Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/slab.h>
17#include <linux/device.h>
18#include <linux/export.h>
19#include <linux/pm_domain.h>
20#include <linux/regulator/consumer.h>
21
22#include "opp.h"
23
24/*
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
28 */
29LIST_HEAD(opp_tables);
30/* Lock to allow exclusive modification to the device and opp lists */
31DEFINE_MUTEX(opp_table_lock);
32
33static struct opp_device *_find_opp_dev(const struct device *dev,
34 struct opp_table *opp_table)
35{
36 struct opp_device *opp_dev;
37
38 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 if (opp_dev->dev == dev)
40 return opp_dev;
41
42 return NULL;
43}
44
45static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46{
47 struct opp_table *opp_table;
48 bool found;
49
50 list_for_each_entry(opp_table, &opp_tables, node) {
51 mutex_lock(&opp_table->lock);
52 found = !!_find_opp_dev(dev, opp_table);
53 mutex_unlock(&opp_table->lock);
54
55 if (found) {
56 _get_opp_table_kref(opp_table);
57
58 return opp_table;
59 }
60 }
61
62 return ERR_PTR(-ENODEV);
63}
64
65/**
66 * _find_opp_table() - find opp_table struct using device pointer
67 * @dev: device pointer used to lookup OPP table
68 *
69 * Search OPP table for one containing matching device.
70 *
71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72 * -EINVAL based on type of error.
73 *
74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75 */
76struct opp_table *_find_opp_table(struct device *dev)
77{
78 struct opp_table *opp_table;
79
80 if (IS_ERR_OR_NULL(dev)) {
81 pr_err("%s: Invalid parameters\n", __func__);
82 return ERR_PTR(-EINVAL);
83 }
84
85 mutex_lock(&opp_table_lock);
86 opp_table = _find_opp_table_unlocked(dev);
87 mutex_unlock(&opp_table_lock);
88
89 return opp_table;
90}
91
92/**
93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94 * @opp: opp for which voltage has to be returned for
95 *
96 * Return: voltage in micro volt corresponding to the opp, else
97 * return 0
98 *
99 * This is useful only for devices with single power supply.
100 */
101unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102{
103 if (IS_ERR_OR_NULL(opp)) {
104 pr_err("%s: Invalid parameters\n", __func__);
105 return 0;
106 }
107
108 return opp->supplies[0].u_volt;
109}
110EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111
112/**
113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114 * @opp: opp for which frequency has to be returned for
115 *
116 * Return: frequency in hertz corresponding to the opp, else
117 * return 0
118 */
119unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120{
121 if (IS_ERR_OR_NULL(opp)) {
122 pr_err("%s: Invalid parameters\n", __func__);
123 return 0;
124 }
125
126 return opp->rate;
127}
128EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129
130/**
131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132 * @opp: opp for which level value has to be returned for
133 *
134 * Return: level read from device tree corresponding to the opp, else
135 * return 0.
136 */
137unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138{
139 if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 pr_err("%s: Invalid parameters\n", __func__);
141 return 0;
142 }
143
144 return opp->level;
145}
146EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147
148/**
149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150 * @opp: opp for which turbo mode is being verified
151 *
152 * Turbo OPPs are not for normal use, and can be enabled (under certain
153 * conditions) for short duration of times to finish high throughput work
154 * quickly. Running on them for longer times may overheat the chip.
155 *
156 * Return: true if opp is turbo opp, else false.
157 */
158bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159{
160 if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 pr_err("%s: Invalid parameters\n", __func__);
162 return false;
163 }
164
165 return opp->turbo;
166}
167EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168
169/**
170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171 * @dev: device for which we do this operation
172 *
173 * Return: This function returns the max clock latency in nanoseconds.
174 */
175unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176{
177 struct opp_table *opp_table;
178 unsigned long clock_latency_ns;
179
180 opp_table = _find_opp_table(dev);
181 if (IS_ERR(opp_table))
182 return 0;
183
184 clock_latency_ns = opp_table->clock_latency_ns_max;
185
186 dev_pm_opp_put_opp_table(opp_table);
187
188 return clock_latency_ns;
189}
190EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191
192/**
193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194 * @dev: device for which we do this operation
195 *
196 * Return: This function returns the max voltage latency in nanoseconds.
197 */
198unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199{
200 struct opp_table *opp_table;
201 struct dev_pm_opp *opp;
202 struct regulator *reg;
203 unsigned long latency_ns = 0;
204 int ret, i, count;
205 struct {
206 unsigned long min;
207 unsigned long max;
208 } *uV;
209
210 opp_table = _find_opp_table(dev);
211 if (IS_ERR(opp_table))
212 return 0;
213
214 /* Regulator may not be required for the device */
215 if (!opp_table->regulators)
216 goto put_opp_table;
217
218 count = opp_table->regulator_count;
219
220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 if (!uV)
222 goto put_opp_table;
223
224 mutex_lock(&opp_table->lock);
225
226 for (i = 0; i < count; i++) {
227 uV[i].min = ~0;
228 uV[i].max = 0;
229
230 list_for_each_entry(opp, &opp_table->opp_list, node) {
231 if (!opp->available)
232 continue;
233
234 if (opp->supplies[i].u_volt_min < uV[i].min)
235 uV[i].min = opp->supplies[i].u_volt_min;
236 if (opp->supplies[i].u_volt_max > uV[i].max)
237 uV[i].max = opp->supplies[i].u_volt_max;
238 }
239 }
240
241 mutex_unlock(&opp_table->lock);
242
243 /*
244 * The caller needs to ensure that opp_table (and hence the regulator)
245 * isn't freed, while we are executing this routine.
246 */
247 for (i = 0; i < count; i++) {
248 reg = opp_table->regulators[i];
249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 if (ret > 0)
251 latency_ns += ret * 1000;
252 }
253
254 kfree(uV);
255put_opp_table:
256 dev_pm_opp_put_opp_table(opp_table);
257
258 return latency_ns;
259}
260EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261
262/**
263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264 * nanoseconds
265 * @dev: device for which we do this operation
266 *
267 * Return: This function returns the max transition latency, in nanoseconds, to
268 * switch from one OPP to other.
269 */
270unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271{
272 return dev_pm_opp_get_max_volt_latency(dev) +
273 dev_pm_opp_get_max_clock_latency(dev);
274}
275EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276
277/**
278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279 * @dev: device for which we do this operation
280 *
281 * Return: This function returns the frequency of the OPP marked as suspend_opp
282 * if one is available, else returns 0;
283 */
284unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285{
286 struct opp_table *opp_table;
287 unsigned long freq = 0;
288
289 opp_table = _find_opp_table(dev);
290 if (IS_ERR(opp_table))
291 return 0;
292
293 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295
296 dev_pm_opp_put_opp_table(opp_table);
297
298 return freq;
299}
300EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301
302int _get_opp_count(struct opp_table *opp_table)
303{
304 struct dev_pm_opp *opp;
305 int count = 0;
306
307 mutex_lock(&opp_table->lock);
308
309 list_for_each_entry(opp, &opp_table->opp_list, node) {
310 if (opp->available)
311 count++;
312 }
313
314 mutex_unlock(&opp_table->lock);
315
316 return count;
317}
318
319/**
320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321 * @dev: device for which we do this operation
322 *
323 * Return: This function returns the number of available opps if there are any,
324 * else returns 0 if none or the corresponding error value.
325 */
326int dev_pm_opp_get_opp_count(struct device *dev)
327{
328 struct opp_table *opp_table;
329 int count;
330
331 opp_table = _find_opp_table(dev);
332 if (IS_ERR(opp_table)) {
333 count = PTR_ERR(opp_table);
334 dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 __func__, count);
336 return count;
337 }
338
339 count = _get_opp_count(opp_table);
340 dev_pm_opp_put_opp_table(opp_table);
341
342 return count;
343}
344EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345
346/**
347 * dev_pm_opp_find_freq_exact() - search for an exact frequency
348 * @dev: device for which we do this operation
349 * @freq: frequency to search for
350 * @available: true/false - match for available opp
351 *
352 * Return: Searches for exact match in the opp table and returns pointer to the
353 * matching opp if found, else returns ERR_PTR in case of error and should
354 * be handled using IS_ERR. Error return values can be:
355 * EINVAL: for bad pointer
356 * ERANGE: no match found for search
357 * ENODEV: if device not found in list of registered devices
358 *
359 * Note: available is a modifier for the search. if available=true, then the
360 * match is for exact matching frequency and is available in the stored OPP
361 * table. if false, the match is for exact frequency which is not available.
