for example. Think of it as sort of modulus, only that 299 * the result isn't that of modulo. ;) Note that if initial input is a 300 * small value, then result will return 0. 301 * 302 * Return: a result based on @val in interval [0, @ep_ro). 303 */ 304static inline u32 reciprocal_scale(u32 val, u32 ep_ro) 305{ 306 return (u32)(((u64) val * ep_ro) >> 32); 307} 308 309#if defined(CONFIG_MMU) && \ 310 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) 311#define might_fault() __might_fault(__FILE__, __LINE__) 312void __might_fault(const char *file, int line); 313#else 314static inline void might_fault(void) { } 315#endif 316 317extern struct atomic_notifier_head panic_notifier_list; 318extern long (*panic_blink)(int state); 319__printf(1, 2) 320void panic(const char *fmt, ...) __noreturn __cold; 321void nmi_panic(struct pt_regs *regs, const char *msg); 322extern void oops_enter(void); 323extern void oops_exit(void); 324extern bool oops_may_print(void); 325void do_exit(long error_code) __noreturn; 326void complete_and_exit(struct completion *, long) __noreturn; 327 328/* Internal, do not use. */ 329int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); 330int __must_check _kstrtol(const char *s, unsigned int base, long *res); 331 332int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); 333int __must_check kstrtoll(const char *s, unsigned int base, long long *res); 334 335/** 336 * kstrtoul - convert a string to an unsigned long 337 * @s: The start of the string. The string must be null-terminated, and may also 338 * include a single newline before its terminating null. The first character 339 * may also be a plus sign, but not a minus sign. 340 * @base: The number base to use. The maximum supported base is 16. If base is 341 * given as 0, then the base of the string is automatically detected with the 342 * conventional semantics - If it begins with 0x the number will be parsed as a 343 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 344 * parsed as an octal number. Otherwise it will be parsed as a decimal. 345 * @res: Where to write the result of the conversion on success. 346 * 347 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 348 * Preferred over simple_strtoul(). Return code must be checked. 349*/ 350static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) 351{ 352 /* 353 * We want to shortcut function call, but 354 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. 355 */ 356 if (sizeof(unsigned long) == sizeof(unsigned long long) && 357 __alignof__(unsigned long) == __alignof__(unsigned long long)) 358 return kstrtoull(s, base, (unsigned long long *)res); 359 else 360 return _kstrtoul(s, base, res); 361} 362 363/** 364 * kstrtol - convert a string to a long 365 * @s: The start of the string. The string must be null-terminated, and may also 366 * include a single newline before its terminating null. The first character 367 * may also be a plus sign or a minus sign. 368 * @base: The number base to use. The maximum supported base is 16. If base is 369 * given as 0, then the base of the string is automatically detected with the 370 * conventional semantics - If it begins with 0x the number will be parsed as a 371 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 372 * parsed as an octal number. Otherwise it will be parsed as a decimal. 373 * @res: Where to write the result of the conversion on success. 374 * 375 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 376 * Preferred over simple_strtol(). Return code must be checked. 377 */ 378static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) 379{ 380 /* 381 * We want to shortcut function call, but 382 * __builtin_types_compatible_p(long, long long) = 0. 383 */ 384 if (sizeof(long) == sizeof(long long) && 385 __alignof__(long) == __alignof__(long long)) 386 return kstrtoll(s, base, (long long *)res); 387 else 388 return _kstrtol(s, base, res); 389} 390 391int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); 392int __must_check kstrtoint(const char *s, unsigned int base, int *res); 393 394static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) 395{ 396 return kstrtoull(s, base, res); 397} 398 399static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) 400{ 401 return kstrtoll(s, base, res); 402} 403 404static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) 405{ 406 return kstrtouint(s, base, res); 407} 408 