Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
5#ifndef __ASSEMBLY__
6#ifndef __GENERATING_BOUNDS_H
7
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
11#include <linux/bitops.h>
12#include <linux/cache.h>
13#include <linux/threads.h>
14#include <linux/numa.h>
15#include <linux/init.h>
16#include <linux/seqlock.h>
17#include <linux/nodemask.h>
18#include <linux/pageblock-flags.h>
19#include <linux/page-flags-layout.h>
20#include <linux/atomic.h>
21#include <linux/mm_types.h>
22#include <linux/page-flags.h>
23#include <asm/page.h>
24
25/* Free memory management - zoned buddy allocator. */
26#ifndef CONFIG_FORCE_MAX_ZONEORDER
27#define MAX_ORDER 11
28#else
29#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30#endif
31#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32
33/*
34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35 * costly to service. That is between allocation orders which should
36 * coalesce naturally under reasonable reclaim pressure and those which
37 * will not.
38 */
39#define PAGE_ALLOC_COSTLY_ORDER 3
40
41enum migratetype {
42 MIGRATE_UNMOVABLE,
43 MIGRATE_MOVABLE,
44 MIGRATE_RECLAIMABLE,
45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47#ifdef CONFIG_CMA
48 /*
49 * MIGRATE_CMA migration type is designed to mimic the way
50 * ZONE_MOVABLE works. Only movable pages can be allocated
51 * from MIGRATE_CMA pageblocks and page allocator never
52 * implicitly change migration type of MIGRATE_CMA pageblock.
53 *
54 * The way to use it is to change migratetype of a range of
55 * pageblocks to MIGRATE_CMA which can be done by
56 * __free_pageblock_cma() function. What is important though
57 * is that a range of pageblocks must be aligned to
58 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 * a single pageblock.
60 */
61 MIGRATE_CMA,
62#endif
63#ifdef CONFIG_MEMORY_ISOLATION
64 MIGRATE_ISOLATE, /* can't allocate from here */
65#endif
66 MIGRATE_TYPES
67};
68
69/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70extern const char * const migratetype_names[MIGRATE_TYPES];
71
72#ifdef CONFIG_CMA
73# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75#else
76# define is_migrate_cma(migratetype) false
77# define is_migrate_cma_page(_page) false
78#endif
79
80static inline bool is_migrate_movable(int mt)
81{
82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83}
84
85#define for_each_migratetype_order(order, type) \
86 for (order = 0; order < MAX_ORDER; order++) \
87 for (type = 0; type < MIGRATE_TYPES; type++)
88
89extern int page_group_by_mobility_disabled;
90
91#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
92
93#define get_pageblock_migratetype(page) \
94 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
95
96struct free_area {
97 struct list_head free_list[MIGRATE_TYPES];
98 unsigned long nr_free;
99};
100
101static inline struct page *get_page_from_free_area(struct free_area *area,
102 int migratetype)
103{
104 return list_first_entry_or_null(&area->free_list[migratetype],
105 struct page, lru);
106}
107
108static inline bool free_area_empty(struct free_area *area, int migratetype)
109{
110 return list_empty(&area->free_list[migratetype]);
111}
112
113struct pglist_data;
114
115/*
116 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
117 * So add a wild amount of padding here to ensure that they fall into separate
118 * cachelines. There are very few zone structures in the machine, so space
119 * consumption is not a concern here.
120 */
121#if defined(CONFIG_SMP)
122struct zone_padding {
123 char x[0];
124} ____cacheline_internodealigned_in_smp;
125#define ZONE_PADDING(name) struct zone_padding name;
126#else
127#define ZONE_PADDING(name)
128#endif
129
130#ifdef CONFIG_NUMA
131enum numa_stat_item {
132 NUMA_HIT, /* allocated in intended node */
133 NUMA_MISS, /* allocated in non intended node */
134 NUMA_FOREIGN, /* was intended here, hit elsewhere */
135 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
136 NUMA_LOCAL, /* allocation from local node */
137 NUMA_OTHER, /* allocation from other node */
138 NR_VM_NUMA_STAT_ITEMS
139};
140#else
141#define NR_VM_NUMA_STAT_ITEMS 0
142#endif
143
144enum zone_stat_item {
145 /* First 128 byte cacheline (assuming 64 bit words) */
146 NR_FREE_PAGES,
147 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
148 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
149 NR_ZONE_ACTIVE_ANON,
150 NR_ZONE_INACTIVE_FILE,
151 NR_ZONE_ACTIVE_FILE,
152 NR_ZONE_UNEVICTABLE,
153 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
154 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
155 NR_PAGETABLE, /* used for pagetables */
156 /* Second 128 byte cacheline */
157 NR_BOUNCE,
158#if IS_ENABLED(CONFIG_ZSMALLOC)
159 NR_ZSPAGES, /* allocated in zsmalloc */
160#endif
161 NR_FREE_CMA_PAGES,
162 NR_VM_ZONE_STAT_ITEMS };
163
164enum node_stat_item {
165 NR_LRU_BASE,
166 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
167 NR_ACTIVE_ANON, /* " " " " " */
168 NR_INACTIVE_FILE, /* " " " " " */
169 NR_ACTIVE_FILE, /* " " " " " */
170 NR_UNEVICTABLE, /* " " " " " */
171 NR_SLAB_RECLAIMABLE_B,
172 NR_SLAB_UNRECLAIMABLE_B,
173 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
174 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
175 WORKINGSET_NODES,
176 WORKINGSET_REFAULT_BASE,
177 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
178 WORKINGSET_REFAULT_FILE,
179 WORKINGSET_ACTIVATE_BASE,
180 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
181 WORKINGSET_ACTIVATE_FILE,
182 WORKINGSET_RESTORE_BASE,
183 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
184 WORKINGSET_RESTORE_FILE,
185 WORKINGSET_NODERECLAIM,
186 NR_ANON_MAPPED, /* Mapped anonymous pages */
187 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
188 only modified from process context */
189 NR_FILE_PAGES,
190 NR_FILE_DIRTY,
191 NR_WRITEBACK,
192 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
193 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
194 NR_SHMEM_THPS,
195 NR_SHMEM_PMDMAPPED,
196 NR_FILE_THPS,
197 NR_FILE_PMDMAPPED,
198 NR_ANON_THPS,
199 NR_VMSCAN_WRITE,
200 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
201 NR_DIRTIED, /* page dirtyings since bootup */
202 NR_WRITTEN, /* page writings since bootup */
203 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
204 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
205 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
206 NR_KERNEL_STACK_KB, /* measured in KiB */
207#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
208 NR_KERNEL_SCS_KB, /* measured in KiB */
209#endif
210 NR_VM_NODE_STAT_ITEMS
211};
212
213/*
214 * Returns true if the value is measured in bytes (most vmstat values are
215 * measured in pages). This defines the API part, the internal representation
216 * might be different.