362 *
363 * This provides a mechanism to enable an opp which is not available currently
364 * or the opposite as well.
365 *
366 * The callers are required to call dev_pm_opp_put() for the returned OPP after
367 * use.
368 */
369struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 unsigned long freq,
371 bool available)
372{
373 struct opp_table *opp_table;
374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375
376 opp_table = _find_opp_table(dev);
377 if (IS_ERR(opp_table)) {
378 int r = PTR_ERR(opp_table);
379
380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 return ERR_PTR(r);
382 }
383
384 mutex_lock(&opp_table->lock);
385
386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 if (temp_opp->available == available &&
388 temp_opp->rate == freq) {
389 opp = temp_opp;
390
391 /* Increment the reference count of OPP */
392 dev_pm_opp_get(opp);
393 break;
394 }
395 }
396
397 mutex_unlock(&opp_table->lock);
398 dev_pm_opp_put_opp_table(opp_table);
399
400 return opp;
401}
402EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403
404/**
405 * dev_pm_opp_find_level_exact() - search for an exact level
406 * @dev: device for which we do this operation
407 * @level: level to search for
408 *
409 * Return: Searches for exact match in the opp table and returns pointer to the
410 * matching opp if found, else returns ERR_PTR in case of error and should
411 * be handled using IS_ERR. Error return values can be:
412 * EINVAL: for bad pointer
413 * ERANGE: no match found for search
414 * ENODEV: if device not found in list of registered devices
415 *
416 * The callers are required to call dev_pm_opp_put() for the returned OPP after
417 * use.
418 */
419struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 unsigned int level)
421{
422 struct opp_table *opp_table;
423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424
425 opp_table = _find_opp_table(dev);
426 if (IS_ERR(opp_table)) {
427 int r = PTR_ERR(opp_table);
428
429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 return ERR_PTR(r);
431 }
432
433 mutex_lock(&opp_table->lock);
434
435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 if (temp_opp->level == level) {
437 opp = temp_opp;
438
439 /* Increment the reference count of OPP */
440 dev_pm_opp_get(opp);
441 break;
442 }
443 }
444
445 mutex_unlock(&opp_table->lock);
446 dev_pm_opp_put_opp_table(opp_table);
447
448 return opp;
449}
450EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451
452static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 unsigned long *freq)
454{
455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456
457 mutex_lock(&opp_table->lock);
458
459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 if (temp_opp->available && temp_opp->rate >= *freq) {
461 opp = temp_opp;
462 *freq = opp->rate;
463
464 /* Increment the reference count of OPP */
465 dev_pm_opp_get(opp);
466 break;
467 }
468 }
469
470 mutex_unlock(&opp_table->lock);
471
472 return opp;
473}
474
475/**
476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477 * @dev: device for which we do this operation
478 * @freq: Start frequency
479 *
480 * Search for the matching ceil *available* OPP from a starting freq
481 * for a device.
482 *
483 * Return: matching *opp and refreshes *freq accordingly, else returns
484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485 * values can be:
486 * EINVAL: for bad pointer
487 * ERANGE: no match found for search
488 * ENODEV: if device not found in list of registered devices
489 *
490 * The callers are required to call dev_pm_opp_put() for the returned OPP after
491 * use.
492 */
493struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 unsigned long *freq)
495{
496 struct opp_table *opp_table;
497 struct dev_pm_opp *opp;
498
499 if (!dev || !freq) {
500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 return ERR_PTR(-EINVAL);
502 }
503
504 opp_table = _find_opp_table(dev);
505 if (IS_ERR(opp_table))
506 return ERR_CAST(opp_table);
507
508 opp = _find_freq_ceil(opp_table, freq);
509
510 dev_pm_opp_put_opp_table(opp_table);
511
512 return opp;
513}
514EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515
516/**
517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518 * @dev: device for which we do this operation
519 * @freq: Start frequency
520 *
521 * Search for the matching floor *available* OPP from a starting freq
522 * for a device.
523 *
524 * Return: matching *opp and refreshes *freq accordingly, else returns
525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526 * values can be:
527 * EINVAL: for bad pointer
528 * ERANGE: no match found for search
529 * ENODEV: if device not found in list of registered devices
530 *
531 * The callers are required to call dev_pm_opp_put() for the returned OPP after
532 * use.
533 */
534struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 unsigned long *freq)
536{
537 struct opp_table *opp_table;
538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539
540 if (!dev || !freq) {
541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 return ERR_PTR(-EINVAL);
543 }
544
545 opp_table = _find_opp_table(dev);
546 if (IS_ERR(opp_table))
547 return ERR_CAST(opp_table);
548
549 mutex_lock(&opp_table->lock);
550
551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 if (temp_opp->available) {
553 /* go to the next node, before choosing prev */
554 if (temp_opp->rate > *freq)
555 break;
556 else
557 opp = temp_opp;
558 }
559 }
560
561 /* Increment the reference count of OPP */
562 if (!IS_ERR(opp))
563 dev_pm_opp_get(opp);
564 mutex_unlock(&opp_table->lock);
565 dev_pm_opp_put_opp_table(opp_table);
566
567 if (!IS_ERR(opp))
568 *freq = opp->rate;
569
570 return opp;
571}
572EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573
574/**
575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576 * target voltage.
577 * @dev: Device for which we do this operation.
578 * @u_volt: Target voltage.
579 *
580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581 *
582 * Return: matching *opp, else returns ERR_PTR in case of error which should be
583 * handled using IS_ERR.
584 *
585 * Error return values can be:
586 * EINVAL: bad parameters
587 *
588 * The callers are required to call dev_pm_opp_put() for the returned OPP after
589 * use.
590 */
591struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 unsigned long u_volt)
593{
594 struct opp_table *opp_table;
595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596
597 if (!dev || !u_volt) {
598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 u_volt);
600 return ERR_PTR(-EINVAL);
601 }
602
603 opp_table = _find_opp_table(dev);
604 if (IS_ERR(opp_table))
605 return ERR_CAST(opp_table);
606
607 mutex_lock(&opp_table->lock);
608
609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 if (temp_opp->available) {
611 if (temp_opp->supplies[0].u_volt > u_volt)
612 break;
613 opp = temp_opp;
614 }
615 }
616
617 /* Increment the reference count of OPP */
618 if (!IS_ERR(opp))
619 dev_pm_opp_get(opp);
620
621 mutex_unlock(&opp_table->lock);
622 dev_pm_opp_put_opp_table(opp_table);
623
624 return opp;
625}
626EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627
628static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 struct dev_pm_opp_supply *supply)
630{
631 int ret;
632
633 /* Regulator not available for device */
634 if (IS_ERR(reg)) {
635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 PTR_ERR(reg));
637 return 0;
638 }
639
640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642
643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 supply->u_volt, supply->u_volt_max);
645 if (ret)
646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 __func__, supply->u_volt_min, supply->u_volt,
648 supply->u_volt_max, ret);
649
650 return ret;
651}
652
653static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 unsigned long freq)
655{
656 int ret;
657
658 ret = clk_set_rate(clk, freq);
659 if (ret) {
660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 ret);
662 }
663
664 return ret;
665}
666
667static int _generic_set_opp_regulator(struct opp_table *opp_table,
668 struct device *dev,
669 unsigned long old_freq,
670 unsigned long freq,
671 struct dev_pm_opp_supply *old_supply,
672 struct dev_pm_opp_supply *new_supply)
673{
674 struct regulator *reg = opp_table->regulators[0];
675 int ret;
676
677 /* This function only supports single regulator per device */
678 if (WARN_ON(opp_table->regulator_count > 1)) {
679 dev_err(dev, "multiple regulators are not supported\n");
680 return -EINVAL;
681 }
682
683 /* Scaling up? Scale voltage before frequency */
684 if (freq >= old_freq) {
685 ret = _set_opp_voltage(dev, reg, new_supply);
686 if (ret)
687 goto restore_voltage;
688 }
689
690 /* Change frequency */
691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 if (ret)
693 goto restore_voltage;
694
695 /* Scaling down? Scale voltage after frequency */
696 if (freq < old_freq) {
697 ret = _set_opp_voltage(dev, reg, new_supply);
698 if (ret)
699 goto restore_freq;
700 }
701
702 /*
703 * Enable the regulator after setting its voltages, otherwise it breaks
704 * some boot-enabled regulators.