409static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) 410{ 411 return kstrtoint(s, base, res); 412} 413 414int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); 415int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); 416int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); 417int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); 418int __must_check kstrtobool(const char *s, bool *res); 419 420int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); 421int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); 422int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); 423int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); 424int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); 425int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); 426int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); 427int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); 428int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); 429int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); 430int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res); 431 432static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) 433{ 434 return kstrtoull_from_user(s, count, base, res); 435} 436 437static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) 438{ 439 return kstrtoll_from_user(s, count, base, res); 440} 441 442static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) 443{ 444 return kstrtouint_from_user(s, count, base, res); 445} 446 447static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) 448{ 449 return kstrtoint_from_user(s, count, base, res); 450} 451 452/* 453 * Use kstrto<foo> instead. 454 * 455 * NOTE: simple_strto<foo> does not check for the range overflow and, 456 * depending on the input, may give interesting results. 457 * 458 * Use these functions if and only if you cannot use kstrto<foo>, because 459 * the conversion ends on the first non-digit character, which may be far 460 * beyond the supported range. It might be useful to parse the strings like 461 * 10x50 or 12:21 without altering original string or temporary buffer in use. 462 * Keep in mind above caveat. 463 */ 464 465extern unsigned long simple_strtoul(const char *,char **,unsigned int); 466extern long simple_strtol(const char *,char **,unsigned int); 467extern unsigned long long simple_strtoull(const char *,char **,unsigned int); 468extern long long simple_strtoll(const char *,char **,unsigned int); 469 470extern int num_to_str(char *buf, int size, 471 unsigned long long num, unsigned int width); 472 473/* lib/printf utilities */ 474 475extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); 476extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); 477extern __printf(3, 4) 478int snprintf(char *buf, size_t size, const char *fmt, ...); 479extern __printf(3, 0) 480int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); 481extern __printf(3, 4) 482int scnprintf(char *buf, size_t size, const char *fmt, ...); 483extern __printf(3, 0) 484int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); 485extern __printf(2, 3) __malloc 486char *kasprintf(gfp_t gfp, const char *fmt, ...); 487extern __printf(2, 0) __malloc 488char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); 489extern __printf(2, 0) 490const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); 491 492extern __scanf(2, 3) 493int sscanf(const char *, const char *, ...); 494extern __scanf(2, 0) 495int vsscanf(const char *, const char *, va_list); 496 497extern int get_option(char **str, int *pint); 498extern char *get_options(const char *str, int nints, int *ints); 499extern unsigned long long memparse(const char *ptr, char **retptr); 500extern bool parse_option_str(const char *str, const char *option); 501extern char *next_arg(char *args, char **param, char **val); 502 503extern int core_kernel_text(unsigned long addr); 504extern int init_kernel_text(unsigned long addr); 505extern int core_kernel_data(unsigned long addr); 506extern int __kernel_text_address(unsigned long addr); 507extern int kernel_text_address(unsigned long addr); 508extern int func_ptr_is_kernel_text(void *ptr); 509 510u64 int_pow(u64 base, unsigned int exp); 511unsigned long int_sqrt(unsigned long); 512 513#if BITS_PER_LONG < 64 514u32 int_sqrt64(u64 x); 515#else 516static inline u32 int_sqrt64(u64 x) 517{ 518 return (u32)int_sqrt(x); 519} 520#endif 521 522#ifdef CONFIG_SMP 523extern unsigned int