217 */
218static __always_inline bool vmstat_item_in_bytes(int idx)
219{
220 /*
221 * Global and per-node slab counters track slab pages.
222 * It's expected that changes are multiples of PAGE_SIZE.
223 * Internally values are stored in pages.
224 *
225 * Per-memcg and per-lruvec counters track memory, consumed
226 * by individual slab objects. These counters are actually
227 * byte-precise.
228 */
229 return (idx == NR_SLAB_RECLAIMABLE_B ||
230 idx == NR_SLAB_UNRECLAIMABLE_B);
231}
232
233/*
234 * We do arithmetic on the LRU lists in various places in the code,
235 * so it is important to keep the active lists LRU_ACTIVE higher in
236 * the array than the corresponding inactive lists, and to keep
237 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
238 *
239 * This has to be kept in sync with the statistics in zone_stat_item
240 * above and the descriptions in vmstat_text in mm/vmstat.c
241 */
242#define LRU_BASE 0
243#define LRU_ACTIVE 1
244#define LRU_FILE 2
245
246enum lru_list {
247 LRU_INACTIVE_ANON = LRU_BASE,
248 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
249 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
250 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
251 LRU_UNEVICTABLE,
252 NR_LRU_LISTS
253};
254
255#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
256
257#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
258
259static inline bool is_file_lru(enum lru_list lru)
260{
261 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
262}
263
264static inline bool is_active_lru(enum lru_list lru)
265{
266 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
267}
268
269enum lruvec_flags {
270 LRUVEC_CONGESTED, /* lruvec has many dirty pages
271 * backed by a congested BDI
272 */
273};
274
275struct lruvec {
276 struct list_head lists[NR_LRU_LISTS];
277 /*
278 * These track the cost of reclaiming one LRU - file or anon -
279 * over the other. As the observed cost of reclaiming one LRU
280 * increases, the reclaim scan balance tips toward the other.
281 */
282 unsigned long anon_cost;
283 unsigned long file_cost;
284 /* Non-resident age, driven by LRU movement */
285 atomic_long_t nonresident_age;
286 /* Refaults at the time of last reclaim cycle, anon=0, file=1 */
287 unsigned long refaults[2];
288 /* Various lruvec state flags (enum lruvec_flags) */
289 unsigned long flags;
290#ifdef CONFIG_MEMCG
291 struct pglist_data *pgdat;
292#endif
293};
294
295/* Isolate unmapped pages */
296#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
297/* Isolate for asynchronous migration */
298#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
299/* Isolate unevictable pages */
300#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
301
302/* LRU Isolation modes. */
303typedef unsigned __bitwise isolate_mode_t;
304
305enum zone_watermarks {
306 WMARK_MIN,
307 WMARK_LOW,
308 WMARK_HIGH,
309 NR_WMARK
310};
311
312#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
313#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
314#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
315#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
316
317struct per_cpu_pages {
318 int count; /* number of pages in the list */
319 int high; /* high watermark, emptying needed */
320 int batch; /* chunk size for buddy add/remove */
321
322 /* Lists of pages, one per migrate type stored on the pcp-lists */
323 struct list_head lists[MIGRATE_PCPTYPES];
324};
325
326struct per_cpu_pageset {
327 struct per_cpu_pages pcp;
328#ifdef CONFIG_NUMA
329 s8 expire;
330 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
331#endif
332#ifdef CONFIG_SMP
333 s8 stat_threshold;
334 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
335#endif
336};
337
338struct per_cpu_nodestat {
339 s8 stat_threshold;
340 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
341};
342
343#endif /* !__GENERATING_BOUNDS.H */
344
345enum zone_type {
346 /*
347 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
348 * to DMA to all of the addressable memory (ZONE_NORMAL).
349 * On architectures where this area covers the whole 32 bit address
350 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
351 * DMA addressing constraints. This distinction is important as a 32bit
352 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
353 * platforms may need both zones as they support peripherals with
354 * different DMA addressing limitations.