705 */
706 if (unlikely(!opp_table->regulator_enabled)) {
707 ret = regulator_enable(reg);
708 if (ret < 0)
709 dev_warn(dev, "Failed to enable regulator: %d", ret);
710 else
711 opp_table->regulator_enabled = true;
712 }
713
714 return 0;
715
716restore_freq:
717 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
718 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
719 __func__, old_freq);
720restore_voltage:
721 /* This shouldn't harm even if the voltages weren't updated earlier */
722 if (old_supply)
723 _set_opp_voltage(dev, reg, old_supply);
724
725 return ret;
726}
727
728static int _set_opp_bw(const struct opp_table *opp_table,
729 struct dev_pm_opp *opp, struct device *dev, bool remove)
730{
731 u32 avg, peak;
732 int i, ret;
733
734 if (!opp_table->paths)
735 return 0;
736
737 for (i = 0; i < opp_table->path_count; i++) {
738 if (remove) {
739 avg = 0;
740 peak = 0;
741 } else {
742 avg = opp->bandwidth[i].avg;
743 peak = opp->bandwidth[i].peak;
744 }
745 ret = icc_set_bw(opp_table->paths[i], avg, peak);
746 if (ret) {
747 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
748 remove ? "remove" : "set", i, ret);
749 return ret;
750 }
751 }
752
753 return 0;
754}
755
756static int _set_opp_custom(const struct opp_table *opp_table,
757 struct device *dev, unsigned long old_freq,
758 unsigned long freq,
759 struct dev_pm_opp_supply *old_supply,
760 struct dev_pm_opp_supply *new_supply)
761{
762 struct dev_pm_set_opp_data *data;
763 int size;
764
765 data = opp_table->set_opp_data;
766 data->regulators = opp_table->regulators;
767 data->regulator_count = opp_table->regulator_count;
768 data->clk = opp_table->clk;
769 data->dev = dev;
770
771 data->old_opp.rate = old_freq;
772 size = sizeof(*old_supply) * opp_table->regulator_count;
773 if (!old_supply)
774 memset(data->old_opp.supplies, 0, size);
775 else
776 memcpy(data->old_opp.supplies, old_supply, size);
777
778 data->new_opp.rate = freq;
779 memcpy(data->new_opp.supplies, new_supply, size);
780
781 return opp_table->set_opp(data);
782}
783
784/* This is only called for PM domain for now */
785static int _set_required_opps(struct device *dev,
786 struct opp_table *opp_table,
787 struct dev_pm_opp *opp)
788{
789 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
790 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
791 unsigned int pstate;
792 int i, ret = 0;
793
794 if (!required_opp_tables)
795 return 0;
796
797 /* Single genpd case */
798 if (!genpd_virt_devs) {
799 pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
800 ret = dev_pm_genpd_set_performance_state(dev, pstate);
801 if (ret) {
802 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
803 dev_name(dev), pstate, ret);
804 }
805 return ret;
806 }
807
808 /* Multiple genpd case */
809
810 /*
811 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
812 * after it is freed from another thread.
813 */
814 mutex_lock(&opp_table->genpd_virt_dev_lock);
815
816 for (i = 0; i < opp_table->required_opp_count; i++) {
817 pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
818
819 if (!genpd_virt_devs[i])
820 continue;
821
822 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
823 if (ret) {
824 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
825 dev_name(genpd_virt_devs[i]), pstate, ret);
826 break;
827 }
828 }
829 mutex_unlock(&opp_table->genpd_virt_dev_lock);
830
831 return ret;
832}
833
834/**
835 * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp
836 * @dev: device for which we do this operation
837 * @opp: opp based on which the bandwidth levels are to be configured
838 *
839 * This configures the bandwidth to the levels specified by the OPP. However
840 * if the OPP specified is NULL the bandwidth levels are cleared out.
841 *
842 * Return: 0 on success or a negative error value.
843 */
844int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp)
845{
846 struct opp_table *opp_table;
847 int ret;
848
849 opp_table = _find_opp_table(dev);
850 if (IS_ERR(opp_table)) {
851 dev_err(dev, "%s: device opp table doesn't exist\n", __func__);
852 return PTR_ERR(opp_table);
853 }
854
855 if (opp)
856 ret = _set_opp_bw(opp_table, opp, dev, false);
857 else
858 ret = _set_opp_bw(opp_table, NULL, dev, true);
859
860 dev_pm_opp_put_opp_table(opp_table);
861 return ret;
862}
863EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw);
864
865/**
866 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
867 * @dev: device for which we do this operation
868 * @target_freq: frequency to achieve
869 *
870 * This configures the power-supplies to the levels specified by the OPP
871 * corresponding to the target_freq, and programs the clock to a value <=
872 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
873 * provided by the opp, should have already rounded to the target OPP's
874 * frequency.
875 */
876int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
877{
878 struct opp_table *opp_table;
879 unsigned long freq, old_freq, temp_freq;
880 struct dev_pm_opp *old_opp, *opp;
881 struct clk *clk;
882 int ret;
883
884 opp_table = _find_opp_table(dev);
885 if (IS_ERR(opp_table)) {
886 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
887 return PTR_ERR(opp_table);
888 }
889
890 if (unlikely(!target_freq)) {
891 /*
892 * Some drivers need to support cases where some platforms may
893 * have OPP table for the device, while others don't and
894 * opp_set_rate() just needs to behave like clk_set_rate().
895 */
896 if (!_get_opp_count(opp_table)) {
897 ret = 0;
898 goto put_opp_table;
899 }
900
901 if (!opp_table->required_opp_tables && !opp_table->regulators &&
902 !opp_table->paths) {
903 dev_err(dev, "target frequency can't be 0\n");
904 ret = -EINVAL;
905 goto put_opp_table;
906 }
907
908 ret = _set_opp_bw(opp_table, NULL, dev, true);
909 if (ret)
910 goto put_opp_table;
911
912 if (opp_table->regulator_enabled) {
913 regulator_disable(opp_table->regulators[0]);
914 opp_table->regulator_enabled = false;
915 }
916
917 ret = _set_required_opps(dev, opp_table, NULL);
918 goto put_opp_table;
919 }
920
921 clk = opp_table->clk;
922 if (IS_ERR(clk)) {
923 dev_err(dev, "%s: No clock available for the device\n",
924 __func__);
925 ret = PTR_ERR(clk);
926 goto put_opp_table;
927 }
928
929 freq = clk_round_rate(clk, target_freq);
930 if ((long)freq <= 0)
931 freq = target_freq;
932
933 old_freq = clk_get_rate(clk);
934
935 /* Return early if nothing to do */
936 if (old_freq == freq) {
937 if (!opp_table->required_opp_tables && !opp_table->regulators &&
938 !opp_table->paths) {
939 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
940 __func__, freq);
941 ret = 0;
942 goto put_opp_table;
943 }
944 }
945
946 /*
947 * For IO devices which require an OPP on some platforms/SoCs
948 * while just needing to scale the clock on some others
949 * we look for empty OPP tables with just a clock handle and
950 * scale only the clk. This makes dev_pm_opp_set_rate()
951 * equivalent to a clk_set_rate()
952 */
953 if (!_get_opp_count(opp_table)) {
954 ret = _generic_set_opp_clk_only(dev, clk, freq);
955 goto put_opp_table;
956 }
957
958 temp_freq = old_freq;
959 old_opp = _find_freq_ceil(opp_table, &temp_freq);
960 if (IS_ERR(old_opp)) {
961 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
962 __func__, old_freq, PTR_ERR(old_opp));
963 }
964
965 temp_freq = freq;
966 opp = _find_freq_ceil(opp_table, &temp_freq);
967 if (IS_ERR(opp)) {
968 ret = PTR_ERR(opp);
969 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
970 __func__, freq, ret);
971 goto put_old_opp;
972 }
973
974 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
975 old_freq, freq);
976
977 /* Scaling up? Configure required OPPs before frequency */
978 if (freq >= old_freq) {
979 ret = _set_required_opps(dev, opp_table, opp);
980 if (ret)
981 goto put_opp;
982 }
983
984 if (opp_table->set_opp) {
985 ret = _set_opp_custom(opp_table, dev, old_freq, freq,
986 IS_ERR(old_opp) ? NULL : old_opp->supplies,
987 opp->supplies);
988 } else if (opp_table->regulators) {
989 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
990 IS_ERR(old_opp) ? NULL : old_opp->supplies,
991 opp->supplies);
992 } else {
993 /* Only frequency scaling */
994 ret = _generic_set_opp_clk_only(dev, clk, freq);
995 }
996
997 /* Scaling down? Configure required OPPs after frequency */
998 if (!ret && freq < old_freq) {
999 ret = _set_required_opps(dev, opp_table, opp);
1000 if (ret)
1001 dev_err(dev, "Failed to set required opps: %d\n", ret);
1002 }
1003
1004 if (!ret)
1005 ret = _set_opp_bw(opp_table, opp, dev, false);
1006
1007put_opp:
1008 dev_pm_opp_put(opp);
1009put_old_opp:
1010 if (!IS_ERR(old_opp))
1011 dev_pm_opp_put(old_opp);
1012put_opp_table:
1013 dev_pm_opp_put_opp_table(opp_table);
1014 return ret;
1015}
1016EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1017
1018/* OPP-dev Helpers */
1019static void _remove_opp_dev(struct opp_device *opp_dev,
1020 struct opp_table *opp_table)
1021{
1022 opp_debug_unregister(opp_dev, opp_table);
1023 list_del(&opp_dev->node);
1024 kfree(opp_dev);
1025}
1026
1027static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
1028 struct opp_table *opp_table)
1029{
1030 struct opp_device *opp_dev;
1031
1032 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1033 if (!opp_dev)
1034 return NULL;
1035
1036 /* Initialize opp-dev */
1037 opp_dev->dev = dev;
1038
1039 list_add(&opp_dev->node, &opp_table->dev_list);
1040
1041 /* Create debugfs entries for the opp_table */
1042 opp_debug_register(opp_dev, opp_table);
1043
1044 return opp_dev;
1045}
1046
1047struct opp_device *_add_opp_dev(const struct device *dev,
1048 struct opp_table *opp_table)
1049{
1050 struct opp_device *opp_dev;
1051
1052 mutex_lock(&opp_table->lock);
1053 opp_dev = _add_opp_dev_unlocked(dev, opp_table);
1054 mutex_unlock(&opp_table->lock);
1055
1056 return opp_dev;
1057}
1058
1059static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1060{
1061 struct opp_table *opp_table;
1062 struct opp_device *opp_dev;
1063 int ret;
1064
1065 /*
1066 * Allocate a new OPP table. In the infrequent case where a new
1067 * device is needed to be added, we pay this penalty.