sysctl_oops_all_cpu_backtrace; 524#else 525#define sysctl_oops_all_cpu_backtrace 0 526#endif /* CONFIG_SMP */ 527 528extern void bust_spinlocks(int yes); 529extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ 530extern int panic_timeout; 531extern unsigned long panic_print; 532extern int panic_on_oops; 533extern int panic_on_unrecovered_nmi; 534extern int panic_on_io_nmi; 535extern int panic_on_warn; 536extern unsigned long panic_on_taint; 537extern bool panic_on_taint_nousertaint; 538extern int sysctl_panic_on_rcu_stall; 539extern int sysctl_panic_on_stackoverflow; 540 541extern bool crash_kexec_post_notifiers; 542 543/* 544 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It 545 * holds a CPU number which is executing panic() currently. A value of 546 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec(). 547 */ 548extern atomic_t panic_cpu; 549#define PANIC_CPU_INVALID -1 550 551/* 552 * Only to be used by arch init code. If the user over-wrote the default 553 * CONFIG_PANIC_TIMEOUT, honor it. 554 */ 555static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) 556{ 557 if (panic_timeout == arch_default_timeout) 558 panic_timeout = timeout; 559} 560extern const char *print_tainted(void); 561enum lockdep_ok { 562 LOCKDEP_STILL_OK, 563 LOCKDEP_NOW_UNRELIABLE 564}; 565extern void add_taint(unsigned flag, enum lockdep_ok); 566extern int test_taint(unsigned flag); 567extern unsigned long get_taint(void); 568extern int root_mountflags; 569 570extern bool early_boot_irqs_disabled; 571 572/* 573 * Values used for system_state. Ordering of the states must not be changed 574 * as code checks for <, <=, >, >= STATE. 575 */ 576extern enum system_states { 577 SYSTEM_BOOTING, 578 SYSTEM_SCHEDULING, 579 SYSTEM_RUNNING, 580 SYSTEM_HALT, 581 SYSTEM_POWER_OFF, 582 SYSTEM_RESTART, 583 SYSTEM_SUSPEND, 584} system_state; 585 586/* This cannot be an enum because some may be used in assembly source. */ 587#define TAINT_PROPRIETARY_MODULE 0 588#define TAINT_FORCED_MODULE 1 589#define TAINT_CPU_OUT_OF_SPEC 2 590#define TAINT_FORCED_RMMOD 3 591#define TAINT_MACHINE_CHECK 4 592#define TAINT_BAD_PAGE 5 593#define TAINT_USER 6 594#define TAINT_DIE 7 595#define TAINT_OVERRIDDEN_ACPI_TABLE 8 596#define TAINT_WARN 9 597#define TAINT_CRAP 10 598#define TAINT_FIRMWARE_WORKAROUND 11 599#define TAINT_OOT_MODULE 12 600#define TAINT_UNSIGNED_MODULE 13 601#define TAINT_SOFTLOCKUP 14 602#define TAINT_LIVEPATCH 15 603#define TAINT_AUX 16 604#define TAINT_RANDSTRUCT 17 605#define TAINT_FLAGS_COUNT 18 606#define TAINT_FLAGS_MAX ((1UL << TAINT_FLAGS_COUNT) - 1) 607 608struct taint_flag { 609 char c_true; /* character printed when tainted */ 610 char c_false; /* character printed when not tainted */ 611 bool module; /* also show as a per-module taint flag */ 612}; 613 614extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT]; 615 616extern const char hex_asc[]; 617#define hex_asc_lo(x) hex_asc[((x) & 0x0f)] 618#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] 619 620static inline char *hex_byte_pack(char *buf, u8 byte) 621{ 622 *buf++ = hex_asc_hi(byte); 623 *buf++ = hex_asc_lo(byte); 624 return buf; 625} 626 627extern const char hex_asc_upper[]; 628#define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] 629#define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] 630 631static inline char *hex_byte_pack_upper(char *buf, u8 byte) 632{ 633 *buf++ = hex_asc_upper_hi(byte); 634 *buf++ = hex_asc_upper_lo(byte); 635 return buf; 636} 637 638extern int hex_to_bin(char ch); 639extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); 640extern char *bin2hex(char *dst, const void *src, size_t count); 641 642bool mac_pton(const char *s, u8 *mac); 643 644/* 645 * General tracing related utility functions - trace_printk(), 646 * tracing_on/tracing_off and tracing_start()/tracing_stop 647 * 648 * Use tracing_on/tracing_off when you want to quickly turn on or off 649 * tracing. It simply enables or disables the recording of the trace events. 650 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on 651 * file, which gives a means for the kernel and userspace to interact. 652 * Place a tracing_off() in the kernel where you want tracing to end. 653 * From user space, examine the trace, and then echo 1 > tracing_on 654 * to continue tracing. 655 * 656 * tracing_stop/tracing_start has slightly more overhead. It is used 657 * by things like suspend to ram where disabling the recording of the 658 * trace is not enough, but tracing must actually stop because things 659 * like calling smp_processor_id() may crash the system. 