355 *
356 * Some examples:
357 *
358 * - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the
359 * rest of the lower 4G.
360 *
361 * - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on
362 * the specific device.
363 *
364 * - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the
365 * lower 4G.
366 *
367 * - powerpc only uses ZONE_DMA, the size, up to 2G, may vary
368 * depending on the specific device.
369 *
370 * - s390 uses ZONE_DMA fixed to the lower 2G.
371 *
372 * - ia64 and riscv only use ZONE_DMA32.
373 *
374 * - parisc uses neither.
375 */
376#ifdef CONFIG_ZONE_DMA
377 ZONE_DMA,
378#endif
379#ifdef CONFIG_ZONE_DMA32
380 ZONE_DMA32,
381#endif
382 /*
383 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
384 * performed on pages in ZONE_NORMAL if the DMA devices support
385 * transfers to all addressable memory.
386 */
387 ZONE_NORMAL,
388#ifdef CONFIG_HIGHMEM
389 /*
390 * A memory area that is only addressable by the kernel through
391 * mapping portions into its own address space. This is for example
392 * used by i386 to allow the kernel to address the memory beyond
393 * 900MB. The kernel will set up special mappings (page
394 * table entries on i386) for each page that the kernel needs to
395 * access.
396 */
397 ZONE_HIGHMEM,
398#endif
399 ZONE_MOVABLE,
400#ifdef CONFIG_ZONE_DEVICE
401 ZONE_DEVICE,
402#endif
403 __MAX_NR_ZONES
404
405};
406
407#ifndef __GENERATING_BOUNDS_H
408
409struct zone {
410 /* Read-mostly fields */
411
412 /* zone watermarks, access with *_wmark_pages(zone) macros */
413 unsigned long _watermark[NR_WMARK];
414 unsigned long watermark_boost;
415
416 unsigned long nr_reserved_highatomic;
417
418 /*
419 * We don't know if the memory that we're going to allocate will be
420 * freeable or/and it will be released eventually, so to avoid totally
421 * wasting several GB of ram we must reserve some of the lower zone
422 * memory (otherwise we risk to run OOM on the lower zones despite
423 * there being tons of freeable ram on the higher zones). This array is
424 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
425 * changes.
426 */
427 long lowmem_reserve[MAX_NR_ZONES];
428
429#ifdef CONFIG_NUMA
430 int node;
431#endif
432 struct pglist_data *zone_pgdat;
433 struct per_cpu_pageset __percpu *pageset;
434
435#ifndef CONFIG_SPARSEMEM
436 /*
437 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
438 * In SPARSEMEM, this map is stored in struct mem_section
439 */
440 unsigned long *pageblock_flags;
441#endif /* CONFIG_SPARSEMEM */
442
443 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
444 unsigned long zone_start_pfn;
445
446 /*
447 * spanned_pages is the total pages spanned by the zone, including
448 * holes, which is calculated as:
449 * spanned_pages = zone_end_pfn - zone_start_pfn;
450 *
451 * present_pages is physical pages existing within the zone, which
452 * is calculated as:
453 * present_pages = spanned_pages - absent_pages(pages in holes);
454 *
455 * managed_pages is present pages managed by the buddy system, which
456 * is calculated as (reserved_pages includes pages allocated by the
457 * bootmem allocator):
458 * managed_pages = present_pages - reserved_pages;
459 *
460 * So present_pages may be used by memory hotplug or memory power
461 * management logic to figure out unmanaged pages by checking
462 * (present_pages - managed_pages). And managed_pages should be used
463 * by page allocator and vm scanner to calculate all kinds of watermarks
464 * and thresholds.
465 *
466 * Locking rules:
467 *
468 * zone_start_pfn and spanned_pages are protected by span_seqlock.
469 * It is a seqlock because it has to be read outside of zone->lock,
470 * and it is done in the main allocator path. But, it is written
471 * quite infrequently.
472 *
473 * The span_seq lock is declared along with zone->lock because it is
474 * frequently read in proximity to zone->lock. It's good to
475 * give them a chance of being in the same cacheline.
476 *
477 * Write access to present_pages at runtime should be protected by
478 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
479 * present_pages should get_online_mems() to get a stable value.
480 */
481 atomic_long_t managed_pages;
482 unsigned long spanned_pages;
483 unsigned long present_pages;
484
485 const char *name;
486
487#ifdef CONFIG_MEMORY_ISOLATION
488 /*
489 * Number of isolated pageblock. It is used to solve incorrect
490 * freepage counting problem due to racy retrieving migratetype
491 * of pageblock. Protected by zone->lock.
492 */
493 unsigned long nr_isolate_pageblock;
494#endif
495
496#ifdef CONFIG_MEMORY_HOTPLUG
497 /* see spanned/present_pages for more description */
498 seqlock_t span_seqlock;
499#endif
500
501 int initialized;
502
503 /* Write-intensive fields used from the page allocator */
504 ZONE_PADDING(_pad1_)
505
506 /* free areas of different sizes */
507 struct free_area free_area[MAX_ORDER];
508
509 /* zone flags, see below */
510 unsigned long flags;
511
512 /* Primarily protects free_area */
513 spinlock_t lock;
514
515 /* Write-intensive fields used by compaction and vmstats. */
516 ZONE_PADDING(_pad2_)
517
518 /*
519 * When free pages are below this point, additional steps are taken
520 * when reading the number of free pages to avoid per-cpu counter
521 * drift allowing watermarks to be breached
522 */
523 unsigned long percpu_drift_mark;
524
525#if defined CONFIG_COMPACTION || defined CONFIG_CMA
526 /* pfn where compaction free scanner should start */
527 unsigned long compact_cached_free_pfn;
528 /* pfn where async and sync compaction migration scanner should start */
529 unsigned long compact_cached_migrate_pfn[2];
530 unsigned long compact_init_migrate_pfn;
531 unsigned long compact_init_free_pfn;
532#endif
533
534#ifdef CONFIG_COMPACTION
535 /*
536 * On compaction failure, 1<<compact_defer_shift compactions
537 * are skipped before trying again. The number attempted since
538 * last failure is tracked with compact_considered.