1068 */
1069 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1070 if (!opp_table)
1071 return NULL;
1072
1073 mutex_init(&opp_table->lock);
1074 mutex_init(&opp_table->genpd_virt_dev_lock);
1075 INIT_LIST_HEAD(&opp_table->dev_list);
1076
1077 /* Mark regulator count uninitialized */
1078 opp_table->regulator_count = -1;
1079
1080 opp_dev = _add_opp_dev(dev, opp_table);
1081 if (!opp_dev) {
1082 kfree(opp_table);
1083 return NULL;
1084 }
1085
1086 _of_init_opp_table(opp_table, dev, index);
1087
1088 /* Find clk for the device */
1089 opp_table->clk = clk_get(dev, NULL);
1090 if (IS_ERR(opp_table->clk)) {
1091 ret = PTR_ERR(opp_table->clk);
1092 if (ret != -EPROBE_DEFER)
1093 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
1094 ret);
1095 }
1096
1097 /* Find interconnect path(s) for the device */
1098 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1099 if (ret)
1100 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1101 __func__, ret);
1102
1103 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1104 INIT_LIST_HEAD(&opp_table->opp_list);
1105 kref_init(&opp_table->kref);
1106
1107 /* Secure the device table modification */
1108 list_add(&opp_table->node, &opp_tables);
1109 return opp_table;
1110}
1111
1112void _get_opp_table_kref(struct opp_table *opp_table)
1113{
1114 kref_get(&opp_table->kref);
1115}
1116
1117static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1118{
1119 struct opp_table *opp_table;
1120
1121 /* Hold our table modification lock here */
1122 mutex_lock(&opp_table_lock);
1123
1124 opp_table = _find_opp_table_unlocked(dev);
1125 if (!IS_ERR(opp_table))
1126 goto unlock;
1127
1128 opp_table = _managed_opp(dev, index);
1129 if (opp_table) {
1130 if (!_add_opp_dev_unlocked(dev, opp_table)) {
1131 dev_pm_opp_put_opp_table(opp_table);
1132 opp_table = NULL;
1133 }
1134 goto unlock;
1135 }
1136
1137 opp_table = _allocate_opp_table(dev, index);
1138
1139unlock:
1140 mutex_unlock(&opp_table_lock);
1141
1142 return opp_table;
1143}
1144
1145struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1146{
1147 return _opp_get_opp_table(dev, 0);
1148}
1149EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1150
1151struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1152 int index)
1153{
1154 return _opp_get_opp_table(dev, index);
1155}
1156
1157static void _opp_table_kref_release(struct kref *kref)
1158{
1159 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1160 struct opp_device *opp_dev, *temp;
1161 int i;
1162
1163 _of_clear_opp_table(opp_table);
1164
1165 /* Release clk */
1166 if (!IS_ERR(opp_table->clk))
1167 clk_put(opp_table->clk);
1168
1169 if (opp_table->paths) {
1170 for (i = 0; i < opp_table->path_count; i++)
1171 icc_put(opp_table->paths[i]);
1172 kfree(opp_table->paths);
1173 }
1174
1175 WARN_ON(!list_empty(&opp_table->opp_list));
1176
1177 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1178 /*
1179 * The OPP table is getting removed, drop the performance state
1180 * constraints.
1181 */
1182 if (opp_table->genpd_performance_state)
1183 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1184
1185 _remove_opp_dev(opp_dev, opp_table);
1186 }
1187
1188 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1189 mutex_destroy(&opp_table->lock);
1190 list_del(&opp_table->node);
1191 kfree(opp_table);
1192
1193 mutex_unlock(&opp_table_lock);
1194}
1195
1196void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1197{
1198 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1199 &opp_table_lock);
1200}
1201EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1202
1203void _opp_free(struct dev_pm_opp *opp)
1204{
1205 kfree(opp);
1206}
1207
1208static void _opp_kref_release(struct dev_pm_opp *opp,
1209 struct opp_table *opp_table)
1210{
1211 /*
1212 * Notify the changes in the availability of the operable
1213 * frequency/voltage list.
1214 */
1215 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1216 _of_opp_free_required_opps(opp_table, opp);
1217 opp_debug_remove_one(opp);
1218 list_del(&opp->node);
1219 kfree(opp);
1220}
1221
1222static void _opp_kref_release_unlocked(struct kref *kref)
1223{
1224 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1225 struct opp_table *opp_table = opp->opp_table;
1226
1227 _opp_kref_release(opp, opp_table);
1228}
1229
1230static void _opp_kref_release_locked(struct kref *kref)
1231{
1232 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1233 struct opp_table *opp_table = opp->opp_table;
1234
1235 _opp_kref_release(opp, opp_table);
1236 mutex_unlock(&opp_table->lock);
1237}
1238
1239void dev_pm_opp_get(struct dev_pm_opp *opp)
1240{
1241 kref_get(&opp->kref);
1242}
1243
1244void dev_pm_opp_put(struct dev_pm_opp *opp)
1245{
1246 kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1247 &opp->opp_table->lock);
1248}
1249EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1250
1251static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1252{
1253 kref_put(&opp->kref, _opp_kref_release_unlocked);
1254}
1255
1256/**
1257 * dev_pm_opp_remove() - Remove an OPP from OPP table
1258 * @dev: device for which we do this operation
1259 * @freq: OPP to remove with matching 'freq'
1260 *
1261 * This function removes an opp from the opp table.
1262 */
1263void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1264{
1265 struct dev_pm_opp *opp;
1266 struct opp_table *opp_table;
1267 bool found = false;
1268
1269 opp_table = _find_opp_table(dev);
1270 if (IS_ERR(opp_table))
1271 return;
1272
1273 mutex_lock(&opp_table->lock);
1274
1275 list_for_each_entry(opp, &opp_table->opp_list, node) {
1276 if (opp->rate == freq) {
1277 found = true;
1278 break;
1279 }
1280 }
1281
1282 mutex_unlock(&opp_table->lock);
1283
1284 if (found) {
1285 dev_pm_opp_put(opp);
1286
1287 /* Drop the reference taken by dev_pm_opp_add() */
1288 dev_pm_opp_put_opp_table(opp_table);
1289 } else {
1290 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1291 __func__, freq);
1292 }
1293
1294 /* Drop the reference taken by _find_opp_table() */
1295 dev_pm_opp_put_opp_table(opp_table);
1296}
1297EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1298
1299void _opp_remove_all_static(struct opp_table *opp_table)
1300{
1301 struct dev_pm_opp *opp, *tmp;
1302
1303 mutex_lock(&opp_table->lock);
1304
1305 if (!opp_table->parsed_static_opps || --opp_table->parsed_static_opps)
1306 goto unlock;
1307
1308 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1309 if (!opp->dynamic)
1310 dev_pm_opp_put_unlocked(opp);
1311 }
1312
1313unlock:
1314 mutex_unlock(&opp_table->lock);
1315}
1316
1317/**
1318 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1319 * @dev: device for which we do this operation
1320 *
1321 * This function removes all dynamically created OPPs from the opp table.