660 * 661 * Most likely, you want to use tracing_on/tracing_off. 662 */ 663 664enum ftrace_dump_mode { 665 DUMP_NONE, 666 DUMP_ALL, 667 DUMP_ORIG, 668}; 669 670#ifdef CONFIG_TRACING 671void tracing_on(void); 672void tracing_off(void); 673int tracing_is_on(void); 674void tracing_snapshot(void); 675void tracing_snapshot_alloc(void); 676 677extern void tracing_start(void); 678extern void tracing_stop(void); 679 680static inline __printf(1, 2) 681void ____trace_printk_check_format(const char *fmt, ...) 682{ 683} 684#define __trace_printk_check_format(fmt, args...) \ 685do { \ 686 if (0) \ 687 ____trace_printk_check_format(fmt, ##args); \ 688} while (0) 689 690/** 691 * trace_printk - printf formatting in the ftrace buffer 692 * @fmt: the printf format for printing 693 * 694 * Note: __trace_printk is an internal function for trace_printk() and 695 * the @ip is passed in via the trace_printk() macro. 696 * 697 * This function allows a kernel developer to debug fast path sections 698 * that printk is not appropriate for. By scattering in various 699 * printk like tracing in the code, a developer can quickly see 700 * where problems are occurring. 701 * 702 * This is intended as a debugging tool for the developer only. 703 * Please refrain from leaving trace_printks scattered around in 704 * your code. (Extra memory is used for special buffers that are 705 * allocated when trace_printk() is used.) 706 * 707 * A little optimization trick is done here. If there's only one 708 * argument, there's no need to scan the string for printf formats. 709 * The trace_puts() will suffice. But how can we take advantage of 710 * using trace_puts() when trace_printk() has only one argument? 711 * By stringifying the args and checking the size we can tell 712 * whether or not there are args. __stringify((__VA_ARGS__)) will 713 * turn into "()\0" with a size of 3 when there are no args, anything 714 * else will be bigger. All we need to do is define a string to this, 715 * and then take its size and compare to 3. If it's bigger, use 716 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just 717 * let gcc optimize the rest. 718 */ 719 720#define trace_printk(fmt, ...) \ 721do { \ 722 char _______STR[] = __stringify((__VA_ARGS__)); \ 723 if (sizeof(_______STR) > 3) \ 724 do_trace_printk(fmt, ##__VA_ARGS__); \ 725 else \ 726 trace_puts(fmt); \ 727} while (0) 728 729#define do_trace_printk(fmt, args...) \ 730do { \ 731 static const char *trace_printk_fmt __used \ 732 __attribute__((section("__trace_printk_fmt"))) = \ 733 __builtin_constant_p(fmt) ? fmt : NULL; \ 734 \ 735 __trace_printk_check_format(fmt, ##args); \ 736 \ 737 if (__builtin_constant_p(fmt)) \ 738 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ 739 else \ 740 __trace_printk(_THIS_IP_, fmt, ##args); \ 741} while (0) 742 743extern __printf(2, 3) 744int __trace_bprintk(unsigned long ip, const char *fmt, ...); 745 746extern __printf(2, 3) 747int __trace_printk(unsigned long ip, const char *fmt, ...); 748 749/** 750 * trace_puts - write a string into the ftrace buffer 751 * @str: the string to record 752 * 753 * Note: __trace_bputs is an internal function for trace_puts and 754 * the @ip is passed in via the trace_puts macro. 755 * 756 * This is similar to trace_printk() but is made for those really fast 757 * paths that a developer wants the least amount of "Heisenbug" effects, 758 * where the processing of the print format is still too much. 759 * 760 * This function allows a kernel developer to debug fast path sections 761 * that printk is not appropriate for. By scattering in various 762 * printk like tracing in the code, a developer can quickly see 763 * where problems are occurring. 764 * 765 * This is intended as a debugging tool for the developer only. 766 * Please refrain from leaving trace_puts scattered around in 767 * your code. (Extra memory is used for special buffers that are 768 * allocated when trace_puts() is used.) 769 * 770 * Returns: 0 if nothing was written, positive # if string was. 771 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) 772 */ 773 774#define trace_puts(str) ({ \ 775 static const char *trace_printk_fmt __used \ 776 __attribute__((section("__trace_printk_fmt"))) = \ 777 __builtin_constant_p(str) ? str : NULL; \ 778 \ 779 if (__builtin_constant_p(str)) \ 780 __trace_bputs(_THIS_IP_, trace_printk_fmt); \ 781 else \ 782 __trace_puts(_THIS_IP_, str, strlen(str)); \ 783}) 784extern int __trace_bputs(unsigned long ip, const char *str); 785extern int __trace_puts(unsigned long ip, const char *str, int size); 786 787extern void trace_dump_stack(int skip); 788 789/* 790 * The double __builtin_constant_p is because gcc will give us an error 791 * if we try to allocate the static variable to fmt if it is not a 792 * constant. Even with the outer if statement. 