539 * compact_order_failed is the minimum compaction failed order.
540 */
541 unsigned int compact_considered;
542 unsigned int compact_defer_shift;
543 int compact_order_failed;
544#endif
545
546#if defined CONFIG_COMPACTION || defined CONFIG_CMA
547 /* Set to true when the PG_migrate_skip bits should be cleared */
548 bool compact_blockskip_flush;
549#endif
550
551 bool contiguous;
552
553 ZONE_PADDING(_pad3_)
554 /* Zone statistics */
555 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
556 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
557} ____cacheline_internodealigned_in_smp;
558
559enum pgdat_flags {
560 PGDAT_DIRTY, /* reclaim scanning has recently found
561 * many dirty file pages at the tail
562 * of the LRU.
563 */
564 PGDAT_WRITEBACK, /* reclaim scanning has recently found
565 * many pages under writeback
566 */
567 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
568};
569
570enum zone_flags {
571 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
572 * Cleared when kswapd is woken.
573 */
574};
575
576static inline unsigned long zone_managed_pages(struct zone *zone)
577{
578 return (unsigned long)atomic_long_read(&zone->managed_pages);
579}
580
581static inline unsigned long zone_end_pfn(const struct zone *zone)
582{
583 return zone->zone_start_pfn + zone->spanned_pages;
584}
585
586static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
587{
588 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
589}
590
591static inline bool zone_is_initialized(struct zone *zone)
592{
593 return zone->initialized;
594}
595
596static inline bool zone_is_empty(struct zone *zone)
597{
598 return zone->spanned_pages == 0;
599}
600
601/*
602 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
603 * intersection with the given zone
604 */
605static inline bool zone_intersects(struct zone *zone,
606 unsigned long start_pfn, unsigned long nr_pages)
607{
608 if (zone_is_empty(zone))
609 return false;
610 if (start_pfn >= zone_end_pfn(zone) ||
611 start_pfn + nr_pages <= zone->zone_start_pfn)
612 return false;
613
614 return true;
615}
616
617/*
618 * The "priority" of VM scanning is how much of the queues we will scan in one
619 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
620 * queues ("queue_length >> 12") during an aging round.
621 */
622#define DEF_PRIORITY 12
623
624/* Maximum number of zones on a zonelist */
625#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
626
627enum {
628 ZONELIST_FALLBACK, /* zonelist with fallback */
629#ifdef CONFIG_NUMA
630 /*
631 * The NUMA zonelists are doubled because we need zonelists that
632 * restrict the allocations to a single node for __GFP_THISNODE.
633 */
634 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
635#endif
636 MAX_ZONELISTS
637};
638
639/*
640 * This struct contains information about a zone in a zonelist. It is stored
641 * here to avoid dereferences into large structures and lookups of tables
642 */
643struct zoneref {
644 struct zone *zone; /* Pointer to actual zone */
645 int zone_idx; /* zone_idx(zoneref->zone) */
646};
647
648/*
649 * One allocation request operates on a zonelist. A zonelist
650 * is a list of zones, the first one is the 'goal' of the
651 * allocation, the other zones are fallback zones, in decreasing
652 * priority.
653 *
654 * To speed the reading of the zonelist, the zonerefs contain the zone index
655 * of the entry being read. Helper functions to access information given
656 * a struct zoneref are
657 *
658 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
659 * zonelist_zone_idx() - Return the index of the zone for an entry
660 * zonelist_node_idx() - Return the index of the node for an entry
661 */
662struct zonelist {
663 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
664};
665
666#ifndef CONFIG_DISCONTIGMEM
667/* The array of struct pages - for discontigmem use pgdat->lmem_map */
668extern struct page *mem_map;
669#endif
670
671#ifdef CONFIG_TRANSPARENT_HUGEPAGE
672struct deferred_split {
673 spinlock_t split_queue_lock;
674 struct list_head split_queue;
675 unsigned long split_queue_len;
676};
677#endif
678
679/*
680 * On NUMA machines, each NUMA node would have a pg_data_t to describe
681 * it's memory layout. On UMA machines there is a single pglist_data which
682 * describes the whole memory.
683 *
684 * Memory statistics and page replacement data structures are maintained on a
685 * per-zone basis.
686 */
687typedef struct pglist_data {
688 /*
689 * node_zones contains just the zones for THIS node. Not all of the
690 * zones may be populated, but it is the full list. It is referenced by
691 * this node's node_zonelists as well as other node's node_zonelists.
692 */
693 struct zone node_zones[MAX_NR_ZONES];
694
695 /*
696 * node_zonelists contains references to all zones in all nodes.