1322 */
1323void dev_pm_opp_remove_all_dynamic(struct device *dev)
1324{
1325 struct opp_table *opp_table;
1326 struct dev_pm_opp *opp, *temp;
1327 int count = 0;
1328
1329 opp_table = _find_opp_table(dev);
1330 if (IS_ERR(opp_table))
1331 return;
1332
1333 mutex_lock(&opp_table->lock);
1334 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1335 if (opp->dynamic) {
1336 dev_pm_opp_put_unlocked(opp);
1337 count++;
1338 }
1339 }
1340 mutex_unlock(&opp_table->lock);
1341
1342 /* Drop the references taken by dev_pm_opp_add() */
1343 while (count--)
1344 dev_pm_opp_put_opp_table(opp_table);
1345
1346 /* Drop the reference taken by _find_opp_table() */
1347 dev_pm_opp_put_opp_table(opp_table);
1348}
1349EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1350
1351struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1352{
1353 struct dev_pm_opp *opp;
1354 int supply_count, supply_size, icc_size;
1355
1356 /* Allocate space for at least one supply */
1357 supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1358 supply_size = sizeof(*opp->supplies) * supply_count;
1359 icc_size = sizeof(*opp->bandwidth) * table->path_count;
1360
1361 /* allocate new OPP node and supplies structures */
1362 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1363
1364 if (!opp)
1365 return NULL;
1366
1367 /* Put the supplies at the end of the OPP structure as an empty array */
1368 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1369 if (icc_size)
1370 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1371 INIT_LIST_HEAD(&opp->node);
1372
1373 return opp;
1374}
1375
1376static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1377 struct opp_table *opp_table)
1378{
1379 struct regulator *reg;
1380 int i;
1381
1382 if (!opp_table->regulators)
1383 return true;
1384
1385 for (i = 0; i < opp_table->regulator_count; i++) {
1386 reg = opp_table->regulators[i];
1387
1388 if (!regulator_is_supported_voltage(reg,
1389 opp->supplies[i].u_volt_min,
1390 opp->supplies[i].u_volt_max)) {
1391 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1392 __func__, opp->supplies[i].u_volt_min,
1393 opp->supplies[i].u_volt_max);
1394 return false;
1395 }
1396 }
1397
1398 return true;
1399}
1400
1401int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1402{
1403 if (opp1->rate != opp2->rate)
1404 return opp1->rate < opp2->rate ? -1 : 1;
1405 if (opp1->bandwidth && opp2->bandwidth &&
1406 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1407 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1408 if (opp1->level != opp2->level)
1409 return opp1->level < opp2->level ? -1 : 1;
1410 return 0;
1411}
1412
1413static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1414 struct opp_table *opp_table,
1415 struct list_head **head)
1416{
1417 struct dev_pm_opp *opp;
1418 int opp_cmp;
1419
1420 /*
1421 * Insert new OPP in order of increasing frequency and discard if
1422 * already present.
1423 *
1424 * Need to use &opp_table->opp_list in the condition part of the 'for'
1425 * loop, don't replace it with head otherwise it will become an infinite
1426 * loop.
1427 */
1428 list_for_each_entry(opp, &opp_table->opp_list, node) {
1429 opp_cmp = _opp_compare_key(new_opp, opp);
1430 if (opp_cmp > 0) {
1431 *head = &opp->node;
1432 continue;
1433 }
1434
1435 if (opp_cmp < 0)
1436 return 0;
1437
1438 /* Duplicate OPPs */
1439 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1440 __func__, opp->rate, opp->supplies[0].u_volt,
1441 opp->available, new_opp->rate,
1442 new_opp->supplies[0].u_volt, new_opp->available);
1443
1444 /* Should we compare voltages for all regulators here ? */
1445 return opp->available &&
1446 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1447 }
1448
1449 return 0;
1450}
1451
1452/*
1453 * Returns:
1454 * 0: On success. And appropriate error message for duplicate OPPs.
1455 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1456 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1457 * sure we don't print error messages unnecessarily if different parts of
1458 * kernel try to initialize the OPP table.
1459 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1460 * should be considered an error by the callers of _opp_add().
1461 */
1462int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1463 struct opp_table *opp_table, bool rate_not_available)
1464{
1465 struct list_head *head;
1466 int ret;
1467
1468 mutex_lock(&opp_table->lock);
1469 head = &opp_table->opp_list;
1470
1471 if (likely(!rate_not_available)) {
1472 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1473 if (ret) {
1474 mutex_unlock(&opp_table->lock);
1475 return ret;
1476 }
1477 }
1478
1479 list_add(&new_opp->node, head);
1480 mutex_unlock(&opp_table->lock);
1481
1482 new_opp->opp_table = opp_table;
1483 kref_init(&new_opp->kref);
1484
1485 opp_debug_create_one(new_opp, opp_table);
1486
1487 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1488 new_opp->available = false;
1489 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1490 __func__, new_opp->rate);
1491 }
1492
1493 return 0;
1494}
1495
1496/**
1497 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1498 * @opp_table: OPP table
1499 * @dev: device for which we do this operation
1500 * @freq: Frequency in Hz for this OPP
1501 * @u_volt: Voltage in uVolts for this OPP
1502 * @dynamic: Dynamically added OPPs.
1503 *
1504 * This function adds an opp definition to the opp table and returns status.
1505 * The opp is made available by default and it can be controlled using
1506 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1507 *
1508 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1509 * and freed by dev_pm_opp_of_remove_table.
1510 *
1511 * Return:
1512 * 0 On success OR
1513 * Duplicate OPPs (both freq and volt are same) and opp->available
1514 * -EEXIST Freq are same and volt are different OR
1515 * Duplicate OPPs (both freq and volt are same) and !opp->available
1516 * -ENOMEM Memory allocation failure
1517 */
1518int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1519 unsigned long freq, long u_volt, bool dynamic)
1520{
1521 struct dev_pm_opp *new_opp;
1522 unsigned long tol;
1523 int ret;
1524
1525 new_opp = _opp_allocate(opp_table);
1526 if (!new_opp)
1527 return -ENOMEM;
1528
1529 /* populate the opp table */
1530 new_opp->rate = freq;
1531 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1532 new_opp->supplies[0].u_volt = u_volt;
1533 new_opp->supplies[0].u_volt_min = u_volt - tol;
1534 new_opp->supplies[0].u_volt_max = u_volt + tol;
1535 new_opp->available = true;
1536 new_opp->dynamic = dynamic;
1537
1538 ret = _opp_add(dev, new_opp, opp_table, false);
1539 if (ret) {
1540 /* Don't return error for duplicate OPPs */
1541 if (ret == -EBUSY)
1542 ret = 0;
1543 goto free_opp;
1544 }
1545
1546 /*
1547 * Notify the changes in the availability of the operable
1548 * frequency/voltage list.
1549 */
1550 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1551 return 0;
1552
1553free_opp:
1554 _opp_free(new_opp);
1555
1556 return ret;
1557}
1558
1559/**
1560 * dev_pm_opp_set_supported_hw() - Set supported platforms
1561 * @dev: Device for which supported-hw has to be set.
1562 * @versions: Array of hierarchy of versions to match.
1563 * @count: Number of elements in the array.
1564 *
1565 * This is required only for the V2 bindings, and it enables a platform to
1566 * specify the hierarchy of versions it supports. OPP layer will then enable
1567 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1568 * property.