793 */ 794#define ftrace_vprintk(fmt, vargs) \ 795do { \ 796 if (__builtin_constant_p(fmt)) { \ 797 static const char *trace_printk_fmt __used \ 798 __attribute__((section("__trace_printk_fmt"))) = \ 799 __builtin_constant_p(fmt) ? fmt : NULL; \ 800 \ 801 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ 802 } else \ 803 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ 804} while (0) 805 806extern __printf(2, 0) int 807__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); 808 809extern __printf(2, 0) int 810__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); 811 812extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); 813#else 814static inline void tracing_start(void) { } 815static inline void tracing_stop(void) { } 816static inline void trace_dump_stack(int skip) { } 817 818static inline void tracing_on(void) { } 819static inline void tracing_off(void) { } 820static inline int tracing_is_on(void) { return 0; } 821static inline void tracing_snapshot(void) { } 822static inline void tracing_snapshot_alloc(void) { } 823 824static inline __printf(1, 2) 825int trace_printk(const char *fmt, ...) 826{ 827 return 0; 828} 829static __printf(1, 0) inline int 830ftrace_vprintk(const char *fmt, va_list ap) 831{ 832 return 0; 833} 834static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } 835#endif /* CONFIG_TRACING */ 836 837/* 838 * min()/max()/clamp() macros must accomplish three things: 839 * 840 * - avoid multiple evaluations of the arguments (so side-effects like 841 * "x++" happen only once) when non-constant. 842 * - perform strict type-checking (to generate warnings instead of 843 * nasty runtime surprises). See the "unnecessary" pointer comparison 844 * in __typecheck(). 845 * - retain result as a constant expressions when called with only 846 * constant expressions (to avoid tripping VLA warnings in stack 847 * allocation usage). 848 */ 849#define __typecheck(x, y) \ 850 (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1))) 851 852/* 853 * This returns a constant expression while determining if an argument is 854 * a constant expression, most importantly without evaluating the argument. 855 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de> 856 */ 857#define __is_constexpr(x) \ 858 (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8))) 859 860#define __no_side_effects(x, y) \ 861 (__is_constexpr(x) && __is_constexpr(y)) 862 863#define __safe_cmp(x, y) \ 864 (__typecheck(x, y) && __no_side_effects(x, y)) 865 866#define __cmp(x, y, op) ((x) op (y) ? (x) : (y)) 867 868#define __cmp_once(x, y, unique_x, unique_y, op) ({ \ 869 typeof(x) unique_x = (x); \ 870 typeof(y) unique_y = (y); \ 871 __cmp(unique_x, unique_y, op); }) 872 873#define __careful_cmp(x, y, op) \ 874 __builtin_choose_expr(__safe_cmp(x, y), \ 875 __cmp(x, y, op), \ 876 __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op)) 877 878/** 879 * min - return minimum of two values of the same or compatible types 880 * @x: first value 881 * @y: second value 882 */ 883#define min(x, y) __careful_cmp(x, y, <) 884 885/** 886 * max - return maximum of two values of the same or compatible types 887 * @x: first value 888 * @y: second value 889 */ 890#define max(x, y) __careful_cmp(x, y, >) 891 892/** 893 * min3 - return minimum of three values 894 * @x: first value 895 * @y: second value 896 * @z: third value 897 */ 898#define min3(x, y, z) min((typeof(x))min(x, y), z) 899 900/** 901 * max3 - return maximum of three values 902 * @x: first value 903 * @y: second value 904 * @z: third value 905 */ 906#define max3(x, y, z) max((typeof(x))max(x, y), z) 907 908/** 909 * min_not_zero - return the minimum that is _not_ zero, unless both are zero 910 * @x: value1 911 * @y: value2 912 */ 913#define min_not_zero(x, y) ({ \ 914 typeof(x) __x = (x); \ 915 typeof(y) __y = (y); \ 916 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) 917 918/** 919 * clamp - return a value clamped to a given range with strict typechecking 920 * @val: current value 921 * @lo: lowest allowable value 922 * @hi: highest allowable value 923 * 924 * This macro does strict typechecking of @lo/@hi to make sure they are of the 925 * same type as @val. See the unnecessary pointer comparisons. 