697 * Generally the first zones will be references to this node's
698 * node_zones.
699 */
700 struct zonelist node_zonelists[MAX_ZONELISTS];
701
702 int nr_zones; /* number of populated zones in this node */
703#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
704 struct page *node_mem_map;
705#ifdef CONFIG_PAGE_EXTENSION
706 struct page_ext *node_page_ext;
707#endif
708#endif
709#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
710 /*
711 * Must be held any time you expect node_start_pfn,
712 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
713 * Also synchronizes pgdat->first_deferred_pfn during deferred page
714 * init.
715 *
716 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
717 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
718 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
719 *
720 * Nests above zone->lock and zone->span_seqlock
721 */
722 spinlock_t node_size_lock;
723#endif
724 unsigned long node_start_pfn;
725 unsigned long node_present_pages; /* total number of physical pages */
726 unsigned long node_spanned_pages; /* total size of physical page
727 range, including holes */
728 int node_id;
729 wait_queue_head_t kswapd_wait;
730 wait_queue_head_t pfmemalloc_wait;
731 struct task_struct *kswapd; /* Protected by
732 mem_hotplug_begin/end() */
733 int kswapd_order;
734 enum zone_type kswapd_highest_zoneidx;
735
736 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
737
738#ifdef CONFIG_COMPACTION
739 int kcompactd_max_order;
740 enum zone_type kcompactd_highest_zoneidx;
741 wait_queue_head_t kcompactd_wait;
742 struct task_struct *kcompactd;
743#endif
744 /*
745 * This is a per-node reserve of pages that are not available
746 * to userspace allocations.
747 */
748 unsigned long totalreserve_pages;
749
750#ifdef CONFIG_NUMA
751 /*
752 * node reclaim becomes active if more unmapped pages exist.
753 */
754 unsigned long min_unmapped_pages;
755 unsigned long min_slab_pages;
756#endif /* CONFIG_NUMA */
757
758 /* Write-intensive fields used by page reclaim */
759 ZONE_PADDING(_pad1_)
760 spinlock_t lru_lock;
761
762#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
763 /*
764 * If memory initialisation on large machines is deferred then this
765 * is the first PFN that needs to be initialised.
766 */
767 unsigned long first_deferred_pfn;
768#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
769
770#ifdef CONFIG_TRANSPARENT_HUGEPAGE
771 struct deferred_split deferred_split_queue;
772#endif
773
774 /* Fields commonly accessed by the page reclaim scanner */
775
776 /*
777 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
778 *
779 * Use mem_cgroup_lruvec() to look up lruvecs.
780 */
781 struct lruvec __lruvec;
782
783 unsigned long flags;
784
785 ZONE_PADDING(_pad2_)
786
787 /* Per-node vmstats */
788 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
789 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
790} pg_data_t;
791
792#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
793#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
794#ifdef CONFIG_FLAT_NODE_MEM_MAP
795#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
796#else
797#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
798#endif
799#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
800
801#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
802#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
803
804static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
805{
806 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
807}
808
809static inline bool pgdat_is_empty(pg_data_t *pgdat)
810{
811 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
812}
813
814#include <linux/memory_hotplug.h>
815
816void build_all_zonelists(pg_data_t *pgdat);
817void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
818 enum zone_type highest_zoneidx);
819bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
820 int highest_zoneidx, unsigned int alloc_flags,
821 long free_pages);
822bool zone_watermark_ok(struct zone *z, unsigned int order,
823 unsigned long mark, int highest_zoneidx,
824 unsigned int alloc_flags);
825bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
826 unsigned long mark, int highest_zoneidx);
827enum memmap_context {
828 MEMMAP_EARLY,
829 MEMMAP_HOTPLUG,
830};
831extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
832 unsigned long size);
833
834extern void lruvec_init(struct lruvec *lruvec);
835
836static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
837{
838#ifdef CONFIG_MEMCG
839 return lruvec->pgdat;
840#else
841 return container_of(lruvec, struct pglist_data, __lruvec);
842#endif
843}
844
845extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
846
847#ifdef CONFIG_HAVE_MEMORYLESS_NODES
848int local_memory_node(int node_id);
849#else
850static inline int local_memory_node(int node_id) { return node_id; };
851#endif
852
853/*
854 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
855 */
856#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
857
858/*
859 * Returns true if a zone has pages managed by the buddy allocator.
860 * All the reclaim decisions have to use this function rather than
861 * populated_zone(). If the whole zone is reserved then we can easily
862 * end up with populated_zone() && !managed_zone().