1569 */
1570struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1571 const u32 *versions, unsigned int count)
1572{
1573 struct opp_table *opp_table;
1574
1575 opp_table = dev_pm_opp_get_opp_table(dev);
1576 if (!opp_table)
1577 return ERR_PTR(-ENOMEM);
1578
1579 /* Make sure there are no concurrent readers while updating opp_table */
1580 WARN_ON(!list_empty(&opp_table->opp_list));
1581
1582 /* Another CPU that shares the OPP table has set the property ? */
1583 if (opp_table->supported_hw)
1584 return opp_table;
1585
1586 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1587 GFP_KERNEL);
1588 if (!opp_table->supported_hw) {
1589 dev_pm_opp_put_opp_table(opp_table);
1590 return ERR_PTR(-ENOMEM);
1591 }
1592
1593 opp_table->supported_hw_count = count;
1594
1595 return opp_table;
1596}
1597EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1598
1599/**
1600 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1601 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1602 *
1603 * This is required only for the V2 bindings, and is called for a matching
1604 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1605 * will not be freed.
1606 */
1607void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1608{
1609 /* Make sure there are no concurrent readers while updating opp_table */
1610 WARN_ON(!list_empty(&opp_table->opp_list));
1611
1612 kfree(opp_table->supported_hw);
1613 opp_table->supported_hw = NULL;
1614 opp_table->supported_hw_count = 0;
1615
1616 dev_pm_opp_put_opp_table(opp_table);
1617}
1618EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1619
1620/**
1621 * dev_pm_opp_set_prop_name() - Set prop-extn name
1622 * @dev: Device for which the prop-name has to be set.
1623 * @name: name to postfix to properties.
1624 *
1625 * This is required only for the V2 bindings, and it enables a platform to
1626 * specify the extn to be used for certain property names. The properties to
1627 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1628 * should postfix the property name with -<name> while looking for them.
1629 */
1630struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1631{
1632 struct opp_table *opp_table;
1633
1634 opp_table = dev_pm_opp_get_opp_table(dev);
1635 if (!opp_table)
1636 return ERR_PTR(-ENOMEM);
1637
1638 /* Make sure there are no concurrent readers while updating opp_table */
1639 WARN_ON(!list_empty(&opp_table->opp_list));
1640
1641 /* Another CPU that shares the OPP table has set the property ? */
1642 if (opp_table->prop_name)
1643 return opp_table;
1644
1645 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1646 if (!opp_table->prop_name) {
1647 dev_pm_opp_put_opp_table(opp_table);
1648 return ERR_PTR(-ENOMEM);
1649 }
1650
1651 return opp_table;
1652}
1653EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1654
1655/**
1656 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1657 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1658 *
1659 * This is required only for the V2 bindings, and is called for a matching
1660 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1661 * will not be freed.
1662 */
1663void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1664{
1665 /* Make sure there are no concurrent readers while updating opp_table */
1666 WARN_ON(!list_empty(&opp_table->opp_list));
1667
1668 kfree(opp_table->prop_name);
1669 opp_table->prop_name = NULL;
1670
1671 dev_pm_opp_put_opp_table(opp_table);
1672}
1673EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1674
1675static int _allocate_set_opp_data(struct opp_table *opp_table)
1676{
1677 struct dev_pm_set_opp_data *data;
1678 int len, count = opp_table->regulator_count;
1679
1680 if (WARN_ON(!opp_table->regulators))
1681 return -EINVAL;
1682
1683 /* space for set_opp_data */
1684 len = sizeof(*data);
1685
1686 /* space for old_opp.supplies and new_opp.supplies */
1687 len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1688
1689 data = kzalloc(len, GFP_KERNEL);
1690 if (!data)
1691 return -ENOMEM;
1692
1693 data->old_opp.supplies = (void *)(data + 1);
1694 data->new_opp.supplies = data->old_opp.supplies + count;
1695
1696 opp_table->set_opp_data = data;
1697
1698 return 0;
1699}
1700
1701static void _free_set_opp_data(struct opp_table *opp_table)
1702{
1703 kfree(opp_table->set_opp_data);
1704 opp_table->set_opp_data = NULL;
1705}
1706
1707/**
1708 * dev_pm_opp_set_regulators() - Set regulator names for the device
1709 * @dev: Device for which regulator name is being set.
1710 * @names: Array of pointers to the names of the regulator.
1711 * @count: Number of regulators.
1712 *
1713 * In order to support OPP switching, OPP layer needs to know the name of the
1714 * device's regulators, as the core would be required to switch voltages as
1715 * well.
1716 *
1717 * This must be called before any OPPs are initialized for the device.
1718 */
1719struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1720 const char * const names[],
1721 unsigned int count)
1722{
1723 struct opp_table *opp_table;
1724 struct regulator *reg;
1725 int ret, i;
1726
1727 opp_table = dev_pm_opp_get_opp_table(dev);
1728 if (!opp_table)
1729 return ERR_PTR(-ENOMEM);
1730
1731 /* This should be called before OPPs are initialized */
1732 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1733 ret = -EBUSY;
1734 goto err;
1735 }
1736
1737 /* Another CPU that shares the OPP table has set the regulators ? */
1738 if (opp_table->regulators)
1739 return opp_table;
1740
1741 opp_table->regulators = kmalloc_array(count,
1742 sizeof(*opp_table->regulators),
1743 GFP_KERNEL);
1744 if (!opp_table->regulators) {
1745 ret = -ENOMEM;
1746 goto err;
1747 }
1748
1749 for (i = 0; i < count; i++) {
1750 reg = regulator_get_optional(dev, names[i]);
1751 if (IS_ERR(reg)) {
1752 ret = PTR_ERR(reg);
1753 if (ret != -EPROBE_DEFER)
1754 dev_err(dev, "%s: no regulator (%s) found: %d\n",
1755 __func__, names[i], ret);
1756 goto free_regulators;
1757 }
1758
1759 opp_table->regulators[i] = reg;
1760 }
1761
1762 opp_table->regulator_count = count;
1763
1764 /* Allocate block only once to pass to set_opp() routines */
1765 ret = _allocate_set_opp_data(opp_table);
1766 if (ret)
1767 goto free_regulators;
1768
1769 return opp_table;
1770
1771free_regulators:
1772 while (i != 0)
1773 regulator_put(opp_table->regulators[--i]);
1774
1775 kfree(opp_table->regulators);
1776 opp_table->regulators = NULL;
1777 opp_table->regulator_count = -1;
1778err:
1779 dev_pm_opp_put_opp_table(opp_table);
1780
1781 return ERR_PTR(ret);
1782}
1783EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1784
1785/**
1786 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1787 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1788 */
1789void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1790{
1791 int i;
1792
1793 if (!opp_table->regulators)
1794 goto put_opp_table;
1795
1796 /* Make sure there are no concurrent readers while updating opp_table */
1797 WARN_ON(!list_empty(&opp_table->opp_list));
1798
1799 if (opp_table->regulator_enabled) {
1800 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1801 regulator_disable(opp_table->regulators[i]);
1802
1803 opp_table->regulator_enabled = false;
1804 }
1805
1806 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1807 regulator_put(opp_table->regulators[i]);
1808
1809 _free_set_opp_data(opp_table);
1810
1811 kfree(opp_table->regulators);
1812 opp_table->regulators = NULL;
1813 opp_table->regulator_count = -1;
1814
1815put_opp_table:
1816 dev_pm_opp_put_opp_table(opp_table);
1817}
1818EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1819
1820/**
1821 * dev_pm_opp_set_clkname() - Set clk name for the device
1822 * @dev: Device for which clk name is being set.
1823 * @name: Clk name.
1824 *
1825 * In order to support OPP switching, OPP layer needs to get pointer to the
1826 * clock for the device. Simple cases work fine without using this routine (i.e.
1827 * by passing connection-id as NULL), but for a device with multiple clocks
1828 * available, the OPP core needs to know the exact name of the clk to use.
1829 *
1830 * This must be called before any OPPs are initialized for the device.
1831 */
1832struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1833{
1834 struct opp_table *opp_table;
1835 int ret;
1836
1837 opp_table = dev_pm_opp_get_opp_table(dev);
1838 if (!opp_table)
1839 return ERR_PTR(-ENOMEM);
1840
1841 /* This should be called before OPPs are initialized */
1842 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1843 ret = -EBUSY;
1844 goto err;
1845 }
1846
1847 /* Already have default clk set, free it */
1848 if (!IS_ERR(opp_table->clk))
1849 clk_put(opp_table->clk);
1850
1851 /* Find clk for the device */
1852 opp_table->clk = clk_get(dev, name);
1853 if (IS_ERR(opp_table->clk)) {
1854 ret = PTR_ERR(opp_table->clk);
1855 if (ret != -EPROBE_DEFER) {
1856 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1857 ret);
1858 }
1859 goto err;
1860 }
1861
1862 return opp_table;
1863
1864err:
1865 dev_pm_opp_put_opp_table(opp_table);
1866
1867 return ERR_PTR(ret);
1868}
1869EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1870
1871/**
1872 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1873 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1874 */
1875void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1876{
1877 /* Make sure there are no concurrent readers while updating opp_table */
1878 WARN_ON(!list_empty(&opp_table->opp_list));
1879
1880 clk_put(opp_table->clk);
1881 opp_table->clk = ERR_PTR(-EINVAL);
1882
1883 dev_pm_opp_put_opp_table(opp_table);
1884}
1885EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1886
1887/**
1888 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1889 * @dev: Device for which the helper is getting registered.