926 */ 927#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) 928 929/* 930 * ..and if you can't take the strict 931 * types, you can specify one yourself. 932 * 933 * Or not use min/max/clamp at all, of course. 934 */ 935 936/** 937 * min_t - return minimum of two values, using the specified type 938 * @type: data type to use 939 * @x: first value 940 * @y: second value 941 */ 942#define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <) 943 944/** 945 * max_t - return maximum of two values, using the specified type 946 * @type: data type to use 947 * @x: first value 948 * @y: second value 949 */ 950#define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >) 951 952/** 953 * clamp_t - return a value clamped to a given range using a given type 954 * @type: the type of variable to use 955 * @val: current value 956 * @lo: minimum allowable value 957 * @hi: maximum allowable value 958 * 959 * This macro does no typechecking and uses temporary variables of type 960 * @type to make all the comparisons. 961 */ 962#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi) 963 964/** 965 * clamp_val - return a value clamped to a given range using val's type 966 * @val: current value 967 * @lo: minimum allowable value 968 * @hi: maximum allowable value 969 * 970 * This macro does no typechecking and uses temporary variables of whatever 971 * type the input argument @val is. This is useful when @val is an unsigned 972 * type and @lo and @hi are literals that will otherwise be assigned a signed 973 * integer type. 974 */ 975#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) 976 977 978/** 979 * swap - swap values of @a and @b 980 * @a: first value 981 * @b: second value 982 */ 983#define swap(a, b) \ 984 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 985 986/* This counts to 12. Any more, it will return 13th argument. */ 987#define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n 988#define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 989 990#define __CONCAT(a, b) a ## b 991#define CONCATENATE(a, b) __CONCAT(a, b) 992 993/** 994 * container_of - cast a member of a structure out to the containing structure 995 * @ptr: the pointer to the member. 996 * @type: the type of the container struct this is embedded in. 997 * @member: the name of the member within the struct. 998 * 999 */ 1000#define container_of(ptr, type, member) ({ \ 1001 void *__mptr = (void *)(ptr); \ 1002 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 1003 !__same_type(*(ptr), void), \ 1004 "pointer type mismatch in container_of()"); \ 1005 ((type *)(__mptr - offsetof(type, member))); }) 1006 1007/** 1008 * container_of_safe - cast a member of a structure out to the containing structure 1009 * @ptr: the pointer to the member. 1010 * @type: the type of the container struct this is embedded in. 1011 * @member: the name of the member within the struct. 1012 * 1013 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged. 1014 */ 1015#define container_of_safe(ptr, type, member) ({ \ 1016 void *__mptr = (void *)(ptr); \ 1017 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 1018 !__same_type(*(ptr), void), \ 1019 "pointer type mismatch in container_of()"); \ 1020 IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) : \ 1021 ((type *)(__mptr - offsetof(type, member))); }) 1022 1023/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ 1024#ifdef CONFIG_FTRACE_MCOUNT_RECORD 1025# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD 1026#endif 1027 1028/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */ 1029#define VERIFY_OCTAL_PERMISSIONS(perms) \ 1030 (BUILD_BUG_ON_ZERO((perms) < 0) + \ 1031 BUILD_BUG_ON_ZERO((perms) > 0777) + \ 1032 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \ 1033 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \ 1034 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \ 1035 /* USER_WRITABLE >= GROUP_WRITABLE */ \ 1036 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \ 1037 /* OTHER_WRITABLE? Generally considered a bad idea. */ \ 1038 BUILD_BUG_ON_ZERO((perms) & 2) + \ 1039 (perms)) 1040#endif