863 */
864static inline bool managed_zone(struct zone *zone)
865{
866 return zone_managed_pages(zone);
867}
868
869/* Returns true if a zone has memory */
870static inline bool populated_zone(struct zone *zone)
871{
872 return zone->present_pages;
873}
874
875#ifdef CONFIG_NUMA
876static inline int zone_to_nid(struct zone *zone)
877{
878 return zone->node;
879}
880
881static inline void zone_set_nid(struct zone *zone, int nid)
882{
883 zone->node = nid;
884}
885#else
886static inline int zone_to_nid(struct zone *zone)
887{
888 return 0;
889}
890
891static inline void zone_set_nid(struct zone *zone, int nid) {}
892#endif
893
894extern int movable_zone;
895
896#ifdef CONFIG_HIGHMEM
897static inline int zone_movable_is_highmem(void)
898{
899#ifdef CONFIG_NEED_MULTIPLE_NODES
900 return movable_zone == ZONE_HIGHMEM;
901#else
902 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
903#endif
904}
905#endif
906
907static inline int is_highmem_idx(enum zone_type idx)
908{
909#ifdef CONFIG_HIGHMEM
910 return (idx == ZONE_HIGHMEM ||
911 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
912#else
913 return 0;
914#endif
915}
916
917/**
918 * is_highmem - helper function to quickly check if a struct zone is a
919 * highmem zone or not. This is an attempt to keep references
920 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
921 * @zone - pointer to struct zone variable
922 */
923static inline int is_highmem(struct zone *zone)
924{
925#ifdef CONFIG_HIGHMEM
926 return is_highmem_idx(zone_idx(zone));
927#else
928 return 0;
929#endif
930}
931
932/* These two functions are used to setup the per zone pages min values */
933struct ctl_table;
934
935int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
936 loff_t *);
937int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
938 size_t *, loff_t *);
939extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
940int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
941 size_t *, loff_t *);
942int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
943 void *, size_t *, loff_t *);
944int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
945 void *, size_t *, loff_t *);
946int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
947 void *, size_t *, loff_t *);
948int numa_zonelist_order_handler(struct ctl_table *, int,
949 void *, size_t *, loff_t *);
950extern int percpu_pagelist_fraction;
951extern char numa_zonelist_order[];
952#define NUMA_ZONELIST_ORDER_LEN 16
953
954#ifndef CONFIG_NEED_MULTIPLE_NODES
955
956extern struct pglist_data contig_page_data;
957#define NODE_DATA(nid) (&contig_page_data)
958#define NODE_MEM_MAP(nid) mem_map
959
960#else /* CONFIG_NEED_MULTIPLE_NODES */
961
962#include <asm/mmzone.h>
963
964#endif /* !CONFIG_NEED_MULTIPLE_NODES */
965
966extern struct pglist_data *first_online_pgdat(void);
967extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
968extern struct zone *next_zone(struct zone *zone);
969
970/**
971 * for_each_online_pgdat - helper macro to iterate over all online nodes
972 * @pgdat - pointer to a pg_data_t variable
973 */
974#define for_each_online_pgdat(pgdat) \
975 for (pgdat = first_online_pgdat(); \
976 pgdat; \
977 pgdat = next_online_pgdat(pgdat))
978/**
979 * for_each_zone - helper macro to iterate over all memory zones
980 * @zone - pointer to struct zone variable
981 *
982 * The user only needs to declare the zone variable, for_each_zone
983 * fills it in.
984 */
985#define for_each_zone(zone) \
986 for (zone = (first_online_pgdat())->node_zones; \
987 zone; \
988 zone = next_zone(zone))
989
990#define for_each_populated_zone(zone) \
991 for (zone = (first_online_pgdat())->node_zones; \
992 zone; \
993 zone = next_zone(zone)) \
994 if (!populated_zone(zone)) \
995 ; /* do nothing */ \
996 else
997
998static inline struct zone *zonelist_zone(struct zoneref *zoneref)
999{
1000 return zoneref->zone;
1001}
1002
1003static inline int zonelist_zone_idx(struct zoneref *zoneref)
1004{
1005 return zoneref->zone_idx;
1006}
1007
1008static inline int zonelist_node_idx(struct zoneref *zoneref)
1009{
1010 return zone_to_nid(zoneref->zone);
1011}
1012
1013struct zoneref *__next_zones_zonelist(struct zoneref *z,
1014 enum zone_type highest_zoneidx,
1015 nodemask_t *nodes);
1016
1017/**
1018 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1019 * @z - The cursor used as a starting point for the search
1020 * @highest_zoneidx - The zone index of the highest zone to return
1021 * @nodes - An optional nodemask to filter the zonelist with
1022 *
1023 * This function returns the next zone at or below a given zone index that is
1024 * within the allowed nodemask using a cursor as the starting point for the
1025 * search. The zoneref returned is a cursor that represents the current zone
1026 * being examined. It should be advanced by one before calling
1027 * next_zones_zonelist again.
1028 */
1029static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1030 enum zone_type highest_zoneidx,
1031 nodemask_t *nodes)
1032{
1033 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1034 return z;
1035 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1036}
1037
1038/**
1039 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1040 * @zonelist - The zonelist to search for a suitable zone
1041 * @highest_zoneidx - The zone index of the highest zone to return
1042 * @nodes - An optional nodemask to filter the zonelist with
1043 * @return - Zoneref pointer for the first suitable zone found (see below)
1044 *
1045 * This function returns the first zone at or below a given zone index that is
1046 * within the allowed nodemask. The zoneref returned is a cursor that can be
1047 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1048 * one before calling.
1049 *
1050 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1051 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1052 * update due to cpuset modification.