1890 * @set_opp: Custom set OPP helper.
1891 *
1892 * This is useful to support complex platforms (like platforms with multiple
1893 * regulators per device), instead of the generic OPP set rate helper.
1894 *
1895 * This must be called before any OPPs are initialized for the device.
1896 */
1897struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1898 int (*set_opp)(struct dev_pm_set_opp_data *data))
1899{
1900 struct opp_table *opp_table;
1901
1902 if (!set_opp)
1903 return ERR_PTR(-EINVAL);
1904
1905 opp_table = dev_pm_opp_get_opp_table(dev);
1906 if (!opp_table)
1907 return ERR_PTR(-ENOMEM);
1908
1909 /* This should be called before OPPs are initialized */
1910 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1911 dev_pm_opp_put_opp_table(opp_table);
1912 return ERR_PTR(-EBUSY);
1913 }
1914
1915 /* Another CPU that shares the OPP table has set the helper ? */
1916 if (!opp_table->set_opp)
1917 opp_table->set_opp = set_opp;
1918
1919 return opp_table;
1920}
1921EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1922
1923/**
1924 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1925 * set_opp helper
1926 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1927 *
1928 * Release resources blocked for platform specific set_opp helper.
1929 */
1930void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1931{
1932 /* Make sure there are no concurrent readers while updating opp_table */
1933 WARN_ON(!list_empty(&opp_table->opp_list));
1934
1935 opp_table->set_opp = NULL;
1936 dev_pm_opp_put_opp_table(opp_table);
1937}
1938EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1939
1940static void _opp_detach_genpd(struct opp_table *opp_table)
1941{
1942 int index;
1943
1944 for (index = 0; index < opp_table->required_opp_count; index++) {
1945 if (!opp_table->genpd_virt_devs[index])
1946 continue;
1947
1948 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1949 opp_table->genpd_virt_devs[index] = NULL;
1950 }
1951
1952 kfree(opp_table->genpd_virt_devs);
1953 opp_table->genpd_virt_devs = NULL;
1954}
1955
1956/**
1957 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1958 * @dev: Consumer device for which the genpd is getting attached.
1959 * @names: Null terminated array of pointers containing names of genpd to attach.
1960 * @virt_devs: Pointer to return the array of virtual devices.
1961 *
1962 * Multiple generic power domains for a device are supported with the help of
1963 * virtual genpd devices, which are created for each consumer device - genpd
1964 * pair. These are the device structures which are attached to the power domain
1965 * and are required by the OPP core to set the performance state of the genpd.
1966 * The same API also works for the case where single genpd is available and so
1967 * we don't need to support that separately.
1968 *
1969 * This helper will normally be called by the consumer driver of the device
1970 * "dev", as only that has details of the genpd names.
1971 *
1972 * This helper needs to be called once with a list of all genpd to attach.
1973 * Otherwise the original device structure will be used instead by the OPP core.
1974 *
1975 * The order of entries in the names array must match the order in which
1976 * "required-opps" are added in DT.
1977 */
1978struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
1979 const char **names, struct device ***virt_devs)
1980{
1981 struct opp_table *opp_table;
1982 struct device *virt_dev;
1983 int index = 0, ret = -EINVAL;
1984 const char **name = names;
1985
1986 opp_table = dev_pm_opp_get_opp_table(dev);
1987 if (!opp_table)
1988 return ERR_PTR(-ENOMEM);
1989
1990 /*
1991 * If the genpd's OPP table isn't already initialized, parsing of the
1992 * required-opps fail for dev. We should retry this after genpd's OPP
1993 * table is added.
1994 */
1995 if (!opp_table->required_opp_count) {
1996 ret = -EPROBE_DEFER;
1997 goto put_table;
1998 }
1999
2000 mutex_lock(&opp_table->genpd_virt_dev_lock);
2001
2002 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2003 sizeof(*opp_table->genpd_virt_devs),
2004 GFP_KERNEL);
2005 if (!opp_table->genpd_virt_devs)
2006 goto unlock;
2007
2008 while (*name) {
2009 if (index >= opp_table->required_opp_count) {
2010 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2011 *name, opp_table->required_opp_count, index);
2012 goto err;
2013 }
2014
2015 if (opp_table->genpd_virt_devs[index]) {
2016 dev_err(dev, "Genpd virtual device already set %s\n",
2017 *name);
2018 goto err;
2019 }
2020
2021 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2022 if (IS_ERR(virt_dev)) {
2023 ret = PTR_ERR(virt_dev);
2024 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2025 goto err;
2026 }
2027
2028 opp_table->genpd_virt_devs[index] = virt_dev;
2029 index++;
2030 name++;
2031 }
2032
2033 if (virt_devs)
2034 *virt_devs = opp_table->genpd_virt_devs;
2035 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2036
2037 return opp_table;
2038
2039err:
2040 _opp_detach_genpd(opp_table);
2041unlock:
2042 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2043
2044put_table:
2045 dev_pm_opp_put_opp_table(opp_table);
2046
2047 return ERR_PTR(ret);
2048}
2049EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2050
2051/**
2052 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2053 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2054 *
2055 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2056 * OPP table.
2057 */
2058void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2059{
2060 /*
2061 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2062 * used in parallel.
2063 */
2064 mutex_lock(&opp_table->genpd_virt_dev_lock);
2065 _opp_detach_genpd(opp_table);
2066 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2067
2068 dev_pm_opp_put_opp_table(opp_table);
2069}
2070EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2071
2072/**
2073 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2074 * @src_table: OPP table which has dst_table as one of its required OPP table.
2075 * @dst_table: Required OPP table of the src_table.
2076 * @pstate: Current performance state of the src_table.
2077 *
2078 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2079 * "required-opps" property of the OPP (present in @src_table) which has
2080 * performance state set to @pstate.
2081 *
2082 * Return: Zero or positive performance state on success, otherwise negative
2083 * value on errors.
2084 */
2085int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2086 struct opp_table *dst_table,
2087 unsigned int pstate)
2088{
2089 struct dev_pm_opp *opp;
2090 int dest_pstate = -EINVAL;
2091 int i;
2092
2093 if (!pstate)
2094 return 0;
2095
2096 /*
2097 * Normally the src_table will have the "required_opps" property set to
2098 * point to one of the OPPs in the dst_table, but in some cases the
2099 * genpd and its master have one to one mapping of performance states
2100 * and so none of them have the "required-opps" property set. Return the
2101 * pstate of the src_table as it is in such cases.
2102 */
2103 if (!src_table->required_opp_count)
2104 return pstate;
2105
2106 for (i = 0; i < src_table->required_opp_count; i++) {
2107 if (src_table->required_opp_tables[i]->np == dst_table->np)
2108 break;
2109 }
2110
2111 if (unlikely(i == src_table->required_opp_count)) {
2112 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2113 __func__, src_table, dst_table);
2114 return -EINVAL;
2115 }
2116
2117 mutex_lock(&src_table->lock);
2118
2119 list_for_each_entry(opp, &src_table->opp_list, node) {
2120 if (opp->pstate == pstate) {
2121 dest_pstate = opp->required_opps[i]->pstate;
2122 goto unlock;
2123 }
2124 }
2125
2126 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2127 dst_table);
2128
2129unlock:
2130 mutex_unlock(&src_table->lock);
2131
2132 return dest_pstate;
2133}
2134
2135/**
2136 * dev_pm_opp_add() - Add an OPP table from a table definitions
2137 * @dev: device for which we do this operation
2138 * @freq: Frequency in Hz for this OPP
2139 * @u_volt: Voltage in uVolts for this OPP
2140 *
2141 * This function adds an opp definition to the opp table and returns status.
2142 * The opp is made available by default and it can be controlled using
2143 * dev_pm_opp_enable/disable functions.