1053 */
1054static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1055 enum zone_type highest_zoneidx,
1056 nodemask_t *nodes)
1057{
1058 return next_zones_zonelist(zonelist->_zonerefs,
1059 highest_zoneidx, nodes);
1060}
1061
1062/**
1063 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1064 * @zone - The current zone in the iterator
1065 * @z - The current pointer within zonelist->_zonerefs being iterated
1066 * @zlist - The zonelist being iterated
1067 * @highidx - The zone index of the highest zone to return
1068 * @nodemask - Nodemask allowed by the allocator
1069 *
1070 * This iterator iterates though all zones at or below a given zone index and
1071 * within a given nodemask
1072 */
1073#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1074 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1075 zone; \
1076 z = next_zones_zonelist(++z, highidx, nodemask), \
1077 zone = zonelist_zone(z))
1078
1079#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1080 for (zone = z->zone; \
1081 zone; \
1082 z = next_zones_zonelist(++z, highidx, nodemask), \
1083 zone = zonelist_zone(z))
1084
1085
1086/**
1087 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1088 * @zone - The current zone in the iterator
1089 * @z - The current pointer within zonelist->zones being iterated
1090 * @zlist - The zonelist being iterated
1091 * @highidx - The zone index of the highest zone to return
1092 *
1093 * This iterator iterates though all zones at or below a given zone index.
1094 */
1095#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1096 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1097
1098#ifdef CONFIG_SPARSEMEM
1099#include <asm/sparsemem.h>
1100#endif
1101
1102#ifdef CONFIG_FLATMEM
1103#define pfn_to_nid(pfn) (0)
1104#endif
1105
1106#ifdef CONFIG_SPARSEMEM
1107
1108/*
1109 * SECTION_SHIFT #bits space required to store a section #
1110 *
1111 * PA_SECTION_SHIFT physical address to/from section number
1112 * PFN_SECTION_SHIFT pfn to/from section number
1113 */
1114#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1115#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1116
1117#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1118
1119#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1120#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1121
1122#define SECTION_BLOCKFLAGS_BITS \
1123 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1124
1125#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1126#error Allocator MAX_ORDER exceeds SECTION_SIZE
1127#endif
1128
1129static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1130{
1131 return pfn >> PFN_SECTION_SHIFT;
1132}
1133static inline unsigned long section_nr_to_pfn(unsigned long sec)
1134{
1135 return sec << PFN_SECTION_SHIFT;
1136}
1137
1138#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1139#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1140
1141#define SUBSECTION_SHIFT 21
1142#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1143
1144#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1145#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1146#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1147
1148#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1149#error Subsection size exceeds section size
1150#else
1151#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1152#endif
1153
1154#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1155#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1156
1157struct mem_section_usage {
1158#ifdef CONFIG_SPARSEMEM_VMEMMAP
1159 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1160#endif
1161 /* See declaration of similar field in struct zone */
1162 unsigned long pageblock_flags[0];
1163};
1164
1165void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1166
1167struct page;
1168struct page_ext;
1169struct mem_section {
1170 /*
1171 * This is, logically, a pointer to an array of struct
1172 * pages. However, it is stored with some other magic.
1173 * (see sparse.c::sparse_init_one_section())
1174 *
1175 * Additionally during early boot we encode node id of
1176 * the location of the section here to guide allocation.
1177 * (see sparse.c::memory_present())
1178 *
1179 * Making it a UL at least makes someone do a cast
1180 * before using it wrong.
1181 */
1182 unsigned long section_mem_map;
1183
1184 struct mem_section_usage *usage;
1185#ifdef CONFIG_PAGE_EXTENSION
1186 /*
1187 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1188 * section. (see page_ext.h about this.)
1189 */
1190 struct page_ext *page_ext;
1191 unsigned long pad;
1192#endif
1193 /*
1194 * WARNING: mem_section must be a power-of-2 in size for the
1195 * calculation and use of SECTION_ROOT_MASK to make sense.
1196 */
1197};
1198
1199#ifdef CONFIG_SPARSEMEM_EXTREME
1200#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1201#else
1202#define SECTIONS_PER_ROOT 1
1203#endif
1204
1205#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1206#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1207#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1208
1209#ifdef CONFIG_SPARSEMEM_EXTREME
1210extern struct mem_section **mem_section;
1211#else
1212extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1213#endif
1214
1215static inline unsigned long *section_to_usemap(struct mem_section *ms)
1216{
1217 return ms->usage->pageblock_flags;
1218}
1219
1220static inline struct mem_section *__nr_to_section(unsigned long nr)
1221{
1222#ifdef CONFIG_SPARSEMEM_EXTREME
1223 if (!mem_section)
1224 return NULL;
1225#endif
1226 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1227 return NULL;
1228 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1229}
1230extern unsigned long __section_nr(struct mem_section *ms);
1231extern size_t mem_section_usage_size(void);
1232
1233/*
1234 * We use the lower bits of the mem_map pointer to store
1235 * a little bit of information. The pointer is calculated
1236 * as mem_map - section_nr_to_pfn(pnum). The result is
1237 * aligned to the minimum alignment of the two values:
1238 * 1. All mem_map arrays are page-aligned.
1239 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1240 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1241 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1242 * worst combination is powerpc with 256k pages,
1243 * which results in PFN_SECTION_SHIFT equal 6.
1244 * To sum it up, at least 6 bits are available.
1245 */
1246#define SECTION_MARKED_PRESENT (1UL<<0)
1247#define SECTION_HAS_MEM_MAP (1UL<<1)
1248#define SECTION_IS_ONLINE (1UL<<2)
1249#define SECTION_IS_EARLY (1UL<<3)
1250#define SECTION_MAP_LAST_BIT (1UL<<4)
1251#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1252#define SECTION_NID_SHIFT 3
1253
1254static inline struct page *__section_mem_map_addr(struct mem_section *section)
1255{
1256 unsigned long map = section->section_mem_map;
1257 map &= SECTION_MAP_MASK;
1258 return (struct page *)map;
1259}
1260
1261static inline int present_section(struct mem_section *section)
1262{
1263 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1264}
1265
1266static inline int present_section_nr(unsigned long nr)
1267{
1268 return present_section(__nr_to_section(nr));
1269}
1270
1271static inline int valid_section(struct mem_section *section)
1272{
1273 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1274}
1275
1276static inline int early_section(struct mem_section *section)
1277{
1278 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1279}
1280
1281static inline int valid_section_nr(unsigned long nr)
1282{
1283 return valid_section(__nr_to_section(nr));
1284}
1285
1286static inline int online_section(struct mem_section *section)
1287{
1288 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1289}
1290
1291static inline int online_section_nr(unsigned long nr)
1292{
1293 return online_section(__nr_to_section(nr));
1294}
1295
1296#ifdef CONFIG_MEMORY_HOTPLUG
1297void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1298#ifdef CONFIG_MEMORY_HOTREMOVE
1299void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1300#endif
1301#endif
1302
1303static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1304{
1305 return __nr_to_section(pfn_to_section_nr(pfn));
1306}
1307
1308extern unsigned long __highest_present_section_nr;
1309
1310static inline int subsection_map_index(unsigned long pfn)
1311{
1312 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1313}
1314
1315#ifdef CONFIG_SPARSEMEM_VMEMMAP
1316static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1317{
1318 int idx = subsection_map_index(pfn);
1319
1320 return test_bit(idx, ms->usage->subsection_map);
1321}
1322#else
1323static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1324{
1325 return 1;
1326}
1327#endif
1328
1329#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1330static inline int pfn_valid(unsigned long pfn)
1331{
1332 struct mem_section *ms;
1333
1334 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1335 return 0;
1336 ms = __nr_to_section(pfn_to_section_nr(pfn));
1337 if (!valid_section(ms))
1338 return 0;
1339 /*
1340 * Traditionally early sections always returned pfn_valid() for
1341 * the entire section-sized span.
1342 */
1343 return early_section(ms) || pfn_section_valid(ms, pfn);
1344}
1345#endif
1346
1347static inline int pfn_in_present_section(unsigned long pfn)
1348{
1349 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1350 return 0;
1351 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1352}
1353
1354static inline unsigned long next_present_section_nr(unsigned long section_nr)
1355{
1356 while (++section_nr <= __highest_present_section_nr) {
1357 if (present_section_nr(section_nr))
1358 return section_nr;
1359 }
1360
1361 return -1;
1362}
1363
1364/*
1365 * These are _only_ used during initialisation, therefore they
1366 * can use __initdata ... They could have names to indicate
1367 * this restriction.
1368 */
1369#ifdef CONFIG_NUMA
1370#define pfn_to_nid(pfn) \
1371({ \
1372 unsigned long __pfn_to_nid_pfn = (pfn); \
1373 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1374})
1375#else
1376#define pfn_to_nid(pfn) (0)
1377#endif
1378
1379#define early_pfn_valid(pfn) pfn_valid(pfn)
1380void sparse_init(void);
1381#else
1382#define sparse_init() do {} while (0)
1383#define sparse_index_init(_sec, _nid) do {} while (0)
1384#define pfn_in_present_section pfn_valid
1385#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1386#endif /* CONFIG_SPARSEMEM */
1387
1388/*
1389 * During memory init memblocks map pfns to nids. The search is expensive and
1390 * this caches recent lookups. The implementation of __early_pfn_to_nid
1391 * may treat start/end as pfns or sections.
1392 */
1393struct mminit_pfnnid_cache {
1394 unsigned long last_start;
1395 unsigned long last_end;
1396 int last_nid;
1397};
1398
1399#ifndef early_pfn_valid
1400#define early_pfn_valid(pfn) (1)
1401#endif
1402
1403/*
1404 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1405 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1406 * pfn_valid_within() should be used in this case; we optimise this away
1407 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1408 */
1409#ifdef CONFIG_HOLES_IN_ZONE
1410#define pfn_valid_within(pfn) pfn_valid(pfn)
1411#else
1412#define pfn_valid_within(pfn) (1)
1413#endif
1414
1415#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1416/*
1417 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1418 * associated with it or not. This means that a struct page exists for this
1419 * pfn. The caller cannot assume the page is fully initialized in general.
1420 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1421 * will ensure the struct page is fully online and initialized. Special pages
1422 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1423 *
1424 * In FLATMEM, it is expected that holes always have valid memmap as long as
1425 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1426 * that a valid section has a memmap for the entire section.
1427 *
1428 * However, an ARM, and maybe other embedded architectures in the future
1429 * free memmap backing holes to save memory on the assumption the memmap is
1430 * never used. The page_zone linkages are then broken even though pfn_valid()
1431 * returns true. A walker of the full memmap must then do this additional
1432 * check to ensure the memmap they are looking at is sane by making sure
1433 * the zone and PFN linkages are still valid. This is expensive, but walkers
1434 * of the full memmap are extremely rare.
1435 */
1436bool memmap_valid_within(unsigned long pfn,
1437 struct page *page, struct zone *zone);
1438#else
1439static inline bool memmap_valid_within(unsigned long pfn,
1440 struct page *page, struct zone *zone)
1441{
1442 return true;
1443}
1444#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1445
1446#endif /* !__GENERATING_BOUNDS.H */
1447#endif /* !__ASSEMBLY__ */
1448#endif /* _LINUX_MMZONE_H */