2144 *
2145 * Return:
2146 * 0 On success OR
2147 * Duplicate OPPs (both freq and volt are same) and opp->available
2148 * -EEXIST Freq are same and volt are different OR
2149 * Duplicate OPPs (both freq and volt are same) and !opp->available
2150 * -ENOMEM Memory allocation failure
2151 */
2152int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2153{
2154 struct opp_table *opp_table;
2155 int ret;
2156
2157 opp_table = dev_pm_opp_get_opp_table(dev);
2158 if (!opp_table)
2159 return -ENOMEM;
2160
2161 /* Fix regulator count for dynamic OPPs */
2162 opp_table->regulator_count = 1;
2163
2164 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2165 if (ret)
2166 dev_pm_opp_put_opp_table(opp_table);
2167
2168 return ret;
2169}
2170EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2171
2172/**
2173 * _opp_set_availability() - helper to set the availability of an opp
2174 * @dev: device for which we do this operation
2175 * @freq: OPP frequency to modify availability
2176 * @availability_req: availability status requested for this opp
2177 *
2178 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2179 * which is isolated here.
2180 *
2181 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2182 * copy operation, returns 0 if no modification was done OR modification was
2183 * successful.
2184 */
2185static int _opp_set_availability(struct device *dev, unsigned long freq,
2186 bool availability_req)
2187{
2188 struct opp_table *opp_table;
2189 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2190 int r = 0;
2191
2192 /* Find the opp_table */
2193 opp_table = _find_opp_table(dev);
2194 if (IS_ERR(opp_table)) {
2195 r = PTR_ERR(opp_table);
2196 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2197 return r;
2198 }
2199
2200 mutex_lock(&opp_table->lock);
2201
2202 /* Do we have the frequency? */
2203 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2204 if (tmp_opp->rate == freq) {
2205 opp = tmp_opp;
2206 break;
2207 }
2208 }
2209
2210 if (IS_ERR(opp)) {
2211 r = PTR_ERR(opp);
2212 goto unlock;
2213 }
2214
2215 /* Is update really needed? */
2216 if (opp->available == availability_req)
2217 goto unlock;
2218
2219 opp->available = availability_req;
2220
2221 dev_pm_opp_get(opp);
2222 mutex_unlock(&opp_table->lock);
2223
2224 /* Notify the change of the OPP availability */
2225 if (availability_req)
2226 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2227 opp);
2228 else
2229 blocking_notifier_call_chain(&opp_table->head,
2230 OPP_EVENT_DISABLE, opp);
2231
2232 dev_pm_opp_put(opp);
2233 goto put_table;
2234
2235unlock:
2236 mutex_unlock(&opp_table->lock);
2237put_table:
2238 dev_pm_opp_put_opp_table(opp_table);
2239 return r;
2240}
2241
2242/**
2243 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2244 * @dev: device for which we do this operation
2245 * @freq: OPP frequency to adjust voltage of
2246 * @u_volt: new OPP target voltage
2247 * @u_volt_min: new OPP min voltage
2248 * @u_volt_max: new OPP max voltage
2249 *
2250 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2251 * copy operation, returns 0 if no modifcation was done OR modification was
2252 * successful.
2253 */
2254int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2255 unsigned long u_volt, unsigned long u_volt_min,
2256 unsigned long u_volt_max)
2257
2258{
2259 struct opp_table *opp_table;
2260 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2261 int r = 0;
2262
2263 /* Find the opp_table */
2264 opp_table = _find_opp_table(dev);
2265 if (IS_ERR(opp_table)) {
2266 r = PTR_ERR(opp_table);
2267 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2268 return r;
2269 }
2270
2271 mutex_lock(&opp_table->lock);
2272
2273 /* Do we have the frequency? */
2274 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2275 if (tmp_opp->rate == freq) {
2276 opp = tmp_opp;
2277 break;
2278 }
2279 }
2280
2281 if (IS_ERR(opp)) {
2282 r = PTR_ERR(opp);
2283 goto adjust_unlock;
2284 }
2285
2286 /* Is update really needed? */
2287 if (opp->supplies->u_volt == u_volt)
2288 goto adjust_unlock;
2289
2290 opp->supplies->u_volt = u_volt;
2291 opp->supplies->u_volt_min = u_volt_min;
2292 opp->supplies->u_volt_max = u_volt_max;
2293
2294 dev_pm_opp_get(opp);
2295 mutex_unlock(&opp_table->lock);
2296
2297 /* Notify the voltage change of the OPP */
2298 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2299 opp);
2300
2301 dev_pm_opp_put(opp);
2302 goto adjust_put_table;
2303
2304adjust_unlock:
2305 mutex_unlock(&opp_table->lock);
2306adjust_put_table:
2307 dev_pm_opp_put_opp_table(opp_table);
2308 return r;
2309}
2310EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2311
2312/**
2313 * dev_pm_opp_enable() - Enable a specific OPP
2314 * @dev: device for which we do this operation
2315 * @freq: OPP frequency to enable
2316 *
2317 * Enables a provided opp. If the operation is valid, this returns 0, else the
2318 * corresponding error value. It is meant to be used for users an OPP available
2319 * after being temporarily made unavailable with dev_pm_opp_disable.
2320 *
2321 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2322 * copy operation, returns 0 if no modification was done OR modification was
2323 * successful.
2324 */
2325int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2326{
2327 return _opp_set_availability(dev, freq, true);
2328}
2329EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2330
2331/**
2332 * dev_pm_opp_disable() - Disable a specific OPP
2333 * @dev: device for which we do this operation
2334 * @freq: OPP frequency to disable
2335 *
2336 * Disables a provided opp. If the operation is valid, this returns
2337 * 0, else the corresponding error value. It is meant to be a temporary
2338 * control by users to make this OPP not available until the circumstances are
2339 * right to make it available again (with a call to dev_pm_opp_enable).
2340 *
2341 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2342 * copy operation, returns 0 if no modification was done OR modification was
2343 * successful.
2344 */
2345int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2346{
2347 return _opp_set_availability(dev, freq, false);
2348}
2349EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2350
2351/**
2352 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2353 * @dev: Device for which notifier needs to be registered
2354 * @nb: Notifier block to be registered
2355 *
2356 * Return: 0 on success or a negative error value.
2357 */
2358int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2359{
2360 struct opp_table *opp_table;
2361 int ret;
2362
2363 opp_table = _find_opp_table(dev);
2364 if (IS_ERR(opp_table))
2365 return PTR_ERR(opp_table);
2366
2367 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2368
2369 dev_pm_opp_put_opp_table(opp_table);
2370
2371 return ret;
2372}
2373EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2374
2375/**
2376 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2377 * @dev: Device for which notifier needs to be unregistered
2378 * @nb: Notifier block to be unregistered
2379 *
2380 * Return: 0 on success or a negative error value.
2381 */
2382int dev_pm_opp_unregister_notifier(struct device *dev,
2383 struct notifier_block *nb)
2384{
2385 struct opp_table *opp_table;
2386 int ret;
2387
2388 opp_table = _find_opp_table(dev);
2389 if (IS_ERR(opp_table))
2390 return PTR_ERR(opp_table);
2391
2392 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2393
2394 dev_pm_opp_put_opp_table(opp_table);
2395
2396 return ret;
2397}
2398EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2399
2400void _dev_pm_opp_find_and_remove_table(struct device *dev)
2401{
2402 struct opp_table *opp_table;
2403
2404 /* Check for existing table for 'dev' */
2405 opp_table = _find_opp_table(dev);
2406 if (IS_ERR(opp_table)) {
2407 int error = PTR_ERR(opp_table);
2408
2409 if (error != -ENODEV)
2410 WARN(1, "%s: opp_table: %d\n",
2411 IS_ERR_OR_NULL(dev) ?
2412 "Invalid device" : dev_name(dev),
2413 error);
2414 return;
2415 }
2416
2417 _opp_remove_all_static(opp_table);
2418
2419 /* Drop reference taken by _find_opp_table() */
2420 dev_pm_opp_put_opp_table(opp_table);
2421
2422 /* Drop reference taken while the OPP table was added */
2423 dev_pm_opp_put_opp_table(opp_table);
2424}
2425
2426/**
2427 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2428 * @dev: device pointer used to lookup OPP table.
2429 *
2430 * Free both OPPs created using static entries present in DT and the
2431 * dynamically added entries.
2432 */
2433void dev_pm_opp_remove_table(struct device *dev)
2434{
2435 _dev_pm_opp_find_and_remove_table(dev);
2436}
2437EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);